WO2023277559A1 - 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치 - Google Patents

정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치 Download PDF

Info

Publication number
WO2023277559A1
WO2023277559A1 PCT/KR2022/009287 KR2022009287W WO2023277559A1 WO 2023277559 A1 WO2023277559 A1 WO 2023277559A1 KR 2022009287 W KR2022009287 W KR 2022009287W WO 2023277559 A1 WO2023277559 A1 WO 2023277559A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
electrostatic chuck
silicon nitride
powder
silicon
Prior art date
Application number
PCT/KR2022/009287
Other languages
English (en)
French (fr)
Inventor
이지형
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2023277559A1 publication Critical patent/WO2023277559A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic

Definitions

  • the present invention relates to an electrostatic chuck, an electrostatic chuck heater including the same, and a semiconductor holding device.
  • Electrostatic chucks are used to adsorb and hold semiconductor wafers in film manufacturing processes such as transport, exposure, chemical vapor deposition (CVD), sputtering, and a series of steps such as microfabrication, cleaning, etching, and dicing. .
  • film manufacturing processes such as transport, exposure, chemical vapor deposition (CVD), sputtering, and a series of steps such as microfabrication, cleaning, etching, and dicing.
  • As a substrate of such an electrostatic chuck research on dense ceramics is being actively conducted.
  • halogen corrosive gases such as ClF 3 are often used as etching gases or cleaning gases.
  • the substrate of the electrostatic chuck has high thermal conductivity.
  • thermal shock resistance that is not easily destroyed by such a rapid temperature change is also required.
  • a plasma method is used for etching or deposition in a semiconductor process, a demand for a substrate of an electrostatic chuck having plasma resistance is increasing day by day.
  • aluminum nitride which is widely used as a material for an electrostatic chuck substrate, has excellent heat dissipation characteristics, but is easily damaged by plasma in an etching or deposition process in which a plasma method is used during a semiconductor process, resulting in a decrease in durability.
  • cracks are frequently generated due to thermal shock.
  • durability reduction due to plasma or thermal shock shortens the replacement cycle of the electrostatic chuck.
  • the present invention has been devised in view of the above points, and has chemical resistance to chemicals such as corrosive gases applied during the semiconductor process, plasma resistance to plasma treatment, and thermal shock resistance due to rapid temperature change, while having heat dissipation characteristics It is an object to provide an excellent electrostatic chuck, an electrostatic chuck heater including the same, and a semiconductor holding device.
  • the present invention has been devised in consideration of the above points, and includes a silicon nitride sintered body, a corrosion-resistant and plasma-resistant silicon carbide (SiC) surface modification layer covering at least a part of the outer surface of the silicon nitride sintered body, and an electrostatic electrode buried inside the silicon nitride sintered body. It provides an electrostatic chuck that includes.
  • SiC silicon carbide
  • the electrostatic chuck has a power of 500 W or more, a mixed gas including 10 to 100 sccm of CF 4 gas, 0.1 to 50 sccm of O 2 gas, and 1 to 70 sccm of Ar gas, and a pressure of 1 to 30 mTorr.
  • a mixed gas including 10 to 100 sccm of CF 4 gas, 0.1 to 50 sccm of O 2 gas, and 1 to 70 sccm of Ar gas, and a pressure of 1 to 30 mTorr.
  • the relative etching rate may be 0.9 nm/min or less.
  • the silicon carbide (SiC) surface modification layer is formed by modifying the outer surface of the silicon nitride sintered body, and the modification may be performed by carburizing or oxidizing.
  • the carburization hardening method may be performed for 5 to 35 hours at a temperature condition of 700 to 1100 ° C. under a mixed gas containing propane, ammonia, benzene and LPG.
  • the oxidation treatment may be performed for 30 to 300 minutes at a temperature condition of 500 to 1300 ° C. under an air atmosphere (Air).
  • the silicon carbide (SiC) surface modification layer may have a thickness of 0.2 nm or more.
  • the silicon nitride sintered body may be formed by sintering silicon nitride powder containing 8% by weight or less of polycrystalline silicon.
  • the silicon nitride sintered body may be formed by sintering silicon nitride powder having a weight ratio of 0.7 or more of the ⁇ crystal phase to the total weight of the ⁇ crystal phase and the ⁇ crystal phase.
  • the silicon nitride sintered body may have a thermal conductivity of 90 W/mK or more and a three-point bending strength of 700 MPa or more.
  • the silicon nitride sintered body is prepared by sintering silicon nitride powder, and the silicon nitride powder includes a metal silicon powder, and a crystal phase control powder including a rare earth element-containing compound and a magnesium-containing compound.
  • Preparing a mixed raw powder preparing granules having a predetermined particle diameter by mixing the mixed raw material powder with a solvent and an organic binder to form a slurry and then spray-drying the slurry; nitriding at a predetermined temperature in the range of 1200 to 1500 ° C. while applying nitrogen gas at a predetermined pressure to the granules; It can be prepared including; and crushing the nitrided granules.
  • the metal silicon powder may be obtained by dry grinding polycrystalline metal silicon scrap or single crystal silicon wafer scrap in order to minimize contamination with metal impurities during grinding.
  • the metal silicon powder may have an average particle diameter of 0.5 to 4 ⁇ m
  • the rare earth element-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m
  • the magnesium-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m.
  • the granules may have a D50 value of 100 ⁇ m or less.
  • the rare earth element-containing compound may be yttrium oxide
  • the magnesium-containing compound may be magnesium oxide, and 2 to 5 mol% of yttrium oxide and 2 to 10 mol% of magnesium oxide may be included in the mixed raw material powder.
  • the nitrogen gas may be applied at a pressure of 0.1 to 0.2 MPa.
  • the nitriding treatment may be heated from 1000° C. or more to a predetermined temperature at a temperature rising rate of 0.5 to 10° C./min.
  • the present invention is an electrostatic chuck heater having a first surface on which a wafer is adsorbed and a second surface opposite to the first surface, wherein the electrostatic chuck heater has a first ceramic sintered body on which one surface is the first surface, and the inside of the first ceramic sintered body.
  • an electrostatic chuck unit including an electrostatic electrode embedded in the second ceramic sintered body, one surface of which is the second surface, and a heater unit including at least one resistance heating element embedded in the second ceramic sintered body, wherein the first ceramic sintered body is At least one of the sintered body and the second ceramic sintered body provides an electrostatic chuck heater that is a silicon nitride sintered body having a plasma-resistant and corrosion-resistant silicon carbide (SiC) surface modification layer on at least a portion of an outer surface.
  • SiC silicon carbide
  • the first ceramic sintered body and the second ceramic sintered body may be simultaneously sintered and realized as one body.
  • the present invention provides a semiconductor holding device including an electrostatic chuck heater according to the present invention and a cooling member disposed on the second side of the electrostatic chuck heater.
