WO2020179559A1 - 疎水性シリカ粉末及びトナー樹脂粒子 - Google Patents

疎水性シリカ粉末及びトナー樹脂粒子 Download PDF

Info

Publication number
WO2020179559A1
WO2020179559A1 PCT/JP2020/007587 JP2020007587W WO2020179559A1 WO 2020179559 A1 WO2020179559 A1 WO 2020179559A1 JP 2020007587 W JP2020007587 W JP 2020007587W WO 2020179559 A1 WO2020179559 A1 WO 2020179559A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
hydrophobic silica
particles
hydrophobic
powder
Prior art date
Application number
PCT/JP2020/007587
Other languages
English (en)
French (fr)
Inventor
一意 面川
佑馬 根岸
康博 夫馬
Original Assignee
扶桑化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扶桑化学工業株式会社 filed Critical 扶桑化学工業株式会社
Priority to CN202080019011.8A priority Critical patent/CN113544091A/zh
Priority to US17/436,143 priority patent/US20220128914A1/en
Priority to KR1020217031433A priority patent/KR20210130803A/ko
Publication of WO2020179559A1 publication Critical patent/WO2020179559A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to hydrophobic silica powder and toner resin particles.
  • the hydrophobic silica powder can be obtained, for example, by adding a hydrophobizing agent to a dispersion of silica particles (that is, colloidal silica) obtained by the sol-gel method to make the surface of the silica particles hydrophobic (for example, Patent Document 1). ⁇ 3).
  • This hydrophobizing treatment is called "wet hydrophobizing treatment" because the object to be treated is dispersed in liquid.
  • Patent Document 1 a wet hydrophobizing treatment is performed under conditions such as reacting 30% by mass of a hydrophobizing agent with silica in colloidal silica at 35 ° C. for 1 hour.
  • the hydrophobic silica powder obtained by such a treatment has achieved a degree of hydrophobicity of 27 to 61% by volume.
  • Patent Document 2 a wet hydrophobizing treatment is performed under conditions such as reacting 20% by mass of a hydrophobizing agent with silica in colloidal silica at 65 ° C.
  • the hydrophobic silica powder obtained by such a treatment is dispersed in a mixed solution of 40 g of water and 1 g of methanol in the dispersibility test of the primary particles described in the literature, and therefore has a sufficiently high degree of hydrophobicity. Has not been obtained.
  • Patent Document 3 2-propanol and then octylriethoxysilane are added to an acidic aqueous dispersion of silica (about pH 3) for reaction, an aqueous solution of ammonium hydroxide is added to the obtained reaction mixture, and the mixture is heated and stirred. Hydrophobic silica powder is obtained by spray drying.
  • hydrophobic silica powder for example, a hydrophilic silica powder obtained by distilling off a solvent from colloidal silica or a silica powder obtained by an oxidation reaction of metallic silicon is reacted with a hydrophobic agent to form a surface of the silica powder. It can also be obtained by making it hydrophobic (for example, Patent Documents 4 and 5).
  • This hydrophobizing treatment is referred to as "dry hydrophobizing treatment" because the object to be treated is powder.
  • Japanese Unexamined Patent Publication No. 2012-031045 Japanese Unexamined Patent Publication No. 2012-006796 JP, 2013-139389, A Japanese Unexamined Patent Publication No. 2012-149169 International Publication No. 2013/018704
  • the silica particles are aggregated by the dry hydrophobic treatment, and the coarse grain content in the hydrophobic silica powder is increased.
  • hydrophobic silica powder When such hydrophobic silica powder is used as an additive for toner resin particles, it is difficult to uniformly disperse the silica particles on the surface of the toner resin particles, and in order to coat the surface of the toner resin particles, A larger amount of silica powder is required, which causes a problem of poor economy.
  • an object of the present invention is to provide a hydrophobic silica powder having a small particle size, a narrow particle size distribution, a high degree of hydrophobicity, and a slight amount of an organic acid, and toner resin particles having the same on the surface. To do.
  • the present inventors have made highly hydrophobic even though the saturated water content is high by adding a small amount of organic acid in the wet hydrophobizing treatment of colloidal silica.
  • the obtained hydrophobic silica powder can be obtained, and the hydrophobic silica powder thus obtained has excellent crushability into primary particles, and the coarse particle content is reduced to narrow the particle size distribution of the entire powder. It has been found that, for example, it can be uniformly dispersed on the surface of the toner resin particles.
  • the present inventors have completed the present invention through further studies based on this finding.
  • the present invention includes the following aspects.
  • Item 1 The particle size (D 50 ) measured by the laser diffraction method is 300 nm or less, the particle size distribution index (D 90 / D 10 ) is 3.0 or less, the degree of hydrophobization is 60% by volume or more, and the content concentration of organic acid is 1. ⁇ 300 ppm, hydrophobic silica powder.
  • Item 2. Item 2. The hydrophobic silica powder according to Item 1, which has a hydrophobicity of 65% by volume or more.
  • Item 3. Item 2. The hydrophobic silica powder according to Item 1 or 2, wherein the saturated water content is 4.0% by mass or more.
  • hydrophobic silica powder having a small particle size, a narrow particle size distribution, a high degree of hydrophobicity, and a slight amount of an organic acid.
  • the hydrophobic silica powder is extremely useful as an external additive for toner resin particles, for example.
  • hydrophobic silica powder and toner resin particles of the present invention will be described in detail.
  • the hydrophobic silica powder has the following physical properties (1) to (4): (1) The particle diameter (D 50 ) measured by a laser diffraction method is 300 nm or less, (2) Particle size distribution index (D 90 /D 10 ) is 3.0 or less, (3) Hydrophobization degree is 60% by volume or more, and (4) Organic acid content concentration is 1 to 300 ppm.
  • the D 50 of the hydrophobic silica powder of the present invention is 300 nm or less.
  • the upper limit of D 50 of the hydrophobic silica powder is preferably 250 nm, more preferably 220 nm, from the viewpoint of uniformly covering the surface of the toner resin particles.
  • the lower limit of D 50 of the hydrophobic silica powder is not particularly limited and is usually about 10 nm, preferably 30 nm, more preferably 50 nm, even more preferably 70 nm.
  • the D 50 of the hydrophobic silica powder can be measured by a laser diffraction method using a conventional laser diffraction method particle size distribution meter. Specifically, by comparing the scattered light intensity pattern of the hydrophobic silica powder irradiated with a semiconductor laser (for example, a wavelength of 650 nm) with the theoretical scattered light intensity pattern obtained from the Mie scattering theory, it is hydrophobic.
  • the D 50 can be calculated by acquiring the volume-based particle size distribution of the crystalline silica powder and calculating the median value of the particle size distribution.
  • the hydrophobic silica powder is added to ethanol, and the ethanol dispersion liquid obtained by irradiating ultrasonic waves with an output of 10 W for 1 minute is used as a measurement sample.
  • the designated ultrasonic irradiation condition is a relatively weak dispersion condition, and it is shown that the hydrophobic silica powder that is primarily dispersed under this condition has weak cohesiveness between particles.
  • Such hydrophobic silica powder has few aggregates, and when added to toner resin particles or the like, it is uniformly dispersed on the surface of the toner resin particles.
  • the D 90 / D 10 of the hydrophobic silica powder of the present invention is 3.0 or less.
  • the upper limit of D 90 / D 10 of the hydrophobic silica powder is preferably 2.8, more preferably 2.6.
  • the lower limit of D 90 /D 10 of the hydrophobic silica powder is not particularly limited and is usually about 1.5.
  • the D 90 /D 10 of the hydrophobic silica powder can be calculated based on the particle size distribution obtained by acquiring a volume-based particle size distribution by a conventional laser diffraction particle size distribution meter, as in the case of the D 50 .
  • the hydrophobic silica powder of the present invention is highly hydrophobized, and the hydrophobicity is 60% by volume or more.
  • the lower limit of the hydrophobicity of the hydrophobic silica powder is preferably 65% by volume, more preferably 68% by volume, and further preferably 70% by volume.
  • the upper limit of the degree of hydrophobicity of the hydrophobic silica powder is not particularly limited, and is usually about 99% by volume.
  • the degree of hydrophobicity of the hydrophobic silica powder 0.2 g of the powder sample was added to 50 mL of pure water, methanol was added in the liquid while stirring with a magnetic stirrer, and the amount of methanol added until the powder sample was completely dispersed X mL. Calculate from. The degree of hydrophobization is calculated by the formula: ⁇ (X) / (50 + X) ⁇ ⁇ 100.
  • the hydrophobic silica powder of the present invention contains a small amount of organic acid, and the concentration of organic acid is 1 to 300 ppm, preferably 5 to 200 ppm, based on the hydrophobic silica powder. 10 to 100 ppm is more preferable. In such a range, the degree of hydrophobicity of the hydrophobic silica powder is even higher, and the hydrophobic silica powder has excellent crushability.
  • the organic acid content is calculated by quantifying the organic acid in the extract prepared by moistening the powder sample with methanol and then adding pure water, and calculating this as the organic acid content. Specifically, 3 mL of methanol was added to 0.3 g of the powder sample and shaken, then 27 mL of pure water was added and shaken at room temperature for 1 hour, the extract was filtered, and then the extract was subjected to ion chromatography. Quantify organic acids (Yppm).
  • the content concentration of organic acid in the hydrophobic silica powder is the formula: (Y) ⁇ (charged mass (g) of powder sample) ⁇ ⁇ (charged mass of methanol (g)) + (charged mass of water (g)) ⁇ Is calculated.
  • the organic acid may have one or more acidic groups.
  • the organic acid include carboxylic acid and sulfonic acid.
  • the organic acid may be a hydroxy acid.
  • Specific examples of the organic acid include formic acid, acetic acid, citric acid, malic acid, oxalic acid, methanesulfonic acid, or a combination thereof. Of these, carboxylic acids having 1 to 3 carbon atoms are preferable, and acetic acid is more preferable.
  • the boiling point of the organic acid (boiling point at normal pressure) is not particularly limited, but for example, 100 ° C. or higher is preferable, and 110 ° C. or higher is more preferable.
  • the boiling point of the organic acid is preferably 200°C or lower, and preferably 150°C or lower.
  • the hydrophobic silica powder may have other physical properties in addition to the physical properties of (1) to (4) above.
  • Examples of other physical properties include the following physical properties (5) to (10).
  • the saturated water content of the hydrophobic silica powder of the present invention is 4.0% by mass or more.
  • the lower limit of the saturated water content of the hydrophobic silica powder is preferably 4.5% by mass, more preferably 5.0% by mass.
  • the degree of hydrophobicity can be increased even though the saturated water content is high.
  • the upper limit of the saturated water content of the hydrophobic silica powder is not particularly limited and is usually about 15% by mass, and more preferably 12% by mass.
  • the saturated water content of the hydrophobic silica powder 2.0 g of the powder sample was precisely weighed in a mast, and after absorbing moisture for 48 hours in an environment of 60 ° C. and 80% RH, the water vaporizer ADP-611 (Kyoto Denshi Kogyo (Kyoto Denshi Kogyo) Manufactured by K.K.) and Karl Fischer moisture meter MKV-710S (manufactured by Kyoto Electronics Manufacturing Co., Ltd.).
  • the peak has the following formula: (In the formula, R is the same as above) It is a peak derived from the T structure represented by. From the viewpoint of reducing the content of coarse particles in the silica powder, it is preferable that the T structure does not exist in the chemical structure of the silica powder.
