WO2021015474A1 - 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법 - Google Patents

복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법 Download PDF

Info

Publication number
WO2021015474A1
WO2021015474A1 PCT/KR2020/009193 KR2020009193W WO2021015474A1 WO 2021015474 A1 WO2021015474 A1 WO 2021015474A1 KR 2020009193 W KR2020009193 W KR 2020009193W WO 2021015474 A1 WO2021015474 A1 WO 2021015474A1
Authority
WO
WIPO (PCT)
Prior art keywords
vol
plasma
sintered body
composite sintered
plasma etching
Prior art date
Application number
PCT/KR2020/009193
Other languages
English (en)
French (fr)
Inventor
박영조
김하늘
고재웅
김미주
오현명
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200062190A external-priority patent/KR102411792B1/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US17/628,515 priority Critical patent/US20220285164A1/en
Publication of WO2021015474A1 publication Critical patent/WO2021015474A1/ko
Priority to US18/244,863 priority patent/US20240055266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • It relates to a component of a plasma etching apparatus for manufacturing a semiconductor including a composite sintered body and a method of manufacturing the same.
  • Electronic components such as semiconductor devices and liquid crystal displays are formed by repeating processes such as lamination, patterning, etching, and cleaning of various metal and non-metal materials.
  • the etching process is one of the most frequently performed processes as a process of forming a material to be etched into a desired shape.
  • This etching process is performed by various equipments and methods, and to broadly divide them, it can be divided into isotropic etching and anisotropic etching.
  • Isotropic etching is a method in which etching is performed along a specific direction, and generally, chemical etching such as wet etching or barrel plasma etching belongs to this.
  • the anisotropic etching includes most of dry etching such as reactive ion etching.
  • reactive ion etching the reaction gas is ionized in the process chamber and electrically accelerated, so that etching is performed mainly along the electric field direction.
  • plasma is mostly formed to activate the reactive gas.
  • RF high frequency
  • RF power is continuously increasing, so that the corrosion resistance of parts for process equipment to plasma has become important. For example, in the past, about 1,000W of RF power was generally used, but recently, about 2,500W of power is also required.
  • a plurality of core components are configured inside the plasma etching apparatus, and corrosion resistance, chemical resistance, and mechanical properties are indispensable from the plasma atmosphere in which these components are formed at a temperature of 150 to 200°C.
  • alumina Al 2 O 3
  • Y 2 O 3 yttria
  • yttria has a bending strength of about 160 MPa, which is significantly less than about 430 MPa of alumina. Damage occurred easily.
  • components of the plasma etching apparatus for semiconductor manufacturing include a nozzle, an injector, and a ring.
  • the ceramic thermal sprayed layer has a surface roughness Ra of 5 to 20 ⁇ m and a surface roughness Ra of 70 to 20 ⁇ m.
  • a quartz glass component with a relative density of 97% is disclosed.
  • the ceramic product includes a ceramic having at least two phases, and about 50 mole% Yttrium oxide in a molar concentration range of from about 75 mole percent; Zirconium oxide in a molar concentration range of about 10 mole% to about 30 mole %; And at least one other component selected from the group consisting of aluminum oxide, hafnium oxide, scandium oxide, neodymium oxide, niobium oxide, samarium oxide, ytterbium oxide, erbium oxide, cerium oxide, and combinations thereof, the at least one The concentration of the other components of the range of about 10 mole% to about 30 mole% discloses a ceramic article.
  • the plurality of parts have consumable properties, they must be replaced due to other factors such as corrosion after a certain period of use, thereby improving mechanical properties and improving plasma resistance.
  • the technology to lower the etch rate that has been pursued in the past is a necessary condition, and it is important to develop a material that satisfies the sufficient conditions to reduce the generation of contaminated particles by controlling the microstructure or composition.
  • An object of the present invention is to provide a component of a plasma etching apparatus for manufacturing a semiconductor including a composite sintered body containing yttria and magnesia, and having excellent corrosion resistance to plasma.
  • a plasma etching apparatus component for semiconductor manufacturing characterized in that it has plasma resistance.
  • a plasma etching apparatus for manufacturing a semiconductor including the plasma etching apparatus component is provided.
  • the plasma etching apparatus component for semiconductor manufacturing provided in one aspect of the present invention has excellent plasma corrosion resistance, and may have good plasma corrosion resistance even if the composite sintered body is sintered at a relatively low relative density.
  • FIG. 2 is a schematic diagram of a method of manufacturing a composite sintered body according to an embodiment of the present invention
  • FIG. 3 is a graph measuring an etch depth by etching using plasma according to an experimental example of the present invention
  • 5A to 5D are AFM images showing surface roughness after etching using plasma according to an experimental example of the present invention.
  • a plasma etching apparatus component for semiconductor manufacturing characterized in that it has plasma resistance.
  • the plasma etching apparatus component provided in one aspect of the present invention includes a composite sintered body including yttria (Y 2 O 3 ) and magnesia (MgO).
  • the yttria and magnesia may be mixed in a powder form.
  • the yttria has a purity of 99% or more.
  • the particle size of the yttria may be 10 nm to 1000 nm. Preferably, it may be 20 nm to 500 nm, more preferably 30 nm to 300 nm. When the particle size of the yttria is less than 10 nm, mixing and molding are difficult, and when it exceeds 1000 nm, strength and sinterability are deteriorated.
  • magnesia has a purity of 99% or more.
  • the magnesia may have a particle size of 10 nm to 1000 nm. Preferably, it may be 20 nm to 500 nm, more preferably 30 nm to 300 nm. When the particle size of the magnesia is less than 10 nm, mixing and molding are difficult, and when it exceeds 1000 nm, strength and sinterability are deteriorated.
  • the composite sintered body may include 20 vol% to 80 vol% of yttria and 20 vol% to 80 vol% of magnesia. 30 vol% to 70 vol% of yttria and 30 vol% to 70 vol% of magnesia, 40 vol% to 60 vol% of yttria and 40 vol% to 60 vol% of magnesia, , 25 vol% to 45 vol% yttria and 55 vol% to 75 vol% magnesia, 55 vol% to 75 vol% yttria and 25 vol% to 45 vol% magnesia, , 20 vol% to 35 vol% yttria and 65 vol% to 80 vol% of magnesia may be included, and 65 vol% to 80 vol% of yttria and 20 vol% to 35 vol% of magnesia may be included. .
  • the composite sintered body contains less than 20 vol% of yttria, sintering may be difficult, particles are easily formed by plasma irradiation, and strength may be relatively weakened. If less than magnesia is included, there is a problem that plasma resistance may be relatively low.
  • the yttria and magnesia may be mixed by milling, but the mixing method is not limited thereto, and may be mixed by any method commonly used in the art.
  • the composite sintered body may have a relative density of 90% or more, preferably 92% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the composite sintered body has good plasma resistance even if it has a relative density of less than 100%.
  • the composite sintered body may have a surface roughness (R a ) of 2 nm or less.
  • the surface roughness (R a ) may increase to 5 times or less, preferably 4 times or less, More preferably, it may increase to 3.5 times or less, more preferably 3 times or less, and most preferably 1.5 times or less.
  • the composite sintered body is exposed to plasma, the increase in surface roughness is not large compared to existing plasma-resistant materials, and particles generated by etching easily escape from the chamber by having a relatively low surface roughness even after plasma exposure. As can be done, contaminant particles can be reduced.
  • the etching depth may be 200 nm or less, preferably 180 nm or less, more preferably 150 nm or less. I can.
  • the grain size of the composite sintered body may be 100 nm to 1 ⁇ m, preferably 100 nm to 500 nm, and most preferably 150 nm to 350 nm.
  • the grain size of the composite sintered body means the average grain size of the grains.
  • the grain size of the composite sintered body is very small compared to existing plasma-resistant materials, and as a result, the size of the generated particles generated by etching after plasma exposure is relatively small, so that the generated particles can easily escape from the chamber. There is, it is possible to reduce contaminated particles.
  • the composite sintered body may further include a sintering additive.
  • the sintering additive may be, for example, ZrO 2 , ThO 2 or La 2 O 3 , but is not limited thereto and may be a general additive generally used in the field.
  • the composite sintered body may include 8 mol% or less of a sintering additive, preferably 0.1 mol% to 4 mol%, more preferably 0.5 mol% to 3 mol% of a sintering additive.