  • the electrostatic chuck according to the present invention is equipped with a silicon nitride ceramic sintered body, it exhibits the same or similar heat dissipation performance compared to the aluminum nitride ceramics sintered body, which has been widely used in the past, while exhibiting excellent plasma resistance, chemical resistance, and thermal shock resistance, and thus a semiconductor. It can be widely used in the process.
  • the electrostatic chuck according to the present invention can secure more excellent plasma resistance as a silicon carbide (SiC) surface modification layer is formed on the outer surface of the ceramic sintered body, which is silicon nitride, by carburizing or oxidizing.
  • SiC silicon carbide
  • FIG. 1 is a schematic cross-sectional view of an electrostatic chuck according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electrostatic chuck heater according to an embodiment of the present invention.
  • an electrostatic chuck 10 is implemented by including a silicon nitride sintered body 11 , a surface modification layer 13 and an electrostatic electrode 12 .
  • the electrostatic chuck 10 is a device that adsorbs and holds an object, for example, a semiconductor wafer by electrostatic attraction, and is used, for example, to fix a semiconductor wafer in a semiconductor manufacturing process.
  • the electrostatic chuck 10 may have a support surface conforming to the shape of an object to be gripped.
  • the electrostatic chuck 10 may have a disk shape to conform to the shape of a wafer.
  • the size of the electrostatic chuck 10 may be the size of a typical electrostatic chuck used in semiconductor manufacturing, but is not limited thereto.
  • the silicon nitride sintered body 11 corresponds to the body of the electrostatic chuck 10, and serves to support the electrostatic electrode 12 buried therein and to provide a support surface for adsorbing an object such as a semiconductor wafer. do.
  • the silicon nitride sintered body 11 has excellent plasma resistance, chemical resistance, thermal shock resistance, and excellent heat dissipation characteristics, and may be particularly useful for electrostatic chucks used in semiconductor processes.
  • the silicon nitride sintered body 11 may be implemented through silicon nitride powder manufactured by the manufacturing method described below to express more improved characteristics in the above-described physical properties.
  • the silicon nitride powder preparing a mixed raw material powder containing a metal silicon powder, and a crystal phase control powder containing a rare earth element-containing compound and a magnesium-containing compound; preparing granules having a predetermined particle diameter by mixing the mixed raw material powder with a solvent and an organic binder to form a slurry and spray-drying; nitriding at a predetermined temperature in the range of 1200 to 1500 ° C. while applying nitrogen gas at a predetermined pressure to the granules; and crushing the nitrided granules; It can be manufactured including.
  • the main metal silicon powder can be used without limitation in the case of metal silicon powder capable of producing silicon nitride powder through a direct nitriding method.
  • the metal silicon powder may be polycrystalline metal silicon scrap or single crystal silicon wafer scrap.
  • the polycrystalline metal silicon scrap may be a by-product of polycrystalline metal silicon used for semiconductor processing fixtures or solar panel manufacturing, and single-crystal silicon wafer scrap is also a by-product during silicon wafer manufacturing, so these scraps, which are by-products, are used as raw material powder. Through this, the manufacturing cost can be lowered.
  • the polycrystalline metal silicon scrap or single crystal silicon wafer scrap may have a purity of 99% or more, and it may be more advantageous to ensure thermal conductivity and mechanical strength of the sintered body when sintering the silicon nitride powder manufactured through this.
  • the metal silicon powder may have a resistivity of 1 to 100 ⁇ cm, and through this, the present invention may be more advantageous than preparing a silicon nitride powder having desired physical properties.
  • the metal silicon powder used as the raw material powder may preferably be pulverized polycrystalline metal silicon scrap or single crystal silicon wafer scrap into a predetermined size.
  • the pulverization may use a dry pulverization method. can make it If contaminants are contained in the metal silicon powder, there is a concern of increasing manufacturing time and cost due to further washing processes such as acid washing to remove contaminants.
  • the average particle diameter of the pulverized metal silicon powder may be 0.5 ⁇ 4 ⁇ m, more preferably 2 ⁇ 4 ⁇ m, if the average particle diameter is less than 0.5 ⁇ m, it may be difficult to implement through the dry grinding method, due to fine powder There is a concern that the possibility of mixing of contaminants may increase, and densification may be difficult during sheet casting. In addition, if the average particle diameter of the metal silicon powder exceeds 4 ⁇ m, nitriding is not easy, so there is a concern that non-nitriding parts may exist, and densification of the final sintered body may be difficult.
  • silicon nitride is difficult to self-diffusion and can be thermally decomposed at high temperatures, so sintering is not easy due to limitations in sintering temperature, and it is difficult to realize a dense sintered body.
  • a mixed raw material powder obtained by mixing a crystal phase control powder with metal silicon powder is used as a raw material powder.
  • the crystalline phase control powder may be, for example, a rare earth element-containing compound, an alkaline earth metal oxide, and a combination thereof, and specifically, magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O), At least one selected from the group consisting of holmium oxide (Ho 2 O 3 ), erbium oxide (Er 2 O 3 ), yrtebium oxide (Yb 2 O 3 ), and dysprosium oxide (Dy 2 O 3 ) may be used. .
  • magnesium oxide and yttrium oxide are necessarily contained in the crystal phase control powder, and the magnesium oxide and yttrium oxide are more densified when manufacturing a sintered body using the prepared silicon nitride powder.
  • the thermal conductivity of the sintered body can be further improved by implementing a high-density sintered body and reducing the amount of residual grain boundary phase during sintering.
  • the mixed raw material powder may contain 2 to 5 mol% of the yttrium oxide and 2 to 10 mol% of the magnesium oxide. If the amount of yttrium oxide is less than 2 mol%, it may be difficult to realize a densified sintered body when sintering the silicon nitride powder implemented, and it is difficult to capture oxygen on the grain boundary. Mechanical strength may also be reduced. In addition, if the yttrium oxide exceeds 5 mol%, there is a concern that the thermal conductivity and fracture toughness of the sintered body obtained by sintering the silicon nitride powder are reduced due to the increase of grain boundary phases.
  • both thermal conductivity and mechanical strength of the sintered body obtained by sintering the silicon nitride powder may be low, there is a risk of silicon elution during nitriding, and it may be difficult to prepare a densified sintered body.
  • the amount of magnesium oxide exceeds 10 mol%, the residual amount of magnesium increases at the grain boundary during sintering, and as a result, the thermal conductivity of the sintered body may be lowered, the sintering of the silicon nitride powder is not easy, and the fracture toughness is reduced.
  • the rare earth element-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m
  • the magnesium-containing compound powder may have an average particle diameter of 0.1 to 1 ⁇ m, and through this, it may be more advantageous to achieve the object of the present invention.