  • Coarse Grain Content refers to particles having a particle size 10 times or more the median size measured by a laser diffraction method.
  • the upper limit of the content of coarse particles in the hydrophobic silica powder is preferably 10% by volume, more preferably 8% by volume, and even more preferably 5% by volume.
  • the lower limit of the coarse grain content in the hydrophobic silica powder is not particularly limited, and is usually about 1% by volume.
  • the volume-based particle size distribution was obtained using a conventional laser diffraction particle size distribution meter in the same manner as in (1) and (2) above, and the formula: 100- (10 times the median diameter). It can be calculated by (accumulation frequency %).
  • the hydrophobic silica powder is preferably dispersed by irradiating ultrasonic waves with an output of 10 W for 1 minute in ethanol.
  • Such hydrophobic silica powder has few aggregates, and when added to toner resin particles or the like, it is uniformly dispersed on the surface of the toner resin particles.
  • the major axis/minor axis of the hydrophobic silica powder is not particularly limited, but is preferably 1.00 or more, more preferably 1.03 or more, still more preferably 1.05 or more.
  • the major axis/minor axis of the hydrophobic silica powder is preferably 2.00 or less, more preferably 1.80 or less, and even more preferably 1.50 or less.
  • Hydrophobic silica powder having a high degree of irregularity is generally easily aggregated, and when used as an external additive for toner resin particles, it is difficult to uniformly disperse the silica particles on the surface of the toner resin particles. In the sex silica powder, aggregation is suppressed, and the silica particles can be uniformly dispersed on the surface of the toner resin particles.
  • the major axis / minor axis of the hydrophobic silica powder is determined by observing 100 hydrophobic silica particles with a scanning electron microscope and performing image analysis on two particles parallel to the maximum length (absolute maximum length) and the absolute maximum length of the individual particles. It is calculated by calculating the ratio of the shortest distance (diagonal width) between two straight lines when the particles are sandwiched between straight lines and averaging them.
  • the circularity of the hydrophobic silica powder is not particularly limited, but is preferably 0.98 or less, more preferably 0.96 or less, still more preferably 0.94 or less. Further, the circularity of the hydrophobic silica powder is preferably 0.50 or more, more preferably 0.60 or more, and further preferably 0.70 or more.
  • the circularity of the hydrophobic silica powder is calculated by observing 100 hydrophobic silica particles with a scanning electron microscope and analyzing the image from the area and the peripheral length of the individual particles by the formula: 4 ⁇ ⁇ area ⁇ (peripheral length) 2. , Which is calculated by averaging them.
  • the hydrophobic silica powder preferably has any one of the above physical properties (5) to (10), and more preferably has all the physical properties of the above (5) to (10).
  • the method for producing the hydrophobic silica powder is not particularly limited, and for example, (I) Step of preparing colloidal silica, (II) hydrophobizing the colloidal silica to prepare a mixed solution of hydrophobic silica particles, (III) removing the mixed solution of the hydrophobic silica particles with a solvent to prepare a hydrophobic silica powder, and (IV) A production method including a step of pulverizing the hydrophobic silica powder can be mentioned.
  • Step (I) is a step of preparing colloidal silica.
  • Colloidal silica is usually prepared by the sol-gel method (particularly the Stöber process).
  • the step (I) preferably includes the following steps (i) to (iii).
  • Step (i) is a step of preparing a mother liquor containing an alkaline catalyst and water.
  • a mother liquor may be prepared, for example, by adding an alkaline catalyst to water.
  • the type of alkali catalyst is not particularly limited.
  • an organic base catalyst containing no metal component is preferable in terms of avoiding mixing of metal impurities, and a nitrogen-containing organic base catalyst is particularly preferable.
  • organic base catalysts include ethylenediamine, diethylenetriamine, triethylenetetramine, ammonia, urea, monoethanolamine, diethanolamine, triethanolamine, 3-ethoxypropylamine, tetramethylammonium hydroxide and tetramethylguanidine.
  • a nitrogen-containing organic base catalyst can be used.
  • alkali catalysts can be used alone or in combination of two or more kinds.
  • the amount of the alkaline catalyst added is preferably set appropriately so that the pH of the mother liquor is usually in the range of 7 to 14.
  • the pH is preferably 9 to 12, and more preferably 9 to 11. It is more preferable that the pH of the mother liquor is within the above range because the particle size and shape can be easily controlled.
  • the mother liquor can be a mixed system of water and an organic solvent. That is, the mother liquor may further contain an organic solvent.
  • the organic solvent typically includes a water-soluble organic solvent, and examples thereof include alcohol and the like.
  • the alcohol lower alcohols such as methanol, ethanol and isopropanol (particularly alcohols having 1 to 3 carbon atoms) are preferably used, and methanol is more preferable, because they can be easily distilled off by heat distillation. Further, it is more preferable to use the same type of alcohol as the alcohol produced by hydrolysis of the alkoxysilane. This makes it possible to easily recover and reuse the solvent.
  • the organic solvents may be used alone or in combination of two or more.
  • the amount of water and the organic solvent added is not particularly limited, but for 1 mol of the alkoxysilane used, for example, 2 to 15 mol of water and 0 to 50 mol of the organic solvent.
  • the silica particles produced tend to be large, and when the amount of water is relatively decreased, the silica particles produced tend to be small. It is in. Further, when the organic solvent is used in an amount of 5 mol or more, the compatibility with the alkoxysilane is excellent, and when it is used in an amount of 50 mol or less, the production efficiency is excellent. In this way, the stability of the alkoxysilane or its hydrolyzate can be adjusted by adjusting the mixing ratio of water and the organic solvent, and the characteristics such as the particle size of the silica particles can be arbitrarily adjusted.
  • Step (ii) is a step of adding a liquid A containing alkoxysilane or a hydrolyzate thereof to the mother liquor.
  • alkoxysilane examples include hydrolyzable silicon compounds, for example, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
  • the alkoxy group preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 to 2 tetramethoxysilane and / or tetraethoxysilane.
  • Alkoxysilane may be hydrolyzed, and alkoxysilane or a hydrolyzate thereof may be used alone or in combination of two or more. Alkoxysilane or a hydrolyzate thereof may be added to the mother liquor in several times (for example, 2 to 3 times).
  • the alkoxysilane may be diluted with water or an organic solvent before use.
  • the organic solvent those similar to the solvent exemplified in step (i) can be used.
  • the organic solvent in step (ii) may be the same as or different from the organic solvent in step (i).
  • the diluent of alkoxysilane may be prepared by adding alkoxysilane to water or an organic solvent, or by adding water or an organic solvent to alkoxysilane.
  • the amount of alkoxysilane or its hydrolyzate is, for example, 70 to 100 parts by mass, preferably 75 to 90 parts by mass with respect to 100 parts by mass of the liquid A. It is more preferable that the alkoxysilane or its hydrolyzate is within the above range because the particles of the alkoxysilane are efficiently produced.
  • Step (iii) is a step of adding a liquid B containing an alkaline catalyst and water to the mother liquor.
  • the alkaline catalyst may be diluted with water, and for example, a diluted solution can be prepared by adding the alkaline catalyst to water.
  • the same alkali catalyst as exemplified in step (i) can be used.
  • the alkali catalyst in step (iii) may be the same as or different from the alkali catalyst in step (i).
  • the amount of the liquid B added may be appropriately determined in consideration of the reaction rate of the hydrolysis of alkoxysilane and the polycondensation reaction.
  • Liquid B may be added gradually or all at once. Furthermore, the liquid B may be added at the same time as the liquid A.
  • Step (I) includes a step of concentrating the reaction solution, if necessary. Prior to concentration, a trace amount of water-soluble organic solvent (alcohol or the like) remaining in the system can be removed in advance, if necessary.
  • a trace amount of water-soluble organic solvent (alcohol or the like) remaining in the system can be removed in advance, if necessary.
  • the concentration method a known concentration method such as a distillation concentration method or a membrane concentration method can be adopted.
  • the silica concentration in the colloidal silica prepared in the step (I) is, for example, 5 to 40% by mass, preferably 10 to 35% by mass.
  • the concentrate can be used as it is for various purposes after being filtered through a predetermined filter to remove coarse particles, foreign substances and the like.
  • the ratio (association degree, D2 / D1) of the average secondary particle diameter D2 and the average primary particle diameter D1 of the silica particles in the colloidal silica prepared in the step (I) is not particularly limited, but 1. 0 or more is preferable, 1.3 or more is more preferable, and 1.5 or more is further preferable.
  • the degree of association of silica particles in colloidal silica is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.3 or less. When such colloidal silica is used, a hydrophobic silica powder having a high degree of deformation can be easily obtained.
  • the average secondary particle diameter (D2) and the average primary particle diameter (D1) can be measured as follows.
  • (Average primary particle diameter D1) After pre-drying the colloidal silica on a hot plate, heat treatment is performed at 800 ° C. for 1 hour to prepare a sample for measurement. The BET specific surface area is measured using the prepared measurement sample.
  • the average primary particle diameter D1 is determined by the formula: 2727/BET specific surface area (m 2 /g), with the true specific gravity of silica being 2.2.
  • Average secondary particle diameter D2 As a measurement sample for the dynamic light scattering method, colloidal silica is added to a 0.3 mass% citric acid aqueous solution and homogenized.
  • the average secondary particle diameter D2 is determined by the dynamic light scattering method (“ELSZ-2000S” manufactured by Otsuka Electronics Co., Ltd.) using the measurement sample.
  • Step (II) is a step of hydrophobizing the colloidal silica to prepare a mixed solution of hydrophobic silica particles.
  • Examples of the method for hydrophobizing colloidal silica include a method in which a hydrophobizing agent and an organic acid are added to the colloidal silica prepared in step (I) and the mixture is heated.
  • the "hydrophobicizing agent” includes known hydrophobizing agents such as silicone oil, silane coupling agent, and silylating agent (for example, organosilazane).
  • a silylating agent such as a silane coupling agent or organosilazane is preferable from the viewpoint of highly hydrophobicizing the surface of silica particles, and a silylating agent such as organosilazane is further preferable from the viewpoint of crushability of silica powder.
  • the "silylating agent” includes a silylating agent capable of introducing the structure of [Chemical compound 1] on the surface of silica particles, and is an organosilazane, tetramethyldisilazane, hexamethyldisilazane, and monofunctional.
  • examples thereof include monosilanol compounds such as trimethylsilanol and triethylsilanol, which are sex silane compounds, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, and monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane.
  • monosilanol compounds such as trimethylsilanol and triethylsilanol, which are sex silane compounds, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, and monoalk
  • the hydrophobizing agents can be used alone or in combination of two or more.
