WO2021246397A1 - 二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器 - Google Patents

二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器 Download PDF

Info

Publication number
WO2021246397A1
WO2021246397A1 PCT/JP2021/020817 JP2021020817W WO2021246397A1 WO 2021246397 A1 WO2021246397 A1 WO 2021246397A1 JP 2021020817 W JP2021020817 W JP 2021020817W WO 2021246397 A1 WO2021246397 A1 WO 2021246397A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
agent
group
conductive grease
weight
Prior art date
Application number
PCT/JP2021/020817
Other languages
English (en)
French (fr)
Inventor
真洋 加藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022528839A priority Critical patent/JPWO2021246397A1/ja
Priority to US18/008,052 priority patent/US20230272218A1/en
Priority to EP21816974.6A priority patent/EP4163962A4/en
Priority to CN202180040086.9A priority patent/CN115698222A/zh
Publication of WO2021246397A1 publication Critical patent/WO2021246397A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/043Siloxanes with specific structure containing carbon-to-carbon double bonds
    • C10M2229/0435Siloxanes with specific structure containing carbon-to-carbon double bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/061Coated particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/17Electric or magnetic purposes for electric contacts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Definitions

  • the present invention relates to a composition for a two-component curable heat conductive grease, a heat conductive grease, and an electronic device.
  • heat-generating electronic components such as CPUs (central processing units) of personal computers
  • Their calorific value reaches about 20 times that of an iron.
  • a metal heat sink or housing is used for cooling, and a heat conductive material is used to efficiently transfer heat from heat-generating electronic components to a cooling unit such as a heat sink or housing.
  • the reason for using this heat conductive material is that when a heat-generating electronic component and a heat sink are brought into contact with each other without the heat conductive material, air is present at the interface and the heat conduction is impaired. It becomes. Therefore, heat is efficiently transferred by having a heat conductive material exist between the heat-generating electronic component and the heat sink instead of the air existing at the interface.
  • the heat conductive powder is filled in the heat curable resin, and the heat conductive pad or the heat conductive sheet formed into a sheet, and the fluid resin is filled with the heat conductive powder and applied.
  • heat conductive greases that can be made thinner, phase change type heat conductive materials that soften or fluidize at the operating temperature of heat-generating electronic parts, and the like.
  • the thermal conductivity of the thermally conductive grease can be improved, but the thermal conductivity is insulating.
  • the thermal conductivity is insulating.
  • a large amount of powder such as alumina, aluminum nitride, or silica, which is an insulating filler, is mixed to improve the thermal conductivity, the insulating property can be ensured, but the viscosity of the thermally conductive grease does not increase significantly, so that during use. It becomes difficult to apply.
  • Patent Document 1 describes a thermally conductive grease containing two types of fine powder aluminum powder and fine powder alumina as essential components in order to reduce heat resistance
  • Patent Document 2 describes metallic aluminum, aluminum nitride and A thermally conductive grease containing zinc oxide as an essential component has been proposed, but the presence or absence of insulating property is not mentioned.
  • Patent Document 3 by optimizing the blending amount of the metal powder with respect to the liquid silicone and the blending amount of the zinc oxide powder, a thermally conductive silicone grease composition having excellent thermal conductivity and electrical insulation can be obtained. Is described.
  • zinc oxide powder has a large specific surface area, and when it is highly filled in liquid silicone, its viscosity increases, which causes a problem that the coated surface becomes worse.
  • the present invention has been made in view of the above problems, and is a composition for a two-component curable thermal conductive grease having low viscosity, excellent coatability, and both high thermal conductivity and electrical insulation. And the purpose is to provide electronic devices using it.
  • the present inventors have found that in a two-component curable type heat conductive grease composition, a metal aluminum powder having a specific average particle size and heat having a specific average particle size are used. It has been found that the above-mentioned problems can be solved by mixing the conductive filler with an appropriate mixing ratio, and the present invention has been made.
  • the present invention is as follows.
  • the first agent is 100 parts by weight of liquid resin (A-1), 140 parts by weight to 560 parts by weight of metallic aluminum (B-1) having an average particle size of 15 to 100 ⁇ m, aluminum oxide, aluminum nitride, and nitride.
  • the second agent is 100 parts by weight of liquid resin (A-2), 140 parts by weight to 560 parts by weight of metallic aluminum (B-2) having an average particle size of 15 to 100 ⁇ m, aluminum oxide, aluminum nitride, and nitrided material. It comprises one or more thermally conductive fillers (C-2) selected from the group consisting of boron and having an average particle size in the range of 0.3-10 ⁇ m. At least one of the thermally conductive filler (C-1) or at least one of the thermally conductive filler (C-2) is an average grain of at least one selected from the group consisting of aluminum oxide, aluminum nitride, and boron nitride.
  • a first thermally conductive filler (C-1-1) or a first thermally conductive filler (C-2-1) having a diameter of 0.3 to 1.5 ⁇ m is contained.
  • a composition for a two-component curable heat conductive grease [2]
  • the liquid resin (A-1) has two or more alkenyl groups in the molecule and has a viscosity of 50 to 3000 mPa ⁇ s at 25 ° C. and a shear rate of 10 s-1 (A-1-1).
  • the hydrosilyl addition reaction catalyst (D-1) contains a platinum compound catalyst.
  • the liquid resin (A-2) has two or more alkenyl groups in the molecule and has a viscosity of 50 to 3000 mPa ⁇ s at 25 ° C. and a shear rate of 10 s-1 (A-2-1). ), And a polyorganosiloxane (A-2-2) having 3 or more Si—H groups in the molecule.
  • the composition for a two-component curable heat conductive grease according to [1] or [2].
  • [4] The total number of moles of alkenyl groups of the liquid resin (A-1) and the liquid resin (A-2) contained in the first agent and the second agent, and the liquid resin contained in the second agent.
  • the ratio of (A-2) to the number of moles of Si—H groups is 0.1 to 5.0.
  • the viscosities of the first agent and the second agent at 25 ° C. and a shear rate of 10s- 1 are 20 Pa ⁇ s to 300 Pa ⁇ s.
  • [6] The composition for a two-component curable heat conductive grease according to any one of [1] to [5] is obtained by curing the first agent and the second agent. Thermally conductive grease.
  • the thermal conductivity is 0.5 W / mK or more, and the dielectric breakdown voltage per 1 mm thickness is 1 kV or more.
  • the heating element and the metal housing are arranged via the thermally conductive grease according to [6] or [7]. Electronics.
  • a composition for a two-component curable heat conductive grease which has low viscosity and excellent coatability, and has both high heat conductivity and electrical insulation, a heat conductive grease, and an electronic device using the same. can do.
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications can be made without departing from the gist thereof. Is.
  • composition for a two-component curable heat conductive grease of the present embodiment includes a first agent and a second agent.
  • the first agent is 100 parts by weight of liquid resin (A-1), 140 parts by weight to 560 parts by weight of metallic aluminum (B-1) having an average particle size of 15 to 100 ⁇ m, aluminum oxide, aluminum nitride, and boron nitride.
  • B-1 metallic aluminum
  • C-1 thermally conductive fillers
  • D-1 a catalyst for hydrosilyl addition reaction
  • Other components may be included if necessary.
  • the second agent is 100 parts by weight of liquid resin (A-2), 140 parts by weight to 560 parts by weight of metallic aluminum (B-2) having an average particle size of 15 to 100 ⁇ m, aluminum oxide, aluminum nitride, and Includes one or more thermally conductive fillers (C-2) selected from the group consisting of boron nitride and having an average particle size in the range of 0.3-10 ⁇ m, and optionally other components. You may be.
  • At least one of the heat conductive filler (C-1) contained in the first agent or the heat conductive filler (C-2) contained in the second agent is aluminum oxide, aluminum nitride, and At least one selected from the group consisting of boron nitride, a first heat conductive filler (C-1-1) or a first heat conductive filler (C-) having an average particle size of 0.3 to 1.5 ⁇ m. 2-1) is included.
  • a thermally conductive filler having an average particle size of 0.3 to 1.5 ⁇ m contained in the first agent is called a first thermally conductive filler (C-1-1), and the average particle size contained in the second agent is 0.
  • the heat conductive filler of .3 to 1.5 ⁇ m is called the first heat conductive filler (C-2-1).
  • the viscosity of the first agent at 25 ° C. and a shear rate of 10s- 1 is preferably 20 to 300 Pa ⁇ s, more preferably 20 to 250 Pa ⁇ s, still more preferably 20 to 200 Pa ⁇ s, and more. More preferably, it is 20 to 150 Pa ⁇ s. Since the viscosity of the first agent is 20 Pa ⁇ s or more, even when the heat conductive grease is used vertically, it is possible to suppress the dripping of the heat conductive grease until the curing reaction. Handleability tends to be improved. Further, when the viscosity of the first agent is 300 Pa ⁇ s or less, the coatability when the first agent and the second agent are mixed by a static mixer tends to be further improved.
  • the viscosity of the second agent at 25 ° C. and a shear rate of 10s- 1 is preferably 20 to 300 Pa ⁇ s, more preferably 20 to 250 Pa ⁇ s, still more preferably 20 to 200 Pa ⁇ s, and more. More preferably, it is 20 to 150 Pa ⁇ s. Since the viscosity of the second agent is 20 Pa ⁇ s or more, even when the heat conductive grease is used vertically, it is possible to suppress the dripping of the heat conductive grease until the curing reaction. Handleability tends to be improved. Further, when the viscosity of the second agent is 300 Pa ⁇ s or less, the coatability when the first agent and the second agent are mixed by a static mixer tends to be further improved.
  • the viscosity of the first agent and the second agent at 25 ° C. and a shear rate of 10s- 1 is preferably 20 Pa ⁇ s to 300 Pa ⁇ s, more preferably 20 Pa ⁇ s to 250 Pa ⁇ s. It is more preferably 20 Pa ⁇ s to 200 Pa ⁇ s, and even more preferably 20 Pa ⁇ s to 150 Pa ⁇ s.
  • the liquid resin (A-1) and (A-2) are not particularly limited, and examples thereof include silicone resin, epoxy resin, acrylic resin, urethane resin, and phenol resin. Among these, silicone resin is preferable in terms of heat resistance and flexibility.
  • the liquid resins (A-1) and (A-2) may be used alone or in combination of two or more.
  • the term "liquid” means a liquid state in which the resin alone has fluidity under normal temperature and pressure.
  • an addition reaction type silicone resin that is liquid at room temperature is preferable.
  • the addition reaction type silicone resin is not particularly limited, and examples thereof include polyorganosiloxane having two or more alkenyl groups in the molecule and polyorganosiloxane having three or more Si—H groups in the molecule. ..
  • the alkenyl group contained in the polyorganosiloxane is preferably a vinyl group.
  • the first agent preferably contains one of these polyorganosiloxanes as the liquid resin (A-1), and more preferably contains a polyorganosiloxane having an alkenyl group.
  • the second agent preferably contains one of these polyorganosiloxanes as the liquid resin (A-2), more preferably contains a polyorganosiloxane having a Si—H group, and a polyorgano having an alkenyl group. It is more preferable to contain both siloxane and polyorganosiloxane having a Si—H group.
  • the bonding position of the alkenyl group is not particularly limited, and it can be bonded to the side chain and / or the terminal of the polyorganosiloxane.
  • the number of alkenyl groups in the polyorganosiloxane having an alkenyl group is not particularly limited as long as it is 2 or more, but is preferably 2 to 10, and more preferably 2 to 5. When the number of alkenyl groups is within the above range, the change in hardness of the obtained thermally conductive grease at a high temperature is more suppressed, and the viscosity is decreased, so that the coatability tends to be further improved.
  • the alkenyl group content of the polyorganosiloxane having an alkenyl group is preferably 0.10 to 2.0 mol / kg, more preferably 0.10 to 1.0 mol / kg, and further preferably 0. It is 10 to 0.6 mol / kg.
  • the alkenyl group content is within the above range, the change in hardness of the obtained thermally conductive grease at a high temperature is more suppressed, and the viscosity is decreased, so that the coatability tends to be further improved.
