WO2020171289A1 - 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법 - Google Patents

세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법 Download PDF

Info

Publication number
WO2020171289A1
WO2020171289A1 PCT/KR2019/005615 KR2019005615W WO2020171289A1 WO 2020171289 A1 WO2020171289 A1 WO 2020171289A1 KR 2019005615 W KR2019005615 W KR 2019005615W WO 2020171289 A1 WO2020171289 A1 WO 2020171289A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
slurry
crown
implant
powder
Prior art date
Application number
PCT/KR2019/005615
Other languages
English (en)
French (fr)
Inventor
박태석
Original Assignee
주식회사 디맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디맥스 filed Critical 주식회사 디맥스
Priority to CN201980001015.0A priority Critical patent/CN112040902B/zh
Publication of WO2020171289A1 publication Critical patent/WO2020171289A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • A61C13/02Palates or other bases or supports for the artificial teeth; Making same made by galvanoplastic methods or by plating; Surface treatment; Enamelling; Perfuming; Making antiseptic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • A61C5/73Composite crowns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • A61C5/77Methods or devices for making crowns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4582Porous coatings, e.g. coating containing porous fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0018Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the shape
    • A61C8/0037Details of the shape
    • A61C2008/0046Textured surface, e.g. roughness, microstructure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/20Repairing attrition damage, e.g. facets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications

Definitions

  • the present invention is a technical idea for manufacturing a zirconia slurry and a method for manufacturing an implant that can be implemented thereby.
  • a zirconia slurry having a nanoparticle size is improved compared to the existing one using a predetermined ball mill device.
  • the zirconia slurry produced by this method is applied to a specific object and dried to form a porous surface, thereby actively improving the bonding strength between the abutment and the crown or between the laminate and the patient's teeth.
  • an implant is a dental procedure in which an artificial tooth is applied to replace a defective or damaged tooth, and is divided into an implant procedure according to the defect and a laminate procedure according to the damage.
  • the implant procedure is one of the dental treatments that induces recovery of the function of natural teeth by placing a biocompatible implant body in the deficient alveolar bone, and a fixture made of titanium, which is mainly placed in the alveolar bone, is inserted into the fixture and fixed to the crown. It is composed of an abutment that induces the insertion direction and engagement, a tooth-shaped crown that is inserted into the end of the abutment exposed to the top of the alveolar bone, and a coupling member that prevents separation of the crown inserted into the abutment. It is common.
  • the lamination procedure is a procedure in which porcelain pores are made by removing only the pure enamel surface of the front teeth to a minimum for aesthetic purposes, and then adhered with a composite resin adhesive.
  • a composite resin adhesive Unlike conventional prosthesis, which removes a significant portion of the tooth, it is attached to damaged teeth. Therefore, the treatment cost is inexpensive, there is no burden due to side effects, etc., and since no metal enters the interior, it has excellent aesthetic advantages such as a sense of nature and transparency.
  • Korean Patent Publication No. 2007-0139163 "Implant for an artificial tooth that prevents screw loosening" is published, and the above prior art is screwed into a fixture through a screw insertion hole formed in the abutment. It is composed of a fixing screw that is formed on the screw part to be coupled and a head part that is formed on the screw part and is caught on the head seating part that protrudes inside the screw insertion hole. It is a technical idea that is installed between the seating portion and induces the head portion and the head seat portion to be firmly coupled to each other.
  • Patent Publication No. 10-1913589 “Method of manufacturing a laminate prosthesis” has been published.
  • the above prior art involves carving a lead mold to form the outer shape of a laminate (veneer), forming a mold by the solder mold, summoning the mold at high temperature, and thermally pressing the ceramic veneer on the mold.
  • the additional injection line is formed in the mold by the additional injection line formed on the surface of the lead type, the ceramic ingot evenly flows into the mold during the thermal pressing process, making it possible to manufacture ceramic veneers of 0.3 mm or less. It is a technology.
  • the technology merely relates to a technology capable of manufacturing a ceramic veneer with a thin thickness, and there is a lack of technology in terms of improving the durability of the veneer or improving the bonding strength between the veneer and the tooth to be treated.
  • Patent Document 1 Publication No. 2007-0139163 "An artificial tooth implant that prevents screw loosening"
  • Patent Document 2 Registered Patent Publication No. 10-1913589
  • the present invention was created in order to more actively solve the above problems, and its main problem is to provide a technology that can positively improve the mutual bonding strength by surface-treating the bonding surfaces of each implant component in a porous manner. .
  • the present invention uses a predetermined zirconia slurry to form a porous surface on each implant component, and at this time, it is another problem to further improve mutual bonding strength by applying particles of the zirconia slurry in a nano size.
  • the distribution flow of the porous surface is configured differently according to the direction in which the zirconia slurry is applied for each component of the implant, thereby improving the frictional area or coefficient of friction between the implant components, thereby maximizing the cohesion between implant components. to be.
  • a method of preparing a zirconia slurry for forming a porous surface of a ceramic implant and a crown proposed in the present invention is as follows.
  • the manufacturing method of the zirconia slurry of the present invention is characterized by mixing zirconia powder pulverized into nanoparticles by a ball mill device and a foaming agent composed of water and carbon powder.
  • the zirconia slurry is characterized in that an organic binder, a dispersant, and a solvent are further added.
  • the above zirconia slurry is composed of 25 to 45% by weight of zirconia powder, 8 to 15% by weight of carbon powder, 1 to 5% by weight of organic binder, 1 to 5% by weight of dispersant, and 45 to 50% by weight of solvent. It features.
  • the above zirconia slurry is a zirconia crushing step (S10) in which zirconia, a foaming agent, and an organic binder are put in a ball mill device and crushed while stirring; and, by heating the zirconia powder mixed with the foaming agent to 1200 to 1800°C, the concentration of the carbon powder is increased
  • the zirconia crushing step (S10) includes a powder preparation step (S11) in which one of zirconium (IV)acetate hydroxide, zirconium nitrate, and zirconium chloride is selected and pulverized with a ball mill device (S11), and secondary distilled water undergoing a deionization process.
  • a powder preparation step (S11) in which one of zirconium (IV)acetate hydroxide, zirconium nitrate, and zirconium chloride is selected and pulverized with a ball mill device (S11), and secondary distilled water undergoing a deionization process.
  • the precipitating agent is characterized in that any one of NaOH and KOH.
  • an implant manufacturing method using a zirconia slurry for forming a porous surface of a ceramic implant and a crown proposed in the present invention is as follows.
  • the implant manufacturing method of the present invention is a slurry preparation step (S100) of injecting the zirconia slurry formed by the above manufacturing method into a storage container; And, the inner diameter of the crown is increased to 0.01 to 0.1 compared to the head of the abutment.
  • the laminate manufacturing method of the present invention comprises a slurry preparation step (S100) of injecting the zirconia slurry formed by the above manufacturing method into a storage container; and, a component processing step (S200) of processing veneers by putting the molten ceramic material into a mold; Wow, the slurry application step (S300) of applying the slurry to the inner surface of the veneer; And, the slurry drying step (S400) of drying the veneer to which the slurry was applied at a temperature condition of 120 to 150°C for 10 to 20 minutes; And, It characterized in that it consists of; component assembly step (S500) of attaching the veneer after applying the composite resin adhesive to the tooth.
  • the zirconia powder is crushed by a ball mill device, but the ball mill device has at least one stirring ball (A) made of zirconia material of different diameters in the processing container, and the stirring ball ( A) is characterized in that the surface is made of porous, and the particle size of the powder is processed into a nano size.
  • the slurry is applied to the inner diameter of the crown, but the slurry is applied from the bottom of the inner diameter toward the upper side so that the slurry gradually expands toward the upper side, and the abutment is at the top of the head. It is characterized in that the coating flows between the crown and the abutment are opposite to each other by applying it in the downward direction so that the slurry gradually expands toward the lower side.
  • the bonding force between the implant components is actively increased due to friction or increased surface area. Has the effect of being.
  • zirconia which has excellent human affinity among ceramic materials, is used, and the zirconia is processed in a ball mill device to form a nanoparticle-sized powder, thereby actively improving biocompatibility as well as improving the components of the implant. It is effective because it can express more detailed surface roughness.
  • zirconia slurry proposed by the present invention all components such as zirconia powder, carbon powder, binder, distilled water, and solvent are harmless to the human body, and above all, by forming a porous surface for each particle of zirconia powder through hydrothermal synthesis, the roughness of the porous surface It is more effective because it can be adjusted to a fine level.
  • zirconia slurry is applied to each component of the implant at various angles to configure the flow of the surface roughness differently, thereby improving the cohesion between each other and eliminating the problem of peeling from the oral cavity of the patient even after a long time after the procedure.
  • Permanent management can be achieved by actively blocking, and due to the overall composition of drying each component of the implant coated with zirconia slurry at 120-150°C for 10-20 minutes, it may appear on the implant component of ceramic material that is weak to moisture. There is another effect that can actively prevent the crack problem.
  • FIG. 1 is a flowchart sequentially listing a method of manufacturing a zirconia slurry for forming a porous surface of a ceramic implant and a crown configured according to a preferred embodiment of the present invention.
  • FIG. 2 is a front view schematically showing a ball mill device for processing a zirconia slurry having a porous surface constructed according to a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart sequentially listing a method of manufacturing a ceramic implant and an implant coated with a zirconia slurry for forming a porous surface of a crown.
  • the present invention discloses a technical idea for manufacturing a zirconia slurry and a method for manufacturing an implant that can be implemented thereby.
  • the present invention not only implements a nanoparticle-sized zirconia slurry in an improved manner compared to the existing one using a predetermined ball mill device, but also forms a porous surface by coating and drying the zirconia slurry produced by it on a specific object. Accordingly, it maximizes bio-fusion to the implant itself while actively improving the bonding force between the abutment and the crown or between the laminate and the patient's teeth.
  • a method of manufacturing a zirconia slurry for forming a porous surface of a ceramic implant and a crown in which the contact surface between bone tissues is improved and an implant manufacturing method using the same.
  • FIG. 1 is a flowchart sequentially listing a method of manufacturing a zirconia slurry for forming a porous surface of a ceramic implant and a crown according to a preferred embodiment of the present invention.
  • the zirconia slurry proposed by the present invention is composed of a mixture of a zirconia powder pulverized to a nanoparticle size by a ball mill device and a foaming agent composed of water and carbon powder.
  • an organic binder, a dispersant, and a solvent are further added to express porosity on the surface of the zirconia slurry, and the most suitable mixing ratio for constituting the zirconia slurry is 25 to 45% by weight of zirconia powder and carbon powder. It should consist of 8-15% by weight, 1-5% by weight of binder, 1-5% by weight of dispersant, and 45-50% by weight of solvent.
  • Viscosity test according to the weight of zirconia powder and solvent.
  • the most suitable viscosity of the zirconia slurry provided to increase the bonding between the implant and the crown is 220McP
  • the kinematic viscosity is 18700cSt
  • the intrinsic viscosity is 75.5% Inherent viscosity and 25% Intrinsic viscosity, respectively.
  • the zirconia particles were perfectly preserved even in the firing or sintering process of the applied abutment or crown.
  • the zirconia powder is mixed with 30 to 40% by weight and 60 to 70% by weight of the solvent.
  • the size of the porosity should be 0.5 nm as shown in Table 2 above, and the density is 0.85. It is most preferable to configure nm, the maximum height of the roughness is 0.85 nm, the ten point average roughness is 0.72 nm, and the center line average roughness is 0.45 nm. Zirconia powder having the above porosity size and density preserves the tensile strength of 0.05nm, the friction coefficient of 0.5mm, and the elasticity of 3.2%, so that even when applied to the implant, its function can be fully maintained.
  • the zirconia powder is mixed with 60 to 70% by weight and 30 to 40% by weight of the carbon powder.
  • the organic binder serves as an adhesive that helps the zirconia powder aggregate together, and the dispersant serves to remove the organic binder remaining after the zirconia powder is aggregated.
  • the dough when the content is exceeded, the dough is released by neutralizing the organic binder that aggregates the zirconia powder in addition to the unnecessary organic binder, and when the content is insufficient, the viscosity between the zirconia powder is measured high, making uniform stirring difficult.
  • the zirconia slurry of the present invention should be composed of 25 to 45% by weight of zirconia powder, 8 to 15% by weight of carbon powder, 1 to 5% by weight of binder, 1 to 5% by weight of dispersant, and 45 to 50% by weight of solvent. do.
  • Zirconia slurry consisting of the above mixing ratio is zirconia crushing step (S10) in which zirconia, a foaming agent, and an organic binder are put in a ball mill device and crushed while stirring; And, the zirconia powder mixed with the foaming agent is heated to 1200 to 1800°C to obtain carbon powder.
  • an organic binder added to the mixture while making a zirconia solution by adding a dispersant and a solvent to the zirconia powder having a porous surface It consists of; degreasing process step (S30) to remove.
  • the zirconia contained in the ball mill is crushed to form a powder, and the zirconia powder is agglomerated and crushed repeatedly while the carbon powder and the organic binder are stirred, and finally zirconia having a nanoparticle size. It is processed into a mixture.
  • the zirconia slurry of the present invention is made of a porous surface roughness to improve the bonding strength between components constituting the implant in the future.
  • carbon powder is mixed in the zirconia crushing step (S10), and the carbon powder generates bubbles in the zirconia mixture by continuous stirring.
  • the zirconia mixture in which bubbles are generated in the carbon powder oxidation step (S20) is heated to a predetermined temperature to oxidize the bubbled carbon powder, thereby forming a porous surface on the surface of the zirconia mixture.
  • the most preferable surface roughness is formed by oxidizing the zirconia mixture so that the concentration of the carbon powder becomes 10 to 40 wt% by applying a temperature of 1200 to 1800°C under the most suitable conditions for forming a porous surface on the surface of the zirconia mixture. have.
  • the present invention further proposes a technique capable of freely processing the degree of roughness on the porous surface of the zirconia slurry.
  • the presence or absence of control may be given according to the type of zirconia and the powder processing method of the zirconia.
  • the method of processing zirconia into a powder form is to carefully select zirconia materials that can be processed into nanoparticle sizes among various types of zirconia materials.
  • a hydrothermal reactor autoclave
  • zirconia powder and a precipitant are added to dissolve the powder for 2 to 4 hours (S13).
  • the manufacturing cost is lower than that of the solid-phase method and the gas-phase method, and the production of high-purity zirconia powder is easy, and the uniform composition, shape and size are A liquid phase method capable of producing a controlled slurry was used.
  • This liquid method can change the starting material and the synthesis method to produce the shape of a powder such as a sphere, a rod, a plate, and a needle, and the size can be variously controlled from several nm to several ⁇ m.
  • a hydrothermal synthesis method that can process the shape and size of the powder in the simplest and finest among the liquid phase methods is used, and the following is to obtain zirconia powder having the most excellent particle size in the manufacturing process of zirconia powder using the hydrothermal synthesis method. It shows the experimental process.
  • the hydrothermal reactor used in the hydrothermal synthesis of this experiment has a heat resistance temperature of about 260 ⁇ 270°C, a maximum capacity of 2L, and a maximum pressure of 20kg/cm2, a Teflon liner is installed inside, and an internal agitation is possible.
  • the zirconia raw material used in this experiment is one of zirconium (IV)acetate hydroxide, zirconium nitrate, and zirconium chloride.
  • the precipitant used in this experiment is one of NaOH and KOH.
  • the solvent used in this experiment is secondary distilled water that has undergone deionization.
  • X-ray diffraction analysis was performed using X-ray diffraction (XRD, D/MAX 2500-V/PC, Rigaku Co., Japan) to determine the change in the crystal phase of the prepared metal oxide nanopowder.
  • the X-ray used at this time was monochromatic with a Ni filter of CuK ⁇ rays generated at 40 kV and 30 mA, and the measurement range was 10 to 70°.
  • the crystal phase was confirmed by comparison with the JCPDS (Joint Committee of Powder Diffraction Standard) card.
  • the specific surface area analysis was conducted using a specific surface area analyzer (BET, Autosorb-1, Quantachrome Co., USA) for the powder dried for 12 h or longer at 100° C. to confirm the specific surface area of the prepared metal oxide nanopowder. .
  • Pretreatment of the sample was carried out at 200° C. for 3 h while purging He gas to remove residual organic matter and impurities, and N2 was used as a carrier gas during measurement.
  • N2 was used as a carrier gas during measurement.
  • a total of 55 points were measured for the adsorption and desorption process of N2 gas in the range of 0.0 to 1.0 relative pressure f (P/Po).
  • the process of adopting the zirconia material in the powder preparation step (S11) is as in Example 1 below.
  • zirconium acetate, zirconium nitrate, and zirconium chloride were used, and 3M KOH solution was added as a precipitating agent, followed by hydrothermal synthesis at 200° C. for 8 h.
  • the zirconia powder can be selectively used any one of zirconium (IV)acetate hydroxide, zirconium nitrate, and zirconium chloride. to be.
  • the microstructure of the zirconia powder can be prepared while controlling the concentration of KOH as in Example 2 below by using the secondary distilled water that has undergone the deionization process in the above distilled water preparation step (S12).
  • the reaction temperature is set to 200°C and the reaction time is set to 8h, and the concentration is changed to 0.1, 1, 2, 5M using KOH or NaOH precipitant. While each zirconia powder was prepared.
  • the NaOH precipitant also had a tetragonal phase and a monoclinic phase in the powder synthesized with a concentration of 0.1M, and the powder synthesized in 1M to 5M only had a monoclinic phase.
  • the particle size gradually increased as the concentration increased, but when comparing KOH and NaOH, it was found that the particle size of KOH changed to a finer size.
  • Zirconia was prepared by a hydrothermal process using zirconium chloride as a precursor, and after adding 0.1M KOH, in order to check the microstructure and crystal phase of the zirconia powder according to the reaction temperature, reaction temperatures of 100, 150, 200°C and 4, Zirconia powder was synthesized with reaction times of 8, 12, and 24 h.
  • reaction temperature within the range of 100 to 200°C, but in the present invention, it is the most preferable condition to provide a temperature of 90 to 100°C at which particles can be formed in the minimum size.
  • reaction time it is possible to selectively synthesize any one of 4h, 8h, 12h, and 24h for the reaction time, but in the present invention, it is most preferable to provide a reaction time of 12 to 24h capable of forming particles in the smallest size. Condition.
  • the porous surface roughness of the zirconia slurry may control the degree of roughness according to the concentration of the carbon powder.
  • the zirconia mixture to which the carbon powder is added is oxidized so that the concentration of the carbon powder becomes 10 to 40 wt% by applying a temperature of 1200 to 1800°C.
  • Example 4 described below is a result of comparing and analyzing the adhesion between the abutment and the crown according to the concentration of carbon powder through an experiment, and the adhesion strength test is a tensile tester (ASTM F-1044) by applying resin cement by width to the test specimen. -99).
  • the resin cement used was Polyglass cem from Vericom (Korea).
  • the tensile strength increased when the bonding area was increased. This is compared to the bonding between the general abutment and the crown, and the implant of the present invention with an expanded contact area formed more porous by forming porosity with a zirconia slurry. It was an opportunity to prove that it represents On the other hand, in the 21 mm adhesive area of the control specimen, the value was not recorded because the specimen was not separated from the jig, and in this case, the cement was not separated from the specimen and stretched.
  • sample names 10 and 40 indicate that the concentration of carbon in the zirconia slurry is 10wt% and 40wt%, respectively, and it was confirmed that the zirconia slurry has the best adhesive tensile strength at the carbon concentration of 40.
  • the present invention can selectively control the carbon concentration of 10 to 40 wt%, it can be seen that it is most preferable to perform sintering so that the carbon concentration of 40 wt% is basically configured.
  • a specially manufactured ball mill device in order to process the particle size of the zirconia powder constituting the zirconia slurry to be finer, a specially manufactured ball mill device was used as follows.
  • FIG. 2 is a front view showing a ball mill device configured according to a preferred embodiment of the present invention.
  • the ball mill device of the present invention has a pair of pressure rollers 20, 30 disposed on the upper end of the frame 10 installed on the ground, and connected to any one of a pair of pressure rollers. It is made of a motor 40 that imparts rotational power.
  • the processing container 50 has a plurality of internal spaces extending in the longitudinal direction according to the processing amount of the zirconia slurry, so that the size is different according to the capacity, and the upper pressure rollers 20 and 30 can slide in the horizontal direction left and right. It can be used by adjusting the left and right positions of the pressure roller according to the size of the processing container.
  • zirconia slurry it is not limited to the processing amount of the zirconia slurry, and a zirconia slurry can be prepared.
  • a plurality of stirring beads (A) are built in the inner space of the processing vessel 50 above.
  • the above stirring beads (A) have different sizes of spheres, and pores (A') are formed on the surface of each bead to have roughness.
  • the roughness of the porosity increases the coefficient of friction between the stirring beads (A) and zirconia to facilitate grinding, and furthermore, zirconia powder and carbon powder, organic binders, dispersants, solvents, etc. due to the expanded area and rough appearance by the porous surface. It plays the most important role of generating strong agitation and nanoparticle-sized slurry by activating the flow of
  • the above stirring beads (A) when stirring the zirconia powder and carbon powder, organic binder, dispersant, and solvent, the above stirring beads (A) generate vortices in various directions in each of the pores (A'), and zirconia powder, carbon powder, and organic matter While the binder, the dispersant, and the solvent are more firmly and closely stirred, the agitation beads (A) of the present invention according to another embodiment are made in the form of a lump connected to each other in each of the pores (A'), zirconia powder And carbon powder, organic binder, dispersant, and solvent enter the inner space of the agitation bead, and another pulverization and agitation is performed in the bead, so that a slurry of finer particles can be quickly and precisely generated.
  • FIG. 8 is an enlarged photograph of a general zirconia slurry developed on the market
  • FIG. 9 is an enlarged image of a surface of a zirconia slurry developed according to a preferred embodiment of the present invention to compare the degree of surface roughness.
  • FIG. 3 is a flowchart sequentially listing a method of manufacturing a ceramic implant and an implant coated with a zirconia slurry for forming a porous surface of a crown.
  • the implant manufacturing method of the present invention is a slurry preparation step (S100) of injecting a zirconia slurry processed by a ball mill device into a storage container (S100); And, the inner diameter of the crown is abutment Component processing step (S200) of securing a free space on the coupling surface by processing with an expanded diameter of 0.01 to 0.1 compared to the head of the crown; And, a slurry applying step of applying the slurry to the inner diameter of the crown and the head of the abutment (S300); And, the slurry drying step (S400) of drying the crown and the abutment on which the slurry is applied at a temperature of 120 to 150°C for 10 to 20 minutes; And, the head of the abutment is suppressed by the inner diameter of the crown.
  • a component assembly step (S500) that is coupled to a fixture placed in the patient's alveolar bone; consists of.
  • the slurry preparation step (S100) is a zirconia crushing step (S10) in which zirconia, a foaming agent, and an organic binder are put in a ball mill device and crushed while stirring; and, zirconia powder mixed with a foaming agent is 1200 to 1800°C
  • Degreasing process step (S30) of removing the organic binder added to the; is a step of putting the prepared product into a storage container.
  • the above component processing step (S200) is a process of processing the crown and the abutment.
  • the titanium material is milled to obtain the abutment, and the resin or zirconia material is shaped to replace the patient's lost tooth. Acquire.
  • the inner diameter of the crown is processed to an expanded diameter of 0.01 to 0.1 compared to the head of the abutment to secure a clearance space on the coupling surface.
  • the clearance space secured on the upper mating surface provides a space in which the zirconia slurry is applied later to induce forceful fitting between the abutment and the crown.
  • the slurry application step (S300) is a process of applying the slurry to the inner diameter of the crown and the head of the abutment. Zirconia slurry is applied to the inner diameter of the crown and the head of the abutment to a thickness of 0.01 to 0.1, respectively.
  • the zirconia slurry may be applied by rubbing it on the surface of the crown or abutment using a brush or spraying it with a pumping member.
  • the friction coefficient of the surface where the abutment and the crown abuts each other is increased by making the application flow of the zirconia slurry different.
  • the porous surface roughness gradually expands from the bottom of the inner diameter of the crown to the top, whereas the abutment is configured from the top of the head to the downward direction.
  • the porous surface roughness gradually expands toward the bottom of the abutment head.
  • this is a method according to an embodiment of the present invention and is not limited to the application direction, and a distribution diagram in which the porous surface roughness gradually expands from the top of the inner diameter of the crown to the downward direction by applying the zirconia slurry from the top of the inner diameter of the crown to the downward direction.
  • the abutment may have a distribution in which the porous surface roughness gradually expands as the abutment is applied in an upward direction from the lower end of the head to the upper end of the abutment. In other words, it is natural that the flow of distribution can be changed according to the operator's choice.
  • the above slurry drying step (S400) is a process of drying the implant component to which the zirconia slurry is applied in an environment in which a constant temperature is formed for a predetermined time.
  • zirconia is one of various types of ceramics.
  • ceramics are ceramic and have a high absorption rate by themselves, so that cracks are likely to occur depending on the surrounding environment or rapid temperature changes.
  • the zirconia slurry must be thermally processed so that the porous surface roughness is firmly attached to the crown or abutment by the zirconia slurry.
  • the present invention is to quickly evaporate the moisture contained in the zirconia slurry by placing the crown coated with the zirconia slurry in an oven and drying it for 10 to 20 minutes under a temperature condition of 120 to 150°C to prevent the occurrence of cracks in the ceramic, By rapid drying, the zirconia powder and the carbon powder of the zirconia slurry are actively adhered to the crown or abutment to form a coating.
  • the head of the abutment is forcibly fitted to the inner diameter of the crown and then combined with the fixture placed in the alveolar bone of the patient.
  • the inner diameter of the crown was made of an enlarged diameter of 0.01 to 0.1 compared to the head of the abutment to secure clearance, but the inner diameter of the crown and the head of the abutment were each coated with a zirconia slurry with a thickness of 0.01 to 0.1. As a result, a porous surface is formed, so the free space is insufficient by a maximum thickness of 0.1.
  • the crown and the abutment are forcibly fitted, so that the crown and the abutment can be integrated without a separate coupling member.
  • the zirconia slurry is applied in opposite directions to the bonding surface of the crown and the abutment, so that the crown and the abutment are assembled in a cross-biting state, so that the cohesion force is actively improved. Can be seen.
  • the following is the application of the zirconia slurry of the present invention to a laminate manufacturing method.
  • the laminate of the present invention is a treatment method for improving the shape of a tooth, mainly for aesthetic purposes, to make a porcelain pore by removing only the pure enamel surface of the front teeth to a minimum, and then bonding it with a hybrid composite resin adhesive.
  • the steps of removing the tooth after performing partial anesthesia around the treated tooth, making an impression using an addition-polymerized silicone for making a pattern, making and attaching a temporary tooth, and the pore process The steps of completing the restoration through the procedure, the step of treating the inner surface of the tooth and the prosthesis with 10% hydrofluoric acid for about 90 seconds to increase the adhesion after aligning the tooth, and the step of completely attaching the tooth and the prosthesis by selecting an adhesive resin Wow, it consists of adjusting the occlusion.
  • Laminates with the above procedure take a long time of about 10 to 20 minutes per tooth to attach veneers to the teeth, and porcelain veneers are removed due to poor cement contact, partial or entire porcelain veneers. Side effects or sequelae may occur such as fracture, discoloration of the gap between the veneer and the tooth, and hypersensitivity due to excessive removal of the tooth.
  • the present invention is intended to provide a technology capable of rapidly bonding while actively improving the durability of the veneer itself and improving the cohesion between teeth and veneers.
  • the laminate manufacturing method of the present invention comprises a slurry preparation step (S100) of injecting the zirconia slurry processed by a ball mill device into a storage container; and a component processing step of processing veneer by putting the molten ceramic material into a mold. (S200); And, a slurry application step (S300) of applying the slurry to the inner surface of the veneer; And, a slurry drying step (S400) of drying the veneer to which the slurry is applied at a temperature condition of 120 to 150°C for 10 to 20 minutes; And, the component assembly step (S500) of attaching the veneer after applying the composite resin adhesive to the patient's teeth; characterized by consisting of.
  • the slurry preparation step (S100) is the same process as the implant manufacturing method comprising the upper crown and the abutment, and a detailed description thereof will be omitted.
  • the above component processing step (S200) is a process of processing a ceramic material into a shape that can compensate for a damaged tooth of a patient, such as cutting a ceramic material for shape processing, or processing a molten ceramic in an injection mold.
  • the slurry application step (S300) is a process of applying the slurry to the inner surface of the veneer.
  • it includes a process of transferring the zirconia slurry extracted from the ball mill to a separate storage container. . More specifically, after releasing the pressing force of the pair of pressurizing devices (20, 30) provided in the ball mill and removing the processing container 50, the stirred zirconia slurry was poured into the storage container. Put.
  • the storage container above can be divided into a painting container and a spray container according to the method of applying the zirconia slurry to the veneer
  • the application container is a container with an open top for burying the zirconia slurry contained in the brush.
  • the spray container is a container made in the form of a spray gun on the top.
  • the above container for painting and the container for spraying contain at least one or more zirconia beads of various sizes, such as a stirring beads (A) provided in a ball mill device inside the container.
  • a zirconia slurry having a nanoparticle size by a ball mill device should be mixed because the particles settle when placed in a storage container for a long time.
  • the stirring beads (A) contained in the storage container The mixing of the zirconia slurry settled on the inside of the storage container while shaking like the zirconia slurry is weighted.
  • the slurry application step (S300) is a process of coating or applying the slurry on the inner surface of the veneer, and the zirconia slurry contained in the storage container is applied to the inner surface of the veneer in a thickness of 0.1 to 0.5 mm using a pumping member in the form of a brush or sprayer. .
  • a brush with zirconia slurry is applied by rubbing it from the top of the inner surface of the veneer in a downward direction, or the pumping member is sprayed from the top to the bottom so that the zirconia slurry has a distribution that gradually expands toward the bottom.
  • this is a method according to an embodiment of the present invention and is not limited thereto, and the zirconia slurry is applied by rubbing the brush with zirconia slurry from the lower end of the veneer in the upward direction, or by spraying the pumping member from the lower end to the upper side. It can also be applied to have a distribution diagram that gradually expands as it goes toward. In other words, it is natural that the flow of distribution can be changed according to the operator's choice.
  • the above slurry drying step (S400) is a process of drying the veneer to which the zirconia slurry is applied under a temperature condition of 120 to 150°C for 10 to 20 minutes.
  • the veneer is manufactured by cutting or melt molding a ceramic material.
  • ceramics are pottery and have a high absorption rate, so that cracks are likely to occur in the surrounding environment or in response to rapid temperature changes.
  • the present invention puts the veneer coated with the zirconia slurry in an oven and dried it for 10 to 20 minutes under a temperature condition of 120 to 150°C to prevent the occurrence of cracks in the ceramic, thereby quickly evaporating the moisture contained in the zirconia slurry.
  • rapid drying the zirconia powder and carbon powder of the zirconia slurry are actively adhered to the veneer to form a coating.
  • the above component assembly step (S500) is a process of attaching veneer after applying the composite resin adhesive to the patient's teeth.In more detail, the enamel surface of the patient's teeth in need of treatment is deleted, and the front surface of the deleted tooth is removed. ) Is a step of applying a composite resin adhesive for dental treatment to attach the veneer to which the zirconia slurry is laminated and coated.
  • the method of applying the composite resin adhesive to the teeth requiring patient treatment is applied in one direction, similar to the method of applying the zirconia slurry to the inner surface of the veneer above, so that the composite resin adhesive gradually expands to the teeth. do.
  • the composite resin composition by spraying the composite resin composition downward from the top of the tooth, the composite resin composition has a distribution that gradually expands toward the lower side, or, conversely, the composite resin composition gradually expands toward the upper side by spraying from the lower end to the upper side. It can also be applied to have.
  • the slurry is applied from the top to the bottom of the veneer inner surface, so that the slurry gradually expands toward the lower side, and the composite resin adhesive is applied to the tooth outer surface in the component assembly step (S500).
  • the slurry has a distribution that gradually expands toward the upper side, so that the application flow between the veneer and the teeth is mutually reversed, and the roughness angles interlock with each other to increase the cohesion force.
  • the zirconia slurry of the present invention consisting of a mixture of zirconia powder, carbon powder, a binder, a dispersant, and a solvent is applied in a reverse direction to a general zirconia block.
  • Comparative Example 1 and Comparative Example 2 were mounted on a jig, respectively, and then a composite resin adhesive was attached to measure the bonding force by applying external force in various directions.
  • the bonding force between the implant components is actively increased due to friction or increased surface area. Has the effect of being.
  • zirconia which has excellent human affinity among ceramic materials, is used, and the zirconia is processed in a ball mill device to form a nanoparticle-sized powder, thereby actively improving biocompatibility as well as improving the components of the implant. It is effective because it can express more detailed surface roughness.
  • zirconia slurry proposed by the present invention all components such as zirconia powder, carbon powder, binder, distilled water, and solvent are harmless to the human body, and above all, by forming a porous surface for each particle of zirconia powder through hydrothermal synthesis, the roughness of the porous surface It is more effective because it can be adjusted to a fine level.
  • zirconia slurry is applied to each component of the implant at various angles to configure the flow of the surface roughness differently, thereby improving the cohesion between each other and eliminating the problem of peeling from the oral cavity of the patient even after a long time after the procedure.
  • Permanent management can be achieved by actively blocking, and due to the overall composition of drying each component of the implant coated with zirconia slurry at 120-150°C for 10-20 minutes, it may appear on the implant component of ceramic material that is weak to moisture. There is another effect that can actively prevent the crack problem.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 소정의 볼 밀 기기를 이용하여 나노 입자 크기의 지르코니아 슬러리를 기존 대비 보다 개선된 방식으로 구현할 뿐 아니라 이에 의해 생성된 지르코니아 슬러리를 특정 대상물에 도포 및 건조하여 다공성 표면을 형성시킴에 따라 어버트먼트와 크라운 간 또는 라미네이트와 환자의 치아 간의 결합력을 적극적으로 향상시키면서 임플란트 자체에 생체 융합성을 극대화하는바, 치조골의 골섬유조직이 임플란트 내부로 침투, 성장을 가능하게 함으로써 임플란트 소재와 골조직간의 접촉면이 향상 유도되는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법에 관한 것으로, 더욱 상세하게는 볼 밀 장치에 지르코니아와 기포제 및 유기물 바인더를 넣고 교반하면서 파쇄하는 지르코니아 파쇄단계(S10);와, 기포제가 혼합된 지르코니아 분말을 1200 내지 1800℃로 가열하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시켜 입자마다 다공성 표면을 형성하는 탄소분말 산화단계(S20);와, 다공성 표면이 형성된 지르코니아 분말에 분산제와 용매를 넣어 지르코니아 용액을 만들면서 혼합물에 첨가된 유기물 바인더를 제거하는 탈지 공정단계(S30);로 구성되는 것을 특징으로 한다.