  • the amount of the hydrophobizing agent added is not particularly limited, but from the viewpoint of obtaining a higher degree of hydrophobization, the colloidal silica prepared in the step (I) is preferably 3 to 30 parts by mass, preferably 5 to 25 parts by mass. Parts is more preferable, and 8 to 20 parts by mass is even more preferable.
  • the hydrophobizing agent can also contain a water-soluble organic solvent as a compatibilizing solvent in order to make the hydrophobizing agent and colloidal silica compatible with each other, if necessary.
  • a water-soluble organic solvent examples include methanol, ethanol, isopropanol, acetone and the like.
  • the content concentration of the water-soluble organic solvent is not particularly limited, but is usually about 0.1 to 50% by mass, preferably about 0.5 to 30% by mass with respect to colloidal silica.
  • the organic acid the components exemplified in (4) above can be used, but since it dissolves in water or lower alcohol, a carboxylic acid having 1 to 3 carbon atoms is preferable, and acetic acid is more preferable.
  • the amount of the organic acid added is not particularly limited. When an organic acid is added during the hydrophobization reaction so as to be within the range of the organic acid content concentration in (4) above, the hydrophobic silica powder has a higher degree of hydrophobization and excellent crushability. Can be obtained.
  • the amount of the organic acid added is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 1 part by mass, with the solid content of the colloidal silica prepared in step (I) as 100 parts by mass. It is preferable, and 0.1 to 0.5 parts by mass is more preferable.
  • the heating temperature is not particularly limited, but from the viewpoint of obtaining a higher degree of hydrophobicity, 50 ° C. or higher is preferable, 60 ° C. or higher is more preferable, and 70 ° C. or higher is further preferable. Moreover, the upper limit of the heating temperature is not particularly limited and is usually about 90°C.
  • the heating time is not particularly limited, but 60 to 600 minutes is preferable, 90 to 500 minutes is more preferable, and 120 to 450 minutes is further preferable, from the viewpoint of obtaining a higher degree of hydrophobicity.
  • the step (III) is a step of preparing a hydrophobic silica powder by pulverizing the mixed solution of the hydrophobic silica particles.
  • the method of pulverizing the mixed solution of hydrophobic silica particles is not particularly limited, and may be dried by a conventionally known drying method. For example, a method of drying the mixed solution of the hydrophobic silica particles until the water content becomes, for example, 3% by mass or less, preferably 1% by mass or less. Drying is usually performed using a dryer.
  • Step (IV) is a step of pulverizing the hydrophobic silica powder.
  • the method for pulverizing the hydrophobic silica powder is not particularly limited, and the hydrophobic silica powder may be pulverized by a conventionally known pulverization method. Examples of such a crushing method include a jet mill and the like.
  • the pusher nozzle pressure is not particularly limited, but is, for example, 0.5 to 2.0 MPa, preferably 1.0 to 1.5 MPa.
  • the crushing pressure is not particularly limited, but is, for example, 0.05 to 0.5 MPa, preferably 0.1 to 0.3 MPa.
  • the pulverization may be repeated, but may be performed only once because the disintegration property of the hydrophobic silica powder into primary particles is excellent.
  • the toner resin particles of the present invention are toner resin particles containing the above-mentioned hydrophobic silica powder on the surface.
  • the resin particles for forming the toner resin particles can be used.
  • examples of such resin particles include polyester resin particles and vinyl resin particles. Among these, polyester resin particles are preferable.
  • the glass transition temperature (Tg) of the polyester resin is preferably 40 ° C. or higher and 80 ° C. or lower. When the glass transition temperature is within the above range, the minimum fixing temperature is easily maintained.
  • the weight average molecular weight Mw of the polyester resin is preferably 5,000 or more and 40,000 or less.
  • the number average molecular weight Mn of the polyester resin is preferably 2,000 or more and 10,000 or less.
  • the method for allowing the hydrophobic silica powder to be present (or dispersed) on the surface of the toner resin particles is not particularly limited, and examples thereof include a method of externally adding the hydrophobic silica powder to the toner resin particles.
  • examples of such a method include a method of externally adding using a so-called surface modifier such as a Henschel mixer, a V-type blender, a Ladyge mixer, and a hybridizer, which are ordinary powder mixers.
  • the hydrophobic silica powder may be attached to the surface of the toner resin particles, or a part of the hydrophobic silica powder may be embedded in the toner resin particles.
  • the volume average particle diameter (D50v) of the toner resin particles is preferably 2 ⁇ m or more and 10 ⁇ m or less, and more preferably 4 ⁇ m or more and 8 ⁇ m or less.
  • D50v volume average particle diameter
  • the volume average particle diameter is 2 ⁇ m or more, the fluidity of the toner is good, and sufficient charging ability is imparted from the carrier. Further, when the volume average particle diameter is 10 ⁇ m or less, a high quality image can be obtained.
  • the amount of the hydrophobic silica powder added to the toner resin particles is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the components other than the external additive of the toner resin particles. It is more preferable to use 3 parts by mass.
  • the entire surface of the toner resin particles can be uniformly covered with a small amount of hydrophobic silica powder.
  • the particle size of the hydrophobic silica powder was measured using a laser diffraction method particle size distribution analyzer LA-950V2 (manufactured by Horiba Ltd.). Hydrophobic silica powder was added to ethanol so that the laser transmittance would be 93.0 to 95.0%, and ultrasonic irradiation was performed at an intensity of 3 (output 10 W) for 1 minute. This dispersion was measured under the conditions of a refractive index of 1.45 for silica and a refractive index of 1.36 for ethanol, and the median value of the obtained volume-based particle size distribution was adopted as the particle size (D 50 ).
  • the ratio of 90% volume diameter D 90 to 10% volume diameter D 10 was defined as a particle size distribution index, and the volume% of particles 10 times or more the median diameter was defined as the coarse grain content.
  • Organic acid content concentration (ppm) (Y) / (mass of powder sample (g)) x ⁇ (mass of methanol (g)) + (mass of water (g)) ⁇
  • the average secondary particle diameter D2 and the average primary particle diameter D1 of the colloidal silica concentrate were measured as follows. (Average primary particle diameter D1)
  • the colloidal silica concentrate was pre-dried on a hot plate and then heat-treated at 800 ° C. for 1 hour to prepare a sample for measurement.
  • the BET specific surface area was measured using the prepared measurement sample. With the true specific gravity of silica being 2.2, the value of 2727/BET specific surface area (m 2 /g) was converted to obtain the average primary particle diameter D1 (nm).
  • Average secondary particle diameter D2 As a measurement sample for the dynamic light scattering method, a colloidal silica concentrated solution was added to a 0.3 mass% citric acid aqueous solution and homogenized. Using the measurement sample, the average secondary particle diameter D2 (nm) was measured by the dynamic light scattering method (“ELSZ-2000S” manufactured by Otsuka Electronics Co., Ltd.).
  • ⁇ major axis/minor axis> The hydrophobic silica powder was observed with a scanning electron microscope, 100 hydrophobic silica particles were analyzed by image analysis, and the major axis/minor axis was calculated from the following formula. For the major axis/minor axis, the average value of the values calculated for individual particles was used.
  • Major axis/minor axis absolute maximum length (nm) ⁇ diagonal width (nm)
  • Example toner addition state Hydrophobic silica powder was externally added to the toner resin particles, and the external surface of the toner was evaluated by SEM observation of the sample surface.
  • the toner resin particles polyester resin particles (manufactured by Mikasa Sangyo Co., Ltd., average particle diameter 9.2 ⁇ m) are used, and 2 parts by mass of hydrophobic silica powder is added to 100 parts by mass of the toner resin particles.
  • the external toner particles were adjusted by weighing 10 g into 100 mL and shaking at maximum intensity for 8 minutes using a shaker YS-8D (manufactured by Yayoi Co., Ltd.).
  • the surface of the externally added toner particles was observed with a scanning electron microscope (JSM-6700, manufactured by JEOL Ltd.), and the externally added state was evaluated from the 50,000 times observation field of view as follows.
  • Silica particles are uniformly dispersed.
  • Aggregates of silica particles are slightly scattered, or the surface coverage of the silica particles is slightly reduced.
  • X Many aggregates of silica particles are seen, or the surface coverage of the silica particles is significantly reduced.
  • Example 1 327.9 g of pure water, 2704.7 g of methanol and 86.0 g of 28% ammonia water were mixed by stirring in a flask to prepare a mother liquor.
  • a solution A prepared with 3292.6 g of tetramethoxysilane (TMS) and 893.3 g of methanol and a solution B prepared with 1611.6 g of pure water and 197.8 g of 28% aqueous ammonia were separately prepared as the obtained mother liquor.
  • TMS tetramethoxysilane
  • a solution B prepared with 1611.6 g of pure water and 197.8 g of 28% aqueous ammonia were separately prepared as the obtained mother liquor.
  • the above liquids A and B were added to the mother liquor heated to 0° C. over 150 minutes to obtain colloidal silica 1.
  • the obtained colloidal silica 1 was distilled at a boiling point to concentrate it to a silica concentration of 20% by mass, and then distilled while adding pure water to prepare a colloidal silica concentrate 1.
  • a colloidal silica concentrate 1000.0 g of the colloidal silica concentrate, 0.3 g of acetic acid and 66.6 g of hexamethyldisilazane (HMDS) are added and stirred, the temperature is raised from room temperature to 80 ° C. over 60 minutes, and the mixture is further heated at 80 ° C. for 100 minutes. Hydrophobization treatment was carried out. After that, the liquid components in the system were evaporated by heating and vacuum dried until the water content became 1% by mass or less. This was crushed once with a jet mill (manufactured by Tokuju Kosakusho: NJ-50) under the conditions of a pusher nozzle pressure of 1.40 MPa and a crushing pressure of 0.20 MPa to obtain hydrophobic silica powder 1.
  • HMDS hexamethyld
  • Hydrophobic silica powder 7 was produced in the same manner as in Example 1 except that acetic acid was not added during the hydrophobization treatment using the colloidal silica concentrate 1.
  • hydrophilic silica powder 1 was prepared by spray-drying the colloidal silica concentrate 1 obtained in Example 1. To 100.0 g of this hydrophilic silica powder, 30.0 g of hexamethyldisilazane is added and stirred, the temperature is raised from room temperature to 150 ° C. over 120 minutes, and the mixture is further heated at 150 ° C. for 120 minutes to make it hydrophobic. Processed. Hydrophobic silica powder 8 was produced in the same manner as in Example 1 after the drying step.
  • Hydrophobic silica powder 9 was produced in the same manner as in Comparative example 2 except that spray drying was changed to freeze-drying in the production of the hydrophilic silica powder of Comparative Example 1.
  • Comparative Examples 5 and 6 The degree of association of Comparative Examples 5 and 6 was evaluated using a commercially available fumed silica SIS6960 (manufactured by GELEST, unmodified product), but could not be evaluated because it was not first dispersed in pure water. Further, Comparative Examples 5 and 6 were agglomerated, and the major axis / minor axis and circularity could not be evaluated.
  • Table 1 shows a list of reaction conditions for Examples and Comparative Examples.
  • Table 2 shows the evaluation results of the physical properties of the hydrophobic silica powder of the examples.
  • Table 3 shows the evaluation results of the physical properties of the hydrophobic silica powder of Comparative Example.

Abstract

粒子径が小さく、粒度分布が狭く、疎水化度が高く、且つ、有機酸を僅かに含む疎水性シリカ粉末及びそれを表面に有するトナー樹脂粒子を提供する。 疎水性シリカ粉末は、レーザー回折法により測定される粒子径(D50)が300nm以下、粒度分布指標(D90/D10)が3.0以下、疎水化度60容積%以上、及び有機酸の含有濃度が1~300ppmであることを特徴とする。

Description

疎水性シリカ粉末及びトナー樹脂粒子
 本発明は、疎水性シリカ粉末及びトナー樹脂粒子に関する。
 疎水性シリカ粉末は、例えば、ゾルゲル法により得られるシリカ粒子の分散液(すなわち、コロイダルシリカ)に疎水化剤を添加し、シリカ粒子の表面を疎水化することにより得られる(例えば、特許文献1~3)。この疎水化処理は、処理対象が液中分散しているため、「湿式疎水化処理」という。
 特許文献1では、コロイダルシリカ中のシリカに対して30質量%の疎水化剤を35℃で1時間反応させる条件等で湿式疎水化処理が行われている。このような処理により得られた疎水性シリカ粉末は、27~61容積%の疎水化度を達成している。
 特許文献2では、コロイダルシリカ中のシリカに対して20質量%の疎水化剤を65℃で反応させる条件等で湿式疎水化処理が行われている。しかし、このような処理により得られた疎水性シリカ粉末は、文献中に記載された一次粒子の分散性試験において、水40g及びメタノール1gの混合液に分散することから、十分に高い疎水化度は得られていない。
 特許文献3では、シリカの酸性水性分散体(約pH 3)に2-プロパノール、次いでオクチルトリエトキシシランを加えて反応させ、得られた反応混合物に水酸化アンモニウムの水溶液を加え、加熱撹拌し、噴霧乾燥することにより疎水性シリカ粉末を得ている。
 また、疎水性シリカ粉末は、例えば、コロイダルシリカから溶媒を留去して得られる親水性シリカ粉末、又は金属シリコンの酸化反応により得られるシリカ粉末を疎水化剤と反応させ、シリカ粉末の表面を疎水化することによって得ることもできる(例えば、特許文献4及び5)。この疎水化処理は、処理対象が粉末であるため、「乾式疎水化処理」という。
特開2012-031045号公報 特開2012-006796号公報 特開2013-139389号公報 特開2012-149169号公報 国際公開第2013/018704号
 特許文献1の湿式疎水化処理方法では、湿式疎水化処理後に凝析剤を添加してろ過によりシリカ粉末を得ているが、この方法では、シリカ粒子の凝集物が生じやすく、疎水性シリカ粉末中の粗粒の含有率が大きくなる。また、特許文献2の湿式疎水化処理方法では、十分に高い疎水化度は得られない。
 特許文献3の湿式疎水化処理方法では、シリカ粒子の凝集物が生じやすく、疎水性シリカ粉末の粒径が大きくなり、粉末自体の分散性も悪くなる。
 一方、特許文献4及び5に記載の乾式疎水化処理により得られる疎水性シリカ粉末は、乾式疎水化処理によりシリカ粒子が凝集し、疎水性シリカ粉末中の粗粒含有率が大きくなる。
 このような疎水性シリカ粉末をトナー樹脂粒子の外添剤として用いると、トナー樹脂粒子の表面にシリカ粒子を均一に分散させることが困難であり、トナー樹脂粒子の表面を被覆するためには、より多くのシリカ粉末が必要になり、経済性が悪いという問題が生じる。
 そこで、本発明は、粒子径が小さく、粒度分布が狭く、疎水化度が高く、且つ、有機酸を僅かに含む疎水性シリカ粉末及びそれを表面に有するトナー樹脂粒子を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、コロイダルシリカの湿式疎水化処理において有機酸を少量添加することによって、飽和水分量が高いにもかかわらず、高度に疎水化された疎水性シリカ粉末が得られること、このようにして得られた疎水性シリカ粉末は一次粒子への解砕性に優れ、粗粒含有量が低減することで粉末全体の粒度分布を狭くすることができ、例えば、トナー樹脂粒子の表面に均一に分散させることができることを見出した。本発明者らは、この知見に基づいてさらに検討を重ねて本発明を完成した。
 すなわち、本発明は、次の態様を含む。
項1.
 レーザー回折法により測定される粒子径(D50)が300nm以下、粒度分布指標(D90/D10)が3.0以下、疎水化度が60容積%以上、及び有機酸の含有濃度が1~300ppmである、疎水性シリカ粉末。
項2.
 疎水化度が65容積%以上である、項1に記載の疎水性シリカ粉末。
項3.
 飽和水分量が4.0質量%以上である、項1又は2に記載の疎水性シリカ粉末。
項4.
 29Si-固体NMRスペクトルにおいて、10~15ppmの範囲内に化学シフトの中心値を有するピークが存在する、項1~3のいずれか一項に記載の疎水性シリカ粉末。項5.
 表面に項1~4のいずれか一項に記載の疎水性シリカ粉末を含む、トナー樹脂粒子。
 本発明により、粒子径が小さく、粒度分布が狭く、疎水化度が高く、且つ、有機酸を僅かに含む疎水性シリカ粉末を提供することができる。該疎水性シリカ粉末は、例えば、トナー樹脂粒子の外添剤として極めて有用である。
 以下、本発明の疎水性シリカ粉末及びトナー樹脂粒子について詳細に説明する。
<疎水性シリカ粉末>
 疎水性シリカ粉末は、下記(1)~(4)の物性を有する:
(1)レーザー回折法により測定される粒子径(D50)が300nm以下、
(2)粒度分布指標(D90/D10)が3.0以下、
(3)疎水化度が60容積%以上、及び
(4)有機酸の含有濃度が1~300ppm。
(1)粒子径(D50
 本発明の疎水性シリカ粉末のD50は300nm以下である。疎水性シリカ粉末のD50の上限は、例えばトナー樹脂粒子の表面を均一に被覆する点から、250nmが好ましく、220nmがより好ましい。また、疎水性シリカ粉末のD50の下限は、特に制限されず、通常、10nm程度であり、30nmが好ましく、50nmがより好ましく、70nmがさらに好ましい。
 疎水性シリカ粉末のD50は、慣用のレーザー回折法粒度分布計を用いてレーザー回折法により測定することができる。具体的には、半導体レーザー(例えば、波長650nm)で照射された疎水性シリカ粉末の散乱光強度のパターンを、Mie散乱理論から求められる理論的な散乱光強度のパターンと比較することにより、疎水性シリカ粉末の体積基準の粒度分布を取得し、該粒度分布のメジアン値を計算することにより、D50を算出することができる。
 疎水性シリカ粉末のD50の測定において、疎水性シリカ粉末をエタノールに添加し、出力10Wの超音波を1分間照射したエタノール分散液を測定試料とする。指定した超音波照射条件は、比較的弱い分散条件であり、この条件で一次分散する疎水性シリカ粉末は粒子間の凝集性が弱いことを示す。このような疎水性シリカ粉末は、凝集体が少なく、トナー樹脂粒子などに添加した場合、トナー樹脂粒子の表面に均一に分散する。
(2)粒度分布指標(D90/D10
 本発明の疎水性シリカ粉末のD90/D10は3.0以下である。疎水性シリカ粉末のD90/D10は、数値が小さいほど粒度分布が狭い(又は粗粒含有率が少ない)ことを意味する。疎水性シリカ粉末のD90/D10の上限は、2.8が好ましく、2.6がより好ましい。また、疎水性シリカ粉末のD90/D10の下限は、特に制限されず、通常、1.5程度である。
 疎水性シリカ粉末のD90/D10は、前記D50と同様に、慣用のレーザー回折法粒度分布計により体積基準の粒度分布を取得し、該粒度分布に基づいて算出することができる。
(3)疎水化度
 本発明の疎水性シリカ粉末は高度に疎水化されており、疎水化度60容積%以上である。疎水性シリカ粉末の疎水化度の下限は、65容積%が好ましく、より好ましくは68容積%であり、さらに好ましくは70容積%である。疎水性シリカ粉末の疎水化度の上限は、特に制限されず、通常、99容積%程度である。
 疎水性シリカ粉末の疎水化度は、純水50mLに粉末試料0.2gを添加し、マグネットスターラーによって攪拌しながらメタノールを液中添加し、粉末試料が完全に分散するまでに添加したメタノール量XmLから算出する。疎水化度は、式:{(X)/(50+X)}×100により算出される。
(4)有機酸の含有濃度
 本発明の疎水性シリカ粉末は、有機酸を微量含んでおり、有機酸の含有濃度は、疎水性シリカ粉末に対して1~300ppmであり、5~200ppmが好ましく、10~100ppmがより好ましい。このような範囲では、疎水性シリカ粉末の疎水化度はより一層高く、且つ、優れた解砕性を有する。
 有機酸の含有濃度は、メタノールに粉末試料を湿潤させた後に純水を加えて調製した抽出液の有機酸を定量し、これを有機酸の含有濃度として算出する。具体的には、粉末試料0.3gにメタノールを3mL添加し振とうした後、純水27mLを加え室温にて1時間振とうし、抽出液をろ過した後、イオンクロマトグラフィーにより抽出液中の有機酸を定量する(Yppm)。疎水性シリカ粉末中の有機酸の含有濃度は、式:(Y)÷(粉末試料の仕込質量(g))×{(メタノールの仕込質量(g))+(水の仕込質量(g))}により算出される。
 有機酸は、1又は2以上の酸性基を有していてもよい。有機酸としてはカルボン酸、スルホン酸などが挙げられる。有機酸は、ヒドロキシ酸であってもよい。有機酸の具体例としては、例えば、ギ酸、酢酸、クエン酸、リンゴ酸、シュウ酸、メタンスルホン酸、またはこれらの組合せが挙げられる。これらのうち、炭素数1~3のカルボン酸が好ましく、酢酸がより好ましい。
 有機酸の沸点(常圧における沸点)は特に限定されないが、例えば、100℃以上が好ましく、110℃以上がより好ましい。また、該有機酸の沸点は、200℃以下が好ましく、150℃以下が好ましい。
 疎水性シリカ粉末は、上記(1)~(4)の物性に加えて、さらに他の物性を有していてもよい。他の物性としては、例えば、下記(5)~(10)の物性が挙げられる。
(5)飽和水分量
 本発明の疎水性シリカ粉末の飽和水分量は4.0質量%以上である。疎水性シリカ粉末の飽和水分量の下限は、4.5質量%が好ましく、5.0質量%がより好ましい。本発明では、飽和水分量が高いにもかかわらず、疎水化度を高くすることができる。また、疎水性シリカ粉末の飽和水分量の上限は、特に制限されず、通常、15質量%程度であり、より好ましくは12質量%である。
 疎水性シリカ粉末の飽和水分量は、粉末試料2.0gをシャーレに精秤し、60℃及び80%RHの環境下で48時間吸湿させた後、水分気化装置ADP-611(京都電子工業(株)製)、カールフィッシャー水分計MKV-710S(京都電子工業(株)製)を用いて10分間滴定することにより測定することができる。
 なお、飽和水分量は、次の式によって算出される。
飽和水分量(質量%)=(滴定試薬の力価(mg/mL))×(滴定量(mL))÷(粉末試料量(g))×0.1
(6)29Si-固体NMRスペクトル
 疎水性シリカ粉末の29Si-固体NMRスペクトルにおいて、10~15ppmの範囲内に化学シフトの中心値を有するピークが存在することが好ましい。該ピークは、下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、水素原子又はアルキル基等の非加水分解性基である。)
で表されるM構造に由来するピークである。シリカ粉末の化学構造にM構造が存在すると、疎水化度と解砕性をより一層高くすることができる。
 疎水性シリカ粉末の29Si-固体NMRスペクトルにおいて、-70~-50ppmの範囲内に化学シフトの中心値を有するピークは存在しないことが好ましい。該ピークは、下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、前記と同じである)
で表されるT構造に由来するピークである。シリカ粉末中の粗粒の含有率を低減する点から、シリカ粉末の化学構造にT構造が存在しないことが好ましい。
(7)粗粒含有率
 粗粒とは、レーザー回折法により測定されたメジアン径の10倍以上の粒子径を有する粒子をいう。疎水性シリカ粉末中の粗粒含有率の上限は、10体積%が好ましく、8体積%がより好ましく、5体積%がさらに好ましい。また、疎水性シリカ粉末中の粗粒含有率の下限は、特に制限されず、通常、1体積%程度である。
 粗粒含有率は、上記(1)及び(2)と同様に、慣用のレーザー回折法粒度分布計を用いて体積基準の粒度分布を取得し、式:100-(メジアン径の10倍での積算頻度%)により算出することができる。
(8)分散性
 疎水性シリカ粉末は、エタノール中で出力10Wの超音波を1分間照射することにより分散することが好ましい。このような疎水性シリカ粉末は、凝集体が少なく、トナー樹脂粒子などに添加した場合、トナー樹脂粒子の表面に均一に分散する。
(9)長径/短径(異形度)
 疎水性シリカ粉末の長径/短径は、特に限定されるものではないが、1.00以上が好ましく、1.03以上がより好ましく、1.05以上がさらに好ましい。また、疎水性シリカ粉末の長径/短径は、2.00以下が好ましく、1.80以下がより好ましく、1.50以下がさらに好ましい。異形度の高い疎水性シリカ粉末は、一般に凝集しやすく、トナー樹脂粒子の外添剤として用いると、トナー樹脂粒子の表面にシリカ粒子を均一に分散させることが困難であるが、本発明の疎水性シリカ粉末は、凝集が抑制されており、トナー樹脂粒子の表面にシリカ粒子を均一に分散させることができる。
 疎水性シリカ粉末の長径/短径は、疎水性シリカ粒子100個を走査型電子顕微鏡により観察し、画像解析によって、個別粒子の最大長(絶対最大長)と絶対最大長に平行する2本の直線で粒子を挟み込んだ時の2直線間の最短距離(対角幅)の比を算出し、これを平均することにより算出される。
(10)円形度
 疎水性シリカ粉末の円形度は、特に限定されるものではないが、0.98以下が好ましく、0.96以下がより好ましく、0.94以下がさらに好ましい。また、疎水性シリカ粉末の円形度は、0.50以上が好ましく、0.60以上がより好ましく、0.70以上がさらに好ましい。
 疎水性シリカ粉末の円形度は、疎水性シリカ粒子100個を走査型電子顕微鏡により観察し、画像解析によって、個別粒子の面積と周囲長から式:4π×面積÷(周囲長)により算出し、これを平均することにより算出される。
 疎水性シリカ粉末は、上記(5)~(10)のいずれか1つの物性を有することが好ましく、上記(5)~(10)の全ての物性を有することがより好ましい。
<疎水性シリカ粉末の製造方法>
 疎水性シリカ粉末の製造方法としては、特に限定されず、例えば、
(I)コロイダルシリカを調製する工程、
(II)上記コロイダルシリカを疎水化して、疎水性シリカ粒子の混合液を調製する工程、(III)上記疎水性シリカ粒子の混合液を溶媒除去して、疎水性シリカ粉末を調製する工程、及び
(IV)上記疎水性シリカ粉末を粉砕する工程
を含む製造方法が挙げられる。
[工程(I)]
 工程(I)は、コロイダルシリカを調製する工程である。コロイダルシリカは、通常、ゾルゲル法(特に、ストーバー法)により調製される。工程(I)は、下記工程(i)~(iii)を含むことが好ましい。
(i)アルカリ触媒及び水を含む母液を調製する工程、
(ii)アルコキシシラン又はその加水分解物を含む液Aを前記母液に添加する工程、及び(iii)アルカリ触媒及び水を含む液Bを前記母液に添加する工程。
[工程(i)]
 工程(i)はアルカリ触媒及び水を含む母液を調製する工程である。このような母液は、例えば、水にアルカリ触媒を添加することにより調製すればよい。
 アルカリ触媒の種類は、特に制限されない。アルカリ触媒としては、金属不純物の混入を回避する点で金属成分を含まない有機系塩基触媒が好ましく、中でも、窒素含有型の有機系塩基触媒が好ましい。このような有機系塩基触媒としては、例えばエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、アンモニア、尿素、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、3-エトキシプロピルアミン、テトラメチルアンモニウムヒドロキシド、テトラメチルグアニジン等の含窒素有機系塩基触媒が挙げられる。
 これらのアルカリ触媒は、単独で又は2種以上組み合わせて使用することができる。アルカリ触媒の添加量は、母液のpHが通常7~14の範囲内となるように適宜設定することが好ましい。pH9~12が好ましく、pH9~11がさらに好ましい。母液のpHが上記範囲内であると、粒子径と形状を制御しやすくなるため、より好ましい。
 母液は、水と有機溶媒の混合系とすることができる。すなわち、母液は、さらに有機溶媒を含んでいてもよい。有機溶媒としては、典型的には、水溶性有機溶媒が挙げられ、その例としては、アルコール等が挙げられる。アルコールとしては、加熱蒸留により容易に留去することが出来る点から、メタノール、エタノール、イソプロパノール等の低級アルコール(特に炭素数1~3のアルコール)を用いることが好ましく、メタノールがより好ましい。さらには、アルコキシシランの加水分解により生成するアルコールと同種のアルコールを用いることがさらに好ましい。これにより、溶媒の回収、再利用を容易に行うことが出来る。有機溶媒は、単独で又は二種以上組み合わせて使用することもできる。
 水と有機溶媒の添加量は特に限定されないが、使用するアルコキシシラン1モルに対して、例えば、水は2~15モル、有機溶媒は0~50モルである。
 ある一定量の水と有機溶媒に対して、水の量が相対的に増加すれば、生成するシリカ粒子は大きくなり、水の量が相対的に低下すれば、生成するシリカ粒子は小さくなる傾向にある。また、有機溶媒を5モル以上で使用すると、アルコキシシランとの相溶性に優れ、50モル以下で使用すると製造効率に優れる。このように、水と有機溶媒の混合比を調整することでアルコキシシラン又はその加水分解物の安定性を調整することができ、シリカ粒子の粒径などの特性を任意に調整することが出来る。
[工程(ii)]
 工程(ii)はアルコキシシラン又はその加水分解物を含む液Aを前記母液に添加する工程である。
 アルコキシシランは加水分解可能なケイ素化合物、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシラン類が挙げられる。これらのうち、アルコキシ基の炭素数は1~8が好ましく、1~4がより好ましく、1~2のテトラメトキシシラン及び/又はテトラエトキシシランがさらに好ましい。
 アルコキシシランは加水分解したものを使用してもよく、アルコキシシラン又はその加水分解物は、単独又は二種以上組み合わせて使用することができる。アルコキシシラン又はその加水分解物は、数回(たとえば2~3回)に分けて母液に添加してもよい。
 アルコキシシランは水や有機溶媒で希釈して使用してもよい。有機溶媒としては、工程(i)で例示した溶媒と同様のものが使用できる。工程(ii)の有機溶媒は、工程(i)の有機溶媒と同じであってもよく、異なっていてもよい。アルコキシシランの希釈液は、水や有機溶媒にアルコキシシランを添加する、あるいは、アルコキシシランに水や有機溶媒を添加することで調製すればよい。
 アルコキシシラン又はその加水分解物の量は、液A100質量部に対して、例えば、70~100質量部、好ましくは75~90質量部である。アルコキシシラン又はその加水分解物が上記範囲内であると、アルコキシシランの粒子生成が効率的に行われるため、より好ましい。
[工程(iii)]
 工程(iii)はアルカリ触媒及び水を含む液Bを前記母液に添加する工程である。アルカリ触媒は水で希釈してもよく、例えば、水にアルカリ触媒を添加することにより希釈液を調製することが出来る。
 アルカリ触媒は、工程(i)で例示したアルカリ触媒と同様のものが使用できる。工程(iii)のアルカリ触媒は、工程(i)のアルカリ触媒と同じであってもよく、異なっていてもよい。
 液Bの添加量はアルコキシシランの加水分解および重縮合反応の反応速度等を勘案して適宜決定すればよい。
 液Bは徐々に添加してもよく、また、一括して添加してもよい。さらに、液Bは液Aと同時に添加してもよい。
 工程(I)は、必要に応じて、反応液を濃縮する工程を含む。濃縮に先立って、必要に応じて、系内に残存する微量の水溶性有機溶媒(アルコール等)を予め除去することもできる。
 反応液を濃縮する場合は、温度(系内温度)が100℃に達し、蒸気温度も100℃に達し、水溶性有機溶媒の除去完了を確認したら、そのまま所定の固形分濃度になるまで濃縮してもよい。濃縮方法としては、例えば蒸留濃縮法、膜濃縮法等の公知の濃縮方法を採用することが出来る。
 工程(I)で調製されたコロイダルシリカ中のシリカ濃度は、例えば、5~40質量%、好ましくは10~35質量%である。濃縮物は、所定のフィルターでろ過し、粗大粒子、異物等を除去した後、そのまま各種の用途に使用することが出来る。
 工程(I)で調製されたコロイダルシリカ中のシリカ粒子の平均二次粒子径D2と平均一次粒子径D1の比(会合度、D2/D1)は、特に限定されるものではないが、1.0以上が好ましく、1.3以上がより好ましく、1.5以上がさらに好ましい。また、コロイダルシリカ中のシリカ粒子の会合度は、4.0以下が好ましく、3.5以下がより好ましく、3.3以下がさらに好ましい。このようなコロイダルシリカを用いると、異形度の高い疎水性シリカ粉末を容易に得ることができる。
 なお、平均二次粒子径(D2)と平均一次粒子径(D1)は次のようにして測定することが出来る。
(平均一次粒子径D1)
 コロイダルシリカをホットプレートの上で予備乾燥後、800℃で1時間熱処理して測定用サンプルを調製する。調製した測定用サンプルを用いて、BET比表面積を測定する。平均一次粒子径D1は、シリカの真比重を2.2として、式:2727/BET比表面積(m/g)により求められる。
(平均二次粒子径D2)
 動的光散乱法の測定用サンプルとして、コロイダルシリカを0.3質量%クエン酸水溶液に加えて均一化したものを調製する。平均二次粒子径D2は、当該測定用サンプルを用いて、動的光散乱法(大塚電子株式会社製「ELSZ-2000S」)により求められる。
[工程(II)]
 工程(II)は、上記コロイダルシリカを疎水化して、疎水性シリカ粒子の混合液を調製する工程である。コロイダルシリカを疎水化する方法としては、工程(I)で調製されたコロイダルシリカに疎水化剤及び有機酸を添加し、加熱する方法が挙げられる。
 本明細書中、「疎水化剤」とは、シリコーンオイル、シランカップリング剤、シリル化剤(例えば、オルガノシラザン)などの公知の疎水化剤を包含する。これらの中でもシリカ粒子表面を高度に疎水化する観点からシランカップリング剤、オルガノシラザンなどのシリル化剤が好ましく、シリカ粉末の解砕性の観点からオルガノシラザンなどのシリル化剤がさらに好ましい。
 本明細書中、「シリル化剤」とは、シリカ粒子表面に前記[化1]の構造を導入できるシリル化剤を包含し、オルガノシラザンであるテトラメチルジシラザン、ヘキサメチルジシラザン、1官能性シラン化合物であるトリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン等が挙げられる。これらの中で好ましくは、ヘキサメチルジシラザン、トリメチルシラノール、トリメチルメトキシシラン、特に好ましくは、ヘキサメチルジシラザンが挙げられる。
 疎水化剤は、単独で又は二種以上組み合わせて使用することができる。疎水化剤の添加量は特に限定されないが、より高い疎水化度を得る点から、工程(I)で調製されたコロイダルシリカを100質量部として、3~30質量部が好ましく、5~25質量部がより好ましく、さらに8~20質量部がさらに好ましい。
 疎水化剤は、必要に応じて疎水化剤とコロイダルシリカを相溶させるために、相溶化溶媒として水溶性有機溶媒を含有させることもできる。水溶性有機溶媒は、メタノール、エタノール、イソプロパノール、アセトンなどを例示することが出来る。水溶性有機溶媒の含有濃度は特に限定されないが、通常はコロイダルシリカに対して0.1~50質量%、好ましくは0.5~30質量%程度とすればよい。
 有機酸は、上記(4)で例示した成分を使用することができるが、水や低級アルコールに溶解することから、炭素数1~3のカルボン酸が好ましく、酢酸がより好ましい。有機酸の添加量は特に限定されない。上記(4)の有機酸の含有濃度の範囲となるように、疎水化反応時に有機酸を添加した場合、疎水化度がより一層高く、且つ、優れた解砕性を持った疎水性シリカ粉末を得ることができる。具体的には、有機酸の添加量は、工程(I)で調製されたコロイダルシリカの固形分を100質量部として、0.01~5質量部が好ましく、0.05~1質量部がより好ましく、0.1~0.5質量部がさらに好ましい。
 加熱温度は特に限定されないが、より高い疎水化度を得る点から、50℃以上が好ましく、60℃以上がより好ましく、70℃以上がさらに好ましい。また、加熱温度の上限は特に限定されず、通常、90℃程度である。
 加熱時間は特に限定されないが、より高い疎水化度を得る点から、60~600分が好ましく、90~500分がより好ましく、120~450分がさらに好ましい。
[工程(III)]
 工程(III)は、上記疎水性シリカ粒子の混合液を粉末化して、疎水性シリカ粉末を調製する工程である。疎水性シリカ粒子の混合液を粉末化する方法としては特に限定されず、従来公知の乾燥方法により乾燥させればよい。例えば、疎水性シリカ粒子の混合液を、水分含量が、例えば、3質量%以下、好ましくは1質量%以下になるまで乾燥する方法が挙げられる。乾燥は、通常、乾燥機を用いて行われる。
[工程(IV)]
 工程(IV)は、上記疎水性シリカ粉末を粉砕する工程である。疎水性シリカ粉末を粉砕する方法としては特に限定されず、従来公知の粉砕方法により粉砕すればよい。このような粉砕方法として、ジェットミル等が挙げられる。ジェットミルによる粉砕において、プッシャーノズル圧力は特に限定されないが、例えば、0.5~2.0MPa、好ましくは1.0~1.5MPaである。粉砕圧力は特に限定されないが、例えば、0.05~0.5MPa、好ましくは0.1~0.3MPaである。粉砕は繰り返し行ってもよいが、疎水性シリカ粉末の一次粒子への解砕性が優れるため、1回のみ行ってもよい。
<トナー樹脂粒子>
 本発明のトナー樹脂粒子は、表面に上記疎水性シリカ粉末を含むトナー樹脂粒子である。
 トナー樹脂粒子を形成するための樹脂粒子としては、従来公知のトナー樹脂粒子に用いられる樹脂粒子を用いることができる。このような樹脂粒子としては、例えば、ポリエステル系樹脂粒子、ビニル系樹脂粒子等が挙げられる。これらの中でも、ポリエステル系樹脂粒子が好ましい。
 ポリエステル系樹脂のガラス転移温度(Tg)は、40℃以上80℃以下が好ましい。ガラス転移温度が上記範囲にあることにより、最低定着温度が維持され易くなる。
 ポリエステル系樹脂の重量平均分子量Mwは、5,000以上40,000以下が好ましい。また、ポリエステル系樹脂の数平均分子量Mnは、2,000以上10,000以下が好ましい。
 トナー樹脂粒子の表面に疎水性シリカ粉末を存在(又は分散)させる方法としては、特に限定されず、例えば、トナー樹脂粒子に疎水性シリカ粉末を外添する方法が挙げられる。このような方法としては、例えば、通常の粉体用混合機であるヘンシェルミキサー、V型ブレンダー、レディゲミキサー、ハイブリダイザ一等のいわゆる表面改質機を用いて外添する方法が挙げられる。なお、外添は、トナー樹脂粒子の表面に疎水性シリカ粉末を付着させるようにしてもよいし、疎水性シリカ粉末の一部をトナー樹脂粒子に埋め込むようにしてもよい。
 トナー樹脂粒子の体積平均粒子径(D50v)は、2μm以上10μm以下が好ましく、4μm以上8μm以下がより好ましい。体積平均粒子径が2μm以上であると、トナーの流動性が良好であり、キャリアから十分な帯電能が付与される。また、体積平均粒子径が10μm以下であると、高画質画像が得られる。
 トナー樹脂粒子における疎水性シリカ粉末の添加量は、トナー樹脂粒子の外添剤以外の成分100質量部に対して、疎水性シリカ粉末を0.01~5質量部とすることが好ましく、1~3質量部とすることがより好ましい。本発明では、少量の疎水性シリカ粉末でトナー樹脂粒子の表面全体を均一に被覆することができる。
 以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得る。
 以下、実施例を参照して本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<レーザー回折法による粒子径測定>
 レーザー回折法粒度分布計LA-950V2(株式会社堀場製作所製)を用いて疎水性シリカ粉末の粒子径を測定した。レーザー透過率93.0~95.0%となるように疎水性シリカ粉末をエタノールに添加し、強度3(出力10W)で1分間超音波照射した。この分散液を、シリカの屈折率1.45、エタノールの屈折率1.36の条件で測定し、得られた体積基準粒度分布のメジアン値を粒子径(D50)として採用した。
 また、この場合の90%体積径D90と10%体積径D10の比を粒度分布指標として、メジアン径の10倍以上の粒子の体積%を粗粒含有率として、それぞれ定義した。粒度分布指標と粗粒含有率は、次のように算出した。
 粒度分布指標=D90/D10
 粗粒含有率(%)=100-(メジアン径の10倍での積算頻度%)
<疎水化度>
 300mLのビーカーに純水50mLを入れ、疎水性シリカ粉末0.2gを加え、マグネットスターラーで撹拌する。メタノールを入れたビュレットの先端を液中に入れ、撹拌下でメタノールを滴下し、疎水性シリカ粉末が完全に水中に分散するまでに要したメタノールの添加量XmLから疎水化度を算出した。具体的には、疎水化度は、次の式により算出した。
疎水化度(容積%)={(X)/(50+X)}×100
<有機酸含有濃度>
 粉末試料0.3gにメタノールを3mL添加し振とうした後、純水27mLを加え室温にて1時間振とうし、抽出液を0.2μmフィルターでろ過したものを測定試料とした。これをイオンクロマトグラフィー(THERMO FISHER社製)により、抽出液中の有機酸を定量した(Yppm)。
 疎水性シリカ粉末中の有機酸の含有濃度は、次の式から算出した。
有機酸含有濃度(ppm)=(Y)÷(粉末試料の仕込質量(g))×{(メタノールの仕込質量(g))+(水の仕込質量(g))}
<飽和水分量測定>
 疎水性シリカ粉末2.0gをシャーレへ精秤し、60℃,80%RHの環境下で48時間吸湿させた。その後、水分気化装置ADP-611(京都電子工業株式会社製)及びカールフィッシャー水分計MKV-710(京都電子工業株式会社製)を用いて10分間滴定を行い、次の式から飽和水分量を測定した。
飽和水分量(質量%)=(滴定試薬の力価(mg/mL))×(滴定量(mL))÷(粉末試料量(g))×0.1
 なお、2回測定の平均値を飽和水分量とした。
29Si-固体NMR測定>
 疎水性シリカ粉末の29Si-固体NMRスペクトルを、JNM-ECA400(日本電子株式会社製)により、以下の条件により測定した。
・共鳴周波数:78.65Hz
・測定モード:CP/MAS法
・測定核:29Si
・試料回転数:6kHz
・測定温度:室温
・積算回数:16384回
 得られたスペクトルからM構造(10~15ppm)とT構造(-70~-50ppm)の有無を確認した。
<会合度>
 コロイダルシリカ濃縮液の平均二次粒子径D2と平均一次粒子径D1を用いて、次の式により会合度を算出した。
会合度=D2(nm)÷D1(nm)
 なお、平均二次粒子径D2と平均一次粒子径D1は次のように測定した。
(平均一次粒子径D1)
 コロイダルシリカ濃縮液をホットプレートの上で予備乾燥後、800℃で1時間熱処理して測定用サンプルを調製した。調製した測定用サンプルを用いて、BET比表面積を測定した。シリカの真比重を2.2として、2727/BET比表面積(m/g)の値を換算して、平均一次粒子径D1(nm)を求めた。
(平均二次粒子径D2)
 動的光散乱法の測定用サンプルとして、コロイダルシリカ濃縮液を0.3質量%クエン酸水溶液に加えて均一化したものを調製した。当該測定用サンプルを用いて、動的光散乱法(大塚電子株式会社製「ELSZ-2000S」)により平均二次粒子径D2(nm)を測定した。
<長径/短径>
 疎水性シリカ粉末を走査型電子顕微鏡により観察し、画像解析によって疎水性シリカ粒子100個を解析し、長径/短径を次の式から算出した。長径/短径は、個別粒子に対して算出した値の平均値を使用した。
長径/短径=絶対最大長(nm)÷対角幅(nm)
<円形度>
 疎水性シリカ粉末を走査型電子顕微鏡により観察し、画像解析によって疎水性シリカ粒子100個を解析し、円形度を次の式から算出した。円形度は、個別粒子に対して算出した値の平均値を使用した。
円形度=4π×面積÷(周囲長)
<トナー外添状態>
 トナー樹脂粒子に疎水性シリカ粉末を外添し、試料表面をSEM観察することでトナー外添状態を評価した。
 トナー樹脂粒子はポリエステル系樹脂粒子(三笠産業株式会社製、平均粒子径9.2μm)を使用し、トナー樹脂粒子100質量部に対して疎水性シリカ粉末を2質量部添加したものをアイボーイ広口びん100mLへ10g量り取り、振とう機YS-8D(株式会社ヤヨイ製)を用いて8分間最大強度で振とうすることによって外添トナー粒子を調整した。
 外添トナー粒子の表面を走査型電子顕微鏡(日本電子株式会社製:JSM-6700)で観察し、5万倍の観察視野から次のように外添状態を評価した。
 ○:シリカ粒子が均一に分散している。
 △:シリカ粒子の凝集体がわずかに散見される、又はシリカ粒子による表面被覆率がやや低下している。
 ×:シリカ粒子の凝集体が多く見られる、又はシリカ粒子による表面被覆率が大幅に低下している。
[実施例1]
 純水327.9g、メタノール2704.7g及び28%アンモニア水86.0gを、フラスコ内で撹拌混合して母液を調整した。得られた母液にテトラメトキシシラン(TMOS)3292.6g及びメタノール893.3gで調整した液Aと、純水1611.6g及び28%アンモニア水197.8gで調整した液Bを別途準備し、19℃に加温した母液に、上記液A及び液Bを150分間かけて添加し、コロイダルシリカ1を得た。さらに、得られたコロイダルシリカ1を沸点下で留出してシリカ濃度20質量%に濃縮し、次いで、純水を添加しながら留出させることでコロイダルシリカ濃縮液1を調製した。
当該コロイダルシリカ濃縮液1000.0gに酢酸0.3g、ヘキサメチルジシラザン(HMDS)66.6gを加えて撹拌し、60分かけて室温から80℃まで昇温し、さらに80℃で100分間加熱することで疎水化処理した。この後に、系中の液成分を加熱留去し、水分含量が1質量%以下になるまで真空乾燥した。これをジェットミル(徳寿工作所製:NJ-50)により、プッシャーノズル圧力1.40MPa、粉砕圧力0.20MPaの条件で1回解砕処理することで疎水性シリカ粉末1を得た。
[実施例2~6]
 表1の仕込量および反応条件となるように変更した以外は実施例1と同様にして、各例の疎水性シリカ粉末2~6を作製した。
[比較例1]
 コロイダルシリカ濃縮液1を用いて疎水化処理する際に、酢酸を添加しなかったこと以外は実施例1と同様にして、疎水性シリカ粉末7を作製した。
[比較例2]
 実施例1で得たコロイダルシリカ濃縮液1を噴霧乾燥することで、親水性シリカ粉末1を調整した。この親水性シリカ粉末100.0gに対して、ヘキサメチルジシラザン30.0gを加えて撹拌し、120分かけて室温から150℃まで昇温し、さらに150℃で120分間加熱することで疎水化処理した。乾燥工程以降は実施例1と同様にして、疎水性シリカ粉末8を作製した。
[比較例3]
 比較例1の親水性シリカ粉末の作製において、噴霧乾燥を凍結乾燥に変更した以外は、比較例2と同様にして、疎水性シリカ粉末9を作製した。
[比較例4]
 コロイダルシリカ濃縮液1を用いて疎水化処理する際に、ヘキサメチルジシラザンの代わりにヘキシルトリメトキシシラン(HexTMS)を使用し、反応条件を変更したこと以外は実施例1と同様にして、疎水性シリカ粉末10を作製した。
[比較例5]
 市販品のヒュームドシリカSIS6962.0(GELEST社製、ヘキサメチルジシラザン修飾品)を疎水性シリカ粉末11として比較した。
[比較例6]
 市販品のヒュームドシリカSIS6961(GELEST社製、シロキサン修飾品)を疎水性シリカ粉末12として比較した。
 比較例5及び6の会合度は、市販品ヒュームドシリカSIS6960(GELEST社製、未修飾品)を用いて評価を試みたが、純水中に一次分散しなかったため評価できなかった。また、比較例5及び6は凝集しており、長径/短径と円形度を評価できなかった。
 実施例及び比較例の反応条件の一覧を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例の疎水性シリカ粉末の物性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 比較例の疎水性シリカ粉末の物性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (5)

  1.  レーザー回折法により測定される粒子径(D50)が300nm以下、粒度分布指標(D90/D10)が3.0以下、疎水化度が60容積%以上、及び有機酸の含有濃度が1~300ppmである、疎水性シリカ粉末。
  2.  疎水化度が65容積%以上である、請求項1に記載の疎水性シリカ粉末。
  3.  飽和水分量が4.0質量%以上である、請求項1又は2に記載の疎水性シリカ粉末。
  4.  29Si-固体NMRスペクトルにおいて、10~15ppmの範囲内に化学シフトの中心値を有するピークが存在する、請求項1~3のいずれか一項に記載の疎水性シリカ粉末。
  5.  表面に請求項1~4のいずれか一項に記載の疎水性シリカ粉末を含む、トナー樹脂粒子。
PCT/JP2020/007587 2019-03-06 2020-02-26 疎水性シリカ粉末及びトナー樹脂粒子 WO2020179559A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080019011.8A CN113544091A (zh) 2019-03-06 2020-02-26 疏水性二氧化硅粉末和调色剂树脂颗粒
US17/436,143 US20220128914A1 (en) 2019-03-06 2020-02-26 Hydrophobic silica powder and toner resin particle
KR1020217031433A KR20210130803A (ko) 2019-03-06 2020-02-26 소수성 실리카 분말 및 토너 수지 입자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040722 2019-03-06
JP2019040722A JP7155046B2 (ja) 2019-03-06 2019-03-06 疎水性シリカ粉末及びトナー樹脂粒子

Publications (1)

Publication Number Publication Date
WO2020179559A1 true WO2020179559A1 (ja) 2020-09-10

Family

ID=72338009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007587 WO2020179559A1 (ja) 2019-03-06 2020-02-26 疎水性シリカ粉末及びトナー樹脂粒子

Country Status (5)

Country Link
US (1) US20220128914A1 (ja)
JP (1) JP7155046B2 (ja)
KR (1) KR20210130803A (ja)
CN (1) CN113544091A (ja)
WO (1) WO2020179559A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7331437B2 (ja) * 2019-04-23 2023-08-23 三菱ケミカル株式会社 シリカ粒子、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
CN114275786A (zh) * 2021-12-17 2022-04-05 上海交通大学 一种白炭黑制备方法和制备系统
JP2024034927A (ja) 2022-09-01 2024-03-13 富士フイルムビジネスイノベーション株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ及び画像形成装置
JP2024037071A (ja) 2022-09-06 2024-03-18 富士フイルムビジネスイノベーション株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ及び画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018690A (ja) * 2011-07-14 2013-01-31 Tokuyama Corp 無機酸化物粉体
JP2013216506A (ja) * 2012-04-04 2013-10-24 Tokuyama Corp 疎水化無機酸化物粒子の製造方法
JP2016126099A (ja) * 2014-12-26 2016-07-11 サムスン エレクトロニクス カンパニー リミテッド トナー外添剤、トナー及びトナー外添剤の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630946B2 (ja) * 1987-05-29 1997-07-16 東レ・ダウコーニング・シリコーン株式会社 正帯電性樹脂粉末の流動性向上剤
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
KR20090055966A (ko) * 2007-11-29 2009-06-03 (주)석경에이.티 유기 실리카 미세입자 및 정전하상 현상용 토너 외첨제
JP5488255B2 (ja) * 2010-06-25 2014-05-14 富士ゼロックス株式会社 シリカ粒子及びその製造方法
JP5701092B2 (ja) 2010-06-30 2015-04-15 株式会社トクヤマ 表面処理無機酸化物粒子の製造方法
JP5724401B2 (ja) 2011-01-19 2015-05-27 富士ゼロックス株式会社 樹脂粒子及びその製造方法
JP6030059B2 (ja) 2011-07-29 2016-11-24 デンカ株式会社 球状シリカ微粉末及び球状シリカ微粉末を用いた静電荷像現像用トナー外添剤
CN102502663B (zh) * 2011-11-10 2013-08-21 河南大学 一种疏水性纳米二氧化硅的制备方法
JP2014136670A (ja) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd 強負帯電付与性疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷現像用電荷制御剤
JP6142689B2 (ja) * 2013-06-18 2017-06-07 富士ゼロックス株式会社 シリカ複合粒子及びその製造方法
JP6322474B2 (ja) * 2014-05-08 2018-05-09 日揮触媒化成株式会社 疎水性シリカ粉末、それを含むゴム成型用組成物およびその製造方法
JP6319243B2 (ja) * 2015-09-15 2018-05-09 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、画像形成方法、及び、画像形成装置
CN106745001A (zh) * 2016-12-28 2017-05-31 伊科纳诺(北京)科技发展有限公司 一种a级非燃疏水二氧化硅气凝胶粉体常压制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018690A (ja) * 2011-07-14 2013-01-31 Tokuyama Corp 無機酸化物粉体
JP2013216506A (ja) * 2012-04-04 2013-10-24 Tokuyama Corp 疎水化無機酸化物粒子の製造方法
JP2016126099A (ja) * 2014-12-26 2016-07-11 サムスン エレクトロニクス カンパニー リミテッド トナー外添剤、トナー及びトナー外添剤の製造方法

Also Published As

Publication number Publication date
CN113544091A (zh) 2021-10-22
US20220128914A1 (en) 2022-04-28
TW202043151A (zh) 2020-12-01
JP2020142959A (ja) 2020-09-10
KR20210130803A (ko) 2021-11-01
JP7155046B2 (ja) 2022-10-18

Similar Documents

Publication Publication Date Title
JP7155046B2 (ja) 疎水性シリカ粉末及びトナー樹脂粒子
US7186440B2 (en) Process for producing hydrophobic silica powder
JP6013531B2 (ja) 表面処理された金属酸化物粒子
KR101463879B1 (ko) 실리카 입자 및 그 제조 방법
KR101450781B1 (ko) 실리카 입자의 제조 방법
US9187502B2 (en) Silica particles and method for producing the same
JP5644789B2 (ja) 粉体組成物
JP5267758B2 (ja) 疎水性シリカ粉末の製造法
JP5232494B2 (ja) シリカ粒子、およびその製造方法
ES2784739T3 (es) Partículas finas de sílice hidrófobas y composición para tóner electrofotográfico
JP5504600B2 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
KR102654116B1 (ko) 소수성 실리카 분말
JPH054325B2 (ja)
JP6147554B2 (ja) 疎水性無機酸化物粉末及びその製造方法
JP2014214061A5 (ja)
JP6968631B2 (ja) 疎水性シリカ粉末及びトナー樹脂粒子
JP6064338B2 (ja) 酸化チタンの非極性有機溶媒分散液の製造方法
JP2009256131A (ja) 無機酸化物粒子、無機酸化物粒子分散体、及びこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031433

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20765477

Country of ref document: EP

Kind code of ref document: A1