WO2022197145A1 - 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치 - Google Patents

정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치 Download PDF

Info

Publication number
WO2022197145A1
WO2022197145A1 PCT/KR2022/003810 KR2022003810W WO2022197145A1 WO 2022197145 A1 WO2022197145 A1 WO 2022197145A1 KR 2022003810 W KR2022003810 W KR 2022003810W WO 2022197145 A1 WO2022197145 A1 WO 2022197145A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
electrostatic chuck
silicon nitride
powder
silicon
Prior art date
Application number
PCT/KR2022/003810
Other languages
English (en)
French (fr)
Inventor
이지형
우경환
진병수
안영준
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2022197145A1 publication Critical patent/WO2022197145A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic

Definitions

  • the present invention relates to an electrostatic chuck, an electrostatic chuck heater including the same, and a semiconductor holding device.
  • an electrostatic chuck is used to adsorb and hold a semiconductor wafer.
  • a substrate of such an electrostatic chuck As a substrate of such an electrostatic chuck, a study on a dense ceramic is being actively conducted.
  • a halogen corrosive gas such as ClF 3 is frequently used as an etching gas or a cleaning gas.
  • the substrate of the electrostatic chuck is required to have high thermal conductivity.
  • the present invention has been devised in view of the above points, and has heat dissipation characteristics while having chemical resistance to chemicals such as corrosive gases applied during semiconductor processing, plasma resistance to plasma treatment, and thermal shock resistance due to rapid temperature change.
  • An object of the present invention is to provide an excellent electrostatic chuck, an electrostatic chuck heater including the same, and a semiconductor holding device.
  • the present invention has been devised in view of the above points, and provides an electrostatic chuck including a silicon nitride sintered body and an electrostatic electrode embedded in the silicon nitride sintered body.
  • the silicon nitride sintered body may be formed by sintering a silicon nitride powder containing 9 wt% or less of polycrystalline silicon.
  • the silicon nitride sintered body may be formed by sintering silicon nitride powder having a weight ratio ( ⁇ /( ⁇ + ⁇ )) of the ⁇ crystal phase in the total weight of the ⁇ crystal phase and the ⁇ crystal phase of 0.7 or more.
  • the silicon nitride sintered body may have a thermal conductivity of 70 W/mK or more, and a three-point bending strength of 650 MPa or more.
  • the silicon nitride sintered compact is prepared by sintering silicon nitride powder, and the silicon nitride powder is a metal silicon powder, and a rare earth element-containing compound and a crystalline phase control powder comprising a magnesium-containing compound to prepare a mixed raw material powder; preparing granules having a predetermined particle size by mixing the mixed raw material powder with a solvent and an organic binder to form a slurry and then spray-drying; Nitriding to a predetermined temperature within the range of 1200 ⁇ 1500 °C while applying nitrogen gas at a predetermined pressure to the granules; And pulverizing the nitrified granules; can be prepared including.
  • the metallic silicon powder may be dry pulverized polycrystalline metallic silicon scrap or single crystalline silicon wafer scrap in order to minimize contamination with metallic impurities during pulverization.
  • the metal silicon powder may have an average particle diameter of 0.5 to 4 ⁇ m
  • the rare earth element-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m
  • the magnesium-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m.
  • the granules may have a D50 value of 20 to 55 ⁇ m.
  • the rare earth element-containing compound may be yttrium oxide
  • the magnesium-containing compound may be magnesium oxide
  • 2 to 5 mol% of the yttrium oxide and 2 to 10 mol% of the magnesium oxide may be included in the mixed raw material powder.
  • the nitrogen gas may be applied at a pressure of 0.1 to 0.2 MPa.
  • nitriding it may be heated at a temperature increase rate of 0.5 to 10° C./min from 1000° C. or more to a predetermined temperature.
  • the present invention provides an electrostatic chuck heater having a first surface on which a wafer is adsorbed and a second surface opposite to the electrostatic chuck heater.
  • An electrostatic chuck unit including an electrostatic electrode embedded in the electrostatic chuck unit, and a heater unit including a second ceramic sintered body whose one surface is the second surface, and at least one resistance heating element embedded in the second ceramic sintered body, wherein the first ceramic
  • an electrostatic chuck heater in which at least one of the sintered body and the second ceramic sinter is a sintered silicon nitride body formed by sintering silicon nitride powder.
  • the first ceramic sintered body and the second ceramic sintered body may be simultaneously sintered to form a single body.
  • the present invention also provides a semiconductor holding device including the electrostatic chuck heater according to the present invention, and a cooling member disposed on the second surface side of the electrostatic chuck heater.
  • the electrostatic chuck according to the present invention has a ceramic sintered body made of silicon nitride, it exhibits the same or similar level of heat dissipation performance compared to the aluminum nitride ceramics sintered body that has been widely used in the past, and has excellent plasma resistance, chemical resistance and thermal shock resistance. It can be widely used in the process.
  • FIG. 1 is a cross-sectional schematic view of an electrostatic chuck according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electrostatic chuck heater according to an embodiment of the present invention.
  • the electrostatic chuck 10 is implemented to include a silicon nitride sintered body 11 and an electrostatic electrode 12 .
  • the electrostatic chuck 10 is a device for adsorbing and holding an object, for example, a semiconductor wafer by electrostatic attraction, and is used, for example, to fix a semiconductor wafer in a semiconductor manufacturing process.
  • the electrostatic chuck 10 may have a support surface that matches the shape of the object to be gripped.
  • the electrostatic chuck 10 may have a disk shape to match the shape of the wafer.
  • the size of the electrostatic chuck 10 may be the size of an electrostatic chuck used in conventional semiconductor manufacturing, but is not limited thereto.
  • the silicon nitride sintered body 11 corresponds to the body of the electrostatic chuck 10, supports the electrostatic electrode 12 embedded therein, and serves to provide a support surface on which an object to be adsorbed, such as a semiconductor wafer, is adsorbed. do.
  • the silicon nitride sintered body 11 has excellent plasma resistance, chemical resistance, thermal shock resistance, and excellent heat dissipation characteristics, so it may be particularly useful for an electrostatic chuck used in a semiconductor process.
  • the silicon nitride sintered body 11 may be implemented through a silicon nitride powder manufactured by a manufacturing method described below to express more improved properties in the above-described physical properties.
  • the silicon nitride powder may include: preparing a mixed raw material powder including a metal silicon powder, and a crystalline phase control powder including a rare earth element-containing compound and a magnesium-containing compound; preparing granules having a predetermined particle size by mixing the mixed raw material powder with a solvent and an organic binder to form a slurry and then spray-drying; nitriding at a predetermined temperature within the range of 1200 to 1500° C. while applying nitrogen gas at a predetermined pressure to the granules; and pulverizing the nitridized granules.
  • the metal silicon powder which is the main subject, can be used without limitation in the case of a metal silicon powder capable of producing a silicon nitride powder through a direct nitridation method.
  • the metal silicon powder may be polycrystalline metal silicon scrap or single crystal silicon wafer scrap.
  • the polycrystalline metallic silicon scrap may be a by-product of polycrystalline metallic silicon used for manufacturing jigs for semiconductor processes or solar panels, and single-crystal silicon wafer scrap is also a by-product during silicon wafer manufacturing, so these scraps, which are byproducts, are used as raw material powder This can lower the manufacturing cost.
  • the polycrystalline metal silicon scrap or single crystal silicon wafer scrap may have a purity of 99% or more, and it may be more advantageous to ensure thermal conductivity and mechanical strength of the sintered body when sintering the silicon nitride powder manufactured through this.
  • the metal silicon powder may have a resistivity of 1 to 100 ⁇ cm, and through this, it may be more advantageous than preparing a silicon nitride powder having the desired physical properties of the present invention.
  • the metal silicon powder used as the raw material powder may be preferably a polycrystalline metal silicon scrap or a single crystal silicon wafer scrap pulverized to a predetermined size.
  • the grinding may be performed using a dry grinding method, specifically, a dry grinding method such as a disk mill, a pin mill, or a jet mill. can do it If the contaminants are contained in the metallic silicon powder, there is a risk of increasing the manufacturing time and cost, which requires further washing processes such as pickling to remove the contaminants.
  • the average particle diameter of the pulverized metal silicon powder may be 0.5 to 4 ⁇ m, more preferably 2 to 4 ⁇ m, and if the average particle diameter is less than 0.5 ⁇ m, it may be difficult to implement through the dry grinding method, There is a concern that the possibility of mixing of contaminants may increase, and densification may be difficult during sheet casting.
  • the average particle diameter of the metallic silicon powder exceeds 4 ⁇ m, nitridation is not easy, so there is a risk that a non-nitrided portion may exist, and densification of the final sintered body may be difficult.
  • silicon nitride is difficult to self-diffusion and can be thermally decomposed at high temperature, so sintering is not easy for reasons such as limited sintering temperature, it is difficult to implement a dense sintered body, and it may be difficult to control the crystalline phase when producing silicon nitride powder by direct nitridation.
  • a mixed raw material powder obtained by mixing a crystalline phase control powder with a metal silicon powder is used as the raw material powder.
  • the crystalline phase control powder may include, for example, a rare earth element-containing compound, an alkaline earth metal oxide, and a combination thereof.
  • magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O), At least one selected from the group consisting of holmium oxide (Ho 2 O 3 ), erbium oxide (Er 2 O 3 ), yrthenium oxide (Yb 2 O 3 ), and dysprosium oxide (Dy 2 O 3 ) may be used.
  • magnesium oxide and yttrium oxide are essentially contained in the crystal phase control powder in order to more easily control the crystal phase of the silicon nitride powder. There is an advantage in that the thermal conductivity of the sintered body can be further improved by implementing a high density sintered body and reducing the amount of residual grain boundary phase during sintering.
  • the yttrium oxide may be included in an amount of 2 to 5 mol% and the magnesium oxide in an amount of 2 to 10 mol% in the mixed raw material powder. If the yttrium oxide is less than 2 mol%, it may be difficult to implement a densified sintered body when sintering the implemented silicon nitride powder, and it may be difficult to capture oxygen on the grain boundary, and this may increase the amount of dissolved oxygen and the thermal conductivity of the sintered body may be low, Mechanical strength may also be reduced.
  • the grain boundary phase increases, so that the thermal conductivity of the sintered body obtained by sintering the silicon nitride powder is reduced, and there is a risk of lowering the fracture toughness.
  • the magnesium oxide is less than 2 mol%, both the thermal conductivity and mechanical strength of the sintered body obtained by sintering the silicon nitride powder may be low, there is a risk that silicon is eluted during nitriding, and it may be difficult to prepare a densified sintered body.
  • the magnesium oxide exceeds 10 mol%, the residual amount of magnesium at the grain boundary during sintering increases, thereby reducing the thermal conductivity of the implemented sintered body, sintering the silicon nitride powder is not easy, and fracture toughness may be reduced.
  • the rare earth element-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m
  • the magnesium-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m, which may be more advantageous to achieve the object of the present invention.
  • a solvent and an organic binder are mixed with the prepared mixed raw material powder to form a slurry, and then spray-dried to prepare granules having a predetermined particle size.
  • a silicon nitride powder having uniform characteristics that can be controlled to a high degree of control and can form a secondary phase of Si2Y2O5 can improve the thermal conductivity and mechanical strength of the sintered body and improve uniformity can be produced.
  • the granules may have a D50 value of 100 ⁇ m or less, more preferably 20 to 100 ⁇ m, still more preferably 20 to 55 ⁇ m, and still more preferably 20 to 40 ⁇ m. If the D50 exceeds 100 ⁇ m, the granules Nitriding does not occur completely due to the inflow of nitrogen gas into the interior, and unnitrided silicon may be melted and eluted out of the grain rate. There is a risk that the sintered body may be eluted outside in the sintering process.
  • the D50 value means a value on a 50% volume basis measured using a laser diffraction scattering method.
  • the granules may be obtained through a dry spray method, and may be obtained using known conditions and devices capable of performing the dry spray method, so the present invention is not particularly limited thereto.
  • the mixed raw material powder is implemented as a slurry mixed with a solvent and an organic binder and then sprayed dry.
  • the solvent and the organic binder are used without limitation in the case of a solvent and an organic binder used for slurrying to implement ceramic powder into granules.
  • the solvent preferably includes at least one selected from ethanol, methanol, isopropanol, distilled water, and acetone.
  • PVB polyvinyl butyral
  • nitriding treatment at a predetermined temperature within the range of 1200 to 1500° C. is performed.
  • the nitrogen gas may be applied at a pressure of 0.1 to 0.2 MPa, more preferably at a pressure of 0.15 to 0.17 MPa. If the nitrogen gas pressure is less than 0.1 MPa, nitridation may not occur completely. In addition, when the nitrogen gas pressure exceeds 0.2 MPa, silicon is eluted during the nitridation process. In addition, during the nitriding treatment, it can be heated at a temperature increase rate of 0.5 to 10 °C/min from 1000 °C or higher to a predetermined temperature. can be extended considerably. In addition, when the temperature increase rate exceeds 10° C./min, silicon is eluted, and it may be difficult to prepare a powder completely nitrided with silicon nitride.
  • the temperature during the nitriding treatment may be selected within the range of 1200 ⁇ 1500 °C, if the temperature during the nitriding treatment is less than 1200 °C nitriding may not occur uniformly.
  • the ⁇ crystal phase is rapidly formed when the temperature exceeds 1500° C. during the nitriding treatment, densification may be difficult when manufacturing a sintered body using such a silicon nitride powder.
  • the dry method may preferably be used to prevent mixing of contaminants during grinding, and for example, it may be performed through an air jet mill.
  • the silicon nitride powder prepared by the above-described manufacturing method contains 9 wt% or less of polycrystalline silicon derived from molten silicon, and such silicon nitride powder may be suitable for manufacturing a sintered body having improved mechanical strength and thermal conductivity.
  • the silicon nitride powder may contain molten silicon-derived polycrystalline silicon in an amount of 8% by weight or less, more preferably 6% by weight or less, more preferably 4% by weight or less, even more preferably 0% by weight. have.