  • the alkenyl group content is also referred to as a vinyl group content.
  • the bonding position of the Si—H group is not particularly limited, and it can be bonded to the side chain and / or the terminal of the polyorganosiloxane.
  • the number of Si—H groups in the polyorganosiloxane having Si—H groups is not particularly limited as long as it is 3 or more, but is preferably 3 to 60, more preferably 10 to 50, and further preferably 25 to 25. 45. When the number of Si—H groups is within the above range, the change in hardness of the obtained thermally conductive grease at a high temperature is further suppressed, and the viscosity is decreased, so that the coatability tends to be further improved.
  • the Si—H group content of the polyorganosiloxane having a Si—H group is preferably 1.0 to 15 mol / kg, more preferably 3.0 to 12 mol / kg, and further preferably 5. It is 0 to 10 mol / kg.
  • the Si—H group content is within the above range, the change in hardness of the obtained thermally conductive grease at a high temperature is further suppressed, and the viscosity is decreased, so that the coatability tends to be further improved.
  • the polyorganosiloxane having an alkenyl group in the side chain may have, for example, a structural unit represented by the following formula (1). Further, the polyorganosiloxane having a Si—H group in the side chain may have, for example, a structural unit represented by the following formula (2).
  • R is independently, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group and the like.
  • Alkyl group such as cyclopentyl group and cyclohexyl group; aryl group such as phenyl group and trill group; aralkyl group such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3 -Shows a halogenated hydrocarbon group such as a trifluoropropyl group, a 2- (perfluorobutyl) ethyl group, a 2- (perfluorooctyl) ethyl group, and a p-chlorophenyl group.
  • a halogenated hydrocarbon group such as a trifluoropropyl group, a 2- (perfluorobutyl) ethyl group, a 2- (perfluorooctyl) ethyl group, and a p-chlorophenyl group.
  • R an alkyl group and an aryl group are preferable, and a methyl group, a phenyl group, and an alkyl group having 6 to 18 carbon atoms are more preferable.
  • n indicates the number of repetitions of the structural unit. n can be about the same as the number of alkenyl groups or Si—H groups that the polyorganosiloxane has in the side chain.
  • the liquid resin (A-1) has a polyorganosiloxane (A-) having two or more alkenyl groups in the molecule and having a viscosity of 50 to 3000 mPa ⁇ s at 25 ° C. and a shear rate of 10 s-1. It is preferable to include 1-1). Further, the liquid resin (A-2) has at least two or more alkenyl groups in the molecule, and has a viscosity of 50 to 3000 mPa ⁇ s at 25 ° C. and a shear rate of 10s-1 (A-2-).
  • A-2-2 a polyorganosiloxane having at least 3 or more Si—H groups at both ends or side chains.
  • the viscosities of the polyorganosiloxanes (A-1-1) and (A-2-1) at 25 ° C. and a shear rate of 10s- 1 are preferably 50 to 3000 mPa ⁇ s, more preferably 50 to 1000 mPa ⁇ s, respectively. It is s, more preferably 50 to 500 mPa ⁇ s.
  • the viscosities of the polyorganosiloxanes (A-1-1) and (A-2-1) are 50 mPa ⁇ s or more, the change in hardness of the obtained thermally conductive grease at a high temperature tends to be further suppressed.
  • the viscosity of the polyorganosiloxane (A-2-2) at 25 ° C. and a shear rate of 10s- 1 is preferably 10 to 1000 mPa ⁇ s, more preferably 10 to 500 mPa ⁇ s, and even more preferably 10. It is ⁇ 200 mPa ⁇ s.
  • the viscosity of the polyorganosiloxane (A-2-2) is 10 mPa ⁇ s or more, the change in hardness of the obtained thermally conductive grease at a high temperature tends to be further suppressed.
  • the viscosity of the polyorganosiloxane (A-2-2) is 1000 mPa ⁇ s or less, the viscosity of the obtained thermally conductive grease tends to decrease, and the coatability tends to be further improved.
  • the first agent contains a polyorganosiloxane having a Si—H group, the viscosity of the polyorganosiloxane can be the same as that of the polyorganosiloxane (A-2-2).
  • the viscosity of each component contained in the liquid resins (A-1) and (A-2) can be measured by a conventional method using a viscometer.
  • the content of the liquid resin (A-1) or (A-2) is preferably 2.0 to 25% by mass, respectively, with respect to the total amount of the first agent or the second agent, and more preferably 4. It is 0 to 18% by mass, more preferably 6.0 to 13% by mass.
  • the content of the liquid resin (A-1) or (A-2) is within the above range, the change in hardness of the obtained thermally conductive grease at high temperature is further suppressed, and the viscosity is reduced, so that the coating property is coatable. Tends to improve.
  • the content of the polyorganosiloxane (A-1-1) or (A-2-1) is preferably 70 to 70, respectively, with respect to the total amount of the liquid resin (A-1) or (A-2). It is 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass.
  • the content of the polyorganosiloxane (A-1-1) or (A-2-1) is within the above range, the change in hardness of the obtained thermally conductive grease at high temperature is further suppressed, and the viscosity is reduced. By doing so, the coatability tends to be further improved.
  • the content of the polyorganosiloxane having a Si—H group in the second agent is a poly having an alkenyl group.
  • the amount is preferably 0.5 to 15 parts by weight, more preferably 1.5 to 10 parts by weight, still more preferably 2 with respect to a total of 100 parts by weight of the organosiloxane and the polyorganosiloxane having a Si—H group. It is 5.5 to 5.0 parts by weight.
  • the ratio of 2) to the number of moles of Si—H groups is preferably 0.1 to 5.0, more preferably 1.0 to 4.0, and even more preferably 1.5 to 3.5. Is.
  • the above ratio is 0.1 or more, the curability of the thermally conductive grease tends to be further improved.
  • the ratio is 5.0 or less, the embrittlement of the thermally conductive grease is further suppressed, and a suitable elastic body tends to be obtained.
  • the average particle size of the metallic aluminum (B-1) and (B-2) is 15 to 100 ⁇ m, preferably 20 to 80 ⁇ m, more preferably 20 to 60 ⁇ m, and further preferably 20 to 40 ⁇ m, respectively. Is. When the average particle size of the metallic aluminum (B-1) and (B-2) is 15 ⁇ m or more, the thermal conductivity of the obtained thermally conductive grease can be improved.
  • the storage stability of the obtained thermally conductive grease becomes better, and the liquid resin (A-1) and the liquid resin (A-1) and Separation of (A-2) and metallic aluminum (B-1) and (B-2) is further suppressed.
  • the average particle diameters of metallic aluminum (B-1) and (B-2) are median diameters and can be measured by the method described in Examples. Further, the metallic aluminum (B-1) and (B-2) may be the same or different.
  • the metallic aluminum (B-1) and (B-2) one type may be used alone, or two or more types having different average particle sizes may be used.
  • a plurality of types of metallic aluminum (B-1) and (B-2) are used, all of them are included in the above range. Therefore, for example, even if metallic aluminum having an average particle size of less than 15 ⁇ m and metallic aluminum having an average particle size of more than 100 ⁇ m are mixed, the mixed metallic aluminum is the metallic aluminum (B-1) of the present embodiment and the metallic aluminum. It does not correspond to (B-2).
  • the shapes of the metallic aluminum (B-1) and (B-2) are not particularly limited, and examples thereof include a spherical shape and an indefinite shape. Of these, a spherical shape is preferable. By having such a shape, the viscosity tends to be further lowered while improving the filling amount of the metallic aluminum (B-1) and (B-2).
  • the content of the metallic aluminum (B-1) or (B-2) is 140 to 560 parts by weight, preferably 140 to 560 parts by weight, respectively, with respect to 100 parts by weight of the liquid resin (A-1) or (A-2). It is 200 to 500 parts by weight, more preferably 200 to 400 parts by weight.
  • the content of the metallic aluminum (B-1) or (B-2) is 140 parts by weight or more, the thermal conductivity of the obtained thermally conductive grease is further improved.
  • the content of the metallic aluminum (B-1) or (B-2) is 560 parts by weight or less, the insulating property of the heat conductive grease is further improved.
  • the volume ratio of the metallic aluminum (B-1) or (B-2) is the sum of the thermally conductive filler (C-1) and the metallic aluminum (B-1), or the thermally conductive filler (C-). 2) is preferably 5 to 70% by volume, more preferably 15 to 50% by volume, still more preferably 20 to 40% by volume, based on the total amount of the metallic aluminum (B-2). ..
  • the volume ratio of the metallic aluminum (B-1) or (B-2) is within the above range, the thermal conductivity of the thermally conductive grease is further improved, the viscosity is further lowered, and the coatability is further improved. It tends to improve.
  • the thermally conductive fillers (C-1) and (C-2) are at least one selected from the group consisting of aluminum oxide, aluminum nitride, and boron nitride.
  • the heat conductive fillers (C-1) and (C-2) those having different materials may be used alone or in combination of two or more. Among these, it is preferable to contain at least aluminum oxide.
  • the heat conductive filler (C-1) and / or (C-2) can be made of metallic aluminum (B-1) and / or. Alternatively, it enters the gap of (B-2) and the thermal conductivity of the obtained thermally conductive grease is further improved.
  • the average particle size of the thermally conductive fillers (C-1) and (C-2) is 0.30 to 10 ⁇ m, preferably 0.40 to 7.0 ⁇ m, respectively.
  • the heat conductive fillers (C-1) and / or (C-2) are made of metallic aluminum (B). -1) and / or (B-2) can easily enter the gap.
  • the average particle size of the heat conductive fillers (C-1) and (C-2) is 0.30 ⁇ m or more, the viscosity of the heat conductive grease is lowered and the coatability is further improved.
  • the average particle size of the heat conductive fillers (C-1) and (C-2) is 10 ⁇ m or less, they can enter the gaps between the metallic aluminum (B-1) and / or (B-2) and are highly filled. Therefore, the thermal conductivity of the thermally conductive grease is further improved.
  • heat conductive fillers (C-1) and (C-2) one type may be used alone, or two or more types having different average particle sizes or materials may be used.
  • thermally conductive fillers (C-1) and (C-2) all of them shall be included in the above range. Therefore, for example, even if aluminum oxide having an average particle size of less than 0.30 ⁇ m and aluminum oxide having an average particle size of more than 10 ⁇ m are mixed, the mixed aluminum oxide is the heat conductive filler (C) of the present embodiment. -1) and (C-2) do not apply.
  • the average particle size of the thermally conductive fillers (C-1) and (C-2) is a median diameter, and can be measured by the method described in Examples. Further, the thermally conductive fillers (C-1) and (C-2) may be the same or different.
  • the heat conductive filler (C-1) is a first heat conductive filler (C-1-1) having an average particle size of 0.30 to 1.5 ⁇ m, and an average particle size of 1.6 to 3.5 ⁇ m. It may contain at least one of the second heat conductive filler (C-1-2) and the third heat conductive filler (C-1-3) having an average particle size of 3.7 to 10 ⁇ m. Among these, it is preferable to include the first heat conductive filler (C-1-1), and the first heat conductive filler (C-1-1) and the second heat conductive filler (C-1-2). , And a third thermally conductive filler (C-1-3) are more preferable. As a result, the viscosity of the thermally conductive grease is lowered, the coatability is further improved, and the thermal conductivity tends to be further improved.
  • the heat conductive filler (C-2) is a first heat conductive filler (C-2-1) having an average particle size of 0.30 to 1.5 ⁇ m and an average particle size of 1.6 to 3.5 ⁇ m. It may contain at least one of the second heat conductive filler (C-2-2) and the third heat conductive filler (C-2-3) having an average particle size of 3.7 to 10 ⁇ m. Among these, it is preferable to include the first heat conductive filler (C-2-1), the first heat conductive filler (C-2-1) and the second heat conductive filler (C-2-2). , And a third thermally conductive filler (C-2-3) are more preferable. As a result, the viscosity of the thermally conductive grease is lowered, the coatability is further improved, and the thermal conductivity tends to be further improved.
  • At least one of the heat conductive filler (C-1) contained in the first agent or the heat conductive filler (C-2) contained in the second agent is the first heat conductive filler. (C-1-1) or the first thermally conductive filler (C-2-1) is included.
  • the first agent and / or the second agent contains the first thermally conductive filler, the viscosity of the thermally conductive grease is lowered, the coatability is further improved, and the thermal conductivity is further improved.
  • the content of the first heat conductive filler (C-1-1) or (C-2-1) is preferably 100 parts by weight of the liquid resin (A-1) or (A-2), respectively. It is 10 to 400 parts by weight, more preferably 50 to 300 parts by weight, still more preferably 100 to 250 parts by weight.
  • the content of the first heat conductive filler (C-1-1) or (C-2-1) is within the above range, the viscosity of the heat conductive grease is lowered, the coatability is further improved, and the coatability is further improved. Thermal conductivity tends to be higher.