  • a step of preparing granules having a predetermined particle size by mixing the prepared raw material powder with a solvent and an organic binder to form a slurry and then spray-drying the mixture is performed.
  • the granules are prepared into granules having a predetermined particle size, and then the granules are subjected to a nitriding process, which will be described later.
  • the crystalline phase of the silicon nitride powder produced is more easily obtained by increasing the mixing uniformity of the mixed raw material powder. It can be controlled in a certain way, and the secondary phase of Si 2 Y 2 O 5 can be formed, so that the thermal conductivity of the sintered body can be further improved, and silicon nitride powder having uniform characteristics can be manufactured.
  • the granules may have a D50 value of 100 ⁇ m or less, more preferably 20 to 100 ⁇ m, and even more preferably 20 to 55 ⁇ m. If the D50 exceeds 100 ⁇ m, the inflow of nitrogen gas into the granules is not smooth. Nitriding does not occur completely, and silicon that is not nitrided can be melted and eluted out of the granules. There are concerns.
  • the D50 value means a value on a 50% volume basis measured using a laser diffraction scattering method.
  • the granules can be obtained through dry spraying, and can be obtained using known conditions and equipment capable of performing dry spraying, so the present invention is not particularly limited thereto.
  • the mixed raw material powder is implemented as a slurry mixed with a solvent and an organic binder and then dry sprayed.
  • the solvent preferably includes at least one selected from ethanol, methanol, isopropanol, distilled water, and acetone.
  • PVB polyvinyl butyral
  • a nitriding treatment step is performed at a predetermined temperature in the range of 1200 to 1500 ° C. while applying nitrogen gas at a predetermined pressure to the obtained granules.
  • the nitrogen gas may be applied at a pressure of 0.1 to 0.2 MPa, more preferably at a pressure of 0.15 to 0.17 MPa. If the nitrogen gas pressure is less than 0.1 MPa, nitrification may not occur completely. In addition, when the nitrogen gas pressure exceeds 0.2 MPa, a phenomenon in which silicon is eluted during the nitriding process occurs. In addition, during nitriding treatment, heating may be performed at a heating rate of 0.5 to 10 ° C / min from 1000 ° C or higher to a predetermined temperature. may be extended. In addition, when the heating rate exceeds 10° C./min, silicon is eluted, and thus it may be difficult to prepare a powder completely nitrided with silicon nitride.
  • the temperature during nitriding treatment may be selected within the range of 1200 to 1500 ° C. If the temperature during nitriding treatment is less than 1200 ° C., nitriding may not occur uniformly. In addition, since a ⁇ crystal phase is quickly formed when the temperature exceeds 1500° C. during nitriding, densification may be difficult when manufacturing a sintered body using such a silicon nitride powder.
  • a step of preparing nitrided granium into silicon nitride powder it may be preferably performed by a dry method to prevent incorporation of contaminants during pulverization, and for example, it may be performed through an air jet mill.
  • the silicon nitride powder produced by the above-described manufacturing method contains 8% by weight or less of polycrystalline silicon derived from molten silicon, and such a silicon nitride powder may be suitable for manufacturing a sintered body having improved mechanical strength and thermal conductivity.
  • the silicon nitride powder may contain polycrystalline silicon derived from molten silicon in an amount of 6% by weight or less, more preferably 4% by weight or less, and even more preferably 0% by weight.
  • the weight ratio of the ⁇ crystal phase in the total weight of the ⁇ crystal phase and the ⁇ crystal phase may be 0.7 or more. If the weight ratio of the ⁇ crystal phase in the total weight of the ⁇ crystal phase and the ⁇ crystal phase is less than 0.7, the silicon nitride powder It may be difficult to increase the compactness of the sintered body, and it may be difficult to improve thermal conductivity and mechanical strength, and particularly, it may be difficult to improve mechanical strength.
  • the silicon nitride powder can form a secondary phase of Si 2 Y 2 O 5 more uniformly on the grain boundary of the sintered body realized through this, and through this, a synergistic effect in improving the thermal conductivity of the sintered body can be expressed.
  • the silicon nitride powder may have an average particle diameter of 2 to 4 ⁇ m, and through this, it may be more advantageous to realize a sintered body having improved mechanical strength and thermal conductivity.
  • the above-described silicon nitride powder may be formed into a desired shape, for example, a disc-shaped molded body, and then subjected to a sintering process to be implemented as a silicon nitride sintered body 11 .
  • the molded article can be manufactured using a known sheet lamination method or press molding method.
  • the slurry obtained by mixing the above-described silicon nitride powder with a solvent and an organic binder may be manufactured by molding into a sheet according to a known method such as a doctor blade method. Thereafter, a molded body may be manufactured by laminating and thermally compressing several sheets of manufactured ceramic green sheets and processing them into a predetermined size.
  • an organic solvent may be used to dissolve the organic binder and disperse the silicon nitride powder to adjust the viscosity
  • a material capable of dissolving the organic binder may be used without limitation.
  • Examples include Terpineol, Dihydro terpineol (DHT), Dihydro terpineol acetate (DHTA), Butyl Carbitol Acetate (BCA), Ethylene Glycol, Ethylene, Isobutyl Alcohol, methyl ethyl ketone, butyl carbitol, texanol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), ethylbenzene, isopropylbenzene, cyclohexanone, cyclopentanone, Dimethyl sulfoxide, diethyl phthalate, toluene, mixtures thereof and the like can be used.
  • DHT Dihydro terpineol
  • DHTA Dihydro terpineol acetate
  • BCA Butyl Carbitol Acetate
  • Ethylene Glycol Ethylene
  • Isobutyl Alcohol methyl
  • the solvent it is preferable to mix 50 to 100 parts by weight of the solvent based on 100 parts by weight of the silicon nitride powder. If the content of the solvent is less than 50 parts by weight, the viscosity of the slurry is high, making it difficult to perform tape casting and difficult to control the coating thickness. If the content of the solvent exceeds 100 parts by weight, the viscosity of the slurry is too thin It takes a long time to dry, and it may be difficult to control the thickness.
  • the organic binder may be a cellulose derivative such as ethyl cellulose, methyl cellulose, nitrocellulose, or carboxycellulose, or a polymer resin such as polyvinyl alcohol, acrylic acid ester, methacrylic acid ester, or polyvinyl butyral, When considering forming a molded body in the form of a sheet by a tape casting method, polyvinyl butyral may be used as the organic binder.
  • the slurry may further include a known material contained in the slurry for forming a sheet, such as a dispersant and a plasticizer, and the present invention is not particularly limited thereto.
  • an electrode ink for forming the electrostatic electrode 12 may be treated on one green sheet for manufacturing a molded body so that the electrostatic electrode 12 described below is buried inside the silicon nitride sintered body 11.
  • the electrode ink may be a mixture of a conductive component, a solvent, and a binder, but the present invention is not particularly limited thereto.
