WO2020196278A1 - 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法 - Google Patents

積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法 Download PDF

Info

Publication number
WO2020196278A1
WO2020196278A1 PCT/JP2020/012332 JP2020012332W WO2020196278A1 WO 2020196278 A1 WO2020196278 A1 WO 2020196278A1 JP 2020012332 W JP2020012332 W JP 2020012332W WO 2020196278 A1 WO2020196278 A1 WO 2020196278A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrolyte membrane
laminated
based polymer
polymer electrolyte
Prior art date
Application number
PCT/JP2020/012332
Other languages
English (en)
French (fr)
Inventor
南林健太
尾形大輔
白井秀典
出原大輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP20779463.7A priority Critical patent/EP3951017A1/en
Priority to KR1020217029559A priority patent/KR102562959B1/ko
Priority to CN202080015697.3A priority patent/CN113454270A/zh
Priority to JP2020521620A priority patent/JP7359139B2/ja
Priority to US17/441,057 priority patent/US11973252B2/en
Publication of WO2020196278A1 publication Critical patent/WO2020196278A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolyte membrane used in a water electrolyzer or a fuel cell.
  • a fuel cell is a kind of power generation device that extracts electric energy by electrochemically oxidizing fuel such as hydrogen, and has been attracting attention as a clean energy supply source in recent years.
  • PEM polymer electrolyte membrane
  • a fuel cell has a low standard operating temperature of around 100 ° C and a high energy density, so they are relatively small-scale distributed power generation facilities, automobiles and ships. It is expected to have a wide range of applications as a mobile power generator. It is also attracting attention as a power source for small mobile devices and mobile devices, and is expected to be installed in mobile phones and personal computers in place of secondary batteries such as nickel-metal hydride batteries and lithium-ion batteries.
  • Hydrogen production methods by electrolysis of water include alkaline water electrolysis and polymer electrolyte membrane (PEM) type water electrolysis, but PEM type water electrolysis can be operated at high current density, and the output of renewable energy fluctuates. It has the feature of being able to respond flexibly to.
  • PEM polymer electrolyte membrane
  • the principle of PEM type water electrolysis is shown below. 1.
  • the water supplied to the anode is oxidized by applying a voltage to generate oxygen, protons and electrons.
  • Protons are conducted to the cathode via ion exchange groups in the electrolyte membrane.
  • Electrons are conducted from the anode to the cathode through an external circuit by applying a voltage.
  • 4. Protons and electrons combine at the cathode to produce hydrogen.
  • the fluorine-based polymer electrolyte membrane is a rubber-like material having low breaking strength, there is a problem that the membrane is easily deformed. Further, if the electrolyte membrane is thickened in order to solve the problem, there is also a problem that the electrolysis efficiency of the water electrolyzer decreases as the proton conductivity decreases.
  • the hydrocarbon-based polymer electrolyte membrane has an excellent hydrogen barrier property even if it is a thin film, and it is possible to suppress deformation due to its high breaking strength.
  • Patent Document 2 proposes an electrolyte membrane with a catalyst layer that improves the adhesiveness between the electrolyte membrane and the catalyst layer by arranging an adhesion promoting layer composed of a fluoropolymer electrolyte and graphitized carbon particles. Has been done.
  • the electrolyte membrane with a catalyst layer in which a hydrocarbon-based polymer electrolyte membrane is used has the following two problems.
  • the issues are the following two points. 1)
  • the adhesiveness between the electrolyte membrane and the adhesiveness promoting layer is insufficient, causing a voltage rise due to peeling. 2)
  • the hydrocarbon-based polymer electrolyte membrane is oxidatively deteriorated.
  • a second layer containing a fluorine-based polymer electrolyte and polyvinylidene fluoride as a main component is laminated on at least one surface of a first layer containing a hydrocarbon-based polymer electrolyte as a main component.
  • the first layer and the second layer are electrolyte membranes that are laminated via a region in which the components constituting both layers are mixed (hereinafter, the region is referred to as a “mixed region”). is there.
  • the electrolyte membrane of the present invention can realize good adhesiveness in each of the first layer and the second layer, and the catalyst layer and the second layer. Further, it is possible to prevent the hydrocarbon-based polymer electrolyte layer, which is the first layer, from coming into contact with the electrode on the high potential side, and to prevent oxidative deterioration.
  • the hydrocarbon-based polymer electrolyte is a hydrocarbon-based polymer having an ionic group.
  • a hydrocarbon-based polymer having an ionic group is a polymer having a main chain having a hydrocarbon as a main constituent unit and having an ionic group added to the main chain or side chain, and the main chain and side chains. It shall refer to a chain whose chain is substantially non-hydrocarbonized. It should be noted that the fact that the polymer is not substantially fluorinated does not mean that the polymer having a fluorinated portion in a small part of the main chain or the side chain is excluded. It is referred to as a hydrocarbon-based polymer having an ionic group, including a polymer having a content of less than 5% per number average molecular weight of the polymer.
  • an aromatic hydrocarbon-based polymer is particularly preferable.
  • the aromatic hydrocarbon-based polymer is a polymer composed of a hydrocarbon skeleton having an aromatic ring in the main chain, and specific examples thereof include polysulfone, polyether sulfone, polyphenylene oxide, polyarylene ether-based polymer, polyphenylene sulfide, and polyphenylene sulfide.
  • the main component is a polyetherketone-based polymer, which is a polymer having a polyetherketone structure in the main chain.
  • the main component means that the mass of the ether ketone structure portion as a repeating unit is 50% by mass or more when the mass of the entire polymer is 100% by mass.
  • the ionic group contained in the hydrocarbon-based polymer electrolyte used in the present invention may be any ionic group having a proton exchange ability.
  • a sulfonic acid group, a sulfonimide group, a sulfate group, a phosphonic acid group, a phosphoric acid group, and a carboxylic acid group are preferably used.
  • Two or more kinds of ionic groups can be contained in the polymer.
  • the polymer preferably has at least a sulfonic acid group, a sulfonimide group, and a sulfate group from the viewpoint of high proton conductivity, and most preferably has a sulfonic acid group from the viewpoint of raw material cost.
  • the fluorine-based polymer electrolyte is a polymer having a main chain containing perfluorocarbon as a main constituent unit and having an ionic group added to the main chain or side chain.
  • a fluorine-based polymer electrolyte include a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom).
  • a copolymer having a repeating unit based on tetrafluoroethylene and a repeating unit of perfluorocarbon having a sulfonic acid group is preferable.
  • copolymers include perfluorocarbon sulfonic acid-based polymers such as Nafion (registered trademark: manufactured by DuPont) and Aquivion (registered trademark: manufactured by Solvay), polytrifluorostyrene sulphonic acid-based polymers, and per.
  • perfluorocarbon sulfonic acid-based polymers such as Nafion (registered trademark: manufactured by DuPont) and Aquivion (registered trademark: manufactured by Solvay), polytrifluorostyrene sulphonic acid-based polymers, and per.
  • Fluorocarbon phosphonic acid polymer trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-perfluorocarbon sulfonic acid polymer, ethylene- Examples thereof include a tetrafluoroethylene copolymer and a resin using trifluorostyrene as a base polymer. From the viewpoint of power generation performance such as heat resistance and chemical stability, a fluorine-based polymer electrolyte composed of a perfluorocarbon sulfonic acid-based polymer is particularly preferable.
  • the laminated electrolyte membrane of the present invention may preferably contain platinum.
  • Platinum can be used by reducing platinum or a platinum precursor compound.
  • the platinum precursor include H 2 Pt (OH) 6 , PtO 2 and nH 2 O, and the like.
  • a platinum precursor it can be easily reduced to platinum by using a reducing agent in the solution containing the platinum precursor.
  • the reducing agent of the platinum precursor hydrogen, hydrazine, formaldehyde, formic acid or oxalic acid, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol and a mixture thereof can be used.
  • the particle size of platinum used for the laminated electrolyte membrane is not particularly limited, but it is preferable to use platinum having a small particle size in order to thin the hydrogen permeation prevention layer.
  • the particle size of platinum is preferably 1 ⁇ m or less, more preferably 100 nm or less, still more preferably 20 nm or less.
  • Platinum may be contained in any one of the first layer, the second layer, and the third layer, which will be described later, but is preferably contained in the second layer or the third layer.
  • the polyvinylidene fluoride is a homopolymer of vinylidene fluoride (that is, pure polyvinylidene fluoride), and a copolymer of vinylidene fluoride and another copolymerizable monomer is also referred to as polyvinylidene fluoride in the present invention. It shall be included in the meaning.
  • the monomer copolymerizable with vinylidene fluoride for example, one kind or two or more kinds such as tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichlorethylene and vinyl fluoride can be used.
  • Such polyvinylidene fluoride can be obtained by emulsion polymerization or suspension polymerization.
  • the weight average molecular weight of polyvinylidene fluoride is preferably 300,000 or more, more preferably 500,000 or more.
  • the laminated electrolyte of the present invention has a layer (first layer) containing a hydrocarbon-based polymer electrolyte as a main component.
  • the hydrocarbon-based polymer electrolyte that forms this layer is as described above.
  • the term "main component” means that 50% by mass or more of all the components contained in the unit volume in the portion of the first layer excluding the mixed region described later is a hydrocarbon-based polymer electrolyte, which is preferable. Is composed of 70% by mass or more, more preferably 80% by mass or more, and particularly preferably substantially a hydrocarbon-based polymer electrolyte.
  • substantially means that a trace amount, specifically less than 1% by mass, of other components is allowed to be contained, and in a typical case, other components are not contained. Means.
  • the laminated electrolyte membrane of the present invention has a layer (second layer) containing a fluorine-based polymer electrolyte and polyvinylidene fluoride as main components on at least one surface of the first layer.
  • the main component means that 50% by mass or more of all the components contained in the unit volume in the portion of the second layer excluding the mixed region described later is a fluoropolymer electrolyte and polyvinylidene fluoride.
  • it is preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably substantially composed of a fluoropolymer electrolyte and polyvinylidene fluoride.
  • substantially means that a trace amount, specifically less than 1% by mass, of other components is allowed to be contained, and in a typical case, other components are not contained. Means.
  • the fluoropolymer electrolyte is preferably 20% by mass or more, more preferably 60% by mass or more, and further preferably 60% by mass or more, when the total mass of the fluoropolymer electrolyte and polyvinylidene fluoride is 100% by mass. Is preferably 70% by mass or more.
  • the fluorine-based polymer electrolyte is preferably 90% by mass or less, more preferably 80% by mass or less, when the total mass of the fluorine-based polymer electrolyte and polyvinylidene fluoride is 100% by mass. Within such a range, both adhesiveness and ionic conductivity are compatible, and it is effective in achieving both efficiency and durability.
  • the weight ratio of the fluorine-based polymer electrolyte to polyvinylidene fluoride is determined in the portion of the second layer excluding the mixed region described later.
  • the thickness of the second layer is preferably 40% or less, more preferably 30% or less, and further preferably 20% or less with respect to the thickness of the first layer. Further, when the film thickness of the second layer becomes thin, the mixed region becomes thin, and the adhesiveness between the first layer and the second layer decreases. Therefore, the thickness of the second layer is preferably 1% or more, more preferably 5% or more, based on the thickness of the first layer. The measurement and determination of the thicknesses of the first layer and the second layer will be described in the first embodiment described later. As described in item (4).
  • the laminated electrolyte membrane of the present invention may have a layer (third layer) containing a fluorine-based polymer electrolyte laminated on the surface opposite to the surface on which the first layer of the second layer is laminated as a main component. it can.
  • the third layer does not contain a hydrocarbon-based polymer electrolyte.
  • the main component means that 60% by mass or more of all the components contained in the unit volume of the third layer is a fluoropolymer electrolyte, preferably 70% by mass or more, more preferably. It is composed of 80% by mass or more, particularly preferably substantially a fluorine-based polymer electrolyte.
  • substantially means that the content of other components (excluding hydrocarbon-based polymer electrolytes) in a trace amount, specifically less than 1% by mass, is permitted, which is typical. In this case, it means that it does not contain other components.
  • the thickness of the third layer is preferably 40% or less, more preferably 30% or less, and further preferably 20% or less with respect to the thickness of the first layer.
  • the lower limit is preferably 0.1% or more with respect to the thickness of the first layer.
  • the laminated electrolyte membrane of the present invention can be produced by the following steps.
  • a first layer containing a hydrocarbon-based polymer electrolyte as a main component is formed.
  • the first layer can be formed by performing the steps of exchanging the cations of the alkali metal or alkaline earth metal forming the salt with the sex group for protons in this order.
  • this forming method will be described in more detail.
  • a polymer electrolyte in which an ionic group forms a salt with a cation of an alkali metal or an alkaline earth metal is hereinafter referred to as a “salt-type polymer electrolyte” in the present specification.
  • the method for forming the first layer includes a step of exchanging cations of an alkali metal or an alkaline earth metal forming a salt with an ionic group with protons after forming a layer of a salt-type polymer electrolyte. ..
  • the step of exchanging the cation with the proton is preferably a step of bringing the salt-type polymer electrolyte into contact with the acidic aqueous solution. Further, the contact is more preferably a step of immersing the first layer in an acidic aqueous solution.
  • the protons in the acidic aqueous solution are replaced with cations that are ionically bonded to the ionic group, and residual water-soluble impurities, residual monomers, solvents, residual salts, etc. are simultaneously removed.
  • the acidic aqueous solution used is not particularly limited, but it is preferable to use a protonic acid such as sulfuric acid, hydrochloric acid, nitric acid, acetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, and citric acid.
  • the temperature and concentration of the acidic aqueous solution should be appropriately determined, but from the viewpoint of productivity, it is preferable to use a sulfuric acid aqueous solution of 3% by mass or more and 30% by mass or less at a temperature of 0 ° C. or higher and 80 ° C. or lower.
  • the solvent used when forming the first layer can be appropriately selected depending on the polymer type.
  • the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide and the like.
  • Aprotonic polar solvents, ester solvents such as ⁇ -butyrolactone, ethyl acetate, butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene.
  • An alkylene glycol monoalkyl ether such as glycol monoethyl ether is preferably used.
  • a mixed solvent in which two or more kinds of these solvents are mixed may be used.
  • alcohol solvents such as methanol, ethanol, 1-propanol and isopropyl alcohol
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • ester solvents such as ethyl acetate, butyl acetate and ethyl lactate, etc.
  • Hydrocarbon solvents such as hexane and cyclohexane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, halogens such as chloroform, dichloromethane, 1,2-dichloroethane, perchloroethylene, chlorobenzene, dichlorobenzene and hexafluoroisopropyl alcohol.
  • Solvents such as hydrocarbon solvents, ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane, nitrile solvents such as acetonitrile, nitrated hydrocarbon solvents such as nitromethane and nitroethane, and various low boiling solvent such as water. It can also be mixed with.
  • the method of forming the second layer there is a method of forming an electrolyte layer containing a fluorine-based polymer electrolyte and polyvinylidene fluoride as main components on the formed first layer. If the film-forming solvent remains in the laminated electrolyte membrane even after drying, it is preferable to wash with pure water.
  • a solvent having a high affinity with the first layer component is used from the viewpoint of forming a mixed region near the interface between the first layer and the second layer and improving the adhesiveness.
  • the peeling force between the first layer and the second layer of the laminated electrolyte membrane of the present invention is preferably 0.3 N or more, more preferably 1.0 N or more, and particularly preferably 2.0 N or more.
  • the upper limit is not particularly limited, but is generally 10.0 N or less. The larger the peeling force, the more the peeling of the first layer and the second layer is suppressed, and the deterioration of the performance during the operation of the apparatus can be prevented.
  • the first layer and the second layer are laminated via a region (mixed region) in which components constituting both layers are mixed.
  • the mixed region is sandwiched between a layer formed only of the components constituting the first layer and a layer formed only of the components constituting the second layer, and the first embodiment described later. ..
  • the thickness thereof is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and more preferably 1.0 ⁇ m or more. Is even more preferable.
  • the thickness of the mixed region is preferably such that the hydrocarbon-based polymer electrolyte is not exposed on the surface layer, and is 80% or less of the total thickness of the first layer and the second layer.
  • the concentration of the polymer electrolyte solution used is preferably 3 to 40% by mass, more preferably 5 to 30% by mass. If the viscosity of the solution is too low, the retention of the solution will be poor and liquid flow will occur. On the other hand, if the solution viscosity is too high, the surface smoothness of the electrolyte membrane may deteriorate.
  • knife coat As a method of casting and applying the polymer electrolyte solution used for forming the first layer and the second layer, knife coat, direct roll coat, Meyer bar coat, gravure coat, reverse coat, air knife coat, spray coat, brush coating , Dip coat, die coat, vacuum die coat, curtain coat, flow coat, spin coat, screen printing, inkjet coat and the like can be applied.
  • the drying temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower in consideration of the decomposition of the polymer electrolyte.
  • the laminated electrolyte membrane of the present invention can be applied to various uses.
  • medical applications such as artificial skin, filtration applications, ion exchange resin applications such as chlorine-resistant reverse osmosis membranes, various structural material applications, electrochemical applications, humidifying membranes, antifogging membranes, antistatic membranes, deoxidizing membranes, and the sun. It can be applied to battery membranes and gas barrier membranes. Above all, it can be preferably used for various electrochemical applications.
  • electrochemical applications include solid polymer fuel cells, redox flow batteries, electrochemical hydrogen pumps, hydrogen purification devices, water electrolyzers, and chloro-alkali electrolyzers, which can be particularly preferably used for water electrolyzers.
  • the cell used in the water electrolyzer has a structure in which a catalyst layer, an electrode base material, and a separator are sequentially laminated on both sides of the composite electrolyte membrane of the present invention.
  • the one in which the catalyst layer is laminated on both sides of the laminated electrolyte membrane is called an electrolyte membrane with a catalyst layer (CCM), and both sides of the electrolyte membrane.
  • a membrane electrode composite is obtained by sequentially laminating a catalyst layer and a gas diffusion substrate (that is, a layer structure of a gas diffusion substrate / catalyst layer / electrolyte membrane / catalyst layer / gas diffusion substrate). It is called.
  • a coating method in which a catalyst layer paste composition for forming a catalyst layer is applied and dried on the surface of an electrolyte membrane or only a catalyst layer is prepared on a substrate and the catalyst layer is transferred.
  • a method of laminating the catalyst layer on the electrolyte membrane (transfer method) is generally performed.
  • the catalyst layer on the anode side is referred to as an anode catalyst layer
  • the catalyst layer on the cathode side is referred to as a cathode catalyst layer.
  • Specific press methods include roll presses that regulate pressure and clearance, flat plate presses that regulate pressure, etc., and are 0 from the viewpoint of industrial productivity and suppression of thermal decomposition of polymer materials having ionic groups. It is preferably performed in the range of ° C. to 250 ° C. From the viewpoint of protecting the electrolyte film and electrodes, the pressurization is preferably as weak as possible within the range in which the adhesion between the electrolyte film and the catalyst layer is maintained, and in the case of a flat plate press, a pressure of 10 MPa or less is preferable, and compounding by the pressing process is performed.
  • an electrolyte membrane with a uniform catalyst layer can be obtained. If the temperature is raised while pressurizing or the pressure is released before the temperature is lowered, three-dimensional thermal shrinkage occurs when the interface between the electrolyte membrane and the catalyst layer is not fixed, causing wrinkles and peeling due to poor adhesion. It may occur.
  • Physical properties required for the power supply body of the water electrolysis type hydrogen generator include gas-liquid flow path function, good conductivity, acid resistance, oxidation resistance, hydrogen fragility, heat resistance, workability, etc. Any material can be used as long as it has various physical properties.
  • a porous conductive sheet mainly composed of a conductive substance can be mentioned, and examples of this conductive substance include a fired body from polyacrylonitrile, a fired body from pitch, a carbon material such as graphite and expanded graphite, and stainless steel. Examples include steel, molybdenum, titanium, nickel, zirconium, niobium, and tantalum.
  • inorganic conductive substances that are not oxidized by the high potential at the anode during water electrolysis are preferred, stainless steel, molybdenum, titanium, nickel, zirconium, niobium, tantalum, etc. are preferred, and titanium is particularly preferred. ..
  • the form of the conductive substance is not particularly limited, such as fibrous or particulate, but a fibrous conductive inorganic substance (inorganic conductive fiber) is preferable.
  • a woven fabric or a non-woven fabric structure can be used as the porous conductive sheet using the inorganic conductive fiber.
  • the woven fabric is not particularly limited, such as plain weave, twill weave, satin weave, crest weave, and binding weave.
  • non-woven fabric those manufactured by a method such as a papermaking method, a needle punching method, a spunbonding method, a water jet punching method, or a melt blowing method are used without particular limitation.
  • the porous conductive sheet using the inorganic conductive fiber may be an expanded metal, a punching metal, or a knitted material.
  • porous conductive sheet it is also preferable to add conductive particles such as carbon black or conductive fibers such as carbon fibers to the porous conductive sheet as an auxiliary agent in order to improve the conductivity. Further, it is also preferable that the surface of the porous conductive sheet is plated with platinum in order to improve the stability.
  • the measurement was carried out with a pyrrolidone solvent (N-methyl-2-pyrrolidone solvent containing 10 mmol / L of lithium bromide) at a flow rate of 0.2 mL / min, and the number average molecular weight and the weight average molecular weight were determined by standard polystyrene conversion.
  • a pyrrolidone solvent N-methyl-2-pyrrolidone solvent containing 10 mmol / L of lithium bromide
  • IEC Ion exchange capacity
  • the film thickness is obtained by cutting the electrolyte membrane into 10 cm pieces, 5 cm from the end in the MD direction, 1 cm, 3 cm, 5 cm, 7 cm, and 9 cm from the end in the TD direction, 5 cm from the end in the TD direction, and 1 cm from the end in the MD direction. Measure at 3 cm, 5 cm, 7 cm, and 9 cm, respectively, and calculate the average value of these 9 points. The average value is defined as the film thickness of the electrolyte membrane.
  • A. EDX calibration curve analysis is performed on the cross section cut into the electrolyte membrane flakes from one surface side (referred to as "surface a" for convenience) to the other surface side, that is, in the thickness direction.
  • the measuring device and measuring conditions are as follows.
  • the intensity distribution of the fluorine atom concentration in the thickness direction is obtained with the distance from the surface a as the X-axis and the fluorine atom concentration as the Y-axis.
  • the maximum value is taken as the fluorine atom concentration of the layer.
  • the corresponding portion can be understood from the stacking order and the SEM photographic image.
  • the fluorine atom concentration of the first layer obtained in the above C term is C1 and the fluorine atom concentration of the second layer is C2, it is between the position on the X-axis where C1 is obtained and the position on the X-axis where C2 is obtained. And, the position on the X-axis showing the fluorine atom concentration of (C1 + C2) / 2 is regarded as the interface between the first layer and the second layer.
  • the positions obtained by the arithmetic mean of the X-axis coordinate values corresponding to the fluorine atom concentration are the first layer and the second layer. Consider it as the interface between layers.
  • a surface regarded as the boundary surface between the first layer or the second layer and the third layer is similarly required.
  • the thicknesses of the first layer, the second layer, and the third layer are determined based on the position of the surface regarded as the boundary surface of each layer and the distance from the surface a determined above.
  • Adhesiveness test The electrolyte membrane is immersed in pure water at 80 ° C. for 24 hours, and the presence or absence of peeling of the first layer and the second layer is observed. When peeling was not observed, it was expressed as "adhesion" in the table, and when peeling was observed, it was expressed as "peeling".
  • the electrolyte membranes overlapped with each other are superposed and heat-pressed at 150 ° C. and 4.5 MPa for 10 minutes. 5. Above 4. Cut the sample prepared in 1 cm x 12 cm into strips to prepare a peeling test piece. 6. The upper and lower chucks of the tensile tester grasp the electrolyte membrane to be evaluated and the NR212, and measure the stress when the upper chuck is stroked. 7. The average of the stresses with a stroke distance between 5 cm and 8 cm was calculated as the peeling force.
  • Anode catalyst layer transfer film A200 was prepared by applying the film so that the amount of iridium was 2.5 mg / cm 2.
  • the anode catalyst layer transfer film A200 and the cathode catalyst layer transfer film A100 were each cut into 5 cm squares. One pair is prepared and laminated so as to sandwich the polymer electrolyte film to be evaluated.
  • the cathode catalyst layer transfer film A100 on the surface on the first layer side
  • the anode catalyst layer transfer film A200 is placed on the surface on the second layer side or the third layer side. Then, the temperature is raised from the pressurized state, and the heating press is performed at 150 ° C. and 5 MPa for 3 minutes to pressurize the surface. After the temperature was lowered to 40 ° C. or lower, the pressure was released to obtain an electrolyte film with a catalyst layer for a water electrolyzer whose anode was A200 and whose cathode was A100.
  • MEA Membrane Electrolyte
  • Output was performed at a load current of 50 A (current density 2 A / cm 2 ) using a Multistat 1480 manufactured by Solartron and a Power booster Model PBi500L-5U. After holding the current at atmospheric pressure for 10 hours, the cell voltage at that time was measured. The lower the cell voltage, the better the water electrolysis efficiency.
  • reaction solution was diluted with ethyl acetate, the organic layer was washed with 100 mL of a 5% potassium carbonate aqueous solution, separated, and then the solvent was distilled off. 80 mL of dichloromethane was added to the residue to precipitate crystals, which were filtered and dried to obtain 52.0 g of 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane.
  • M represents sodium or potassium. N is a positive integer.
  • n is a positive integer independently in the equations (G5) and (G7).
  • PES polyether sulfone
  • G7 segment represented by the above formula (G7)
  • G8 segment represented by the following formula (G8)
  • 0.25 g of the block copolymer precursor b2'0.25 g was added to a mixed solution of 0.18 g of lithium bromide monohydrate and 8 mL of N-methyl-2-pyrrolidone, and the mixture was reacted at 120 ° C. for 24 hours.
  • the reaction mixture was poured into 80 mL of 6 mol / L hydrochloric acid and stirred for 1 hour.
  • the precipitated solid was separated by filtration.
  • the separated solid was dried to obtain a block copolymer b2 composed of a grayish white segment represented by the formula (G7) and a segment represented by the following formula (G8).
  • the weight average molecular weight of the obtained polyarylene was 190,000.
  • the block copolymer b2 itself is used as a polymer electrolyte membrane, immersed in a 10 mass% sulfuric acid aqueous solution at 80 ° C. for 24 hours for proton substitution, and then immersed in a large excess amount of pure water for 24 hours for thorough washing.
  • the ion exchange capacity determined from the titration was 2.02 meq / g.
  • k is a positive integer.
  • k is a positive integer. 51.9 g (0.30 mol), 2,2-bis (0.30 mol) of 2,6-dichlorobenzonitrile in a 1 L three-necked flask equipped with a stirrer, thermometer, cooling tube, Dean-Stark tube, and nitrogen-introduced three-way cock.
  • 4-Hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane 92.8 g (0.27 mol) and potassium carbonate 49.7 g (0.36 mol) were weighed.
  • reaction solution was allowed to cool, and then 100 mL of toluene was added to dilute it.
  • the precipitate of the by-produced inorganic compound was removed by filtration, and the filtrate was put into 2 L of methanol.
  • the precipitated product was filtered off, collected, dried and then dissolved in 250 mL of tetrahydrofuran. This was reprecipitated in 2 L of methanol to obtain 109 g of the desired oligomer.
  • the number average molecular weight of the oligomer was 8,000.
  • k, m, and n are independently positive integers.
  • 166 mL of dried N, N-dimethylacetamide (DMAc) and 15.1 g (1.89 mmol) of the above-mentioned hydrophobic oligomer a3 were placed in a 1 L 3-port flask to which a stirrer, a thermometer and a nitrogen introduction tube were connected.
  • the reaction system was heated under stirring (finally heated to 82 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 180 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filtration aid. Add 25.6 g (295 mmol) of lithium bromide to this filtrate in 3 divided doses of 1/3 at 1 hour intervals with 3 1 L mouths equipped with a stirrer, and add at 120 ° C. for 5 hours in a nitrogen atmosphere. It was reacted. After the reaction, the mixture was cooled to room temperature, poured into 4 L of acetone, and solidified.
  • the coagulated product was collected by filtration, air-dried, pulverized with a mixer, and washed with 1500 mL of 1N sulfuric acid while stirring. After filtration, the product was washed with ion-exchanged water until the pH of the washing solution reached 5 or higher, and then dried at 80 ° C. overnight to obtain the desired block copolymer b3.
  • the weight average molecular weight of this block copolymer was 200,000.
  • the block copolymer b3 itself is used as a polymer electrolyte membrane, immersed in a 10 mass% sulfuric acid aqueous solution at 80 ° C. for 24 hours for proton substitution, and then immersed in a large excess amount of pure water for 24 hours for thorough washing.
  • the ion exchange capacity determined from the titration was 2.38 meq / g.
  • Example 1 20 g of the block copolymer b1 obtained in Synthesis Example 1 was dissolved in 80 g of NMP and stirred with a stirrer at 20,000 rpm for 1 hour to prepare a transparent polymer electrolyte solution b1 having a polymer concentration of 20% by mass.
  • the obtained polymer electrolyte solution b1 is pressure-filtered using a glass fiber filter, and then the polymer electrolyte solution b1 is cast-coated on a polyethylene terephthalate (PET) substrate using an applicator, and the mixture is applied at 100 ° C. for 4 hours. It was dried to obtain a film-like polymer.
  • the first layer (film) was immersed in a 10 mass% sulfuric acid aqueous solution at 80 ° C. for 24 hours for proton substitution and deprotection reaction, then immersed in a large excess amount of pure water for 24 hours, thoroughly washed, and dried at room temperature. A thickness of 50 ⁇ m) was obtained.
  • Nafion commercially available Chemours D2020 solution is used by substituting NMP
  • NMP commercially available Chemours D2020 solution is used by substituting NMP
  • Kureha W # 9300 weight average molecular weight> 100
  • a layer is formed by drying at ° C.
  • the thickness of the mixed region of the obtained laminated electrolyte membrane was 1.8 ⁇ m.
  • Example 2 A laminated electrolyte membrane (thickness 55 ⁇ m) was obtained in the same manner as in Example 1 except that 0.1% by mass of platinum fine particles (average particle size 5 nm) was added to the polymer electrolyte solution A.
  • Example 3 A 20% by mass solution of Nafion containing 0.2% by mass of platinum fine particles (average particle size 5 nm) on the surface of the second layer on the side where the first layer of the laminated electrolyte membrane obtained in Example 1 is not provided.
  • a commercially available Chemours D2020 solution was applied with a bar coater and dried at 100 ° C. for 1 hour to prepare a third layer, and a laminated electrolyte membrane (thickness 65 ⁇ m) was obtained.
  • Example 8 A laminated electrolyte membrane (thickness 80 ⁇ m) was obtained in the same manner as in Example 1 except that the thickness of the second layer was 30 ⁇ m.
  • Example 9 A laminated electrolyte membrane (thickness: 50.5 ⁇ m) was obtained in the same manner as in Example 1 except that the thickness of the second layer was 0.5 ⁇ m.
  • Example 10 A laminated electrolyte membrane (thickness 11 ⁇ m) was obtained in the same manner as in Example 1 except that the thickness of the first layer was 10 ⁇ m and the thickness of the second layer was 1 ⁇ m.
  • Example 11 A laminated electrolyte membrane (thickness 55 ⁇ m) was obtained in the same manner as in Example 1 except that the block copolymer b2 obtained in Synthesis Example 2 was used instead of the block copolymer b1.
  • Example 12 A laminated electrolyte membrane (thickness 55 ⁇ m) was obtained in the same manner as in Example 1 except that the block copolymer b3 obtained in Synthesis Example 3 was used instead of the block copolymer b1.
  • Example 13 A laminated electrolyte membrane (thickness 55 ⁇ m) was obtained in the same manner as in Example 1 except that the random copolymer r1 obtained in Synthesis Example 4 was used instead of the block copolymer b1.
  • Example 16 Laminated electrolyte membrane (thickness 55 ⁇ m) in the same manner as in Example 1 except that the commercially available Kureha W # 7300 (weight average molecular weight> 1 million) was used instead of the commercially available Kureha W # 9300 as polyvinylidene fluoride.
  • Example 2 A laminated electrolyte membrane (55 ⁇ m) was obtained in the same manner as in Example 1 except that a NMP 20% by mass solution of Nafion (commercially available D2020 solution manufactured by The Chemours Company was replaced with NMP) was used instead of the polymer electrolyte solution A. .. In the laminated electrolyte membrane after drying, the first layer and the second layer were peeled off.
  • NMP 20% by mass solution of Nafion commercially available D2020 solution manufactured by The Chemours Company was replaced with NMP
  • the laminated electrolyte membrane produced in this example did not form a mixed region.
  • a laminated electrolyte membrane (thickness 55 ⁇ m) was obtained. In the laminated electrolyte membrane after drying, the first layer and the second layer were peeled off.
  • b1 represents the block copolymer b1
  • b2 represents the block copolymer b2
  • b3 represents the block copolymer b3
  • r1 represents the random copolymer r1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、触媒層付き電解質膜においてみられる、電解質膜と接着性促進層の接着性の不十分さに起因する電圧上昇、および、炭化水素系高分子電解質膜の酸化劣化を防止することを課題とし、炭化水素系高分子電解質からなる第1層の少なくとも片面に、フッ素系高分子電解質およびポリフッ化ビニリデンからなる第2層が積層されており、第1層と第2層の界面近傍に混合領域を有する積層電解質膜を提供する。

Description

積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
 本発明は、水電解装置や燃料電池に用いられる電解質膜に関する。
 燃料電池は、水素などの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。燃料電池において、高分子電解質膜(PEM)型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
 燃料電池の燃料として用いられる水素には、様々な作製方法があるが、再生可能エネルギーによる余剰電力を使用して水を電気分解すれば、二酸化炭素を排出することなく電力を水素エネルギーに変換可能である。水の電気分解による水素製造方式は、アルカリ水電解と高分子電解質膜(PEM)型水電解があるが、PEM型水電解は高電流密度での運転が可能であり、再生可能エネルギーの出力変動に柔軟に対応できるという特長を有する。
 PEM型水電解の原理を以下に示す。
1.陽極に供給された水が電圧印加により酸化、酸素とプロトンと電子を生成する。
2.プロトンは、電解質膜中のイオン交換基を介して陰極に伝導する。
3.電子は、電圧印加により外部回路を通って陽極から陰極へ伝導する。
4.プロトンと電子が、陰極で結合して水素を生成する。
 このような、PEM型水電解装置に用いられる高分子電解質膜として、米デュポン社製の「ナフィオン(登録商標)」に代表されるフッ素系高分子電解質膜を用いた膜を使用した例が報告されている。しかしながら、フッ素系高分子電解質膜は、本質的に水素透過が大きく、水素バリア性が十分でない。そのため、水電解装置では生成した水素が陰極から陽極へ透過することによる電流効率の低下および酸素と水素の混合という安全面の課題があった。また、フッ素系高分子電解質膜は、破断強度が低いゴムのような材料のため、膜が変形しやすいという課題があった。また、当該課題を解決するために電解質膜を厚くすると、プロトン伝導度低下にともない水電解装置の電解効率が低下する問題もあった。
 このような課題に対し、フッ素系高分子電解質膜に替えて、炭化水素系高分子電解質膜を用いることが提案されている(例えば、特許文献1)。炭化水素系高分子電解質膜は、薄膜であっても優れた水素バリア性を有し、高い破断強度から変形を抑制することが可能となる。
 炭化水素系高分子電解質膜の適用に関して、課題のひとつとなるのが電解質膜と触媒層との接着性である。特許文献2では電解質膜と触媒層の間に、フッ素系高分子電解質と黒鉛化炭素粒子からなる接着性促進層を配置することで、両者の接着性を向上させた触媒層付き電解質膜が提案されている。
特開2016-216826号公報 特表2008-512884号公報
 しかしながら、炭化水素系高分子電解質膜が用いられた触媒層付き電解質膜について新たに下記2点の課題があることを見出した。課題は下記2点である。
1)電解質膜と接着性促進層の接着性が不十分であり、剥離による電圧上昇が生じる。
2)触媒層と炭化水素系高分子電解質膜に電気的な接触があり、水電解装置のように電極が高電位となる場合には、炭化水素系高分子電解質膜が酸化劣化する。
 かかる課題を解決するための本発明は、炭化水素系高分子電解質を主たる成分とする第1層の少なくとも片面に、フッ素系高分子電解質およびポリフッ化ビニリデンを主たる成分とする第2層が積層された電解質膜であって、前記第1層と前記第2層は両層を構成する成分が入り交じった領域(係る領域を以下、「混合領域」という)を介して積層されている電解質膜である。
 本発明の電解質膜は第1層と第2層、触媒層と第2層それぞれにおいて、良好な接着性を実現出来る。また、第1層である炭化水素系高分子電解質層と高電位側の電極が接することを防ぎ、酸化劣化を防止し得る。
本発明の一態様である積層電解質膜の混合領域部を拡大して撮影した断面写真である。
 以下、本発明の、積層電解質膜について詳細に説明する。
 〔炭化水素系高分子電解質〕
 炭化水素系高分子電解質とは、イオン性基を有する炭化水素系ポリマーである。イオン性基を有する炭化水素系ポリマーとは、炭化水素を主構成単位とする主鎖を有するとともに、当該主鎖または側鎖にイオン性基が付与されたポリマーであって、当該主鎖および側鎖が実質的にフッ素化されていないものを指すものとする。なお、実質的にフッ素化されていないとは、当該主鎖または側鎖のごく一部にフッ素化された部分を有するポリマーを排除するものではない趣旨であり、具体的には、フッ素原子の含有率がポリマーの数平均分子量あたり5%未満のポリマーも含め、イオン性基を有する炭化水素系ポリマーと呼ぶものとする。
 炭化水素系高分子電解質を構成する炭化水素系ポリマーとしては、特に芳香族炭化水素系ポリマーが好ましい。芳香族炭化水素系ポリマーとは、主鎖に芳香環を有する炭化水素骨格からなるポリマーであり、具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンから選択される構造を芳香環とともに主鎖に有するポリマーが挙げられる。なお、ここでいうポリスルホン、ポリエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有している構造の総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含む。炭化水素骨格は、これらの構造のうち複数の構造を有していてもよい。これらのなかでも、特にポリエーテルケトン構造を主鎖に有するポリマーであるポリエーテルケトン系ポリマーを主成分とすることが最も好ましい。なおここで、主成分とするとは、ポリマー全体の質量を100質量%としたとき、繰り返し単位としてみたエーテルケトン構造部分の質量が50質量%以上であることをいう。
 本発明に用いる炭化水素系高分子電解質が有しているイオン性基としては、プロトン交換能を有するイオン性基であればよい。このようなイオン性基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。イオン性基はポリマー中に2種類以上含むことができる。中でも、高プロトン伝導度の点から、ポリマーは少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、原料コストの点からスルホン酸基を有することが最も好ましい。
 〔フッ素系高分子電解質〕
 フッ素系高分子電解質とは、パーフルオロカーボンを主構成単位とする主鎖を有するとともに、当該主鎖、または、側鎖にイオン性基が付与されたポリマーである。このようなフッ素系高分子電解質としては、例えば、スルホン酸基を有するパーフルオロカーボン重合体(エーテル性酸素原子を含んでいてもよい。)が挙げられる。中でも、テトラフルオロエチレンに基づく繰り返し単位と、スルホン酸基を有するパーフルオロカーボンの繰り返し単位とを有する共重合体が好ましい。このような共重合体の市販品としては、ナフィオン(登録商標:デュポン社製)、アクイヴィオン(登録商標:ソルベイ社製)等のパーフルオロカーボンスルホン酸系ポリマー、ポリトリフルオロスチレンスルフォン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマー、エチレン-四フッ化エチレン共重合体、トリフルオロスチレン等をベースポリマーとする樹脂などが挙げられる。耐熱性、化学的安定性などの発電性能上の観点からは、パーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が特に好ましい。
 〔白金〕
 本発明の積層電解質膜は好ましく白金を含みうる。白金は、白金または白金前駆体化合物を還元して用いることができる。白金前駆体としてはHPt(OH)、PtO・nHOなどが挙げられる。白金前駆体を用いる場合、白金前駆体を含む溶液に還元剤を用いることで、容易に白金へと還元が可能である。白金前駆体の還元剤としては、水素、ヒドラジン、ホルムアルデヒド、ギ酸またはシュウ酸、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、2-ブタノールおよびこれらの混合物などを用いることができる。
 積層電解質膜に用いる白金の粒径は特に限定されるものではないが、水素透過防止層を薄くするためには粒径の小さな白金を用いることが好ましい。白金の粒径は1μm以下、より好ましくは100nm以下、さらに好ましくは20nm以下であることが好ましい。
 また、白金は後述する第1層、第2層、および、第3層のいずれか1つの層に含まれていればよいが、第2層または第3層に含まれることが好ましい。
 〔ポリフッ化ビニリデン〕
 ポリフッ化ビニリデンとは、フッ化ビニリデンの単独重合体(すなわち、純粋なポリフッ化ビニリデン)のほか、フッ化ビニリデンと他の共重合可能なモノマーとの共重合体も本発明にいうポリフッ化ビニリデンの意味に含むものとする。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフルオロエチレン、ヘキサフロロプロピレン、トリフロロエチレン、トリクロロエチレンあるいはフッ化ビニル等の一種類又は二種類以上を用いることができる。このようなポリフッ化ビニリデンは、乳化重合または懸濁重合により得ることが可能である。
 また、第2層で使用するポリフッ化ビニリデンとしては、分子量が大きいと混合領域でのポリフッ化ビニリデンと炭化水素系高分子電解質およびフッ素系高分子電解質の分子鎖同士の絡み合いが強くなり、接着性が向上する。そのためポリフッ化ビニリデンの重量平均分子量は30万以上が好ましく、50万以上がより好ましい。
 〔第1層〕
 本発明の積層電解質は、炭化水素系高分子電解質を主たる成分とする層(第1層)を有している。この層を形成する炭化水素系高分子電解質については上で説明したとおりである。なおここで、主たる成分とするとは後述する混合領域を除く第1層の部分において単位体積中に含まれる全成分中の50質量%以上が炭化水素系高分子電解質であることを意味し、好ましくは70質量%以上、より好ましくは80質量%以上、特に好ましくは実質的に炭化水素系高分子電解質によって構成されていることである。なおここで、「実質的に」とは微量、具体的には1質量%未満、のその他の成分の含有を許容することを意味し、典型的な場合ではその他の成分を含ませていないことを意味する。
 〔第2層〕
 本発明の積層電解質膜は、前記第1層の少なくとも片面にフッ素系高分子電解質およびポリフッ化ビニリデンを主たる成分とする層(第2層)を有している。なおここで、主たる成分とするとは後述する混合領域を除く第2層の部分において単位体積中に含まれる全成分中の50質量%以上がフッ素系高分子電解質およびポリフッ化ビニリデンであることを意味し、好ましくは70質量%以上、より好ましくは80質量%以上であり、特に好ましくは実質的にフッ素系高分子電解質およびポリフッ化ビニリデンによって構成されていることである。なおここで、「実質的に」とは微量、具体的には1質量%未満、のその他の成分の含有を許容することを意味し、典型的な場合ではその他の成分を含ませていないことを意味する。
 第2層において、フッ素系高分子電解質の含有割合が少ないと膜抵抗が大きくなる。そのため、フッ素系高分子電解質はフッ素系高分子電解質およびポリフッ化ビニリデンの合計質量を100質量%としたとき20質量%以上であることが好ましく、60質量%以上であることがより好ましく、さらに好ましくは70質量%以上であることが好ましい。フッ素系高分子電解質の含有量が多くなり、ポリフッ化ビニリデンの含有割合が少なくなると、第1層との接着性が低下する。そのため、フッ素系高分子電解質はフッ素系高分子電解質およびポリフッ化ビニリデンの合計質量を100質量%としたとき90質量%以下であることが好ましく、80質量%以下であることがより好ましい。かかる範囲とすることで、接着性とイオン伝導性が両立され、効率と耐久性の両立に効果がある。なお、フッ素系高分子電解質とポリフッ化ビニリデンの重量比は、後述する混合領域を除く第2層の部分において求められる。
 本発明は炭化水素系高分子電解質からなる第1層を主たる電解質層とすることで、高い水素バリア性、機械強度を実現することができる。そのため、第2層の厚みとしては、第1層の厚みに対して、40%以下とすることが好ましく、30%以下とすることがより好ましく、20%以下とすることがさらに好ましい。また、第2層の膜厚が薄くなれば、混合領域が薄くなり、第1層と第2層との接着性が低下する。そのため、第2層の厚みとしては、第1層の厚みに対して、1%以上とすることが好ましく、5%以上とすることがさらに好ましい。なお、第1層および第2層の厚みの測定および決定については、後述する実施例第1.(4)項に記載のとおりである。
 〔第3層〕
 本発明の積層電解質膜は、第2層の第1層が積層された面とは反対側の面に積層されたフッ素系高分子電解質を主たる成分とする層(第3層)を有することができる。
 また、第3層は炭化水素系高分子電解質を含まない。なおここで、主たる成分とするとは第3層の単位体積中に含まれる全成分中の60質量%以上がフッ素系高分子電解質であることを意味し、好ましくは70質量%以上、より好ましくは80質量%以上である、特に好ましくは実質的にフッ素系高分子電解質によって構成されていることである。なおここで、「実質的に」とは微量、具体的には1質量%未満、のその他の成分(但し、炭化水素系高分子電解質を除く)の含有を許容することを意味し、典型的な場合ではその他の成分を含ませていないことを意味する。
 本発明は、炭化水素系高分子電解質からなる第1層を主たる電解質層とした場合には、いっそう高い水素バリア性、機械強度を実現する。そのため、第3層の厚みとしては、第1層の厚みに対して、40%以下とすることが好ましく、30%以下とすることがより好ましく、20%以下とすることがさらに好ましい。下限としては、第1層の厚みに対して、0.1%以上とすることが好ましい。
 〔積層電解質膜の製造方法〕
 本発明の積層電解質膜は、以下に示す工程で製造することができる。
 まず、第1工程として、炭化水素系高分子電解質を主たる成分とする第1層を形成する。
 第1層の形成方法の一例として、炭化水素系高分子電解質に含まれるイオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成している状態で層を形成する工程と、イオン性基と塩を形成しているアルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程とを、この順に行うことにより第1層を形成できる。以下、この形成方法についてさらに詳細に説明する。なお、イオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成している状態にある高分子電解質を、本明細書においては以下「塩型の高分子電解質」と表記する。
 第1層の形成方法においては、塩型の高分子電解質による層を形成した後に、イオン性基と塩を形成しているアルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程を有する。この陽イオンをプロトンと交換する工程は、塩型の高分子電解質を酸性水溶液と接触させる工程であることが好ましい。また、当該接触は、第1層を酸性水溶液に浸漬する工程であることがより好ましい。この工程においては、酸性水溶液中のプロトンがイオン性基とイオン結合している陽イオンと置換されるとともに、残留している水溶性の不純物や、残存モノマー、溶媒、残存塩などが同時に除去される。用いる酸性水溶液は特に限定されないが、硫酸、塩酸、硝酸、酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、クエン酸などのプロトン酸を用いることが好ましい。酸性水溶液の温度や濃度等も適宜決定すべきであるが、生産性の観点から0℃以上80℃以下の温度で、3質量%以上、30質量%以下の硫酸水溶液を使用することが好ましい。
 第1層を形成する際に使用する溶媒は、ポリマー種によって適宜選択することができる。溶媒としては、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ-ブチロラクトン、酢酸エチル、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられる。また、これらの溶媒を二種以上の混合した混合溶媒を用いてもよい。
 また、粘度調整のため、メタノール、エタノール、1‐プロパノール、イソプロピルアルコールなどのアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル系溶媒、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、パークロロエチレン、クロロベンゼン、ジクロロベンゼン、ヘキサフルオロイソプロピルアルコールなどのハロゲン化炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ化炭化水素系溶媒、水などの各種低沸点溶剤を溶媒に混合することもできる。
 また、第2層の形成方法の一例としては、形成した第1層上にフッ素系高分子電解質とポリフッ化ビニリデンを主たる成分とする電解質層を形成する方法が挙げられる。乾燥後も積層電解質膜内に製膜溶媒が残存する場合は純水により水洗することが好ましい。
 第2層を形成する際に使用する溶媒としては、第1層と第2層の界面近傍に混合領域を形成し、接着性を向上させる観点から、第1層成分と親和性の高い溶媒が好ましい。そのため、非プロトン性極性溶媒を用いることが好ましく、第1層製膜時に使用した溶媒を用いることがさらに好ましい。
 本発明の積層電解質膜の第1層と第2層間の剥離力は、0.3N以上であることが好ましく、更に好ましくは、1.0N以上であり、特に好ましくは2.0N以上である。上限としては特に制限は無いが、10.0N以下であることが一般的である。剥離力が大きいほど、第1層と第2層の剥離が抑制され、装置運転中の性能低下を防止することができる。
 〔混合領域〕
 本発明の積層電解質膜は、前記第1層と前記第2層は両層を構成する成分が入り交じった領域(混合領域)を介して積層されている。
 混合領域とは、図1に示すように、第1層を構成する成分のみで形成される層と、第2層を構成する成分のみで形成される層に挟まれ、後述する実施例第1.(4)項に記載の方法で観測される厚み方向の長さ(便宜的に、「厚み」ともいう)が0.1μm以上の領域をいい、当該領域では炭化水素系高分子電解質と、ポリフッ化ビニリデンおよびフッ素系高分子電解質から選ばれる少なくとも一種が観測される。混合領域は厚いほど第1層と第2層間の接着力が向上するので、その厚みとしては、0.2μm以上であることが好ましく、0.5μm以上がより好ましく、1.0μm以上であることがさらに好ましい。一方で混合領域が厚くなり過ぎて、炭化水素系高分子電解質が積層電解質膜の表層に露出してしまうと、電解質膜として用いた場合には、電極と接触した炭化水素系高分子電解質が酸化劣化する可能性がある。そのため、混合領域の厚みは炭化水素系高分子電解質が表層に露出しないような程度の厚み、第1層と第2層の合計厚みの80%以下の厚みであることが好ましい。
 使用する高分子電解質溶液の濃度は、3~40質量%が好ましく、5~30質量%がより好ましい。溶液粘度が低すぎると溶液の滞留性が悪く、液流れが生じてしまう。一方、溶液粘度が高すぎる場合には電解質膜の表面平滑性が悪化する場合がある。
 第1層、第2層を形成時に使用する高分子電解質溶液を流延塗布する方法としては、ナイフコート、ダイレクトロールコート、マイヤーバーコート、グラビアコート、リバースコート、エアナイフコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、スクリーン印刷、インクジェットコートなどの手法が適用できる。
 溶媒の乾燥は、乾燥の方法は基材の加熱、熱風、赤外線ヒーター等の公知の方法が選択できる。乾燥温度は、高分子電解質の分解を考慮して200℃以下が好ましく、130℃以下がより好ましい。
 積層電解質膜中には、機械的強度の向上およびイオン性基の熱安定性向上、耐水性向上、耐溶剤性向上、耐ラジカル性向上、塗液の塗工性の向上、保存安定性向上などの目的のために、架橋剤や通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、離型剤、酸化防止剤、ラジカル補足剤、無機微粒子などの添加剤を、本発明の目的に反しない範囲で添加することができる。
 本発明の積層電解質膜は、種々の用途に適用可能である。例えば、人工皮膚などの医療用途、ろ過用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、脱酸素膜、太陽電池用膜、ガスバリアー膜に適用可能である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、固体高分子形燃料電池、レドックスフロー電池、電気化学式水素ポンプ、水素精製装置、水電解装置、クロロアルカリ電解装置が挙げられるが、特に水電解装置に好ましく利用できる。
 <触媒層付き電解質膜、膜電極複合体および電気化学式水素ポンプ、水電解式水素発生装置>
 水電解装置に使用されるセルは、本発明の複合電解質膜の両面に触媒層、電極基材及びセパレータが順次積層された構造である。このうち、積層電解質膜の両面に触媒層を積層させたもの(即ち、触媒層/電解質膜/触媒層の層構成のもの)は触媒層付電解質膜(CCM)と称され、電解質膜の両面に触媒層及びガス拡散基材を順次積層させたもの(即ち、ガス拡散基材/触媒層/電解質膜/触媒層/ガス拡散基材の層構成のもの)は、膜電極複合体(MEA)と称されている。
 CCMの製造方法としては、電解質膜表面に、触媒層を形成するための触媒層ペースト組成物を塗布及び乾燥させるという塗布方式や触媒層のみを基材上に作製し、この触媒層を転写することにより、触媒層を電解質膜上に積層させる方法(転写法)が一般的に行われる。
 ここで、触媒層は陽極側の触媒層を陽極触媒層といい、陰極側の触媒層を陰極触媒層という。本発明にあっては、第1層と陽極触媒層間に第2層を配することが望ましい。このような配置とすることで、第1層と陽極触媒層の直接的接触が防止され、それによって、第1層を構成する成分の酸化劣化を抑制し、燃料電池や水電解式水素発生装置などの装置に用いた際の性能の低下を防ぐことができる。
 プレスにより、MEAを作製する場合は、公知の方法(例えば、電気化学,1985, 53, p.269.記載の化学メッキ法、電気化学協会編(J. Electrochem. Soc.)、エレクトロケミカル サイエンス アンド テクノロジー (Electrochemical Science and Technology),1988, 135, 9, p.2209.記載のガス拡散電極の熱プレス接合法など)を適用することが可能である。プレス時の温度や圧力は、電解質膜の厚さ、水分率、触媒層や電極基材により適宜選択すればよい。また、本発明では電解質膜が乾燥した状態または吸水した状態でもプレスによる複合化が可能である。具体的なプレス方法としては圧力やクリアランスを規定したロールプレスや、圧力を規定した平板プレスなどが挙げられ、工業的生産性やイオン性基を有する高分子材料の熱分解抑制などの観点から0℃~250℃の範囲で行うことが好ましい。加圧は電解質膜や電極保護の観点から、電解質膜と触媒層の密着性が維持される範囲でできる限り弱い方が好ましく、平板プレスの場合、10MPa以下の圧力が好ましく、プレス工程による複合化を実施せずに電極と電解質膜を重ね合わせ、水電解装置用にセル化することもアノード、カソード電極の短絡防止の観点から好ましい選択肢の一つである。この方法の場合、水電解装置として運転を繰り返した場合、短絡箇所が原因と推測される電解質膜の劣化が抑制される傾向があり、水電解装置としての耐久性が良好となる。また、プレス条件の制御においては、加圧後に温度を上昇させ、所定の圧力、温度に保持したのち、圧力を保持したまま温度を降下させ、その後圧力を開放することが、皺や剥離のない均一な触媒層付電解質膜が得られる点において好ましい。加圧しながら温度を上昇させたり、温度を降下させる前に圧力を開放したりすると、電解質膜と触媒層の界面が固定されていない状態で3次元の熱収縮が起こり皺や密着不良による剥離が発生する場合がある。
 水電解式水素発生装置の給電体に要求される物性としては、気液流路機能、良導電性、耐酸性、耐酸化性、耐水素脆弱性、耐熱性、加工性などがあり、このような物性を有するものであればどのような材料でも用いることができる。例えば、導電性物質を主たる構成材とする多孔質導電シートなどが挙げられ、この導電性物質としては、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛および膨張黒鉛などの炭素材、ステンレススチール、モリブデン、チタン、ニッケル、ジルコニウム、ニオブ、タンタルなどが例示される。
 陽極給電体は水電解時の陽極での高い電位により酸化されない、無機導電性物質が好まれ、ステンレススチール、モリブデン、チタン、ニッケル、ジルコニウム、ニオブ、タンタルなどが好まれ、特にはチタンが好まれる。導電性物質の形態は繊維状または粒子状など特に限定されないが、繊維状導電性無機物質(無機導電性繊維)が好ましい。無機導電性繊維を用いた多孔質導電シートとしては、織布または不織布いずれの構造も使用可能である。織布としては、平織、斜文織、朱子織、紋織、綴織など特に限定されること無く用いられる。また、不織布としては、抄紙法、ニードルパンチ法、スパンボンド法、ウォータージェットパンチ法、メルトブロー法などの方法で製造されたものが特に限定されること無く用いられる。また無機導電性繊維を用いた多孔質導電シートはエキスパンドメタルやパンチングメタルや編物であってもよい。
 多孔質導電シートには、導電性向上のために補助剤としてカーボンブラックなどの導電性粒子や、炭素繊維などの導電性繊維を添加することも好ましい。また、多孔質導電シートは、安定性向上のために表面を白金でメッキ処理することも好ましい。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの例示に限定して解釈されるものではない。
 1.評価方法
 各物性の測定条件は次の通りである。
 (1)ポリマーの分子量
 ポリマー溶液の数平均分子量及び重量平均分子量をゲル・パーミエーション・クロマトグラフィ(GPC)により測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC-8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM-H(内径6.0mm、長さ15cm)2本を用い、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、流量0.2mL/分で測定し、標準ポリスチレン換算により数平均分子量及び重量平均分子量を求めた。
 (2)イオン交換容量(IEC)
 中和滴定法により測定した。測定は3回実施し、その算術平均値を取った。
1.プロトン置換し、純水で十分に洗浄した測定試料の表面の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
2.電解質に5質量%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
3.0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v% を加え、薄い赤紫色になった点を終点とした。
4.IECは下記式により求めた。
IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)。
 (3)電解質膜の膜厚
 ミツトヨ社製グラナイトコンパレータスタンドBSG-20にセットしたミツトヨ社製ID-C112型を用いて測定した。
 膜厚は電解質膜を10cm各にカットし、MD方向で端から5cm、TD方向で端から1cm、3cm、5cm、7cm、9cmの箇所と、TD方向で端から5cm、MD方向で端から1cm、3cm、5cm、7cm、9cmの箇所をそれぞれで測定し、それら9点の平均値を求める。その平均値を電解質膜の膜厚と定義する。
 (4)走査透過型電子顕微鏡(STEM)による混合領域の確認、その厚みの測定及び第1層、第2層および第3層の厚みの決定
 染色剤である2質量%酢酸鉛水溶液中に電解質膜の試料片を浸漬し、25℃下で48時間静置して染色処理を行った。染色処理された試料を取りだし、エポキシ樹脂に包埋した。ウルトラミクロトームを用いて室温下で薄片100nmを切削し、以下の条件に従って観察を実施した。
 A.電解質膜薄片に切り出された断面について、一方の表面(便宜上「表面a」という)側から他方の表面側に向かって、すなわち厚み方向に、EDX定量線分析を実施する。測定装置および測定条件は次のとおりである。
 装置:原子分解能分析電子顕微鏡(STEM)
   JEM-ARM200F Dual-X(JEOL製)
   EDX検出器 JED2300(JEOL製)
 加速電圧:200kV  。
 B.フッ素原子濃度に着眼し、上記A項の測定において、表面aからの距離をX軸に、フッ素原子濃度をY軸にとって、フッ素原子濃度の厚み方向に対しての強度分布を求める。
 これを10試料について行い、求めた10個の強度分布曲線から、Y軸をフッ素原子濃度の平均値としてフッ素原子濃度を平均化した強度分布曲線を求める(図1に例を示す)。なお、何れの試料も同一の表面の側から測定を行うことはいうまでもない。また、図1において、Y軸は矢印の方向に向かって大きな値であることを示す。
 C.上記B項で求めたフッ素原子濃度を平均化した強度分布曲線において、第1層が対応する部分においてはフッ素原子濃度の最小値、第2層または第3層が対応する部分においてはフッ素濃度の最大値を以て当該層のフッ素原子濃度とする。なお、対応部分は積層順およびSEM写真像から理解することが可能である。
 D.前記C項で求めた第1層のフッ素原子濃度をC1、第2層のフッ素原子濃度をC2としたとき、C1が求まるX軸上の位置とC2が求まるX軸上の位置との間にあって、かつ、(C1+C2)/2のフッ素原子濃度を示すX軸上の位置を以て、第1層と第2層との境界面とみなす。なお、(C1+C2)/2のフッ素原子濃度を示すX軸上の位置が複数存在する場合には、そのフッ素原子濃度に対応するX軸座標値の算術平均で求まる位置を第1層と第2層の境界面とみなす。
 なお、第3層が存在する場合は、同様にして第1層若しくは第2層と第3層との境界面とみなされる面が求められる。
 E.C1とC2の差分、すなわち|C1-C2|、をDとしたとき、C1が求まるX軸上の位置とC2が求まるX軸上の位置との間にあって、かつ、(C1+C2)/2+0.3×D、(C1+C2)/2-0.3×Dのフッ素濃度を示すX軸上の位置の間の領域を混合領域とし、また、(C1+C2)/2±0.3×Dに対応する厚みを混合領域の厚みとする。なお、(C1+C2)/2+0.3×D、または、(C1+C2)/2-0.3×Dのフッ素濃度を示すX軸上の位置が複数存在する場合には、そのフッ素原子濃度に対応するX軸座標値の算術平均で求まる位置を、(C1+C2)/2+0.3×D、または、(C1+C2)/2-0.3×Dに対応する位置とする。
 F.第1層、第2層および第3層の厚みは、前記で求めた各層の境界面とみなされる面の位置と表面aからの距離に基づいて求められる。
 (5)接着性試験
 電解質膜を80℃の純水に24時間浸漬し、第1層と第2層の剥離の有無を観察する。剥離が認められなかった場合は、表中「接着」と表し、剥離が認められた場合は「剥離」として表した。
 (6)剥離試験
1.評価する電解質膜または触媒層付き電解質膜、市販品であるNR212(Nafion 50μm)それぞれを5cm×12cmにカットしたものを準備する。
2.触媒層付き電解質膜の場合にはアルコール等の電解質膜を溶解しない溶媒により触媒層をふき取る。
3.評価する電解質膜上の長辺のうち、上3cmの部分にテフロンシートを乗せ(3cm×5cm)、その上に評価する電解質膜と位置が合うようにNR212を重ねる。
4.上記3.で重ねた電解質膜を重ね合わせて、150℃、4.5MPaで10分間加熱プレスを行う。
5.上記4.で作製したサンプルを1cm×12cmの短冊状にカットし、剥離試験片を準備する。
6.引張試験機の上下それぞれのチャックで、評価する電解質膜とNR212を掴み、上側チャックをストロークさせた際の応力を測定する。
7.ストローク距離が5cmから8cmの間の応力の平均を剥離力として算出した。
測定装置: オートグラフAG-IS(島津製作所製)
ストローク速度:10mm/分
試験片:幅1cm×長さ12cm
サンプル間距離:2cm
試験温度:23℃、純水中
試験数:n=5。
 (7)触媒層付電解質膜(CCM)の作製
 田中貴金属工業株式会社製白金触媒TEC10E50Eとデュポン(DuPont)社製ナフィオン(登録商標)”(”Nafion(登録商標)”)を2:1の重量比となるように調整した触媒インクを市販のテフロンフィルムに白金量が0.3mg/cmとなるように塗布し、陰極触媒層転写フィルムA100を作製した。
 ユミコア社製イリジウム酸化物触媒とデュポン(DuPont)社製ナフィオン(登録商標)”(”Nafion(登録商標)”)を2:1の重量比となるように調整した触媒インクを市販のテフロンフィルムにイリジウム量が2.5mg/cmとなるように塗布し、陽極触媒層転写フィルムA200を作製した。この陽極触媒層転写フィルムA200と前記陰極触媒層転写フィルムA100をそれぞれ5cm角にカットしたものを1対準備し、評価する高分子電解質膜を挟むように対向して重ね合わせる。高分子電解質膜として積層電解質膜を使用する場合には、第1層側の面に陰極触媒層転写フィルムA100、第2層側または第3層側の面に陽極触媒層転写フィルムA200を配置する。その後、加圧した状態から昇温させて、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、A200をアノード、A100をカソードとする水電解装置用触媒層付電解質膜を得た。
 (8)膜電極接合体(MEA)の作製
 市販の多孔質チタン焼結体プレート2枚で前記水電解装置用触媒層付電解質膜を挟み、水電解装置用膜電極接合体を得た。
 (9)水電解性能試験
 前記水電解装置用膜電極接合体を英和(株)製 JARI標準セル“Ex-1”(電極面積25cm)にセットし、セル温度80℃とし、一方の電極(酸素発生極:アノード)に伝導度1μScm-1以下の純水を大気圧で0.2L/分の流速で供給した。
もう一方の電極(水素発生極:カソード)は、背圧弁にて圧力を制御可能な構造とし、評価前は大気圧となるように100%RHの窒素ガスでパージした。
ソーラトロン社製Multistat1480およびPower booster Model PBi500L-5Uを用いて負荷電流50A(電流密度2A/cm)で出力した。大気圧で電流を10時間保持した後、その際のセル電圧を測定した。セル電圧が低い程、水電解効率が優れている。
 (10)水電解耐久試験
 (9)の試験の後に、さらに大気圧で負荷電流50A(電流密度2A/cm)を200時間保持し、その後のセル電圧を測定した。表1には本耐久試験後の電圧の上昇量を示した。(9)試験からの電圧上昇分が小さいほど耐久性が優れている。
 2.合成例
[合成例1] ブロックコポリマーb1の合成
 (下記一般式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
Figure JPOXMLDOC01-appb-C000001
 攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4′-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mLで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、濾過し、乾燥して2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。
 (下記一般式(G2)で表されるジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
Figure JPOXMLDOC01-appb-C000002
 4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、上記一般式(G2)で示されるジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。
 (下記一般式(G3)で表されるイオン性基を含有しないオリゴマーa1’の合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、K-DHBP25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中にて160℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のメタノールで再沈殿することで精製を行い、イオン性基を含有しないオリゴマーa1(末端ヒドロキシル基)を得た。数平均分子量は10000であった。
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、イオン性基を含有しない前記オリゴマーa1(末端ヒドロキシル基)を20.0g(2mmol)を入れ、窒素置換後、NMP100mL、シクロヘキサン30mL中にて100℃で脱水後、昇温してシクロヘキサン除去し、デカフルオロビフェニル4.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G3)で示されるイオン性基を含有しないオリゴマーa1’(末端フルオロ基)を得た。数平均分子量は11000であり、イオン性基を含有しないオリゴマーa1’の数平均分子量は、リンカー部位(分子量630)を差し引いた値10400と求められた。
Figure JPOXMLDOC01-appb-C000003
(ここで、mは正の整数である。)
 (下記一般式(G4)で表されるイオン性基を含有するオリゴマーa2の合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、K-DHBP12.9g(50mmol)および4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、ジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン39.3g(93mmol)、および18-クラウン-6、17.9g(和光純薬82mmol)を入れ、窒素置換後、NMP300mL、トルエン100mL中にて170℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G4)で示されるイオン性基を含有するオリゴマーa2(末端ヒドロキシル基)を得た。数平均分子量は16000であった。
Figure JPOXMLDOC01-appb-C000004
(式(G4)において、Mは、ナトリウムまたはカリウムを表す。nは正の整数である。)。
 (イオン性基を含有するセグメント(A1)としてオリゴマーa2、イオン性基を含有しないセグメント(A2)としてオリゴマーa1、リンカー部位としてオクタフルオロビフェニレンを含有するブロックポリマーb1の合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)、イオン性基を含有するオリゴマーa2(末端ヒドロキシル基)16g(1mmol)を入れ、窒素置換後、NMP100mL、シクロヘキサン30mL中にて100℃で脱水後、昇温してシクロヘキサン除去し、イオン性基を含有しないオリゴマーa1’(末端フルオロ基)11g(1mmol)を入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、ブロックコポリマーb1を得た。重量平均分子量は34万であった。
 ブロックコポリマーb1そのものを高分子電解質膜とし、10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄したときの、中和滴定から求めたイオン交換容量は2.12meq/gであった。
 [合成例2] ブロックコポリマーb2の合成
 (下記式(G6)で表されるセグメントと下記式(G7)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロックコポリマー前駆体b2’の合成)
 無水塩化ニッケル1.78gとジメチルスルホキシド15mLとを混合し、70℃に調整した。これに、2,2’-ビピリジル2.37gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
 ここに、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)1.64gと下記式(G5)で示される、ポリエーテルスルホン(住友化学社製スミカエクセルPES5200P、Mn=40,000、Mw=94,000)0.55gとを、ジメチルスルホキシド5mLに溶解させて得られた溶液に、亜鉛粉末1.35gを加え、70℃に調整した。これに前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、6mol/L塩酸60mLを加え1時間攪拌した。析出した固体を濾過により分離し、乾燥し、灰白色の下記式(G6)と下記式(G7)で表されるセグメントを含むブロックコポリマー前駆体b2’(ポリアリーレン前駆体)1.75gを収率97%で得た。重量平均分子量は21万であった。
Figure JPOXMLDOC01-appb-C000005
(ここで、nは、式(G5),式(G7)で独立に、正の整数である。)
 (前記式(G7)で表されるセグメントと下記式(G8)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロックコポリマーb2の合成)
 ブロックコポリマー前駆体b2’0.25gを、臭化リチウム1水和物0.18gとN-メチル-2-ピロリドン8mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸80mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥し、灰白色の式(G7)で示されるセグメントと下記式(G8)で表されるセグメントからなるブロックコポリマーb2を得た。得られたポリアリーレンの重量平均分子量は19万であった。
 ブロックコポリマーb2そのものを高分子電解質膜とし、10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換した後に、大過剰量の純水に24時間浸漬して充分洗浄したときの、中和滴定から求めたイオン交換容量は2.02meq/gであった。
Figure JPOXMLDOC01-appb-C000006
 [合成例3] ブロックコポリマーb3の合成
 (下記式(G9)で表される疎水性オリゴマーa3の合成)
Figure JPOXMLDOC01-appb-C000007
(ここで、kは正の整数である。)
 撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル51.9g(0.30mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン92.8g(0.27mol)、炭酸カリウム49.7g(0.36mol)を秤量した。
 窒素置換後、スルホラン363mL、トルエン181mLを加えて攪拌した。フラスコをオイルバスにつけ、150℃に加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次に、2,6-ジクロロベンゾニトリル12.9g(0.076mol)を加え、さらに5時間反応した。
 得られた反応液を放冷後、トルエン100mLを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2Lのメタノール中に投入した。沈殿した生成物を濾別、回収し乾燥後、テトラヒドロフラン250mLに溶解した。これをメタノール2Lに再沈殿し、目的のオリゴマー109gを得た。当該オリゴマーの数平均分子量は8,000であった。
 (下記式(G10)で表される親水性モノマーの合成)
Figure JPOXMLDOC01-appb-C000008
 攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸245g(2.1mol)を加え、続いて2,5-ジクロロベンゾフェノン105g(420mmol)を加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷1000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)41.1g(462mmol)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、粗結晶を得た。これをメタノールで再結晶し、前記構造式で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの白色結晶を得た。
 (下記式(G11)で表されるポリアリーレン系ブロックコポリマーb3の合成)
Figure JPOXMLDOC01-appb-C000009
(ここで、k,m,nは各々独立に正の整数である。)
 撹拌機、温度計、窒素導入管を接続した1Lの3口フラスコに、乾燥したN,N-ジメチルアセトアミド(DMAc)166mLを、前述の疎水性オリゴマーa3を15.1g(1.89mmol)、3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル39.5g(98.4mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.75g(4.2mmol)、トリフェニルホスフィン11.0g(42.1mmol)、ヨウ化ナトリウム0.47g(3.15mmol)、亜鉛16.5g(253mmol)の混合物中に窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には82℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc180mLで希釈し、30分撹拌し、セライトを濾過助剤に用い濾過した。撹拌機を取り付けた1Lの3つ口で、この濾液に臭化リチウム25.6g(295ミリモル)を1/3ずつ3回に分け1時間間隔で加え、120℃で5時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4Lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N硫酸1500mLで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄後、80℃で一晩乾燥し、目的のブロックコポリマーb3を得た。このブロックコポリマーの重量平均分子量は20万であった。
 ブロックコポリマーb3そのものを高分子電解質膜とし、10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換した後に、大過剰量の純水に24時間浸漬して充分洗浄したときの、中和滴定から求めたイオン交換容量は2.38meq/gであった。
 [合成例4] ランダムコポリマーr1の合成
 (式(G1)で表されるモノマーと4,4’-ジフルオロベンゾフェノンと式(G2)で表されるモノマーからなるポリケタールケトンランダムコポリマーr1の合成)
 かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム13.82g(アルドリッチ試薬、100mmol)、前記合成例1の中間生成物として得たK-DHBP20.66g(80mmol)、4,4’-ジフルオロベンゾフェノン10.5g(アルドリッチ試薬、48mmol)、および前記合成例1の中間生成物として得たジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン13.5g(32mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、トルエン50mL中180℃で脱水後、昇温してトルエン除去、230℃で6時間重合を行った。多量の水で再沈殿することで精製を行い、ポリケタールケトンランダム共重合体を得た。重量平均分子量は25万であった。
 ランダムコポリマーr1そのものを高分子電解質膜とし、10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄したときの、中和滴定から求めたイオン交換容量は1.51meq/gであった。
 [実施例1]
 合成例1にて得た20gのブロックコポリマーb1を80gのNMPに溶解、拌機で20,000rpm、1時間撹拌しポリマー濃度20質量%の透明な高分子電解質溶液b1を調製した。
 得られた高分子電解質溶液b1を、ガラス繊維フィルターを用いて加圧ろ過後、アプリケーターを用い、高分子電解質溶液b1をポリエチレンテレフタレート(PET)基板上に流延塗布し、100℃にて4時間乾燥し、フィルム状の重合体を得た。10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、室温乾燥することで、第1層(膜厚50μm)を得た。
 得られた第1層の片面に、フッ素系高分子電解質としてNafion(市販のChemours社製D2020溶液をNMP置換して使用)とポリフッ化ビニリデンとして市販のクレハ製W#9300(重量平均分子量>100万)をNMPに溶解した高分子電解質溶液A(固形分比率:フッ素系高分子電解質/ポリフッ化ビニリデン=60質量%/40質量%、固形分濃度10質量%)をバーコーターにて塗布、120℃にて2時間乾燥することで層を形成し、大過剰量の純水に24時間浸漬して充分洗浄し、室温乾燥することで第2層を作製し、積層電解質膜(膜厚55μm)を得た。得られた積層電解質膜の混合領域の厚みは1.8μmであった。
 [実施例2]
 高分子電解質溶液Aに白金微粒子(平均粒径5nm)を0.1質量%添加した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例3]
 実施例1で得た積層電解質膜の第1層が設けられていない側の第2層の面上に白金微粒子(平均粒径5nm)を0.2質量%含有するNafionの20質量%溶液(市販のChemours社製D2020溶液)をバーコーターにて塗布、100℃にて1時間乾燥することで第3層を作製し、積層電解質膜(膜厚65μm)を得た。
 [実施例4]
 ポリフッ化ビニリデンとして市販のクレハ製W#9300の代わりに市販のクレハ製W#7200(重量平均分子量=63万)を使用した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例5]
 ポリフッ化ビニリデンとして市販のクレハ製W#9300の代わりに市販のクレハ製W#1100(重量平均分子量=28万)を使用した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例6]
 高分子電解質溶液Aの固形分比率を、フッ素系高分子電解質/ポリフッ化ビニリデン=90質量%/10質量%とする以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例7]
 高分子電解質溶液Aの固形分比率を、フッ素系高分子電解質/ポリフッ化ビニリデン=20質量%/80質量%とする以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例8]
 第2層厚みを30μmとする以外は、実施例1と同様にして積層電解質膜(膜厚80μm)を得た。
 [実施例9]
 第2層厚みを0.5μmとする以外は、実施例1と同様にして積層電解質膜(膜厚50.5μm)を得た。
 [実施例10]
 第1層厚みを10μm、第2層厚みを1μmとする以外は、実施例1と同様にして積層電解質膜(膜厚11μm)を得た。
 [実施例11]
 ブロックコポリマーb1の代わりに合成例2で得たブロックコポリマーb2を使用した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例12]
 ブロックコポリマーb1の代わりに合成例3で得たブロックコポリマーb3を使用した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例13]
 ブロックコポリマーb1の代わりに合成例4で得たランダムコポリマーr1を使用した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例14]
 高分子電解質溶液Aの固形分比率を、フッ素系高分子電解質/ポリフッ化ビニリデン=95質量%/5質量%とする以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例15]
 高分子電解質溶液Aの固形分比率を、フッ素系高分子電解質/ポリフッ化ビニリデン=5質量%/95質量%とする以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [実施例16]
 ポリフッ化ビニリデンとして市販のクレハ製W#9300の代わりに市販のクレハ製W#7300(重量平均分子量>100万)を使用した以外は、実施例1と同様にして積層電解質膜(膜厚55μm)を得た。
 [比較例1]
 実施例1の前段の記載と同様の方法で、第1層単層の電解質膜(膜厚50μm)を得た。初期性能は比較的良好であるが、耐久性に劣るので、長期間に使用するほど不利なものであった。
 [比較例2]
 高分子電解質溶液Aの代わりにNafionのNMP20質量%溶液(市販のChemours社製D2020溶液をNMP置換して使用)を使用した以外は実施例1と同様にして積層電解質膜(55μm)を得た。乾燥後の積層電解質膜では第1層と第2層の剥離が生じた。
 [比較例3]
 高分子電解質溶液Aの代わりに、Nafion溶液である市販のChemours社製D2020溶液と、ポリフッ化ビニリデン溶液である市販のアルケマ社製KYNAR LATEX RC-10,278と、水とイソプロピルアルコール(IPA)が質量比で1対1である溶媒を、質量比が2.3対1対4.3となるように混合することで作製した高分子電解質溶液Bを使用した以外は実施例1と同様にして積層電解質膜(55μm)を得た。
 本実施例で作製した積層電解質膜は混合領域を形成しなかった。
 [比較例4]
 Nafion溶液である市販のChemours社製D2020溶液をPET基板上に流延塗布し、100℃にて1時間乾燥することで、第1層(膜厚50μm)を得た。
 得られた第1層の片面に、ブロックコポリマーb1とポリフッ化ビニリデンとして市販のクレハ製W#9300をNMPに溶解した高分子電解質溶液B(固形分比率:ブロックコポリマーb1/ポリフッ化ビニリデン=60質量%/40質量%、固形分濃度10質量%)をバーコーターにて塗布、120℃にて2時間乾燥することで層を形成した。10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、室温乾燥することで第2層を作製し、積層電解質膜(膜厚55μm)を得た。乾燥後の積層電解質膜では第1層と第2層の剥離が生じた。
 [比較例5]
 比較例4の前段の記載と同様の方法で、nafionの膜(膜厚50μm)を得た。 各実施例、比較例で用いた高分子電解質膜の構成および物性、水素圧縮評価、水電解評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 表中の第1層の「高分子電解質」において、b1はブロックコポリマーb1、b2はブロックコポリマーb2、b3はブロックコポリマーb3、r1はランダムコポリマーr1を表す。
 
 本出願は、2019年3月28日出願の日本国特許出願第2019-063208号に基づく優先権を主張するものであり、当該日本国特許出願の願書に添付された特許請求の範囲および明細書に記載された全ての内容を援用することができる。
 1:第1層
 2:第2層
 3:混合領域

Claims (17)

  1.  炭化水素系高分子電解質を主たる成分とする第1層の少なくとも片面に、フッ素系高分子電解質およびポリフッ化ビニリデンを主たる成分とする第2層が積層された積層電解質膜であって、前記第1層と前記第2層は両層を構成する成分が入り交じった領域(係る領域を以下、混合領域という)を介して積層されている積層電解質膜。
  2.  前記第2層の前記第1層とは反対側の面にフッ素系高分子電解質を主たる成分とする第3層が積層されてなる、請求項1に記載の積層電解質膜。
  3.  前記第1層、第2層および第3層の少なくとも1つの層が白金を含む、請求項1または2に記載の積層電解質膜。
  4.  前記混合領域の厚みが0.2μm以上である、請求項1~3のいずれかに記載の積層電解質膜。
  5.  前記第2層に含まれるポリフッ化ビニリデン量の含有量がフッ素系高分子電解質とポリフッ化ビニリデンの合計質量を100質量%としたとき20~90質量%である、請求項1~4のいずれかに記載の積層電解質膜。
  6.  前記ポリフッ化ビニリデンの重量平均分子量が30万以上である、請求項1~5のいずれかに記載の積層電解質膜。
  7.  前記第2層の厚みが前記第1層の厚みの40%以下の厚みである、請求項1~6のいずれかに記載の積層電解質膜。
  8.  第1層と第2層の剥離力が0.3N以上である、請求項1~7のいずれかに記載の積層電解質膜。
  9.  前記炭化水素系高分子電解質が、イオン性基を有するポリエーテルケトン系ポリマーを主成分とする、請求項1~8のいずれかに記載の積層電解質膜。
  10.  請求項1~9のいずれかに記載の積層電解質膜の片面に陽極触媒層、その反対側の面に陰極触媒層を有する触媒層付き積層電解質膜。
  11.  前記第1層と陽極触媒層の間に第2層が積層されてなる、請求項10に記載の触媒層付き積層電解質膜。
  12.  請求項10または11に記載の触媒層付き積層電解質膜の陽極触媒層上に陽極給電体が積層され、かつ、陰極触媒層上に陰極給電体が積層されてなる膜電極複合体。
  13.  前記陽極給電体が無機導電性物質からなる請求項12に記載の膜電極複合体。
  14.  請求項1~9のいずれかに記載の積層電解質膜を用いて構成されてなる水電解式水素発生装置。
  15.  請求項10または11に記載の触媒層付き積層電解質膜を用いて構成されてなる水電解式水素発生装置。
  16.  請求項12または13に記載の膜電極複合体を用いて構成されてなる水電解式水素発生装置。
  17.  下記の工程a)およびb)を含む積層電解質膜の製造方法。
    a)炭化水素系高分子電解質からなる第1層を形成する工程
    b)第1層上にフッ素系高分子電解質およびポリフッ化ビニリデンが非プロトン性極性溶媒に溶解された溶液Aを塗布することで第2層を形成する工程
PCT/JP2020/012332 2019-03-28 2020-03-19 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法 WO2020196278A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20779463.7A EP3951017A1 (en) 2019-03-28 2020-03-19 Multilayer electrolyte membrane, membrane electrode assembly, water electrolysis-type hydrogen generator and method for producing multilayer electrolyte membrane
KR1020217029559A KR102562959B1 (ko) 2019-03-28 2020-03-19 적층 전해질막, 막전극 복합체 및 수전해식 수소 발생 장치, 그리고 적층 전해질막의 제조 방법
CN202080015697.3A CN113454270A (zh) 2019-03-28 2020-03-19 层叠电解质膜、膜电极复合体、水电解式氢产生装置、以及层叠电解质膜的制造方法
JP2020521620A JP7359139B2 (ja) 2019-03-28 2020-03-19 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
US17/441,057 US11973252B2 (en) 2019-03-28 2020-03-19 Multilayer electrolyte membrane, membrane electrode assembly, water electrolysis-type hydrogen generator and method of producing multilayer electrolyte membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063208 2019-03-28
JP2019-063208 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196278A1 true WO2020196278A1 (ja) 2020-10-01

Family

ID=72611951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012332 WO2020196278A1 (ja) 2019-03-28 2020-03-19 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法

Country Status (7)

Country Link
US (1) US11973252B2 (ja)
EP (1) EP3951017A1 (ja)
JP (1) JP7359139B2 (ja)
KR (1) KR102562959B1 (ja)
CN (1) CN113454270A (ja)
TW (1) TW202104670A (ja)
WO (1) WO2020196278A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244660A1 (ja) * 2021-05-17 2022-11-24 東レ株式会社 電解質膜積層体、触媒層付電解質膜、膜電極接合体、水電解式水素発生装置および触媒層付電解質膜の製造方法
WO2023277068A1 (ja) * 2021-06-29 2023-01-05 Agc株式会社 固体高分子型水電解用膜電極接合体および水電解装置
WO2023181989A1 (ja) * 2022-03-23 2023-09-28 東レ株式会社 水電解方法、水電解セルおよび水電解装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024505118A (ja) * 2021-02-02 2024-02-02 プラグ パワー インコーポレイテッド プロトン交換膜水電解槽膜電極接合体
CN114606532A (zh) * 2022-03-18 2022-06-10 中国科学院长春应用化学研究所 一种固体电解质水电解膜电极及其制备方法
CN114540854A (zh) * 2022-03-18 2022-05-27 中国科学院长春应用化学研究所 一种spewe膜电极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512884A (ja) 2004-09-06 2008-04-24 フリースケール セミコンダクター インコーポレイテッド 無線通信装置及びデータ・インターフェース
JP2013062240A (ja) * 2011-08-22 2013-04-04 Toray Ind Inc 複合化高分子電解質膜
JP2013077554A (ja) * 2011-09-13 2013-04-25 Toray Ind Inc 積層高分子電解質膜およびその製造方法
JP2016216826A (ja) 2015-05-20 2016-12-22 東レ株式会社 高分子電解質膜およびその製造方法
KR20180029382A (ko) * 2016-09-12 2018-03-21 한국화학연구원 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
JP2019063208A (ja) 2017-09-29 2019-04-25 株式会社バンダイナムコエンターテインメント プログラム、コンピュータシステム、サーバシステム及びゲームシステム
JP2020023748A (ja) * 2018-07-31 2020-02-13 東レ株式会社 白金担持高分子電解質膜の製造方法および白金担持高分子電解質膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084097B2 (ja) * 2004-12-01 2012-11-28 株式会社リコー 電解質膜の製造方法
JP5013501B2 (ja) * 2006-02-10 2012-08-29 三菱重工業株式会社 固体高分子電解質膜電極接合体及びこれを利用する固体高分子電解質形燃料電池
JP6685961B2 (ja) * 2017-03-23 2020-04-22 株式会社東芝 水電解用の積層電解質膜、膜電極複合体、水電解用セル、スタックおよび水電解装置
US20200102660A1 (en) * 2017-04-03 2020-04-02 3M Innovative Properties Company Water electrolyzers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512884A (ja) 2004-09-06 2008-04-24 フリースケール セミコンダクター インコーポレイテッド 無線通信装置及びデータ・インターフェース
JP2013062240A (ja) * 2011-08-22 2013-04-04 Toray Ind Inc 複合化高分子電解質膜
JP2013077554A (ja) * 2011-09-13 2013-04-25 Toray Ind Inc 積層高分子電解質膜およびその製造方法
JP2016216826A (ja) 2015-05-20 2016-12-22 東レ株式会社 高分子電解質膜およびその製造方法
KR20180029382A (ko) * 2016-09-12 2018-03-21 한국화학연구원 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
JP2019063208A (ja) 2017-09-29 2019-04-25 株式会社バンダイナムコエンターテインメント プログラム、コンピュータシステム、サーバシステム及びゲームシステム
JP2020023748A (ja) * 2018-07-31 2020-02-13 東レ株式会社 白金担持高分子電解質膜の製造方法および白金担持高分子電解質膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, vol. 135, no. 9, 1988, pages 2209
THE JOURNAL OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, vol. 53, 1985, pages 269

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244660A1 (ja) * 2021-05-17 2022-11-24 東レ株式会社 電解質膜積層体、触媒層付電解質膜、膜電極接合体、水電解式水素発生装置および触媒層付電解質膜の製造方法
WO2023277068A1 (ja) * 2021-06-29 2023-01-05 Agc株式会社 固体高分子型水電解用膜電極接合体および水電解装置
WO2023181989A1 (ja) * 2022-03-23 2023-09-28 東レ株式会社 水電解方法、水電解セルおよび水電解装置
WO2023181990A1 (ja) * 2022-03-23 2023-09-28 東レ株式会社 電解質膜、触媒層付電解質膜、膜電極接合体、および水電解装置

Also Published As

Publication number Publication date
JPWO2020196278A1 (ja) 2020-10-01
EP3951017A1 (en) 2022-02-09
JP7359139B2 (ja) 2023-10-11
US11973252B2 (en) 2024-04-30
KR20210142623A (ko) 2021-11-25
CN113454270A (zh) 2021-09-28
KR102562959B1 (ko) 2023-08-04
US20220216494A1 (en) 2022-07-07
TW202104670A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
WO2020196278A1 (ja) 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
EP2922132B1 (en) Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
WO2011046233A1 (ja) 高分子電解質膜、膜-電極接合体、及び固体高分子形燃料電池
US10483577B2 (en) Composite polymer electrolyte membrane, and catalyst-coated membrane, membrane electrode assembly, and polymer electrolyte fuel cell using the composite polymer electrolyte membrane
CN111886734B (zh) 电解质膜
JP2021153048A (ja) レドックスフロー電池用電解質膜およびレドックスフロー電池
JP2015176648A (ja) 樹脂付電極層、樹脂付電極複合体及びレドックスフロー二次電池
JP2009242688A (ja) 高分子電解質膜
JP5552785B2 (ja) 固体高分子電解質膜およびその製造方法、液状組成物
JP2021051995A (ja) 複合高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP2021052001A (ja) 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
JP2008311146A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子型燃料電池
JP2013045502A (ja) 複合化高分子電解質膜
WO2021192949A1 (ja) 電解質膜およびそれを用いたレドックスフロー電池
WO2023181990A1 (ja) 電解質膜、触媒層付電解質膜、膜電極接合体、および水電解装置
WO2024004856A1 (ja) 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法
WO2024004857A1 (ja) 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法
JP2024072400A (ja) 触媒層付電解質膜、膜電極接合体および水電解装置
JP2021153047A (ja) レドックスフロー電池用電解質膜、およびレドックスフロー電池
JP2022187105A (ja) 触媒層付き電解質膜の製造方法
WO2022244660A1 (ja) 電解質膜積層体、触媒層付電解質膜、膜電極接合体、水電解式水素発生装置および触媒層付電解質膜の製造方法
JP2021051996A (ja) 積層高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
WO2011125735A1 (ja) 固体高分子電解質複合膜およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020521620

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779463

Country of ref document: EP

Effective date: 20211028