  • the content of the second heat conductive filler (C-1-2) or (C-2-2) is preferably 100 parts by weight of the liquid resin (A-1) or (A-2), respectively. It is 50 to 700 parts by weight, more preferably 100 to 500 parts by weight, and further preferably 150 to 450 parts by weight.
  • the content of the second heat conductive filler (C-1-2) or (C-2-2) is within the above range, the viscosity of the heat conductive grease is lowered, the coatability is further improved, and the coatability is further improved. Thermal conductivity tends to be higher.
  • the content of the third heat conductive filler (C-1-3) or (C-2-3) is preferably 100 parts by weight of the liquid resin (A-1) or (A-2), respectively. It is 200 to 900 parts by weight, more preferably 300 to 800 parts by weight, and further preferably 400 to 700 parts by weight.
  • the content of the third heat conductive filler (C-1-3) or (C-2-3) is within the above range, the viscosity of the heat conductive grease is lowered, the coatability is further improved, and the coatability is further improved. Thermal conductivity tends to be higher.
  • the shapes of the heat conductive fillers (C-1) and (C-2) are not particularly limited, and examples thereof include a spherical shape and an indefinite shape. Of these, a spherical shape is preferable. By having such a shape, the viscosity tends to be further lowered while improving the filling amount of the thermally conductive fillers (C-1) and (C-2).
  • the content of the thermally conductive filler (C-1) or (C-2) is preferably 300 to 1800 parts by weight, respectively, with respect to 100 parts by weight of the liquid resin (A-1) or (A-2). It is more preferably 400 to 1700 parts by weight, further preferably 700 to 1500 parts by weight, and even more preferably 800 to 1250 parts by weight.
  • the content of the thermally conductive filler (C-1) or (C-2) is 300 parts by weight or more, the gap between the metallic aluminum (B-1) and / or (B-2) can be filled. .
  • the thermal conductivity of the obtained thermally conductive grease tends to be further improved.
  • the content of the heat conductive filler (C-1) or (C-2) is 1800 parts by weight or less, the viscosity of the obtained heat conductive grease is further lowered, and the coatability tends to be further improved. It is in.
  • the catalyst for the hydrosilyl addition reaction (D-1) is not particularly limited, and examples thereof include a platinum compound catalyst, a rhodium compound catalyst, and a palladium compound catalyst. Of these, a platinum compound catalyst is preferable. By using such a catalyst for hydrosilyl addition reaction (D-1), the curability of the liquid resins (A-1) and (B-1) tends to be further improved.
  • the platinum compound catalyst is not particularly limited, and examples thereof include simple substance platinum, platinum compounds, and platinum-supported inorganic powders.
  • the platinum compound is not particularly limited, and examples thereof include platinum chloride acid, a platinum-olefin complex, a platinum-alcohol complex, and a platinum coordination compound.
  • the platinum-supported inorganic powder is not particularly limited, and examples thereof include platinum-supported alumina powder, platinum-supported silica powder, and platinum-supported carbon powder.
  • the platinum compound catalyst may be blended alone when preparing the first agent, or may be blended in a state of being mixed in advance with another component, for example, a liquid resin (A-1).
  • the content of the hydrosilyl addition reaction catalyst (D-1) is preferably 0.1 to 500 ppm, more preferably 0.1 to 500 ppm, based on 100 parts by weight of the total of the liquid resins (A-1) and (A-2). It is 1.0 to 400 ppm, more preferably 10 to 200 ppm.
  • the content of the hydrosilyl addition reaction catalyst (D-1) is within the above range, the curability of the liquid resins (A-1) and (B-1) tends to be further improved.
  • the first agent and the second agent are additives such as organosilanes other than the liquid resins (A-1) and (A-2), colorants, reaction retarders, etc., if necessary.
  • E-1) and (E-2) may be contained, respectively.
  • the organosilane is not particularly limited, and examples thereof include organosilanes represented by the following general formula (3).
  • organosilanes represented by the following general formula (3) By using such an organosilane, the wettability of the liquid resins (A-1) and (A-2) with respect to the thermally conductive fillers (C-1) and (C-2) is further improved, and the viscosity is increased. As it decreases, the thermal conductivity tends to improve.
  • R 1 is an independently alkyl group having 1 to 15 carbon atoms
  • R 2 is an independently saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • R 3 is an independently alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a + b is 1 to 3).
  • R 1 is an independently alkyl group having 1 to 15 carbon atoms, and is not particularly limited. For example, a methyl group, an ethyl group, a propyl group, a hexyl group, a nonyl group, and a decyl group. , Dodecyl group, tetradecyl group and the like. Among these, R 1 is preferably an alkyl group having 6 to 12 carbon atoms.
  • R 2 is a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, and is not particularly limited.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a hexyl group, or an octyl group
  • Cycloalkyl groups such as cyclopentyl group and cyclohexyl group
  • alkenyl groups such as vinyl group and allyl group
  • aryl groups such as phenyl group and trill group
  • aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group.
  • halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group and p-chlorophenyl group.
  • R 3 is one or more alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and is preferably a methyl group or an ethyl group. ..
  • A is an integer of 1 to 3, preferably 1.
  • b is an integer of 0 to 2, preferably 0.
  • a + b is an integer of 1 to 3, preferably 1.
  • the content of organosilane contained in the first agent or the second agent is the total amount of metallic aluminum (B-1) or (B-2) and the heat conductive filler (C-1) or (C-2). With respect to 100 parts by weight, each is preferably 0.01 to 10 parts by weight, and more preferably 0.1 to 5.0 parts by weight. When the content of organosilane is within the above range, the wettability can be effectively improved.
  • the content of the colorant contained in the first agent or the second agent is preferably 0.05 to 0.2 parts by weight, respectively, with respect to a total of 100 parts by weight of the first agent or the second agent.
  • the reaction retarder is not particularly limited, and examples thereof include 1-ethynyl-1-cyclohexanol.
  • the content of the reaction retarder is preferably 0.05 to 0.2 parts by weight, respectively, with respect to a total of 100 parts by weight of the first agent or the second agent.
  • the heat conductive grease of the present embodiment is obtained by curing the first agent and the second agent of the composition for two-component curable heat conductive grease. "Curing” also includes semi-cured first and second agents.
  • a composition for a two-component curable heat conductive grease in a state in which the hydrosilylation reaction is partially promoted in advance can also be used as the heat conductive grease.
  • the thermal conductivity of the heat conductive grease at 25 ° C. is preferably 0.5 W / mK or more, more preferably 1.0 W / mK or more, and further preferably 2.0 W / mK or more.
  • the thermal conductivity is 0.5 W / mK or more, good heat dissipation can be obtained for electronic components.
  • Thermal conductivity can be measured by the method described in the examples.
  • the dielectric breakdown voltage per 1 mm of the thickness of the heat conductive grease is preferably 1.0 kV or more, more preferably 1.5 kV or more. When the dielectric breakdown voltage is 1.0 kV or more, sufficient electrical insulation is ensured.
  • the breakdown voltage can be measured according to JIS C2110.
  • a heating element and a metal housing are arranged via the heat conductive grease.
  • the heating element is not particularly limited, and examples thereof include motors, battery packs, circuit boards used in in-vehicle power supply systems, power transistors, electronic components that generate heat such as microprocessors, and the like. Among these, electronic components used in in-vehicle power supply systems for in-vehicle use are preferable.
  • the metal housing is not particularly limited, and examples thereof include a heat sink configured for heat dissipation and heat absorption.
  • ⁇ A Liquid resin> a-1: Vinyl group-containing polyorganosiloxane (manufactured by Elchem Silicones Co., Ltd .: product name "621V100", 25 ° C., viscosity at shear rate 10s -1 : 100 mPa ⁇ s, vinyl group content: 0.33 mol / kg, molecule Average number of vinyl groups in: 2) a-2: SiH group-containing polyorganosiloxane (manufactured by Elchem Silicones Co., Ltd .: product name "626V25H7", viscosity at 25 ° C., shear rate of 10s-1 : 25mPa ⁇ s, Si—H group content: 7 mol / kg, molecule Average number of Si—H groups in: 36)
  • ⁇ B Metallic aluminum>
  • b-1 Average particle size: 25 ⁇ m, spherical, manufactured by Hikari Material Mfg. Co., Ltd., product name "Al-99.7% (-38 ⁇ m)”
  • b-2 Average particle size: 20 ⁇ m, spherical, manufactured by Toyo Aluminum K.K., product name "TFH-A20P”
  • b-3 Average particle size: 48 ⁇ m, spherical, manufactured by Hikari Material Mfg. Co., Ltd., product name "Al-99.7% (-63 ⁇ m)”
  • b-4 Average particle size: 66 ⁇ m, spherical, manufactured by Hikari Material Mfg. Co., Ltd., product name “Al-99.7% (-150 ⁇ m)”
  • ⁇ C Thermally conductive filler>
  • c-1 Aluminum oxide, average particle size: 5 ⁇ m, spherical, manufactured by Sumitomo Chemical Co., Ltd., product name "AA-5"
  • c-2 Aluminum oxide, average particle size: 2 ⁇ m, spherical, manufactured by Sumitomo Chemical Co., Ltd., product name “AA-2”
  • c-3 Aluminum oxide, average particle size: 0.5 ⁇ m, spherical, manufactured by Sumitomo Chemical Co., Ltd., product name "AA-0.5” c-4: Aluminum nitride, average particle size: 5 ⁇ m, spherical, manufactured by MARUWA, product name "A-05-F” c-5: Aluminum nitride, average particle size: 1 ⁇ m, spherical, manufactured by MARUWA, product name "A-01-F” c-6: Boron nitride, average particle size: 5 ⁇ m, scaly, manufactured by Denka, product
  • Examples 1 to 10 and Comparative Examples 1 to 3 Each raw material was blended in a 2L remix device at the ratios shown in Tables 1 to 3 and kneaded under reduced pressure at room temperature to prepare the first agent and the second agent of each heat conductive grease composition.
  • the description regarding the amount of each component in the table means parts by weight unless otherwise specified.
  • the average particle size of the metallic aluminum B and the thermally conductive filler C was measured using a "laser diffraction type particle size distribution measuring device SALD-20" manufactured by Shimadzu Corporation.
  • SALD-20 Laser diffraction type particle size distribution measuring device
  • 50 mL of pure water and 5 g of metallic aluminum B or thermally conductive filler C to be measured were added to a glass beaker, stirred with a spatula, and then dispersed with an ultrasonic cleaner for 10 minutes. Prepared.
  • the dispersion liquid of the metal aluminum B or the heat conductive filler C which had been subjected to the dispersion treatment was added drop by drop to the sampler part of the apparatus using a dropper, and the measurement was carried out when the absorbance was stable.
  • D50 medium diameter
  • the viscosity of the thermally conductive grease obtained by mixing the first agent and the second agent in a volume ratio of 1: 1 with a static mixer that is, the mixed viscosity of the first agent and the second agent is also measured in the same manner as above. did.
  • the first agent and the second agent were filled in a two-component syringe (capacity 25 cc ⁇ 2, manufactured by MIX PAC), respectively, and a hand gun and a static mixer were attached and discharged at 25 ° C. Based on the state of discharge, the applicability when the first agent and the second agent were mixed was evaluated. The evaluation criteria are shown below. ⁇ : Can be discharged more easily than the static mixer ⁇ : Can be discharged from the static mixer, but requires a certain amount of force (about 10 kgf) ⁇ : Cannot be discharged from the static mixer
  • the thermal conductivity of the heat conductive grease was measured by a method according to ASTM D5470 using a resin material thermal resistance measuring device (manufactured by Hitachi Technology Co., Ltd.). Specifically, the mixture obtained by mixing the first agent and the second agent in a static mixer at a volume ratio of 1: 1 is obtained by mixing the first agent and the second agent in a thickness of 0.2 mm, 0.5 mm and 1.0 mm and having an area of 10 mm ⁇ 10 mm. It was sandwiched between copper jigs and the thermal resistance value of each thickness was measured.
  • the composition for two-component curable heat conductive grease of the present invention is a composition for forming a heat conductive grease by mixing and curing a first agent and a second agent, and is a composition for forming a heat conductive grease, a heating element and a metal casing. It has industrial applicability as a material for thermally conductive grease that is used by thermally bonding to a body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