  • the implemented molded body may be sintered through a known method to form the silicon nitride sintered body 11.
  • the electrode ink provided therein is also sintered to form the electrostatic electrode 12, thereby forming the electrostatic chuck to be finally obtained.
  • (10) can be prepared.
  • the molded body may be sintered at a temperature of 1800 to 1900° C. at 0.5 to 1.0 MPa, and through this, it may be more advantageous to realize a high-quality silicon nitride sintered body.
  • the silicon nitride sintered body 11 thus implemented has a thermal conductivity of, for example, 70 W/mK or more, preferably 80 W/mK or more, and even more preferably 90 W/mK or more, and a three-point bending strength of 650 MPa or more, preferably 680 MPa or more, more preferably 700 MPa or more.
  • At least a portion of the outer surface of the silicon nitride sintered body 11 described above includes a corrosion-resistant and plasma-resistant surface modification layer 13 .
  • a silicon nitride (Si 3 N 4 ) sintered body has excellent thermal shock resistance, but may be damaged in a plasma process performed on a wafer and an etching process using hydrofluoric acid or the like. Accordingly, the surface modification layer 13 may be included on at least a part of the outer surface in order to supplement plasma resistance and corrosion resistance to plasma and etching solutions in a plasma process or an etching process performed on a wafer.
  • the surface modification layer 13 may be a layer containing silicon carbide (SiC).
  • the silicon carbide (SiC) surface modification layer 13 is formed by modifying the outer surface of the silicon nitride sintered body, and at this time, the modification is performed by carburizing or oxidizing, preferably carburization. ) can be performed by
  • Carburizing may be a solid carburizing method, a gas carburizing method, or a liquid carburizing method.
  • the carburizing method of the present invention is a gas carburizing method, and is performed under a mixed gas containing propane, ammonia, benzene, and LPG. can do.
  • the carburization hardening method may include propane and ammonia at a flow rate of 1:0.8 to 1.2, preferably 1:0.9 to 1.1, and propane and benzene at a flow rate of 1:0.8 to 1.2, preferably 1:0.9 ⁇ 1.1 flow rate, and propane and LPG may be included at a flow rate of 1: 0.8 to 1.2, preferably 1: 0.9 to 1.1.
  • carburization hardening may be performed at a temperature condition of 700 to 1100 ° C, preferably 800 to 1000 ° C, more preferably 850 to 950 ° C.
  • the carburizing hardening method may be performed for 5 to 35 hours, preferably 15 to 30 hours, and more preferably 25 to 30 hours, and if the carburizing hardening time is less than 5 hours, the surface formed by carburizing heat treatment There may be a problem of the thickness of the modified layer 13, and if it exceeds 35 hours, there may be a problem of cracking due to a difference in thermal expansion coefficient.
  • the silicon carbide (SiC) surface modification layer 13 may be formed after washing and drying the surface on which the carburizing method was performed. At this time, drying It may be carried out for 30 to 90 minutes, preferably 45 to 75 minutes at a temperature of 50 to 90 °C, preferably at a temperature of 60 to 80 °C, but is not limited thereto.
  • the oxidation treatment may be performed for 30 to 300 minutes, preferably 30 to 90 minutes, and more preferably 60 to 90 minutes at a temperature condition of 500 to 1300 ° C., preferably 600 to 900 ° C. in an air atmosphere. . If the oxidation treatment temperature is less than 500 ° C, there may be a problem in synthesis due to less than the thickness of the surface modification layer 13, and if it exceeds 1300 ° C, SiO 2 may progress and there may be a problem in plasma resistance.
  • the silicon carbide (SiC) surface modification layer 13 may have a thickness of 0.2 nm or more, preferably 200 to 2,000 nm, more preferably 500 to 1,000 nm, and if the thickness is less than 0.2 nm, the plasma resistance There may be issues with gender.
  • the electrostatic chuck of the present invention has a power of 500 W or more, preferably 500 to 700 W, more preferably 550 to 650 W, CF 4 gas 10 to 100 sccm, preferably 10 to 50 sccm, more preferably 30 sccm, O 2 gas 0.1 to 50 sccm, preferably 1 to 20 sccm, more preferably 5 sccm, Ar gas 1 to 70 sccm, preferably is 5 to 30 sccm, more preferably a mixed gas containing 10 sccm, a pressure of 1 to 30 mTorr, preferably 5 to 20 mTorr, more preferably 10 mTorr, in a plasma environment having conditions, the etching rate of the Si wafer
  • the relative etching rate at 1.0 nm/min may be 0.9 nm/min or less, preferably 0.8 nm/min or less, and more preferably 0.6 to 0.7 nm/min, and thus has excellent
  • the electrostatic electrode 12 plays a role of holding the semiconductor wafer on the silicon nitride sintered body 11 by generating electrostatic force between an object to be attracted, for example, a semiconductor wafer and the silicon nitride sintered body 11 .
  • the electrostatic force may be of the Coulomb or Johnson-Rabek type.
  • the electrostatic electrode 12 may be a material of an electrostatic electrode provided in a typical electrostatic chuck, and may be formed of, for example, a conductive component such as tungsten or molybdenum.
  • the electrostatic electrode 12 may be provided as a single surface electrode or as a pair of internal electrodes, but is not limited thereto, and is a silicon nitride sintered body in the number, shape, and size of electrostatic electrodes provided in a typical electrostatic chuck. (11) can be buried.
  • the present invention includes an electrostatic chuck heater implemented using the above-described electrostatic chuck.
  • the electrostatic chuck heater 100 includes an electrostatic chuck unit 110 that adsorbs and fixes an object to be adsorbed using electrostatic force, and a heater unit 120 having a function of generating heat to be supplied to the object to be adsorbed. is implemented including
  • the electrostatic chuck heater 100 has a first surface on which an object to be attracted, for example, a semiconductor wafer, is absorbed and a second surface opposite to the first surface.
  • the first surface is one surface of the electrostatic chuck unit 110, and
  • the electrostatic chuck unit 110 and the heater unit 120 are positioned so that the second surface is one side of the heater unit 120 .
  • the electrostatic chuck unit 110 includes a first ceramic sintered body 111, a plasma-resistant and corrosion-resistant surface modification layer 113 formed on at least a portion of an outer surface of the first ceramic sintered body 111, and the first ceramic sintered body 111. It includes an electrostatic electrode 112 buried inside, and the heater part 120 includes a second ceramic sintered body 121, and a plasma-resistant and corrosion-resistant surface modification layer formed on at least a part of the outer surface of the second ceramic sintered body 121. 113 and at least one resistance heating element 122 buried in the second ceramic sintered body 121.
  • At this time, at least one of the first ceramic sintered body 111 and the second ceramics sintered body 121 is provided as a silicon nitride sintered body, and preferably may be the silicon nitride sintered body 11 of the electrostatic chuck 10 described above.