Description

세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법
본 발명은 지르코니아 슬러리를 제조하기 위한 기술사상과 이에 의하여 구현할 수 있는 임플란트 제조방법을 포함하는 기술사상으로, 더욱 상세하게는 소정의 볼 밀 기기를 이용하여 나노 입자 크기의 지르코니아 슬러리를 기존 대비 보다 개선된 방식으로 구현할 뿐 아니라 이에 의해 생성된 지르코니아 슬러리를 특정 대상물에 도포 및 건조하여 다공성 표면을 형성시킴에 따라 어버트먼트와 크라운 간 또는 라미네이트와 환자의 치아 간의 결합력을 적극적으로 향상시키면서 임플란트 자체에 생체 융합성을 극대화하는바, 치조골의 골섬유조직이 임플란트 내부로 침투, 성장을 가능하게 함으로써 임플란트 소재와 골조직간의 접촉면이 향상 유도되는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법에 관한 것이다.
통상적으로 임플란트란 결손 또는 훼손된 치아를 대체할 수 있도록 인공 치아를 적용하는 치과 시술로, 결손에 따른 임플란트 시술법과 훼손에 따른 라미네이트 시술법으로 구분된다.
즉, 임플란트 시술법은 치아가 결손된 치조골에 생체 적합한 임플란트 본체를 식립하여 자연치의 기능을 회복 유도하는 치과 치료 중 하나로, 주로 치조골에 식립되는 티타늄 소재의 픽스츄어와, 픽스츄어에 삽입 고정되면서 크라운의 삽입 방향과 결합을 유도하는 어버트먼트와, 치조골의 상부로 노출된 어버트먼트 단부에 삽입 개재되는 치아 모양의 크라운과, 어버트먼트에 삽입된 크라운의 이탈을 방지하는 결합부재 등으로 구성됨이 일반적이다.
반면, 라미네이트 시술법은 미관상의 목적으로 앞니의 법랑질 순면 표면만 최소한으로 삭제하여 도재 기공물을 만든 후 복합 레진 접착제로 접착시키는 시술로, 치아의 상당 부분을 제거하는 기존 보철물과는 달리 손상된 치아에 부착하기 때문에 시술 비용이 저렴하고 부작용 등에 따른 부담이 없으며, 내부에 금속이 들어가지 않으므로 자연감이나 투명감 등 심미적으로 뛰어난 장점이 있다.
임플란트 시술에서 가장 중요한 요인은 환자에게 구속된 인공치아가 오랜 시간이 지남에도 견고하게 유지되어야 하는 것인데, 치과 의료 업계에서는 이러한 요인을 만족할 수 있는 관련 기술을 제공하기 위해 각고의 노력이 이루어지고 있다.
임플란트 관련 기술에 대한 일례로 공개특허공보 제2007-0139163호 "나사풀림을 방지하는 인공치아용 임플란트"가 게재되어 있으며, 위 종래기술은 어버트먼트에 형성된 스크류 삽입공을 관통하여 픽스츄어에 나사 결합되는 나사부와, 나사부 상부에 형성되어 스크류 삽입공 내측에 돌출된 헤드안착부에 걸리는 헤드부를 가지는 고정스크류로 구성되고, 고정스크류의 체결 시 탄성 변형되는 탄성소재의 풀림방지수단이 헤드부와 헤드 안착부 사이에 설치되어 헤드부와 헤드안착부를 상호 견고하게 결합 유도하는 기술사상이다.
하지만, 전술한 종래기술은 금속 부품에 볼트를 체결할 때 볼트의 원치 않는 인출을 방지하기 위해 사용되는 와셔(washer)를 그대로 접목시킨 기술에 지나지 않아 해당 분야의 전문가가 아니더라도 충분히 예측 가능한 기술사상이다.
한편, 라미네이트에 관련된 기술 중 일례로 등록특허공보 제10-1913589호 "라미네이트 보철물의 제조방법"이 게재되고 있다.
위 종래기술은 라미네이트(비니어)의 외형을 형성하도록 납형을 조각하는 단계와, 위 납형에 의해 주형을 형성하는 단계와, 위 주형을 고온에서 소환하는 단계와, 위 주형에 세라믹 비니어를 열가압하는 단계로 이루어지고, 특히 납형의 표면에 형성된 부가 주입선에 의해 주형에도 부가 주입선이 형성됨에 따라 열가압 과정에서 세라믹 잉곳(ingot)이 고르게 주형 내부로 흘러들어가 0.3mm 이하의 세라믹 비니어를 제작할 수 있는 기술이다.
하지만, 해당 기술은 단순히 세라믹 비니어를 얇은 두께로 제조할 수 있는 기술에 관한 것일 뿐, 비니어의 내구성 향상이나 비니어와 시술할 치아 간의 접합력 향상에 관해서는 기술이 부족하다.
위와 같이 임플란트의 구성품 간 결합력을 향상시키기 위해 다양한 방법이 개발되고 있으나, 실질적으로 환자의 치아에 시술할 정도의 기능이 부여된 기술을 없었다.
결과적으로 임플란트가 환자 치조골과의 유착성을 적극적으로 향상시키면서 어버트먼트와 크라운 간의 결합력 또는 비니어와 치아 간의 결합력을 향상시켜 영구적인 시술이 이루어질 수 있는 임플란트 시술법이 절실히 요구되고 있는 실정이다.
(특허문헌 1) 공개특허공보 제2007-0139163호 "나사풀림을 방지하는 인공치아용 임플란트"
(특허문헌 2) 등록특허공보 제10-1913589호 "라미네이트 보철물의 제조방법"
본 발명은 위의 제반 문제점을 보다 적극적으로 해소하기 위하여 창출된 것으로, 임플란트 각 구성품의 결합면을 다공성으로 표면 처리하여 상호 간 결합력을 적극적으로 향상시킬 수 있는 기술을 제공하고자 하는 것이 주된 해결과제이다.
또한, 본 발명은 임플란트 각 구성품에 다공성 표면을 형성하기 위해 소정의 지르코니아 슬러리를 사용하며, 이때 지르코니아 슬러리의 입자를 나노 크기로 적용하여 상호 간 결합력을 더욱 향상시키고자 하는 것이 다른 해결 과제이다.
또한, 본 발명은 임플란트의 구성품마다 지르코니아 슬러리를 도포하는 방향에 따라 다공성 표면의 분포 흐름을 모두 다르게 구성하여 상호 간 마찰 면적 내지 마찰 계수를 향상시킴으로써 임플란트 구성품 간의 결집력을 극대화 유도하는 것이 또 다른 해결 과제이다.
위의 해결 과제를 달성하기 위하여 본 발명에서 제안하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법은 다음과 같다.
본 발명의 지르코니아 슬러리의 제조방법은 볼 밀(Ball mill) 장치에 의해 나노 입자 크기로 분쇄된 지르코니아 분말과 물 및 탄소분말로 이루어진 기포제의 혼합으로 구성되는 것을 특징으로 한다.
또한, 위 지르코니아 슬러리는 유기물 바인더와 분산제 및 용매가 더 첨가되는 것을 특징으로 한다.
또한, 위 지르코니아 슬러리는 지르코니아 분말 25~45 중량%와, 탄소 분말 8~15 중량%와, 유기물 바인더 1~5 중량%와, 분산제 1~5 중량%와, 용매 45~50 중량%로 구성되는 것을 특징으로 한다.
또한, 위 지르코니아 슬러리는 볼 밀 장치에 지르코니아와 기포제 및 유기물 바인더를 넣고 교반하면서 파쇄하는 지르코니아 파쇄단계(S10);와, 기포제가 혼합된 지르코니아 분말을 1200 내지 1800℃로 가열하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시켜 입자마다 다공성 표면을 형성하는 탄소분말 산화단계(S20);와, 다공성 표면이 형성된 지르코니아 분말에 분산제와 용매를 넣어 지르코니아 용액을 만들면서 혼합물에 첨가된 유기물 바인더를 제거하는 탈지 공정단계(S30);로 구성되는 것을 특징으로 한다.
또한, 위 지르코니아 파쇄단계(S10)는 zirconium (Ⅳ)acetate hydroxide, zirconium nitrate, zirconium chloride 중 어느 하나를 택일하여 볼 밀 장치로 분쇄하는 분말 준비단계(S11)와, 탈이온화 과정을 거친 2차 증류수를 수열합성에 사용되는 수열반응기(autoclave)의 내부 공간에 보충하는 증류수 준비단계(S12)와, 증류수가 보충된 수열반응기의 온도를 90 내지 100℃로 조정한 후, 지르코니아 분말과 침전제를 투입하여 2시간 내지 4시간 동안 용해하는 분말 용해단계(S13)로 구성되는 것을 특징으로 한다.
또한, 위 침전제는 NaOH, KOH 중 어느 하나인 것을 특징으로 한다.
한편, 본 발명에서 제안하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리를 이용한 임플란트 제조방법은 하기와 같다.
본 발명의 임플란트 제조방법은 위의 제조방법으로 형성된 지르코니아 슬러리를 보관용기에 투입하는 슬러리 준비단계(S100);와, 크라운의 내경을 어버트먼트의 머리부에 비해 0.01 내지 0.1의 확장된 지름으로 가공하여 결합면에 여유공간을 확보하는 구성품 가공단계(S200);와, 크라운의 내경과 어버트먼트의 머리부에 슬러리를 도포하는 슬러리 도포단계(S300);와, 슬러리가 도포된 크라운과 어버트먼트를 120~150℃의 온도 조건에서 10~20분간 건조하는 슬러리 건조단계(S400);와, 크라운의 내경에 어버트먼트의 머리부를 억지 끼움으로 체결한 후, 환자의 치조골에 식립된 픽스쳐에 결합하는 구성품 조립단계(S500);로 구성되는 것을 특징으로 한다.
그리고 본 발명의 라미네이트 제조방법은 위의 제조방법으로 형성된 지르코니아 슬러리를 보관용기에 투입하는 슬러리 준비단계(S100);와, 용융된 세라믹 소재를 금형에 넣어 비니어를 가공하는 구성품 가공단계(S200);와, 비니어의 내면에 슬러리를 도포하는 슬러리 도포단계(S300);와, 슬러리가 도포된 비니어를 120~150℃의 온도 조건에서 10~20분간 건조하는 슬러리 건조단계(S400);와, 환자의 치아에 복합 레진 접착제를 도포한 후 비니어를 부착하는 구성품 조립단계(S500);로 구성되는 것을 특징으로 한다.
또한, 위 지르코니아 분말은 볼 밀 장치에 의해 파쇄가 이루어지되, 위 볼 밀 장치는 가공용기에 서로 다른 지름으로 이루어진 지르코니아 소재의 교반용 구슬(A)이 적어도 하나 이상 구비되고, 위 교반용 구슬(A)은 표면이 다공으로 이루어져 분말의 입자크기를 나노 크기로 가공하는 것을 특징으로 한다.
또한, 위 슬러리 도포단계(S300)는 크라운의 내경에 슬러리를 도포하되, 내경의 저부에서 상측 방향으로 도포하여 슬러리가 상측으로 갈수록 점차 확장되는 분포가 이루어지게 하고, 어버트먼트는 머리부의 상단에서 하측방향으로 도포하여 슬러리가 하측으로 갈수록 점차 확장되는 분포가 이루어지게 하여 크라운과 어버트먼트 간 도포 흐름이 서로 역방향을 이루어지게 하는 것을 특징으로 한다.
상술한 구성으로 이루어지는 본 발명에 의하면, 임플란트를 구성하는 각 구성품의 결합면에 나노 입자를 갖는 지르코니아 슬러리가 도포되어 다공성 표면이 형성됨에 따라 마찰 내지 증가된 표면적에 의해 임플란트 구성품 간의 결합력이 적극적으로 증대되는 효과가 있다.
특히 세라믹 소재 중 인체 친화력이 우수한 지르코니아를 사용하며, 이러한 지르코니아를 볼 밀(Ball mill) 장치로 가공하여 나노 입자크기의 분말 형태로 구성함에 따라 생체 융합성이 적극적으로 향상될 뿐 아니라 임플란트의 구성품에 더욱 세밀한 표면 거칠기를 표현할 수 있어 효과적이다.
그리고 본 발명이 제안하는 지르코니아 슬러리는 지르코니아 분말, 탄소 분말, 바인더, 증류수, 용매 등 모든 구성품이 인체에 무해하고, 무엇보다 수열합성법을 통해 지르코니아 분말의 각 입자마다 다공성 표면을 형성하여 다공성 표면의 거칠기를 미세한 수준까지 조절할 수 있으므로 더욱 효과적이다.
또한, 본 발명에서는 임플란트의 각 구성품에 대한 결합면마다 지르코니아 슬러리를 다양한 각도로 도포하여 표면 거칠기의 흐름을 다르게 구성함으로써 상호간 결집력을 향상시켜 시술 후 오랜 시간이 지남에도 환자의 구강에서 박리되는 문제를 적극 차단하여 영구적인 관리가 이루어질 수 있으며, 지르코니아 슬러리가 도포된 임플란트의 각 구성품을 120~150℃에서 10~20분 동안 건조하는 제반 구성에 기인하여 수분에 약한 세라믹 소재의 임플란트 구성품에 나타날 수 있는 크랙 문제를 적극적으로 방지할 수 있는 또 다른 효과가 있다.
도 1은 본 발명의 바람직한 실시 예에 의하여 구성되는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법을 순차적으로 나열한 플로차트.
도 2는 본 발명의 바람직한 실시 예에 의하여 구성되는 다공성 표면을 갖는 지르코니아 슬러리를 가공하기 위한 볼 밀 장치를 개략적으로 도시한 정면도.
도 3은 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리가 도포된 임플란트의 제조방법을 순차적으로 나열한 플로차트.
이하, 첨부도면을 참고하여 본 발명의 구성 및 이로 인한 작용, 효과에 대해 일괄적으로 기술하기로 한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라, 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 그리고 명세서 전문에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
본 발명은 지르코니아 슬러리를 제조하기 위한 기술사상과 이에 의하여 구현할 수 있는 임플란트 제조방법에 관하여 개시된다.
무엇보다 본 발명은 소정의 볼 밀 기기를 이용하여 나노 입자 크기의 지르코니아 슬러리를 기존 대비 보다 개선된 방식으로 구현할 뿐 아니라 이에 의해 생성된 지르코니아 슬러리를 특정 대상물에 도포 및 건조하여 다공성 표면을 형성시킴에 따라 어버트먼트와 크라운 간 또는 라미네이트와 환자의 치아 간의 결합력을 적극적으로 향상시키면서 임플란트 자체에 생체 융합성을 극대화하는바, 치조골의 골섬유조직이 임플란트 내부로 침투, 성장을 가능하게 함으로써 임플란트 소재와 골조직간의 접촉면이 향상 유도되는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법에 관련됨을 주지한다.
도 1은 본 발명의 바람직한 실시 예에 의하여 구성되는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법을 순차적으로 나열한 플로차트이다.