第一剤と、第二剤と、を備え、前記第一剤が、液状樹脂(A-1)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-1)140重量部~560重量部と、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-1)と、ヒドロシリル付加反応用触媒(D-1)と、を含み、前記第二剤が、液状樹脂(A-2)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-2)140重量部~560重量部と、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-2)と、を含み、前記熱伝導性フィラー(C-1)又は前記熱伝導性フィラー(C-2)の少なくとも一方が、酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素からなる群より選択される少なくとも1種以上の、平均粒径が0.3~1.5μmの第1熱伝導性フィラー(C-1-1)又は第1熱伝導性フィラー(C-2-1)を、含む、二液硬化型熱伝導性グリース用組成物。

Description

二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器
 本発明は、二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器に関する。
 パソコンのCPU(中央処理装置)等の発熱性電子部品の小型化、高出力化に伴い、それらの電子部品から発生する単位面積当たりの熱量は非常に大きくなってきている。それらの熱量はアイロンの約20倍の熱量にも達する。この発熱性の電子部品を長期にわたり故障しないようにするためには、発熱する電子部品の冷却が必要とされる。冷却には金属製のヒートシンクや筐体が使用され、さらに発熱性電子部品からヒートシンクや筐体などの冷却部へ効率よく熱を伝えるために熱伝導性材料が使用される。この熱伝導性材料を使用する理由として発熱性電子部品とヒートシンク等を熱伝導性材料がない状態で接触させた場合、その界面には微視的にみると、空気が存在し熱伝導の障害となる。したがって、界面に存在する空気の代わりに熱伝導性材料を発熱性電子部品とヒートシンク等の間に存在させることによって、効率よく熱を伝えることが行われている。
 熱伝導性材料としては、熱硬化性樹脂に熱伝導性粉末を充填し、シート状に成形した熱伝導性パッドや熱伝導性シート、流動性のある樹脂に熱伝導性粉末を充填し塗布や薄膜化が可能な熱伝導性グリース、発熱電子部品の作動温度で軟化又は流動化する相変化型熱伝導性材料などがある。
 近年、SiCやGaNパワー半導体による高速化、小型化に伴い、素子の温度が200℃以上となってきており、熱伝導性材料としても高熱伝導のニーズが大きく、また使用厚みを小さくできる観点より熱伝導性グリースの使用が増えてきている。
 しかし、熱伝導率を向上させるため、熱伝導率の大きい導電フィラーである金属アルミニウム粉、銅粉末、銀粉末等を多量に混合すると、熱伝導性グリースの熱伝導率は向上できるが、絶縁性が悪化してしまい、絶縁性が要求される電子機器の用途には使用できない。また、絶縁フィラーであるアルミナ、窒化アルミ、シリカ等の粉末を熱伝導率向上のため多量に混合すると、絶縁性は確保できるが、熱伝導性グリースの粘度が大幅に上昇していまい、使用時の塗布が難しくなる。
 特許文献1では、低熱抵抗化のため、平均粒径の異なる2種類の微粉アルミニウム粉と微粉アルミナを必須成分として含む熱伝導性グリースの記載があり、また特許文献2では金属アルミニウム、窒化アルミおよび酸化亜鉛を必須成分として含む熱伝導性グリースが提案されているが、絶縁性の有無には触れられていない。一方、特許文献3では液状シリコーンに対する金属粉末の配合量と、酸化亜鉛粉末の配合量を最適化することにより、熱伝導性とともに電気絶縁性に優れた熱伝導性シリコーングリース組成物が得られることが記載されている。しかし、酸化亜鉛粉末は比表面積が大きく、液状シリコーンに高充填すると粘度が上昇してしまい、塗布面で悪くなる課題がある。
特開2005-170971号公報 特開2010-248669号公報 特開2007-099821号公報
発明が解決しようとしている課題
 本発明は、上記問題に鑑みてなされたものであり、低粘度で塗布性に優れ、高熱伝導性と電気絶縁性を両立した二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、およびそれを用いた電子機器を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討した結果、二液硬化型の熱伝導性グリース用組成物において、特定の平均粒径の金属アルミニウム粉と、特定の平均粒径の熱伝導性フィラーとを、適切な混合比で混合することにより、上記課題を解決し得ることを見出し、本発明をなすに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 第一剤と、第二剤と、を備え、
 前記第一剤が、液状樹脂(A-1)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-1)140重量部~560重量部と、酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-1)と、ヒドロシリル付加反応用触媒(D-1)と、を含み、
 前記第二剤が、液状樹脂(A-2)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-2)140重量部~560重量部と、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-2)と、を含み、
 前記熱伝導性フィラー(C-1)又は前記熱伝導性フィラー(C-2)の少なくとも一方が、酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素からなる群より選択される少なくとも1種以上の、平均粒径が0.3~1.5μmの第1熱伝導性フィラー(C-1-1)又は第1熱伝導性フィラー(C-2-1)を、含む、
 二液硬化型熱伝導性グリース用組成物。
〔2〕
 前記液状樹脂(A-1)が、分子中に2個以上のアルケニル基を有し、25℃、せん断速度10s-1における粘度が50~3000mPa・sであるポリオルガノシロキサン(A-1-1)を含み、
 前記ヒドロシリル付加反応用触媒(D-1)が、白金化合物触媒を含む、
 〔1〕に記載の二液硬化型熱伝導性グリース用組成物。
〔3〕
 前記液状樹脂(A-2)が、分子中に2個以上のアルケニル基を有し、25℃、せん断速度10s-1における粘度が50~3000mPa・sであるポリオルガノシロキサン(A-2-1)、及び
 分子中に3個以上のSi-H基を有するポリオルガノシロキサン(A-2-2)を含む、
 〔1〕又は〔2〕に記載の二液硬化型熱伝導性グリース用組成物。
〔4〕
 前記第一剤及び前記第二剤に含まれる、前記液状樹脂(A-1)及び前記液状樹脂(A-2)のアルケニル基のモル数の総和と、前記第二剤に含まれる前記液状樹脂(A-2)のSi-H基のモル数との比が、0.1~5.0である、
 〔1〕~〔3〕のいずれか一項に記載の二液硬化型熱伝導性グリース用組成物。
〔5〕
 前記第一剤および前記第二剤の、25℃、せん断速度10s-1における粘度が、20Pa・s~300Pa・sである、
 〔1〕~〔4〕のいずれか一項に記載の二液硬化型熱伝導性グリース用組成物。
〔6〕
 〔1〕~〔5〕のいずれか一項に記載の二液硬化型熱伝導性グリース用組成物が有する、第一剤と第二剤を硬化させてなる、
 熱伝導性グリース。
〔7〕
 熱伝導率が、0.5W/mK以上であり、かつ
 厚み1mmあたりの絶縁破壊電圧が、1kV以上である、
 〔6〕に記載の熱伝導性グリース。
〔8〕
 発熱体と金属筐体とが、〔6〕又は〔7〕に記載の熱伝導性グリースを介して配置された、
 電子機器。
 本発明によれば、低粘度で塗布性に優れ、高熱伝導性と電気絶縁性を両立した二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、およびそれを用いた電子機器を提供することができる。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔二液硬化型熱伝導性グリース用組成物〕
 本実施形態の二液硬化型熱伝導性グリース用組成物は、第一剤と、第二剤と、を備える。第一剤は、液状樹脂(A-1)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-1)140重量部~560重量部と、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-1)と、ヒドロシリル付加反応用触媒(D-1)と、を含み、必要に応じてその他の成分を含んでいてもよい。また、第二剤は、液状樹脂(A-2)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-2)140重量部~560重量部と、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-2)と、を含み、必要に応じてその他の成分を含んでいてもよい。
 さらに、本実施形態において、第一剤に含まれる熱伝導性フィラー(C-1)又は第二剤に含まれる熱伝導性フィラー(C-2)の少なくとも一方は、酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素からなる群より選択される少なくとも1種以上の、平均粒径が0.3~1.5μmの第1熱伝導性フィラー(C-1-1)又は第1熱伝導性フィラー(C-2-1)を、含む。第一剤に含まれる平均粒径が0.3~1.5μmの熱伝導性フィラーを第1熱伝導性フィラー(C-1-1)といい、第二剤に含まれる平均粒径が0.3~1.5μmの熱伝導性フィラーを第1熱伝導性フィラー(C-2-1)という。
 第一剤の、25℃、せん断速度10s-1における粘度は、好ましくは20~300Pa・sであり、より好ましくは20~250Pa・sであり、さらに好ましくは20~200Pa・sであり、よりさらに好ましくは20~150Pa・sである。第一剤の粘度が20Pa・s以上であることにより、熱伝導性グリースを縦置きで使用する場合であっても、硬化反応までの間、熱伝導性グリースのたれ落ちを抑制することができ取り扱い性がより向上する傾向にある。また、第一剤の粘度が300Pa・s以下であることにより、第一剤及び第二剤をスタティックミキサーで混合したときの塗布性がより向上する傾向にある。