  • both the first ceramic sintered body 111 and the second ceramics sintered body 121 may be silicon nitride sintered bodies. Accordingly, the silicon nitride sintered body has a plasma resistance and corrosion resistance surface modification layer 113 on at least a part of the outer surface.
  • FIG. 2 shows that the surface modification layer 113 is provided on the outer surfaces of the first ceramic sintered body 111 and the second ceramics sintered body 121, it is not limited thereto, and the first ceramics sintered body 111 And the surface modification layer 113 may not be provided in any one of the second ceramic sintered body 121 .
  • the other may be a ceramic sintered body employed in a conventional electrostatic chuck heater, and the present invention is not particularly limited thereto.
  • first ceramic sintered body 111 and the second ceramics sintered body 121 may be sintered together to form a single body. That is, the first ceramic sintered body 111 and the second ceramics sintered body 121 can be formed into molded bodies by manufacturing ceramic components into green sheets and then laminating them as described in the manufacturing method of the silicon nitride sintered body 11 described above. In this case, the green sheets to be the first ceramic sintered body 111 and the green sheets to be the second ceramics sintered body 121 are stacked to form a single molded body, and then sintered simultaneously to form a single body. A sintered body can be implemented. However, it is not limited thereto, and it should be noted that the first ceramic sintered body 111 and the second ceramic sintered body 121 may be independently manufactured and then attached using a known bonding method to be integrated.
  • a separate intermediate layer (not shown) having a composition different from that of the first ceramic sintered body 111 and the second ceramic sintered body 121 may be further included between the first ceramic sintered body 111 and the second ceramic sintered body 121.
  • a separate intermediate layer (not shown) having a composition different from that of the first ceramic sintered body 111 and the second ceramic sintered body 121 may be further included between the first ceramic sintered body 111 and the second ceramic sintered body 121.
  • the electrostatic chuck unit 110 includes an electrostatic electrode 112, and the electrostatic electrode 112 may be made of an electrostatic electrode material provided in a conventional electrostatic chuck, and may be, for example, molybdenum or tungsten.
  • the heater unit 120 includes a resistance heating element 122 inside the second ceramic sintered body 121.
  • the resistance heating element 122 can be used as a heating element in a typical electrostatic chuck heater without limitation, , For example, it may be formed of a conductive material such as tungsten or molybdenum.
  • several resistance heating elements 122 may be buried inside the second ceramic sintered body 121, or one resistance heating element may be implemented in various shapes such as a spiral.
  • a pattern of a resistance heating element in a conventional electrostatic chuck heater may be employed without limitation, and thus the present invention is not particularly limited thereto.
  • the present invention includes a semiconductor holding device including the electrostatic chuck heater 100 according to the present invention described above and a cooling member disposed on the second surface side of the electrostatic chuck heater 100.
  • the cooling member is for controlling the temperature of the semiconductor wafer held on the electrostatic chuck heater 100 and may serve to cool the semiconductor wafer heated through the heater unit 120 .
  • the cooling member may be used without limitation in the case of a cooling member commonly employed in a semiconductor holding device.
  • the cooling member may include a cooling substrate made of aluminum or titanium and a passage through which a refrigerant may flow is formed inside the cooling substrate.
  • the semiconductor holding device applies current to the electrostatic electrode 112 and the resistance heating element 122 of the electrostatic chuck heater 100, other than the electrostatic chuck heater 100 and the cooling member.
  • Known configurations such as an applicable power source, a focus ring placement table having an electrostatic chuck for a focus ring, and a mounting plate supporting them can be employed without limitation, and the present invention is not particularly limited thereto.
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • the prepared silicon nitride sintered body was put into a box furnace, and oxidation treatment was performed for 60 minutes at a temperature of 600 ° C under an air atmosphere to form a silicon carbide (SiC) surface on a part of the outer surface of the silicon nitride sintered body.
  • SiC silicon carbide
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • the prepared silicon nitride sintered body was put into a box furnace, and oxidation treatment was performed for 60 minutes at a temperature of 1000 ° C under an air atmosphere to form a silicon carbide (SiC) surface on a part of the outer surface of the silicon nitride sintered body.
  • SiC silicon carbide
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • the prepared silicon nitride sintered body was put into a box furnace, and oxidation treatment was performed for 60 minutes at a temperature of 1200 ° C under an air atmosphere to form a silicon carbide (SiC) surface on a part of the outer surface of the silicon nitride sintered body.
  • SiC silicon carbide
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • a liquid carburizing method of impregnating the prepared silicon nitride sintered body in a wet solution (NaCN 60% by weight + KCN 40% by weight) for 9 hours was performed to form a silicon carbide (SiC) surface modification layer on a part of the outer surface of the silicon nitride sintered body.
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • a silicon nitride (Si 3 N 4 ) sintered body was prepared.
  • Part of the outer surface of the prepared silicon nitride sintered body is subjected to gas carburization for 12 hours under a mixed gas containing propane, ammonia, benzene and LPG at a flow rate of 1:1:1:1 at a temperature of 900 ° C.
  • a silicon carbide (SiC) surface modification layer was formed.
  • the etching depth, the etching rate, and the relative etching rate when the etching rate of the Si wafer was 1.0 nm/min were measured under the measurement conditions described below. Table 1 shows.
  • ICP Inductively Coupled Plasma
  • Plasma environment power 600W, CF 4 gas Mixed gas of 30 sccm, O 2 gas 5 sccm, Ar gas 10 sccm, pressure 10 mTorr, exposure time 60 minutes (Etching 5 min / Delay 5 min / 12 Step)

Abstract

정전 척이 제공된다. 본 발명의 일 실시예에 의한 정전 척은 질화규소 소결체, 상기 질화규소 소결체 외부면을 적어도 일부 덮는 내식성 및 내플라즈마성 실리콘 카바이드(SiC) 표면개질층 및 상기 질화규소 소결체 내부에 매설된 정전전극을 포함하여 구현된다. 이에 의하면, 질화규소인 세라믹스 소결체를 구비함에 따라서 종전 많이 사용되어오던 질화알루미늄 세라믹스 소결체에 대비해 동등 또는 유사 수준의 방열성능을 발현하면서도 내플라즈마성, 내화학성 및 내열충격성이 뛰어남에 따라서 반도체 공정에 널리 이용될 수 있다.

Description

정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
본 발명은 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치에 관한 것이다.