도 1에 도시된 바와 같이 본 발명이 제안하는 지르코니아 슬러리는 볼 밀(Ball mill) 장치에 의해 나노 입자 크기로 분쇄된 지르코니아 분말과 물 및 탄소 분말로 이루어진 기포제의 혼합으로 구성됨을 전제로 한다.
특히, 지르코니아 슬러리의 표면에 다공성을 세밀하게 표현할 수 있도록 유기물 바인더와 분산제 및 용매가 더 첨가되는 것이 요부이며, 이때 지르코니아 슬러리를 구성하기 위한 가장 적합한 혼합비는 지르코니아 분말 25~45 중량%와, 탄소 분말 8~15중량%와, 바인더 1~5 중량%와, 분산제 1~5중량%와, 용매 45~50 중량%로 이루어져야 한다.
아래는 본 발명의 혼합비에 대한 실험 데이터이다.
1. 지르코니아 분말과 용매의 중량에 따른 점도 실험.
-시편1: 지르코니아 분말 10~20 중량%, 용매 80~90 중량%로 혼합
-시편2: 지르코니아 분말 30~40 중량%, 용매 60~70 중량%로 혼합
-시편3: 지르코니아 분말 50~60 중량%, 용매 40~60 중량%로 혼합
Figure PCTKR2019005615-appb-T000001
<지르코니아 분말과 용매 간의 혼합비에 대한 점도 비교표>
본 발명에서는 점도, 동점도, 고유점도에 대한 실험을 실시하였으며, 점도는 저점도에서 고점도 액상시료를 일정온도에서 부룩필드 회전형, 혹은 진동형 점도계를 이용하여 측정하였고, 동점도는 액상시료를 일정온도에서 Canon-Fenske 혹은 Ubbelohed viscometer 모세관 점도계의 낙하시간을 이용하여 측정하였으며, 고유점도는 고상시료를 일정농도로 solvent에 녹여 일정온도에서 Ubbelohed viscometer(Capillary Viscometer)를 이용하여 측정하였다.
위 표 1과 같이 임플란트와 크라운 간의 결합력을 높이기 위해 제공되는 지르코니아 슬러리의 가장 적합한 점도는 220McP이고, 동점도는 18700cSt이며, 고유점도는 각각 Inherent viscosity 75.5%와 Intrinsic viscosity 25%이며, 이 표준 수치가 되었을 경우 어버트먼트 내지 크라운에 도포하였을 때 가장 완벽하게 접착하였고, 도포된 어버트먼트 내지 크라운의 소성 내지 소결 공정에서도 지르코니아 입자가 완벽하게 보존되는 등 최적의 목적을 달성할 수 있었다.
그리고 위의 표준 수치에서 가장 근접한 수치가 측정된 시편은 본 발명의 시편2였다. 따라서, 실험결과에서도 알 수 있듯이 지르코니아 슬러리의 가장 바람직한 농도를 위해서는 지르코니아 분말 30~40 중량%, 용매 60~70 중량%로 혼합하는 것이다.
2. 지르코니아 분말, 탄소분말의 혼합비에 대한 다공성 표면 실험
-시편1: 지르코니아 분말 80~90 중량%, 탄소분말 10~20 중량%
-시편2: 지르코니아 분말 60~70 중량%, 탄소분말 30~40 중량%로 혼합
-시편3: 지르코니아 분말 30~40 중량%, 탄소분말 60~70 중량%로 혼합
Figure PCTKR2019005615-appb-T000002
<지르코니아 분말과 탄소분말의 배합비에 따른 다공성 표면 측정표>
임플란트와 크라운의 교집력을 극대화시키기 위해서는 지르코니아 슬러리의 입자간 표면이 거칠수록 우수한 성능을 발휘할 수 있으며, 거칠기 뿐만 아니라 각각의 입자간에 밀집력 또한 세밀하고 견고하여야한다.
한편, 분말의 표면에 다공이 많을수록 분말 자체의 강도가 떨어지기 때문에 지르코니아 분말의 강도는 최대한 유지하면서 표면 거칠기를 극대화 시키기 위해서는 위 표 2와 같이 다공의 크기는 0.5nm이 되어야 하고, 밀집력은 0.85nm, 거칠기의 최대 높이는 0.85nm, 십점 평균 거칠기는 0.72nm, 중심선 평균 거칠기는 0.45nm으로 구성하는 것이 가장 바람직하다. 위와 같은 다공성의 크기와 밀집력을 갖는 지르코니아 분말은 0.05nm 인장강도와, 0.5mm의 마찰계수, 3.2%의 탄성력을 보존하여 임플란트에 도포되어도 그 기능을 온전히 유지할 수 있다.
그리고 위의 표준 수치에서 가장 근접한 수치가 측정된 시편은 본 발명의 시편2였다. 따라서, 실험결과에서도 알 수 있듯이 지르코니아 슬러리의 가장 바람직한 다공성 표면을 형성하기 위해서는 지르코니아 분말 60~70 중량%, 탄소분말 30~40 중량%로 혼합하는 것이다.
3. 유기물 바인더와 분산제의 혼합비에 대한 다공성 표면 실험
유기물 바인더는 지르코니아 분말이 서로 뭉칠 수 있게 도와주는 접착제 역할을 수행하며, 분산제는 지르코니아 분말이 뭉친 뒤 잔류하는 유기물 바인더를 제거하는 역할을 수행한다.
당연한 말이지만, 유기물 바인더의 함량이 많을 경우 지르코니아 분말의 점도가 매우 증대되어 균일한 교반이 어렵고, 결과적으로 덩어리 진 상태로 교반이 이루어진다. 반대로 유기물 바인더의 함량이 적을 경우 분말 간 결집이 되지 않아 지르코니아 슬러리로써의 사용이 불가하다.
그리고 분사제의 경우 함량이 초과되면 불필요한 유기물 바인더 외에 지르코니아 분말을 결집하고 있는 유기물 바인더까지 중화시켜 반죽이 풀리게되고, 함량이 미달할 경우 지르코니아 분말 간 점도가 높게 측정되어 균일한 교반이 어렵다.
따라서, 본 발명의 지르코니아 슬러리는 지르코니아 분말 25~45 중량%와, 탄소 분말 8~15중량%와, 바인더 1~5 중량%와, 분산제 1~5중량%와, 용매 45~50 중량%로 이루어져야 한다.
위와 같은 혼합비로 이루어지는 지르코니아 슬러리는 볼 밀 장치에 지르코니아와 기포제 및 유기물 바인더를 넣고 교반하면서 파쇄하는 지르코니아 파쇄단계(S10);와, 기포제가 혼합된 지르코니아 분말을 1200 내지 1800℃로 가열하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시켜 입자마다 다공성 표면을 형성하는 탄소분말 산화단계(S20);와, 다공성 표면이 형성된 지르코니아 분말에 분산제와 용매를 넣어 지르코니아 용액을 만들면서 혼합물에 첨가된 유기물 바인더를 제거하는 탈지 공정단계(S30);로 구성된다.
위 지르코니아 파쇄단계(S10)는 볼 밀 장치에 수용된 지르코니아는 파쇄가 이루어져 분말형태로 이루어지고, 지르코니아 분말은 탄소분말과 유기물 바인더가 교반되면서 뭉침과 파쇄가 반복적으로 이루어져 최종적으로 나노 입자 크기를 갖는 지르코니아 혼합물로 가공된다.
한편, 본 발명의 지르코니아 슬러리는 다공성의 표면 거칠기로 이루어져 추후 임플란트를 구성하는 구성품 간의 결합력을 향상시킨다. 위와 같이 지르코니아 슬러리에 다공성 표면 거칠기를 부여하기 위해 지르코니아 파쇄단계(S10)에서 탄소 분말이 혼합되고, 탄소 분말은 지속적인 교반에 의해 지르코니아 혼합물에 기포를 발생시킨다.
그리고 탄소분말 산화단계(S20)에서 기포가 발생된 지르코니아 혼합물을 기설정된 온도로 가열하여 기포가된 탄소 분말을 산화시키면서 지르코니아 혼합물의 표면에 다공성 표면이 형성된다. 여기에서 지르코니아 혼합물의 표면에 다공성 표면을 형성하기에 가장 적합한 조건으로 지르코니아 혼합물을 1200 내지 1800℃의 온도를 가하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시키는 것이 가장 바람직한 표면 거칠기를 형성할 수 있다.
한편, 본 발명에서는 지르코니아 슬러리에 다공성 표면에 대한 거칠기의 정도를 자유자재로 가공할 수 있는 기술을 더 제안하고자 한다.
지르코니아 슬러리의 다공성 표면 거칠기를 제어하기 위해서는 지르코니아의 종류와 해당 지르코니아의 분말 가공법에 따라 제어 유무를 부여할 수 있다.
위와 같이 지르코니아 슬러리의 입자에 형성된 다공성 표면 거칠기의 정도를 자유자재로 가공하기 위해 지르코니아를 분말형태로 가공하는 방법으로는 다양한 종류의 지르코니아 소재 중 나노 입자크기로 가공할 수 있는 지르코니아 소재를 엄선한 후, 해당 지르코니아 소재를 볼 밀 장치로 파쇄하는 분말 준비단계(S11)와, 탈이온화 과정을 거친 2차 증류수를 수열합성에 사용되는 수열반응기(autoclave)의 내부 공간에 보충하는 증류수 준비단계(S12)와, 증류수가 보충된 수열반응기의 온도를 90 내지 100℃로 조정한 뒤, 지르코니아 분말과 침전제를 투입하여 2시간 내지 4시간 동안 용해하는 분말 용해단계(S13)로 구성된다.
위와 같이 지르코니아 분말을 가공하는 방법으로는 크게 고상법, 액상법, 기상법이 있지만, 본 발명에서는 고상법과 기상법에 비해 제조비용이 낮으면서 고순도의 지르코니아 분말 제조가 용이하고, 균일한 조성 및 형상과 크기가 제어된 슬러리를 제조할 수 있는 액상법을 사용하였다.
이러한 액상법은 출발원료 및 합성방법을 변화시켜 구형, 막대형, 판상형, 침상형과 같은 분말의 형상을 제조할 수 있으며, 그 크기도 수 nm에서 수 μm까지 다양하게 제어할 수 있다.
본 발명에서는 액상법 중 분말의 형상과 크기를 가장 간편하고 세밀하게 가공할 수 있는 수열합성법을 이용하였으며, 아래는 수열합성법을 이용한 지르코니아 분말의 제조과정에서 가장 탁월한 입자 크기를 갖는 지르코니아 분말을 획득하기 위한 실험 과정을 나타낸 것이다.
본 실험의 수열합성에 사용된 수열반응기는 내열온도 약 260 ~ 270℃, 최대용량 2L, 최대 압력 20kg/㎠이며, 내부에 테프론 liner가 장착되어 있고, 내부 교반이 가능한 장치이다.
본 실험에서 사용된 지르코니아 원료는 zirconium (Ⅳ)acetate hydroxide, zirconium nitrate, zirconium chloride 중 하나이다.
본 실험에서 사용된 침전제는 NaOH, KOH 중 하나이다.
본 실험에서 사용된 용매는 탈이온화 과정을 거친 2차 증류수이다.
본 실험은 수열반응기에 각각 zirconium (Ⅳ)acetate hydroxide, zirconium nitrate, zirconium chloride 중 하나와 NaOH, KOH 중 하나를 넣고, 용매를 첨가한 뒤 각각 100℃, 150℃, 200℃의 수열합성 반응온도와, 4시간, 8시간, 12시간, 24시간의 반응시간 및 0.1, 1, 2, 5M의 침전제 농도에 변수 차이를 두어 지르코니아 분말을 제조하였다.
본 실험에서는 가공 변수에 따른 지르코니아 분말의 특성을 파악하기 위해 SEM/EDS 관찰, X-선 회절 분석, 비표면적 분석을 하였으며, SEM/EDS 관찰은 제조된 금속산화물 나노분말의 형상 및 미세구조, 입자크기를 주사전자현미경(FE-SEM/EDS, Supra 40, Carl Zeiss Co., Swiss)을 사용하여 관찰하였다. 시료를 소량 취하여 분산시킨 후, aluminium plate 위에서 건조하여 5 min간 Au를 증착시키고 진공 처리하여 15V에서 관찰하였다. 또한, EDS 분석을 통하여 시료분말의 성분을 분석하였다.
X-선 회절 분석은 제조된 금속산화물 나노분말의 결정상(phase) 변화를 X-선 회절(XRD, D/MAX 2500-V/PC, Rigaku Co., Japan)을 이용하여 분석하였다. 이때 사용된 X선은 40 kV, 30 mA에서 발생된 CuKα 선을 Ni 필터로 단색화하였고 측정 범위는 10∼70°이었다. 결정상은 JCPDS(Joint Committee of Powder Diffraction Standard) 카드와 비교하여 확인하였다.
비표면적 분석은 제조된 금속산화물 나노분말의 비표면적을 확인하기 위해, 100 ℃에서 12 h 이상 건조된 분말에 대해 비표면적 측정기(BET, Autosorb-1, Quantachrome Co., USA)를 이용하여 실험하였다. 시료의 전처리는 잔여 유기물 및 불순물을 제거하기 위해 He gas를 purging 시키면서 200℃에서 3 h 동안 진행하였으며, 측정시의 carrier gas는 N2를 사용하였다. Surface area data를 얻기 위해 relative pressure f (P/Po) 0.0∼1.0 범위에서 N2 gas의 흡착과 탈착 과정을 총 55 point 측정하였다.
위 분말 준비단계(S11)에서 지르코니아 소재를 채택하는 과정은 아래 실시 예1과 같다.
[실시예 1]
- 지르코니아 소재에 따른 지르코니아 분말의 특성
출발물질인 zirconium 전구체의 영향을 조사하기 위해서, zirconium acetate, zirconium nitrate, 및 zirconium chloride를 사용하고, 침전제로서 KOH 용액 3M을 첨가하여, 200℃에서 8h 수열합성 하였다.
[규칙 제91조에 의한 정정 15.07.2019] 
도 4는 zirconium 전구체 종류에 따른 분말의 미세구조 변화를 그래프로 나타낸 것이다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
도 4에서 (a)는 zirconium acetate이고, (b)는 zirconium nitrate이며, (c)는 zirconium chloride이다. 위 실시 예1을 통한 지르코니아 분말 (a), (b), (c)는 모두 단사정상으로 합성되었으며, 도 4와 같이 zirconium chloride를 전구체로 사용한 경우 zirconium acetate와 zirconium nitrate보다 XRD 피크의 intensity가 낮고 broad한 것을 확인할 수 있는데, 이는 zirconium chloride를 사용하였을 경우, zirconium nitrate 또는 zirconium acetate보다 결정 크기가 작은 분말이 합성됨을 알 수 있었다.
특히, zirconium chloride로 합성한 경우 폭이 20∼30nm, 길이가 50∼100nm 정도의 막대형의 입자가 형성되었고, zirconium nitrate 또는 zircoium acetate로 합성된 분말은 폭이 약 20∼30nm, 길이가 80∼100nm 정도의 입자가 합성되었다. 따라서 같은 조건에서 지르코니아 전구체를 다르게 합성하였을 경우, 다른 반응조건에 비해 큰 차이는 없었지만, zirconium chloride를 사용하여 합성하였을 경우, 입자의 크기가 가장 작게 형성되었다.