 第二剤の、25℃、せん断速度10s-1における粘度は、好ましくは20~300Pa・sであり、より好ましくは20~250Pa・sであり、さらに好ましくは20~200Pa・sであり、よりさらに好ましくは20~150Pa・sである。第二剤の粘度が20Pa・s以上であることにより、熱伝導性グリースを縦置きで使用する場合であっても、硬化反応までの間、熱伝導性グリースのたれ落ちを抑制することができ取り扱い性がより向上する傾向にある。また、第二剤の粘度が300Pa・s以下であることにより、第一剤及び第二剤をスタティックミキサーで混合したときの塗布性がより向上する傾向にある。
 また、第一剤と第二剤とを混合した時の、25℃、せん断速度10s-1における粘度は、好ましくは20Pa・s~300Pa・sであり、より好ましくは20Pa・s~250Pa・sであり、さらに好ましくは20Pa・s~200Pa・sであり、よりさらに好ましくは20Pa・s~150Pa・sである。
 以下、第一剤と第二剤に含まれる各成分について詳説する。
(液状樹脂(A-1)及び(A-2))
 液状樹脂(A-1)及び(A-2)としては、特に制限されないが、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フェノール樹脂が挙げられる。これらの中では、耐熱性、柔軟性の点でシリコーン樹脂が好ましい。液状樹脂(A-1)及び(A-2)は1種単独で用いても、2種以上を併用してもよい。なお、「液状」とは、常温常圧下において、樹脂単独で流動性を有する液体状態であることをいう。
 シリコーン樹脂としては、常温で液状である付加反応型のシリコーン樹脂が好ましい。付加反応型のシリコーン樹脂としては、特に制限されないが、例えば、分子中に2個以上のアルケニル基を有するポリオルガノシロキサン、分子中に3個以上のSi-H基を有するポリオルガノシロキサンが挙げられる。なお、ポリオルガノシロキサンが有するアルケニル基としては、ビニル基が好ましい。
 第一剤は、液状樹脂(A-1)として、これらポリオルガノシロキサンの一方を含むことが好ましく、アルケニル基を有するポリオルガノシロキサンを含むことがより好ましい。これにより、第一剤内でヒドロシリル付加反応用触媒(D-1)による、アルケニル基とSi-H基の付加反応が生じない。また、第二剤は、液状樹脂(A-2)として、これらポリオルガノシロキサンの一方を含むことが好ましく、Si-H基を有するポリオルガノシロキサンを含むことがより好ましく、アルケニル基を有するポリオルガノシロキサン及びSi-H基を有するポリオルガノシロキサンを共に含むことがさらに好ましい。
 アルケニル基を有するポリオルガノシロキサンにおいて、アルケニル基の結合位置は特に制限されず、ポリオルガノシロキサンの側鎖及び/又は末端に結合することができる。アルケニル基を有するポリオルガノシロキサンにおけるアルケニル基の数は、2以上であれば特に制限されないが、好ましくは2~10であり、より好ましくは2~5である。アルケニル基の数が上記範囲内であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制され、また粘度が減少することにより塗布性がより向上する傾向にある。
 さらに、アルケニル基を有するポリオルガノシロキサンのアルケニル基含有量は、好ましくは0.10~2.0mol/kgであり、より好ましくは0.10~1.0mol/kgであり、さらに好ましくは0.10~0.6mol/kgである。アルケニル基含有量が上記範囲内であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制され、また粘度が減少することにより塗布性がより向上する傾向にある。なお、ポリオルガノシロキサンがアルケニル基としてビニル基を有する場合には、アルケニル基含有量は、ビニル基含有量ともいう。
 Si-H基を有するポリオルガノシロキサンにおいて、Si-H基の結合位置は特に制限されず、ポリオルガノシロキサンの側鎖及び/又は末端に結合することができる。Si-H基を有するポリオルガノシロキサンにおけるSi-H基の数は、3以上であれば特に制限されないが、好ましくは3~60であり、より好ましくは10~50であり、さらに好ましくは25~45である。Si-H基の数が上記範囲内であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制され、また粘度が減少することにより塗布性がより向上する傾向にある。
 さらに、Si-H基を有するポリオルガノシロキサンのSi-H基含有量は、好ましくは1.0~15mol/kgであり、より好ましくは3.0~12mol/kgであり、さらに好ましくは5.0~10mol/kgである。Si-H基含有量が上記範囲内であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制され、また粘度が減少することにより塗布性がより向上する傾向にある。
 側鎖にアルケニル基を有するポリオルガノシロキサンは、例えば、下記式(1)で表される構成単位を有していてもよい。また、側鎖にSi-H基を有するポリオルガノシロキサンは、例えば、下記式(2)で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)及び(2)において、Rは、各々独立して、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基などを示す。
 このなかでも、Rとしては、アルキル基及びアリ-ル基が好ましく、メチル基、フェニル基、炭素数6~18のアルキル基がより好ましい。
 上記式(1)及び(2)において、nは、構成単位の繰り返し数を示す。nは、ポリオルガノシロキサンが側鎖に有するアルケニル基又はSi-H基の数と同程度とすることができる。
 上記の中でも、液状樹脂(A-1)は、分子中に2個以上のアルケニル基を有し、25℃、せん断速度10s-1における粘度が50~3000mPa・sであるポリオルガノシロキサン(A-1-1)を含むことが好ましい。また、液状樹脂(A-2)は、少なくとも分子中に2個以上のアルケニル基を有し、25℃、せん断速度10s-1における粘度が50~3000mPa・sのポリオルガノシロキサン(A-2-1)と、両末端または側鎖に少なくとも3個以上のSi-H基を有するポリオルガノシロキサン(A-2-2)を含むことが好ましい。これにより、第一剤と第二剤とを混合することにより、ヒドロシリル化反応がより効果的に進行し、架橋結合を有する3次元網目構造を有する架橋硬化物が得られる。
 ポリオルガノシロキサン(A-1-1)及び(A-2-1)の25℃、せん断速度10s-1における粘度は、それぞれ、好ましくは50~3000mPa・sであり、より好ましくは50~1000mPa・sであり、さらに好ましくは50~500mPa・sである。ポリオルガノシロキサン(A-1-1)及び(A-2-1)の粘度が50mPa・s以上であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制される傾向にある。また、ポリオルガノシロキサン(A-1-1)及び(A-2-1)の粘度が3000mPa・s以下であることにより、得られる熱伝導性グリースの粘度が減少し、塗布性がより向上する傾向にある。
 また、ポリオルガノシロキサン(A-2-2)の25℃、せん断速度10s-1における粘度は、好ましくは10~1000mPa・sであり、より好ましくは10~500mPa・sであり、さらに好ましくは10~200mPa・sである。ポリオルガノシロキサン(A-2-2)の粘度が10mPa・s以上であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制される傾向にある。また、ポリオルガノシロキサン(A-2-2)の粘度が1000mPa・s以下であることにより、得られる熱伝導性グリースの粘度が減少し、塗布性がより向上する傾向にある。なお、第一剤がSi-H基を有するポリオルガノシロキサンを含む場合、そのポリオルガノシロキサンの粘度についても上記ポリオルガノシロキサン(A-2-2)と同様とすることができる。
 液状樹脂(A-1)及び(A-2)に含まれる各成分の粘度は、粘度計を用いて、常法により測定することができる。
 液状樹脂(A-1)又は(A-2)の含有量は、第一剤又は第二剤の総量に対して、それぞれ、好ましくは2.0~25質量%であり、より好ましくは4.0~18質量%であり、さらに好ましくは6.0~13質量%である。液状樹脂(A-1)又は(A-2)の含有量が上記範囲内であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制され、また粘度が減少することにより塗布性がより向上する傾向にある。
 さらに、ポリオルガノシロキサン(A-1-1)又は(A-2-1)の含有量は、液状樹脂(A-1)又は(A-2)の総量に対して、それぞれ、好ましくは70~100質量%であり、より好ましくは80~100質量%であり、さらに好ましくは90~100質量%である。ポリオルガノシロキサン(A-1-1)又は(A-2-1)の含有量が上記範囲内であることにより、得られる熱伝導性グリースの高温における硬度変化がより抑制され、また粘度が減少することにより塗布性がより向上する傾向にある。
 第二剤がアルケニル基を有するポリオルガノシロキサン及びSi-H基を有するポリオルガノシロキサンを共に含む場合において、第二剤におけるSi-H基を有するポリオルガノシロキサンの含有量は、アルケニル基を有するポリオルガノシロキサンとSi-H基を有するポリオルガノシロキサンの合計100重量部に対して、好ましくは0.5~15重量部であり、より好ましくは1.5~10重量部であり、さらに好ましくは2.5~5.0重量部である。
 また、第一剤および第二剤に含まれる、液状樹脂(A-1)及び液状樹脂(A-2)のアルケニル基のモル数の総和と、第二剤に含まれる、液状樹脂(A-2)のSi-H基のモル数との比は、好ましくは0.1~5.0であり、より好ましくは1.0~4.0であり、さらに好ましくは1.5~3.5である。上記比が0.1以上であることにより、熱伝導性グリースの硬化性がより向上する傾向にある。また、上記比が5.0以下であることにより、熱伝導性グリースの脆化がより抑制され、好適な弾性体が得られる傾向にある。
(金属アルミニウム(B-1)及び(B-2))