  • the weight ratio of the ⁇ crystal phase in the total weight of the ⁇ crystal phase and the ⁇ crystal phase may be 0.7 or more. If the weight ratio of the ⁇ crystal phase in the total weight of the ⁇ crystal phase and the ⁇ crystal phase is less than 0.7, the silicon nitride powder It may be difficult to increase the compactness of the sintered sintered body, it may be difficult to improve thermal conductivity and mechanical strength, and in particular, it may be difficult to improve mechanical strength.
  • the silicon nitride powder can form a Si 2 Y 2 O 5 secondary phase more uniformly on the grain boundary of the sintered body implemented through this, and through this, a synergistic effect can be expressed in improving the thermal conductivity of the sintered body.
  • the silicon nitride powder may have an average particle diameter of 2 to 5 ⁇ m, which may be more advantageous for implementing a sintered body having improved mechanical strength and thermal conductivity.
  • D90 may be 7.5 ⁇ m or less, and D10 may be 2.5 ⁇ m or more, which may be advantageous in achieving the object of the present invention.
  • the above-described silicon nitride powder may be implemented as a silicon nitride sintered body 11 through a sintering process after being manufactured into a desired predetermined shape, for example, a disk-shaped compact.
  • the said molded object can be manufactured using a well-known sheet lamination method or a press molding method.
  • the slurry obtained by mixing the above-described silicon nitride powder with a solvent and an organic binder may be formed into a sheet according to a known method such as a doctor blade method. Thereafter, a molded body can be manufactured by laminating and thermocompressing several manufactured ceramic green sheets and processing them to a predetermined size.
  • an organic solvent may be used to dissolve the organic binder and disperse the silicon nitride powder to adjust the viscosity
  • a material capable of dissolving the organic binder may be used without limitation, and one For example, terpineol, dihydro terpineol (DHT), dihydro terpineol acetate (DHTA), butyl carbitol acetate (BCA), ethylene glycol, ethylene, isobutyl Alcohol, methyl ethyl ketone, butyl carbitol, texanol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), ethylbenzene, isopropylbenzene, cyclohexanone, cyclopentanone, Dimethyl sulfoxide, diethyl phthalate, toluene, mixtures thereof, and the like can be used
  • the solvent it is preferable to mix 50 to 100 parts by weight of the solvent based on 100 parts by weight of the silicon nitride powder. If the content of the solvent is less than 50 parts by weight, the viscosity of the slurry is high, so it may be difficult to perform tape casting and it may be difficult to control the coating thickness. If the content of the solvent exceeds 100 parts by weight, the viscosity of the slurry is too thin. It takes a long time to dry and it may be difficult to control the thickness.
  • the organic binder may be a cellulose derivative such as ethyl cellulose, methyl cellulose, nitrocellulose, or carboxycellulose, or a polymer resin such as polyvinyl alcohol, acrylic acid ester, methacrylic acid ester, or polyvinyl butyral, In consideration of forming a sheet-shaped molded body by a tape casting method, polyvinyl butyral may be used as the organic binder.
  • the slurry may further include a known material contained in the slurry for forming a sheet, such as a dispersant and a plasticizer, and the present invention is not particularly limited thereto.
  • an electrode ink for forming the electrostatic electrode 12 may be processed so that the electrostatic electrode 12 to be described later is embedded in the silicon nitride sintered body 11 on any one green sheet for manufacturing the molded body.
  • the electrode ink may be a mixture of a conductive component, a solvent, and a binder, but the present invention is not particularly limited thereto.
  • the implemented molded body may be sintered through a known method to form the silicon nitride sintered body 11 .
  • the electrode ink provided therein is also sintered to form the electrostatic electrode 12 , thereby forming an electrostatic chuck to be finally obtained.
  • (10) can be prepared.
  • the molded body may be sintered at a temperature of 1800 to 1900° C. by 0.5 to 1.0 MPa, and through this, it may be more advantageous to implement a high quality silicon nitride sintered body.
  • the silicon nitride sintered body 11 implemented by this has a thermal conductivity of 70 W/mK or more, preferably 80 W/mK or more, and even more preferably 90 W/mK or more, and a three-point bending strength of 650 MPa. or more, preferably 680 MPa or more, and more preferably 700 MPa or more.
  • the standard deviation of the heat conduction measured for each after dividing the silicon nitride sintered body into 10 equal parts may be 5 W/mK or less, more preferably 3 W/mK or less, and three-point break The standard deviation of the strength may be 25 MPa or less, more preferably 20 MPa or less.
  • the silicon nitride sintered compact may have a sintered density of 3.0 g/cm 3 or more, and more preferably 3.2 g/cm 3 or more.
  • the electrostatic electrode 12 generates an electrostatic force between an adsorption object, for example, a semiconductor wafer and the silicon nitride sintered body 11 to hold the semiconductor wafer on the silicon nitride sintered body 11 .
  • the electrostatic force may be a Coulomb or Johnson-Rahbek type.
  • the electrostatic electrode 12 may be made of a material of an electrostatic electrode provided in a typical electrostatic chuck, and may be formed of, for example, a conductive component such as tungsten or molybdenum.
  • the electrostatic electrode 12 may be provided as a single surface electrode or as a pair of internal electrodes, but is not limited thereto, and the number, shape, and size of the electrostatic electrode provided in a conventional electrostatic chuck may include a silicon nitride sintered body. It can be buried in (11).
  • the present invention includes an electrostatic chuck heater implemented using the electrostatic chuck described above.
  • the electrostatic chuck heater 100 includes an electrostatic chuck unit 110 for adsorbing and fixing an object to be adsorbed using electrostatic force, and a heater unit 120 having a function of generating heat to be provided to the object to be adsorbed.
  • the electrostatic chuck heater 100 has a first surface on which an object to be adsorbed, for example a semiconductor wafer, is adsorbed and a second surface opposite thereto, and the first surface becomes any one surface of the electrostatic chuck unit 110 , and the The electrostatic chuck unit 110 and the heater unit 120 are positioned so that the second surface becomes any one side of the heater unit 120 .
  • the electrostatic chuck unit 110 includes a first ceramic sintered body 111 and an electrostatic electrode 112 embedded in the first ceramic sintered body 111
  • the heater unit 120 includes a second ceramic sintered body 121 . and at least one resistance heating element 122 embedded in the second ceramic sintered body 121 .
  • at least one of the first ceramic sintered body 111 and the second ceramic sintered body 121 is provided with a silicon nitride sintered body formed by sintering silicon nitride powder, and preferably, the silicon nitride sintered body 11 of the electrostatic chuck 10 described above. ) can be
  • both the first ceramic sintered body 111 and the second ceramic sintered body 121 may be silicon nitride sintered bodies.
  • the other one may be a ceramic sintered body employed in a conventional electrostatic chuck heater, and the present invention is not particularly limited thereto. does not
  • the first ceramic sintered body 111 and the second ceramic sintered body 121 may be simultaneously sintered and implemented as a single body. That is, the first ceramic sintered body 111 and the second ceramic sintered body 121 can be manufactured by laminating the ceramic components into a green sheet as described in the above-described method for manufacturing the silicon nitride sintered body 11 and then laminating them. There, the first ceramic sintered body 111 and green sheets that become the second ceramic sintered body 121 are stacked to form a single molded body, and the ceramics are integrated into a single body by sintering them at the same time. A sintered body can be implemented. However, the present invention is not limited thereto, and the first ceramic sintered body 111 and the second ceramic sintered body 121 may be independently manufactured and then attached using a known bonding method to be integrated.
  • a separate intermediate layer (not shown) having a composition different from that of the first ceramic sintered body 111 and the second ceramic sintered body 121 may be further included. This may prevent leakage of current transmitted from one of the electrostatic electrode 112 and the resistive heating element 122 to the other.
  • the compositions of the first ceramic sintered body 111 and the second ceramic sintered body 121 are different, diffusion of a certain component from one sintered body to the other sintered body can be prevented.
  • the electrostatic chuck unit 110 includes an electrostatic electrode 112 , and the electrostatic electrode 112 may be made of an electrostatic electrode material provided in a conventional electrostatic chuck, and may be, for example, molybdenum or tungsten.
  • the heater unit 120 includes a resistance heating element 122 inside the second ceramic sintered body 121, and the resistance heating element 122 is used as a heating element in a conventional electrostatic chuck heater without limitation.
  • the resistance heating element 122 may be formed of a conductive material such as tungsten or molybdenum.
  • a plurality of resistance heating elements 122 may be embedded in the second ceramic sintered body 121 , or one resistance heating element may be provided in various shapes such as a spiral.
  • a pattern of a resistance heating element in a conventional electrostatic chuck heater may be employed without limitation, so the present invention is not particularly limited thereto.
  • the present invention includes a semiconductor holding device including the electrostatic chuck heater 100 according to the present invention and a cooling member disposed on the second surface side of the electrostatic chuck heater 100 .
  • the cooling member is for controlling the temperature of the semiconductor wafer held on the electrostatic chuck heater 100 , and may serve to cool the semiconductor wafer heated through the heater unit 120 .
  • the cooling member may be used without limitation in the case of a cooling member commonly employed in a semiconductor holding device.
  • the cooling member may have a cooling substrate formed of aluminum or titanium and a flow path through which a refrigerant may flow in the cooling substrate.
  • the semiconductor holding device includes a known configuration employed in a semiconductor holding device in addition to the electrostatic chuck heater 100 and the cooling member, for example, applying current to the electrostatic electrode 112 and the resistance heating element 122 of the electrostatic chuck heater 100 .
  • Any known configuration such as an applicable power source, a focus ring mounting table having an electrostatic chuck for a focus ring, and a mounting plate supporting them, may be employed without limitation, and the present invention is not particularly limited thereto.
  • a silicon nitride sintered body was manufactured through the following preparation examples.
  • Polycrystalline silicon scrap (purity 99.99%, resistivity 1 ⁇ cm) derived from a jig for semiconductor process was dry pulverized using a jet mill to prepare metallic silicon powder having an average particle diameter of 4 ⁇ m.
  • 100 parts by weight of the prepared mixed raw material powder was mixed with 80 parts by weight of ethanol as a solvent and 10 parts by weight of polyvinyl butyral as an organic binder to prepare a slurry for preparing granules.
  • the prepared granules were heat-treated at a nitrogen gas pressure of 0.15 MPa. Specifically, the temperature increase rate was 5°C/min up to 1000°C, and the temperature increase rate was 0.5°C/min from 1000°C to 1400°C, followed by heat treatment at 1400°C for 2 hours. Nitrided granules were obtained, which were pulverized through an air jet mill to obtain silicon nitride powders having an average particle diameter of 2 ⁇ m as shown in Table 1 below.
  • the 50% volume reference value measured using the laser diffraction scattering method was made into the D50 value.
  • the sintered density of the produced silicon nitride sintered body was measured by the Archimedes method.
  • the thermal conductivity was measured by the KS L 1604 (ISO 18755, ASTM E 1461) method, and the average value and standard deviation of the measured values were calculated was calculated, and the closer the standard deviation to 0, the more uniform the thermal conductivity.
  • the three-point bending strength (S) was measured by the KS L 1590 (ISO 14704) method, and then the value calculated by substituting the following formula The mean value and standard deviation of The closer the standard deviation of the 3-point bending strength to 0, the more uniform the 3-point bending strength.
  • Example 1 Comparative Example 1 Mixed raw material powder MgO (mol%) 5 5 Y 2 O 3 (mol%) 2 2 Granule D50 ( ⁇ m) 20 - Nitriding conditions Nitrogen gas pressure (MPa) 0.15 0.15 Temperature increase rate from 1000°C to nitriding temperature (°C/min) 0.5 0.5 Nitriding temperature (°C) 1400 1400 Silicon Nitride Sintered Body Sintered Density (g/cm 3 ) 3.21 3.21 thermal conductivity (W/mK) medium 94 81 Standard Deviation 3 8 3 point bending strength (MPa) medium 680 550 Standard Deviation 20 50
  • the silicon nitride sintered compact according to Preparation Example 1 has excellent thermal conductivity and three-point bending strength and exhibits uniform characteristics compared to the silicon nitride sintered compact according to the comparative preparation example, which is useful for manufacturing the silicon nitride sintered compact. This is expected as a result due to the granulation of the silicon nitride powder used and thereby increasing the nitridation uniformity.
  • ⁇ and ⁇ crystal phases were quantified through XRD measurement, and the weight ratio of the ⁇ crystal phase was calculated through the following equation.
  • Weight ratio of ⁇ crystal phase ⁇ /( ⁇ + ⁇ )
  • the 50% volume reference value measured using the laser diffraction scattering method was made into the D50 value.
  • the sintered density of the produced silicon nitride sintered body was measured by the Archimedes method.
  • thermal conductivity was measured by KS L 1604 (ISO 18755, ASTM E 1461), and the average value of the measured values was calculated.
  • the three-point bending strength (S) for 10 silicon nitride sintered compacts prepared in each Example was measured by the KS L 1590 (ISO 14704) method and calculated by the following formula, and the average value of the calculated values was calculated.
  • Preparation example 1 Preparation Example 2
  • Preparation example 3 Preparation example 4
  • Preparation example 5 Preparation example 6
  • Nitrogen gas pressure (MPa) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
  • Temperature increase rate from 1000°C to nitriding temperature (°C/min) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Nitriding temperature (°C) 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400
  • Preparation example 7 Preparation example 8 Preparation 9 Mixed raw material powder MgO (mol%) 7 10 15 Y 2 O 3 (mol%) 2 2 2 Granule D50 ( ⁇ m) 32 32 32 Nitriding conditions Nitrogen gas pressure (MPa) 0.15 0.15 0.15 Temperature increase rate from 1000°C to nitriding temperature (°C/min) 0.5 0.5 0.5 Nitriding temperature (°C) 1400 1400 1400 Silicon Nitride Powder ⁇ crystalline phase weight ratio [ ⁇ /( ⁇ + ⁇ )] 0.79 0.92 0.95 Elution Si (wt%) 0 0 0 Silicon Nitride Sintered Body Sintered Density (g/cm 3 ) 3.21 3.21 3.20 Thermal Conductivity (W/mK) 121 87 82 3-point bending strength (MPa) 750 720 680
  • the preparation examples are very suitable for improving the thermal conductivity and three-point bending strength of a substrate prepared using the silicon nitride powder obtained by nitriding the mixed raw material powder into granules of an appropriate size.
  • the size of the granules is large as in Preparation Example 6, the content of silicon eluted from the silicon nitride powder may be high, and in this case, it can be seen that it may be insufficient to improve the mechanical strength and thermal conductivity of the prepared silicon nitride sintered body.