결과적으로 지르코니아 분말은 zirconium (Ⅳ)acetate hydroxide, zirconium nitrate, zirconium chloride 중 어느 하나를 선택적으로 사용할 수 있으나, 본 발명에서는 입자를 가장 최소한의 크기로 형성할 수 있는 zirconium chloride를 사용하는 것이 가장 바람직한 선택이다.
위 증류수 준비단계(S12)에서 탈이온화 과정을 거친 2차 증류수를 이용하여 아래 실시 예2와 같이 KOH의 농도를 조절하면서 지르코니아 분말의 미세구조를 제조할 수 있다.
[실시예 2]
-침전제에 따른 지르코니아 분말의 특성
침전제의 종류 및 농도차이에 따른 지르코니아 분말의 미세구조 및 결정상을 확인하기 위하여 반응온도 200℃, 반응시간을 8h로 고정하고, KOH 또는 NaOH 침전제를 사용하여 0.1, 1, 2, 5M로 농도를 변화시키면서 각각의 지르코니아 분말을 제조하였다.
[규칙 제91조에 의한 정정 15.07.2019] 
도 5는 침전제의 종류와 농도에 따른 지르코니아 분말의 미세 구조 변화를 그래프로 나타낸 것이다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
도 5에서 (a)는 침전제의 농도가 0.1M이고, (b)는 1M, (c)는 2M, (d)는 5M이다. KOH 침전제의 농도가 0.1M이 합성된 분말은 정방정상과 단사정상이 함께 존재하였으며, 1M ~ 5M에서 합성된 분말은 단사정상만 존재하였다. 여기에서 도 5와 같이 농도가 증가할수록 입자의 크기가 점차 증가함을 알 수 있었다.
한편, NaOH 침전제 역시 농도가 0.1M이 합성된 분말은 정방정상과 단사정상이 함께 존재하였으며, 1M ~ 5M에서 합성된 분말은 단사정상만 존재하였다. 그리고 KOH와 마찬가지로 농도가 증가할수록 입자의 크기가 점차 증가하였으나, KOH와 NaOH의 비교시 KOH의 입자크기가 더욱 미세한 크기로 변화되었음을 알 수 있었다.
결과적으로 침전제로는 KOH와 NaOH를 선택적으로 사용할 수 있으나 본 발명에서는 입자를 가장 최소한의 크기로 형성할 수 있는 KOH를 사용하는 것이 가장 바람직한 선택이다.
위 분말 용해단계(S13)에서 수열반응기의 제공 온도와 제공 시간의 채택은 아래의 실시 예3과 같다.
[실시예 3]
- 반응 온도와 시간에 따른 지르코니아 분말의 특성
zirconium chloride를 전구체로 하여 hydrothermal process로 지르코니아를 제조하였으며, 0.1M의 KOH를 첨가한 뒤 반응온도에 따른 지르코니아 분말의 미세구조 및 결정상을 확인하기 위하여 100, 150, 200℃의 반응 온도와, 4, 8, 12, 24h의 반응 시간으로 지르코니아 분말을 합성하였다.
[규칙 제91조에 의한 정정 15.07.2019] 
도 6은 반응 온도에 따른 지르코니아 분말의 미세 구조 변화를 그래프로 나타낸 것이다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
도 6에서 (a)는 100℃이고, (b)는 150℃이며, (c)는 200℃이다. 도 6과 같이 100℃의 반응온도에서 합성된 경우 정방정상의 결정상을 나타내며, 약 10nm의 크기를 갖는 구형 입자들이 관찰되었다. 반면, 150℃의 반응온도에서 합성된 경우 정방정상의 입자와 단사정상의 입자가 혼합되어 약 20∼50nm의 크기의 불규칙적인 형상이 존재함을 알 수 있다. 200℃의 반응온도에서 합성된 경우, 단사정상의 결정구조를 갖는 폭 30∼50nm, 길이 100∼150nm의 크기를 가지는 규칙적인 형상을 가지는 막대상이 관찰되었다. 전반적으로 수열합성의 온도가 낮을 경우 입자크기가 작은 구형의 정방정상이 합성되고, 반면에 합성온도가 높은 경우에는 입자크기가 비교적 큰 단사정상의 막대형 입자가 합성되는 것을 알 수 있었다.
결과적으로 반응 온도를 100 내지 200℃의 범위 내에서 선택적으로 합성할 수는 있으나, 본 발명에서는 입자를 가장 최소한의 크기로 형성할 수 있는 90 내지 100℃의 온도를 제공하는 것이 가장 바람직한 조건이다.
[규칙 제91조에 의한 정정 15.07.2019] 
도 7은 반응 시간에 따른 지르코니아 분말의 미세 구조 변화를 그래프로 나타낸 것이다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
도 7에서 (a)는 4h이고, (b)는 8h이며, (c)는 12h이고, (d)는 24h이다. 한편, 8h, 12h, 24h 동안 합성한 지르코니아 분말은 모두 단사정상의 결정상을 나타내었으며, 입자의 크기가 대체로 폭 30∼50nm, 길이 100∼200nm의 크기를 나타내었다. 반면, 4h동안 합성한 지르코니아 분말은 입자 크기를 판단하기 힘든 비정질상의 XRD Peak를 가지고 있었다.위의 실험과 같이 반응 시간이 길어짐에 따라 입자의 크기가 점차 축소하는 것을 확인할 수 있었다.
결과적으로 반응 시간을 4h, 8h, 12h, 24h 중 어느 하나를 선택적으로 합성할 수는 있으나, 본 발명에서는 입자를 가장 최소한의 크기로 형성할 수 있는 12 내지 24h의 반응 시간을 제공하는 것이 가장 바람직한 조건이다.
한편, 지르코니아 슬러리의 다공성 표면 거칠기는 탄소 분말의 농도에 따라 거칠기의 정도를 제어할 수 있다.
본 발명에서는 위에 언급한 바와 같이 탄소 분말이 첨가된 지르코니아 혼합물을 1200 내지 1800℃의 온도를 가하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시킨다.
아래 서술된 실시 예4는 실험을 통해 탄소 분말 농도에 따른 어버트먼트와 크라운 간의 접착력을 비교 분석한 결과이며, 접착 강도 실험은 실험 시편에 레진 세멘트를 너비별로 도포하여 인장시험기(ASTM F-1044-99)를 이용하여 실시하였다. 사용한 레진 세멘트는 Vericom(Korea)의 Polyglass cem을 사용하였다.
[실시예 4]
Figure PCTKR2019005615-appb-I000005
<탄소 농도에 따른 어버트먼트와 크라운 간의 접착력 분석표>
위의 분석표와 같이 기본적으로 접착 면적이 늘어나면 인장강도가 증가하였으며, 이는 일반적인 어버트먼트와 크라운 간의 결합과 대비하여 지르코니아 슬러리로 다공성을 형성함으로써 접촉면적이 확장된 본 발명의 임플란트가 더욱 우수한 결합력을 나타낸다는 것을 입증할 수 있는 계기가 되었다. 한편, Control 시편 21mm 접착면적에서는 시편이 분리되지 않고 지그에서 분리되었기 때문에 값을 기록하지 않았으며, 이러한 경우 시편에서 세멘트가 분리되지 않고 늘어나는 현상이 발생하였다. 따라서, 위의 분석표를 바탕으로 시료명 10, 40은 지르코니아 슬러리에서 탄소의 농도가 각각 10wt%와 40wt%를 나타내는 것이며, 지르코니아 슬러리는 탄소 농도가 40에서 접착 인장강도가 가장 우수하다는 것을 확인할 수 있었다.
결과적으로 본 발명은 10 내지 40wt%의 탄소 농도를 선택적으로 조절할 수 있으나, 기본적으로 40wt%의 탄소 농도가 구성될 수 있도록 소결하는 것이 가장 바람직하다고 볼 수 있다.
한편, 본 발명에서는 지르코니아 슬러리를 구성하는 지르코니아 분말의 입자 크기를 보다 미세하게 가공하기 위하여 아래와 같이 특수 제작된 볼 밀 장치를 이용하였다.
도 2는 본 발명의 바람직한 실시 예에 의하여 구성되는 볼 밀(Ball mill) 장치를 나타낸 정면도이다.
도 2에 도시된 바와 같이 본 발명의 볼 밀 장치는 지면 상에 설치되는 프레임(10)의 상단에 한쌍의 가압롤러(20,30)가 좌우로 배치되고, 한쌍의 가압롤러 중 어느 하나와 연결되어 회전동력을 부여하는 모터(40)로 이루어진다. 그리고 지르코니아 분말, 탄소분말, 바인더, 분산제, 용매 등 지르코니아 슬러리를 구성하는 물질이 담긴 원통형의 가공용기(50)가 가압롤러(20,30) 사이에 개재되어 모터에 의해 가압롤러와 함께 회전이 이루어지면서 슬러리로 가공한다.
또한, 가공용기(50)는 지르코니아 슬러리의 가공량에 따라 내부공간이 길이방향으로 확장되어 용량에 따라 사이즈를 다르게 복수 구성하고, 위 가압롤러(20,30)는 좌우 수평 방향으로 슬라이드 이동이 가능하게 구성하여 가공용기의 사이즈에 따라 가압롤러의 좌우 위치를 조절하여 사용가능하다.
이에 따라 지르코니아 슬러리의 가공량에 국한되지 않고, 지르코니아 슬러리를 제조할 수 있다.
특히, 위 가공용기(50)의 내부공간에는 다수개의 교반용 구슬(A)이 내장되어 있다. 위 교반용 구슬(A)은 구(球)의 크기가 서로 다르게 이루어지고, 각 구슬의 표면마다 다공(A')이 형성되어 거칠기를 갖고 있다. 다공의 거칠기는 교반용 구슬(A)과 지르코니아 간의 마찰계수를 증대시켜 분쇄를 원활하게 하고, 나아가 다공성 표면에 의해 확장된 면적과 거친 외형에 의해 지르코니아 분말과 탄소분말, 유기물 바인더, 분산제, 용매 등의 유동을 활발하게 하여 강력한 교반 및 나노 입자크기의 슬러리를 생성할 수 있는 가장 핵심적인 역할을 수행한다.
그리고 위 교반용 구슬(A)은 지르코니아 분말과 탄소분말, 유기물 바인더, 분산제, 용매 등의 교반이 이루어질 때 다공(A')의 영역마다 다양한 방향에 대한 와류가 발생하여 지르코니아 분말과 탄소분말, 유기물 바인더, 분산제, 용매를 더욱 견고하고 밀접하게 교반하게 하는 한편, 또 다른 실시 예에 의한 본 발명의 교반용 구슬(A)은 각 다공(A')마다 서로 내통되게 연결된 엉퀴의 형태로 이루어져 지르코니아 분말과 탄소분말, 유기물 바인더, 분산제, 용매가 교반용 구슬의 내부 공간으로 진입하여 해당 구슬 내에서 또 한번의 분쇄와 교반이 이루어져 더욱 미세한 입자의 슬러리를 신속하고 정교하게 생성할 수 있다.
[규칙 제91조에 의한 정정 15.07.2019] 
도 8은 시중에 개발된 일반적인 지르코니아 슬러리와, 도 9는 본 발명의 바람직한 실시 예에 의하여 개발된 지르코니아 슬러리의 표면을 확대하여 표면 거칠기의 정도를 비교한 실물 확대 사진이다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
도 3은 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리가 도포된 임플란트의 제조방법을 순차적으로 나열한 플로차트이다.
도 3에 도시된 바와 같이 본 발명의 임플란트 제조방법은 크게 볼 밀(Ball mill) 장치에 의해 가공된 지르코니아 슬러리를 보관용기에 투입하는 슬러리 준비단계(S100);와, 크라운의 내경을 어버트먼트의 머리부에 비해 0.01 내지 0.1의 확장된 지름으로 가공하여 결합면에 여유공간을 확보하는 구성품 가공단계(S200);와, 크라운의 내경과 어버트먼트의 머리부에 슬러리를 도포하는 슬러리 도포단계(S300);와, 슬러리가 도포된 크라운과 어버트먼트를 120~150℃의 온도 조건에서 10~20분간 건조하는 슬러리 건조단계(S400);와, 크라운의 내경에 어버트먼트의 머리부를 억지 끼움으로 체결한 후, 환자의 치조골에 식립된 픽스쳐에 결합하는 구성품 조립단계(S500);로 구성된다.
위 슬러리 준비단계(S100)는 위에 언급한 바와 같이 볼 밀 장치에 지르코니아와 기포제 및 유기물 바인더를 넣고 교반하면서 파쇄하는 지르코니아 파쇄단계(S10);와, 기포제가 혼합된 지르코니아 분말을 1200 내지 1800℃로 가열하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시켜 입자마다 다공성 표면을 형성하는 탄소분말 산화단계(S20);와, 다공성 표면이 형성된 지르코니아 분말에 분산제와 용매를 넣어 지르코니아 용액을 만들면서 혼합물에 첨가된 유기물 바인더를 제거하는 탈지 공정단계(S30);로 제조된 것을 보관용기에 투입하는 단계이다.
위 구성품 가공단계(S200)는 크라운과 어버트먼트를 가공하는 공정으로써, 티타늄 소재를 밀링 가공하여 어버트먼트를 획득하고, 레진 또는 지르코니아 소재를 형상가공하여 환자의 상실된 치아를 대체하는 인공 보철물을 획득한다.
특히 본 발명의 구성품 가공단계(S200)는 위에 서술한 바와 같이 크라운의 내경을 어버트먼트의 머리부에 비해 0.01 내지 0.1의 확장된 지름으로 가공하여 결합면에 여유공간을 확보한다. 위 결합면에 확보된 여유공간은 추후 지르코니아 슬러리가 도포되어 어버트먼트와 크라운 간 억지 끼움을 유도한 공간을 제공한다.
위 슬러리 도포단계(S300)는 크라운의 내경과 어버트먼트의 머리부에 슬러리를 도포하는 공정으로, 크라운의 내경과 어버트먼트의 머리부에 각각 지르코니아 슬러리를 0.01 내지 0.1의 두께로 도포한다.
위 슬러리 도포단계(S300)에서 지르코니아 슬러리는 붓을 이용하여 크라운 내지 어버트먼트의 표면에 문질러 도포하거나 펌핑부재로 분사하여 도포할 수 있다. 특히, 본 발명에서는 다공성 표면의 거칠기를 활용하여 어버트먼트와 크라운의 결합력을 증대시키기 위해 지르코니아 슬러리의 도포 흐름을 상이하게 하여 어버트먼트와 크라운의 상호 맞닿는 면의 마찰계수를 적극적으로 증대시켰다.
한편, 지르코니아 슬러리를 크라운의 내경 하단에서 상측방향으로 도포함으로써 크라운의 내경 하단에서 상측방향으로 갈수록 다공성 표면 거칠기가 점차 확장되는 분포도를 가지도록 구성하고, 반면 어버트먼트는 머리부의 상단에서 하측방향으로 도포함으로써 어버트먼트의 머리부를 기준으로 하측방향으로 갈수록 다공성 표면 거칠기가 점차 확장되는 분포도를 갖도록 구성된다.