 金属アルミニウム(B-1)及び(B-2)の平均粒径は、それぞれ、15~100μmであり、好ましくは20~80μmであり、より好ましくは20~60μmであり、さらに好ましくは20~40μmである。金属アルミニウム(B-1)及び(B-2)の平均粒径が15μm以上であることにより、得られる熱伝導性グリースの熱伝導率を向上することができる。また、金属アルミニウム(B-1)及び(B-2)の平均粒径が100μm以下であることにより、得られる熱伝導性グリースの貯蔵安定性がより良好となり、液状樹脂(A-1)及び(A-2)と金属アルミニウム(B-1)及び(B-2)との分離がより抑制される。
 金属アルミニウム(B-1)及び(B-2)の平均粒径は、メジアン径であり、実施例に記載の方法により測定することができる。また、金属アルミニウム(B-1)及び(B-2)は、同一であっても、異なっていてもよい。
 また、金属アルミニウム(B-1)及び(B-2)は、それぞれ、1種単独で用いても、平均粒径の異なるものを2種以上用いてもよい。金属アルミニウム(B-1)及び(B-2)を、それぞれ複数種用いる場合には、そのいずれもが、上記範囲に含まれるものとする。したがって、例えば、平均粒径が15μm未満の金属アルミニウムと平均粒径が100μm超過の金属アルミニウムとを混合したとしても、その混合後の金属アルミニウムは、本実施形態の金属アルミニウム(B-1)及び(B-2)には該当しない。
 金属アルミニウム(B-1)及び(B-2)の形状としては、特に制限されないが、例えば、球状、不定形状などが挙げられる。このなかでも、球状が好ましい。このような形状を有することにより、金属アルミニウム(B-1)及び(B-2)の充填量を向上しつつ、粘度がより下がる傾向にある。
 金属アルミニウム(B-1)又は(B-2)の含有量は、液状樹脂(A-1)又は(A-2)100重量部に対して、それぞれ、140~560重量部であり、好ましくは200~500重量部であり、より好ましくは200~400重量部である。金属アルミニウム(B-1)又は(B-2)の含有量が140重量部以上であることにより、得られる熱伝導性グリースの熱伝導率がより向上する。また、金属アルミニウム(B-1)又は(B-2)の含有量が560重量部以下であることにより、熱伝導性グリースの絶縁性がより向上する。
 さらに、金属アルミニウム(B-1)又は(B-2)の体積割合は、熱伝導性フィラー(C-1)と金属アルミニウム(B-1)との総和、又は、熱伝導性フィラー(C-2)と金属アルミニウム(B-2)との総和に対して、それぞれ、好ましくは5~70体積%であり、より好ましくは15~50体積%であり、さらに好ましくは20~40体積%である。金属アルミニウム(B-1)又は(B-2)の体積割合が上記範囲内であることにより、熱伝導性グリースの熱伝導率がより向上し、また、粘度がより低下し、塗布性がより向上する傾向にある。
(熱伝導性フィラー(C-1)及び(C-2))
 熱伝導性フィラー(C-1)及び(C-2)は、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択される少なくとも1種以上である。熱伝導性フィラー(C-1)及び(C-2)は、それぞれ、材質の異なるものを1種単独で用いても、2種以上を併用してもよい。このなかでも、少なくとも酸化アルミニウムを含むことが好ましい。このような熱伝導性フィラー(C-1)及び(C-2)を用いることにより、熱伝導性フィラー(C-1)及び/又は(C-2)が金属アルミニウム(B-1)及び/又は(B-2)の隙間に入り込み、得られる熱伝導性グリースの熱伝導率がより向上する。
 熱伝導性フィラー(C-1)及び(C-2)の平均粒径は、それぞれ、0.30~10μmであり、好ましくは0.40~7.0μmである。熱伝導性フィラー(C-1)及び(C-2)の平均粒径が上記範囲内であることにより、熱伝導性フィラー(C-1)及び/又は(C-2)が金属アルミニウム(B-1)及び/又は(B-2)の隙間に入り込み易くなる。また、熱伝導性フィラー(C-1)及び(C-2)の平均粒径が0.30μm以上であることにより、熱伝導性グリースの粘度が低くなり塗布性がより向上する。また、熱伝導性フィラー(C-1)及び(C-2)の平均粒径が10μm以下であることにより、金属アルミニウム(B-1)及び/又は(B-2)の隙間に入り込み高充填化が可能となるため、熱伝導性グリースの熱伝導率がより向上する。
 熱伝導性フィラー(C-1)及び(C-2)は、それぞれ、1種単独で用いても、平均粒径あるいは材質の異なるものを2種以上用いてもよい。熱伝導性フィラー(C-1)及び(C-2)をそれぞれ複数種用いる場合には、そのいずれもが、上記範囲に含まれるものとする。したがって、例えば、平均粒径が0.30μm未満の酸化アルミニウムと平均粒径が10μm超過の酸化アルミニウムとを混合したとしても、その混合後の酸化アルミニウムは、本実施形態の熱伝導性フィラー(C-1)及び(C-2)には該当しない。
 熱伝導性フィラー(C-1)及び(C-2)の平均粒径は、メジアン径であり、実施例に記載の方法により測定することができる。また、熱伝導性フィラー(C-1)及び(C-2)は、同一であっても、異なっていてもよい。
 さらに、熱伝導性フィラー(C-1)は、平均粒径が0.30~1.5μmの第1熱伝導性フィラー(C-1-1)、平均粒径が1.6~3.5μmの第2熱伝導性フィラー(C-1-2)、及び平均粒径が3.7~10μmの第3熱伝導性フィラー(C-1-3)の少なくともいずれかを含んでいてもよい。このなかでも、第1熱伝導性フィラー(C-1-1)を含むことが好ましく、第1熱伝導性フィラー(C-1-1)、第2熱伝導性フィラー(C-1-2)、及び第3熱伝導性フィラー(C-1-3)を含むことがより好ましい。これにより、熱伝導性グリースの粘度が低くなり塗布性がより向上するとともに、熱伝導率がより向上する傾向にある。
 また、熱伝導性フィラー(C-2)は、平均粒径が0.30~1.5μmの第1熱伝導性フィラー(C-2-1)、平均粒径が1.6~3.5μmの第2熱伝導性フィラー(C-2-2)、及び平均粒径が3.7~10μmの第3熱伝導性フィラー(C-2-3)の少なくともいずれかを含んでいてもよい。このなかでも、第1熱伝導性フィラー(C-2-1)を含むことが好ましく、第1熱伝導性フィラー(C-2-1)、第2熱伝導性フィラー(C-2-2)、及び第3熱伝導性フィラー(C-2-3)を含むことがより好ましい。これにより、熱伝導性グリースの粘度が低くなり塗布性がより向上するとともに、熱伝導率がより向上する傾向にある。
 なお、本実施形態においては、第一剤に含まれる熱伝導性フィラー(C-1)又は第二剤に含まれる熱伝導性フィラー(C-2)の少なくとも一方が、第1熱伝導性フィラー(C-1-1)又は第1熱伝導性フィラー(C-2-1)を含む。第一剤及び/又は第二剤が第1熱伝導性フィラーを含むことにより、熱伝導性グリースの粘度が低くなり塗布性がより向上するとともに、熱伝導率がより向上する。
 第1熱伝導性フィラー(C-1-1)又は(C-2-1)の含有量は、液状樹脂(A-1)又は(A-2)100重量部に対して、それぞれ、好ましくは10~400重量部であり、より好ましくは50~300重量部であり、さらに好ましくは100~250重量部である。第1熱伝導性フィラー(C-1-1)又は(C-2-1)の含有量が上記範囲内であることにより、熱伝導性グリースの粘度が低くなり塗布性がより向上するとともに、熱伝導率がより向上する傾向にある。
 第2熱伝導性フィラー(C-1-2)又は(C-2-2)の含有量は、液状樹脂(A-1)又は(A-2)100重量部に対して、それぞれ、好ましくは50~700重量部であり、より好ましくは100~500重量部であり、さらに好ましくは150~450重量部である。第2熱伝導性フィラー(C-1-2)又は(C-2-2)の含有量が上記範囲内であることにより、熱伝導性グリースの粘度が低くなり塗布性がより向上するとともに、熱伝導率がより向上する傾向にある。
 第3熱伝導性フィラー(C-1-3)又は(C-2-3)の含有量は、液状樹脂(A-1)又は(A-2)100重量部に対して、それぞれ、好ましくは200~900重量部であり、より好ましくは300~800重量部であり、さらに好ましくは400~700重量部である。第3熱伝導性フィラー(C-1-3)又は(C-2-3)の含有量が上記範囲内であることにより、熱伝導性グリースの粘度が低くなり塗布性がより向上するとともに、熱伝導率がより向上する傾向にある。
 熱伝導性フィラー(C-1)及び(C-2)の形状としては、特に制限されないが、例えば、球状、不定形状などが挙げられる。このなかでも、球状が好ましい。このような形状を有することにより、熱伝導性フィラー(C-1)及び(C-2)の充填量を向上しつつ粘度がより下がる傾向にある。
 熱伝導性フィラー(C-1)又は(C-2)の含有量は、液状樹脂(A-1)又は(A-2)100重量部に対して、それぞれ、好ましくは300~1800重量部であり、より好ましくは400~1700重量部であり、さらに好ましくは700~1500重量部であり、よりさらに好ましくは800~1250重量部である。熱伝導性フィラー(C-1)又は(C-2)の含有量が300重量部以上であることにより、金属アルミニウム(B-1)及び/又は(B-2)の隙間を埋めることができ、得られる熱伝導性グリースの熱伝導率がより向上する傾向にある。また、熱伝導性フィラー(C-1)又は(C-2)の含有量が1800重量部以下であることにより、得られる熱伝導性グリースの粘度がより低下し、塗布性がより向上する傾向にある。
(ヒドロシリル付加反応用触媒(D-1))
 ヒドロシリル付加反応用触媒(D-1)としては、特に制限されないが、例えば、白金化合物触媒、ロジウム化合物触媒、パラジウム化合物触媒が挙げられる。このなかでも、白金化合物触媒が好ましい。このようなヒドロシリル付加反応用触媒(D-1)を用いることにより、液状樹脂(A-1),(B-1)の硬化性がより向上する傾向にある。
 白金化合物触媒としては、特に制限されないが、例えば、単体の白金、白金化合物、白金担持無機粉末が挙げられる。白金化合物としては、特に制限されないが、例えば、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。また、白金担持無機粉末としては、特に制限されないが、例えば、白金担持のアルミナ粉末、白金担持のシリカ粉末、白金担持のカーボン粉末が挙げられる。また、白金化合物触媒は、第一剤を調製する際に単独で配合してもよいし、他の成分、例えば液状樹脂(A-1)と予め混合した状態で配合してもよい。
 ヒドロシリル付加反応用触媒(D-1)の含有量は、液状樹脂(A-1)及び(A-2)の総和100重量部に対して、好ましくは0.1~500ppmであり、より好ましくは1.0~400ppmであり、さらに好ましくは10~200ppmである。ヒドロシリル付加反応用触媒(D-1)の含有量が上記範囲内であることにより、液状樹脂(A-1),(B-1)の硬化性がより向上する傾向にある。