Abstract

정전 척이 제공된다. 본 발명의 일 실시예에 의한 정전 척은 질화규소 소결체 및 상기 질화규소 소결체 내부에 매설된 정전전극을 포함하여 구현된다. 이에 의하면, 질화규소인 세라믹스 소결체를 구비함에 따라서 종전 많이 사용되어오던 질화알루미늄 세라믹스 소결체에 대비해 동등 또는 유사 수준의 방열성능을 발현하면서도 내플라즈마성, 내화학성 및 내열충격성이 뛰어남에 따라서 반도체 공정에 널리 이용될 수 있다.

Description

정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
본 발명은 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치에 관한 것이다.
반도체 웨이퍼의 반송, 노광, 화학 기상 증착(CVD), 스퍼터링 등과 같은 막 제조 공정 및 미세 가공, 세정, 에칭, 다이싱 등의 일련의 단계에서, 반도체 웨이퍼를 흡착하고 유지하기 위하여 정전 척이 사용되고 있다. 이러한 정전 척의 기판(substrate)으로서 치밀질 세라믹에 대한 연구가 활발히 이루어지고 있다. 특히, 반도체 제조를 위한 장치에서는, 에칭 가스나 클리닝 가스로서 ClF3 등과 같은 할로겐 부식성 가스를 많이 이용한다. 또한, 반도체 웨이퍼를 척에 끼우면서 급속하게 가열하고 냉각시키기 위해서는, 정전 척의 기판이 높은 열 전도성을 구비할 것이 요구된다. 나아가 이와 같은 급격한 온도 변화에 의해 쉽게 파괴되지 않는 이러한 높은 내열충격성 또한 요구된다. 더불어 반도체 공정에서 식각이나 증착에 플라즈마 방식이 이용됨에 따라서 내플라즈마성을 갖는 정전 척의 기판에 대한 요구가 나날이 증가하고 있다.
그러나 정전 척 기판의 재질로 많이 사용되는 질화알루미늄의 경우 방열특성은 우수하나, 반도체 공정 중 플라즈마 방식이 이용되는 식각이나 증착공정에서 플라즈마에 의해 손상 받기 쉬워 내구성이 저하되는 문제가 있다. 또한, 열충격에 의해 크랙 발생이 잦은 문제가 있다. 더불어 플라즈마 또는 열충격에 의한 내구성 감소는 정전 척의 교체주기를 단축시키는 문제가 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 반도체 공정 중 가해지는 부식성 가스 등의 화학물질에 대한 내화학성, 플라즈마 처리에 대한 내플라즈마성 및 급격한 온도변화에 따른 내열충격성을 가지면서도 방열특성이 우수한 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치를 제공하는데 목적이 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 질화규소 소결체 및 상기 질화규소 소결체 내부에 매설된 정전전극을 포함하는 정전척을 제공한다.
본 발명의 일 실시예에 의하면, 상기 질화규소 소결체는 다결정 실리콘이 9 중량% 이하인 질화규소 분말이 소결되어 형성된 것일 수 있다.
또한, 상기 질화규소 소결체는 α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비(α/(α+β))가 0.7 이상인 질화규소 분말이 소결되어 형성된 것일 수 있다.
또한, 상기 질화규소 소결체는 열전도도가 70W/mK 이상이고, 3점 꺽임강도가 650 MPa 이상일 수 있다.
또한, 상기 질화규소 소결체는 질화규소 분말을 소결시켜 제조하며, 상기 질화규소 분말은, 금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계; 상기 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성시킨 뒤 분무건조시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계; 상기 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화시키는 단계; 및 질화시킨 그래뉼을 분쇄시키는 단계;를 포함하여 제조될 수 있다.
또한, 상기 금속 실리콘 분말은 분쇄 중 금속 불순물로 오염되는 것을 최소화하기 위하여 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩을 건식 분쇄시킨 것일 수 있다.
또한, 상기 금속 실리콘 분말은 평균입경이 0.5 내지 4㎛, 희토류 원소 함유 화합물 분말은 평균입경이 0.1 내지 1㎛, 마그네슘 함유 화합물 분말은 평균입경이 0.1 내지 1㎛일 수 있다.
또한, 상기 그래뉼은 D50 값이 20 ~ 55㎛ 일 수 있다.
또한, 상기 희토류 원소 함유 화합물은 산화이트륨이며, 상기 마그네슘 함유 화합물은 산화마그네슘이고, 혼합원료분말에 상기 산화이트륨은 2 내지 5몰%, 상기 산화마그네슘은 2 내지 10몰%로 포함될 수 있다.
또한, 질화 시 상기 질소가스는 0.1 내지 0.2MPa의 압력으로 가해질 수 있다.
또한, 질화 시 1000℃ 이상에서부터 소정의 온도까지 0.5 내지 10℃/분의 승온속도로 가열될 수 있다.
또한, 본 발명은 웨이퍼가 흡착되는 제1면과 이에 대향하는 제2면을 가지는 정전척 히터에 있어서, 상기 정전척 히터는 어느 일면이 상기 제1면인 제1세라믹스 소결체 및 상기 제1세라믹스 소결체 내부에 매설된 정전전극을 포함하는 정전척부, 및 어느 일면이 상기 제2면인 제2세라믹스 소결체 및 상기 제2세라믹스 소결체 내부에 매설된 적어도 하나의 저항 발열체를 포함하는 히터부를 구비하며, 상기 제1세라믹스 소결체 및 제2세라믹스 소결체 중 어느 하나 이상은 질화규소 분말이 소결되어 형성된 질화규소 소결체인 정전척 히터를 제공한다.
본 발명의 일 실시예에 의하면, 상기 제1세라믹스 소결체 및 제2세라믹스 소결체는 동시 소결되어 하나의 몸체로 구현될 수 있다.
또한, 본 발명은 본 발명에 따른 정전척 히터, 및 상기 정전척 히터의 제2면측에 배치되는 냉각부재를 포함하는 반도체 유지장치를 제공한다.
본 발명에 따른 정전 척은 질화규소인 세라믹스 소결체를 구비함에 따라서 종전 많이 사용되어오던 질화알루미늄 세라믹스 소결체에 대비해 동등 또는 유사 수준의 방열성능을 발현하면서도 내플라즈마성, 내화학성 및 내열충격성이 뛰어남에 따라서 반도체 공정에 널리 이용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 정전 척의 단면모식도, 그리고
도 2는 본 발명의 일 실시예에 따른 정전 척 히터의 단면모식도이다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 정전 척(10)은 질화규소 소결체(11) 및 정전전극(12)을 포함하여 구현된다.
정전 척(10)은 대상물, 예를 들어 반도체 웨이퍼를 정전 인력에 의해 흡착하여 유지시키는 장치로써, 일 예로 반도체 제조공정에서 반도체 웨이퍼를 고정시키기 위해 사용된다. 상기 정전 척(10)은 파지하는 대상물의 모양에 부합하는 지지면을 가질 수 있으며, 일 예로 웨이퍼의 모양에 부합하도록 정전 척(10)은 원반 형상을 가질 수 있다. 또한, 상기 정전 척(10)의 크기는 통상적인 반도체 제조에 이용되는 정전 척의 크기일 수 있으나 이에 제한되는 것은 아니다.
상기 질화규소 소결체(11)는 정전 척(10)의 몸체에 해당하는 것으로써, 내부에 매설되는 정전전극(12)을 지지하고, 반도체 웨이퍼와 같은 흡착 대상물을 흡착시킬 지지면을 제공하는 역할을 수행한다. 상기 질화규소 소결체(11)는 내플라즈마성, 내화학성, 내열충격성이 뛰어나고 방열특성도 우수해 특히 반도체 공정에 이용되는 정전 척에 유용할 수 있다.
본 발명의 일 실시예에 의하면, 상기 질화규소 소결체(11)는 상술한 물성들에 있어 보다 개선된 특성을 발현하도록 후술하는 제조방법으로 제조된 질화규소 분말을 통해 구현된 것일 수 있다.
구체적으로 상기 질화규소 분말은, 금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계; 상기 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성 시킨 뒤 분무건조 시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계; 상기 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화처리하는 단계; 및 질화처리된 그래뉼을 분쇄시키는 단계를 포함하여 제조될 수 있다.
먼저, 금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계에 대해서 설명한다.
상기 원료분말로써 주제인 금속 실리콘 분말은 직접 질화법을 통해 질화규소 분말을 제조할 수 있는 금속 실리콘 분말의 경우 제한 없이 사용할 수 있다. 일 예로 상기 금속 실리콘 분말은 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩일 수 있다. 상기 다결정 금속 실리콘 스크랩은 반도체 공정용 치구나 태양광 패널 제조용으로 사용되는 다결정 금속 실리콘의 부산물일 수 있고, 단결정 실리콘 웨이퍼 스크랩 역시 실리콘 웨이퍼 제조 시 부산물임에 따라서 부산물인 이들 스크랩을 원료분말로써 사용함을 통해 제조단가를 낮출 수 있다.
또한, 상기 다결정 금속 실리콘 스크랩 또는 단결정 실리콘 웨이퍼 스크랩은 순도가 99% 이상일 수 있으며, 이를 통해 제조된 질화규소 분말을 소결 시 소결체의 열전도도와 기계적 강도를 담보하기에 보다 유리할 수 있다.