반도체 웨이퍼의 반송, 노광, 화학 기상 증착(CVD), 스퍼터링 등과 같은 막 제조 공정 및 미세 가공, 세정, 에칭, 다이싱 등의 일련의 단계에서, 반도체 웨이퍼를 흡착하고 유지하기 위하여 정전 척이 사용되고 있다. 이러한 정전 척의 기판(substrate)으로서 치밀질 세라믹에 대한 연구가 활발히 이루어지고 있다. 특히, 반도체 제조를 위한 장치에서는, 에칭 가스나 클리닝 가스로서 ClF3 등과 같은 할로겐 부식성 가스를 많이 이용한다. 또한, 반도체 웨이퍼를 척에 끼우면서 급속하게 가열하고 냉각시키기 위해서는, 정전 척의 기판이 높은 열 전도성을 구비할 것이 요구된다. 나아가 이와 같은 급격한 온도 변화에 의해 쉽게 파괴되지 않는 이러한 높은 내열충격성 또한 요구된다. 더불어 반도체 공정에서 식각이나 증착에 플라즈마 방식이 이용됨에 따라서 내플라즈마성을 갖는 정전 척의 기판에 대한 요구가 나날이 증가하고 있다.
그러나 정전 척 기판의 재질로 많이 사용되는 질화알루미늄의 경우 방열특성은 우수하나, 반도체 공정 중 플라즈마 방식이 이용되는 식각이나 증착공정에서 플라즈마에 의해 손상 받기 쉬워 내구성이 저하되는 문제가 있다. 또한, 열충격에 의해 크랙 발생이 잦은 문제가 있다. 더불어 플라즈마 또는 열충격에 의한 내구성 감소는 정전 척의 교체주기를 단축시키는 문제가 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 반도체 공정 중 가해지는 부식성 가스 등의 화학물질에 대한 내화학성, 플라즈마 처리에 대한 내플라즈마성 및 급격한 온도변화에 따른 내열충격성을 가지면서도 방열특성이 우수한 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치를 제공하는데 목적이 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 질화규소 소결체, 상기 질화규소 소결체 외부면을 적어도 일부 덮는 내식성 및 내플라즈마성 실리콘 카바이드(SiC) 표면개질층 및 상기 질화규소 소결체 내부에 매설된 정전전극을 포함하는 정전척을 제공한다.
본 발명의 일 실시예에 의하면, 상기 정전 척은 전력 500W 이상, CF4 가스 10 ~ 100 sccm, O2 가스 0.1 ~ 50 sccm, Ar 가스 1 ~ 70 sccm가 포함된 혼합가스, 압력 1 ~ 30 mTorr의 조건을 가지는 플라즈마 환경에서, Si 웨이퍼의 식각율이 1.0nm/min일 때의 상대 식각율이 0.9nm/min 이하일 수 있다.
또한, 실리콘 카바이드(SiC) 표면개질층은 질화규소 소결체 외부면을 개질시켜 형성되며, 상기 개질은 침탄경화법(carburizing) 또는 산화 처리(oxidizing)에 의해 수행될 수 있다.
또한, 침탄경화법은 프로판, 암모니아, 벤젠 및 LPG를 포함하는 혼합가스 하 700 ~ 1100℃의 온도 조건에서 5 ~ 35 시간동안 수행할 수 있다.
또한, 산화처리는 공기분위기(Air) 하 500 ~ 1300℃의 온도 조건에서 30 ~ 300분 동안 수행할 수 있다.
또한, 실리콘 카바이드(SiC) 표면개질층은 0.2 nm 이상의 두께를 가질 수 있다.
또한, 상기 질화규소 소결체는 다결정 실리콘이 8 중량% 이하인 질화규소 분말이 소결되어 형성된 것일 수 있다.
또한, 상기 질화규소 소결체는 α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 이상인 질화규소 분말이 소결되어 형성된 것일 수 있다.
또한, 상기 질화규소 소결체는 열전도도가 90W/mK 이상이고, 3점 꺽임강도가 700 MPa 이상일 수 있다.
또한, 상기 질화규소 소결체는 질화규소 분말을 소결시켜 제조하며, 상기 질화규소 분말은, 금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계; 상기 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성시킨 뒤 분무건조시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계; 상기 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화처리하는 단계; 및 질화처리된 그래뉼을 분쇄시키는 단계;를 포함하여 제조될 수 있다.
또한, 상기 금속 실리콘 분말은 분쇄 중 금속 불순물로 오염되는 것을 최소화하기 위하여 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩을 건식 분쇄시킨 것일 수 있다.
또한, 상기 금속 실리콘 분말은 평균입경이 0.5 내지 4㎛, 희토류 원소 함유 화합물 분말은 평균입경이 0.1 내지 1㎛, 마그네슘 함유 화합물 분말은 평균입경이 0.1 내지 1㎛일 수 있다.
또한, 상기 그래뉼은 D50 값이 100㎛ 이하일 수 있다.
또한, 상기 희토류 원소 함유 화합물은 산화이트륨이며, 상기 마그네슘 함유 화합물은 산화마그네슘이고, 혼합원료분말에 상기 산화이트륨은 2 내지 5몰%, 상기 산화마그네슘은 2 내지 10몰%로 포함될 수 있다.
또한, 질화처리 시 상기 질소가스는 0.1 내지 0.2MPa의 압력으로 가해질 수 있다.
또한, 질화처리 시 1000℃ 이상에서부터 소정의 온도까지 0.5 내지 10℃/분의 승온속도로 가열될 수 있다.
또한, 본 발명은 웨이퍼가 흡착되는 제1면과 이에 대향하는 제2면을 가지는 정전척 히터에 있어서, 상기 정전척 히터는 어느 일면이 상기 제1면인 제1세라믹스 소결체 및 상기 제1세라믹스 소결체 내부에 매설된 정전전극을 포함하는 정전척부, 및 어느 일면이 상기 제2면인 제2세라믹스 소결체 및 상기 제2세라믹스 소결체 내부에 매설된 적어도 하나의 저항 발열체를 포함하는 히터부를 구비하며, 상기 제1세라믹스 소결체 및 제2세라믹스 소결체 중 어느 하나 이상은 외부면의 적어도 일부에 내플라즈마성 및 내식성 실리콘 카바이드(SiC) 표면개질층이 구비된 질화규소 소결체인 정전척 히터를 제공한다.
본 발명의 일 실시예에 의하면, 상기 제1세라믹스 소결체 및 제2세라믹스 소결체는 동시 소결되어 하나의 몸체로 구현될 수 있다.
또한, 본 발명은 본 발명에 따른 정전척 히터, 및 상기 정전척 히터의 제2면측에 배치되는 냉각부재를 포함하는 반도체 유지장치를 제공한다.
본 발명에 따른 정전 척은 질화규소인 세라믹스 소결체를 구비함에 따라서 종전 많이 사용되어오던 질화알루미늄 세라믹스 소결체에 대비해 동등 또는 유사 수준의 방열성능을 발현하면서도 내플라즈마성, 내화학성 및 내열충격성이 뛰어남에 따라서 반도체 공정에 널리 이용될 수 있다.