(その他の添加剤(E-1)及び(E-2))
 第一剤および第二剤は、上記成分に加え、必要に応じて、上記液体樹脂(A-1)及び(A-2)以外のオルガノシラン、着色剤等、反応遅延剤等の添加剤(E-1)及び(E-2)をそれぞれ含有してもよい。
 上記オルガノシランとしては、特に制限されないが、例えば、下記一般式(3)で表されるオルガノシランが挙げられる。このようなオルガノシランを用いることにより、上記熱伝導性フィラー(C-1)及び(C-2)に対する液体樹脂(A-1)及び(A-2)の濡れ性がより向上し、粘度が低下するとともに熱伝導性がより向上する傾向にある。
  R1 a2 bSi(OR34-(a+b)   (3)
(R1は、各々独立して、炭素数1~15のアルキル基であり、R2は、各々独立して、炭素数1~8の飽和又は不飽和の一価の炭化水素基であり、R3は、各々独立して、炭素数1~6のアルキル基であり、aは1~3であり、bは0~2であり、a+bは1~3である。)
 式(3)中、R1は、各々独立して、炭素数1~15のアルキル基であり、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このなかでも、R1は、好ましくは炭素数6~12のアルキル基である。
 R2は、炭素数1~8の飽和又は不飽和の一価の炭化水素基であり、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基などが挙げられる。
 R3は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などの炭素数1~6の1種もしくは2種以上のアルキル基であり、好ましくはメチル基又はエチル基である。
 aは、1~3の整数であり、好ましくは1である。また、bは、0~2の整数であり、好ましくは0である。さらに、a+bは1~3の整数であり、好ましくは1である。
 第一剤又は第二剤に含まれるオルガノシランの含有量は、金属アルミニウム(B-1)又は(B-2)と熱伝導性フィラー(C-1)又は(C-2)との合計量100重量部に対して、それぞれ、好ましくは0.01~10重量部であり、より好ましくは0.1~5.0重量部である。オルガノシランの含有量が上記範囲内であれば、濡れ性を効果的に向上させることができる。
 第一剤又は第二剤に含まれる着色剤の含有量は、第一剤又は第二剤の合計100重量部に対して、それぞれ、好ましくは0.05~0.2重量部である。
 反応遅延剤としては、特に制限されないが、例えば、1-エチニル-1-シクロヘキサノールが挙げられる。
 反応遅延剤の含有量は、第一剤又は第二剤の合計100重量部に対して、それぞれ、好ましくは0.05~0.2重量部である。
〔熱伝導性グリース〕
 本実施形態の熱伝導性グリースは、上記二液硬化型熱伝導性グリース用組成物が有する、第一剤と第二剤を硬化させてなるものである。「硬化」には、第一剤と第二剤を半硬化させたものも含まれる。例えば、予め部分的にヒドロシリル化反応を進ませた状態の二液硬化型熱伝導性グリース用組成物を熱伝導性グリースとして使用することもできる。
 熱伝導性グリースの25℃における熱伝導率は、好ましくは0.5W/mK以上であり、より好ましくは1.0W/mK以上であり、さらに好ましくは2.0W/mK以上である。熱伝導率が0.5W/mK以上であることにより、電子部品に対して良好な放熱性を得ることができる。熱伝導率は、実施例に記載の方法により測定することができる。
 また、熱伝導性グリースの厚み1mmあたりの絶縁破壊電圧は、好ましくは1.0kV以上であり、より好ましくは1.5kV以上である。絶縁破壊電圧が1.0kV以上であることにより、十分な電気絶縁性が確保される。絶縁破壊電圧はJIS C2110に準拠して測定することができる。
〔電子機器〕
 本実施形態の電子機器は、発熱体と金属筐体とが、上記熱伝導性グリースを介して配置されたものである。
 ここで、発熱体としては、特に制限されないが、例えば、モーター、電池パック、車載電源システムに用いられる回路基板、パワートランジスタ、マイクロプロセッサ等の発熱する電子部品等が挙げられる。このなかでも、車載用の車載電源システムに用いられる電子部品が好ましい。また、金属筐体としては、特に制限されないが、例えば、放熱や吸熱を目的として構成されたヒートシンクなどが挙げられる。
 以下、実施例により本発明を更に詳述するが、本発明は以下の実施例に限定されるものではない。
<A:液状樹脂>
 a-1:ビニル基含有ポリオルガノシロキサン(エルケム シリコーンズ社製:製品名「621V100」、25℃、せん断速度10s-1における粘度:100mPa・s、ビニル基含有量:0.33mol/kg、分子中の平均ビニル基数:2個)
 a-2:SiH基含有ポリオルガノシロキサン(エルケム シリコーンズ社製:製品名「626V25H7」、25℃、せん断速度10s-1における粘度:25mPa・s、Si-H基含有量:7mol/kg、分子中の平均Si-H基数:36個)
<B:金属アルミニウム>
 b-1:平均粒径:25μm、球状、ヒカリ素材工業社製、製品名「Al-99.7%(-38μm)」
 b-2:平均粒径:20μm、球状、東洋アルミニウム社製、製品名「TFH-A20P」
 b-3:平均粒径:48μm、球状、ヒカリ素材工業社製、製品名「Al-99.7%(-63μm)」
 b-4:平均粒径:66μm、球状、ヒカリ素材工業社製、製品名「Al-99.7%(-150μm)」
<C:熱伝導性フィラー>
 c-1:酸化アルミニウム、平均粒径:5μm、球状、住友化学社製、製品名「AA-5」
 c-2:酸化アルミニウム、平均粒径:2μm、球状、住友化学社製、製品名「AA-2」
 c-3:酸化アルミニウム、平均粒径:0.5μm、球状、住友化学社製、製品名「AA-0.5」
 c-4:窒化アルミニウム、平均粒径:5μm、球状、MARUWA社製、製品名「A-05-F」
 c-5:窒化アルミニウム、平均粒径:1μm、球状、MARUWA社製、製品名「A-01-F」
 c-6:窒化ホウ素、平均粒径:5μm、鱗片状、デンカ社製、製品名「HGP」
 c-7:酸化亜鉛、平均粒径:0.5μm、球状、本荘ケミカル社製、製品名「酸化亜鉛1種」
<D:ヒドロシリル付加反応用触媒>
 白金化合物触媒:エルケム社製、製品名「シリコリース キャタ 12070」
<E:オルガノシラン>
 e-1:n-デシルトリメトキシシラン(ダウ東レ社製、製品名「Z-6210」)
〔実施例1~10及び比較例1~3〕
 各原料を、2Lトリミックス装置に表1~表3に示す割合で配合し、常温にて減圧混練し、各熱伝導性グリース用組成物の第一剤および第二剤をそれぞれ調製した。なお、表中における各成分の量に関する記載は、特に断りがない限り、重量部を意味する。
(平均粒径の測定)
 金属アルミニウムBおよび熱伝導性フィラーCの平均粒径は、島津製作所製「レーザー回折式粒度分布測定装置SALD-20」を用いて測定を行った。評価サンプルは、ガラスビーカーに50mLの純水と測定する金属アルミニウムB又は熱伝導性フィラーCを5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行って調製した。分散処理を行った金属アルミニウムB又は熱伝導性フィラーCの分散液を、スポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が安定したところで測定を行った。なお、平均粒径としては、D50(メジアン径)を採用した。
(粘度の測定)
 ポリオルガノシロキサンa-1,a-2、第一剤、第二剤、および熱伝導性グリースの各粘度は、回転式レオメータ「HANKE MARSIII」(Thermo FisherScientific社製)を用いて測定した。粘度は、直径35mmφのパラレルプレートを用い、ギャップ0.5mm、温度25℃、せん断速度10s-1の条件で得られた値を用いた。また、第一剤と第二剤をスタティックミキサーで1:1の体積比で混合して得られた熱伝導性グリースの粘度、すなわち第一剤と第二剤の混合粘度も上記と同様に測定した。
〔塗布性の評価〕
 第一剤および第二剤を、2液型のシリンジ(容量25cc×2、MIX PAC社製)にそれぞれ充填し、ハンドガン、スタティックミキサーを取り付けて25℃にて吐出した。その吐出の状態に基づいて、第一剤および第二剤を混合した時の塗布性を評価した。評価基準を以下に示す。
 ○:スタティックミキサーより容易に吐出可能
 △:スタティックミキサーより吐出可能だが、ある程度の力(およそ10Kgf)が必要であった
 ×:スタティックミキサーより吐出不可能
〔熱伝導率の評価〕
 熱伝導性グリースの熱伝導率は、樹脂材料熱抵抗測定装置(株式会社日立テクノロジー社製)を用い、ASTM D5470に準拠した方法により測定した。具体的には、第一剤及び第二剤をスタティックミキサーで1:1の体積比で混合して得られた混合物を、厚み0.2mm、0.5mm及び1.0mmで面積10mm×10mmの銅治具に挟み込み、それぞれの厚みの熱抵抗値を測定した。熱抵抗値(℃/W)を縦軸とし、熱伝導性樹脂組成物の厚さ(mm)を横軸として得られる直線の傾きLより、以下の式より熱伝導性樹脂組成物の熱伝導率を算出した。
  熱伝導率 (W/mK)=10/L
〔絶縁破壊電圧の評価〕
 絶縁破壊電圧のサンプルとして、第一剤および第二剤をスタティックミキサーで体積比1:1で混合後、厚み1mmの状態で成形し24時間保持して硬化反応を進行させ、熱伝導性グリース硬化体を得た。次に、得られた熱伝導性グリース硬化体を50mm角に打ち抜き、25mmφの分銅を熱伝導性グリース硬化体に乗せ、JIS C2101に準拠した方法で、前記分銅に0kVから0.2kV(DC)ごとに電圧を印加した。各電圧で20秒間保持できたら、その電圧はクリアと判定し、クリアの最大値を絶縁破壊電圧とした。
Figure JPOXMLDOC01-appb-T000002
※1:B成分とC成分の総和に対する含有量(ppm)
Figure JPOXMLDOC01-appb-T000003
※1:B成分とC成分の総和に対する含有量(ppm)
Figure JPOXMLDOC01-appb-T000004
※1:B成分とC成分の総和に対する含有量(ppm)
 本発明の二液硬化型熱伝導性グリース用組成物は、第一剤と第二剤を混合して硬化させることで熱伝導性グリースを構成するための組成物であり、発熱体と金属筐体とを熱的に結合して用いる熱伝導性グリースの材料として産業上の利用可能性を有する。