또한, 상기 금속 실리콘 분말은 저항율이 1 내지 100 Ω㎝일 수 있으며, 이를 통해서 본 발명이 목적하는 물성을 갖는 질화규소 분말을 제조하기 보다 유리할 수 있다.
한편, 원료분말로 사용되는 금속 실리콘 분말은 바람직하게는 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩을 소정의 크기로 분쇄시킨 것일 수 있다. 이때, 분쇄로 인한 금속 불순물과 같은 오염물질이 원료분말에 혼입되는 것을 방지하기 위하여 상기 분쇄는 건식분쇄 방식을 사용할 수 있고, 구체적으로 디스크밀, 핀밀, 젯밀 등의 건식분쇄 방식을 사용하여 분말화시킬 수 있다. 만일 오염물질이 금속 실리콘 분말에 함유 시 오염물질의 제거를 위한 산세정과 같은 세척공정을 더 거쳐야 하는 제조시간과 비용 증가의 우려가 있다. 이때 분쇄된 상기 금속 실리콘 분말의 평균입경은 0.5 ~ 4㎛, 보다 바람직하게는 2 ~ 4㎛일 수 있으며, 만일 평균입경이 0.5㎛ 미만일 경우 건식분쇄 방식을 통해 구현하기 어려울 수 있고, 미분말화로 인해서 오염물질의 혼입가능성이 커질 우려가 있으며, 시트 캐스팅 시 치밀화가 어려울 수 있다. 또한, 만일 금속 실리콘 분말의 평균입경이 4㎛를 초과 시 질화가 용이하지 않아서 질화되지 않은 부분이 존재할 우려가 있으며, 최종 소결체의 치밀화가 어려울 수 있다.
한편, 질화규소는 자기확산이 어렵고, 고온에서 열분해될 수 있어서 소결온도가 제한되는 등의 이유로 소결이 용이하지 않고, 치밀한 소결체를 구현하기 어려우며, 직접 질화법으로 질화규소 분말을 제조 시 결정상 제어가 어려울 수 있어서 이러한 난점을 해결하고, 산소 등의 불순물을 제거하여 질화규소 분말이 소결된 기판의 물성을 개선하기 위하여 금속 실리콘 분말에 결정상 제어 분말을 혼합한 혼합원료분말을 원료분말로써 사용한다. 상기 결정상 제어 분말은 일 예로 희토류 원소 함유 화합물, 알칼리토류 금속 산화물 및 이들의 조합이 사용될 수 있으며, 구체적으로 산화마그네슘(MgO), 산화이트륨(Y2O3), 산화가돌리늄(Gd2O), 산화홀뮴(Ho2O3), 산화에르븀(Er2O3), 산화이르테븀(Yb2O3), 및 산화디스프로슘(Dy2O3)으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다. 다만 본 발명은 질화규소 분말의 결정상 제어가 보다 용이하게 하기 위하여 산화마그네슘 및 산화이트륨을 결정상 제어 분말에 필수적으로 함유하며, 상기 산화마그네슘 및 산화이트륨은 제조된 질화규소 분말을 이용해 소결체를 제조 시 보다 치밀화된 높은 밀도의 소결체를 구현하고, 소결 중 잔류 입계 상의 양을 저감시켜서 소결체의 열전도도를 보다 개선시킬 수 있는 이점이 있다.
일 예로 혼합원료분말에 상기 산화이트륨은 2 내지 5몰%, 상기 산화마그네슘은 2 내지 10몰%로 포함될 수 있다. 만일 산화이트륨이 2몰% 미만일 경우 구현된 질화규소 분말을 소결 시 치밀화된 소결체를 구현하기 어려울 수 있고, 입계 상에 산소를 포획하기 어렵고 이로 인해서 고용 산소량이 많아져 소결체의 열전도도가 낮을 수 있으며, 기계적 강도도 저하될 수 있다. 또한, 만일 산화이트륨이 5몰%를 초과 시 입계 상이 많아져서 구현된 질화규소 분말을 소결한 소결체의 열전도도가 저하되고, 파괴인성이 저하되는 우려가 있다. 또한, 산화마그네슘이 2몰% 미만일 경우 구현된 질화규소 분말을 소결한 소결체의 열전도도 및 기계적 강도가 모두 낮을 수 있고, 질화 시 실리콘이 용출될 우려가 있으며, 치밀화된 소결체를 제조하기 어려울 수 있다. 또한, 만일 산화마그네슘이 10몰%를 초과할 경우 소결 시 입계에 마그네슘의 잔류량이 많아지고 이로 인해서 구현된 소결체의 열전도도가 낮아질 수 있으며, 질화규소 분말의 소결이 용이하지 않고, 파괴인성이 저하될 수 있다.
또한, 상기 희토류 원소 함유 화합물분말은 평균입경이 0.1 내지 1㎛, 마그네슘 함유 화합물 분말은 평균입경이 0.1 내지 1㎛인 것을 사용할 수 있으며, 이를 통해서 본 발명의 목적을 달성하기에 보다 유리할 수 있다.
다음으로 준비된 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성시킨 뒤 분무건조 시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계를 수행한다.
혼합원료분말을 곧바로 질화시키지 않고, 소정의 입경을 가지는 그래뉼로 제조한 뒤 그래뉼에 대해서 후술하는 질화공정을 수행하는데, 이를 통해 혼합원료분말의 혼합균일성을 높여 제조되는 질화규소 분말의 결정상을 보다 용이하게 제어할 수 있고, Si2Y2O5인 2차상을 형상시킬 수 있어서 소결체의 열전도도 및 기계적 강도를 보다 개선하면서 균일성을 향상시킬 수 있는 균일한 특성을 가지는 질화규소 분말을 제조할 수 있다.
상기 그래뉼은 D50 값이 100㎛ 이하, 보다 바람직하게는 20 내지 100㎛, 보다 더 바람직하게는 20 ~ 55㎛, 더 바람직하게는 20 ~40㎛일 수 있는데, 만일 D50이 100㎛를 초과 시 그래뉼 내부로 질소 가스의 유입이 원활하지 못해 질화가 완전히 일어나지 못하고, 질화되지 못한 실리콘이 용융되어 그래률 밖으로 용출될 수 있으며, 이와 같은 질화규소분말을 소결체로 제조할 경우 질화규소 분말 제조 시 용출되었던 실리콘이 다시 소결체의 소결과정에서 밖으로 용출될 수 있는 우려가 있다. 여기서 D50 값이란 레이저 회절 산란법을 사용하여 측정한 50% 체적 기준에서의 값을 의미한다.
한편, 상기 그래뉼은 건식분무법을 통해 수득될 수 있고, 건식분무법을 수행할 수 있는 공지의 조건, 장치를 이용해 수득될 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다. 또한, 혼합원료 분말은 용매와 유기바인더와 혼합된 슬러리로 구현된 뒤 건식분무되는데, 상기 용매와 유기바인더는 세라믹분말을 그래뉼로 구현하기 위해서 슬리러화 시 사용되는 용매와 유기바인더의 경우 제한 없이 사용할 수 있다. 일예로 상기 용매는 에탄올, 메탄올, 이소프로판올, 증류수 및 아세톤 중 선택되는 1종 이상을 포함하는 것이 바람직하다. 또한, 상기 유기바인더는 폴리비닐부티랄(PVB)계 바인더를 사용하는 것이 바람직하다. 한편, 그래뉼 제조 시 유기바인더가 함유되나 미량으로 함유 시 후술하는 질화공정 이전에 탈지공정을 별도로 더 거치지 않을 수 있다.
다음으로 수득된 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화처리하는 단계를 수행한다.
이때, 질화처리 시 상기 질소가스는 0.1 내지 0.2MPa의 압력으로 가해질 수 있으며, 보다 바람직하게는 0.15내지 0.17MPa의 압력으로 가해질 수 있다. 만일 질소 가스 압력이 0.1MPa 미만일 경우 질화가 완전히 일어나지 않을 수 있다. 또한, 질소가스 압력이 0.2MPa를 초과 시 질화 과정에서 실리콘이 용출되는 현상이 발생된다. 또한, 질화처리 시 1000℃ 이상에서부터 소정의 온도까지 0.5 내지 10℃/분의 승온속도로 가열될 수 있는데, 만일 1000℃ 이상에서부터 소정의 온도까지 승온속도가 0.5℃/분 미만일 경우 소결 시간이 과도히 연장될 수 있다. 또한, 승온 속도가 10℃/분을 초과 시 실리콘이 용출되어 완전히 질화규소로 질화된 분말을 제조하기 어려울 수 있다.
또한, 질화처리 시 온도는 1200 ~ 1500℃ 범위 내에서 선택될 수 있는데, 만일 질화처리 시 온도가 1200℃ 미만일 경우 질화가 균일하게 일어나지 않을 수 있다. 또한, 질화처리 시 온도가 1500℃를 초과 시 β 결정상이 빠르게 형성됨에 따라서 이와 같은 질화규소 분말을 이용해 소결체를 제조 시 치밀화가 어려울 수 있다.
다음으로 질화처리된 그래뉼을 분쇄시키는 단계를 수행한다.
질화처리된 그래늄을 질화규소 분말로 제조하는 단계로써, 분쇄 시 오염물질의 혼입을 방지하도록 바람직하게는 건식방법에 의할 수 있으며, 일 예로 에어 제트밀을 통해서 수행할 수 있다.
상술한 제조방법으로 제조되는 질화규소 분말은 용융된 실리콘 유래의 다결정 실리콘이 9중량%이하이며, 이와 같은 질화규소 분말은 기계적 강도 및 열전도도가 향상된 소결체를 제조하기에 적합할 수 있다. 바람직하게는 상기 질화규소 분말은 용융된 실리콘 유래의 다결정 실리콘을 8중량%이하, 보다 더 바람직하게는 6중량% 이하, 더 바람직하게는 4중량% 이하, 더욱 바람직하게는 0중량%로 포함할 수 있다.
본 발명의 일 실시예에 따르면, α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 이상일 수 있는데, 만일 α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 미만일 경우 질화규소 분말을 통해 소결된 소결체의 치밀성을 높이기 어려울 수 있고, 열전도도와 기계적 강도 개선이 어려우며 특히 기계적 강도 개선이 어려울 수 있다.
또한, 상기 질화규소 분말은 이를 통해 구현되는 소결체의 입계 상에 Si2Y2O5인 2차상을 보다 균일하게 형성시킬 수 있고, 이를 통해서 소결체의 열전도도 개선에 상승된 효과를 발현할 수 있다.