또한, 본 발명의 따른 정전 척은 침탄경화법(carburizing) 또는 산화 처리(oxidizing)에 의해 질화규소인 세라믹스 소결체 외부면에 실리콘 카바이드(SiC) 표면개질층이 형성됨에 따라 더욱더 우수한 내플라즈마성을 확보할 수 있다.
도 1은 본 발명의 일 실시예에 따른 정전 척의 단면모식도, 그리고
도 2는 본 발명의 일 실시예에 따른 정전 척 히터의 단면모식도이다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 정전 척(10)은 질화규소 소결체(11), 표면개질층(13) 및 정전전극(12)을 포함하여 구현된다.
정전 척(10)은 대상물, 예를 들어 반도체 웨이퍼를 정전 인력에 의해 흡착하여 유지시키는 장치로써, 일 예로 반도체 제조공정에서 반도체 웨이퍼를 고정시키기 위해 사용된다. 상기 정전 척(10)은 파지하는 대상물의 모양에 부합하는 지지면을 가질 수 있으며, 일 예로 웨이퍼의 모양에 부합하도록 정전 척(10)은 원반 형상을 가질 수 있다. 또한, 상기 정전 척(10)의 크기는 통상적인 반도체 제조에 이용되는 정전 척의 크기일 수 있으나 이에 제한되는 것은 아니다.
상기 질화규소 소결체(11)는 정전 척(10)의 몸체에 해당하는 것으로써, 내부에 매설되는 정전전극(12)을 지지하고, 반도체 웨이퍼와 같은 흡착 대상물을 흡착시킬 지지면을 제공하는 역할을 수행한다. 상기 질화규소 소결체(11)는 내플라즈마성, 내화학성, 내열충격성이 뛰어나고 방열특성도 우수해 특히 반도체 공정에 이용되는 정전 척에 유용할 수 있다.
본 발명의 일 실시예에 의하면, 상기 질화규소 소결체(11)는 상술한 물성들에 있어 보다 개선된 특성을 발현하도록 후술하는 제조방법으로 제조된 질화규소 분말을 통해 구현된 것일 수 있다.
구체적으로 상기 질화규소 분말은, 금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계; 상기 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성 시킨 뒤 분무건조 시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계; 상기 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화처리하는 단계; 및 질화처리된 그래뉼을 분쇄시키는 단계; 를 포함하여 제조될 수 있다.
먼저, 금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계에 대해서 설명한다.
상기 원료분말로써 주제인 금속 실리콘 분말은 직접 질화법을 통해 질화규소 분말을 제조할 수 있는 금속 실리콘 분말의 경우 제한 없이 사용할 수 있다. 일 예로 상기 금속 실리콘 분말은 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩일 수 있다. 상기 다결정 금속 실리콘 스크랩은 반도체 공정용 치구나 태양광 패널 제조용으로 사용되는 다결정 금속 실리콘의 부산물일 수 있고, 단결정 실리콘 웨이퍼 스크랩 역시 실리콘 웨이퍼 제조 시 부산물임에 따라서 부산물인 이들 스크랩을 원료분말로써 사용함을 통해 제조단가를 낮출 수 있다.
또한, 상기 다결정 금속 실리콘 스크랩 또는 단결정 실리콘 웨이퍼 스크랩은 순도가 99% 이상일 수 있으며, 이를 통해 제조된 질화규소 분말을 소결 시 소결체의 열전도도와 기계적 강도를 담보하기에 보다 유리할 수 있다.
또한, 상기 금속 실리콘 분말은 저항율이 1 내지 100 Ω㎝일 수 있으며, 이를 통해서 본 발명이 목적하는 물성을 갖는 질화규소 분말을 제조하기 보다 유리할 수 있다.
한편, 원료분말로 사용되는 금속 실리콘 분말은 바람직하게는 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩을 소정의 크기로 분쇄시킨 것일 수 있다. 이때, 분쇄로 인한 금속 불순물과 같은 오염물질이 원료분말에 혼입되는 것을 방지하기 위하여 상기 분쇄는 건식분쇄 방식을 사용할 수 있고, 구체적으로 디스크밀, 핀밀, 젯밀 등의 건식분쇄 방식을 사용하여 분말화시킬 수 있다. 만일 오염물질이 금속 실리콘 분말에 함유 시 오염물질의 제거를 위한 산세정과 같은 세척공정을 더 거쳐야 하는 제조시간과 비용 증가의 우려가 있다. 이때 분쇄된 상기 금속 실리콘 분말의 평균입경은 0.5 ~ 4㎛, 보다 바람직하게는 2 ~ 4㎛일 수 있으며, 만일 평균입경이 0.5㎛ 미만일 경우 건식분쇄 방식을 통해 구현하기 어려울 수 있고, 미분말화로 인해서 오염물질의 혼입가능성이 커질 우려가 있으며, 시트 캐스팅 시 치밀화가 어려울 수 있다. 또한, 만일 금속 실리콘 분말의 평균입경이 4㎛를 초과 시 질화가 용이하지 않아서 질화되지 않은 부분이 존재할 우려가 있으며, 최종 소결체의 치밀화가 어려울 수 있다.
한편, 질화규소는 자기확산이 어렵고, 고온에서 열분해될 수 있어서 소결온도가 제한되는 등의 이유로 소결이 용이하지 않고, 치밀한 소결체를 구현하기 어려우며, 직접 질화법으로 질화규소 분말을 제조 시 결정상 제어가 어려울 수 있어서 이러한 난점을 해결하고, 산소 등의 불순물을 제거하여 질화규소 분말이 소결된 기판의 물성을 개선하기 위하여 금속 실리콘 분말에 결정상 제어 분말을 혼합한 혼합원료분말을 원료분말로써 사용한다. 상기 결정상 제어 분말은 일 예로 희토류 원소 함유 화합물, 알칼리토류 금속 산화물 및 이들의 조합이 사용될 수 있으며, 구체적으로 산화마그네슘(MgO), 산화이트륨(Y2O3), 산화가돌리늄(Gd2O), 산화홀뮴(Ho2O3), 산화에르븀(Er2O3), 산화이르테븀(Yb2O3), 및 산화디스프로슘(Dy2O3)으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다. 다만 본 발명은 질화규소 분말의 결정상 제어가 보다 용이하게 하기 위하여 산화마그네슘 및 산화이트륨을 결정상 제어 분말에 필수적으로 함유하며, 상기 산화마그네슘 및 산화이트륨은 제조된 질화규소 분말을 이용해 소결체를 제조 시 보다 치밀화된 높은 밀도의 소결체를 구현하고, 소결 중 잔류 입계 상의 양을 저감시켜서 소결체의 열전도도를 보다 개선시킬 수 있는 이점이 있다.