  • the composite sintered body may have a biaxial strength of 100 MPa or more, preferably 200 MPa or more, and more preferably 300 MPa or more, and most preferably 350 MPa or more.
  • the component of the plasma etching apparatus for semiconductor manufacturing may be formed of a bulk material of the composite sintered body.
  • the component of the plasma etching apparatus for semiconductor manufacturing may be formed by coating the composite sintered body on another material.
  • the other material may be, for example, metal, ceramic, polymer, etc., but is not limited to a specific material.
  • the components of the plasma etching apparatus for semiconductor manufacturing may be, for example, a nozzle, an injector, and a ring, but are not limited thereto. It can be any part that requires sex.
  • a method of manufacturing a component for a plasma etching apparatus includes mixing yttria (Y 2 O 3 ) and magnesia (MgO).
  • the yttria and magnesia may be mixed in a powder form.
  • the yttria powder has a purity of 99% or more.
  • the particle size of the yttria may be 10 nm to 1000 nm. Preferably, it may be 20 nm to 500 nm, more preferably 30 nm to 300 nm. When the particle size of the yttria is less than 10 nm, mixing and molding are difficult, and when it exceeds 1000 nm, strength and sinterability are deteriorated.
  • magnesia has a purity of 99% or more.
  • the magnesia may have a particle size of 10 nm to 1000 nm. Preferably, it may be 20 nm to 500 nm, more preferably 30 nm to 300 nm. When the particle size of the magnesia is less than 10 nm, mixing and molding are difficult, and when it exceeds 1000 nm, strength and sinterability are deteriorated.
  • the step may further include calcining the yttria and the magnesia.
  • calcination step nanoparticles in a uniform shape can be obtained without agglomeration.
  • the particle size may be increased by local sintering between the nanoparticles.
  • the calcination step may be performed at a temperature of 1000 °C to 1500 °C.
  • 20 vol% to 80 vol% of yttria and 20 vol% to 80 vol% of magnesia may be mixed.
  • 30 vol% to 70 vol% yttria and 30 vol% to 70 vol% magnesia may be mixed, 40 vol% to 60 vol% yttria and 40 vol% to 60 vol% magnesia may be mixed, , 25 vol% to 45 vol% yttria and 55 vol% to 75 vol% magnesia may be mixed, 55 vol% to 75 vol% yttria and 25 vol% to 45 vol% magnesia may be mixed, , 20 vol% to 35 vol% yttria and 65 vol% to 80 vol% magnesia may be mixed, and 65 vol% to 80 vol% yttria and 20 vol% to 35 vol% magnesia may be mixed. .
  • the mixing step may be performed by mixing the yttria and magnesia by milling, but the mixing method is not limited thereto, and may be mixed by any method commonly used in the art.
  • a method of manufacturing a component for a plasma etching apparatus includes sintering the mixed yttria (Y 2 O 3 ) and magnesia (MgO).
  • the sintering may be performed by hot pressing sintering (Hot Pressing, HP) or hot isostatic pressing (HIP), but is not limited thereto.
  • the step may be carried out at a temperature of 1000 °C to 1500 °C, a pressure of 10 MPa to 70 MPa. Specifically, it may be performed at a temperature of 1100°C to 1400°C.
  • the sintering additive may be, for example, ZrO 2 , ThO 2 or La 2 O 3 , but is not limited thereto and may be a general additive generally used in the field.
  • 8 mol% or less of the sintering additive may be included, preferably 0.1 mol% to 4 mol%, and more preferably 0.5 mol% to 3 mol% of the sintering additive may be included.
  • the sintered composite sintered body may have a relative density of 90% or more, preferably 92% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the sintered composite sintered body has a relative density of less than 100%, it has improved plasma resistance compared to conventional plasma-resistant ceramics.
  • the composite sintered body may have a surface roughness (R a ) of 2 nm or less.
  • the surface roughness (R a ) may increase to 5 times or less, preferably 4 times or less, More preferably, it may increase to 3.5 times or less, more preferably 3 times or less, and most preferably 1.5 times or less.
  • the composite sintered body is exposed to plasma, the increase in surface roughness is not large compared to existing plasma-resistant materials, and particles generated by etching easily escape from the chamber by having a relatively low surface roughness even after plasma exposure. As can be done, contaminant particles can be reduced.
  • the etching depth may be 200 nm or less, preferably 180 nm or less, more preferably 150 nm or less. I can.
  • the grain size of the composite sintered body may be 100 nm to 1 ⁇ m, preferably 100 nm to 500 nm, and most preferably 150 nm to 350 nm.
  • the grain size of the composite sintered body means the average grain size of the grains.
  • the grain size of the composite sintered body is very small compared to existing plasma-resistant materials, and as a result, the size of the generated particles generated by etching after plasma exposure is relatively small, so that the generated particles can easily escape from the chamber. There is, it is possible to reduce contaminated particles.
  • the composite sintered body may have a biaxial strength of 100 MPa or more, preferably 200 MPa or more, and more preferably 300 MPa or more, and most preferably 350 MPa or more.
  • the molding may be performed by cold hydrostatic molding, but is not limited thereto.
  • it may further include a step of pre-sintering before the step.
  • the step may be carried out at a temperature of 900 °C to 1200 °C.
  • the plasma etching device component manufactured by the method for manufacturing a plasma etching device component for semiconductor manufacturing provided in another aspect of the present invention may be formed of a bulk material of the composite sintered body.
  • the plasma etching device component manufactured by the method for manufacturing a plasma etching device component for semiconductor manufacturing provided in another aspect of the present invention may be formed by coating the composite sintered body on another material.
  • the other material may be, for example, metal, ceramic, polymer, etc., but is not limited to a specific material.
  • the plasma etching device component manufactured by the method for manufacturing a plasma etching device component for semiconductor manufacturing provided in another aspect of the present invention may be, for example, a nozzle, an injector, or a ring, but is limited thereto. Rather, it may be any component requiring plasma resistance in a plasma etching apparatus for semiconductor manufacturing.
  • a plasma etching apparatus for manufacturing a semiconductor including the plasma etching apparatus component is provided.
  • the prepared mixed powder was subjected to cold hydrostatic molding at 200 MPa for 5 minutes, and calcined for 1 hour at a temperature of 1000°C in air. Then, hot pressing sintering at 1200° C. at 30 MPa for 1 hour to obtain a composite sintered body.
  • the relative density of such a composite sintered body was measured to be 98%.
  • FIG. 2 A schematic diagram of the manufacturing process of the above-described composite sintered body is shown in FIG. 2.
  • a composite sintered body was prepared in the same manner as in Example 1, but hot press-sintered at 1300°C at 30 MPa for 1 hour to obtain a composite sintered body having a relative density of 100%.
  • Dry Etcher was used as a plasma inductively coupled etching apparatus (manufacturer: DMS, Silicon/metal hybrid etcher).
  • a plasma of 500 W and a bias of 100 W were applied with a gas of 40 sccm of CF 4 + 10 sccm of O 2 under a vacuum condition of 5 mTorr.
  • the amount of weight reduction per unit area according to the plasma exposure time was measured.
  • Example 1 In the case of Example 1, even with a relative density of 98%, an etching amount of 0.6 g/m 2 per hour showed a significantly lower etching amount of plasma when compared with yttria such as Comparative Examples 1 and 2, and the comparison When compared to the spinel of Example 3 and Comparative Example 4, the etching amount was not significantly different.
  • Example 2 having a relative density of 100%, an etch amount of 0.3 g/m 2 per hour was significantly reduced compared to the spinel of Comparative Examples 3 and 4, as well as yttria as in Comparative Examples 1 and 2 It can be seen that the amount of etch is displayed.
  • the composite sintered body of Y 2 O 3 -MgO shows remarkably improved plasma corrosion resistance compared to yttria and spinel used as conventional plasma-resistant ceramics. Even when the relative density is relatively low, Similar or significantly improved plasma corrosion resistance.
  • Examples 1 and 2 exhibited an etching depth similar to that of Comparative Example 1 and Comparative Example 2.
  • FIGS. 4A to 4C SEM images of Example 2, Comparative Example 2, and Comparative Example 4 are shown in FIGS. 4A to 4C.
  • Example 2 is at the level of 300 nm, whereas the grain size of Example 2 is much smaller than that of several ⁇ m in the case of Comparative Examples 2 and 4.
  • Comparative Examples 1 and 3 had surface roughness of 9.0 nm and 10.3 nm, respectively, after plasma exposure, whereas Comparative Example 1 and Comparative Example 1 and Comparative Example 2 had a level of 2.28 nm and 6.05 nm, respectively, after plasma exposure. It was found to have a much lower surface roughness than that of 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