또한, 상기 질화규소 분말은 평균입경이 2 ~ 5㎛일 수 있으며, 이를 통해 기계적 강도 및 열전도도가 개선된 소결체를 구현하기에 보다 유리할 수 있다. 또한, 일 예로 D90은 7.5㎛ 이하이며, D10은 2.5㎛ 이상일 수 있고 이를 통해 본 발명의 목적을 달성하기에 유리할 수 있다.
상술한 질화규소 분말은 목적하는 소정의 형상, 예를 들어 원반형의 성형체로 제조된 뒤 소결공정을 거쳐서 질화규소 소결체(11)로 구현될 수 있다. 상기 성형체는 공지의 시트 적층법이나 프레스 성형법을 이용해 제조할 수 있다.
시트 적층법에 따르는 성형체 제조방법에 대해서 설명하면, 상술한 질화규소 분말을 용매 및 유기바인더와 혼합하여 얻어진 슬러리를 닥터 블레이드법 등의 공지된 방법에 따라 시트 상으로 성형하여 제조될 수 있다. 이후 제조된 세라믹 그린시트 여러 장을 적층 및 열압착하고 정해진 크기로 가공함을 통해서 성형체를 제조할 수 있다.
이때, 상기 슬러리에 구비되는 용매는 유기바인더를 용해시키고 질화규소 분말을 분산시켜 점도를 조절하기 위하여 유기용매를 사용할 수 있으며, 상기 유기용매로서 유기 바인더를 녹일 수 있는 물질은 제한 없이 사용될 수 있고, 일 예로 터피놀(Terpineol), 디하이드로 터피놀(Dihydro terpineol; DHT), 디하이드로 터피놀 아세테이트(Dihydro terpineol acetate; DHTA), 부틸카비톨아세테이트(Butyl Carbitol Acetate; BCA), 에틸렌글리콜, 에틸렌, 이소부틸알콜, 메틸에틸케톤, 부틸카비톨, 텍사놀(texanol)(2,2,4-트리메틸-1,3-펜탄디올모노이소부티레이트), 에틸벤젠, 이소프로필벤젠, 시클로헥사논, 시클로펜타논, 디메틸설폭사이드, 디에틸프탈레이트, 톨루엔, 이들의 혼합물 등을 사용할 수 있다. 이때 상기 용매는 질화규소 분말 100중량부에 대하여 50 내지 100 중량부 혼합하는 것이 바람직하다. 상기 용매의 함량이 50중량부 미만이면 슬러리의 점도가 높아 테이프캐스팅을 수행하는데 어려움이 있고 코팅 두께를 조절하는데도 어려움이 있을 수 있으며, 상기 용매의 함량이 100중량부를 초과하면 슬러리의 점도가 너무 묽게 되어 건조하는데 시간이 오래 걸리고 두께를 조절하는데도 어려움이 있을 수 있다.
또한, 상기 유기바인더는 상기 질화규소 분말 100중량부에 대하여 5 ∼ 20중량부 혼합하는 것이 바람직하다. 상기 유기바인더로는 에틸셀룰로오스(ethyl cellulose), 메틸셀룰로오스, 니트로셀룰로오스, 카르복시셀룰로오스 등의 셀룰로오스 유도체, 또는 폴리비닐알콜, 아크릴산에스테르, 메타크릴산에스테르, 폴리비닐부티랄 등의 고분자 수지일 수 있으며, 테이프캐스팅 방법(Tape casting method)으로 시트 형태의 성형체를 형성하는 것을 고려할 때, 상기 유기바인더로 폴리비닐부티랄을 사용할 수 있다.
한편, 상기 슬러리에는 분산제, 가소제 등 시트를 성형하기 위한 슬러리에 함유되는 공지의 물질을 더 포함할 수 있으며 본 발명은 이에 대해 특별히 한정하지 않는다.
한편, 성형체를 제조하기 위한 어느 일 그린시트에는 후술하는 정전전극(12)이 질화규소 소결체(11) 내부에 매설되도록 정전전극(12)의 형성을 위한 전극용 잉크가 처리될 수 있다. 상기 전극용 잉크는 도전성 성분과 용매 및 바인더 등을 혼합한 것이 사용될 수 있는데, 본 발명은 이에 대해 특별히 한정하지 않는다.
구현된 성형체는 공지의 방법을 통해서 소결되어 질화규소 소결체(11)를 형성할 수 있는데, 소결과정에서 내부에 구비된 전극용 잉크 역시 소결되어 정전전극(12)을 형성함에 따라서 최종 수득하고자 하는 정전 척(10)이 제조될 수 있다. 구체적으로 성형체는 1800 ~ 1900℃의 온도에서 0.5 ~ 1.0MPa 소결될 수 있으며, 이를 통해서 고품위의 질화규소 소결체를 구현하기에 보다 유리할 수 있다. 또한, 이로써 구현된 질화규소 소결체(11)는 일 예로 열전도도가 70 W/mK 이상, 바람직하게는 80 W/mK 이상, 보다 더 바람직하게는 90 W/mK 이상이고, 3점 꺽임강도가 650 MPa 이상, 바람직하게는 680 MPa 이상, 보다 바람직하게는 700 MPa 이상일 수 있다. 또한, 질화규소 소결체의 균일성이 우수해 질화규소 소결체를 10등분 한 후 각각각에 대해 측정한 열전전도의 표준편차가 5 W/mK 이하, 보다 바람직하게는 3W/mK이하 일 수 있고, 3점 꺽임강도의 표준편차는 25MPa 이하, 보다 바람직하게는 20MPa 이하일 수 있다. 또한, 질화규소 소결체는 소결밀도가 3.0g/㎤ 이상일 수 있고, 보다 바람직하게는 3.2g/㎤ 이상일 수 있다.
다음으로 상술한 질화규소 소결체(11) 내부에 매설된 정전전극(12)에 대해서 설명한다.
상기 정전전극(12)은 흡착 대상물, 일 예로 반도체 웨이퍼와 질화규소 소결체(11) 간에 정전력을 발생시켜서 반도체 웨이퍼를 질화규소 소결체(11) 상에 파지시키는 역할을 담당한다. 상기 정전력은 쿨롱 또는 존슨-라벡 타입일 수 있다.
상기 정전전극(12)은 통상적인 정전 척에 구비되는 정전전극의 재질일 수 있고, 예를 들어 텅스텐, 몰리브덴과 같은 도전성 성분에 의해 형성된 것일 수 있다. 또한, 정전전극(12)은 하나의 면전극으로 구비되거나 또는 한 쌍의 내부전극으로 구비될 수 있는데 이에 제한되는 것은 아니며, 통상적인 정전 척에 구비되는 정전전극의 개수, 형상, 크기로 질화규소 소결체(11)에 매설될 수 있다.
본 발명은 상술한 정전 척을 이용해 구현된 정전 척 히터를 포함한다. 이를 도 2를 참조하여 설명하면, 정전 척 히터(100)는 정전력을 이용해 흡착 대상물을 흡착 및 고정시키는 정전 척부(110)와 흡착 대상물에 제공될 열을 발생시키는 기능을 가지는 히터부(120)를 포함하여 구현된다. 또한, 정전 척 히터(100)는 흡착 대상물, 일 예로 반도체 웨이퍼가 흡착되는 제1면과 이에 대향하는 제2면을 가지는데, 상기 제1면이 정전 척부(110)의 어느 일면이 되고, 상기 제2면이 히터부(120)의 어느 일면이 되도록 정전 척부(110)와 히터부(120)가 위치한다.
상기 정전 척부(110)는 제1세라믹스 소결체(111) 및 상기 제1세라믹스 소결체(111) 내부에 매설된 정전전극(112)을 포함하며, 상기 히터부(120)는 제2세라믹스 소결체(121) 및 상기 제2세라믹스 소결체(121) 내부에 매설된 적어도 하나의 저항 발열체(122)를 포함한다. 이때, 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 중 어느 하나 이상은 질화규소 분말이 소결되어 형성된 질화규소 소결체로 구비되며, 바람직하게는 상술한 정전 척(10)의 질화규소 소결체(11)일 수 있다.
또한, 바람직하게는 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 모두가 질화규소 소결체일 수 있다. 한편, 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 중 어느 하나만이 질화규소 소결체인 경우 다른 하나는 통상적인 정전 척 히터에 채용되는 세라믹스 소결체일 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)는 동시 소결되어 하나의 몸체로 구현된 것일 수 있다. 즉, 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)는 상술한 질화규소 소결체(11)의 제조방법에서 설명된 것과 같이 세라믹스 성분을 그린시트로 제조한 뒤 이들을 적층시켜서 성형체를 제조할 수 있는데, 제1세라믹스 소결체(111)가 되는 그린시트들과, 제2세라믹스 소결체(121)가 되는 그린시트들을 적층시킨 상태에서 하나의 성형체로 제조하고, 이를 동시에 소결시켜서 하나의 몸체로 일체화된 세라믹스 소결체를 구현할 수 있다. 다만, 이에 제한되는 것은 아니며 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)는 각각이 독립적으로 제조된 뒤 공지의 접착방법을 이용해서 부착되어 일체화 될 수도 있음을 밝혀둔다.
한편, 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 사이에는 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)와는 상이한 조성을 가지는 별도의 중간층(미도시)을 더 포함할 수 있으며, 이를 통해서 정전전극(112) 및 저항성 발열체(122) 중 어느 일방으로부터 타방으로 전달되는 전류의 리크를 방지할 수 있다. 또는 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)의 조성이 상이할 경우 어느 일방의 소결체로부터 타방의 소결체로 어떤 성분이 확산되는 것을 방지할 수 있다.
또한, 상기 정전 척부(110)는 정전전극(112)을 포함하며, 상기 정전전극(112)은 통상적인 정전 척에 구비되는 정전전극 재질일 수 있고, 일 예로 몰리브덴 또는 텅스텐일 수 있다.
또한, 상기 히터부(120)는 제2세라믹스 소결체(121) 내부에 저항 발열체(122)를 구비하는데 상기 저항 발열체(122)는 통상적인 정전 척 히터 내 발열체로 사용되는 것은 제한 없이 채용될 수 있으며, 일 예로 텅스텐 또는 몰리브덴 등의 도전성 재료에 의해 형성된 것일 수 있다. 이때, 상기 저항 발열체(122)는 도 2에 도시된 것과 같이 여러 개가 제2세라믹스 소결체(121) 내부에 매설되거나, 하나의 저항 발열체가 나선형 등의 다양한 형상으로 구현되어 구비될 수도 있다. 한편, 저항 발열체(122)가 매설된 구체적 패턴은 통상적인 정전 척 히터 내 저항 발열체의 패턴을 제한 없이 채용할 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 본 발명은 상술한 본 발명에 따른 정전 척 히터(100) 및 상기 정전 척 히터(100)의 제2면 측에 배치되는 냉각부재를 포함하는 반도체 유지장치를 포함한다.
상기 냉각부재는 정전 척 히터(100) 상에 파지된 반도체 웨이퍼의 온도를 조절하기 위한 것으로써 히터부(120)를 통해 가열된 반도체 웨이퍼를 냉각시키는 역할을 할 수 있다. 상기 냉각부재는 반도체 유지장치에 통상적으로 채용되는 냉각부재의 경우 제한 없이 사용될 수 있다. 일 예로 상기 냉각부재는 알루미늄이나 티타늄으로 형성된 냉각 기판과 상기 냉각 기판 내부에 냉매가 흐를 수 있는 유로가 형성된 것일 수 있다.
또한, 상기 반도체 유지장치는 정전 척 히터(100) 및 냉각부재 이외에 반도체 유지장치에 채용되는 공지의 구성, 일 예로 정전 척 히터(100)의 정전전극(112) 및 저항 발열체(122)에 전류를 인가할 수 있는 전원, 포커스링용 정전 척을 구비한 포커스링 배치대, 이들을 지지하는 설치판 등 공지의 구성을 제한 없이 채용할 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
정전 척 또는 정전 척 히터에 구비되는 질화규소 소결체의 특성을 살펴보기 위하여 아래와 같은 준비예를 통해 질화규소 소결체를 제조였다.
<준비예1>
반도체 공정용 치구 유래의 다결정 실리콘 스크랩(순도 99.99%, 저항율 1Ω㎝)을 젯밀을 이용하여 건식분쇄시켜서 평균입경이 4㎛인 금속 실리콘 분말을 준비했다. 여기에 평균입경이 0.5㎛인 산화이트륨 2몰%, 평균입경이 0.5㎛인 산화마그네슘 5몰%를 혼합해 혼합원료분말을 준비했다. 준비된 혼합원료분말 100 중량부를 용매인 에탄올 80 중량부, 유기바인더로 폴리비닐부티랄 10 중량부와 혼합해 그래뉼 제조용 슬러리를 제조했고, 이를 열분무 장치를 이용해 분무건조시켜서 D50 값이 20㎛인 그래뉼을 제조했다. 제조된 그래뉼을 질소가스 압력 0.15MPa에서 열처리했고, 구체적으로 1000℃까지는 승온속도를 5℃/분, 1000℃에서 1400℃까지는 승온속도를 0.5℃/분로 한 뒤, 1400℃에서 2시간 동안 열처리해 질화처리된 그래뉼을 수득했고, 이를 에어 제트밀을 통해 분쇄시켜 평균입경이 2㎛인 하기 표 1과 같은 질화규소 분말을 수득했다.
이후, 수득된 질화규소 분말 100 중량부에 대해 폴리비닐부티랄 수지 5중량부, 용매로써 톨루엔과 에탄올을 5:5로 혼합한 용제 50 중량부를 볼밀에서 혼합, 용해, 분산시켰다. 이후 제조된 슬러리를 통상적인 테이프 캐스팅(Tape casting) 방법을 통해 시트형상으로 제조한 후 170㎛ 시트형상으로 제조한 후 제조된 시트 4장을 교차적층한 후 질소 분위기 하에서 1900℃에서 4시간 열처리하여 표 1과 같은 질화규소 소결체를 제조했다
<비교준비예>
준비예1과 동일하게 실시하여 제조하되, 혼합원료분말을 그래뉼로 구현하지 않고, 질화규소분말로 수득 후 이를 통해 하기 표 1과 같은 질화규소 소결체를 제조했다.
<실험예1>
준비예1 및 비교준비예에서 제조된 질화규소 분말 또는 질화규소 세라믹 소결체에 대해서 하기의 물성을 평가해 그 결과를 하기 표 1에 나타내었다.
1. D50
레이저 회절 산란법을 사용하여 측정한 50% 체적 기준값을 D50값으로 하였다.
2. 소결밀도
제조된 질화규소 소결체에 대해서 아르키메데스 방법으로 소결 밀도를 측정했다.
3. 열전도도 및 균일성
제조된 질화규소 세라믹 소결체를 준비예1 및 비교준비예별 총 10개의 시편으로 준비한 뒤 이에 대해서 열전도도를 KS L 1604 (ISO 18755, ASTM E 1461) 방법으로 측정한 후 측정된 값의 평균값 및 표준편차를 계산했으며, 표준편차가 0에 가까울수록 열전도도가 균일함을 의미한다.
4. 3점 꺽임강도 및 균일성
제조된 질화규소 소결체를 준비예1 및 비교준비예별 총 10개의 시편으로 준비한 뒤 이에 대해서 3점 꺽임강도(S)는 KS L 1590 (ISO 14704) 방법으로 측정한 후 아래의 식에 대입하여 계산된 값의 평균값 및 표준편차를 계산했다. 3점 꺽임강도 표준편차가 0에 가까울수록 3점 꺽임강도가 균일함을 의미한다.
[식]
S = 3PL/(2bd2)
식에서 P는 파괴하중, L은 지점 간의 거리, b는 보의 폭, d는 보의 두께이다.
실시예1 비교예1
혼합원료분말 MgO(몰%) 5 5
Y2O3(몰%) 2 2
그래뉼 D50(㎛) 20 -
질화조건 질소가스압력(MPa) 0.15 0.15
1000℃부터 질화온도까지 승온속도(℃/분) 0.5 0.5
질화온도(℃) 1400 1400
질화규소 소결체 소결 밀도(g/㎝3) 3.21 3.21
열전도도
(W/mK)
평균값 94 81
표준편차 3 8
3점 꺽임강도
(MPa)
평균값 680 550
표준편차 20 50
표 1을 통해 확인할 수 있듯이 준비예1에 따른 질화규소 소결체는 비교준비예에 따른 질화규소 소결체에 대비해 열전도도 및 3점 꺽임강도가 우수하면서도 균일한 특성을 발현하는 것을 알 수 있는데, 이는 질화규소 소결체 제조에 사용되는 질화규소 분말의 그래뉼화 및 이로 인한 질화균일성 증대에 기인한 결과로 예상된다.
<준비예 2 ~ 9>
준비예1과 동일하게 실시하여 제조하되, 혼합원료분말에서 성분의 함량이나 그래뉼의 D50 값, 질화조건 등을 하기 표 2 또는 표 3과 같이 변경해 질화규소 분말을 수득했고, 이를 통해서 하기 표 2 또는 표 3과 같은 질화규소 분말 및 질화규소 소결체를 제조했다.
<실험예2>
준비예1 ~ 준비예9에서 제조된 질화규소 분말 또는 질화규소 소결체에 대해서 하기의 물성을 평가해 그 결과를 하기 표 2 또는 표 3에 나타내었다.
1. 결정상
질화규소 분말에 대해서 XRD 측정을 통해서 α 및 β결정상을 정량화했으며, 하기의 식을 통해서 α 결정상의 중량비율을 계산했다.
α 결정상의 중량비 = α/(α+β)
2. D50
레이저 회절 산란법을 사용하여 측정한 50% 체적 기준값을 D50값으로 하였다.
3. 소결밀도
제조된 질화규소 소결체에 대해서 아르키메데스 방법으로 소결 밀도를 측정했다.
4. 열전도도
각 실시예 별로 제조된 질화규소 소결체 10개에 대해서 열전도도는 KS L 1604 (ISO 18755, ASTM E 1461) 방법으로 측정해 측정된 값의 평균값을 계산했다.
5. 3점 꺽임강도
각 실시예별로 제조된 질화규소 소결체 10개에 대해서 3점 꺽임강도(S)는 KS L 1590 (ISO 14704) 방법으로 측정하여 아래 식으로 계산하였고, 계산된 값의 평균값을 계산했다.
[식]
S = 3PL/(2bd2)
식에서 P는 파괴하중, L은 지점 간의 거리, b는 보의 폭, d는 보의 두께이다.
준비예1 준비예2 준비예3 준비예4 준비예5 준비예6
혼합원료분말 MgO(몰%) 5 5 5 5 5 5
Y2O3(몰%) 2 2 2 2 2 2
그래뉼 D50(㎛) 20 30 40 60 80 100
질화조건 질소가스압력(MPa) 0.15 0.15 0.15 0.15 0.15 0.15
1000℃부터 질화온도까지 승온속도(℃/분) 0.5 0.5 0.5 0.5 0.5 0.5
질화온도(℃) 1400 1400 1400 1400 1400 1400
질화규소분말 α결정상 중량비
[α/(α+β)]
0.97 0.92 0.87 0.85 0.78 0.70
용출 Si(중량%) 0 0 0 4 8 9
질화규소 소결체 소결 밀도(g/㎝3) 3.21 3.20 3.17 3.01 2.92 2.94
열전도도(W/mK) 94 82 77 62 58 53
3점 꺽임강도(MPa) 680 750 650 460 420 380
준비예7 준비예8 준비예9
혼합원료분말 MgO(몰%) 7 10 15
Y2O3(몰%) 2 2 2
그래뉼 D50(㎛) 32 32 32
질화조건 질소가스압력(MPa) 0.15 0.15 0.15
1000℃부터 질화온도까지 승온속도(℃/분) 0.5 0.5 0.5
질화온도(℃) 1400 1400 1400
질화규소분말 α결정상 중량비
[α/(α+β)]
0.79 0.92 0.95
용출 Si(중량%) 0 0 0
질화규소 소결체 소결 밀도(g/㎝3) 3.21 3.21 3.20
열전도도(W/mK) 121 87 82
3점 꺽임강도(MPa) 750 720 680
표 2 및 표 3을 통해 확인할 수 있듯이,
준비예들은 혼합원료분말을 적절한 크기의 그래뉼로 제조된 후 질화됨에 따라서 수득된 질화규소 분말을 이용해 제조된 기판의 열전도도 및 3점 꺽임 강도를 개선하는데 매우 적합한 분말임을 확인할 수 있다. 다만, 준비예 6과 같이 그래뉼의 크기가 큰 경우 질화규소 분말에서 용출되는 실리콘의 함량이 높을 수 있고, 이 경우 제조된 질화규소 소결체의 기계적 강도와 열전도도를 개선하기에 부족할 수 있음을 알 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (13)

  1. 질화규소 분말이 소결되어 형성된 질화규소 소결체; 및
    상기 질화규소 소결체 내부에 매설된 정전전극;을 포함하는 정전 척.
  2. 제1항에 있어서,
    상기 질화규소 소결체는 다결정 실리콘이 9중량% 이하인 정전 척.
  3. 제1항에 있어서,
    상기 질화규소 소결체는 α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 이상인 질화규소 분말이 소결되어 형성된 정전 척.
  4. 제1항에 있어서,
    상기 질화규소 소결체는 열전도도가 70W/mK 이상이고, 3점 꺽임강도가 650 MPa 이상인 정전 척.
  5. 제1항에 있어서, 상기 질화규소 분말은
    금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계;
    상기 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성시킨 뒤 분무건조시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계;
    상기 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화시키는 단계; 및
    질화시킨 그래뉼을 분쇄시키는 단계;를 포함하여 제조되는 정전 척.
  6. 제5항에 있어서,
    상기 금속 실리콘 분말은 분쇄 중 금속 불순물로 오염되는 것을 최소화하기 위하여 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩을 건식 분쇄시킨 것인 정전 척.
  7. 제5항에 있어서,
    상기 금속 실리콘 분말은 평균입경이 0.5 내지 4㎛, 희토류 원소 함유 화합물 분말은 평균입경이 0.1 내지 1㎛, 마그네슘 함유 화합물 분말은 평균입경이 0.1 내지 1㎛인 정전 척.
  8. 제5항에 있어서,
    상기 그래뉼은 D50 값이 20 ~ 55㎛인 정전 척
  9. 제5항에 있어서,
    상기 희토류 원소 함유 화합물은 산화이트륨이며, 상기 마그네슘 함유 화합물은 산화마그네슘이고,
    혼합원료분말에 상기 산화이트륨은 2 내지 5몰%, 상기 산화마그네슘은 2 내지 10몰%로 포함되는 정전 척.
  10. 제5항에 있어서,
    질화 시 1000℃ 이상에서부터 소정의 온도까지 0.5 내지 10℃/분의 승온속도로 가열되며, 상기 질소가스는 0.1 내지 0.2MPa의 압력으로 가해지는 정전 척.
  11. 웨이퍼가 흡착되는 제1면과 이에 대향하는 제2면을 가지는 정전 척 히터에 있어서, 상기 정전 척 히터는
    어느 일면이 상기 제1면인 제1세라믹스 소결체 및 상기 제1세라믹스 소결체 내부에 매설된 정전전극을 포함하는 정전 척부; 및
    어느 일면이 상기 제2면인 제2세라믹스 소결체 및 상기 제2세라믹스 소결체 내부에 매설된 적어도 하나의 저항 발열체를 포함하는 히터부;를 구비하며,
    상기 제1세라믹스 소결체 및 제2세라믹스 소결체 중 어느 하나 이상은 질화규소 분말이 소결되어 형성된 질화규소 소결체인 정전 척 히터.
  12. 제11항에 있어서,
    상기 제1세라믹스 소결체 및 제2세라믹스 소결체는 동시 소결되어 하나의 몸체로 구현되는 정전 척 히터.
  13. 제11항에 따른 정전 척 히터; 및
    상기 정전 척 히터의 제2면측에 배치되는 냉각부재;를 포함하는 반도체 유지장치.
PCT/KR2022/003810 2021-03-19 2022-03-18 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치 WO2022197145A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210036005 2021-03-19
KR10-2021-0036005 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022197145A1 true WO2022197145A1 (ko) 2022-09-22

Family

ID=83321531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003810 WO2022197145A1 (ko) 2021-03-19 2022-03-18 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치

Country Status (2)

Country Link
KR (1) KR102624914B1 (ko)
WO (1) WO2022197145A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699192B2 (ja) * 1990-04-09 1994-12-07 科学技術庁無機材質研究所長 高靭性窒化けい素焼結体の製造法
JP3488334B2 (ja) * 1996-04-15 2004-01-19 京セラ株式会社 静電チャック
US20090242544A1 (en) * 2005-10-12 2009-10-01 Shin-Etsu Chemical Co., Ltd. Wafer heating apparatus having electrostatic attraction function
JP4648030B2 (ja) * 2005-02-15 2011-03-09 日本碍子株式会社 イットリア焼結体、セラミックス部材、及び、イットリア焼結体の製造方法
JP4986830B2 (ja) * 2007-12-07 2012-07-25 日本碍子株式会社 基板保持体及びその製造方法
JP2013157570A (ja) * 2012-01-31 2013-08-15 Taiheiyo Cement Corp ヒータ付き静電チャック
JP2019052072A (ja) * 2017-09-19 2019-04-04 株式会社Maruwa 窒化ケイ素焼結体基板、電子装置、及び、窒化ケイ素焼結体基板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670416B2 (ja) 1995-11-01 2005-07-13 日本碍子株式会社 金属包含材および静電チャック
KR101769608B1 (ko) * 2016-10-05 2017-08-21 주식회사 케이에스엠컴포넌트 정전척의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699192B2 (ja) * 1990-04-09 1994-12-07 科学技術庁無機材質研究所長 高靭性窒化けい素焼結体の製造法
JP3488334B2 (ja) * 1996-04-15 2004-01-19 京セラ株式会社 静電チャック
JP4648030B2 (ja) * 2005-02-15 2011-03-09 日本碍子株式会社 イットリア焼結体、セラミックス部材、及び、イットリア焼結体の製造方法
US20090242544A1 (en) * 2005-10-12 2009-10-01 Shin-Etsu Chemical Co., Ltd. Wafer heating apparatus having electrostatic attraction function
JP4986830B2 (ja) * 2007-12-07 2012-07-25 日本碍子株式会社 基板保持体及びその製造方法
JP2013157570A (ja) * 2012-01-31 2013-08-15 Taiheiyo Cement Corp ヒータ付き静電チャック
JP2019052072A (ja) * 2017-09-19 2019-04-04 株式会社Maruwa 窒化ケイ素焼結体基板、電子装置、及び、窒化ケイ素焼結体基板の製造方法

Also Published As

Publication number Publication date
KR102624914B1 (ko) 2024-01-15
KR20220131187A (ko) 2022-09-27

Similar Documents

Publication Publication Date Title
CN111051267B (zh) 用于制备氮化硅烧结体的流延成型浆料组合物
WO2011021824A2 (ko) 정전척 및 이의 제조 방법
WO2020036452A1 (ko) 접합강도가 우수한 질화물 세라믹스 활성금속 브레이징 기판의 제조방법
WO2015003508A1 (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
WO2019004589A1 (ko) 질화 알루미늄 소결체 및 이를 포함하는 반도체 제조 장치용 부재
WO2020096267A1 (ko) 정전 척 및 그 제조 방법
WO2018194366A1 (ko) 실란트로 실링된 정전척 및 이의 제조방법
WO2022197145A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
WO2021060731A1 (ko) 질화알루미늄 소결체 및 질화알루미늄 소결체의 제조방법
WO2022250394A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
KR20220015004A (ko) 옥시불화이트륨(yof)계 용사 코팅용 분말 제조 방법
KR20190032966A (ko) 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물
WO2023277559A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
WO2013073802A1 (ko) 열 안정성이 우수한 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
US6316116B1 (en) Ceramic circuit board and method of manufacturing the same
WO2022235067A1 (ko) 질화규소 기판 제조방법 및 이를 통해 제조된 질화규소 기판
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
WO2020256394A1 (ko) 복합재의 제조 방법 및 복합재
WO2019093781A1 (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스
JP2002220282A (ja) 窒化アルミニウム焼結体とその製造方法
KR20230045740A (ko) 저항 조절이 가능한 반도체 제조공정용 엣지링 및 그 제조방법
KR20230109114A (ko) 정전 척 히터 소결체 제조용 세라믹 조성물 및 이를 이용한 정전 척 히터용 질화규소 소결체 제조방법
WO2023243888A1 (ko) 내식각성 세라믹 부품 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771811

Country of ref document: EP

Kind code of ref document: A1