예컨대 이는 본 발명의 실시 예에 의한 방법으로 해당 도포 방향에 한정하는 것은 아니며, 지르코니아 슬러리를 크라운의 내경 상단에서 하측방향으로 도포함으로써 크라운의 내경 상단에서 하측방향으로 갈수록 다공성 표면 거칠기가 점차 확장되는 분포도를 가질수 있고, 또한 어버트먼트는 머리부의 하단에서 상측방향으로 도포하여 어버트먼트의 머리부 하단을 기준으로 상측방향으로 갈수록 다공성 표면 거칠기가 점차 확장되는 분포도를 가질수 있다. 다시 말해, 분포량의 흐름은 작업자의 선택에 따라 변경될 수 있음은 당연하다 할 것이다.
위 슬러리 건조단계(S400)는 지르코니아 슬러리가 도포된 임플란트 구성품을 일정한 온도가 조성된 환경에서 일정 시간 건조하는 공정이다. 통상적으로 지르코니아는 다양한 종류의 세라믹 중 하나로 예컨대, 세라믹은 도기질로써 자체적으로 흡수율이 높아 주변 환경 내지 급격한 온도 변화에 따라 크랙이 발생하기 쉽다.
한편, 사람의 구강에도 다양한 온도로 이루어진 음식물이 섭취되기 때문에 이러한 음식물로 인해 크라운과 어버트먼트 사이에 도포된 지르코니아 슬러리에 크랙이 발생할 수 있다. 위와 같은 문제점을 적극적으로 해소하기 위해서는 지르코니아 슬러리에 의해 다공성 표면 거칠기가 크라운 내지 어버트먼트에 견고하게 부착되도록 지르코니아 슬러리를 열가공하여야 한다.
따라서 본 발명은 세라믹의 크랙 발생을 방지하기 위해서 지르코니아 슬러리가 도포된 크라운을 오븐에 넣고 120~150℃의 온도 조건하에서 10~20분간 건조하여 지르코니아 슬러리에 함유된 수분을 신속하게 증발시킴과 아울러, 급격한 건조에 의해 지르코니아 슬러리의 지르코니아 분말과 탄소분말이 크라운 내지 어버트먼트에 적극적으로 접착되어 코팅이 이루어지게 한다.
위 구성품 조립단계(S500)는 크라운의 내경에 어버트먼트의 머리부를 억지 끼움으로 체결한 후 환자의 치조골에 식립된 픽스쳐에 결합하는 공정이다.
먼저, 크라운의 내경은 어버트먼트의 머리부에 비해 0.01 내지 0.1의 확장된 지름으로 이루어져 여유공간을 확보하였으나, 크라운의 내경과 어버트먼트의 머리부는 각각 0.01 내지 0.1의 두께로 지르코니아 슬러리가 도포되어 다공성 표면을 형성하였기 때문에 여유공간은 최대 0.1의 두께만큼 부족하게 된다.
이러한 상태에서 크라운과 어버트먼트는 억지끼움이 이루어져 별도의 결합부재없이도 크라운과 어버트먼트는 일체화로 구성할 수 있다. 더불어, 위 슬러리 도포단계(S300)에서 알 수 있듯이 크라운과 어버트먼트의 결합면에 지르코니아 슬러리가 상호 역방향으로 도포되기 때문에 크라운과 어버트먼트는 각각 맞교합된 상태로 조립되어 결집력이 적극적으로 향상됨을 알 수 있다.
다음은 본 발명의 지르코니아 슬러리를 라미네이트 제조방법에 적용한 것이다.
본 발명의 라미네이트는 치아의 형태를 개선하는 치료방법으로 주로 미관상의 목적으로 앞니의 법랑질 순면 표면만 최소한으로 삭제하여 도재기공물을 만든 후 하이브리드 복합 레진 접착제로 접착시킨다.
일반적으로 라미네이트는 시술한 치아의 주변에 부분 마취한 후 치아를 삭제하는 단계와, 본을 뜨기 위한 부가 중합형 실리콘을 이용하여 인상을 뜨는 단계와, 임시 치아를 제작하여 부착해보는 단계와, 기공 과정을 통해 수복물을 완성하는 단계와, 치아에 맞춰 본 후 접착력을 높이기 위해 10% 불산을 90초 정도 치아와 보철물의 내면에 처치하는 단계와, 접착용 레진을 선택하여 치아와 보철물을 완전히 부착하는 단계와, 교합을 조정하는 단계로 이루어진다.
위와 같은 시술과정을 갖는 라미네이트는 치아에 비니어를 부착하기 위해 치아 1개당 약 10~20분이라는 오랜시간이 소요되며, 시멘트의 접촉 불량으로 포세린 비니어(Porcelain veneer)의 탈락, 포세린 베니어의 부분 혹은 전체 파절, 베니어와 치아 사이의 틈 변색, 지나친 치아의 삭제로 인한 지각 과민 등 부작용 내지 후유증이 발생할 수 있다. 이러한 이유로 본 발명은 비니어 자체의 내구성을 적극적으로 향상시킴과 아울러, 치아와 비니어간 결집력을 향상시키면서 신속하게 접합할 수 있는 기술을 제공하고자 한다.
본 발명의 라미네이트 제조방법은 볼 밀(Ball mill) 장치에 의해 가공된 지르코니아 슬러리를 보관용기에 투입하는 슬러리 준비단계(S100);와, 용융된 세라믹 소재를 금형에 넣어 비니어를 가공하는 구성품 가공단계(S200);와, 비니어의 내면에 슬러리를 도포하는 슬러리 도포단계(S300);와, 슬러리가 도포된 비니어를 120~150℃의 온도 조건에서 10~20분간 건조하는 슬러리 건조단계(S400);와, 환자의 치아에 복합 레진 접착제를 도포한 후 비니어를 부착하는 구성품 조립단계(S500);로 구성되는 것을 특징으로 한다.
위 슬러리 준비단계(S100)는 위 크라운과 어버트먼트로 이루어진 임플란트 제조방법과 동일한 과정으로 이하 자세한 설명은 생략한다.
위 구성품 가공단계(S200)는 세라믹 소재를 절삭하여 형상 가공하거나, 용융된 세라믹을 사출금형에 넣어 가공하는 등 환자의 파손된 치아를 보완할 수 있는 형태로 가공하는 공정이다.
위 슬러리 도포단계(S300)는 비니어의 내면에 슬러리를 도포하는 공정으로 비니어에 슬러리를 보다 원활하게 도포하기 위해 본 발명에서는 볼밀 장치로부터 추출되는 지르코니아 슬러리를 별도로 마련된 보관용기에 옮겨 담는 공정을 포함한다. 더욱 상세하게는 볼 밀(Ball mill)에 구비된 한 쌍의 가압장치(20,30)의 가압력을 해제하고 가공용기(50)를 탈거한 후, 가공용기에 교반된 지르코니아 슬러리를 보관용기에 부어 담는다.
한편, 위 보관용기는 지르코니아 슬러리를 비니어에 도포하는 방법에 따라 도 도장용 용기 및 스프레이용 용기로 구분될 수 있으며, 도포용 용기는 내부에 수용된 지르코니아 슬러리를 붓에 묻히기 위해 상부가 개구된 용기이고, 스프레이용 용기는 상부에 분무기 형태로 이루어진 용기이다.
특히 위 도장용 용기와 스프레이용 용기는 용기 내부에 볼 밀(Ball mill) 장치에 구비된 교반용 구슬(A)과 같이 다양한 크기로 이루어진 지르코니아 구슬이 적어도 하나 이상 수용된다. 예컨대, 볼 밀 장치에 의해 나노 입자 크기로 이루어진 지르코니아 슬러리는 보관용기에 장시간 두었을 경우 입자가 가라앉기 때문에 이를 섞어주어야 하는데, 이처럼 보관용기를 흔들어서 섞을 때 보관용기에 수용된 교반용 구슬(A)이 지르코니아 슬러리와 같이 흔들리면서 보관용기 내부 전면에 가라앉은 지르코니아 슬러리의 혼합을 가중시킨다.
더불어 슬러리 도포단계(S300)는 비니어의 내면에 슬러리를 도장 또는 도포하는 공정으로 보관용기에 담긴 지르코니아 슬러리를 붓 또는 분무기 형태의 펌핑부재를 이용하여 비니어의 내면에 0.1 내지 0.5mm의 두께로 도포한다.
위 슬러리 도포단계(S300)에서 지르코니아 슬러리가 묻은 붓을 비니어 내표면의 상단에서 하측방향으로 문질러 도포하거나, 펌핑부재를 상단에서 하측방향으로 분사하여 지르코니아 슬러리가 하측으로 갈수록 점차 확장되는 분포도를 가지도록 도포한다. 그러나 이는 본 발명의 실시 예에 의한 방법으로 이에 한정하는 것은 아니며, 지르코니아 슬러리가 묻은 붓을 비니어 내표면의 하단에서 상측방향으로 문질러 도포하거나, 펌핑부재를 하단에서 상측방향으로 분사하여 지르코니아 슬러리가 상측으로 갈수록 점차 확장되는 분포도를 가지도록 도포할 수도 있다. 다시 말해, 분포량의 흐름은 작업자의 선택에 따라 변경될 수 있음은 당연하다 할 것이다.
위 슬러리 건조단계(S400)는 지르코니아 슬러리가 도포된 비니어를 120~150℃의 온도 조건하에서 10~20분간 건조하는 공정으로, 통상적으로 비니어는 세라믹 소재를 절삭 가공하거나 용융 성형하여 제작한다. 예컨대 세라믹은 도기질로써 자체적으로 흡수율이 높아 주변 환경 내지 급격한 온도 변화에 따라 크랙이 발생하기 쉽다. 따라서, 본 발명은 세라믹의 크랙 발생을 방지하기 위해서 지르코니아 슬러리가 도포된 비니어를 오븐에 넣고 120~150℃의 온도 조건하에서 10~20분간 건조하여 지르코니아 슬러리에 함유된 수분을 신속하게 증발시킴과 아울러, 급격한 건조에 의해 지르코니아 슬러리의 지르코니아 분말과 탄소분말이 비니어에 적극적으로 접착되어 코팅이 이루어지게 한다.
위 구성품 조립단계(S500)는 환자의 치아에 복합 레진 접착제를 도포한 후 비니어를 부착하는 공정으로 더욱 상세하게는 시술이 필요한 환자의 치아의 법랑질 순면 표면을 삭제하고, 삭제된 치아의 전면(前面)에 치과 치료용 복합 레진 접착제를 도포하여 지르코니아 슬러리가 적층 도포된 비니어를 부착하는 단계이다.
한편, 환자의 시술이 요구되는 치아에 복합 레진 접착제를 도포하는 방법은 위의 비니어 내표면에 지르코니아 슬러리를 도포하는 방법과 마찬가지로 일방향으로 도포하여 치아에 복합 레진 접착제가 점차 확장되는 분포도를 가지도록 도포한다. 다시 말해 복합 레진 조성물을 치아의 상단에서 하측방향으로 분사하여 복합 레진 조성물이 하측으로 갈수록 점차 확장되는 분포도를 가지거나, 반대로 하단에서 상측방향으로 분사하여 복합 레진 조성물이 상측으로 갈수록 점차 확장되는 분포도를 가지도록 도포할 수도 있다. 다시 말해, 분포량의 흐름은 비니어에 도포된 지르코니아 슬러리와 반대되는 방향으로 도포하는 것이 바람직하다.
위와 같이 위 슬러리 도포단계(S300)에서 슬러리를 비니어 내표면의 상단에서 하측 방향으로 도포하여 슬러리가 하측으로 갈수록 점차 확장되는 분포도를 가지고, 위 구성품 조립단계(S500)에서 복합 레진 접착제를 치아 외표면의 하단에서 상측방향으로 도포하여 슬러리가 상측으로 갈수록 점차 확장되는 분포도를 갖게 함으로써, 비니어와 치아 간의 도포 흐름이 상호 역방향으로 이루어져 상호간 거칠기 각도가 서로 맞물려 결집력이 증대된다.
한편, 아래는 다공성 표면 거칠기의 도포 방향에 유무에 따른 결합력을 측정하고, 이에 대한 실험 결과를 나타내었다.
[비교 예1]
일반적인 지르코니아 블록에 불산, 황산, 촉매제 및 메틸알콜로 이루어진 지르코니아 슬러리를 통상의 방법으로 도포한 시편.
[비교 예2]
일반적인 지르코니아 블록에 지르코니아 분말, 탄소분말, 바인더, 분산제, 용매의 혼합으로 이루어진 본 발명의 지르코니아 슬러리를 각각 역방향으로 도포한 시편.
[실시예 5]
[규칙 제91조에 의한 정정 15.07.2019] 
도 10은 실시 예5의 과정을 도면으로 간략하게 표현하였다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
도 10과 같이 지그(Jig)에 각각 비교 예1과 비교 예2를 안착시킨 후 복합 레진 접착제를 부착하여 다양한 방향으로 외력을 주어 결합력을 측정하였다.
[규칙 제91조에 의한 정정 15.07.2019] 
도 11은 실시 예5의 실험에 따른 결과를 나타낸 그래프이다.
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
삭제
[규칙 제91조에 의한 정정 15.07.2019] 
도 11에서도 알 수 있듯이 비교 예1과 같이 통상의 표면처리제 및 Sanding 방법으로 결합된 지르코니아 블럭은 약 5~10MPa의 결합력을 나타낸 반면, 비교 예2와 같이 다양한 크기의 지르코니아 입자가 포함된 슬러리를 비니어와 치아 간 도포 방향을 상이하게 하여 결합력을 증대시킨 본 발명의 기술은 약 35~40MPa의 결합력을 나타내었다. 결과적으로 실시 예1과는 결합력이 무려 3배 이상 향상되었음을 알 수 있었다.
상술한 구성으로 이루어지는 본 발명에 의하면, 임플란트를 구성하는 각 구성품의 결합면에 나노 입자를 갖는 지르코니아 슬러리가 도포되어 다공성 표면이 형성됨에 따라 마찰 내지 증가된 표면적에 의해 임플란트 구성품 간의 결합력이 적극적으로 증대되는 효과가 있다.
특히 세라믹 소재 중 인체 친화력이 우수한 지르코니아를 사용하며, 이러한 지르코니아를 볼 밀(Ball mill) 장치로 가공하여 나노 입자크기의 분말 형태로 구성함에 따라 생체 융합성이 적극적으로 향상될 뿐 아니라 임플란트의 구성품에 더욱 세밀한 표면 거칠기를 표현할 수 있어 효과적이다.
그리고 본 발명이 제안하는 지르코니아 슬러리는 지르코니아 분말, 탄소 분말, 바인더, 증류수, 용매 등 모든 구성품이 인체에 무해하고, 무엇보다 수열합성법을 통해 지르코니아 분말의 각 입자마다 다공성 표면을 형성하여 다공성 표면의 거칠기를 미세한 수준까지 조절할 수 있으므로 더욱 효과적이다.
또한, 본 발명에서는 임플란트의 각 구성품에 대한 결합면마다 지르코니아 슬러리를 다양한 각도로 도포하여 표면 거칠기의 흐름을 다르게 구성함으로써 상호간 결집력을 향상시켜 시술 후 오랜 시간이 지남에도 환자의 구강에서 박리되는 문제를 적극 차단하여 영구적인 관리가 이루어질 수 있으며, 지르코니아 슬러리가 도포된 임플란트의 각 구성품을 120~150℃에서 10~20분 동안 건조하는 제반 구성에 기인하여 수분에 약한 세라믹 소재의 임플란트 구성품에 나타날 수 있는 크랙 문제를 적극적으로 방지할 수 있는 또 다른 효과가 있다.
이상에서 설명한 본 발명은, 도면에 도시된 일실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 명확히 하여야 할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
S10. 지르코니아 파쇄단계 S11. 분말 준비단계
S12. 증류수 준비단계 S13. 분말 용해단계
S20. 탄소분말 산화단계 S30. 탈지 공정단계
S100. 슬러리 준비단계 S200. 구성품 가공단계
S300. 슬러리 도포단계 S400. 슬러리 건조단계
S500. 구성품 조립단계
10. 프레임 20, 30. 가압롤러
40. 모터 50. 가공용기

Claims (7)

  1. 볼 밀(Ball mill) 장치에 의해 나노 입자 크기로 분쇄된 지르코니아 분말과 물 및 탄소분말로 이루어진 기포제의 혼합으로 구성하되, 유기물 바인더와 분산제 및 용매가 더 첨가되는 지르코니아 슬러리의 제조방법에 있어서,
    볼 밀 장치에 지르코니아와 기포제 및 유기물 바인더를 넣고 교반하면서 파쇄하는 지르코니아 파쇄단계(S10);
    기포제가 혼합된 지르코니아 분말을 1200 내지 1800℃로 가열하여 탄소 분말의 농도가 10 내지 40wt%가 되도록 산화시켜 입자마다 다공성 표면을 형성하는 탄소분말 산화단계(S20);
    다공성 표면이 형성된 지르코니아 분말에 분산제와 용매를 넣어 지르코니아 용액을 만들면서 혼합물에 첨가된 유기물 바인더를 제거하는 탈지 공정단계(S30);
    로 구성되는 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법.
  2. 제1항에 있어서,
    위 지르코니아 파쇄단계(S10)는 zirconium (Ⅳ)acetate hydroxide, zirconium nitrate, zirconium chloride 중 어느 하나를 택일하여 볼 밀 장치로 분쇄하는 분말 준비단계(S11)와,
    탈이온화 과정을 거친 2차 증류수를 수열합성에 사용되는 수열반응기(autoclave)의 내부 공간에 보충하는 증류수 준비단계(S12)와,
    증류수가 보충된 수열반응기의 온도를 90 내지 100℃로 조정한 후, 지르코니아 분말과 침전제를 투입하여 2시간 내지 4시간 동안 용해하는 분말 용해단계(S13)
    로 구성되는 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법.
  3. 제2항에 있어서,
    위 침전제는 NaOH, KOH 중 어느 하나인 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법.
  4. 제1항에 의해 제조된 지르코니아 슬러리를 보관용기에 투입하는 슬러리 준비단계(S100);
    크라운의 내경을 어버트먼트의 머리부에 비해 0.01 내지 0.1의 확장된 지름으로 가공하여 결합면에 여유공간을 확보하는 구성품 가공단계(S200);
    크라운의 내경과 어버트먼트의 머리부에 슬러리를 도포하는 슬러리 도포단계(S300);
    슬러리가 도포된 크라운과 어버트먼트를 120~150℃의 온도 조건에서 10~20분간 건조하는 슬러리 건조단계(S400);
    크라운의 내경에 어버트먼트의 머리부를 억지 끼움으로 체결한 후, 환자의 치조골에 식립된 픽스쳐에 결합하는 구성품 조립단계(S500);
    로 구성되는 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리를 이용한 임플란트 제조방법.
  5. 제1항에 의해 제조된 지르코니아 슬러리를 보관용기에 투입하는 슬러리 준비단계(S100);
    용융된 세라믹 소재를 금형에 넣어 비니어를 가공하는 구성품 가공단계(S200);
    비니어의 내면에 슬러리를 도포하는 슬러리 도포단계(S300);
    슬러리가 도포된 비니어를 120~150℃의 온도 조건에서 10~20분간 건조하는 슬러리 건조단계(S400);
    환자의 치아에 복합 레진 접착제를 도포한 후 비니어를 부착하는 구성품 조립단계(S500);
    로 구성되는 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리를 이용한 임플란트 제조방법.
  6. 제4항 또는 제5항에 있어서,
    위 지르코니아 분말은 볼 밀 장치에 의해 파쇄가 이루어지되,
    위 볼 밀 장치는 가공용기에 서로 다른 지름으로 이루어진 지르코니아 소재의 교반용 구슬(A)이 적어도 하나 이상 구비되고,
    위 교반용 구슬(A)은 표면이 다공으로 이루어져 분말의 입자크기를 나노 크기로 가공하는 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리를 이용한 임플란트 제조방법.
  7. 제4항 또는 제5항에 있어서,
    위 슬러리 도포단계(S300)는 크라운의 내경에 슬러리를 도포하되, 내경의 저부에서 상측 방향으로 도포하여 슬러리가 상측으로 갈수록 점차 확장되는 분포가 이루어지게 하고, 어버트먼트는 머리부의 상단에서 하측방향으로 도포하여 슬러리가 하측으로 갈수록 점차 확장되는 분포가 이루어지게 하여 크라운과 어버트먼트 간 도포 흐름이 서로 역방향으로 구성되게 하는 것을 특징으로 하는 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리를 이용한 임플란트 제조방법.
PCT/KR2019/005615 2019-02-21 2019-05-10 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법 WO2020171289A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980001015.0A CN112040902B (zh) 2019-02-21 2019-05-10 形成陶瓷种植体及牙冠多孔性表面的二氧化锆浆料的制备方法以及利用其的种植体制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190020384A KR101973729B1 (ko) 2019-02-21 2019-02-21 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법
KR10-2019-0020384 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020171289A1 true WO2020171289A1 (ko) 2020-08-27

Family

ID=66282640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005615 WO2020171289A1 (ko) 2019-02-21 2019-05-10 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법

Country Status (4)

Country Link
US (1) US11116610B2 (ko)
KR (1) KR101973729B1 (ko)
CN (1) CN112040902B (ko)
WO (1) WO2020171289A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973729B1 (ko) * 2019-02-21 2019-04-29 주식회사 디맥스 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법
CN114956857A (zh) * 2021-12-27 2022-08-30 昆明理工大学 一种加热植物型电子烟过滤器多孔陶瓷滤芯材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152034A1 (en) * 2003-02-05 2004-08-05 Cummings Kevin M. Use of ceramics in dental and orthodontic applications
KR100902328B1 (ko) * 2008-03-11 2009-06-12 방문주 임플란트의 지르코니아 어버트먼트 제조방법
KR20110112740A (ko) * 2010-04-07 2011-10-13 주식회사 쿠보텍 사출성형에 의한 치과용 지르코니아 임플란트 부재의 제조방법 및 이를 이용한 치과용 지르코니아 임플란트 부재
KR101251888B1 (ko) * 2012-09-19 2013-04-08 주식회사 디맥스 다공성 임플란트 픽스쳐의 제조방법
KR101973729B1 (ko) * 2019-02-21 2019-04-29 주식회사 디맥스 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062798A (en) * 1988-04-27 1991-11-05 Ngk Spark Plug Co., Ltd. SiC based artificial dental implant
JPH10277061A (ja) * 1997-04-04 1998-10-20 Injietsukusu:Kk 支台歯模型および歯冠修復物の製造方法
EP1396237A1 (en) * 2002-09-05 2004-03-10 Elephant Dental B.V. Strengthened ceramic restoration
BRPI0612602A2 (pt) * 2005-07-01 2010-11-23 Cinv Ag dispositivos médicos compreendendo um material compósito reticulado
US8785008B2 (en) * 2006-07-25 2014-07-22 Tosoh Corporation Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same
DK2121053T3 (da) * 2006-12-21 2013-10-28 Corticalis As Metaloxidskeletter
US20090098511A1 (en) * 2007-10-16 2009-04-16 Kai Zhang Method of making a dental implant and prosthetic device
KR20090070982A (ko) 2007-12-27 2009-07-01 주식회사 쿠보텍 나사풀림을 방지하는 인공치아용 임플란트
CN102232907A (zh) * 2010-04-28 2011-11-09 国立台北科技大学 具生物活性的复合生医陶瓷材料、牙根植体及其制备方法
US20160032180A1 (en) * 2012-11-26 2016-02-04 Agienic, Inc. Antimicrobial Resin Coated Proppants
JP4926287B1 (ja) * 2011-07-15 2012-05-09 菊水化学工業株式会社 インプラントフィクスチャー及びその製造方法
EP2692311B1 (en) * 2012-08-03 2016-06-22 3M Innovative Properties Company Dental blank comprising a pre-sintered porous zirconia material , process of its production and dental article formed from said dental blank
JP6492512B2 (ja) * 2014-01-31 2019-04-03 セイコーエプソン株式会社 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物
US20150216637A1 (en) * 2014-02-06 2015-08-06 Seiko Epson Corporation Dental component, metal powder for powder metallurgy, and method for producing dental component
TWI569940B (zh) * 2015-06-05 2017-02-11 優克材料科技股份有限公司 漸層漿料的製作方法及三維實體的成型方法
CN105439627A (zh) * 2015-12-31 2016-03-30 河北工业大学 一种齿科全瓷修复体的制造设备和方法
WO2017123908A1 (en) * 2016-01-14 2017-07-20 Pemko Manufacturing Company, Inc. Soft-stop device and system
CN106175950B (zh) * 2016-06-28 2018-06-22 华南理工大学 一种数字化面投影成形陶瓷牙冠桥制备方法
KR101913589B1 (ko) 2017-06-01 2018-10-31 진순환 라미네이트 보철물의 제조방법
CN107374763B (zh) * 2017-07-12 2019-10-18 杭州而然科技有限公司 一种具有生物活性的氧化锆义齿

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152034A1 (en) * 2003-02-05 2004-08-05 Cummings Kevin M. Use of ceramics in dental and orthodontic applications
KR100902328B1 (ko) * 2008-03-11 2009-06-12 방문주 임플란트의 지르코니아 어버트먼트 제조방법
KR20110112740A (ko) * 2010-04-07 2011-10-13 주식회사 쿠보텍 사출성형에 의한 치과용 지르코니아 임플란트 부재의 제조방법 및 이를 이용한 치과용 지르코니아 임플란트 부재
KR101251888B1 (ko) * 2012-09-19 2013-04-08 주식회사 디맥스 다공성 임플란트 픽스쳐의 제조방법
KR101973729B1 (ko) * 2019-02-21 2019-04-29 주식회사 디맥스 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법

Also Published As

Publication number Publication date
CN112040902B (zh) 2021-10-12
CN112040902A (zh) 2020-12-04
US11116610B2 (en) 2021-09-14
KR101973729B1 (ko) 2019-04-29
US20200268487A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2020171289A1 (ko) 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법
WO1994007812A1 (en) Sintered oxide ceramics and method of making said ceramics
WO2013176358A1 (ko) 알루미나계 연마재 지립의 제조방법 및 이에 의해 제조된 알루미나계 연마재 지립
Tang et al. Influence of microstructure and phase composition on the nanoindentation characterization of bioceramic materials based on hydroxyapatite
WO2022215933A1 (ko) 페트콕 기반 리튬이차전지용 인조흑연 음극재의 제조방법, 이로부터 제조된 리튬이차전지용 인조흑연 음극재 및 리튬이차전지
US8231967B2 (en) Surface-treated ceramic member, method for producing the same and vacuum processing apparatus
WO2017074084A1 (ko) Siox의 포집장치 및 포집방법
WO2017135569A1 (ko) 자외선 차단 효과가 우수한 화장품 및 그 제조 방법
Tong et al. Effect of particle size on molten states of starting powder and degradation of the relevant plasma-sprayed hydroxyapatite coatings
Guipont et al. High-pressure plasma spraying of hydroxyapatite powders
WO2019231164A1 (ko) 식각 특성이 향상된 화학기상증착 실리콘 카바이드 벌크
WO2017018599A1 (ko) 탄화규소 분말, 탄화규소 소결체, 탄화규소 슬러리 및 이의 제조방법
CN103225054B (zh) 三层型氧化铝-镁铝尖晶石复合绝缘涂层及其涂覆方法
Mishra et al. Effect of particle size on the ferroelectric behaviour of tetragonal and rhombohedral Pb (ZrxTi1-x) O3 ceramics and powders
Tong et al. Studies on diffusion maximum in x‐ray diffraction patterns of plasma‐sprayed hydroxyapatite coatings
WO2021225258A1 (ko) 서스펜션 플라즈마 용사용 슬러리 조성물, 그 제조방법 및 서스펜션 플라즈마 용사 코팅막
WO2013162270A1 (ko) 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법
WO2018056766A1 (ko) 산소전달입자 제조용 원료 조성물, 이를 이용하여 제조된 산소전달입자 및 산소전달입자 제조방법
RU2678355C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ РАСПЫЛЯЕМОЙ КОМПОЗИТНОЙ МИШЕНИ, СОДЕРЖАЩЕЙ ФАЗУ СПЛАВА ГЕЙСЛЕРА Co2MnSi
Apak et al. B₄C-CNT Produced by Spark Plasma Sintering
Sadangi et al. Processing and properties of ZrO2 (3Y2O3)–Al2O3 nanocomposites
Al-Sharab et al. Synthesis and Characterization of Plasma Synthesized Nanostructured Magnesia-Yttria Based Nanocomposites
WO2010067967A2 (ko) 금속 중공구, 금속 중공구의 제조 방법, 경량 구조체, 및 경량 구조체의 제조 방법
WO2024112173A1 (ko) 경사기능형 세라믹 구조체 제조를 위한 광경화성 슬러리 제조용 키트, 이를 이용하여 제조된 광경화성 슬러리 조성물, 경사기능형 세라믹 구조체 및 이의 제조방법
WO2021015474A1 (ko) 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915652

Country of ref document: EP

Kind code of ref document: A1