30 vol% 내지 70 vol%의 이트리아(Y 2O 3); 및 30 vol% 내지 70 vol%의 마그네시아(MgO);를 포함하는 복합 소결체를 포함하고, 내플라즈마성을 갖는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품이 제공된다. 본 발명의 일 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품은 플라즈마에 대한 내식성이 우수하며, 복합 소결체를 비교적 낮은 상대밀도로 소결하더라도 양호한 플라즈마에 대한 내식성을 가질 수 있다. 또한, 복합 소결체의 결정립의 크기가 작고, 에칭 후의 표면조도 증가도 작음으로써, 오염입자를 저감시킬 수 있다는 효과가 있다. 나아가, 기존의 내플라즈마성 소재에 비하여 강도가 우수하며, 비용이 저렴하여, 경제성 및 활용도 측면에서 우수하다.

Description

복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법
복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법에 관한 것이다.
반도체 소자 및 액정표시장치와 같은 전자부품 등은 다양한 금속, 비금속 물질들의 적층, 패터닝, 식각 및 세정 등의 공정의 반복에 의하여 이루어진다. 이 가운데 식각공정은 식각 대상 물질을 원하는 형태로 형성해주는 공정으로서 가장 빈번하게 수행되는 공정 중 하나이다. 이러한 식각공정은 다양한 장비와 방식에 의해 이루어지고 있는데, 이를 크게 구분하자면 등방성 식각과 비등방성 식각으로 나눌 수 있다. 등방성 식각은, 특정 방향을 따라 식각이 이루어지는 방식으로, 통상 습식 식각이나 배럴 플라즈마 식각 등의 화학적 식각이 이에 속한다.
비등방성 식각으로는 반응성 이온 식각(reactive ion etching)과 같은 대부분의 건식 식각을 들 수 있다. 반응성 이온 식각에서는 반응가스가 공정챔버에서 이온화되고 전기적으로 가속됨으로써 주로 전계 방향을 따라 식각이 이루어지게 된다. 이러한 건식 식각에서는 대부분 반응 가스에 활성을 주기 위해 플라즈마를 형성하게 되는데, 플라즈마를 형성하기 위하여 주로 고주파(RF) 전계를 반응가스에 인가하는 방식이 사용되고 있다. 그런데, 최근에는 전자부품이 점점 미세해짐에 따라, RF 파워가 계속 증가하고 있는 추세이어서 공정장비용 부품들의 플라즈마에 대한 내식성이 중요하게 되었다. 예를 들어, 이전에는 약 1,000W의 RF 파워가 대체적으로 사용되었으나, 최근에는 약 2,500W의 파워가 요구되기도 한다.
여기서, 상기 플라즈마 식각 장치의 내부에는 다수의 핵심 부품(세라믹 부품)들이 구성되어 있으며, 이러한 부품들이 150~200℃의 온도에 형성되는 플라즈마 분위기로부터 내식성, 내화학성 및 기계적 물성이 반드시 필요하다.
종래에는 상기 반도체 제조용 플라즈마 식각 장치에 사용되는 부재로서 주로 알루미나(Al 2O 3)를 사용하였으나, 이는 플라즈마에 대한 내식성이 약해서, RF 파워가 커지는 환경에서는 부재로서 부적합하게 되었다. 이를 극복하기 위하여, 알루미나에 이트리아(Y 2O 3)층을 도포하여 채용하기도 하였으나, 이트리아는 굽힘 강도가 약 160 MPa로 알루미나의 약 430 MPa보다 현저하게 작아서, 열적 안정성이 낮고 깨짐 등과 같은 손상이 쉽게 일어났다. 여기서, 반도체 제조용 플라즈마 식각 장치의 부품은 노즐(nozzle), 인젝터(injector), 링(ring)류 등이 있다.
예를 들어, 대한민국 등록특허 제10-0851833호에서 석영 글라스 및 이 석영 글라스의 표면상에 형성된 세라믹 용사막을 포함하는 석영 글라스 부품에 있어서, 세라믹 용사막은 5 내지 20 ㎛의 표면 거칠기 Ra 및 70 내지 97%의 상대밀도를 갖는 석영 글라스 부품을 개시하고 있다.
또한, 대한민국 등록특허 제10-0917292호에서 반도체 프로세싱에 사용되는 할로겐-함유-플라즈마에 의한 부식에 저항하는 세라믹 제품으로서, 상기 세라믹 제품은 적어도 2개의 상을 가지는 세라믹을 포함하고, 약 50 mole% 내지 약 75 mole%의 몰농도 범위의 이트륨 산화물; 약 10 mole% 내지 약 30 mole%의 몰농도 범위의 지르코늄 산화물; 및 알루미늄 산화물, 하프늄 산화물, 스칸듐 산화물, 네오디뮴 산화물, 니오븀 산화물, 사마륨 산화물, 이테르븀 산화물, 에르븀 산화물, 세륨 산화물, 및 이들의 조합물로 이루어진 그룹에서 선택된 적어도 하나의 다른 성분으로 형성되며, 상기 적어도 하나의 다른 성분의 농도 범위는 약 10 mole% 내지 약 30 mole%인, 세라믹 제품을 개시하고 있다.
다만 이와 같은 종래 기술들은 상술한 바와 같이 플라즈마에 대한 내식성이 약하고, 열적 안정성이 낮고 깨짐 등과 같은 손상이 쉽게 일어날 수 있다는 문제점이 있다.
따라서, 상기 다수의 부품(세라믹 부품)은 소모성을 갖고 있어 일정기간 사용 후에는 부식 등과 같은 기타 요인으로 인해 교체를 하여야 함으로 기계적 물성을 향상시키며 내플라즈마성이 향상된 부품들이 필요한 실정이다. 또한, 최근에는 반도체의 선폭 미세화 경쟁이 격심해지는 가운데 생산 수율을 향상시키기 위해 오염입자의 저감이 강력하게 요구되고 있다. 즉, 종래에 추구해오던 식각률을 낮추는 기술은 필요조건이며 미세구조 혹은 조성을 제어하여 오염입자의 발생을 저감시키는 충분조건도 만족하는 소재의 개발이 중요하다.
<선행기술문헌>
대한민국 등록특허 제10-0851833호
대한민국 등록특허 제10-0917292호
본 발명의 일 측면에서의 목적은 이트리아 및 마그네시아를 포함하는 복합 소결체를 포함하고, 플라즈마에 대한 내식성이 우수한 반도체 제조용 플라즈마 식각 장치 부품을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에서
30 vol% 내지 70 vol%의 이트리아(Y 2O 3); 및
30 vol% 내지 70 vol%의 마그네시아(MgO);
를 포함하는 복합 소결체를 포함하고,
내플라즈마성을 갖는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품이 제공된다.
또한, 본 발명의 다른 측면에서
30 vol% 내지 70 vol%의 이트리아(Y 2O 3) 및 30 vol% 내지 70 vol%의 마그네시아(MgO)를 혼합하는 단계; 및
상기 혼합된 이트리아(Y 2O 3)와 마그네시아(MgO)를 소결하는 단계;
를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 제조방법이 제공된다.
나아가, 본 발명의 또 다른 측면에서
상기 플라즈마 식각 장치 부품을 포함하는 반도체 제조용 플라즈마 식각 장치가 제공된다.
본 발명의 일 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품은 플라즈마에 대한 내식성이 우수하며, 복합 소결체를 비교적 낮은 상대밀도로 소결하더라도 양호한 플라즈마에 대한 내식성을 가질 수 있다.
또한, 반도체 제조용 플라즈마 식각 장치 부품에 포함되는 복합 소결체의 결정립의 크기가 작고, 에칭 후의 표면조도 증가도 작음으로써, 오염입자를 저감시킬 수 있다는 효과가 있다.