Claims (8)

  1.  第一剤と、第二剤と、を備え、
     前記第一剤が、液状樹脂(A-1)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-1)140重量部~560重量部と、酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-1)と、ヒドロシリル付加反応用触媒(D-1)と、を含み、
     前記第二剤が、液状樹脂(A-2)100重量部と、平均粒径が15~100μmの金属アルミニウム(B-2)140重量部~560重量部と、酸化アルミニウム、窒化アルミ、及び窒化ホウ素からなる群より選択され、平均粒径が0.3~10μmの範囲に含まれる一又は複数の熱伝導性フィラー(C-2)と、を含み、
     前記熱伝導性フィラー(C-1)又は前記熱伝導性フィラー(C-2)の少なくとも一方が、酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素からなる群より選択される少なくとも1種以上の、平均粒径が0.3~1.5μmの第1熱伝導性フィラー(C-1-1)又は第1熱伝導性フィラー(C-2-1)を、含む、
     二液硬化型熱伝導性グリース用組成物。
  2.  前記液状樹脂(A-1)が、分子中に2個以上のアルケニル基を有し、25℃、せん断速度10s-1における粘度が50~3000mPa・sであるポリオルガノシロキサン(A-1-1)を含み、
     前記ヒドロシリル付加反応用触媒(D-1)が、白金化合物触媒を含む、
     請求項1に記載の二液硬化型熱伝導性グリース用組成物。
  3.  前記液状樹脂(A-2)が、分子中に2個以上のアルケニル基を有し、25℃、せん断速度10s-1における粘度が50~3000mPa・sであるポリオルガノシロキサン(A-2-1)、及び
     分子中に3個以上のSi-H基を有するポリオルガノシロキサン(A-2-2)を含む、
     請求項1又は2に記載の二液硬化型熱伝導性グリース用組成物。
  4.  前記第一剤及び前記第二剤に含まれる、前記液状樹脂(A-1)及び前記液状樹脂(A-2)のアルケニル基のモル数の総和と、前記第二剤に含まれる前記液状樹脂(A-2)のSi-H基のモル数との比が、0.1~5.0である、
     請求項1~3のいずれか一項に記載の二液硬化型熱伝導性グリース用組成物。
  5.  前記第一剤および前記第二剤の、25℃、せん断速度10s-1における粘度が、20Pa・s~300Pa・sである、
     請求項1~4のいずれか一項に記載の二液硬化型熱伝導性グリース用組成物。
  6.  請求項1~5のいずれか一項に記載の二液硬化型熱伝導性グリース用組成物が有する、第一剤と第二剤を硬化させてなる、
     熱伝導性グリース。
  7.  熱伝導率が、0.5W/mK以上であり、かつ
     厚み1mmあたりの絶縁破壊電圧が、1kV以上である、
     請求項6に記載の熱伝導性グリース。
  8.  発熱体と金属筐体とが、請求項6又は7に記載の熱伝導性グリースを介して配置された、
     電子機器。
PCT/JP2021/020817 2020-06-05 2021-06-01 二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器 WO2021246397A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022528839A JPWO2021246397A1 (ja) 2020-06-05 2021-06-01
US18/008,052 US20230272218A1 (en) 2020-06-05 2021-06-01 Two-agent curable heat conductive grease composition, heat conductive grease, and electronic device
EP21816974.6A EP4163962A4 (en) 2020-06-05 2021-06-01 TWO-COMPONENT CURABLE THERMOCONDUCTIVE GREASE COMPOSITION, THERMOCONDUCTOR GREASE AND ELECTRONIC DEVICE
CN202180040086.9A CN115698222A (zh) 2020-06-05 2021-06-01 二液固化型导热性润滑脂用组合物、导热性润滑脂及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-098753 2020-06-05
JP2020098753 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246397A1 true WO2021246397A1 (ja) 2021-12-09

Family

ID=78831112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020817 WO2021246397A1 (ja) 2020-06-05 2021-06-01 二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器

Country Status (6)

Country Link
US (1) US20230272218A1 (ja)
EP (1) EP4163962A4 (ja)
JP (1) JPWO2021246397A1 (ja)
CN (1) CN115698222A (ja)
TW (1) TW202208604A (ja)
WO (1) WO2021246397A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022026651A (ja) * 2020-07-31 2022-02-10 長野県 熱伝導性樹脂組成物及びその成形物
WO2023190439A1 (ja) * 2022-03-29 2023-10-05 デンカ株式会社 二液硬化型組成物セット、硬化物及び電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170971A (ja) 2003-12-08 2005-06-30 Denki Kagaku Kogyo Kk グリース
JP2007099821A (ja) 2005-09-30 2007-04-19 Momentive Performance Materials Japan Kk 熱伝導性シリコーングリース組成物及びそれを用いた半導体装置
JP2010248669A (ja) 2009-04-17 2010-11-04 Teijin Techno Products Ltd 制振材および制振複合材
JP2013124257A (ja) * 2011-12-13 2013-06-24 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
WO2020080256A1 (ja) * 2018-10-15 2020-04-23 デンカ株式会社 二液硬化型組成物セット、熱伝導性硬化物及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640021B2 (ja) * 2009-03-12 2014-12-10 ダウ コーニング コーポレーションDow Corning Corporation 熱界面材料、並びに、その調製及び使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170971A (ja) 2003-12-08 2005-06-30 Denki Kagaku Kogyo Kk グリース
JP2007099821A (ja) 2005-09-30 2007-04-19 Momentive Performance Materials Japan Kk 熱伝導性シリコーングリース組成物及びそれを用いた半導体装置
JP2010248669A (ja) 2009-04-17 2010-11-04 Teijin Techno Products Ltd 制振材および制振複合材
JP2013124257A (ja) * 2011-12-13 2013-06-24 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
WO2020080256A1 (ja) * 2018-10-15 2020-04-23 デンカ株式会社 二液硬化型組成物セット、熱伝導性硬化物及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163962A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022026651A (ja) * 2020-07-31 2022-02-10 長野県 熱伝導性樹脂組成物及びその成形物
JP7242019B2 (ja) 2020-07-31 2023-03-20 長野県 熱伝導性樹脂組成物及びその成形物
WO2023190439A1 (ja) * 2022-03-29 2023-10-05 デンカ株式会社 二液硬化型組成物セット、硬化物及び電子機器

Also Published As

Publication number Publication date
EP4163962A4 (en) 2024-01-31
EP4163962A1 (en) 2023-04-12
JPWO2021246397A1 (ja) 2021-12-09
CN115698222A (zh) 2023-02-03
TW202208604A (zh) 2022-03-01
US20230272218A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
CN107532001B (zh) 导热性组合物
JP4656340B2 (ja) 熱伝導性シリコーングリース組成物
JP6075261B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
US20080213578A1 (en) Heat conductive silicone grease composition and cured product thereof
TWI822954B (zh) 導熱性矽氧組成物及其製造方法、以及導熱性矽氧硬化物
EP3872135B1 (en) Thermally conductive silicone composition and cured product thereof
WO2021246397A1 (ja) 二液硬化型熱伝導性グリース用組成物、熱伝導性グリース、および電子機器
JP2014037460A (ja) 熱伝導性組成物
KR20210098991A (ko) 열전도성 실리콘 조성물의 경화물
JP2021195499A (ja) シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
WO2021225059A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
CN113632220A (zh) 导热性有机硅组合物、其制备方法及半导体装置
JP2009221310A (ja) 熱伝導性シリコーングリース組成物
JP2009221311A (ja) 熱伝導性グリース組成物
TWI813738B (zh) 熱傳導性矽氧組成物及其硬化物
JP7485634B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7496800B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI846825B (zh) 熱傳導性矽氧組成物、其製造方法及半導體裝置
KR20240011681A (ko) 열전도성 실리콘 조성물
WO2024143103A1 (ja) 熱伝導性グリース及び電子機器
JP2024051534A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーン硬化物及び電気部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528839

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021816974

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021816974

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE