WO2024004857A1 - 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法 - Google Patents

電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法 Download PDF

Info

Publication number
WO2024004857A1
WO2024004857A1 PCT/JP2023/023321 JP2023023321W WO2024004857A1 WO 2024004857 A1 WO2024004857 A1 WO 2024004857A1 JP 2023023321 W JP2023023321 W JP 2023023321W WO 2024004857 A1 WO2024004857 A1 WO 2024004857A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrolyte membrane
catalyst layer
catalyst
particle concentration
Prior art date
Application number
PCT/JP2023/023321
Other languages
English (en)
French (fr)
Inventor
孝哉 伊神
健太 南林
友之 國田
一直 松井
大輔 出原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024004857A1 publication Critical patent/WO2024004857A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte membrane, an electrolyte membrane with a catalyst layer, a transfer sheet used for producing the same, a membrane electrode assembly, a water electrolysis device, and a method for manufacturing the electrolyte membrane with a catalyst layer.
  • hydrogen energy has been attracting attention as a next-generation means of energy storage and transportation.
  • hydrogen can be converted into electricity with theoretically higher energy efficiency than power generation using heat engines, and has relatively low emissions of harmful substances, making it a highly efficient and clean energy source. It can be a source of energy.
  • One of the hydrogen production methods is water electrolysis.
  • water electrolysis By electrolyzing water using surplus electricity from renewable energy, it is possible to convert electricity into hydrogen energy without emitting carbon dioxide.
  • hydrogen can be transported by tanker or tanker, and can be supplied when and where it is needed, so water electrolysis has great potential as a tool for power storage.
  • Hydrogen production methods using water electrolysis include alkaline water electrolysis and solid polymer electrolyte membrane (PEM) type water electrolysis.
  • PEM water electrolysis has the advantage of being able to operate at high current density and being able to flexibly respond to fluctuations in the output of renewable energy.
  • a PEM type water electrolysis device is usually configured as a unit of a cell in which a membrane electrode assembly (MEA) is sandwiched between separators.
  • MEA is composed of a catalyst coated membrane (CCM) in which catalyst layers are formed on both sides of a polymer electrolyte membrane, one of which is an anode catalyst layer and the other is a cathode catalyst layer.
  • CCM catalyst coated membrane
  • Water is supplied to the anode catalyst layer of the PEM water electrolysis cell to which a current is applied, and protons are generated by an electrochemical reaction. Subsequently, protons diffuse in the polymer electrolyte membrane from the anode electrode layer side to the cathode electrode layer side, and hydrogen is produced from the protons by an electrochemical reaction in the cathode layer.
  • an object of the present invention is to provide an electrolyte membrane that has good bonding properties with a catalyst layer.
  • the electrolyte membrane of the present invention has the following configuration. That is, an electrolyte membrane comprising a (A) layer containing a polymer electrolyte and a (B) layer on at least one surface of the (A) layer, wherein the (A) layer of the (B) layer
  • the particle concentration (Y1) defined below in the interface region with the (B) layer is higher than the particle concentration (Y2) defined below in the interface region of the (B) layer on the opposite side from the (A) layer. It is a high electrolyte membrane.
  • the particle concentration (Y1) and the particle concentration (Y2) are the ratios of the mass of particles present in the interface region to the total mass of solids present in the interface region.
  • the particle concentration (Y1) is the ratio of the mass of particles present in the interface region between the layer (B) and the layer (A) to the total solid mass present in the interface region
  • the particle concentration ( Y2) is the ratio of the mass of particles present in the interface region of the layer (B) opposite to the layer (A) to the total mass of solids present in the interface region.
  • FIG. 1 is a schematic cross-sectional view of an electrolyte membrane according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an electrolyte membrane with a catalyst layer using the electrolyte membrane according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electrolyte membrane according to Embodiment 2 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electrolyte membrane with a catalyst layer using an electrolyte membrane according to Embodiment 2 of the present invention.
  • An electrolyte membrane according to an embodiment of the present invention is an electrolyte membrane comprising a (A) layer containing a polymer electrolyte and a (B) layer on at least one surface of this (A) layer, It is important that the particle concentration (Y1) in the interface region of layer B) with layer (A) is higher than the particle concentration (Y2) in the interface region of layer (B) on the opposite side from layer (A). .
  • the particle concentration (Y1) and the particle concentration (Y2) are the ratios of the mass of particles present in the interface region to the total mass of solids present in the interface region.
  • particle concentrations (Y1) and (Y2) are calculated as the ratio of the mass of all particles present in the interfacial region to the total mass of solids present in the interfacial region. do.
  • the interfacial region refers to a region in the (B) layer from each interface between the (B) layer and another adjacent layer that has a thickness of 10% of the total thickness of the (B) layer.
  • the relative relationship (size relationship) between particle concentration (Y1) and particle concentration (Y2) can be determined by observing the cross section of the electrolyte membrane with a scanning transmission electron microscope (STEM) or a scanning electron microscope (SEM). Alternatively, it can be determined by a combination of cross-sectional observation using STEM or SEM and elemental analysis (elemental analysis using energy dispersive X-ray spectroscopy (EDX) or electron beam microanalyzer (EMPA)).
  • the particles are carbon black and the polymer is perfluorocarbon sulfone.
  • the particles are carbon black and the polymer is perfluorocarbon sulfone.
  • an acid polymer "C” is selected as the particle element, and an element other than "C”, such as "F” or "S”, is selected as the polymer element for elemental analysis.
  • the ratio of C and F or S C/F or C/S
  • the relative relationship between Y1 and Y2 and the ratio of Y1 and Y2 (Y2/ Y1) can be obtained. Details are described in Examples.
  • FIG. 1 is a schematic cross-sectional view showing an example of an electrolyte membrane according to Embodiment 1 of the present invention.
  • the electrolyte membrane 1 has a structure in which the (B) layer 20 is laminated on one surface of the (A) layer 10.
  • the (B) layer 20 has an interface region 21 on the (A) layer side and an interface region 22 on the opposite side to the (A) layer.
  • (B) Layer 20 contains particles (not shown), and the particle concentration in interface region 21 is particle concentration (Y1), and the particle concentration in interface region 22 is particle concentration (Y2).
  • FIG. 2 is a schematic cross-sectional view showing an example of an electrolyte membrane with a catalyst layer, in which catalyst layers are laminated on both sides of the electrolyte membrane of Embodiment 1, respectively.
  • an electrolyte membrane with a catalyst layer Catalyst Coated Membrane
  • CCM Catalyst Coated Membrane
  • the CCM 100 has a structure in which catalyst layers 30 and 40 are laminated on both sides of an electrolyte membrane 1, respectively.
  • the catalyst layers 30 and 40 are an anode catalyst layer and a cathode catalyst layer, respectively, in random order.
  • the particle concentration (Y1) in the interface region 21 of the (B) layer 20 with the (A) layer 10 is on the opposite side of the (A) layer 10 of the (B) layer 20. It is characterized by being higher than the particle concentration (Y2) in the interface region 22 of . This improves the bondability between the electrolyte membrane 1 and the catalyst layer 30. Although this mechanism is not clear, it is assumed as follows.
  • the particle concentration on the outermost surface of the layer affects the surface roughness (unevenness); a high particle concentration will increase the surface roughness (unevenness), and a low particle concentration will decrease the surface roughness (unevenness) (smoothness). tend to be higher). It is thought that the unevenness formed on the outermost surface of the layer functions as an anchor at the bonding interface with other layers.
  • the layer (A) 10 containing the polymer electrolyte has a relatively smooth surface, and the catalyst layers 30 and 40 have uneven surfaces because they contain catalyst particles. Therefore, the interface region 21 (particle concentration (Y1)) with a relatively high particle concentration of the (B) layer 20 is placed opposite to the (A) layer 10 side having a smooth surface, and the interface region 21 (particle concentration (Y1)) having a relatively high particle concentration of the (B) layer 20 is placed opposite to the catalyst layer 30 side having an uneven surface.
  • (B) By arranging the interface regions 22 (particle concentration (Y2)) in which the particle concentration of the layer 20 is relatively low to face each other, an anchor effect is expressed at both interfaces. In this way, it is thought that the bondability between the (A) layer 10 and the (B) layer 20 and the bondability between the (B) layer 20 and the catalyst layer 30 are improved.
  • the present invention is particularly effective when the polymer electrolyte contained in the (A) layer 10 and the polymer electrolyte contained in the catalyst layer 30 are different from each other.
  • the polymer electrolytes are different from each other, for example, when one is a hydrocarbon-based polymer electrolyte and the other is a fluorine-based polymer electrolyte.
  • layer 10 contains a hydrocarbon polymer electrolyte and catalyst layer 30 contains a fluoropolymer electrolyte (Form 1)
  • (A) layer 10 contains a fluoropolymer electrolyte.
  • the catalyst layer 30 may include a hydrocarbon polymer electrolyte (form 2). Form 1 is preferred from the viewpoint of water electrolysis performance.
  • the (B) layer 20 preferably contains the same type of polymer as the catalyst layer 30.
  • the polymers are of the same type, it means that the main skeletons of the polymers are of the same type, such as fluorine-based polymers or hydrocarbon-based polymers, regardless of whether they are ionic or nonionic.
  • an ionic fluoropolymer (fluoropolymer electrolyte) and a nonionic fluoropolymer are the same type of polymer, and similarly an ionic hydrocarbon polymer (hydrocarbon polymer electrolyte) and a nonionic fluoropolymer are the same type of polymer.
  • the ionic hydrocarbon polymer is the same type of polymer.
  • the (B) layer 20 more preferably contains the same type of polymer electrolyte as the polymer electrolyte contained in the catalyst layer 30. (B) Details of the polymer contained in layer 20 will be described later.
  • a particularly preferable combination of the materials contained in the (A) layer, the catalyst layer, and the (B) layer is such that the (A) layer contains a hydrocarbon polymer electrolyte, the catalyst layer contains a fluoropolymer electrolyte, and ( B) A structure in which the layer contains a fluorine-based polymer is mentioned.
  • the ratio (Y2/Y1) between the particle concentration (Y1) and the particle concentration (Y2) is preferably 0.95 or less, and 0.75 or less. More preferably, it is particularly preferably 0.60 or less.
  • the lower limit of the ratio (Y2/Y1) is 0.00.
  • the particle concentration (Y1) is preferably 45% by mass or more, more preferably 50% by mass or more, 55 It is particularly preferable that the amount is at least % by mass.
  • the particle concentration (Y1) is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 75% by mass or less. , 70% by mass or less is particularly preferred.
  • the particle concentration (Y2) is preferably less than 45% by mass within a range that satisfies (Y2)>(Y1) from the viewpoint of improving the bonding property between the (B) layer 20 and the catalyst layer 30, and is preferably less than 40% by mass. It is more preferably less than 35% by mass, particularly preferably less than 35% by mass. The lower limit is 0%.
  • the particle concentration (Y1) is 45% by mass or more, and the particle concentration (Y2 ) is preferably less than 45% by mass.
  • the particle concentration (Y2) depends on the mass ratio (C/I) of the content (C) of catalyst particles (including catalyst-supported particles) and the content (I) of the polymer electrolyte contained in the catalyst layer 30. It is preferable to adjust it accordingly. Generally, the surface roughness (unevenness) of a catalyst layer with a high C/I tends to increase, and the surface roughness (unevenness) of a catalyst layer with a low C/I tends to decrease. In order to improve the anchoring effect at the joint surface, it is preferable that the particle concentration (Y2) is lower in the case of a catalyst layer with a relatively high C/I, and the lower the particle concentration (Y2) is in the case of a catalyst layer with a relatively low C/I.
  • the particle concentration (Y2) is preferably higher.
  • the particle concentration (Y2) is more preferably less than 45% by mass, even more preferably less than 38%, and particularly preferably less than 35%.
  • the particle concentration (Y2) may be less than 45% by mass.
  • the (B) layer 20 When the (B) layer 20 is arranged only on one side of the (A) layer 10, it may be arranged only on the anode catalyst layer side or only on the cathode catalyst layer side.
  • the electrolyte membrane according to Embodiment 1 is applied to a water electrolysis device, by arranging the (B) layer 20 on the anode catalyst layer side (the catalyst layer 30 is used as the anode catalyst layer), bondability can be improved and Therefore, the effect of suppressing electrochemical oxidative deterioration of the layer (A) can be expected.
  • the (B) layer 20 on the cathode catalyst layer side (the catalyst layer 30 is used as the cathode catalyst layer), in addition to improving bonding properties, peroxide radicals by-produced at the cathode can be It can be expected to have the effect of protecting the layer.
  • the anode In a water electrolysis device, the anode is in a high potential environment, and in order to suppress electrochemical oxidative deterioration of the (A) layer 10, the (B) layer on the anode catalyst layer side preferably has a barrier function.
  • the particle concentration (Y2) of the layer (B) 20 on the anode catalyst layer side is relatively low.
  • the particle concentration (Y2) is preferably less than 45% by mass, more preferably less than 38% by mass, even more preferably less than 35% by mass, and most preferably 0% by mass.
  • the (B) layer on the cathode catalyst layer side has a catalyst layer 30 from the viewpoint of suppressing interfacial peeling between the catalyst layer and the (B) layer due to hydrogen generated at the cathode (ensuring an escape route for hydrogen).
  • the particle concentration (Y2) of layer (B) 20 on the cathode catalyst layer side is relatively high.
  • the particle concentration (Y2) is more preferably 30% by mass or more, and even more preferably 35% by mass or more.
  • the upper limit of the particle concentration (Y2) is preferably less than 45% by mass.
  • the content ratio of catalyst particles to polymer electrolyte in the anode catalyst layer is set to be relatively large, it is difficult to obtain bondability between the anode catalyst layer and the (A) layer. Therefore, it is more beneficial to arrange the layer (B) on the anode catalyst layer side from the viewpoint of improving bondability. Therefore, it is more preferable that the catalyst layer 30 is an anode catalyst layer.
  • the content ratio of catalyst particles to the polymer electrolyte in the cathode catalyst layer is generally set to be relatively small, so the strength level of bonding between the cathode catalyst layer and the (A) layer is , will not be as low as on the anode side. Therefore, the bondability can also be improved by arranging a single layer having a particle concentration of 30% by mass or more and 80% by mass or less on the cathode catalyst layer side instead of the layer (B).
  • the electrolyte membrane 1 in the first embodiment has a structure in which the (B) layer, the (A) layer, and the (C) layer (not shown) are laminated in this order.
  • the catalyst layer 30 is an anode catalyst layer
  • the catalyst layer 40 is a cathode catalyst layer
  • the particle concentration of this (C) layer is more preferably 40% by mass or more and 75% by mass or less, particularly preferably 45% by mass or more and 70% by mass or less.
  • the particles contained in the layer (C) are preferably carbon particles.
  • the carbon particles contained in the layer (C) can be expected to have the effect of decomposing or capturing peroxide radicals by-produced at the cathode. This can be expected to have the effect of protecting the (A) layer from peroxide radicals.
  • FIG. 3 is a schematic cross-sectional view showing an example of an electrolyte membrane according to Embodiment 2 of the present invention.
  • the electrolyte membrane 2 has a structure in which a (B) layer 20a is laminated on one side of the (A) layer 10, and another (B) layer 20b is laminated on the opposite side. be.
  • the (B) layer 20a has an interface region 21a on the (A) layer 10 side and an interface region 22a on the opposite side to the (A) layer 10.
  • the (B) layer 20b has an interface region 21b on the (A) layer 10 side and an interface region 22b on the opposite side to the (A) layer 10.
  • the layers 20a and 20b contain particles (not shown), and the particle concentration in the interface regions 21a and 21b is a particle concentration (Y1), and the particle concentration in the interface regions 22a and 22b is a particle concentration (Y2).
  • FIG. 4 is a schematic cross-sectional view showing an example of a catalyst layered electrolyte membrane (CCM) in which catalyst layers are laminated on both sides of the electrolyte membrane of Embodiment 2, respectively.
  • CCM catalyst layered electrolyte membrane
  • the CCM 200 has a structure in which an anode catalyst layer 50 is laminated on the (B) layer 20a side of the electrolyte membrane 2, and a cathode catalyst layer 60 is laminated on the (B) layer 20b side.
  • the relationship (Y1)>(Y2) is preferably satisfied at least in the (B) layer 20a on the anode catalyst layer 50 side, and the (B) layer 20a on the anode catalyst layer 50 side , and (B) layer 20b on the cathode catalyst layer 60 side. That is, it is preferable that (Y1-a)>(Y2-a), and more preferably that (Y1-a)>(Y2-a) and (Y1-b)>(Y2-b).
  • the particle concentration (Y2-a) in the (B) layer 20a on the anode catalyst layer 50 side is preferably smaller than the particle concentration (Y2-b) in the (B) layer 20b on the cathode catalyst layer 60 side. Further, the particle concentration (Y2-a) in the (B) layer 20a adjacent to the anode catalyst layer 50 is less than 35%, and the particle concentration (Y2-b) in the (B) layer 20b adjacent to the cathode catalyst layer 60 is less than 35%. Particularly preferred is less than 45%.
  • (A) Layer contains a polymer electrolyte.
  • the polymer electrolyte include fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes. From the viewpoint of water electrolysis performance, hydrocarbon polymer electrolytes are preferred.
  • the fluoropolymer electrolyte is a fluoropolymer having an ionic group.
  • a fluorine-based polymer means a polymer in which most or all of the hydrogen atoms in an alkyl group and/or an alkylene group have been replaced with fluorine atoms.
  • Representative examples of fluoropolymer electrolytes include commercial products such as Nafion (registered trademark) (manufactured by DuPont), Flemion (registered trademark) (manufactured by Asahi Glass Co., Ltd.), and Aciplex (registered trademark) (manufactured by Asahi Kasei Corporation). be able to.
  • a hydrocarbon polymer electrolyte is a hydrocarbon polymer having an ionic group.
  • the hydrocarbon polymer an aromatic hydrocarbon polymer having an aromatic ring in the main chain is preferable.
  • the aromatic ring may include not only a hydrocarbon aromatic ring but also a hetero ring.
  • some aliphatic units may constitute the polymer together with the aromatic ring units.
  • aromatic hydrocarbon polymers include polysulfone, polyether sulfone, polyphenylene oxide, polyarylene ether polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyarylene ketone, and polyether ketone.
  • hydrocarbon skeleton may have multiple structures among these structures.
  • the most preferred aromatic hydrocarbon polymer is a polymer having a polyetherketone skeleton, that is, a polyetherketone polymer.
  • a block copolymer having at least one segment (A1) containing an ionic group and one or more segments (A2) not containing an ionic group is preferable.
  • segment refers to a partial structure in a copolymer chain consisting of repeating units exhibiting specific properties, and has a molecular weight of 2000 or more.
  • segment (A1) or polymer containing an ionic group may be referred to as an "ionic block", and the segment (A2) or polymer not containing an ionic group may be referred to as a "nonionic block".
  • ionic block the segment (A1) or polymer containing an ionic group
  • nonionic block the segment (A2) or polymer not containing an ionic group
  • the statement "contains no ionic group” does not exclude embodiments in which the segment or polymer contains a small amount of ionic group to the extent that the effects of the present invention are not impaired.
  • the ionic group that the polymer electrolyte has may be any ionic group that has proton exchange ability.
  • a functional group a functional group selected from a sulfonic acid group, a sulfonimide group, a sulfuric acid group, a phosphonic acid group, a phosphoric acid group, and a carboxylic acid group is preferably used. Two or more types of ionic groups can be included in the polymer.
  • the polymer has at least one selected from a sulfonic acid group, a sulfonimide group, and a sulfuric acid group, and from the viewpoint of raw material cost, it is most preferable that the polymer has a sulfonic acid group.
  • the ion exchange capacity (IEC) of the polymer electrolyte is preferably 0.1 meq/g or more and 5.0 meq/g or less in view of the balance between proton conductivity and water resistance.
  • IEC is more preferably 1.4 meq/g or more, and even more preferably 2.0 meq/g or more.
  • IEC is more preferably 3.5 meq/g or less, and even more preferably 3.0 meq/g or less. If IEC is less than 0.1 meq/g, proton conductivity may be insufficient, and if it is greater than 5.0 meq/g, water resistance may be insufficient.
  • IEC is the molar amount of ionic groups introduced per unit dry weight of the polymer electrolyte, and the larger the value, the greater the amount of ionic groups introduced.
  • IEC is defined as a value determined by neutralization titration method. Calculation of IEC by neutralization titration is performed by the method described in Example section (2).
  • an aromatic hydrocarbon block copolymer as the hydrocarbon polymer electrolyte, and more preferably a polyetherketone block copolymer.
  • a polyetherketone block copolymer containing a segment containing a structural unit (S1) containing an ionic group and a segment containing a structural unit (S2) not containing an ionic group as described below is particularly preferably used. be able to.
  • Ar 1 to Ar 4 represent any divalent arylene group, Ar 1 and/or Ar 2 contain an ionic group, and Ar 3 and Ar 4 contain an ionic group. However, it does not need to be included. Ar 1 to Ar 4 may be optionally substituted, and two or more types of arylene groups may be used independently of each other. * represents a bonding site with general formula (S1) or another structural unit.
  • Ar 5 to Ar 8 represent any divalent arylene group and may be optionally substituted, but do not contain an ionic group. Two or more types of arylene groups may be used independently of each other for Ar 5 to Ar 8 .
  • * represents a bonding site with general formula (S2) or another structural unit.
  • preferred divalent arylene groups as Ar 1 to Ar 8 include hydrocarbon arylene groups such as a phenylene group, naphthylene group, biphenylene group, and fluorenediyl group, and heteroarylene groups such as pyridinediyl, quinoxalinediyl, and thiophenediyl. Examples include, but are not limited to, groups.
  • the "phenylene group” can be of three types, o-phenylene group, m-phenylene group, and p-phenylene group, depending on the location where the benzene ring and the other structural unit are bonded, but in this specification, Unless otherwise specified, these terms are used collectively.
  • Ar 1 to Ar 8 are preferably phenylene groups containing a phenylene group and an ionic group, most preferably p-phenylene groups containing a p-phenylene group and an ionic group. Further, Ar 5 to Ar 8 may be substituted with a group other than an ionic group, but unsubstituted is more preferable in terms of proton conductivity, chemical stability, and physical durability.
  • the polymer electrolyte is preferably an aromatic hydrocarbon polymer having crystallinity.
  • “having crystallinity” means that the material has a crystallizable property that can be crystallized when the temperature is increased, or that it has already been crystallized.
  • the presence or absence of crystallizable properties that can be crystallized when the temperature is increased can be confirmed by checking that the crystallization heat amount measured by differential scanning calorimetry (DSC) after film formation is 0.1 J/g or more.
  • the crystallization heat amount measured by differential scanning calorimetry (DSC) after film formation is 0.1 J/g or more.
  • the heat of crystallization measured by differential scanning calorimetry (DSC) after film formation is 0.1 J/g or more, or the degree of crystallinity measured by wide-angle X-ray diffraction is It is preferably 0.5% or more.
  • Aromatic hydrocarbon polymers with crystallinity may have poor processability into electrolyte membranes.
  • a protecting group may be introduced into the aromatic hydrocarbon polymer to temporarily suppress crystallinity.
  • a crystalline aromatic hydrocarbon polymer can be used as a polymer electrolyte in the present invention by forming a film with a protective group introduced therein and then deprotecting it.
  • the layer (A) preferably contains a hydrocarbon-based polymer electrolyte as the polymer electrolyte, from the viewpoint of improving water electrolysis performance.
  • the content of the hydrocarbon polymer electrolyte in the (A) layer is preferably 60% by mass or more, and preferably 80% by mass or more, based on the total mass of the polymer electrolyte in the (A) layer.
  • the content is more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • (A) Layer may be reinforced with a porous base material.
  • a porous base material examples include woven fabric, nonwoven fabric, porous film, mesh fabric, and the like.
  • known materials such as hydrocarbon-based porous base materials and fluorine-based porous base materials can be used.
  • Layer (A) may contain various additives, such as surfactants, radical scavengers, hydrogen peroxide decomposers, non-electrolyte polymers, elastomers, fillers, etc., as long as they do not impede the effects of the present invention.
  • additives such as surfactants, radical scavengers, hydrogen peroxide decomposers, non-electrolyte polymers, elastomers, fillers, etc.
  • the thickness of layer (A) is preferably relatively large, specifically preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, and particularly preferably 70 ⁇ m or more. Further, the thickness is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 175 ⁇ m or less.
  • the (B) layer has a function of increasing the bonding property between the (A) layer and the catalyst layer, that is, a function as a bonding layer.
  • the (B) layer has an interface region with the (A) layer and an interface region on the opposite side to the (A) layer, and the particle concentrations in these two interface regions are different.
  • Such layer (B) may be composed of a single layer, or may have a laminated structure of two or more layers.
  • the electrolyte membrane according to the embodiment of the present invention can improve bonding between the polymer electrolyte membrane and the catalyst layer.
  • this bonding property is improved, when the electrolyte membrane is applied to a water electrolysis device, peeling of the electrolyte membrane and the catalyst layer or a decrease in adhesion during operation of the electrolyte membrane is suppressed.
  • a decrease in proton conductivity of the water electrolysis device is suppressed. Therefore, the durability of the water electrolysis device is improved, such as by being able to maintain the operating voltage of the water electrolysis device without increasing it for a long period of time.
  • the layer (B) further contains a polymer.
  • the polymer in the layer (B) By containing the polymer in the layer (B), film formability and film strength can be improved.
  • the (B) layer is a single layer, for example, in the process of applying and drying one coating liquid containing particles and a polymer on the (A) layer that is horizontally placed or horizontally transported, the (A) layer By performing an operation to increase the particle density on the side, the particle concentration (Y1) can be made higher than the particle concentration (Y2).
  • the above operations include, for example, using particles whose specific gravity is sufficiently larger than that of the polymer, making the viscosity of the coating liquid relatively low, and slowing down the drying rate so that the particles tend to settle, or Examples include a method of phase-separating the two.
  • the above method for phase separation is, for example, by using particles and a polymer whose surface tension is sufficiently lower than that of the particles and which is incompatible with the particles, and by using a solvent that is relatively compatible with the particles.
  • Examples include a method of making it easier for the polymer to be unevenly distributed at the air interface during phase separation.
  • the layer (B) has a laminated structure.
  • the particle concentration (Y1) and the particle concentration (Y2) can be easily controlled. For example, by applying a plurality of types of coating liquids having different particle concentrations on the layer (A), the layer (B) having a laminated structure having different particle densities depending on the layer is formed. Details of the manufacturing method will be described later.
  • the (B) layer has a laminated structure consisting of n layers, they are called (B-1) layer, (B-2) layer, . . . (B-n) layer in order from the (A) layer side.
  • the layer (B) has a laminated structure, it is preferable that the layer (B-1) adjacent to the layer (A) has the highest particle concentration.
  • the layer (B) has a laminated structure
  • a two-layer structure and a three-layer structure are preferable, and a two-layer structure is more preferable.
  • the layer adjacent to the (A) layer is the (B-1) layer
  • the layer on the opposite side to the (A) layer is the (B-2) layer.
  • the (B-1) layer in the two-layer configuration is a layer that includes an interface region with the (A) layer. That is, the (B-1) layer is a layer that provides a particle concentration (Y1) in the interface region with the (A) layer.
  • Layer (B-2) is a layer that includes an interface region on the opposite side to layer (A). That is, the (B-2) layer is a layer that provides a particle concentration (Y2) in the interface region on the opposite side to the (A) layer.
  • the layer (B-2) in this case has a structure that does not contain particles. Therefore, when layer (B) has a two-layer structure, layer (B-2) includes a form that does not contain particles, but even in such a case, layer (B-1) does not contain particles. contains particles, so it corresponds to "(B) layer contains particles".
  • the particle concentration of the layer (B-1) is preferably 45% by mass or more, more preferably 50% by mass or more, and particularly preferably 55% by mass or more.
  • the particle concentration of the layer (B-2) is more preferably less than 45% by mass, even more preferably less than 38%, and particularly preferably less than 35%.
  • the (B-1) layer and the (B-2) layer can be formed, for example, by uniformly applying coating liquids each prepared to have the particle concentration as described above under general conditions.
  • the particle concentration (ratio of particle mass to total solid mass) in the coating liquid forming the (B-1) layer and (B-2) layer, respectively, is ) is the particle concentration in the layer. That is, by controlling the respective particle concentrations in the coating liquid, desired particle concentrations can be provided to the (B-1) and (B-2) layers.
  • the particle concentration (Y1) in the interface region with the (A) layer can be made higher than the particle concentration (Y2) in the interface region of the (B) layer on the opposite side to the (A) layer.
  • Examples of the particles contained in the layer (B) include inorganic particles, organic particles, and organic/inorganic composite particles.
  • inorganic particles include carbon particles, silica, titanium oxide, aluminum oxide, zirconium oxide, cerium oxide, calcium carbonate, zeolite, mica, sericite, sericite, kaolin clay, kaolin, mica, talc, and montmorillonite. It will be done.
  • carbon particles are preferred because they are relatively stable against acids and alkalis.
  • examples of carbon particles include particles such as carbon black, graphite, activated carbon, carbon nanotubes, carbon nanofibers, and fullerene.
  • organic particles include various resin particles.
  • the resin constituting the resin particles include polyethylene resin, polypropylene resin, polyvinyl acetate resin, poly(meth)acrylic resin, polyvinyl chloride resin, polystyrene resin, polycarbonate resin, Polyester resin, polyphenylene sulfide resin, polyamide resin, polyimide resin, polyurethane resin, ethylene-(meth)acrylate copolymer, ABS resin, fluorine resin, epoxy resin, phenol resin, melamine
  • thermoplastic resins and thermosetting resins such as guanamine resin, polyazole resin, polyether sulfone resin, and polyether ketone resin.
  • organic/inorganic composite particles include acrylic/silica composite particles, melamine/silica composite particles, benzoguanamine/silica composite particles, benzoguanamine/melamine/silica composite particles, polystyrene/silica composite particles, and silsesquioxane organic-inorganic hybrids. Examples include particles, organic substance-coated inorganic nanoparticles, and the like.
  • inorganic particles are preferred, carbon particles are more preferred, and carbon black is particularly preferred.
  • the average particle diameter of the particles is preferably 5 nm or more, more preferably 10 nm or more, particularly preferably 20 nm or more, from the viewpoints of void formation effective for bonding, dispersibility, and film formability. Further, the thickness is preferably 1,000 nm or less, more preferably 500 nm or less, and particularly preferably 200 nm or less.
  • the layer (B) contains a polymer
  • a nonionic polymer or an ionic polymer can be used as the polymer.
  • Each of these polymers may be used alone, or a plurality of polymers may be used in combination.
  • nonionic polymers include fluorine-based polymers and hydrocarbon-based polymers.
  • nonionic fluoropolymers include polytetrafluoroethylene, poly(vinylidene fluoride), a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and trifluoroethylene, and a copolymer of vinylidene fluoride and tetrafluoroethylene. Examples include copolymers with fluoroethylene and poly(vinylidene fluoride).
  • nonionic hydrocarbon polymers include polysulfone, polyether sulfone, polyphenylene oxide, polyarylene ether, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyarylene ketone, polyether ketone, and polyphenylene sulfone.
  • examples include arylene phosphine oxide, polyether phosphine oxide, polybenzoxazole, polybenzthiazole, polybenzimidazole, polyamide, polyimide, polyetherimide, polyimide sulfone, and polyvinyl alcohol.
  • ionic polymers include ionic fluorine-based polymers and ionic hydrocarbon-based polymers, and examples of these polymers include the polymers mentioned above as examples of the fluoropolymer electrolytes and hydrocarbon-based polymer electrolytes. It will be done.
  • nonionic or ionic fluorine-based polymers are preferred from the viewpoint of providing layer (B) with a barrier function in a high potential environment, and ionic hydrocarbons are preferred from the viewpoint of increasing proton conductivity. and ionic fluorine-based polymers are preferred. That is, when a polymer is contained in the (B) layer, an ionic fluorine-based polymer is most preferable from the above viewpoint.
  • the ionic fluoropolymer it is preferable to use the polymers listed as examples of the fluoropolymer electrolyte described above.
  • the particles and polymers contained in each layer may be of the same type or different types, but from the viewpoint of bondability within the layer (B), the particles and polymers contained in each layer are of the same type. It is preferable.
  • the (B) layer consists of two layers: a (B-1) layer that provides a particle concentration (Y1) and a (B-2) layer that provides a particle concentration (Y2), and the (B-1) layer and ( B-2)
  • both layers contain particles, that is, when the ratio (Y2/Y1) between particle concentration (Y1) and particle concentration (Y2) is larger than 0.00
  • layer (B-1) It is preferable that both layers (B-2) contain the same kind of particles. As such particles, carbon particles are preferable.
  • the layer (B) may contain various additives, such as surfactants, radical scavengers, hydrogen peroxide decomposers, non-electrolyte polymers, elastomers, etc., as long as they do not impede the effects of the present invention.
  • additives such as surfactants, radical scavengers, hydrogen peroxide decomposers, non-electrolyte polymers, elastomers, etc.
  • the thickness of the layer (B) is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, and particularly preferably 1 ⁇ m or more from the viewpoint of enhancing the bonding function. Further, from the viewpoint of ensuring good proton conductivity, the thickness is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the thickness of the (A) layer is 30 ⁇ m or more and 250 ⁇ m or less, and the thickness of the (B) layer is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of each layer constituting the (B) layer may be the same or different.
  • the thickness of the (B-1) layer is preferably in the range of 0.25 ⁇ m to 10 ⁇ m, more preferably in the range of 0.4 ⁇ m to 7.5 ⁇ m, and more preferably in the range of 0.5 ⁇ m to A range of 5 ⁇ m is particularly preferred.
  • the thickness of the layer (B-2) is preferably in the range of 0.25 ⁇ m to 10 ⁇ m, more preferably in the range of 0.4 ⁇ m to 7.5 ⁇ m, and particularly preferably in the range of 0.5 ⁇ m to 5 ⁇ m.
  • the thickness of the (B-1) layer and the (B-2) layer is preferably at least 10% of the total thickness of the (B) layer.
  • the thickness of the layer can be measured by a contact film thickness measurement method or by SEM observation described in Examples.
  • the layer (A) can be formed by, for example, a coating method or a melt extrusion method. Among these, the coating method is preferred. The coating method will be described below as an example, but the present invention is not limited thereto.
  • Layer (A) can be manufactured, for example, by applying a polymer electrolyte solution onto a film-forming base material such as a polyethylene terephthalate (PET) film and drying it.
  • a film-forming base material such as a polyethylene terephthalate (PET) film
  • the layer (A) may be a so-called "composite membrane” reinforced with a porous base material.
  • This composite membrane preferably has a polymer electrolyte layer on one or both sides of a porous base material impregnated with a polymer electrolyte.
  • a porous base material is laminated onto a polymer electrolyte solution coated on a membrane forming base material and impregnated with the polymer electrolyte solution.
  • An example is a method of applying and drying.
  • the polymer electrolyte one in which the ionic group forms a salt with an alkali metal or alkaline earth metal cation can also be used.
  • acid treatment it is preferable to perform acid treatment to exchange the cations of the alkali metal or alkaline earth metal with protons.
  • a known method can be used for the acid treatment.
  • the electrolyte membrane according to the embodiment of the present invention is manufactured by laminating the (B) layer on the (A) layer manufactured as described above.
  • the lamination method is not particularly limited, but a coating method, a transfer method, and a combination of these methods can be employed.
  • the coating method is a method in which a coating liquid for layer (B) is applied to layer (A) formed on a film-forming base material, and then dried and laminated.
  • the transfer method heat-presses a transfer sheet in which the (B) layer is laminated on the transfer base material and the (A) layer formed on the film forming base material, and then the (B) layer is layered on the (A) layer. This is a method of transferring.
  • a method can be adopted in which a plurality of coating liquids having different particle concentrations are sequentially applied to the (A) layer formed on the film-forming base material.
  • a method can be adopted in which a coating liquid for the (B-1) layer with a high particle concentration is applied, and a coating liquid for the (B-2) layer with a low particle concentration is applied undried or after drying, and then dried.
  • two coating liquids having different particle concentrations are prepared, and the two coating liquids are simultaneously applied onto layer (A) using a multilayer die or a multilayer slide coater and dried.
  • the transfer method includes a (B) layer transfer sheet in which layers (B-2) and (B-1) are sequentially laminated on a transfer base material, and (A) layer transfer sheet formed on a film forming base material.
  • a method can be adopted in which the layers (B-1) and (B-2) are transferred onto the layer (A) by hot pressing the layers.
  • the coating method is more preferable because it has high bonding properties with the layer (A) and can suppress interfacial resistance.
  • the coating method is not particularly limited as long as it can be applied to the desired shape, and for example, a die coating method, a screen printing method, a spray method, a gravure coating method, a slide coating method, etc. can be used.
  • the above-mentioned coating method, transfer method, or combination method of the coating method and the transfer method can be adopted.
  • the (B) layer laminated on one side of the (A) layer is called the first (B) layer
  • the (B) layer laminated on the other side of the (A) layer is called the first (B) layer. It is called the 2(B) layer.
  • An example of a manufacturing method includes a step (1-3) of applying a layer coating liquid, drying, and laminating.
  • a step of laminating a protective base material on the first (B) layer can be provided between the above steps (1-1) and (1-3).
  • the protective base material the same material as the film-forming base material or the transfer base material, or a resin film laminated with a slightly adhesive layer can be used.
  • a first (B layer) transfer sheet in which a first (B) layer is laminated on a transfer base material and a second (B) layer in a transfer base material are laminated.
  • a step (2-1) of obtaining a second (B) layer transfer sheet a step (2-2) of peeling off the film forming base material from the layer (A) formed on the film forming base material, and a step (2-2) of peeling off the film forming base material from the (A) layer formed on the film forming base material;
  • a manufacturing method including a step (2-3) of sandwiching the (A) layer between the B) layer transfer sheet and the second (B) layer transfer sheet and heat pressing.
  • a coating liquid for the first (B) layer is applied onto the (A) layer formed on the film forming base material, dried, and laminated.
  • Step (3-1) of obtaining a second (B) layer transfer sheet in which the second (B) layer is laminated on the transfer substrate (3-2)
  • a manufacturing method including a step (3-4) of bringing the layer transfer sheet into contact and hot pressing.
  • a step of laminating a protective base material on the first (B) layer can be provided between the above steps (3-1) and (3-4).
  • a modification of the manufacturing method using the above combination method includes a manufacturing method in which the first (B) layer is laminated by a transfer method, and the second (B) layer is laminated by a coating method.
  • either one of the first (B) layer and the second (B) layer may have a laminated structure of the (B-1) layer and the (B-2) layer, or both layers may have a laminated structure. Both may have a laminated structure.
  • the method for preparing the coating liquid for the layer is not particularly limited as long as the desired coating liquid can be obtained, and examples include stirring with a stirrer tip, crushing with a homogenizer, and homogenization with a rotation-revolution mixer. , dispersion using a bead mill or ball mill, etc. can be used.
  • the solvent contained in the layer coating liquid (B) is not particularly limited as long as it can disperse the particles and polymer, but a solvent that can be easily removed by evaporation by heating is preferred.
  • a solvent having a boiling point of 140°C or lower is preferable.
  • the solvent for the layer coating liquid include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, Alcohols such as tert-butyl alcohol and pentanol, ketones such as acetone, methyl ethyl ketone, pentanone, hexanone, heptanone, cyclohexanone, methylcyclohexanone, acetonylacetone, and diisobutyl ketone, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, Ethers such as methoxytoluene and dibutyl ether, esters such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, butyl acetate, methyl lactate, ethyl lactate, butyl lac
  • the (B) layer can be formed by passing through a drying process as necessary.
  • the coating is heated to evaporate the solvent.
  • the heating means is not particularly limited as long as it can heat the fixed polymer electrolyte membrane, but for example, heating devices such as ovens and heaters, infrared rays, hot air, etc. A device or the like that controls the temperature in the vicinity can be used. Alternatively, heat may be conducted to the polymer electrolyte membrane via the fixing means.
  • the heating temperature range is preferably close to the boiling point of the solvent and below the glass transition temperature of the polymer electrolyte membrane.
  • the solvent can be removed without heating, only by reducing pressure or introducing an air flow, and furthermore, it is also possible to omit the drying step.
  • the (B) layer transfer sheet can be produced by applying the (B) layer coating liquid onto the transfer substrate and, if necessary, performing a drying process.
  • the drying process can use the method described above.
  • the layer (B) can be laminated on the layer (A) by overlapping and hot pressing the layer (A) and the layer (B) coated surface of the layer transfer sheet (B).
  • the temperature and pressure of the hot press may be appropriately selected depending on (A) layer thickness and moisture content, (B) layer thickness and type of transfer substrate, but may be determined depending on industrial productivity and the heat of the polymer electrolyte. From the viewpoint of suppressing decomposition, it is preferable to conduct the reaction at a temperature in the range of 120°C to 250°C.
  • the pressure applied during hot pressing is preferably as weak as possible from the viewpoint of protecting the electrolyte membrane, and for example, in the case of flat plate pressing, it is preferably in the range of 2 to 10 MPa.
  • resin films and substrates similar to those used in forming the layer (A) can be used, as well as polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer, ethylene-hexafluoropropylene.
  • a fluororesin film made of a fluororesin such as copolymer, tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer, polyvinylidene fluoride, polyimide, polyphenylene sulfide, etc. can be used.
  • the transfer base material may be one in which a mold release layer containing a known mold release agent such as a fluorine-based mold release agent is laminated on a base material such as a resin film in order to improve mold release properties.
  • the transfer base material used in the present invention is preferably polyimide, polyphenylene sulfide, or fluororesin film from the viewpoint of chemical stability in addition to heat resistance and solvent resistance, and from the viewpoint of mold release property, fluororesin film is preferred. Films are more preferred.
  • the electrolyte membrane according to the embodiment of the present invention can be made into a CCM by disposing a catalyst layer on one or both sides thereof. That is, an electrolyte membrane with a catalyst layer includes a catalyst layer on one or both sides of the electrolyte membrane.
  • the catalyst layer is generally a layer containing catalyst particles and a polymer electrolyte.
  • the catalyst layer can be formed by laminating a coating liquid for a catalyst layer in which catalyst particles are added to a polymer electrolyte solution on the electrolyte membrane by a coating method or a transfer method.
  • a hydrocarbon polymer electrolyte or a fluorine polymer electrolyte as described above can be used as the polymer electrolyte. From the viewpoint of gas diffusibility and chemical durability, fluoropolymer electrolytes are preferred, and perfluorocarbon sulfonic acid polymers are more preferred.
  • the polymer electrolyte contained in the layer (A) and the polymer electrolyte contained in the catalyst layer are different from each other.
  • the layer (B) contains the same type of polymer as the catalyst layer.
  • the (A) layer contains a hydrocarbon polymer electrolyte
  • the catalyst layer contains a fluoropolymer electrolyte
  • the (B) layer contains a nonionic or ionic fluoropolymer; It is particularly preferred that layer B) contains an ionic fluoropolymer.
  • Catalyst particles generally include platinum group elements (platinum, ruthenium, rhodium, palladium, osmium, iridium), iron, lead, gold, silver, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, Metals such as aluminum, alloys thereof, oxides, double oxides, etc. are used, and carbon particles supporting the above metals (catalyst-supported carbon particles) are also generally used.
  • the above-mentioned carbon particles are not particularly limited as long as they are fine particles, have conductivity, and do not corrode or deteriorate due to reaction with a catalyst, but include carbon black, graphite, activated carbon, carbon fiber, carbon nanotubes, and fullerene particles can be preferably used.
  • the mass ratio (C/I) between the content (C) of catalyst particles (including catalyst-supported particles) and the content (I) of polymer electrolyte in the catalyst layer is in the range of 1.0 to 15.0. Generally, it is preferably in the range of 1.5 to 13.0.
  • the mass ratio (C/I) in the anode catalyst layer is preferably 4.0 or more, more preferably 5.0 or more, and particularly preferably 7.0 or more. Further, it is preferably 15.0 or less, more preferably 14.0 or less, and particularly preferably 13.0 or less.
  • the mass ratio (C/I) in the cathode catalyst layer is preferably less than 4.0, more preferably less than 3.5, and particularly preferably less than 3.0. Further, it is preferably 1.0 or more, more preferably 1.5 or more, and particularly preferably 1.7 or more.
  • the thickness of the catalyst layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and particularly preferably 1 ⁇ m or more from the viewpoint of gas diffusivity and durability. Moreover, it is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the anode catalyst layer and the cathode catalyst layer may be made of the same material or may be made of different materials.
  • the anode catalyst layer may be any catalyst that generates oxygen using water or hydroxide as a raw material as catalyst particles.
  • the anode catalyst layer preferably uses noble metals such as iridium, ruthenium, rhodium, palladium, or oxides thereof.
  • catalysts are preferably used in the form of particles.
  • the catalyst particles may be used in the form of individual particles, or may be used as catalyst-supported particles supported on titanium oxide or the like.
  • the cathode catalyst layer may be any catalyst that generates hydrogen using protons or water as catalyst particles. From this point of view, it is preferable to use platinum-supported carbon particles in which platinum is supported on carbon particles for the cathode catalyst layer.
  • the anode catalyst layer is made of iridium and at least one noble metal element selected from the group consisting of platinum, ruthenium, rhodium, palladium, gold, silver, and osmium. It is preferable to include.
  • noble metals other than iridium may be referred to as “other noble metals.”
  • platinum and palladium are preferred, with platinum being particularly preferred.
  • the form in which the anode catalyst layer contains iridium element and other noble metal elements is not particularly limited, and any known form may be used.
  • a form containing particles containing an iridium element hereinafter referred to as "iridium-based particles" and particles containing other noble metal elements (hereinafter referred to as "other noble metal-based particles")
  • other noble metal-based particles hereinafter referred to as “other noble metal-based particles”
  • a form containing iridium Examples include a form in which alloy particles of (III) iridium and other noble metals are used, and a form in which (III) iridium and other noble metals are laminated by sputtering or vapor deposition.
  • the iridium element is preferably contained in the anode catalyst layer in the form of iridium-based particles.
  • the other noble metal element is preferably contained in the anode catalyst layer in the form of particles based on the other noble metal element. From that point of view, form (I) is more preferable among the above forms. That is, the anode catalyst layer preferably includes particles containing an iridium element and particles containing another noble metal element.
  • the form of (I) above includes (I-1) a form in which iridium-based particles and other noble metal-based particles are contained alone, (I-2) metal oxide such as titanium oxide and tin oxide. (I-3) A form in which catalyst-supported particles are used in which iridium-based particles and other noble metal-based particles are supported together or separately on a carrier made of metal; (I-3) A part or all of the surface of iridium-based particles is Examples include forms using so-called core-shell particles and composite particles coated with system particles.
  • the first layer has a layered structure and contains iridium-based particles and other noble metal particles, or the first layer has a layered structure and contains an iridium-based particle-containing layer.
  • An example is a form in which each layer contains another noble metal particle-containing layer, but the former is preferable.
  • iridium-based particles examples include iridium particles and iridium oxide particles.
  • the iridium element is preferably contained in the anode catalyst layer in the form of iridium oxide. That is, the anode catalyst layer preferably contains iridium oxide.
  • platinum particles and palladium particles are preferable, and platinum particles are particularly preferable.
  • particles containing other noble metal elements particles that are not supported on a carrier, so-called “black” particles can be used. Examples include platinum black (black) and palladium black (black).
  • catalyst-supported particles in which particles containing other noble metal elements are supported on a carrier made of metal oxide such as titanium oxide or tin oxide can be used. .
  • Carbon particles such as carbon black are generally known as carriers for catalyst-supported particles, but the anode in a water electrolysis device is in a high-potential environment, and there are concerns about the resistance of carbon particles to electrochemical oxidation. , it is preferable not to use it in the anode catalyst layer.
  • Iridium-based particles and other noble metal-based particles can be synthesized or manufactured by known methods. Moreover, commercially available products can be used. Commercially available products include, for example, "IrO 2 catalyst Elyst manufactured by Umicore” and “iridium oxide powder manufactured by Tokuriki Honten” as iridium oxide particles, "HISPEC1000 manufactured by Johnson Matthey” as platinum black, and "TEC90300 manufactured by Tanaka Kikinzoku Kogyo.
  • TEC90400'' ⁇ PtBlack manufactured by BASF'', ⁇ Shirokane black manufactured by Tokuriki Honten'', ⁇ Platinum black manufactured by Seifuku Metal Kogyo'', ⁇ Palladium black manufactured by Soekawa Rikagaku'' as palladium black, ⁇ Alfa Aesar''.
  • Pd-black manufactured by Wako Pure Chemical Industries, Ltd.” and “Pdblack manufactured by Wako Pure Chemical Industries, Ltd.” are available. Further, these particles can be used after being ground to a desired particle size, for example, about 1 to 100 nm.
  • the mass of iridium element (Ir mass) and the mass of other noble metal elements (NM mass) in the anode catalyst layer from the viewpoint of ensuring good water electrolysis performance, it is preferable to have a large Ir mass, while oxygen gas From the viewpoint of reducing the hydrogen concentration inside, it is preferable that the NM mass is large.
  • the ratio of Ir mass to NM mass is preferably in the range of 51:49 to 99:1, and preferably in the range of 55:45 to 95:5. More preferably, the range is from 60:40 to 92:8, and particularly preferably from 65:35 to 90:10.
  • the content ratio of Ir mass and NM mass can be calculated by analyzing the cross-sectional image of the catalyst layer with an electron beam microanalyzer (EPMA) and measuring the mass ratio of each element.
  • EPMA electron beam microanalyzer
  • the mass of iridium element per unit area is preferably in the range of 0.2 to 2.0 mg/cm 2 , more preferably in the range of 0.4 to 1.5 mg/cm 2 , and more preferably in the range of 0.6 to 2.0 mg/cm 2 A range of 1.3 mg/cm 2 is particularly preferred.
  • the mass per unit area of the other noble metal elements is preferably set as appropriate within the range of the above ratio (Ir mass: NM mass) based on the mass of the iridium element per unit area. .
  • the (B) layer of the electrolyte membrane disposed on the anode catalyst layer side preferably contains a fluoropolymer electrolyte.
  • a CCM according to an embodiment of the present invention is manufactured by laminating a catalyst layer on an electrolyte membrane.
  • the method for laminating the catalyst layer is not particularly limited, but a coating method, a transfer method, and a combination of these methods can be employed.
  • the coating method is a method in which a catalyst layer coating liquid is applied to the electrolyte membrane, dried, and then laminated.
  • the transfer method is a method in which a catalyst layer transfer sheet in which a catalyst layer is laminated on a transfer base material and an electrolyte membrane are laminated by hot pressing. Among these, the transfer method is preferred.
  • the transfer base material used in the catalyst layer transfer sheet the same resin film or substrate as described above can be used.
  • CCM manufacturing method (I) a step of obtaining an electrolyte membrane in which a layer (B) is laminated on a layer (A), a step of obtaining a catalyst layer transfer sheet in which a catalyst layer is laminated on a transfer base material, It is possible to employ a manufacturing method including a step of bringing the layer (B) of the electrolyte membrane and the catalyst layer of the transfer sheet into facing contact with each other and hot pressing them.
  • the CCM manufacturing method (II) includes a step of forming a layer (A), and a step of obtaining a catalyst layer/(B) layer transfer sheet in which a catalyst layer and a layer (B) are sequentially laminated on a transfer substrate. It is possible to employ a manufacturing method comprising the steps of: bringing the layer (A) and the layer (B) of the transfer sheet into facing contact with each other and hot-pressing the layer.
  • the catalyst layer/(B) layer transfer sheet used in the above CCM manufacturing method (II) is useful as one member for obtaining the CCM according to the embodiment of the present invention. That is, one member for obtaining a CCM according to an embodiment of the present invention is, for example, a catalyst layer/(B) layer transfer sheet in which a catalyst layer and a (B) layer are sequentially laminated on a transfer base material. Consisting of
  • the (B) layer has a two-layer structure of a (B-1) layer that provides the particle concentration (Y1) and a (B-2) layer that provides the particle concentration (Y2).
  • a catalyst layer/(B) layer transfer sheet a catalyst layer/(B-2) in which a catalyst layer, a (B-2) layer, and a (B-1) layer are sequentially laminated on a transfer base material.
  • a layer/(B-1) layer transfer sheet can be used. This transfer sheet is useful as one member for obtaining the CCM according to the embodiment of the present invention.
  • one member for obtaining the CCM according to the embodiment of the present invention is, for example, a transfer base material in which a catalyst layer, a layer (B-2), and a layer (B-1) are sequentially laminated. It consists of a catalyst layer/(B-2) layer/(B-1) layer transfer sheet.
  • a step of obtaining a laminate in which the (B-1) layer is laminated on the (A) layer, and a transfer base material a step of obtaining a catalyst layer/(B-2) layer transfer sheet in which a catalyst layer and a (B-2) layer are sequentially laminated; 2) A manufacturing method including the step of hot pressing the layers in facing contact with each other can be adopted.
  • the catalyst layer/(B-2) layer transfer sheet used in the above CCM manufacturing method (III) is useful as one member for obtaining the CCM according to the embodiment of the present invention. That is, one member for obtaining the CCM according to the embodiment of the present invention is, for example, a catalyst layer/(B-2) in which a catalyst layer and a (B-2) layer are sequentially laminated on a transfer base material. Consists of a layer transfer sheet.
  • the transfer sheet used in the above CCM manufacturing methods (II) and (III), that is, the member for obtaining the CCM, is prepared by, for example, applying a catalyst layer coating liquid to a transfer base material, undried or after drying ( B) It can be manufactured by applying a layer coating liquid and drying it. Alternatively, a method may be adopted in which the coating liquid for the catalyst layer and the coating liquid for the (B) layer are simultaneously applied to the transfer substrate using a multilayer die or a multilayer slide coater and then dried.
  • the coating method is not particularly limited as long as it can be applied to the desired shape, and for example, a die coating method, a screen printing method, a spray method, a gravure coating method, a slide coating method, etc. can be used.
  • the temperature and pressure of the hot press may be appropriately selected depending on the thickness and moisture content of the (A) layer, the thickness of the (B) layer and catalyst layer, and the type of transfer substrate. It is preferable to conduct the reaction at a temperature in the range of 120° C. to 250° C. from the viewpoint of productivity and suppression of thermal decomposition of the polymer electrolyte. Specifically, it is more preferable to conduct the heating at a temperature higher than the glass transition temperature of the polymer contained in layer (B) and 200° C. or lower.
  • the pressure in hot pressing is preferably as low as possible from the viewpoint of protecting the electrolyte membrane, and for example, in the case of flat plate pressing, it is preferably in the range of 2 to 10 MPa.
  • the membrane electrode assembly includes the CCM and gas diffusion layers (gas diffusion electrodes) disposed on both sides of the CCM. Specifically, an anode gas diffusion layer is placed and joined to the anode catalyst layer side of the CCM, and a cathode gas diffusion layer is placed to the cathode catalyst layer side.
  • the gas diffusion layer is generally made of a member having gas permeability and electron conductivity, such as a porous carbon material or a porous metal material.
  • a porous carbon material or a porous metal material examples include carbon paper, carbon cloth, carbon mesh, carbon nonwoven fabric, and the like.
  • the metal porous body examples include metal mesh, foam metal, metal fabric, metal sintered body, metal nonwoven fabric, and the like.
  • this metal include titanium, aluminum, copper, nickel, nickel-chromium alloy, copper and its alloys, silver, aluminum alloy, zinc alloy, lead alloy, titanium, niobium, tantalum, iron, stainless steel, gold, platinum, etc. can be mentioned.
  • the gas diffusion layer is treated with water repellent treatment to prevent gas diffusion and permeability from decreasing due to water retention, partial water repellent treatment and partial hydrophilic treatment to form water drainage channels, and lower resistance. It is also possible to add carbon powder for this purpose. Further, the gas diffusion layer can also be provided with a conductive intermediate layer containing at least an inorganic conductive substance and a hydrophobic polymer on the CCM side. In particular, when the gas diffusion layer is made of a carbon fiber fabric or nonwoven fabric with a high porosity, providing a conductive intermediate layer can suppress performance degradation due to the catalyst solution seeping into the gas diffusion layer.
  • the thickness of the gas diffusion layer is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and particularly preferably 150 ⁇ m or more. Further, the thickness is preferably 1,000 ⁇ m or less, more preferably 700 ⁇ m or less, and particularly preferably 500 ⁇ m or less.
  • the anode gas diffusion layer and the cathode gas diffusion layer may be made of the same material, or may be made of different materials.
  • the anode gas diffusion layer and the cathode gas diffusion layer are made of different materials.
  • the anode gas diffusion layer is made of a porous metal material
  • the cathode gas diffusion layer is made of a porous carbon material.
  • the electrolyte membrane, the CCM using the electrolyte membrane, and the membrane electrode assembly according to the embodiments of the present invention can be applied to, for example, electrochemical applications.
  • electrochemical applications include fuel cells, redox flow batteries, water electrolysis devices, electrochemical hydrogen compression devices, and the like. Among these, it is preferably applied to a water electrolysis device, and particularly preferably applied to a water electrolysis type hydrogen generator.
  • Molecular weight of polymer The number average molecular weight and weight average molecular weight of the polymer solution were measured by gel permeation chromatography (GPC). HLC-8022GPC manufactured by Tosoh Corporation was used as a device. An ultraviolet detector and a differential refractometer were used as detectors. Furthermore, two TSK gel SuperHM-H (inner diameter 6.0 mm, length 15 cm) manufactured by Tosoh Corporation were used as GPC columns. Measurements were made using N-methyl-2-pyrrolidone solvent (N-methyl-2-pyrrolidone solvent containing 10 mmol/L of lithium bromide) as a developing solvent at a flow rate of 0.2 mL/min, and the number was calculated by standard polystyrene conversion. The average molecular weight and weight average molecular weight were determined.
  • the sodium sulfate aqueous solution after ion exchange was titrated using a 0.01 mol/L sodium hydroxide aqueous solution.
  • 0.1 w/v % of a commercially available phenolphthalein solution for titration was added as an indicator, and the point at which the color turned pale reddish-purple was defined as the end point.
  • the ion exchange capacity (IEC) was determined using the following formula.
  • IEC (meq/g) [concentration of sodium hydroxide aqueous solution (mmol/mL) x dropping amount (mL)]/dry weight of sample (g).
  • the (B) layer contains particles (carbon black and a polymer (fluoropolymer electrolyte). From the ratio "C/F" of "C” and the element "F", the structural formula of the particles, and the structural formula of the polymer, the mass ratio of the particles to the polymer was calculated, and the particle concentration (Y1) was determined. Similarly, , (A) The particle concentration (Y2) was determined from the ratio "C/F” in the interface region on the opposite side to the layer.
  • a commercially available gas diffusion electrode 24BCH manufactured by SGL was used as a cathode gas diffusion layer on the cathode catalyst layer side of the CCM in which catalyst layers were laminated on both sides of the electrolyte membranes prepared in Examples and Comparative Examples.
  • Commercially available porous titanium sintered plates were laminated as an anode gas diffusion layer on the anode catalyst layer side to prepare a membrane electrode assembly.
  • the membrane electrode assembly prepared above was set in a JARI standard cell "Ex-1" (electrode area 25 cm 2 ) manufactured by Eiwa Co., Ltd., the cell was tightened so that the average CCM pressure was 4 MPa, and the cell temperature was set at 80°C. And so.
  • Deionized water with an electrical conductivity of 1 ⁇ S/cm or less is supplied to both the cathode electrode and the anode electrode at atmospheric pressure at a flow rate of 0.2 L/min, and a current of 2.0 A/cm 2 is applied to cause a water electrolysis reaction. Hydrogen gas and oxygen gas were produced.
  • NMP N-methylpyrrolidone
  • toluene 100 mL
  • polymerization was carried out at 170°C for 3 hours.
  • Reprecipitation purification was performed using a large amount of methanol to obtain a terminal hydroxyl form of nonionic oligomer a1.
  • the number average molecular weight of the terminal hydroxyl form of this nonionic oligomer a1 was 10,000.
  • Coating solutions p1 to p4 containing various polymer electrolytes were prepared in the following manner.
  • Coating liquid p1 Coating liquid containing polyetherketone block copolymer P1 16 g of ionic oligomer a2 and 11 g of nonionic oligomer a1 was added, NMP was added so that the total amount of oligomers was 7 wt%, and the reaction was carried out at 105° C. for 24 hours.
  • Coating liquid p2 Coating liquid containing polyetherketone random copolymer P2
  • the 2,2-bis synthesized in Synthesis Example 1 was placed in a 5 L reaction vessel equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark trap.
  • NMP was added to dilute the polymerization stock solution so that the viscosity was 500 mPa ⁇ s.
  • An angle rotor RA-800 was set in an inverter compact high-speed refrigerated centrifuge (model number 6930) manufactured by Kubota Manufacturing Co., Ltd., and the polymerization stock solution was directly centrifuged at 25° C. for 30 minutes at a centrifugal force of 20,000 G. Since the precipitated solid (cake) and the supernatant liquid (coating liquid) could be clearly separated, the supernatant liquid was collected.
  • NMP was removed by distillation under reduced pressure at 80° C. with stirring until the polymer concentration became 14% by mass, and further pressure filtration was performed using a 5 ⁇ m polyethylene filter to obtain coating liquid p2.
  • the viscosity of this coating liquid p2 was 1,000 mPa ⁇ s.
  • Coating liquid p3 Coating liquid containing polyarylene block copolymer P3 represented by the following general formula (G10) 540 mL of dried N,N-dimethylacetamide (DMAc) was mixed with 3-(2,5-dichloro 135.0 g (0.336 mol) of neopentyl benzenesulfonate and 40.7 g (5.6 mmol) of the nonionic oligomer represented by general formula (G6) synthesized in Synthesis Example 6, 2,5-dichloro -4'-(1-imidazolyl)benzophenone 6.71g (16.8mmol), bis(triphenylphosphine)nickel dichloride 6.71g (10.3mmol), triphenylphosphine 35.9g (0.137mol), iodide It was added to a mixture of 1.54 g (10.3 mmol) of sodium and 53.7 g (0.821 mol) of zinc under nitrogen.
  • G10 dried N,N-dimethylace
  • the reaction system was heated while stirring (finally heated to 79°C) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 730 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • the filtrate was concentrated using an evaporator, 43.8 g (0.505 mol) of lithium bromide was added to the filtrate, and the mixture was reacted at an internal temperature of 110° C. for 7 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4 L of acetone, and solidified. The coagulated material was collected by filtration, air-dried, pulverized with a mixer, and washed with 1,500 mL of 1N hydrochloric acid while stirring. After filtration, the product was washed with ion-exchanged water until the pH of the washing solution was 5 or higher. Thereafter, it was dried at 80° C.
  • polyarylene block copolymer P3 The weight average molecular weight of this polyarylene block copolymer P3 was 190,000, and the ion exchange capacity (IEC) was 2.0.
  • [Coating liquid p4] Coating liquid containing polyethersulfone-based block copolymer P4 Weighed 0.23 g of the block copolymer precursor b1 obtained in Synthesis Example 7, and added 0.16 g of lithium bromide monohydrate. and NMP (8 mL), and the mixture was reacted at 120° C. for 24 hours. The reaction mixture was poured into 80 mL of 6 mol/L hydrochloric acid and stirred for 1 hour. The precipitated solid was separated by filtration. The separated solid was dried to obtain a gray-white block copolymer P4 consisting of a segment represented by the above general formula (G9) and a segment represented by the following chemical formula (G11).
  • the weight average molecular weight of the obtained polyethersulfone block copolymer P4 was 190,000, and the ion exchange capacity (IEC) was 2.0.
  • the viscosity of coating liquid p4 was 1,300 mPa ⁇ s.
  • Coating liquids b1 to b12 were prepared in the following manner.
  • Coating liquid b1 Particles: 10 parts by mass of carbon black (“VULCAN” (registered trademark) (Registered Trademark) Product No. D2020'' in terms of solid content 8 parts by mass Solvent: A mixed solvent of water and 1-propyl alcohol at a mass ratio of 4:6 The above particles and polymer are dispersed in a solvent using a bead mill, A coating liquid b1 having a solid content concentration of 10% by mass was prepared. The particle concentration in coating liquid b1 is 56% by mass.
  • Coating liquids b2 to b9 were prepared in the same manner as coating liquid b1, except that the particle concentrations were changed as shown in Table 1.
  • Coating liquid b10 was prepared in the same manner as coating liquid b1 except that particles were not used.
  • Coating liquid b11 was prepared in the same manner as coating liquid b1, except that the particles were changed from carbon black to cerium (IV) oxide (average particle size 50 nm) manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Coating liquid b12 was prepared in the same manner as coating liquid b9 except that the polymer was changed to PVDF (polyvinylidene fluoride) manufactured by Solvey.
  • anode catalyst layer transfer sheet 1 The anode catalyst layer was formed by casting the following coating solution for an anode catalyst layer on a commercially available polytetrafluoroethylene film so that the amount of iridium was 1.0 mg/cm 2 and drying at 100°C for 4 hours. Transfer sheet 1 was produced.
  • ⁇ Coating liquid for anode catalyst layer Particles (10 parts by mass of IrO 2 catalyst Elyst Ir75 0480 (Ir content 75%) manufactured by Umicore) and fluoropolymer electrolyte (“Nafion” (registered trademark) product number D2020 manufactured by Chemours Co., Ltd.) in terms of solid content
  • cathode catalyst layer transfer sheet 1 A cathode catalyst layer was formed by casting the following coating solution for cathode catalyst layer on a commercially available polytetrafluoroethylene film so that the amount of platinum was 0.3 mg/cm 2 and drying at 100°C for 4 hours. Transfer sheet 1 was produced.
  • ⁇ Coating liquid for cathode catalyst layer 10 parts by mass of catalyst particles (Tanaka Kikinzoku Kogyo Co., Ltd. platinum catalyst-supported carbon particles TEC10E50E (platinum loading rate 50 mass%)) and a fluoropolymer electrolyte (“Nafion” (registered trademark) product number manufactured by Chemours Co., Ltd.) D2020) in terms of solid content, and a solvent (a mixed solvent of water and 1-propyl alcohol at a mass ratio of 1:1), and the solid content concentration is 10% by mass.
  • the coating liquid b1 was cast onto the layer (A) and dried at 100° C. for 4 hours, thereby laminating the layer (B-1) (thickness: 3 ⁇ m) on the layer (A). Subsequently, coating liquid b10 was cast onto the layer (B-1) and dried at 100° C. for 4 hours to form a layer (B-2) (thickness: 3 ⁇ m).
  • Example 2 An electrolyte membrane was produced in the same manner as in Example 1, except that the coating liquid for the (B-1) layer and the coating liquid for the (B-2) layer were changed as shown in Table 2.
  • Example 14 to 16 An electrolyte membrane was produced in the same manner as in Example 1, except that the coating liquid p1 for layer was changed as shown in Table 2.
  • the (A) layer was prepared in the same manner as in Example 1, and coating liquid b10 was cast on the (A) layer, and by drying at 100°C for 4 hours, only the polymer was formed on the (A) layer.
  • An electrolyte membrane was produced by laminating a single (B) layer (film thickness: 6 ⁇ m) consisting of: In Table 2, the composition of the single (B) layer is entered in the (B-1) layer column.
  • the (A) layer was prepared in the same manner as in Example 1, and coating liquid b7 was cast onto the (A) layer and dried at 100°C for 4 hours to form particles on the (A) layer.
  • An electrolyte membrane was produced by stacking a single (B) layer (6 ⁇ m thick) containing a polymer. In Table 2, the composition of the single (B) layer is entered in the (B-1) layer column.
  • Example 17 CCM was produced in the following manner. [Preparation of (A) layer] Layer (A) was produced in the same manner as in Example 1.
  • Coating liquid b10 was cast onto the catalyst layer of the anode catalyst layer transfer sheet 1 described above, and the layer (B-2) (thickness: 3 ⁇ m) was laminated by drying at 100° C. for 4 hours. Subsequently, the coating liquid b1 was cast onto the layer (B-2) and dried at 100° C. for 4 hours to form the layer (B-1) (thickness: 3 ⁇ m).
  • This catalyst layer/(B) layer transfer sheet is a catalyst layer/(B) layer in which a catalyst layer and a (B) layer ((B-2) layer/(B-1) layer) are sequentially laminated on a transfer base material. (B-2) layer/(B-1) layer layer transfer sheet, and was used to produce CCM.
  • Example 18 CCM was produced in the following manner. [Preparation of laminate of (A) layer and (B-1) layer] Coating liquid b1 was cast onto layer (A) prepared in the same manner as in Example 1, and dried at 100°C for 4 hours to form layer (B-1) (film thickness) on layer (A). A laminate in which 3 ⁇ m) was laminated was obtained.
  • Coating liquid b10 was cast onto the catalyst layer of the above-mentioned anode catalyst layer transfer sheet and dried at 100° C. for 4 hours to form a layer (B-2) (thickness: 3 ⁇ m).
  • This catalyst layer/(B-2) layer transfer sheet had a catalyst layer and a (B-2) layer laminated in sequence on a transfer base material, and was used to produce a CCM.
  • the anode catalyst layer transfer sheet 1 was superimposed on the (B) layer side of the electrolyte membranes prepared in Examples 1 to 16 and Comparative Examples 1 to 3 above, and the state was heated and pressed at 150°C and 5 MPa for 3 minutes. After the temperature was lowered to below 40° C., the pressure was released, and CCM was obtained. Regarding these CCMs and the CCMs produced in Examples 17 and 18, the bondability between the electrolyte membrane and the catalyst layer was evaluated according to "(4) Evaluation of interlayer bondability (peelability)" above. The results are shown in Table 2. In Table 2, particles "CB" represent carbon black, and “Ce” represents cerium oxide.
  • Coating liquid b1 was cast onto the layer (A) and dried at 100° C. for 4 hours, thereby laminating the layer (B-1) (thickness: 5 ⁇ m) on the layer (A). Subsequently, coating liquid b4 was cast onto the layer (B-1) and dried at 100° C. for 4 hours to form a layer (B-2) (thickness: 5 ⁇ m).
  • Example 22 An electrolyte membrane was produced in the same manner as in Example 21, except that the layer coating liquid was changed to coating liquid b5.
  • the cathode catalyst layer transfer sheet 1 was superimposed on the (B) layer side of the electrolyte membrane prepared in Examples 21, 22 and Comparative Example 21, and hot pressed at 150°C and 5 MPa for 3 minutes. After the temperature was lowered to below .degree. C., the pressure was released to obtain CCM. Regarding these CCMs, the bondability between the electrolyte membrane and the catalyst layer was evaluated according to "(4) Evaluation of interlayer bondability (peelability)" above. The results are shown in Table 3. In Table 3, particles "CB" represent carbon black.
  • Coating liquid b10 was cast onto a commercially available polytetrafluoroethylene film and dried at 100° C. for 4 hours to form a (B-2) layer (thickness: 3 ⁇ m). Furthermore, the (B-1) layer (film thickness 3 ⁇ m) was laminated by casting coating liquid b1 on the (B-2) layer and drying at 100°C for 4 hours, and the (B) layer transfer sheet I got D1.
  • Coating liquid b4 was cast onto a commercially available polytetrafluoroethylene film and dried at 100° C. for 4 hours to form a (B-2) layer (thickness: 5 ⁇ m). Furthermore, the (B-1) layer (thickness: 5 ⁇ m) was laminated by casting coating liquid b1 on the (B-2) layer and drying it at 100°C for 4 hours, and the (B) layer transfer sheet Got D2.
  • Example 32 [(B) Production of layer transfer sheet D3] A (B) layer transfer sheet D3 was prepared in the same manner as the (B) layer transfer sheet D1, except that the (B-1) layer coating liquid b1 was changed to a coating liquid b11.
  • Example 33 [(B) Production of layer transfer sheet D4] A (B) layer transfer sheet D4 was prepared in the same manner as in the preparation of the (B) layer transfer sheet D1, except that the (B-2) layer coating liquid b10 was changed to a coating liquid b12.
  • Example 34 to 36 An electrolyte membrane was produced in the same manner as in Example 31, except that the layer coating liquid p1 was changed as shown in Table 4 [Comparative Example 31] (B) An electrolyte membrane was produced in the same manner as in Example 31 except that the layer was not laminated.
  • Anode catalyst layer transfer sheet 1 was placed on the anode side (B) layer of the electrolyte membrane prepared in Examples 31 to 36 and Comparative Example 31, and cathode catalyst layer transfer sheet 1 was placed on the cathode side (B) layer of the electrolyte membrane. They were stacked together, heated and pressed at 150° C. and 5 MPa for 3 minutes, cooled down to 40° C. or lower under pressure, and then the pressure was released to obtain a CCM. The durability of this CCM was evaluated according to "(5) Evaluation of durability" above. The results are shown in Table 4.
  • Coating liquid c1> 10 parts by mass of carbon black (“VULCAN” (registered trademark) (Registered Trademark) Product No. D2020'' in terms of solid content 9 parts by mass
  • Solvent A mixed solvent of water and 1-propyl alcohol at a mass ratio of 4:6 The above particles and polymer are dispersed in a solvent using a bead mill, A coating liquid c1 having a solid content concentration of 10% by mass was prepared. The particle concentration in coating liquid c1 is 53% by mass.
  • the PET film was peeled off from the laminate 1 to obtain a laminate film of layer (A)/layer (B-1).
  • the transfer sheet 2 was placed on the (B-1) layer side of this laminated film, and the transfer sheet 3 was placed on the (A) layer side, and hot pressed at 150°C and 5 MPa for 3 minutes. After the temperature was lowered to below .degree. C., the pressure was released to obtain CCM.
  • the layer structure of this CCM is "anode catalyst layer/(B) layer/(A) layer/(C) layer/cathode catalyst layer".
  • anode catalyst layer transfer sheet 2 The anode catalyst layer was formed by casting the following coating solution for an anode catalyst layer on a commercially available polytetrafluoroethylene film so that the amount of iridium was 1.0 mg/cm 2 and drying at 100°C for 4 hours. Transfer sheet 2 was produced.
  • ⁇ Coating liquid for anode catalyst layer 10 parts by mass of commercially available iridium oxide in terms of iridium element, 2 parts by mass of commercially available platinum black in terms of platinum element, and a fluoropolymer electrolyte ("Nafion” (registered trademark) product number D2020 manufactured by Chemours Co., Ltd.) were solidified.
  • the coating liquid contains 2.5 parts by mass of a solvent (a mixed solvent of water and 1-propyl alcohol at a mass ratio of 4:6) and has a solid content concentration of 30% by mass.
  • Example 52 A CCM was produced in the same manner as in Example 41, except that the anode catalyst layer transfer sheet 1 was changed to the anode catalyst layer transfer sheet 2 produced above.
  • the layer structure of this CCM is "anode catalyst layer/(B) layer/(A) layer/(C) layer/cathode catalyst layer".
  • Example 53 A CCM was produced in the same manner as in Example 51, except that the anode catalyst layer transfer sheet 3 described below was used.
  • anode catalyst layer transfer sheet 3 The anode catalyst layer was formed by casting the following coating solution for an anode catalyst layer on a commercially available polytetrafluoroethylene film so that the amount of iridium was 1.0 mg/cm 2 and drying at 100°C for 4 hours. Transfer sheet 3 was produced.
  • ⁇ Coating liquid for anode catalyst layer 10 parts by mass of commercially available iridium oxide in terms of iridium element, 2 parts by mass of commercially available palladium black in terms of palladium element, and a fluoropolymer electrolyte ("Nafion” (registered trademark) product number D2020 manufactured by Chemours Co., Ltd.) were solidified.
  • the coating liquid contains 2.5 parts by mass of a solvent (a mixed solvent of water and 1-propyl alcohol at a mass ratio of 4:6) and has a solid content concentration of 30% by mass.
  • Example 61 The following evaluation was performed using the CCM used in the evaluation of Example 31. This will be referred to as Example 61.
  • the layer structure of this CCM is "anode catalyst layer/(B) layer/(A) layer/(B) layer/cathode catalyst layer”.
  • CCM in the table is an electrolyte membrane with a catalyst layer
  • An is an anode catalyst layer
  • Ca is a cathode catalyst layer
  • A is the (A) layer
  • B is the (B) layer
  • C represents the (C) layer
  • Ir represents iridium
  • Pt represents platinum
  • Pd represents palladium
  • Electrolyte membrane 10 (A) Layers 20, 20a, 20b (B) Layers 21, 21a, 21b (B) Layer's (A) layer side interface region 22, 22a, 22b (B) Layer's (A) Interface region on the opposite side of the layer 30, 40 Catalyst layer 50 Anode catalyst layer 60 Cathode catalyst layer 100, 200 Electrolyte membrane with catalyst layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

触媒層との接合性が良好な電解質膜を提供することを目的とし、高分子電解質を含む(A)層と、前記(A)層の少なくとも一方の面に(B)層と、を備える電解質膜であって、前記(B)層の前記(A)層との界面領域における、下記で定義される粒子濃度(Y1)が、前記(B)層の前記(A)層とは反対側の界面領域における、下記で定義される粒子濃度(Y2)よりも高いことを特徴とする、電解質膜を本旨とする。前記粒子濃度(Y1)および前記粒子濃度(Y2)は、当該界面領域に存在する粒子質量の当該界面領域に存在する全固形分質量に対する割合である。

Description

電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法
 本発明は、電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法に関する。
 近年、次世代におけるエネルギーの貯蔵・輸送手段として、水素エネルギーが注目されている。水素は、燃料電池の燃料として用いることで、熱機関を用いた発電よりも理論的に高いエネルギー効率で電力に変換可能で、かつ有害物質の排出量が比較的少ないことから、高効率なクリーンエネルギー源となり得る。
 水素製造方式の一つに水の電気分解がある。再生可能エネルギーによる余剰電力を使用して水を電気分解すれば、二酸化炭素を排出することなく電力を水素エネルギーに変換することが可能である。さらに、水素は貯蔵方式によっては、タンクローリーやタンカーで輸送でき、必要な時に必要な場所へ供給可能なため、水の電気分解は電力貯蔵のツールとして高い可能性を有している。
 水の電気分解による水素製造方式には、アルカリ水電解と固体高分子電解質膜(Polymer Electrolyte Membrane:PEM)型水電解がある。PEM型水電解は高電流密度での運転が可能であり、再生可能エネルギーの出力変動に柔軟に対応できるというメリットを有する。
 PEM型水電解装置は通常、膜電極接合体(Membrane Electrode Assembly:MEA)がセパレータによって挟まれたセルをユニットとして構成されている。MEAは、高分子電解質膜の両面に触媒層が形成された、触媒層付電解質膜(Catalyst Coated Membrane:CCM)で構成され、触媒層の一方がアノード触媒層であり、他方がカソード触媒層である。電流を印加したPEM型水電解セルのアノード触媒層に水が供給され、電気化学反応によりプロトンが生成する。続いて、高分子電解質膜中をアノード電極層側からカソード電極層側へとプロトンが拡散し、カソード層において電気化学反応によってプロトンから水素が作り出される。
 PEM型水電解装置では、水電解運転中に、触媒層と高分子電解質膜との界面の接合性が低下することがある。そこで、高分子電解質膜と触媒層の接合性向上のため、高分子電解質膜と触媒層との間に接着層を配置することが提案されている(例えば、特許文献1、2を参照)。
特表2008-512844号公報 特開2011-187436号公報
 しかしながら、上記特許文献に示されているような従来技術では、高分子電解質膜と触媒層との接合性を十分に高めることができなかった。電解質膜と触媒層との接合性が不十分であると、例えば、水電解装置の運転中に電解質膜と触媒層とが剥離もしくは密着性が低下してプロトン伝導性が低下することがあり、それによって水電解性能が低下することがある。
 本発明は、かかる背景に鑑み、触媒層との接合性が良好な電解質膜を提供することを課題とする。
 本発明の電解質膜は、上記目的を達成するために、以下の構成を採る。すなわち、高分子電解質を含む(A)層と、前記(A)層の少なくとも一方の面にある(B)層と、を備える電解質膜であって、前記(B)層の前記(A)層との界面領域における、下記で定義される粒子濃度(Y1)が、前記(B)層の前記(A)層とは反対側の界面領域における、下記で定義される粒子濃度(Y2)よりも高い電解質膜である。
前記粒子濃度(Y1)および前記粒子濃度(Y2)は、当該界面領域に存在する粒子質量の当該界面領域に存在する全固形分質量に対する割合である。すなわち、前記粒子濃度(Y1)は、前記(B)層の前記(A)層との界面領域に存在する粒子質量の当該界面領域に存在する全固形分質量に対する割合であり、前記粒子濃度(Y2)は、前記(B)層の前記(A)層とは反対側の界面領域に存在する粒子質量の当該界面領域に存在する全固形分質量に対する割合である。
 本発明によれば、触媒層との接合性に優れた電解質膜を提供することができる。
本発明の実施の形態1に係る電解質膜の断面模式図である。 本発明の実施の形態1に係る電解質膜を用いた触媒層付電解質膜の断面模式図である。 本発明の実施の形態2に係る電解質膜の断面模式図である。 本発明の実施の形態2に係る電解質膜を用いた触媒層付電解質膜の断面模式図である。
 以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。また、図面に示される特定の実施の形態についての説明は、上位概念としての本発明の説明としても理解し得るものである。
 本発明の実施の形態に係る電解質膜は、高分子電解質を含む(A)層と、この(A)層の少なくとも一方の面にある(B)層と、を備える電解質膜であって、(B)層の(A)層との界面領域における粒子濃度(Y1)が、(B)層の(A)層とは反対側の界面領域における粒子濃度(Y2)よりも高いことが重要である。ここで、粒子濃度(Y1)および粒子濃度(Y2)は、当該界面領域に存在する粒子質量の当該界面領域に存在する全固形分質量に対する割合である。
 (B)層が複数種の粒子を含む場合、粒子濃度(Y1)および(Y2)は、界面領域に存在する全ての粒子の質量の、当該界面領域に存在する全固形分質量に対する割合として計算する。
 本発明において、界面領域とは、(B)層において、(B)層と隣接する他の層とのそれぞれの界面から、(B)層全体の厚みに対して10%の厚みの領域を指す。粒子濃度(Y1)と粒子濃度(Y2)との相対的な関係(大小関係)は、電解質膜の断面を走査型透過型電子顕微鏡(STEM)や走査型電子顕微鏡(SEM)で観察することによって、あるいはSTEMやSEMによる断面観察と元素分析(エネルギー分散型X線分光法(EDX)や電子線マイクロアナライザー(EMPA)による元素分析)との併用によって、求めることができる。
 具体的には、まず、TEMまたはSEMにて(B)層の2つの界面領域に粒子が存在するか否かを観察する。その結果、2つの界面領域にともに粒子が存在する場合は、EDXまたはEMPAにてその界面領域を元素分析する。
 上記元素分析において、粒子を構成する元素と、(B)層に含まれる粒子以外の成分(例えば、ポリマー)を構成する元素とが重複する場合、例えば、粒子がカーボンブラック、ポリマーがパーフルオロカーボンスルホン酸ポリマーである場合、粒子の元素として「C」、ポリマーの元素として「C」以外の元素、例えば「F」または「S」をそれぞれ選択して元素分析する。そして、2つの界面領域におけるCとFまたはSとの比率(C/FまたはC/S)を算出して対比することで、Y1とY2との相対関係およびY1とY2との比率(Y2/Y1)を求めることができる。詳細は実施例に記載する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る電解質膜の一例を示す断面模式図である。
 本実施の形態1において、電解質膜1は、(A)層10の一方の面に(B)層20が積層された構成である。(B)層20は、(A)層側の界面領域21と、(A)層とは反対側の界面領域22と、を有する。(B)層20は、図示しない粒子を含有しており、界面領域21における粒子濃度が粒子濃度(Y1)であり、界面領域22における粒子濃度が粒子濃度(Y2)である。
また図2は、実施の形態1の電解質膜の両面にそれぞれ触媒層が積層された触媒層付電解質膜の一例を示す断面模式図である。以下、触媒層付電解質膜(Catalyst Coated Membrane)を「CCM」と略記することがある。
 CCM100は、電解質膜1の両面にそれぞれ触媒層30および40が積層された構成である。ここで、触媒層30および40は、順不同でそれぞれアノード触媒層およびカソード触媒層である。
 本実施の形態1に係る電解質膜は、(B)層20の(A)層10との界面領域21における粒子濃度(Y1)が、(B)層20の(A)層10とは反対側の界面領域22における粒子濃度(Y2)よりも高いことを特徴とする。これによって、電解質膜1と触媒層30との接合性が向上する。このメカニズムは明確ではないが、以下のように推測される。
 層の最外面における粒子濃度は表面粗さ(凹凸)に影響し、粒子濃度が高いと表面粗さ(凹凸)が大きくなり、粒子濃度が低いと表面粗さ(凹凸)が小さくなる(平滑性が高くなる)傾向にある。そして、層の最外面に形成された凹凸は、他の層との接合界面でアンカーとして機能すると考えられる。
 一般に、高分子電解質を含む(A)層10は比較的平滑な表面を有し、触媒層30、40は、触媒粒子を含むことから凹凸表面を有している。そこで、平滑な表面を有する(A)層10側に、(B)層20の粒子濃度が比較的高い界面領域21(粒子濃度(Y1))を対向させ、凹凸表面を有する触媒層30側に、(B)層20の粒子濃度が比較的低い界面領域22(粒子濃度(Y2))を対向させることによって、両界面にアンカー効果が発現する。こうして、(A)層10と(B)層20との接合性および(B)層20と触媒層30との接合性がそれぞれ高められていると考えられる。
 本発明は、(A)層10に含まれる高分子電解質と触媒層30に含まれる高分子電解質とが互いに異種である場合に特に有効である。(A)層10と触媒層30とが互いに異種の高分子電解質を含む場合は、層間接合が低下する傾向にあるからである。
 ここで、高分子電解質が互いに異種であるとは、例えば、一方が炭化水素系高分子電解質、他方がフッ素系高分子電解質である場合などが挙げられる。具体的には、(A)層10が炭化水素系高分子電解質を含み、触媒層30がフッ素系高分子電解質を含む場合(形態1)、(A)層10がフッ素系高分子電解質を含み、触媒層30が炭化水素系高分子電解質を含む場合(形態2)などが挙げられる。水電解性能の観点から形態1が好ましい。
 上記形態1および形態2のように、(A)層10に含まれる高分子電解質と触媒層30に含まれる高分子電解質とが互いに異種である場合、接合性の観点から、(B)層20は、触媒層30と同種のポリマーを含むことが好ましい。ここで、ポリマーが同種であるとは、イオン性、非イオン性の違いは問わず、フッ素系ポリマー同士、炭化水素系ポリマー同士など、ポリマーの主骨格が同種系統のものであることをいう。例えば、イオン性フッ素系高分子(フッ素系高分子電解質)と非イオン性フッ素系高分子とは同種のポリマーであり、同様にイオン性炭化水素系高分子(炭化水素系高分子電解質)と非イオン性炭化水素系高分子とは同種のポリマーである。プロトン伝導性の観点から、(B)層20は、触媒層30に含まれる高分子電解質と同種の高分子電解質を含有することがより好ましい。(B)層20に含有させるポリマーの詳細は後述する。
 (A)層、触媒層および(B)層にそれぞれ含まれる材料の特に好ましい組み合わせとしては、(A)層が炭化水素系高分子電解質を含み、触媒層がフッ素系高分子電解質を含み、(B)層がフッ素系ポリマーを含む、という構成が挙げられる。
 電解質膜1と触媒層30との接合性を高めるという観点から、粒子濃度(Y1)と粒子濃度(Y2)との比率(Y2/Y1)は、0.95以下が好ましく、0.75以下がより好ましく、0.60以下が特に好ましい。上記比率(Y2/Y1)の下限は0.00である。
 粒子濃度(Y1)は、(A)層10と(B)層20との接合性を高めるという観点から、45質量%以上であることが好ましく、50質量%以上であることがより好ましく、55質量%以上であることが特に好ましい。また、塗布膜の製膜性の観点から、粒子濃度(Y1)は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることがさらに好ましく、70質量%以下であることが特に好ましい。
 粒子濃度(Y2)は、(B)層20と触媒層30との接合性を高めるという観点から、(Y2)>(Y1)を満たす範囲内において、45質量%未満であることが好ましく、40質量%未満であることがより好ましく、35質量%未満であることが特に好ましい。下限は0%である。
 (A)層10と(B)層20との接合性および(B)層20と触媒層30との接合性の観点から、粒子濃度(Y1)が45質量%以上であり、粒子濃度(Y2)が45質量%未満であることが好ましい。
 粒子濃度(Y2)は、触媒層30に含まれる、触媒粒子(触媒担持粒子を含む)の含有量(C)と高分子電解質の含有量(I)との質量比(C/I)に応じて、調整することが好ましい。一般的に、上記C/Iが高い触媒層の表面粗さ(凹凸)は大きくなる傾向にあり、C/Iが低い触媒層の表面粗さ(凹凸)は小さくなる傾向にある。接合面でのアンカー効果を向上させるため、C/Iが比較的高い触媒層の場合は、粒子濃度(Y2)は低い方が好ましく、C/Iが比較的低い触媒層の場合は、粒子濃度(Y2)は高い方が好ましい。例えば、上記質量比(C/I)が4.0以上の場合は、粒子濃度(Y2)は45質量%未満がより好ましく、38%未満がさらに好ましく、35%未満が特に好ましい。一方、上記質量比(C/I)が4.0未満の場合は、粒子濃度(Y2)は45質量%未満であればよい。
 (B)層20を(A)層10の片面のみに配置する場合、アノード触媒層側のみに配置してもよいし、カソード触媒層側のみに配置してもよい。本実施の形態1に係る電解質膜を水電解装置に適用する場合、(B)層20をアノード触媒層側に配置する(触媒層30をアノード触媒層とする)ことによって、接合性向上に加えて、(A)層の電気化学的酸化劣化を抑制する効果が期待できる。また、(B)層20をカソード触媒層側に配置する(触媒層30をカソード触媒層とする)ことによって、接合性向上に加えて、カソードで副生成された過酸化物ラジカルから(A)層を保護する効果が期待できる。
 水電解装置では、アノードは高電位環境にあり、(A)層10の電気化学的酸化劣化を抑制するため、アノード触媒層側の(B)層はバリアー機能を有することが好ましい。この観点から、触媒層30がアノード触媒層である場合、アノード触媒層側の(B)層20は、その粒子濃度(Y2)は比較的低い方が好ましい。具体的には、粒子濃度(Y2)が45質量%未満であることが好ましく、38質量%未満がより好ましく、35質量%未満がさらに好ましく、0質量%が最も好ましい。
 一方、カソード触媒層側の(B)層は、カソードで生成される水素による触媒層と(B)層との界面剥離を抑制する(水素の逃げ道を確保する)という観点から、触媒層30がカソード触媒層である場合、カソード触媒層側の(B)層20の粒子濃度(Y2)は比較的高い方が好ましい。具体的には、粒子濃度(Y2)が30質量%以上であることがより好ましく、35質量%以上がさらに好ましい。また、粒子濃度(Y2)の上限は45質量%未満が好ましい。
 また、水電解装置では、アノード触媒層における、高分子電解質に対する触媒粒子の含有比率が比較的大きく設定されることから、アノード触媒層と(A)層との接合性が得られにくい。そのため、(B)層をアノード触媒層側に配置することは、接合性向上の観点からより有益である。したがって、触媒層30がアノード触媒層であることがより好ましい。
 また、水電解装置では、一般的に、カソード触媒層は高分子電解質に対する触媒粒子の含有比率が比較的小さく設定されることから、カソード触媒層と(A)層との接合性の強度レベルは、アノード側ほど低くはならない。そのため、カソード触媒層側には、(B)層に代えて、粒子濃度が30質量%以上80質量%以下である単一の層を配置することによっても接合性を高めることができる。以下、カソード触媒層側において、(B)層に代えて用いられる単一の層を「(C)層」という。この場合、本実施の形態1における電解質膜1は、(B)層、(A)層および図示しない(C)層がこの順に積層された構成である。具体的には、図2において、触媒層30がアノード触媒層、触媒層40がカソード触媒層となり、カソード触媒層である触媒層40と(A)層10との間に、図示しない(C)層が配置された構成となる。
 この(C)層の粒子濃度は、40質量%以上75質量%以下がより好ましく、45質量%以上70質量%以下が特に好ましい。(C)層に含有させる粒子としては、炭素粒子が好ましい。(C)層に含有させられた炭素粒子は、カソードで副生成された過酸化物ラジカルを分解あるいは捕捉する効果が期待できる。これによって、過酸化物ラジカルから(A)層を保護する効果が期待できる。
 (実施の形態2)
 図3は、本発明の実施の形態2に係る電解質膜の一例を示す断面模式図である。本実施の形態2において、電解質膜2は、(A)層10の一方の面に(B)層20aが、その反対側の面に別の(B)層20bが、それぞれ積層された構成である。
 (B)層20aは、(A)層10側の界面領域21aと、(A)層10とは反対側の界面領域22aとを有する。(B)層20bは、(A)層10側の界面領域21bと、(A)層10とは反対側の界面領域22bとを有する。(B)層20a、20bは、図示しない粒子を含有しており、界面領域21a、21bにおける粒子濃度が粒子濃度(Y1)、界面領域22a、22bにおける粒子濃度が粒子濃度(Y2)である。ここで、区別のために、界面領域21a、21bにおける粒子濃度をそれぞれ(Y1-a)、(Y1-b)、界面領域22a、22bにおける粒子濃度をそれぞれ(Y2-a)、(Y2-b)とすると、(Y1-a)と(Y1-b)および(Y2-a)と(Y2-b)は、それぞれ、互いに同一であってもよいし、異なっていてもよい。この場合、粒子濃度(Y1)が、粒子濃度(Y2)よりも高いとは、(Y1-a)>(Y2-a)および/または(Y1-b)>(Y2-b)であることを意味する。
また図4は、実施の形態2の電解質膜の両面にそれぞれ触媒層が積層された触媒層付電解質膜(CCM)の一例を示す断面模式図である。
 CCM200は、電解質膜2の(B)層20a側にアノード触媒層50が、(B)層20b側にカソード触媒層60がそれぞれ積層された構成である。
 本実施の形態2において、(Y1)>(Y2)の関係は、少なくともアノード触媒層50側の(B)層20aにおいて満たしていることが好ましく、アノード触媒層50側の(B)層20aと、カソード触媒層60側の(B)層20bとの両方で満たしていることがより好ましい。すなわち、(Y1-a)>(Y2-a)であることが好ましく、(Y1-a)>(Y2-a)かつ(Y1-b)>(Y2-b)であることがより好ましい。
 アノード触媒層50側の(B)層20aにおける粒子濃度(Y2-a)は、カソード触媒層60側の(B)層20bにおける粒子濃度(Y2-b)よりも小さいことが好ましい。また、アノード触媒層50に隣接する(B)層20aにおける粒子濃度(Y2-a)が35%未満であり、カソード触媒層60に隣接する(B)層20bにおける粒子濃度(Y2-b)が45%未満であることが特に好ましい。
 以下、本発明に含まれる各実施の形態に共通する事項について詳細に説明する。
 [(A)層]
 (A)層は、高分子電解質を含有する。高分子電解質としては、フッ素系高分子電解質や炭化水素系高分子電解質が挙げられる。水電解性能の観点から、炭化水素系高分子電解質が好ましい。
 ここで、フッ素系高分子電解質とは、イオン性基を有するフッ素系ポリマーである。フッ素系ポリマーとは、ポリマー中のアルキル基および/またはアルキレン基の水素の大部分または全部がフッ素原子に置換されたものを意味する。フッ素系高分子電解質の代表例としては、ナフィオン(登録商標)(デュポン社製)、フレミオン(登録商標)(旭硝子社製)およびアシプレックス(登録商標)(旭化成社製)などの市販品を挙げることができる。
 炭化水素系高分子電解質とは、イオン性基を有する炭化水素系ポリマーである。炭化水素系ポリマーとしては、主鎖に芳香環を有する芳香族炭化水素系ポリマーが好ましい。ここで、芳香環は、炭化水素系芳香環だけでなく、ヘテロ環などを含んでいてもよい。また、芳香環ユニットと共に一部脂肪族系ユニットがポリマーを構成していてもよい。
 芳香族炭化水素系ポリマーの具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンから選択される構造を芳香環とともに主鎖に有するポリマーが挙げられる。なお、ここでいうポリスルホン、ポリエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有している構造の総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含む。炭化水素骨格は、これらの構造のうち複数の構造を有していてもよい。これらのなかでも、芳香族炭化水素系ポリマーとして特にポリエーテルケトン骨格を有するポリマー、すなわちポリエーテルケトン系ポリマーが最も好ましい。
 炭化水素系高分子電解質としては、イオン性基を含有するセグメント(A1)と、イオン性基を含有しないセグメント(A2)をそれぞれ1個以上有するブロックコポリマーが好ましい。ここで、セグメントとは、特定の性質を示す繰り返し単位からなる共重合体ポリマー鎖中の部分構造であって、分子量が2000以上のものを表すものとする。ブロックコポリマーを用いることで、ポリマーブレンドと比較して微細なドメインを有する共連続様の相分離構造を発現させることが可能となり、より優れた発電性能、物理的耐久性が達成できる。
 以下、イオン性基を含有するセグメント(A1)もしくはポリマーを「イオン性ブロック」、イオン性基を含有しないセグメント(A2)もしくはポリマーを「非イオン性ブロック」と表記することがある。なお、「イオン性基を含有しない」という記載は、当該セグメントもしくはポリマーが本発明の効果を阻害しない範囲でイオン性基を少量含んでいる態様を排除するものではない。
 高分子電解質が有するイオン性基は、プロトン交換能を有するイオン性基であればよい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基およびカルボン酸基から選ばれる官能基が好ましく用いられる。イオン性基はポリマー中に2種類以上含むことができる。中でも、高プロトン伝導度の点から、ポリマーはスルホン酸基、スルホンイミド基、硫酸基から選ばれる少なくとも1つを有することがより好ましく、原料コストの点からスルホン酸基を有することが最も好ましい。
 高分子電解質のイオン交換容量(IEC)は、プロトン伝導性と耐水性のバランスから、0.1meq/g以上、5.0meq/g以下が好ましい。IECは、1.4meq/g以上がより好ましく、2.0meq/g以上がさらに好ましい。またIECは、3.5meq/g以下がより好ましく、3.0meq/g以下がさらに好ましい。IECが0.1meq/gより小さい場合には、プロトン伝導性が不足する場合があり、5.0meq/gより大きい場合には、耐水性が不足する場合がある。
 ここで、IECとは、高分子電解質の単位乾燥重量当たりに導入されたイオン性基のモル量であり、この値が大きいほどイオン性基の導入量が多いことを示す。本発明においては、IECは、中和滴定法により求めた値と定義する。中和滴定によるIECの算出は、実施例第(2)項に記載の方法で行う。
 本発明においては、炭化水素系高分子電解質として芳香族炭化水素系ブロックコポリマーを用いることが特に好ましく、ポリエーテルケトン系ブロックコポリマーであることがより好ましい。特に、下記のようなイオン性基を含有する構成単位(S1)を含むセグメントと、イオン性基を含有しない構成単位(S2)を含むセグメントとを含有するポリエーテルケトン系ブロックコポリマーは特に好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(S1)中、Ar~Arは任意の2価のアリーレン基を表し、Arおよび/またはArはイオン性基を含有し、ArおよびArはイオン性基を含有しても含有しなくても良い。Ar~Arは任意に置換されていても良く、互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S1)または他の構成単位との結合部位を表す。
Figure JPOXMLDOC01-appb-C000002
 一般式(S2)中、Ar~Arは任意の2価のアリーレン基を表し、任意に置換されていても良いが、イオン性基を含有しない。Ar~Arは互いに独立して2種類以上のアリーレン基が用いられても良い。*は一般式(S2)または他の構成単位との結合部位を表す。
 ここで、Ar~Arとして好ましい2価のアリーレン基は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。ここで、「フェニレン基」としてはベンゼン環と他の構成単位との結合部位を有する箇所によりo-フェニレン基、m-フェニレン基、p-フェニレン基の3種類があり得るが、本明細書において特に限定しない場合はこれらの総称として用いる。「ナフチレン基」や「ビフェニレン基」など、その他の2価のアリーレン基についても同様である。Ar~Arは、好ましくはフェニレン基とイオン性基を含有するフェニレン基、最も好ましくはp-フェニレン基とイオン性基を含有するp-フェニレン基である。また、Ar~Arはイオン性基以外の基で置換されていてもよいが、無置換である方がプロトン伝導性、化学的安定性、物理的耐久性の点でより好ましい。
 また、十分な寸法安定性、機械強度、物理的耐久性、燃料遮断性、耐溶剤性を得るためには、高分子電解質は結晶性を有する芳香族炭化水素系ポリマーであることが好ましい。ここで、「結晶性を有する」とは昇温すると結晶化されうる結晶化可能な性質を有しているか、あるいは既に結晶化していることを意味する。
 昇温すると結晶化されうる結晶化可能な性質の有無の確認は、製膜後に示差走査熱量分析法(DSC)によって測定される結晶化熱量が0.1J/g以上であることによって確認できる。既に結晶化していることは、広角X線回折によって測定される結晶化度が0.5%以上であることによって確認できる。すなわち、本発明においては、製膜後に示差走査熱量分析法(DSC)によって測定される結晶化熱量が0.1J/g以上であるか、もしくは、広角X線回折によって測定される結晶化度が0.5%以上であることが好ましい。
 結晶性を有する芳香族炭化水素系ポリマーは、電解質膜の加工性が不良である場合がある。その場合、芳香族炭化水素系ポリマーに保護基を導入し、一時的に結晶性を抑制してもよい。具体的には、保護基を導入した状態で製膜し、その後に脱保護することで、結晶性を有する芳香族炭化水素系ポリマーを本発明において高分子電解質として用いることができる。
 本発明の実施の形態に係る電解質膜を水電解装置に適用する場合、水電解性能を高めるという観点から、(A)層は、高分子電解質として炭化水素系高分子電解質を含有することが好ましい。上記観点から、(A)層における炭化水素系高分子電解質の含有量は、(A)層の高分子電解質の全質量に対して60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。
 (A)層は、多孔質基材で補強されていてもよい。多孔質基材の形態としては、織布、不織布、多孔質フィルム、メッシュ織物等が挙げられる。多孔質基材の材質としては、炭化水素系多孔質基材やフッ素系多孔質基材など公知のものを用いることができる。
 (A)層は、本発明の効果を阻害しない範囲で各種添加剤、例えば、界面活性剤、ラジカル捕捉剤、過酸化水素分解剤、非電解質ポリマー、エラストマー、フィラーなどを含有することができる。
 本発明の電解質膜を水電解装置に適用する場合、(A)層の厚みは比較的大きい方が好ましく、具体的には、30μm以上が好ましく、50μm以上がより好ましく、70μm以上が特に好ましい。また、250μm以下が好ましく、200μm以下がより好ましく、175μm以下が特に好ましい。
 [(B)層]
 (B)層は、(A)層と触媒層との接合性を高める機能、すなわち接合層としての機能を有する。(B)層は、(A)層との界面領域と(A)層とは反対側の界面領域とを有し、これら2つの界面領域における粒子濃度が異なる。このような(B)層は、単一層で構成されていてもよく、2層以上の積層構成であってもよい。
 本発明の実施の形態に係る電解質膜は、(B)層を有することで、高分子電解質膜と触媒層との接合性を高めることができる。この接合性が高まると、電解質膜を水電解装置に適用したときに、その運転中に電解質膜と触媒層とが剥離したり密着性が低下したりすることが抑制される。その結果、水電解装置のプロトン伝導性が低下するといったことが抑制される。したがって、水電解装置の運転電圧を長期間上昇させずに保てる等、水電解装置の耐久性が向上する。
 (B)層は、さらにポリマーを含有することが好ましい。(B)層がポリマーを含有することによって、製膜性および膜強度を向上させることができる。
 (B)層が単一層である場合、例えば、水平載置あるいは水平搬送される(A)層上に、粒子とポリマーとを含む1つの塗液を塗布し乾燥する過程において、(A)層側の粒子密度を高める操作を施すことによって、粒子濃度(Y2)に対して粒子濃度(Y1)を高くすることができる。上記操作としては、例えば、ポリマーよりも十分に比重が大きい粒子を用い、塗液粘度を比較的低くし、乾燥速度を遅くして、粒子が沈降しやすいようにする方法、あるいは、粒子とポリマーとを相分離させる方法などが挙げられる。上記の相分離させる方法としては、例えば、粒子と、表面張力が粒子より十分に低く、粒子と非相溶であるポリマーを用い、比較的粒子と相溶性の高い溶媒を用いることにより、乾燥中における相分離時に空気界面にポリマーを偏在しやすいようにする方法などが挙げられる。
 (B)層は積層構成であることが好ましい。(B)層を積層構成にすることによって、粒子濃度(Y1)および粒子濃度(Y2)を容易に制御することができる。例えば、(A)層上に、粒子濃度が互いに異なる複数種の塗液を塗布することで、層によって粒子密度が異なる積層構成の(B)層が形成される。製造方法の詳細は後述する。(B)層がn層からなる積層構成である場合は、(A)層側から順に(B-1)層、(B-2)層、・・・(B-n)層と呼ぶ。(B)層が積層構成である場合、(A)層に隣接する(B-1)層の粒子濃度が最も高いことが好ましい。
 (B)層が積層構成である場合、2層構成および3層構成が好ましく、2層構成がより好ましい。2層構成である場合、(A)層に隣接する層が(B-1)層、(A)層と反対側にある層が(B-2)層となる。以下、2層構成の形態について説明するが、本発明はこれらに限定されない。
 2層構成における(B-1)層は、(A)層との界面領域を含む層である。すなわち、(B-1)層が(A)層との界面領域における粒子濃度(Y1)を与える層である。(B-2)層は、(A)層とは反対側の界面領域を含む層である。すなわち、(B-2)層が(A)層とは反対側の界面領域における粒子濃度(Y2)を与える層である。
 粒子濃度(Y2)は0%を含むが、この場合の(B-2)層は粒子を含有しない構成となる。したがって、(B)層が2層構成の場合、(B-2)層にはこのように粒子を含有しない形態が含まれるが、このような場合であっても、(B-1)層には粒子が含まれているので「(B)層が粒子を含む」に該当する。
 (B-1)層の粒子濃度は、45質量%以上であることが好ましく、50質量%以上であることがより好ましく、55質量%以上であることが特に好ましい。(B-2)層の粒子濃度は、45質量%未満がより好ましく、38%未満がさらに好ましく、35%未満が特に好ましい。
 (B-1)層および(B-2)層は、例えば、上記のような粒子濃度となるようにそれぞれ調製された塗液を一般的な条件で均一に塗布することによって形成できる。このとき、(B-1)層および(B-2)層を形成する塗液中の粒子濃度(全固形分質量に対する粒子質量の割合)が、それぞれ(B-1)層および(B-2)層の粒子濃度となる。つまり、塗液中の粒子濃度をそれぞれ制御することによって、(B-1)層および(B-2)層に所望の粒子濃度を与えることができる。それによって、(A)層との界面領域における粒子濃度(Y1)を、(B)層の(A)層とは反対側の界面領域における粒子濃度(Y2)よりも高くすることができる。
 (B)層に含まれる粒子としては、例えば、無機粒子、有機粒子、有機・無機複合粒子などが挙げられる。
 無機粒子としては、例えば、炭素粒子、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化セリウム、炭酸カルシウム、ゼオライト、雲母、絹雲母、セリサイト、カオリンクレー、カオリン、マイカ、タルク、モンモリロナイトなどが挙げられる。
 上記した無機粒子の中でも、酸やアルカリに対して比較的安定であることから、炭素粒子が好ましい。炭素粒子としては、例えば、カーボンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンナノファイバー、フラーレンなどの粒子が挙げられる。
 有機粒子としては、各種樹脂粒子が挙げられる。樹脂粒子を構成する樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、
ポリエステル系樹脂、ポリフェニレンサルファイド系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、エチレン-(メタ)アクリル酸エステル系共重合体、ABS樹脂、フッ素系樹脂、エポキシ系樹脂、フェノール系樹脂、メラミン系樹脂、グアナミン樹脂、ポリアゾール系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルケトン系樹脂などの熱可塑性樹脂や熱硬化性樹脂が挙げられる。
 有機・無機複合粒子としては、例えば、アクリル・シリカ複合粒子、メラミン・シリカ複合粒子、ベンゾグアナミン・シリカ複合粒子、ベンゾグアナミン・メラミン・シリカ複合粒子、ポリスチレン・シリカ複合粒子、シルセスキオキサン系有機無機ハイブリッド粒子、有機物被覆無機ナノ粒子などが挙げられる。
 上記粒子の中でも、無機粒子が好ましく、炭素粒子がより好ましく、カーボンブラックが特に好ましい。
 粒子の平均粒子径は、接合に有効な空隙形成、分散性および製膜性の観点から、5nm以上が好ましく、10nm以上がより好ましく、20nm以上が特に好ましい。また、1,000nm以下が好ましく、500nm以下がより好ましく、200nm以下が特に好ましい。
 (B)層にポリマーを含有させる場合、ポリマーとして、非イオン性ポリマーやイオン性ポリマーを用いることができる。これらのポリマーはそれぞれ単独で用いてもよいし、複数のポリマーを併用してもよい。
 非イオン性ポリマーとしては、フッ素系ポリマーや炭化水素系ポリマーが挙げられる。非イオン性フッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリ(ビニリデンフルオリド)、ビニリデンフルオリドとヘキサフルオロプロピレンとのコポリマー、ビニリデンフルオリドとトリフルオロエチレンとのコポリマー、ビニリデンフルオリドとテトラフルオロエチレンとのコポリマー、ポリ(ビニリデンフルオジド)などが挙げられる。
 非イオン性炭化水素系ポリマーとしては、例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンオキシド、ポリエーテルホスフィンオキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホン、ポリビニルアルコールなどが挙げられる。
 イオン性ポリマーとしては、イオン性フッ素系ポリマーやイオン性炭化水素系ポリマーが挙げられ、これらのポリマーとしては前述のフッ素系高分子電解質や炭化水素系高分子電解質の例として挙げられたポリマーが挙げられる。
 これらの中でも、(B)層に高電位環境におけるバリアー機能を付与するという観点からは非イオン性またはイオン性のフッ素系ポリマーが好ましく、またプロトン伝導性を高めるという観点からは、イオン性炭化水素系ポリマーおよび、イオン性フッ素系ポリマーが好ましい。すなわち、(B)層にポリマーを含有させる場合は、上記観点から、イオン性フッ素系ポリマーが最も好ましい。ここで、イオン性フッ素系ポリマーとしては、前述のフッ素系高分子電解質の例として挙げられたポリマーを用いることが好ましい。
 (B)層が積層構成である場合、各層に含有させる粒子およびポリマーは、それぞれ同種であっても異種であってもよいが、(B)層内での接合性の観点から、同種であることが好ましい。
 例えば、(B)層が、粒子濃度(Y1)を与える(B-1)層と粒子濃度(Y2)を与える(B-2)層との2層からなり、(B-1)層および(B-2)層がともに粒子を含有する場合、すなわち、粒子濃度(Y1)と粒子濃度(Y2)との比率(Y2/Y1)が0.00よりも大きい場合、(B-1)層と(B-2)層がともに同種の粒子を含有することが好ましい。係る粒子としては、炭素粒子が好ましい。
 (B)層は、本発明の効果を阻害しない範囲で各種添加剤、例えば、界面活性剤、ラジカル捕捉剤、過酸化水素分解剤、非電解質ポリマー、エラストマー、などを含有することができる。
 (B)層の厚みは、接合機能を高めるという観点から、0.5μm以上が好ましく、0.8μm以上がより好ましく、1μm以上が特に好ましい。また、良好なプロトン伝導性を確保するという観点から、20μm以下が好ましく、15μm以下がより好ましく、10μm以下が特に好ましい。
 特に、(A)層の厚みが30μm以上250μm以下であり、(B)層の厚みが0.5μm以上20μm以下であることが好ましい。
 (B)層が積層構成である場合、(B)層を構成する各層の厚みは同一であってもよく、異なっていてもよい。例えば、(B)層が2層構成の場合、(B-1)層の厚みは、0.25μm~10μmの範囲が好ましく、0.4μm~7.5μmの範囲がより好ましく、0.5μm~5μmの範囲が特に好ましい。(B-2)層の厚みは、0.25μm~10μmの範囲が好ましく、0.4μm~7.5μmの範囲がより好ましく、0.5μm~5μmの範囲が特に好ましい。(B)層が2層構成の場合、(B-1)層および(B-2)層の厚みは、それぞれ、(B)層全体の厚みの10%以上であることが好ましい。なお、層の厚みは、接触式膜厚測定法や、実施例に記載したSEM観察による測定によって測定することができる。
 [電解質膜の製造方法]
 以下、電解質膜の製造方法について説明するが、本発明はこれらの製造方法に限定されない。
 まず、(A)層の製造方法について説明する。(A)層は、例えば、塗布方式や溶融押し出し方式によって製膜することができる。これらの中でも、塗布方式が好ましい。以下、塗布方式を例に挙げて説明するが、本発明はこれらに限定されない。
 (A)層は、例えば、ポリエチレンテレフタレート(PET)フィルムなどの製膜基材上に高分子電解質溶液を塗布、乾燥することによって製造することができる。
 (A)層は、多孔質基材で補強された、いわゆる、「複合膜」であってもよい。この複合膜は、高分子電解質を含浸させた多孔質基材の片面もしくは両面に高分子電解質層を有することが好ましい。上記複合膜の製造方法としては、例えば、製膜基材上に塗布された高分子電解質溶液の上に多孔質基材を貼り合わせて含浸させ、さらに、多孔質基材上に高分子電解質溶液を塗布し、乾燥する方法が挙げられる。
 また、高分子電解質としては、イオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成している状態のものを用いることもできる。この場合は、製膜基材上に電解質膜を形成した後、アルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換するための酸処理を施すことが好ましい。ここで、酸処理は公知の方法を採用することができる。
 本発明の実施の形態に係る電解質膜は、上記のようにして製造された(A)層に、(B)層が積層されて製造される。積層方法としては、特に限定されるものではないが、塗布方式、転写方式、およびこれらを組み合わせた方式を採用することができる。
 塗布方式は、製膜基材上に形成された(A)層に(B)層用塗液を塗布、乾燥して積層する方法である。転写方式は、転写用基材に(B)層が積層された転写シートと、製膜基材上に形成された(A)層とを加熱プレスして、(A)層に(B)層を転写する方式である。
 (B)層が積層構成の場合、製膜基材上に形成された(A)層上に粒子濃度が互いに異なる複数種の塗液を順に塗布する方式を採用できる。具体的には、粒子濃度が高い(B-1)層用塗液を塗布し、未乾燥あるいは乾燥後に粒子濃度が低い(B-2)層用塗液を塗布、乾燥する方式を採用できる。また、粒子濃度が互いに異なる2つの塗液を用意し、多層ダイや多層スライドコーターにて2つの塗液を同時に(A)層上に塗布し乾燥する方式も採用できる。
 転写方式としては、転写用基材上に(B-2)層と(B-1)層とが順次積層された(B)層転写シートと、製膜基材上に形成された(A)層とを加熱プレスして、(A)層上に(B-1)層と(B-2)層を転写する方式を採用できる。
 上記方式の中でも、(A)層との接合性が高く界面抵抗を抑制できることから塗布方式がより好ましい。塗布方式は、目的の形状に塗工できる方法であれば特に限定されることはなく、例えば、ダイコート法、スクリーン印刷法、スプレー法、グラビアコート法、スライドコート法などを用いることができる。
 (A)層の両面に(B)層が積層された電解質膜の製造方法についても、上記したような塗布方式、転写方式、および塗布方式と転写方式との併用方式を採用することができる。なお、以下の製造方法において、(A)層の一方の面に積層される(B)層を第1(B)層、(A)層の他方の面に積層される(B)層を第2(B)層と呼ぶ。
 塗布方式を用いた製造方法としては、例えば、製膜基材上に形成された(A)層上に第1(B)層用塗液を塗布、乾燥して積層する工程(1-1)、製膜基材を剥離して(A)層の第1(B)層とは反対側の表面を露出させる工程(1-2)、露出させた(A)層上に第2(B)層用塗液を塗布、乾燥して積層する工程(1-3)、を有する製造方法が挙げられる。上記工程(1-1)と工程(1-3)との間に、第1(B)層に保護基材を積層する工程を設けることができる。保護基材としては、製膜基材や転写用基材と同様なもの、あるいは樹脂フィルムに微粘着層が積層されたもの、を用いることができる。
 転写方式を用いた製造方法としては、例えば、転写用基材に第1(B)層が積層された第1(B層)転写シートと転写用基材に第2(B)層が積層された第2(B)層転写シートをそれぞれ得る工程(2-1)、製膜基材上に形成された(A)層から製膜基材を剥離する工程(2-2)、第1(B)層転写シートと第2(B)層転写シートとの間に(A)層を挟んで加熱プレスする工程(2-3)、を有する製造方法が挙げられる。
 塗布方式と転写方式との併用方式を用いた製造方法としては、例えば、製膜基材上に形成された(A)層上に第1(B)層用塗液を塗布、乾燥して積層する工程(3-1)、転写用基材に第2(B)層が積層された第2(B)層転写シートを得る工程(3-2)、製膜基材上に形成された(A)層から製膜基材を剥離して(A)層の第1(B)層とは反対側の表面を露出させる工程(3-3)、露出させた(A)層上に第2(B)層転写シートを接触させて加熱プレスする工程(3-4)、を有する製造方法が挙げられる。上記工程(3-1)と工程(3-4)との間に、第1(B)層に保護基材を積層する工程を設けることができる。
 上記併用方式を用いた製造方法の変形例として、第1(B)層を転写方式で積層し、第2(B)層を塗布方式で積層する製造方法が挙げられる。
 上記製造方法において、第1(B)層および第2(B)層は、どちらか一方が(B-1)層と(B-2)層との積層構成であってもよいし、両層とも積層構成であってもよい。
 また、CCMの製造工程において、(A)層に、(B)層と触媒層とを一緒に積層する方式も採用することができる。詳細は後述する。
 (B)層用塗液を作製する方法は、目的の塗液を得られる方法であれば特に限定されることはなく、例えば、スターラーチップによる攪拌、ホモジナイザーによる解砕、自公転ミキサーによる均質化、ビーズミルもしくはボールミルによる分散などを用いることが出来る。
 (B)層用塗液に含まれる溶媒は、粒子およびポリマーを分散する溶媒であれば特に限定されることはないが、加熱により蒸発させて除去しやすい溶媒が好ましい。例えば、沸点が140℃以下の溶媒であることが好ましい。(B)層用塗液の溶媒としては、具体的には、水、メタノール、エタノール、1-プロパノ-ル、2-プロパノ-ル、1-ブタノ-ル、2-ブタノ-ル、イソブチルアルコール、tert-ブチルアルコール、ペンタノ-ル、などのアルコール類、アセトン、メチルエチルケトン、ペンタノン、ヘキサノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテルなどのエーテル類、酢酸メチル、酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類、その他ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジアセトンアルコール、1-メトキシ-2-プロパノールなどを一種または二種以上混合したものを用いることができる。
 (A)層に(B)層用塗液を塗布した後は、必要に応じて乾燥工程を経ることで、(B)層を形成することができる。乾燥工程では、塗膜を加熱し、溶媒を蒸発させる。加熱手段は、固定された高分子電解質膜を加熱できるものであれば特に限定されることはないが、例えば、オーブンやヒーター等の加熱装置、赤外線、温風等を用いて高分子電解質膜の近傍の温度を制御する装置等を用いることができる。また、固定手段を介して高分子電解質膜に熱を伝導してもよい。加熱の温度範囲は、溶媒の沸点に近く、高分子電解質膜のガラス転移温度以下であることが好ましい。また、加熱せず、減圧や気流の導入のみで溶媒を除去することもでき、さらには乾燥の工程を省略することも可能である。
 (B)層転写シートは、転写用基材上に(B)層用塗液を塗布し、必要に応じて乾燥工程を経ることで作製することができる。乾燥工程は、前述の方法を用いることができる。続いて、(A)層と(B)層転写シートの(B)層塗布面とを重ね合わせてホットプレスすることで(A)層に(B)層を積層することができる。ホットプレスの温度や圧力は、(A)層の厚さ、水分率、(B)層の厚さや転写用基材の種類により適宜選択すればよいが、工業的生産性や高分子電解質の熱分解抑制などの観点から120℃~250℃の範囲で行うことが好ましい。具体的には、(B)層に含有されるポリマーのガラス転移温度より大きく、かつ200℃以下で行うことがより好ましい。ホットプレスにおける加圧は、電解質膜保護の観点から可能な限り弱い方が好ましく、例えば、平板プレスの場合、2~10MPaの範囲が好ましい。
 転写用基材としては、(A)層の製膜時に使用する基材と同様の樹脂フィルムや基板が使用できるほか、ポリテトラフルオロエチレン、エチレンーテトラフルオロエチレン共重合体、エチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、ポリフッ化ビニリデン、ポリイミド、ポリフェニレンサルファイド等のフッ素樹脂からなるフッ素樹脂フィルムを用いることができる。また、転写用基材は、離型性を高めるために樹脂フィルムなどの基材にフッ素系離型剤などの公知の離型剤を含む離型層を積層したものであってもよい。本発明に用いられる転写用基材としては、耐熱性、耐溶剤性に加えて、化学的安定性の点から、ポリイミド、ポリフェニレンサルファイド、フッ素樹脂フィルムが好ましく、離型性の点から、フッ素樹脂フィルムがさらに好ましい。
 [触媒層付電解質膜(CCM)]
 本発明の実施の形態に係る電解質膜は、その片面もしくは両面に触媒層を配置してCCMとすることができる。すなわち、触媒層付電解質膜は、電解質膜の片面もしくは両面に触媒層を備える。
 [触媒層]
 触媒層は、一般的には、触媒粒子と高分子電解質を含む層である。触媒層は、高分子電解質溶液に触媒粒子を添加した触媒層用塗液を塗布方式または転写方式により電解質膜上に積層して形成することができる。高分子電解質としては、前述したような炭化水素系高分子電解質やフッ素系高分子電解質を用いることができる。ガス拡散性や化学的耐久性の観点から、フッ素系高分子電解質が好ましく、パーフルオロカーボンスルホン酸系ポリマーがさらに好ましい。また、(A)層に含まれる高分子電解質と触媒層に含まれる高分子電解質とが互いに異種であることが好ましい。また、(B)層が触媒層と同種のポリマーを含むことが好ましい。また、(A)層が炭化水素系高分子電解質を含み、触媒層がフッ素系高分子電解質を含み、(B)層が非イオン性またはイオン性のフッ素系ポリマーを含むことがより好ましく、(B)層がイオン性フッ素系ポリマーを含有することが特に好ましい。
  触媒粒子としては、一般的に、白金族元素(白金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)、鉄、鉛、金、銀、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属又はこれらの合金、又は酸化物、複酸化物等が用いられ、また、上記金属を担持した炭素粒子(触媒担持炭素粒子)も一般的に用いられる。上記炭素粒子としては、微粒子状で導電性を有し、触媒との反応により腐食、劣化しないものであれば特に限定されることはないが、カーボンブラック、グラファイト、活性炭、カーボンファイバー、カーボンナノチューブ、およびフラーレン粒子が好ましく使用できる。
 触媒層における、触媒粒子(触媒担持粒子を含む)の含有量(C)と高分子電解質の含有量(I)との質量比(C/I)は、1.0~15.0の範囲が一般的であり、1.5~13.0の範囲が好ましい。
 水電解装置に適用される場合、アノード触媒層における質量比(C/I)は、4.0以上が好ましく、5.0以上がより好ましく、7.0以上が特に好ましい。また、15.0以下好ましく、14.0以下がより好ましく、13.0以下が特に好ましい。一方、カソード触媒層における質量比(C/I)は、4.0未満が好ましく、3.5未満がより好ましく、3.0未満が特に好ましい。また、1.0以上が好ましく、1.5以上がより好ましく、1.7以上が特に好ましい。
 触媒層の厚みは、ガス拡散性や耐久性の観点から、0.1μm以上であることが好ましく0.5μm以上であることがより好ましく1μm以上であることが特に好ましい。また、500μm以下であることが好ましく、100μm以下であることがより好ましく、30μm以下であることが特に好ましい。
 アノード触媒層とカソード触媒層とは同一材料で構成されていてもよいし、異なる材料で構成されていてもよい。CCMを水電解装置に適用する場合、アノード触媒層は、触媒粒子として水または水酸化物を原料とし酸素を生成する触媒であればよい。かかる観点から、アノード触媒層は、イリジウム、ルテニウム、ロジウム、パラジウムなどの貴金属あるいはそれらの酸化物を用いることが好ましい。
 これらの触媒は、粒子として用いられることが好ましい。このとき、触媒粒子は単独粒子の状態で使用してもよいし、酸化チタンなどに担持した触媒担持粒子として使用してもよい。
 カソード触媒層は、触媒粒子としてプロトンまたは水を原料とし水素を生成する触媒であればよい。かかる観点から、カソード触媒層は、白金を炭素粒子に担持させた白金担持炭素粒子を用いることが好ましい。
 水電解装置では、カソードで生成した水素が電解質膜を透過してアノード側に到達するという「クロスオーバー」が発生することがある。クロスオーバーが発生すると、アノードで生成した酸素中に水素が混入することによって、爆発の危険性が高くなる。このような危険を回避するための一つの形態として、アノード触媒層は、イリジウム元素と、白金、ルテニウム、ロジウム、パラジウム、金、銀およびオスミウムからなる群より選択される少なくとも1種の貴金属元素とを含むことが好ましい。以下、「イリジウム以外の貴金属」を「他の貴金属」ということがある。他の貴金属としては、白金およびパラジウムが好ましく、白金が特に好ましい。
 アノード触媒層にイリジウム元素および他の貴金属元素を含有させる形態としては、特に限定されず、公知の形態を用いることができる。例えば、(I)イリジウム元素を含む粒子(以下、「イリジウム系粒子」という)と他の貴金属元素を含む粒子(以下、「他の貴金属系粒子」という)とを含有させる形態、(II)イリジウムと他の貴金属との合金粒子を用いる形態、(III)イリジウムおよび他の貴金属をスパッタリングや蒸着によって積層する形態、などが挙げられる。
 イリジウム元素は、アノード触媒層中にイリジウム系粒子の形態で含まれることが好ましい。また、他の貴金属元素は、アノード触媒層中に当該他の貴金属元素系粒子の形態で含まれることが好ましい。その観点から、上記形態の中でも、(I)の形態がより好ましい。すなわち、アノード触媒層は、イリジウム元素を含む粒子と、他の貴金属元素を含む粒子とを含むことが好ましい。
 上記(I)の形態として、より具体的には、(I-1)イリジウム系粒子および他の貴金属系粒子をそれぞれ単体で含有させる形態、(I-2)酸化チタンや酸化スズなどの金属酸化物からなる担体に、イリジウム系粒子および他の貴金属系粒子を一緒にまたは別々に担持させた触媒担持粒子を用いる形態、(I-3)イリジウム系粒子の表面の一部もしくは全部を他の貴金属系粒子で被覆した、いわゆるコア・シェル粒子や複合粒子を用いる形態、などが挙げられる。
 上記(I-1)の形態の場合、第1の層が一層構成でありイリジウム系粒子と他の貴金属系粒子とが混在する形態、第1の層が積層構成でありイリジウム系粒子含有層と他の貴金属系粒子含有層とがそれぞれ含まれる形態、が挙げられるが、前者が好ましい。
 イリジウム系粒子としては、イリジウム粒子、酸化イリジウム粒子が挙げられる。
 イリジウム元素は、高電位下での安定性の観点から、酸化イリジウムの形態でアノード触媒層中に含まれることが好ましい。すなわち、アノード触媒層は、酸化イリジウムを含むことが好ましい。
 他の貴金属系粒子としては、白金粒子やパラジウム粒子が好ましく、白金粒子が特に好ましい。他の貴金属元素を含む粒子としては、担体に担持されていない状態のもの、いわゆる、「~ブラック(黒)」と称される粒子を用いることができる。例えば、白金ブラック(黒)、パラジウムブラック(黒)などが挙げられる。また、他の貴金属元素を含む粒子としては、上記したように、酸化チタンや酸化スズなどの金属酸化物からなる担体に他の貴金属元素を含む粒子が担持された触媒担持粒子を用いることができる。
 触媒担持粒子の担体として、カーボンブラックなどの炭素粒子が一般的に知られているが、水電解装置におけるアノードは高電位環境にあり、炭素粒子は電気化学的酸化に対する耐性が懸念されるために、アノード触媒層には使用しないことが好ましい。
 イリジウム系粒子および他の貴金属系粒子は、公知の方法で合成もしくは製造することができる。また、市販品を使用することができる。市販品としては、例えば、酸化イリジウム粒子として「Umicore製のIrO触媒Elyst」、「徳力本店製の酸化イリジウム粉末」、白金ブラックとして「ジョンソン・マッセイ製のHISPEC1000」、「田中貴金属工業製のTEC90300、同TEC90400」、「BASF(ビーエーエスエフ)製PtBlack」、 「徳力本店製の白金黒」、「石福金属興業製の白金黒」、パラジウムブラックとして「添川理化学製のパラジウム黒」、「Alfa Aesar製のPd-black」、「和光純薬工業製のPdblack」などが入手可能である。また、これらの粒子は、所望の粒子径、例えば、1~100nm程度となるように粉砕して使用することができる。
 アノード触媒層におけるイリジウム元素の質量(Ir質量)と他の貴金属元素の質量(NM質量)に関しては、良好な水電解性能と確保するという観点からはIr質量が多い方が好ましく、一方、酸素ガス中の水素濃度の低減の観点からはNM質量が多い方が好ましい。これら効果を適切にバランスさせるという観点から、Ir質量とNM質量との比率(Ir質量:NM質量)は、51:49~99:1の範囲が好ましく、55:45~95:5の範囲がより好ましく、60:40~92:8の範囲がさらに好ましく、65:35~90:10の範囲が特に好ましい。
 ここで、Ir質量およびNM質量の含有比率は、触媒層の断面画像から電子線マイクロアナライザー(EPMA)で分析を行い各元素の質量比率を測定することで算出可能である。
 アノード触媒層において、単位面積当たりのイリジウム元素の質量は、0.2~2.0mg/cmの範囲が好ましく、0.4~1.5mg/cmの範囲がより好ましく、0.6~1.3mg/cmの範囲が特に好ましい。
 アノード触媒層において、他の貴金属元素の単位面積当たりの質量は、上記の単位面積当たりのイリジウム元素の質量に基づいて、上記比率(Ir質量:NM質量)の範囲内で適宜設定することが好ましい。
 アノード触媒層が触媒として、イリジウムと他の貴金属とを含有する形態において、アノード触媒層側に配置される電解質膜の(B)層は、フッ素系高分子電解質を含有することが好ましい。これらの組み合わせによって、アノードで生成された酸素ガス中の水素ガス濃度を大きく低下させることができる。
 [CCMの製造方法]
 本発明の実施の形態に係るCCMは、電解質膜に触媒層が積層されて製造される。触媒層の積層方法としては、特に限定されるものではないが、塗布方式、転写方式、およびこれらを組み合わせた方式を採用することができる。塗布方式は、電解質膜に触媒層用塗液を塗布、乾燥して積層する方式である。転写方式は、転写用基材に触媒層が積層された触媒層転写シートと電解質膜とを加熱プレスして積層する方式である。これらの中でも、転写方式が好ましい。触媒層転写シートに用いられる転写用基材としては、前述と同様の樹脂フィルムや基板を使用できる。
 以下、転写方式を使用したCCMの製造方法について、いくつかの製造方法を例示して説明するが、本発明はこれらの製造方法に限定されない。
 一つのCCM製造方法(I)として、(A)層に(B)層が積層された電解質膜を得る工程と、転写用基材に触媒層が積層された触媒層転写シートを得る工程と、上記電解質膜の(B)層と上記転写シートの触媒層とを対向接触させて加熱プレスする工程と、を有する製造方法を採用することができる。
 また、他のCCM製造方法として、(B)層と触媒層とを一緒に、(A)層に転写する製造方法を採用することができる。係るCCM製造方法(II)として、(A)層を形成する工程と、転写用基材に触媒層と(B)層とが順次積層された触媒層/(B)層転写シートを得る工程と、上記(A)層と上記転写シートの(B)層とを対向接触させて加熱プレスする工程と、を有する製造方法を採用することができる。
 上記CCM製造方法(II)で用いられる触媒層/(B)層転写シートは、本発明の実施の形態に係るCCMを得るための一つの部材として有用である。すなわち、本発明の実施の形態に係るCCMを得るための一つの部材は、例えば、転写用基材に触媒層と(B)層とが順次積層された、触媒層/(B)層転写シートからなる。
 また、上記CCM製造方法(II)において、(B)層が、粒子濃度(Y1)を与える(B-1)層と粒子濃度(Y2)を与える(B-2)層との2層構成からなる場合、触媒層/(B)層転写シートとして、転写用基材に触媒層と(B-2)層と(B-1)層とが順次積層された、触媒層/(B-2)層/(B-1)層転写シートを用いることができる。この転写シートは、本発明の実施の形態に係るCCMを得るための一つの部材として有用である。すなわち、本発明の実施の形態に係るCCMを得るための一つの部材は、例えば、転写用基材に触媒層と(B-2)層と(B-1)層とが順次積層された、触媒層/(B-2)層/(B-1)層転写シートからなる。
 また、(B)層が2層構成からなる場合の他のCCM製造方法(III)として、(A)層に(B-1)層が積層された積層体を得る工程と、転写用基材に触媒層と(B-2)層とが順次積層された触媒層/(B-2)層転写シートを得る工程と、上記積層体の(B-1)層と上記転写シートの(B-2)層とを対向接触させて加熱プレスする工程と、を有する製造方法を採用することができる。
 上記CCM製造方法(III)で用いられる触媒層/(B-2)層転写シートは、本発明の実施の形態に係るCCMを得るための一つの部材として有用である。すなわち、本発明の実施の形態に係るCCMを得るための一つの部材は、例えば、転写用基材に触媒層と(B-2)層とが順次積層された触媒層/(B-2)層転写シートからなる。
 上記CCM製造方法(II)および(III)に用いられる転写シート、すなわち、CCMを得るための部材は、例えば、転写用基材に触媒層用塗液を塗布し、未乾燥あるいは乾燥後に、(B)層用塗液を塗布、乾燥することで製造することができる。また、多層ダイや多層スライドコーターを用いて触媒層用塗液と(B)層用塗液を同時に転写用基材に塗布し乾燥する方式も採用できる。塗布方式は、目的の形状に塗工できる方法であれば特に限定されることはなく、例えば、ダイコート法、スクリーン印刷法、スプレー法、グラビアコート法、スライドコート法などを用いることができる。
 上記CCM製造方法において、加熱プレスの温度や圧力は、(A)層の厚さ、水分率、(B)層および触媒層の厚さや転写用基材の種類により適宜選択すればよいが、工業的生産性や高分子電解質の熱分解抑制などの観点から120℃~250℃の範囲で行うことが好ましい。具体的には、(B)層に含有されるポリマーのガラス転移温度より大きく、かつ200℃以下で行うことがより好ましい。加熱プレスにおける圧力は、電解質膜保護の観点から可能な限り弱い方が好ましく、例えば、平板プレスの場合は2~10MPaの範囲が好ましい。
 [膜電極接合体]
 膜電極接合体は、上記CCMと、その両面に配置されるガス拡散層(ガス拡散電極)とを含む。具体的には、CCMのアノード触媒層側にアノードガス拡散層を、カソード触媒層側にカソードガス拡散層を、それぞれ配置・接合したものである。
 ガス拡散層は、一般に、ガス透過性および電子伝導性を有する部材で構成されており、例えば、カーボン多孔質体や金属多孔質体が挙げられる。カーボン多孔質体としては、カーボンペーパー、カーボンクロス、カーボンメッシュ、カーボン不織布等が挙げられる。金属多孔質体としては、金属メッシュ、発泡金属、金属織物、金属焼結体、金属不織布等が挙げられる。この金属としては、例えば、チタン、アルミニウム、銅、ニッケル、ニッケル-クロム合金、銅およびその合金、銀、アルミ合金、亜鉛合金、鉛合金、チタン、ニオブ、タンタル、鉄、ステンレス、金、白金等が挙げられる。
 ガス拡散層には、水の滞留によるガス拡散・透過性の低下を防ぐための撥水処理や、水の排出路を形成するための部分的撥水処理および部分的親水処理や、抵抗を下げるための炭素粉末の添加等を行うこともできる。また、ガス拡散層には、CCM側に、少なくとも無機導電性物質と疎水性ポリマーを含む導電性中間層を設けることもできる。特に、ガス拡散層が空隙率の大きい炭素繊維織物や不織布で構成されている場合、導電性中間層を設けることで、触媒溶液がガス拡散層にしみ込むことによる性能低下を抑えることができる。
 ガス拡散層の厚みは、50μm以上が好ましく、100μm以上がより好ましく、150μm以上が特に好ましい。また、1,000μm以下が好ましく、700μm以下がより好ましく、500μm以下が特に好ましい。
 アノードガス拡散層とカソードガス拡散層とは同一材料で構成されていてもよいし、異なる材料で構成されていてもよい。膜電極接合体を水電解式水素発生装置に適用する場合は、アノードガス拡散層とカソードガス拡散層とは異なる材料で構成されていることが好ましい。例えば、アノードガス拡散層は金属多孔質体で構成され、カソードガス拡散層はカーボン多孔質体で構成されることが好ましい。
 [適用例]
 本発明の実施の形態に係る電解質膜、該電解質膜を用いたCCMおよび膜電極接合体は、例えば、電気化学用途に適用することができる。電気化学用途としては、例えば、燃料電池、レドックスフロー電池、水電解装置、電気化学式水素圧縮装置等が挙げられる。これらの中でも水電解装置に適用されることが好ましく、水電解式水素発生装置に適用されることが特に好ましい。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各種測定条件は次の通りである。
 (1)ポリマーの分子量
 ポリマー溶液の数平均分子量及び重量平均分子量をゲル浸透クロマトグラフィー(GPC)により測定した。装置として東ソー(株)製HLC-8022GPCを用いた。検出器には、紫外検出器と示差屈折計を用いた。また、GPCカラムとして東ソー(株)製TSK gel SuperHM-H(内径6.0mm、長さ15cm)2本を用いた。展開溶媒として、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)を用いて、流量0.2mL/minで測定し、標準ポリスチレン換算により数平均分子量及び重量平均分子量を求めた。
 (2)ポリマーのイオン交換容量(IEC)
 ポリマーをNMPで溶解した溶液をPETフィルムに塗布し、乾燥して、電解質膜を作製した。この電解質膜について中和滴定法によりイオン交換容量を測定した。測定は3回実施し、その平均値を取った。
 プロトン置換し、純水で十分に洗浄した電解質膜の膜表面の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
 電解質膜に5質量%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
 イオン交換後の硫酸ナトリウム水溶液を、0.01mol/L水酸化ナトリウム水溶液を用いて、滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とした。
 イオン交換容量(IEC)は下記式により求めた。
 IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/mL)×滴下量(mL)〕/試料の乾燥重量(g)。
 (3)(B)層における粒子濃度(Y1)と(Y2)の評価
 電解質膜を凍結超薄切片法により断面を切り出したサンプルを用意した。このサンプルについて、走査透過型電子顕微鏡(STEM)を用いて(B)層の厚みが特定可能である倍率にて画像を取得し、(B)層の厚みを計測した。得られた(B)層の厚みから(B)層の両界面からそれぞれ厚み10%の領域(界面領域)を決定し、両界面領域における粒子の存在有無を確認した。上記観察の結果、両界面領域にともに粒子が存在することを確認できた場合は、走査透過型電子顕微鏡-エネルギー分散型X線分析装置(STEM-EDX)を用いて、両界面領域の元素分析を実施した。実施例1を例にとれば、(B)層は粒子(カーボンブラックと、ポリマー(フッ素系高分子電解質)とを含有する。(A)層との界面領域における元素分析により得られた元素「C」と元素「F」との比率「C/F」、粒子の構造式、ならびにポリマーの構造式から、粒子とポリマーの質量比を計算し、粒子濃度(Y1)を求めた。同様にして、(A)層とは反対側の界面領域における比率「C/F」から粒子濃度(Y2)を求めた。
 <走査透過型電子顕微鏡(STEM)による断面観察>
 装置:電界放出型走査透過電子顕微鏡 JEM-2100F(JEOL(株)製)
 加速電圧:200kV
 倍率:50,000~150,000倍
 <走査透過型電子顕微鏡-エネルギー分散型X線分析装置(STEM-EDX)による元素分析>
 装置:電界放出型走査透過電子顕微鏡 JEM-2100F(JEOL(株)製)
 EDX検出器:JED-2300T(JEOL(株)製)
 EDX検出システム:Analysis Station
 加速電圧:200kV
 Beam径:1nmΦ
 測定時間:30秒
 測定元素:CとF、またはCeとF。
 (4)SEM観察による各層の膜厚の測定
  下記条件に従い、電解質膜およびCCMの断面を走査型電子顕微鏡(SEM)で観察し、得られた画像から各層の厚みを測定した。
装置:冷陰極電界放射型走査電子顕微鏡(FE-SEM)SU-8020(日立ハイテクノロジーズ製)
・加速電圧:5.0kV
・検出信号:反射電子
・前処理:BIB法にて作製した断面試料にPtコートして測定した。なおBIB法とは、アルゴンイオンビームを使用した断面試料作製装置であり、試料直上に遮蔽板を置き、その上からアルゴンのブロードイオンビームを照射してエッチングを行うことで観察面・分析面(断面)を作製する手法である。
 (5)層間接合性(剥離性)の評価
 実施例および比較例で作製した電解質膜に触媒層を積層したCCMを2cm×2cmのサイズに切り出して試験片とした。この試験片を80℃のイオン交換水20gに6時間、12時間、18時間および24時間浸漬したときの電解質膜と触媒層との接合状態を観察し、以下の基準で評価した。
A:24時間浸漬後でも剥離は起こらなかった
B:18時間浸漬後では剥離は起こらなかったが、24時間浸漬後に剥離が起こった
C:12時間浸漬後では剥離は起こらなかったが、18時間浸漬後に剥離が起こった
D:6時間浸漬後では剥離は起こらなかったが、12時間浸漬後に剥離が起こった
E:6時間浸漬後に剥離が起きた。
 (6)耐久性の評価
 実施例および比較例で作製した電解質膜の両面にそれぞれ触媒層を積層したCCMの、カソード触媒層側にカソードガス拡散層として市販のSGL社製ガス拡散電極24BCHを、アノード触媒層側にアノードガス拡散層として市販の多孔質チタン焼結体プレートをそれぞれ積層して、膜電極接合体を作製した。
 上記で作製した膜電極接合体を英和(株)製JARI標準セル“Ex-1”(電極面積25cm)にセットし、平均CCM圧力が4MPaとなるようセルを締結し、セル温度を80℃とした。カソード電極とアノード電極の双方に電気伝導度1μS/cm以下の脱イオン水を大気圧で0.2L/minの流量にて供給し、2.0A/cmの電流を印加して水電解反応により水素ガスと酸素ガスを製造した。
 耐久性は、2.0A/cmの電流を300時間印加し続けたときの電圧(V)の初期印加電圧(V)からの上昇率で評価した。電圧上昇率が小さいほど耐久性に優れる。電圧上昇率は下記式から算出した。
電圧上昇率(%)=(V-V)×100/(V
 上記耐久性試験において、運転中における電解質膜と触媒層との接合性低下は、印加電圧上昇の要因となる。
 (7)酸素ガス中の水素ガス濃度の測定
 上記耐久性の評価において、運転開始から25時間毎に、アノードから排出される生成酸素ガスを採取し、この酸素ガスからから水を除去した後にガスクロマトグラフィー分析装置に導入し、以下の条件に従い酸素ガス中の水素ガス濃度(ppm、体積比)を測定し、平均した。
装置: アジレント・テクノロジー(株)製、490マイクロGC
カラム: アジレント・テクノロジー(株)製、部品番号493001360、タイプBF CHA 10m MS5A Unl, Facl
キャリアーガス:Ar
カラム温度:100℃。
 [合成例1]
 (下記化学式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
 攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4’-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸一水和物0.50gを仕込み溶解した。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mLで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、これを濾過し、乾燥して下記化学式(G1)で示される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。この結晶をガスクロマトグラフィー(GC)分析したところ99.9%の2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソランと0.1%の4,4’-ジヒドロキシベンゾフェノンであった。純度は99.9%であった。
Figure JPOXMLDOC01-appb-C000003
 [合成例2]
 (下記化学式(G2)で表されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
 4,4’-ジフルオロベンゾフェノン109.1g(シグマアルドリッチジャパン(同)試薬)を発煙硫酸(50%SO)150mL(富士フイルム和光純薬(株)試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩(NaCl)200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、下記化学式(G2)で示されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。
Figure JPOXMLDOC01-appb-C000004
 [合成例3]
 (下記一般式(G3)で表される非イオン性オリゴマーa1の合成)
 攪拌機、窒素導入管、Dean-Starkトラップを備えた2,000mL SUS製重合装置に、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBP25.83g(100mmol)および4,4’-ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れた。装置内を窒素置換した後、N-メチルピロリドン(NMP)300mLとトルエン100mLを加え、150℃で脱水後、昇温してトルエンを除去し、170℃で3時間重合を行った。多量のメタノールで再沈殿精製を行い、非イオン性オリゴマーa1の末端ヒドロキシ体を得た。この非イオン性オリゴマーa1の末端ヒドロキシ体の数平均分子量は10,000であった。 攪拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(シグマアルドリッチジャパン(同)試薬、8mmol)、上記非イオン性オリゴマーa1の末端ヒドロキシ体20.0g(2mmol)を入れた。装置内を窒素置換した後、NMP100mL及びトルエン30mLを加え、100℃で脱水後、昇温してトルエンを除去した。さらに、ヘキサフルオロベンゼン2.2g(シグマアルドリッチジャパン(同)試薬、12mmol)を加え、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿精製を行い、下記一般式(G3)で示される非イオン性オリゴマーa1(末端:フルオロ基)を得た。数平均分子量は11,000であった。
Figure JPOXMLDOC01-appb-C000005
 [合成例4]
 (下記一般式(G4)で表されるイオン性オリゴマーa2の合成)
 撹拌機、窒素導入管、Dean-Starkトラップを備えた2,000mL SUS製重合装置に、炭酸カリウム27.6g(シグマアルドリッチジャパン(同)試薬、200mmol)、合成例1で得たK-DHBP12.9g(50mmol)、4,4’-ビフェノール9.3g(シグマアルドリッチジャパン(同)試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン39.3g(93mmol)、および18-クラウン-6 17.9g(富士フイルム和光純薬(株)82mmol)を入れた。装置内を窒素置換した後、NMP300mL及びトルエン100mLを加え、150℃で脱水後、昇温してトルエンを除去し、170℃で6時間重合を行った。多量のイソプロピルアルコールで再沈殿精製を行い、下記一般式(G4)で示されるイオン性オリゴマーa2(末端:ヒドロキシ基)を得た。数平均分子量は16,000であった。一般式(G4)において、Mは、H、NaまたはKを表す。
Figure JPOXMLDOC01-appb-C000006
 [合成例5]
 (下記化学式(G5)で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの合成)
 攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸245g(2.1mol)を入れ、続いて2,5-ジクロロベンゾフェノン105g(420mmol)を加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷1,000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)41.1g(462mmol)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1,000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、粗結晶を得た。これをメタノールで再結晶し、下記化学式(G5)で示される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの白色結晶を得た。
Figure JPOXMLDOC01-appb-C000007
 [合成例6]
 (下記一般式(G6)で表されるイオン性基を含有しないオリゴマーの合成)
 撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、2,6-ジクロロベンゾニトリル49.4g(0.29mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン88.4g(0.26mol)、炭酸カリウム47.3g(0.34mol)をはかりとった。フラスコ内を窒素置換した後、スルホラン346mL、トルエン173mLを加えて攪拌した。フラスコをオイルバスにつけ、150℃に加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次に、2,6-ジクロロベンゾニトリル12.3g(0.072mol)を加え、さらに5時間反応した。
 得られた反応液を放冷後、トルエン100mLを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2lのメタノール中に投入した。沈殿した生成物を濾別、回収し乾燥後、テトラヒドロフラン250mLに溶解した。これをメタノール2Lに再沈殿し、下記一般式(G6)で表される目的のオリゴマー107gを得た。数平均分子量は11,000であった。
Figure JPOXMLDOC01-appb-C000008
 [合成例7]
 (下記化学式(G8)で表されるセグメントと下記一般式(G9)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロック共重合体前駆体b1の合成)
 無水塩化ニッケル1.62gとジメチルスルホキシド15mLとを混合し、70℃に調整した。これに、2,2’-ビピリジル2.15gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
 ここに、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)1.49gと下記一般式(G7)で示される、スミカエクセルPES5200P(住友化学(株)製、Mn=40,000、Mw=94,000)0.50gとを、ジメチルスルホキシド5mLに溶解させて得られた溶液に、亜鉛粉末1.23gを加え、70℃に調整した。これに前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、6mol/L塩酸60mLを加え1時間攪拌した。析出した固体を濾過により分離し、乾燥し、灰白色の下記一般式(G8)と下記一般式(G9)で表されるセグメントを含むブロック共重合体前駆体b1を1.62g、収率99%で得た。重量平均分子量は23万であった。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 [(A)層用塗液の調製]
 以下の要領で、各種の高分子電解質を含む塗液p1~p4をそれぞれ調製した。
 [塗液p1]:ポリエーテルケトン系ブロック共重合体P1を含む塗液
 撹拌機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、16gのイオン性オリゴマーa2及び11gの非イオン性オリゴマーa1を入れ、オリゴマーの総仕込み量が7wt%となるようにNMPを加えて、105℃で24時間反応を行った。
 多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、得られた沈殿をろ過により回収し多量のイソプロピルアルコールで洗浄してブロック共重合体P1を得た。重量平均分子量は34万であった。このブロック共重合体P1のイオン交換容量(IEC)は2.1meq/gであった。続いてブロック共重合体P1をNMPに溶解させ、1μmのポリプロピレン製フィルターを用いて加圧ろ過し、塗液p1(高分子電解質濃度13質量%)を得た。塗液p1の粘度は1,300mPa・sであった。
 [塗液p2]:ポリエーテルケトン系ランダム共重合体P2を含む塗液
 撹拌機、窒素導入管、Dean-Starkトラップを備えた5Lの反応容器に、合成例1で合成した2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン129g、4,4’-ビフェノール93g(シグマアルドリッチジャパン(同)試薬)、および合成例2で合成したジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン422g(1.0mol)を入れた。容器内を窒素置換した後、NMP 3,000g、トルエン450g、18-クラウン-6 232g(富士フイルム和光純薬(株)試薬)を加えた。モノマーが全て溶解したことを確認した後、炭酸カリウム304g(シグマアルドリッチジャパン(同)試薬)を加え、環流しながら160℃で脱水した。その後、昇温してトルエン除去し、200℃で1時間脱塩重縮合を行った。得られたランダム共重合体P2の重量平均分子量は32万、イオン交換容量(IEC)は2.1であった。
 次に重合原液の粘度が500mPa・sになるようにNMPを添加して希釈した。(株)久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930)にアングルローターRA-800をセットし、25℃で30分間、遠心力20,000Gで重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、ポリマー濃度が14質量%になるまでNMPを除去し、さらに5μmのポリエチレン製フィルターで加圧濾過して、塗液p2を得た。この塗液p2の粘度は1,000mPa・sであった。
 [塗液p3]:下記一般式(G10)で表されるポリアリーレン系ブロック共重合体P3を含む塗液
 乾燥したN,N-ジメチルアセトアミド(DMAc)540mLを、3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル135.0g(0.336mol)と、合成例6で合成した一般式(G6)で表される非イオン性オリゴマーを40.7g(5.6mmol)、2,5-ジクロロ-4’-(1-イミダゾリル)ベンゾフェノン6.71g(16.8mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド6.71g(10.3mmol)、トリフェニルホスフィン35.9g(0.137mol)、ヨウ化ナトリウム1.54g(10.3mmol)、亜鉛53.7g(0.821mol)の混合物中に窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc730mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 濾液をエバポレーターで濃縮し、濾液に臭化リチウム43.8g(0.505mol)を加え、内温110℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4Lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N塩酸1,500mLで攪拌しながら洗浄を行った。濾過後、生成物を洗浄液のpHが5以上となるまでイオン交換水で洗浄した。その後、80℃で一晩乾燥し、ポリアリーレン系ブロック共重合体P3を23.0g得た。このポリアリーレン系ブロック共重合体P3の重量平均分子量は19万、イオン交換容量(IEC)は2.0であった。得られたポリアリーレン系ブロック共重合体P3を、0.1g/gとなるように、N-メチル-2-ピロリドン/メタノール=30/70(質量%)の混合有機溶媒に溶解して、塗液p3を得た。塗液p3の粘度は1,200mPa・sであった。
Figure JPOXMLDOC01-appb-C000012
 [塗液p4]:ポリエーテルスルホン系ブロック共重合体P4を含む塗液
 合成例7で得られたブロック共重合体前駆体b1を0.23g計量し、臭化リチウム一水和物0.16gとNMP8mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸80mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥し、灰白色の前記一般式(G9)で示されるセグメントと下記化学式(G11)で表されるセグメントからなるブロック共重合体P4を得た。得られたポリエーテルスルホン系ブロック共重合体P4の重量平均分子量は19万、イオン交換容量(IEC)は2.0であった。得られたポリエーテルスルホン系ブロック共重合体P4を、0.1g/gとなるように、N-メチル-2-ピロリドン/メタノール=30/70(質量%)有機溶媒に溶解して、塗液p4を得た。塗液p4の粘度は1,300mPa・sであった。
Figure JPOXMLDOC01-appb-C000013
 [(B)層用塗液の調製]
 以下の要領で、塗液b1~b12をそれぞれ調製した。
 [塗液b1]
粒子:カーボンブラック(Cabot Corporation製“VULCAN”(登録商標)XC72:平均粒子径30nm)を10質量部
・ポリマー:フッ素系高分子電解質であるケマーズ(Chemours)(株)製の「“Nafion”(登録商標)品番D2020」を固形分換算で8質量部
・溶媒:水と1-プロピルアルコールとの質量比4:6の混合溶媒
 上記の粒子とポリマーを溶媒中でビーズミルを用いて分散して、固形分濃度が10質量%の塗液b1を調製した。塗液b1における粒子濃度は56質量%である。
 [塗液b2~b12の調製]
 塗液b2~b9は、粒子濃度を表1に示すように変更したこと以外は塗液b1と同様にして調製した。塗液b10は、粒子を用いないこと以外は塗液b1と同様にして調製した。塗液b11は、粒子をカーボンブラックから富士フイルム和光純薬(株)製の酸化セリウム(IV)(平均粒子径50nm)に変更したこと以外は塗液b1と同様にして調製した。塗液b12は、ポリマーをSolvey製のPVDF(ポリビニリデンフルオリド)に変更したこと以外は塗液b9と同様にして調製した。
Figure JPOXMLDOC01-appb-T000014
 [アノード触媒層転写シート1の作製]
 市販のポリテトラフルオロエチレン製フィルムに下記のアノード触媒層用塗液を、イリジウム量が1.0mg/cmとなるように流延塗布し100℃にて4時間乾燥することにより、アノード触媒層転写シート1を作製した。
 <アノード触媒層用塗液>
 粒子(Umicore社製のIrO触媒Elyst Ir75 0480(Ir含有率75%)10質量部と、フッ素系高分子電解質(ケマーズ(株)製の“Nafion”(登録商標)品番D2020)を固形分換算で1.2質量部と、溶媒(水と1-プロピルアルコールとの質量比4:6の混合溶媒)とを含む、固形分濃度が30質量%の塗液である。
 [カソード触媒層転写シート1の作製]
 市販のポリテトラフルオロエチレン製フィルムに下記のカソード触媒層用塗液を、白金量が0.3mg/cmとなるように流延塗布し100℃にて4時間乾燥することにより、カソード触媒層転写シート1を作製した。
 <カソード触媒層用塗液>
 触媒粒子(田中貴金属工業(株)製白金触媒担持炭素粒子TEC10E50E(白金担持率50質量%)を10質量部と、フッ素系高分子電解質(ケマーズ(株)製の“Nafion”(登録商標)品番D2020)を固形分換算で5質量部と、溶媒(水と1-プロピルアルコールとの質量比1:1の混合溶媒)とを含む、固形分濃度が10質量%の塗液である。
 [実施例1]
 以下の要領で電解質膜を作製した。
 〔(A)層の作製〕
 “カプトン”(登録商標)テープを用いて東レ(株)製PETフィルム“ルミラー”(登録商標)125T60をSUS板に貼り合わせて固定した。PETフィルム上に塗液p1を流延塗布した後、100℃にて4時間乾燥しフィルム状膜を得た。このフィルム状膜を10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、(A)層(膜厚100μm)を得た。
 〔(B)層の積層〕
 (A)層上に塗液b1を流延塗布し、100℃にて4時間乾燥することにより、(A)層上に(B-1)層(膜厚3μm)を積層した。続いて、(B-1)層上に塗液b10を流延塗布し、100℃にて4時間乾燥することにより、(B-2)層(膜厚3μm)を積層した。
 [実施例2~13]
 (B-1)層の塗液および(B-2)層の塗液を表2に示すように変更したこと以外は、実施例1と同様にして電解質膜を作製した。
 [実施例14~16]
 (A)層用塗液p1を表2に示すように変更したこと以外は、実施例1と同様にして電解質膜を作製した。
 [比較例1]
 (B)層を積層しないこと以外は、実施例1と同様にして電解質膜を得た。
 [比較例2]
 (A)層を実施例1と同様にして作製し、その(A)層上に塗液b10を流延塗布し、100℃にて4時間乾燥することにより、(A)層上にポリマーのみからなる単一の(B)層(膜厚6μm)を積層して、電解質膜を作製した。表2には、(B-1)層の欄に上記単一の(B)層の組成を記入した。
 [比較例3]
 (A)層を実施例1と同様にして作製し、その(A)層上に塗液b7を流延塗布し、100℃にて4時間乾燥することにより、(A)層上に粒子とポリマーを含む単一の(B)層(膜厚6μm)を積層して、電解質膜を作製した。表2には、(B-1)層の欄に上記単一の(B)層の組成を記入した。
 [実施例17]
 以下の要領でCCMを作製した。
〔(A)層の作製〕
実施例1と同様にして(A)層を作製した。
 〔(B)層とアノード触媒層が積層された転写シートの作製〕
 前述のアノード触媒層転写シート1の触媒層の上に、塗液b10を流延塗布し、100℃にて4時間乾燥することにより(B-2)層(膜厚3μm)を積層した。続いて、(B-2)層の上に、塗液b1を流延塗布し、100℃にて4時間乾燥することにより(B-1)層(膜厚3μm)を積層した。この触媒層/(B)層転写シートは、転写用基材上に触媒層と(B)層((B-2)層/(B-1)層)とが順次積層された、触媒層/(B-2)層/(B-1)層層転写シートであり、CCMを作製するのに用いた。
 〔CCMの作製〕
 上記で作製した転写シートの(B-1)層と(A)層とが対向接触するように重ね合わせて、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、CCMを得た。
 [実施例18]
 以下の要領でCCMを作製した。
〔(A)層と(B-1)層との積層体の作製〕
実施例1と同様にして作製した(A)層上に塗液b1を流延塗布し、100℃にて4時間乾燥することにより、(A)層上に(B-1)層(膜厚3μm)が積層された積層体を得た。
 〔触媒層/(B-2)層転写シートの作製〕
 前述のアノード触媒層転写シートの触媒層の上に、塗液b10を流延塗布し、100℃にて4時間乾燥することにより(B-2)層(膜厚3μm)を積層した。この触媒層/(B-2)層転写シートは、転写用基材上に触媒層と(B-2)層とが順次積層されたものであり、CCMを作製するために用いた。
 〔CCMの作製〕
 上記で作製した積層体の(B-1)層と転写シートの(B-2)層とが対向接触するように重ね合わせて、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、CCMを得た。
 [評価]
 上記実施例1~16および比較例1~3で作製した電解質膜の(B)層側にアノード触媒層転写シート1を重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、CCMを得た。これらのCCMおよび実施例17,18で作製したCCMについて、上記「(4)層間接合性(剥離性)の評価」に準じて電解質膜と触媒層との接合性を評価した。その結果を表2に示す。表2中、粒子「CB」はカーボンブラック、「Ce」は酸化セリウムを表す。
Figure JPOXMLDOC01-appb-T000015
 [実施例21]
 以下の要領で電解質膜を作製した。
 〔(A)層の作製〕
 実施例1と同様にして(A)層を作製した。
 〔(B)層の積層〕
 (A)層上に塗液b1を流延塗布し、100℃にて4時間乾燥することにより、(A)層上に(B-1)層(膜厚5μm)を積層した。続いて、(B-1)層上に塗液b4を流延塗布し、100℃にて4時間乾燥することにより、(B-2)層(膜厚5μm)を積層した。
 [実施例22]
 (B-2)層用塗液を塗液b5に変更したこと以外は、実施例21と同様にして電解質膜を作製した。
 [比較例21]
 (B)層を積層しないこと以外は、実施例21と同様にして電解質膜を得た。
 [評価]
 上記実施例21、22および比較例21で作製した電解質膜の(B)層側にカソード触媒層転写シート1を重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、CCMを得た。これらのCCMについて、上記「(4)層間接合性(剥離性)の評価」に準じて電解質膜と触媒層との接合性を評価した。その結果を表3に示す。表3中、粒子「CB」はカーボンブラックを表す。
Figure JPOXMLDOC01-appb-T000016
[実施例31]
 以下の要領で電解質膜を作製した。
 〔(A)層の作製〕
 実施例1と同様にして(A)層を作製した。
 〔(B)層転写シートD1の作製〕
 市販のポリテトラフルオロエチレン製フィルムに塗液b10を流延塗布し、100℃にて4時間乾燥することにより(B-2)層(膜厚3μm)を積層した。さらに、(B-2)層上に塗液b1を流延塗布し100℃にて4時間乾燥することにより(B-1)層(膜厚3μm)を積層して、(B)層転写シートD1を得た。
 〔(B)層転写シートD2の作製〕
 市販のポリテトラフルオロエチレン製フィルムに塗液b4を流延塗布し、100℃にて4時間乾燥することにより(B-2)層(膜厚5μm)を積層した。さらに、(B-2)層上に塗液b1を流延塗布し100℃にて4時間乾燥することにより(B-1)層(膜厚5μm)を積層して、(B)層転写シートD2を得た。
 〔(B)層の積層〕
 PETフィルムから(A)層を剥離し、(A)層の一方の面(アノード側面)に(B)層転写シートD1の(B-1)層側を、(A)層の他方の面(カソード側面)に(B)層転写シートD2の(B-1)層側をそれぞれ重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放して、電解質膜を作製した。
 [実施例32]
 〔(B)層転写シートD3の作製〕
 前記(B)層転写シートD1の作製において、(B-1)層用塗液b1を塗液b11に変更すること以外は、同様にして(B)層転写シートD3を作製した。
 〔(B)層の積層〕
 PETフィルムから(A)層を剥離し、(A)層の一方の面(アノード側面)に(B)層転写シートD3の(B-1)層側を、(A)層の他方の面(カソード側面)に(B)層転写シートD2の(B-1)層側をそれぞれ重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放して、電解質膜を作製した。
 [実施例33]
 〔(B)層転写シートD4の作製〕
 前記(B)層転写シートD1の作製において、(B-2)層用塗液b10を塗液b12に変更すること以外は、同様にして(B)層転写シートD4を作製した。
 〔(B)層の積層〕
 PETフィルムから(A)層を剥離し、(A)層の一方の面(アノード側面)に(B)層転写シートD4の(B-1)層側を、(A)層の他方の面(カソード側面)に(B)層転写シートD2の(B-1)層側をそれぞれ重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放して、電解質膜を作製した。
 [実施例34~36]
 (A)層用塗液p1を表4に示すように変更したこと以外は、実施例31と同様にして電解質膜を作製した
 [比較例31]
 (B)層を積層しないこと以外は、実施例31と同様にして電解質膜を作製した。
 [評価]
 上記実施例31~36および比較例31で作製した電解質膜のアノード側(B)層上にアノード触媒層転写シート1、電解質膜のカソード側(B)層上にカソード触媒層転写シート1をそれぞれ重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、CCMを得た。このCCMについて、上記「(5)耐久性の評価」に準じて耐久性を評価した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000017
 [実施例41]
 以下の要領でCCMを作製した。
 〔積層体1の作製〕
 実施例1と同様にして、(A)層を作製し、さらに(A)層上に実施例1と同様にして(B-1)層を形成して、積層体1を得た。
 〔(B-2)層とアノード触媒層が積層された転写シート2の作製〕
 前述のアノード触媒層転写シート1の触媒層の上に、塗液b10を流延塗布し、100℃にて4時間乾燥することにより(B-2)層(膜厚3μm)を積層した。
 〔(C)層とカソード触媒層が積層された転写シート3の作製〕
 前述のカソード触媒層転写シート1の触媒層の上に、下記塗液c1を流延塗布し、100℃にて4時間乾燥することにより(C)層(膜厚8μm)を積層した。
 <塗液c1>
粒子:カーボンブラック(Cabot Corporation製“VULCAN”(登録商標)XC72:平均粒子径30nm)を10質量部
・ポリマー:フッ素系高分子電解質であるケマーズ(Chemours)(株)製の「“Nafion”(登録商標)品番D2020」を固形分換算で9質量部
・溶媒:水と1-プロピルアルコールとの質量比4:6の混合溶媒
 上記の粒子とポリマーを溶媒中でビーズミルを用いて分散して、固形分濃度が10質量%の塗液c1を調製した。塗液c1における粒子濃度は53質量%である。
 〔CCMの作製〕
 積層体1からPETフィルムを剥離して、(A)層/(B-1)層の積層膜を得た。この積層膜の(B-1)層側に上記転写シート2、(A)層側に上記転写シート3をそれぞれ重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、加圧した状態で40℃以下まで降温させてから圧力を開放し、CCMを得た。このCCMの層構成は、「アノード触媒層/(B)層/(A)層/(C)層/カソード触媒層」である。
 [評価結果]
 上記で得られたCCMについて、上記「(3)層間接合性(剥離性)の評価」および「(4)耐久性の評価」に準じて、接合性および耐久性を評価した。その結果、電解質膜とアノード触媒層との接合性は「A」、カソード触媒層との接合性は「B」であり、電圧上昇率は2%であった。
 [実施例51]
 〔アノード触媒層転写シート2の作製〕
 市販のポリテトラフルオロエチレン製フィルムに下記のアノード触媒層用塗液を、イリジウム量が1.0mg/cmとなるように流延塗布し100℃にて4時間乾燥することにより、アノード触媒層転写シート2を作製した。
 <アノード触媒層用塗液>
 市販の酸化イリジウムをイリジウム元素換算で10質量部、市販の白金黒を白金元素換算で2質量部、フッ素系高分子電解質(ケマーズ(株)製の“Nafion”(登録商標)品番D2020)を固形分換算で2.5質量部、溶媒(水と1-プロピルアルコールとの質量比4:6の混合溶媒)を含む、固形分濃度が30質量%の塗液である。
 〔CCMの作製〕
 実施例31の評価で用いた触媒層付電解質膜CCMにおいて、アノード触媒層転写シート1を上記で作製したアノード触媒層転写シート2に変更したこと以外は、同様にして触媒層付電解質膜を作製した。このCCMの層構成は、「アノード触媒層/(B)層/(A)層/(B)層/カソード触媒層」である。
 [実施例52]
 実施例41のCCMの作製において、アノード触媒層転写シート1を上記で作製したアノード触媒層転写シート2に変更したこと以外は、同様にしてCCMを作製した。このCCMの層構成は、「アノード触媒層/(B)層/(A)層/(C)層/カソード触媒層」である。
 [比較例51]
 比較例31の評価で用いたCCMにおいて、アノード触媒層転写シート1を上記で作製したアノード触媒層転写シート2に変更したこと以外は、同様にしてCCMを作製した。このCCMの層構成は、「アノード触媒層/(A)層/カソード触媒層」である。
 [実施例53]
 下記のアノード触媒層転写シート3に変更したこと以外は、実施例51と同様にしてCCMを作製した。
 〔アノード触媒層転写シート3の作製〕
 市販のポリテトラフルオロエチレン製フィルムに下記のアノード触媒層用塗液を、イリジウム量が1.0mg/cmとなるように流延塗布し100℃にて4時間乾燥することにより、アノード触媒層転写シート3を作製した。
 <アノード触媒層用塗液>
 市販の酸化イリジウムをイリジウム元素換算で10質量部、市販のパラジウムブラックをパラジウム元素換算で2質量部、フッ素系高分子電解質(ケマーズ(株)製の“Nafion”(登録商標)品番D2020)を固形分換算で2.5質量部、溶媒(水と1-プロピルアルコールとの質量比4:6の混合溶媒)を含む、固形分濃度が30質量%の塗液である。
 [実施例61]
 実施例31の評価で用いたCCMを用いて以下の評価を行った。これを実施例61とする。このCCMの層構成は、「アノード触媒層/(B)層/(A)層/(B)層/カソード触媒層」である。
 [評価]
 実施例51~53、61および比較例51で得られたCCMについて、上記「(4)層間接合性(剥離性)の評価」、「(5)耐久性の評価」および「(6)酸素ガス中の水素ガス濃度の測定」に準じてそれぞれ評価した。その結果を表5に示す。なお、表中の「CCM」は触媒層付電解質膜、「An」はアノード触媒層、「Ca」はカソード触媒層、「A」は(A)層、「B」は(B)層、「C」は(C)層、「Ir」はイリジウム、「Pt」は白金、「Pd」はパラジウムをそれぞれ表す。
Figure JPOXMLDOC01-appb-T000018
 アノード触媒層が触媒としてイリジウムとイリジウム以外の貴金属(白金、パラジウム)を含有することによって、アノードで生成された酸素ガス中の水素ガス濃度が低下することが分かる。また、アノード触媒層側にフッ素系高分子電解質を含む(B)層が配置され、かつアノード触媒層が触媒としてイリジウムとイリジウム以外の貴金属(白金、パラジウム)を含有することとの組み合わせによって、水素ガス濃度が大きく低下していることが分かる。
1、2 電解質膜
10 (A)層
20、20a、20b (B)層
21、21a、21b (B)層の(A)層側の界面領域
22、22a、22b (B)層の(A)層とは反対側の界面領域
30、40 触媒層
50 アノード触媒層
60 カソード触媒層
100、200 触媒層付電解質膜

Claims (23)

  1.  高分子電解質を含む(A)層と、前記(A)層の少なくとも一方の面に(B)層と、を備える電解質膜であって、前記(B)層の前記(A)層との界面領域における、下記で定義される粒子濃度(Y1)が、前記(B)層の前記(A)層とは反対側の界面領域における、下記で定義される粒子濃度(Y2)よりも高い、電解質膜;
    前記粒子濃度(Y1)および前記粒子濃度(Y2)は、当該界面領域に存在する粒子質量の当該界面領域に存在する全固形分質量に対する割合である。
  2.  前記粒子濃度(Y1)と前記粒子濃度(Y2)との比率(Y2/Y1)が0.95以下である請求項1に記載の電解質膜。
  3.  前記粒子濃度(Y1)が45質量%以上であり、前記粒子濃度(Y2)が45質量%未満である請求項1または2に記載の電解質膜。
  4.  前記(B)層がさらにポリマーを含む、請求項1~3のいずれかに記載の電解質膜。
  5.  前記粒子が炭素粒子を含む、請求項1~4のいずれかに記載の電解質膜。
  6.  前記ポリマーが非電解質または電解質のフッ素系ポリマーである、請求項4または5に記載の電解質膜。
  7.  前記(B)層が少なくとも2層で構成され、それらのうち前記(A)層に隣接する層の粒子濃度が最も高い、請求項1~6のいずれかに記載の電解質膜。
  8.  前記(B)層が、(B-1)層と(B-2)層との2層からなり、それらのうち前記(A)層に隣接する層を(B-1)層、(A)層と反対側にある層を(B-2)層とする、請求項1~7のいずれかに記載の電解質膜。
  9.  (B-1)層および(B-2)層がともに粒子を含有する場合、前記(B-1)層と前記(B-2)層がともに同種の粒子を含有する、請求項8に記載の電解質膜。
  10.  前記(A)層の厚みが30μm以上250μm以下であり、前記(B)層の厚みが0.5μm以上20μm以下である、請求項1~9のいずれかに記載の電解質膜。
  11.  前記(A)層の両面に前記(B)層を備える、請求項1~10のいずれかに記載の電解質膜。
  12.  請求項1~11のいずれかに記載の電解質膜の片面もしくは両面に触媒層を備える、触媒層付電解質膜。
  13.  前記電解質膜の前記(A)層に含まれる高分子電解質と前記触媒層に含まれる高分子電解質とが互いに異種である、請求項12に記載の触媒層付電解質膜。
  14.  前記電解質膜の前記(B)層が前記触媒層と同種のポリマーを含む、請求項12または13に記載の触媒層付電解質膜。
  15.  前記(A)層が炭化水素系高分子電解質を含み、前記触媒層がフッ素系高分子電解質を含み、前記(B)層が非イオン性またはイオン性のフッ素系ポリマーを含む、請求項12~14のいずれかに記載の触媒層付電解質膜。
  16.  請求項12~15のいずれかに記載の触媒層付電解質膜を含む、膜電極接合体。
  17.  請求項16に記載の膜電極接合体を含む、水電解装置。
  18. 請求項12~15のいずれかに記載の触媒層付電解質膜の作製に用いられる転写シートであって、
     転写用基材に触媒層と(B)層とが順次積層されており、前記(B)層の前記触媒層とは反対側の界面領域における粒子濃度(Y1)が、前記(B)層の前記触媒層との界面領域における粒子濃度率(Y2)よりも高い、触媒層/(B)層転写シート。
  19. 前記(B)層は(B-1)層と(B-2)層の2層から構成され、前記転写用基材に前記触媒層と前記(B-2)層と前記(B-1)層とが順次積層された、請求項18に記載の触媒層/(B)層転写シート。
  20. 前記(B)層は(B-1)層と(B-2)層の2層から構成され、前記転写用基材に前記触媒層と前記(B-2)層とが順次積層された、請求項18に記載の触媒層/(B)層転写シート。
  21.  高分子電解質を含む(A)層と、前記(A)層の少なくとも一方の面にある(B)層と、を備える電解質膜および該電解質膜の片面もしくは両面に設けられた触媒層を備える触媒層付電解質膜を製造する方法であって、
     前記(A)層に前記(B)層を積層して、請求項1~11のいずれかに記載の電解質膜を得る工程と、
     転写用基材に前記触媒層を積層して触媒層転写シートを作製する工程と、
     前記電解質膜の(B)層が積層された面と前記触媒層転写シートの触媒層が積層された面とを対向接触させて加熱プレスする工程と、
    を有する、触媒層付電解質膜の製造方法。
  22. 高分子電解質を含む(A)層と、前記(A)層の少なくとも一方の面にある(B)層と、を備える電解質膜および該電解質膜の片面もしくは両面に設けられた触媒層を備える触媒層付電解質膜を製造する方法であって、
     (A)層を得る工程と、
    転写用基材に触媒層および(B)層を順次積層して、請求項18に記載の触媒層/(B)層転写シートを得る工程と、
     前記(A)層の少なくとも一方の面に前記触媒層/(B)層転写シートの(B)層が積層された面を対向接触させて加熱プレスする工程と、
    を有する、触媒層付電解質膜の製造方法。
  23. 高分子電解質を含む(A)層と、前記(A)層の少なくとも一方の面にある(B)層と、を備える電解質膜および該電解質膜の片面もしくは両面に設けられた触媒層を備える触媒層付電解質膜を製造する方法であって、
     前記(B)層は2層から構成され、それらのうち前記(A)層に隣接する層を(B-1)層、(A)層と反対側にある層を(B-2)層とし、
     前記(A)層に(B-1)層を積層して積層体を得る工程と、
     転写用基材に触媒層および(B-2)層を順次積層して、請求項20に記載の触媒層/(B-2)層転写シートを得る工程と、
     前記積層体の(B-1)層が積層された面と前記転写シートの(B-2)層が積層された面とを対向接触させて加熱プレスする工程と、
    を有し、
    前記(B)層の前記(A)層との界面領域における粒子濃度(Y1)が、前記(B)層の前記(A)層とは反対側の界面領域における粒子濃度(Y2)よりも高い、
    触媒層付電解質膜の製造方法。
PCT/JP2023/023321 2022-06-27 2023-06-23 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法 WO2024004857A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-102459 2022-06-27
JP2022102459 2022-06-27
JP2022183174 2022-11-16
JP2022-183174 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024004857A1 true WO2024004857A1 (ja) 2024-01-04

Family

ID=89382952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023321 WO2024004857A1 (ja) 2022-06-27 2023-06-23 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法

Country Status (1)

Country Link
WO (1) WO2024004857A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123122A (ja) * 2005-10-28 2007-05-17 Nissan Motor Co Ltd 燃料電池用電解質膜および膜電極接合体
JP2012164647A (ja) * 2011-01-17 2012-08-30 Sumitomo Chemical Co Ltd 高分子電解質膜、膜電極接合体、燃料電池
JP2015153573A (ja) * 2014-02-13 2015-08-24 旭化成イーマテリアルズ株式会社 高分子電解質膜、膜電極接合体、及び固体高分子形燃料電池
US20170062812A1 (en) * 2015-08-31 2017-03-02 Samsung Electronics Co., Ltd. Composite cathode, cathode-membrane assembly, electrochemical cell including the cathode-membrane assembly, and method of preparing the cathode-membrane assembly
JP2019503050A (ja) * 2015-12-28 2019-01-31 シーオ インコーポレーテッドSeeo, Inc. リチウムポリマー電池用セラミック‐ポリマー複合電解質

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123122A (ja) * 2005-10-28 2007-05-17 Nissan Motor Co Ltd 燃料電池用電解質膜および膜電極接合体
JP2012164647A (ja) * 2011-01-17 2012-08-30 Sumitomo Chemical Co Ltd 高分子電解質膜、膜電極接合体、燃料電池
JP2015153573A (ja) * 2014-02-13 2015-08-24 旭化成イーマテリアルズ株式会社 高分子電解質膜、膜電極接合体、及び固体高分子形燃料電池
US20170062812A1 (en) * 2015-08-31 2017-03-02 Samsung Electronics Co., Ltd. Composite cathode, cathode-membrane assembly, electrochemical cell including the cathode-membrane assembly, and method of preparing the cathode-membrane assembly
JP2019503050A (ja) * 2015-12-28 2019-01-31 シーオ インコーポレーテッドSeeo, Inc. リチウムポリマー電池用セラミック‐ポリマー複合電解質

Similar Documents

Publication Publication Date Title
CN107408716B (zh) 复合高分子电解质膜
JP7359139B2 (ja) 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
JP2011103295A (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子形燃料電池
EP2134768B1 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups and use thereof in proton exchange membrane fuel cells
JP2009021234A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
WO2023068245A1 (ja) 水電解用電極構成体、水電解用膜電極接合体および水電解装置
JP2008053084A (ja) 燃料電池用膜・電極接合体及び燃料電池
WO2022244660A1 (ja) 電解質膜積層体、触媒層付電解質膜、膜電極接合体、水電解式水素発生装置および触媒層付電解質膜の製造方法
WO2024004857A1 (ja) 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法
WO2024004856A1 (ja) 電解質膜、触媒層付電解質膜およびその作製に用いられる転写シート、膜電極接合体、水電解装置並びに触媒層付電解質膜の製造方法
JP5552785B2 (ja) 固体高分子電解質膜およびその製造方法、液状組成物
JP7006085B2 (ja) 触媒層付き電解質膜、中間層インク、中間層デカールおよび固体高分子形燃料電池
WO2023181990A1 (ja) 電解質膜、触媒層付電解質膜、膜電極接合体、および水電解装置
JP2024072400A (ja) 触媒層付電解質膜、膜電極接合体および水電解装置
JP5315877B2 (ja) 高分子電解質材料、ならびにそれを用いた高分子電解質型燃料電池
WO2008023773A1 (fr) Ensemble d'électrode à membrane pour une pile à combustible et pile à combustible
JP2008311146A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子型燃料電池
WO2024135650A1 (ja) 触媒層付電解質膜、膜電極接合体、燃料電池および燃料電池の運転方法
JP2015228292A (ja) 固体高分子電解質膜、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP5405783B2 (ja) 燃料電池用触媒層、燃料電池用触媒層転写シート、燃料電池用ガス拡散電極、燃料電池用膜電極接合体、および燃料電池
JP2022187105A (ja) 触媒層付き電解質膜の製造方法
WO2011125735A1 (ja) 固体高分子電解質複合膜およびその製造方法
JP5080019B2 (ja) 固体高分子電解質
JP2008311147A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子型燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023544502

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831299

Country of ref document: EP

Kind code of ref document: A1