나아가, 기존의 내플라즈마성 소재에 비하여 강도가 우수하며, 비용이 저렴하여, 경제성 및 활용도 측면에서 우수하다.
도 1은 본 발명의 일 실험예에 따라 플라즈마를 이용한 식각에 의한 무게 감소량을 측정한 그래프이며,
도 2는 본 발명의 일 실시예에 따른 복합 소결체의 제조방법의 모식도이고,
도 3은 본 발명의 일 실험예에 따라 플라즈마를 이용한 식각에 의한 식각 깊이를 측정한 그래프이고,
도 4a 내지 도 4c는 본 발명의 실시예들 및 비교예들에 대한 SEM 이미지를 나타낸 것이고,
도 5a 내지 도 5d는 본 발명의 일 실험예에 따라 플라즈마를 이용한 식각 후의 표면조도를 보여주는 AFM 이미지이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다.
본 발명의 일 측면에서
30 vol% 내지 70 vol%의 이트리아(Y 2O 3); 및
30 vol% 내지 70 vol%의 마그네시아(MgO);
를 포함하는 복합 소결체를 포함하고,
내플라즈마성을 갖는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품이 제공된다.
이하, 본 발명의 일 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품을 상세히 설명한다.
먼저, 본 발명의 일 측면에서 제공되는 플라즈마 식각 장치 부품은 이트리아(Y 2O 3)와 마그네시아(MgO)를 포함하는 복합 소결체를 포함한다.
상기 이트리아 및 마그네시아는 분말 형태로 혼합될 수 있다.
상기 이트리아는 99% 이상 순도를 갖는 것이 바람직하다.
또한, 상기 이트리아의 입자 크기는 10 nm 내지 1000 nm일 수 있다. 바람직하게는 20 nm 내지 500 nm일 수 있으며, 더 바람직하게는 30 nm 내지 300 nm일 수 있다. 상기 이트리아의 입자 크기가 10 nm 미만인 경우 혼합과 성형이 어렵다는 문제점이 있고, 1000 nm를 초과하는 경우 강도 및 소결성이 저하되는 문제점이 있다.
상기 마그네시아는 99% 이상 순도를 갖는 것이 바람직하다.
또한, 상기 마그네시아의 입자 크기는 10 nm 내지 1000 nm일 수 있다. 바람직하게는 20 nm 내지 500 nm일 수 있으며, 더 바람직하게는 30 nm 내지 300 nm일 수 있다. 상기 마그네시아의 입자 크기가 10 nm 미만인 경우 혼합과 성형이 어렵다는 문제점이 있고, 1000 nm를 초과하는 경우 강도 및 소결성이 저하되는 문제점이 있다.
상기 복합 소결체는 20 vol% 내지 80 vol%의 이트리아 및 20 vol% 내지 80 vol%의 마그네시아를 포함할 수 있다. 30 vol% 내지 70 vol%의 이트리아 및 30 vol% 내지 70 vol%의 마그네시아를 포함할 수 있으며, 40 vol% 내지 60 vol% 이트리아 및 40 vol% 내지 60 vol%의 마그네시아를 포함할 수 있고, 25 vol% 내지 45 vol% 이트리아 및 55 vol% 내지 75 vol%의 마그네시아를 포함할 수 있으며, 55 vol% 내지 75 vol% 이트리아 및 25 vol% 내지 45 vol%의 마그네시아를 포함할 수 있고, 20 vol% 내지 35 vol% 이트리아 및 65 vol% 내지 80 vol%의 마그네시아를 포함할 수 있으며, 65 vol% 내지 80 vol% 이트리아 및 20 vol% 내지 35 vol%의 마그네시아를 포함할 수 있다.
상기 복합 소결체가 20 vol% 미만의 이트리아를 포함하는 경우, 소결이 어려울 수 있으며, 플라즈마 조사에 의하여 입자가 형성되기 쉽고, 강도가 비교적 약해질 수 있다는 문제점이 있으며, 상기 복합 소결체에서 20 vol% 미만의 마그네시아를 포함하는 경우, 내플라즈마성이 비교적 낮을 수 있다는 문제점이 있다.
상기 이트리아 및 마그네시아는 밀링에 의하여 혼합될 수 있으나, 혼합 방법은 이에 제한되는 것은 아니고, 해당 기술분야에서 통상적으로 사용되는 모든 방법으로 혼합될 수 있다.
상기 복합 소결체는 90% 이상의 상대 밀도를 가질 수 있으며, 바람직하게는 92% 이상, 더 바람직하게는 95% 이상, 더욱 바람직하게는 98% 이상의 상대 밀도를 가질 수 있다.
상기 복합 소결체는 100% 미만의 상대 밀도를 갖더라도 양호한 내플라즈마성을 갖는다.
상기 복합 소결체는 2 nm 이하의 표면조도(R a)를 가질 수 있다.
상기 복합 소결체는 500 W의 출력 및 100 W 바이어스의 CF 4/0 2 플라즈마에 대하여 3시간 노출된 경우, 표면조도(R a)가 5배 이하로 증가할 수 있으며, 바람직하게는 4배 이하, 더 바람직하게는 3.5배 이하로 증가할 수 있으며, 더욱 바람직하게는 3배 이하, 가장 바람직하게는 1.5배 이하로 증가할 수 있다.
상기 복합 소결체가 플라즈마에 노출되더라도, 기존의 내플라즈마성 소재들에 비하여 표면조도의 증가가 크지 않으며, 플라즈마 노출 후에도 비교적 낮은 표면조도를 가짐으로써 식각에 의하여 발생하는 발생 입자가 용이하게 챔버 밖으로 빠져 나갈 수 있는 바, 오염입자를 저감시킬 수 있다.
상기 복합 소결체는 500 W의 출력 및 100 W 바이어스의 CF 4/0 2 플라즈마에 대하여 3시간 노출된 경우, 식각 깊이가 200 nm 이하일 수 있으며, 바람직하게는 180 nm 이하, 더 바람직하게는 150 nm 이하일 수 있다.
상기 복합 소결체의 결정립 크기는 100 nm 내지 1 ㎛일 수 있으며, 바람직하게는 100 nm 내지 500 nm, 가장 바람직하게는 150 nm 내지 350 nm일 수 있다.
여기서 복합 소결체의 결정립 크기란 결정립의 평균 입경을 의미한다.
상기 복합 소결체의 결정립 크기는 기존의 내플라즈마성 소재들에 비하여 매우 작으며, 그 결과 플라즈마 노출 후에 식각에 의하여 발생하는 발생 입자의 크기가 비교적 작아지는 바, 발생 입자가 용이하게 챔버 밖으로 빠져 나갈 수 있어, 오염입자를 저감시킬 수 있다.
상기 복합 소결체는 소결 첨가제를 더 포함할 수 있다. 소결 첨가제는 예를 들어, ZrO 2, ThO 2 또는 La 2O 3 일 수 있으나, 이에 제한되지는 않고 해당 분야에서 일반적으로 사용되는 일반 첨가제일 수 있다.
상기 복합 소결체는 8 mol% 이하의 소결 첨가제를 포함할 수 있으며, 바람직하게는 0.1 mol% 내지 4 mol%, 더 바람직하게는 0.5 mol% 내지 3 mol%의 소결 첨가제를 포함할 수 있다.
상기 복합 소결체는 100 MPa 이상의 이축 강도를 가질 수 있으며, 바람직하게는 200 MPa 이상의 이축 강도를 가질 수 있고, 더 바람직하게는 300 MPa 이상의 이축 강도를 가질 수 있으며, 가장 바람직하게는 350 MPa 이상의 이축 강도를 가질 수 있다.
상기 반도체 제조용 플라즈마 식각 장치 부품은 상기 복합 소결체의 벌크 소재로 형성될 수 있다.
또한, 상기 반도체 제조용 플라즈마 식각 장치 부품은 상기 복합 소결체가 다른 소재에 코팅되어 형성된 것일 수 있다. 상기 다른 소재는 예를 들어 금속, 세라믹, 고분자 등일 수 있으나, 특정 소재로 제한되지는 않는다.
본 발명의 일 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품은 예를 들어, 노즐(nozzle), 인젝터(injector), 링(ring)류일 수 있으나 이에 제한되는 것은 아니고, 반도체 제조용 플라즈마 식각 장치에서 내플라즈마성이 요구되는 모든 부품일 수 있다.
본 발명의 다른 측면에서
30 vol% 내지 70 vol%의 이트리아(Y 2O 3) 및 30 vol% 내지 70 vol%의 마그네시아(MgO)를 혼합하는 단계; 및
상기 혼합된 이트리아(Y 2O 3)와 마그네시아(MgO)를 소결하는 단계;
를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 제조방법이 제공된다.
이하, 본 발명의 다른 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품 제조방법을 각 단계별로 상세히 설명한다.
먼저, 본 발명의 다른 측면에서 제공되는 플라즈마 식각 장치 부품 제조방법은 이트리아(Y 2O 3)와 마그네시아(MgO)를 혼합하는 단계를 포함한다.
상기 이트리아 및 마그네시아는 분말 형태로 혼합될 수 있다.
상기 이트리아 분말은 99% 이상 순도를 갖는 것이 바람직하다.
또한, 상기 이트리아의 입자 크기는 10 nm 내지 1000 nm일 수 있다. 바람직하게는 20 nm 내지 500 nm일 수 있으며, 더 바람직하게는 30 nm 내지 300 nm일 수 있다. 상기 이트리아의 입자 크기가 10 nm 미만인 경우 혼합과 성형이 어렵다는 문제점이 있고, 1000 nm를 초과하는 경우 강도 및 소결성이 저하되는 문제점이 있다.
상기 마그네시아는 99% 이상 순도를 갖는 것이 바람직하다.
또한, 상기 마그네시아의 입자 크기는 10 nm 내지 1000 nm일 수 있다. 바람직하게는 20 nm 내지 500 nm일 수 있으며, 더 바람직하게는 30 nm 내지 300 nm일 수 있다. 상기 마그네시아의 입자 크기가 10 nm 미만인 경우 혼합과 성형이 어렵다는 문제점이 있고, 1000 nm를 초과하는 경우 강도 및 소결성이 저하되는 문제점이 있다.
상기 단계는 상기 이트리아 및 상기 마그네시아를 하소하는 단계를 더 포함할 수 있다. 하소 단계를 거침으로써 응집 없이 균일한 형태의 나노 입자를 얻을 수 있다. 하소 단계를 거친 후 나노 입자 간의 국부적인 소결에 의하여 입자 크기가 커질 수 있다.
상기 하소 단계는 1000℃ 내지 1500℃의 온도로 수행될 수 있다.
상기 혼합하는 단계는 20 vol% 내지 80 vol%의 이트리아 및 20 vol% 내지 80 vol%의 마그네시아를 혼합할 수 있다. 30 vol% 내지 70 vol%의 이트리아 및 30 vol% 내지 70 vol%의 마그네시아를 혼합할 수 있으며, 40 vol% 내지 60 vol% 이트리아 및 40 vol% 내지 60 vol%의 마그네시아를 혼합할 수 있고, 25 vol% 내지 45 vol% 이트리아 및 55 vol% 내지 75 vol%의 마그네시아를 혼합할 수 있으며, 55 vol% 내지 75 vol% 이트리아 및 25 vol% 내지 45 vol%의 마그네시아를 혼합할 수 있고, 20 vol% 내지 35 vol% 이트리아 및 65 vol% 내지 80 vol%의 마그네시아를 혼합할 수 있으며, 65 vol% 내지 80 vol% 이트리아 및 20 vol% 내지 35 vol%의 마그네시아를 혼합할 수 있다.
상기 혼합 단계에서 20 vol% 미만의 이트리아를 혼합하는 경우, 소결이 어려울 수 있으며, 플라즈마 조사에 의하여 입자가 형성되기 쉽고, 강도가 비교적 약해질 수 있다는 문제점이 있으며, 20 vol% 미만의 마그네시아를 포함하는 경우, 내플라즈마성이 비교적 낮을 수 있다는 문제점이 있다.
상기 혼합 단계는 상기 이트리아 및 마그네시아를 밀링에 의하여 혼합함으로써 수행될 수 있으나, 혼합 방법은 이에 제한되는 것은 아니고, 해당 기술분야에서 통상적으로 사용되는 모든 방법으로 혼합될 수 있다.
다음으로, 본 발명의 다른 측면에서 제공되는 플라즈마 식각 장치 부품 제조방법은 상기 혼합된 이트리아(Y 2O 3)와 마그네시아(MgO)를 소결하는 단계를 포함한다.
상기 소결은 열간가압소결(Hot Pressing, HP) 또는 열간등가압소결(Hot Isostatic Pressing, HIP)에 의하여 수행될 수 있으나 이에 제한되는 것은 아니다.
상기 단계는 1000℃ 내지 1500℃의 온도에서, 10 MPa 내지 70 MPa의 압력으로 수행될 수 있다. 구체적으로는 1100℃ 내지 1400℃의 온도에서 수행될 수 있다.
1000℃ 미만에서 소결하는 경우, 소결이 충분히 되지 않을 수 있다는 문제점이 있으며, 1500℃를 초과하는 온도에서 소결하는 경우 불필요하게 과한 에너지가 소요되며, 과도한 입자 성장이 이루어지고 강도가 저하될 수 있다는 문제점이 있다.
상기 단계에서 소결 첨가제를 더 포함하여 소결할 수 있다. 소결 첨가제는 예를 들어, ZrO 2, ThO 2 또는 La 2O 3 일 수 있으나, 이에 제한되지는 않고 해당 분야에서 일반적으로 사용되는 일반 첨가제일 수 있다.
상기 단계에서 8 mol% 이하의 소결 첨가제가 포함될 수 있으며, 바람직하게는 0.1 mol% 내지 4 mol%, 더 바람직하게는 0.5 mol% 내지 3 mol%의 소결 첨가제가 포함될 수 있다.
상기 소결된 복합 소결체는 90% 이상의 상대 밀도를 가질 수 있으며, 바람직하게는 92% 이상, 더 바람직하게는 95% 이상, 더욱 바람직하게는 98% 이상의 상대 밀도를 가질 수 있다.
상기 소결된 복합 소결체는 100% 미만의 상대 밀도를 갖더라도 기존의 내플라즈마성 세라믹에 비하여 향상된 내플라즈마성을 갖는다.
즉, 상술한 바와 같이 비교적 낮은 온도에서 소결을 수행하여 비교적 낮은 상대 밀도의 복합 소결체를 얻는다고 하더라도, 충분히 우수한 내플라즈마성을 갖는 복합 소결체를 얻을 수 있는 바 공정 상 이점을 얻을 수 있다.
상기 복합 소결체는 2 nm 이하의 표면조도(R a)를 가질 수 있다.
상기 복합 소결체는 500 W의 출력 및 100 W 바이어스의 CF 4/0 2 플라즈마에 대하여 3시간 노출된 경우, 표면조도(R a)가 5배 이하로 증가할 수 있으며, 바람직하게는 4배 이하, 더 바람직하게는 3.5배 이하로 증가할 수 있으며, 더욱 바람직하게는 3배 이하, 가장 바람직하게는 1.5배 이하로 증가할 수 있다.
상기 복합 소결체가 플라즈마에 노출되더라도, 기존의 내플라즈마성 소재들에 비하여 표면조도의 증가가 크지 않으며, 플라즈마 노출 후에도 비교적 낮은 표면조도를 가짐으로써 식각에 의하여 발생하는 발생 입자가 용이하게 챔버 밖으로 빠져 나갈 수 있는 바, 오염입자를 저감시킬 수 있다.
상기 복합 소결체는 500 W의 출력 및 100 W 바이어스의 CF 4/0 2 플라즈마에 대하여 3시간 노출된 경우, 식각 깊이가 200 nm 이하일 수 있으며, 바람직하게는 180 nm 이하, 더 바람직하게는 150 nm 이하일 수 있다.
상기 복합 소결체의 결정립 크기는 100 nm 내지 1 ㎛일 수 있으며, 바람직하게는 100 nm 내지 500 nm, 가장 바람직하게는 150 nm 내지 350 nm일 수 있다.
여기서 복합 소결체의 결정립 크기란 결정립의 평균 입경을 의미한다.
상기 복합 소결체의 결정립 크기는 기존의 내플라즈마성 소재들에 비하여 매우 작으며, 그 결과 플라즈마 노출 후에 식각에 의하여 발생하는 발생 입자의 크기가 비교적 작아지는 바, 발생 입자가 용이하게 챔버 밖으로 빠져 나갈 수 있어, 오염입자를 저감시킬 수 있다.
상기 복합 소결체는 100 MPa 이상의 이축 강도를 가질 수 있으며, 바람직하게는 200 MPa 이상의 이축 강도를 가질 수 있고, 더 바람직하게는 300 MPa 이상의 이축 강도를 가질 수 있으며, 가장 바람직하게는 350 MPa 이상의 이축 강도를 가질 수 있다.
상기 단계 전에 상기 혼합된 이트리아 및 마그네시아를 성형하는 단계를 더 포함할 수 있다. 상기 성형은 냉간 정수압 성형에 의하여 수행될 수 있으나 이에 제한되지는 않는다.
또한, 상기 단계 전에 가소결하는 단계를 더 포함할 수 있다. 상기 단계는 900℃ 내지 1200℃의 온도로 수행될 수 있다.
본 발명의 다른 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품제조방법에 의하여 제조되는 플라즈마 식각 장치 부품은 상기 복합 소결체의 벌크 소재로 형성될 수 있다.
또한, 본 발명의 다른 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품제조방법에 의하여 제조되는 플라즈마 식각 장치 부품은 상기 복합 소결체가 다른 소재에 코팅되어 형성된 것일 수 있다. 상기 다른 소재는 예를 들어 금속, 세라믹, 고분자 등일 수 있으나, 특정 소재로 제한되지는 않는다.
본 발명의 다른 측면에서 제공되는 반도체 제조용 플라즈마 식각 장치 부품제조방법에 의하여 제조되는 플라즈마 식각 장치 부품은 예를 들어, 노즐(nozzle), 인젝터(injector), 링(ring)류일 수 있으나 이에 제한되는 것은 아니고, 반도체 제조용 플라즈마 식각 장치에서 내플라즈마성이 요구되는 모든 부품일 수 있다.
본 발명의 또 다른 측면에서
상기 플라즈마 식각 장치 부품을 포함하는 반도체 제조용 플라즈마 식각 장치가 제공된다.
이하, 실시예, 비교예 및 실험예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
<실시예 1>
50 vol%의 Y 2O 3 및 50 vol%의 MgO를 YSZ 로 구성된 jar 와 볼을 사용하여 300 rpm 조건에서 12시간 유성 밀링 후 건조하여 혼합분말을 제조하였다.
제조된 혼합분말을 200 MPa로 5분 간 냉간정수압성형을 실시하였고, 공기 중에서 1000℃의 온도로 1시간 동안 가소결하였다. 그 후, 1200℃에서 30 MPa로 1시간 동안 열간가압소결하여 복합 소결체를 얻었다. 이와 같은 복합 소결체의 상대 밀도는 98%로 측정되었다.
상술한 복합 소결체의 제조공정에 대한 모식도를 도 2에 나타내었다.
<실시예 2>
실시예 1과 동일한 방법으로 복합 소결체를 제조하되, 1300℃에서 30 MPa로 1시간 동안 열간가압소결하여 100%의 상대 밀도를 가지는 복합 소결체를 얻었다.
<비교예 1>
98%의 상대 밀도를 가지는 Y 2O 3를 준비하였다.
<비교예 2>
100%의 상대 밀도를 가지는 Y 2O 3를 준비하였다.
<비교예 3>
98%의 상대 밀도를 가지는 스피넬(MgAl 2O 4)을 준비하였다.
<비교예 4>
100%의 상대 밀도를 가지는 스피넬(MgAl 2O 4)을 준비하였다.
<실험예 1> 단위 면적 당 무게 감소 측정
플라즈마 유도결합 식각장치로 Dry Etcher를 사용하였다(제조사: DMS, Silicon/metal hybrid etcher). 실시예 1, 2 및 비교예 1 내지 4의 세라믹에 대하여 5 mTorr의 진공도 조건에서 CF 4 40 sccm + O 2 10 sccm의 기체로 500 W의 플라즈마 및 100 W의 바이어스를 가하여 주었다. 이에 대하여 플라즈마 노출 시간에 따른 단위 면적 당 무게 감소량을 측정하였다.
그 결과는 도 1과 같다.
실시예 1의 경우 98%의 상대밀도를 갖더라도 시간당 0.6 g/m 2의 식각량으로, 비교예 1 및 비교예 2와 같은 이트리아와 비교하였을 때 플라즈마에 대하여 현저히 적은 식각량을 보이며, 비교예 3 및 비교예 4의 스피넬과 비교하였을 때에는 큰 차이가 없는 식각량을 보인다.
100%의 상대 밀도를 갖는 실시예 2의 경우에는 시간당 0.3 g/m 2의 식각량으로, 비교예 1 및 비교예 2와 같은 이트리아 뿐만 아니라, 비교예 3 및 비교예 4의 스피넬보다도 현저히 감소된 식각량을 보이는 것을 알 수 있다.
즉, Y 2O 3-MgO의 복합 소결체는 기존의 내플라즈마성 세라믹으로 사용되는 이트리아 및 스피넬에 비하여 현저히 향상된 플라즈마 내식성을 보이며, 상대 밀도를 비교적 낮게 제조하는 경우에도 기존의 내플라즈마성 세라믹과 유사하거나 현저히 향상된 플라즈마 내식성을 보인다.
<실험예 2> 식각 깊이 측정
실험예 1과 동일한 방법으로 실시예 1, 2 및 비교예 1 내지 4의 세라믹에 대하여 플라즈마에 노출시키되, 실험예 1과는 달리 식각 깊이를 측정하였다.
실험예 1과 같은 무게 감소는 세라믹의 비중에 영향을 받을 수 있기에 실험예 2와 같이 식각 깊이를 측정하는 것이 플라즈마 내식성에 대하여 평가하기에 더욱 적합할 수 있다.
이에 대한 결과를 도 3에 나타내었다.
실시예 1 및 실시예 2는 비교예 1 및 비교예 2와 유사한 수준의 식각 깊이를 나타내었다.
다만 실시예 1 및 실시예 2의 경우 비교예 1 및 비교예 2에 비하여 강도가 2배 이상 높고, 가격은 절반 이하이므로, 실시예 1 및 실시예 2의 활용도가 훨씬 더 높을 것으로 기대된다.
<실험예 3> 결정립 크기 비교
실시예 2, 비교예 2 및 비교예 4에 대한 SEM 이미지를 도 4a 내지 도 4c에 나타내었다.
도 4a 내지 도 4c를 살펴보면, 실시예 2의 결정립 크기는 300 nm 수준인 반면, 비교예 2 및 비교예 4의 경우 수 ㎛ 이상으로 실시예 2의 결정립 크기가 훨씬 작은 것을 확인할 수 있다.
실시예 2의 세라믹의 경우, 비교적 용이하게 결정립 크기가 작게끔 소결이 가능하며, 이와 같이 결정립 크기가 작은 경우, 플라즈마 식각에 의하여 발생하는 발생 입자의 크기가 감소하고, 그 결과 발생 입자들이 펌핑 아웃에 의하여 챔버 밖으로 빠져나가기 용이하므로, 오염입자의 발생을 저감시킬 수 있다.
<실험예 4> 표면조도 측정
실시예 1 및 실시예 2, 비교예 2 및 비교예 4에 대하여 표면조도(R a)가 2 nm 수준이 되도록 폴리싱한 후, 5 mTorr의 진공도 조건에서 CF 4 40 sccm + O 2 10 sccm의 기체로 500 W의 플라즈마 및 100 W의 바이어스에 세라믹들을 3시간 동안 노출시켰다.
이에 대하여, 플라즈마 노출 후의 표면조도(R a)를 측정하여 도 5a 내지 도 5d에 나타내었다.
비교예 1 및 비교예 3의 경우, 플라즈마 노출 후 각각 9.0 nm 및 10.3 nm 수준의 표면조도를 갖는 반면, 실시예 1 및 실시예 2의 경우 각각 2.28 nm 및 6.05 nm 수준으로 비교예 1 및 비교예 3에 비하여 훨씬 낮은 표면조도를 갖는 것으로 확인되었다.
실시예 1 및 실시예 2와 같이 에칭 전후에 표면조도 차이가 크지 않은 경우, 플라즈마 식각에 의하여 발생하는 발생 입자가 펌핑 아웃에 의하여 챔버 밖으로 빠져나가기 용이하므로, 오염입자의 발생을 저감시킬 수 있다.

Claims (13)

  1. 30 vol% 내지 70 vol%의 이트리아(Y 2O 3); 및
    30 vol% 내지 70 vol%의 마그네시아(MgO);
    를 포함하는 복합 소결체를 포함하고,
    내플라즈마성을 갖는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  2. 제1항에 있어서,
    상기 복합 소결체의 결정립 크기는 100 nm 내지 1 ㎛인 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  3. 제1항에 있어서,
    상기 복합 소결체의 결정립 크기는 100 nm 내지 500 nm인 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  4. 제1항에 있어서,
    상기 복합 소결체는 90% 이상의 상대 밀도를 갖는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  5. 제1항에 있어서,
    상기 복합 소결체는 500 W의 출력 및 100 W 바이어스의 CF 4/0 2 플라즈마에 대하여 3시간 노출된 경우, 표면조도(R a)가 5배 이하로 증가하는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  6. 제1항에 있어서,
    상기 복합 소결체의 표면조도(R a)는 2 nm 이하인 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  7. 제1항에 있어서,
    상기 복합 소결체는 500 W의 출력 및 100 W 바이어스의 CF 4/0 2 플라즈마에 대하여 3시간 노출된 경우, 식각 깊이가 200 nm 이하인 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  8. 제1항에 있어서,
    상기 복합 소결체는 200 MPa 이상의 이축 강도를 갖는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  9. 제1항에 있어서,
    상기 반도체 제조용 플라즈마 식각 장치 부품은 상기 복합 소결체의 벌크 소재로 형성된 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  10. 제1항에 있어서,
    상기 반도체 제조용 플라즈마 식각 장치 부품은 상기 복합 소결체가 다른 소재에 코팅되어 형성된 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품.
  11. 30 vol% 내지 70 vol%의 이트리아(Y 2O 3) 및 30 vol% 내지 70 vol%의 마그네시아(MgO)를 혼합하는 단계; 및
    상기 혼합된 이트리아(Y 2O 3)와 마그네시아(MgO)를 소결하는 단계;
    를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 제조방법.
  12. 제11항에 있어서,
    상기 혼합된 이트리아(Y 2O 3) 및 마그네시아(MgO)를 소결하는 단계는 1000℃ 내지 1500℃에서 수행되는 것을 특징으로 하는 반도체 제조용 플라즈마 식각 장치 부품 제조방법.
  13. 제1항의 플라즈마 식각 장치 부품을 포함하는 반도체 제조용 플라즈마 식각 장치.
PCT/KR2020/009193 2019-07-22 2020-07-13 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법 WO2021015474A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/628,515 US20220285164A1 (en) 2019-07-22 2020-07-13 Plasma Etching Apparatus Component for Manufacturing Semiconductor Comprising Composite Sintered Body and Manufacturing Method Therefor
US18/244,863 US20240055266A1 (en) 2019-07-22 2023-09-11 Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0088164 2019-07-22
KR20190088164 2019-07-22
KR1020200062190A KR102411792B1 (ko) 2019-07-22 2020-05-25 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법
KR10-2020-0062190 2020-05-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/628,515 A-371-Of-International US20220285164A1 (en) 2019-07-22 2020-07-13 Plasma Etching Apparatus Component for Manufacturing Semiconductor Comprising Composite Sintered Body and Manufacturing Method Therefor
US18/244,863 Continuation US20240055266A1 (en) 2019-07-22 2023-09-11 Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2021015474A1 true WO2021015474A1 (ko) 2021-01-28

Family

ID=74194005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009193 WO2021015474A1 (ko) 2019-07-22 2020-07-13 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법

Country Status (2)

Country Link
US (2) US20220285164A1 (ko)
WO (1) WO2021015474A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330903A (ja) * 1990-01-19 1993-12-14 Ube Ind Ltd マグネシア系焼結体
JP2003238250A (ja) * 2002-02-12 2003-08-27 Yotai Refractories Co Ltd イットリア質耐火物
JP2006008493A (ja) * 2004-05-26 2006-01-12 National Institute Of Advanced Industrial & Technology プラズマ耐食材料、その製造方法及びその部材
CN103539433A (zh) * 2013-09-30 2014-01-29 成都超纯应用材料有限责任公司 一种用于等离子喷淋头的保护材料及其制备方法和应用方法
KR20170127636A (ko) * 2016-05-12 2017-11-22 한국세라믹기술원 정전척용 세라믹 복합소재의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330903A (ja) * 1990-01-19 1993-12-14 Ube Ind Ltd マグネシア系焼結体
JP2003238250A (ja) * 2002-02-12 2003-08-27 Yotai Refractories Co Ltd イットリア質耐火物
JP2006008493A (ja) * 2004-05-26 2006-01-12 National Institute Of Advanced Industrial & Technology プラズマ耐食材料、その製造方法及びその部材
CN103539433A (zh) * 2013-09-30 2014-01-29 成都超纯应用材料有限责任公司 一种用于等离子喷淋头的保护材料及其制备方法和应用方法
KR20170127636A (ko) * 2016-05-12 2017-11-22 한국세라믹기술원 정전척용 세라믹 복합소재의 제조방법

Also Published As

Publication number Publication date
US20220285164A1 (en) 2022-09-08
US20240055266A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2017116130A1 (ko) 내플라즈마 코팅막 및 이의 형성방법
WO2015108276A1 (ko) 복합 피막 입자 입경을 갖는 피막의 형성 방법 및 이에 따른 피막
WO2018190674A1 (ko) 세라믹 코팅막 및 그 형성 방법
US6383964B1 (en) Ceramic member resistant to halogen-plasma corrosion
US8367227B2 (en) Plasma-resistant ceramics with controlled electrical resistivity
WO2011021824A2 (ko) 정전척 및 이의 제조 방법
KR20190106768A (ko) 플라즈마 환경들 내의 챔버 컴포넌트들을 위한 Y2O3-ZrO2 부식 저항성 재료
WO2015003508A1 (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
WO2015034317A1 (ko) 열전 재료 및 그 제조 방법
WO2022169073A1 (ko) 이방성 희토류 벌크자석의 제조방법 및 이로부터 제조된 이방성 희토류 벌크자석
WO2020213836A1 (ko) Sic 엣지 링
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2021015474A1 (ko) 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법
WO2021225258A1 (ko) 서스펜션 플라즈마 용사용 슬러리 조성물, 그 제조방법 및 서스펜션 플라즈마 용사 코팅막
WO2017018599A1 (ko) 탄화규소 분말, 탄화규소 소결체, 탄화규소 슬러리 및 이의 제조방법
US20090284893A1 (en) Electrostatic chuck
WO2023095954A1 (ko) 블랙 알루미나 소결체 및 이의 제조방법
WO2023243888A1 (ko) 내식각성 세라믹 부품 및 이의 제조방법
WO2020256411A1 (ko) Cvd 방식으로 형성된 sic 구조체
WO2019093781A1 (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스
WO2020076138A1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
JP4623794B2 (ja) アルミナ質耐食部材及びプラズマ装置
WO2022250394A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
WO2022197145A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
KR102411792B1 (ko) 복합 소결체를 포함하는 반도체 제조용 플라즈마 식각 장치 부품 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843245

Country of ref document: EP

Kind code of ref document: A1