일 예로 혼합원료분말에 상기 산화이트륨은 2 내지 5몰%, 상기 산화마그네슘은 2 내지 10몰%로 포함될 수 있다. 만일 산화이트륨이 2 몰% 미만일 경우 구현된 질화규소 분말을 소결 시 치밀화된 소결체를 구현하기 어려울 수 있고, 입계 상에 산소를 포획하기 어렵고 이로 인해서 고용 산소량이 많아져 소결체의 열전도도가 낮을 수 있으며, 기계적 강도도 저하될 수 있다. 또한, 만일 산화이트륨이 5몰%를 초과 시 입계 상이 많아져서 구현된 질화규소 분말을 소결한 소결체의 열전도도가 저하되고, 파괴인성이 저하되는 우려가 있다. 또한, 산화마그네슘이 2몰% 미만일 경우 구현된 질화규소 분말을 소결한 소결체의 열전도도 및 기계적 강도가 모두 낮을 수 있고, 질화 시 실리콘이 용출될 우려가 있으며, 치밀화된 소결체를 제조하기 어려울 수 있다. 또한, 만일 산화마그네슘이 10몰%를 초과할 경우 소결 시 입계에 마그네슘의 잔류량이 많아지고 이로 인해서 구현된 소결체의 열전도도가 낮아질 수 있으며, 질화규소 분말의 소결이 용이하지 않고, 파괴인성이 저하될 수 있다.
또한, 상기 희토류 원소 함유 화합물분말은 평균입경이 0.1 내지 1㎛, 마그네슘 함유 화합물 분말은 평균입경이 0.1 내지 1㎛인 것을 사용할 수 있으며, 이를 통해서 본 발명의 목적을 달성하기에 보다 유리할 수 있다.
다음으로 준비된 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성시킨 뒤 분무건조 시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계를 수행한다.
혼합원료분말을 곧바로 질화시키지 않고, 소정의 입경을 가지는 그래뉼로 제조한 뒤 그래뉼에 대해서 후술하는 질화공정을 수행하는데, 이를 통해 혼합원료분말의 혼합균일성을 높여 제조되는 질화규소 분말의 결정상을 보다 용이하게 제어할 수 있고, Si2Y2O5인 2차상을 형상시킬 수 있어서 소결체의 열전도도를 보다 개선할 수 있으며, 균일한 특성을 가지는 질화규소 분말을 제조할 수 있다.
상기 그래뉼은 D50 값이 100㎛ 이하, 보다 바람직하게는 20 내지 100㎛, 보다 더 바람직하게는 20 ~ 55㎛일 수 있는데, 만일 D50이 100㎛를 초과 시 그래뉼 내부로 질소 가스의 유입이 원활하지 못해 질화가 완전히 일어나지 못하고, 질화되지 못한 실리콘이 용융되어 그래뉼 밖으로 용출될 수 있으며, 이와 같은 질화규소분말을 소결체로 제조할 경우 질화규소 분말 제조 시 용출되었던 실리콘이 다시 소결체의 소결과정에서 밖으로 용출될 수 있는 우려가 있다. 여기서 D50 값이란 레이저 회절 산란법을 사용하여 측정한 50% 체적 기준에서의 값을 의미한다.
한편, 상기 그래뉼은 건식분무법을 통해 수득될 수 있고, 건식분무법을 수행할 수 있는 공지의 조건, 장치를 이용해 수득될 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다. 또한, 혼합원료 분말은 용매와 유기바인더와 혼합된 슬러리로 구현된 뒤 건식분무되는데, 상기 용매와 유기바인더는 세라믹분말을 그래뉼로 구현하기 위해서 슬리러화 시 사용되는 용매와 유기바인더의 경우 제한 없이 사용할 수 있다. 일예로 상기 용매는 에탄올, 메탄올, 이소프로판올, 증류수 및 아세톤 중 선택되는 1종 이상을 포함하는 것이 바람직하다. 또한, 상기 유기바인더는 폴리비닐부티랄(PVB)계 바인더를 사용하는 것이 바람직하다. 한편, 그래뉼 제조 시 유기바인더가 함유되나 미량으로 함유 시 후술하는 질화공정 이전에 탈지공정을 별도로 더 거치지 않을 수 있다.
다음으로 수득된 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화처리하는 단계를 수행한다.
이때, 질화처리 시 상기 질소가스는 0.1 내지 0.2MPa의 압력으로 가해질 수 있으며, 보다 바람직하게는 0.15 내지 0.17MPa의 압력으로 가해질 수 있다. 만일 질소 가스 압력이 0.1MPa 미만일 경우 질화가 완전히 일어나지 않을 수 있다. 또한, 질소가스 압력이 0.2MPa를 초과 시 질화 과정에서 실리콘이 용출되는 현상이 발생된다. 또한, 질화처리 시 1000℃ 이상에서부터 소정의 온도까지 0.5 내지 10℃/분의 승온속도로 가열될 수 있는데, 만일 1000℃ 이상에서부터 소정의 온도까지 승온속도가 0.5℃/분 미만일 경우 소결 시간이 과도히 연장될 수 있다. 또한, 승온 속도가 10℃/분을 초과 시 실리콘이 용출되어 완전히 질화규소로 질화된 분말을 제조하기 어려울 수 있다.
또한, 질화처리 시 온도는 1200 ~ 1500℃ 범위 내에서 선택될 수 있는데, 만일 질화처리 시 온도가 1200℃ 미만일 경우 질화가 균일하게 일어나지 않을 수 있다. 또한, 질화처리 시 온도가 1500℃를 초과 시 β 결정상이 빠르게 형성됨에 따라서 이와 같은 질화규소 분말을 이용해 소결체를 제조 시 치밀화가 어려울 수 있다.
다음으로 질화처리된 그래뉼을 분쇄시키는 단계를 수행한다.
질화처리된 그래늄을 질화규소 분말로 제조하는 단계로써, 분쇄 시 오염물질의 혼입을 방지하도록 바람직하게는 건식방법에 의할 수 있으며, 일 예로 에어 제트밀을 통해서 수행할 수 있다.
상술한 제조방법으로 제조되는 질화규소 분말은 용융된 실리콘 유래의 다결정 실리콘이 8중량% 이하이며, 이와 같은 질화규소 분말은 기계적 강도 및 열전도도가 향상된 소결체를 제조하기에 적합할 수 있다. 바람직하게는 상기 질화규소 분말은 용융된 실리콘 유래의 다결정 실리콘을 6중량% 이하, 보다 바람직하게는 4중량% 이하, 더욱 바람직하게는 0중량%로 포함할 수 있다.
본 발명의 일 실시예에 따르면, α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 이상일 수 있는데, 만일 α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 미만일 경우 질화규소 분말을 통해 소결된 소결체의 치밀성을 높이기 어려울 수 있고, 열전도도와 기계적 강도 개선이 어려우며 특히 기계적 강도 개선이 어려울 수 있다.
또한, 상기 질화규소 분말은 이를 통해 구현되는 소결체의 입계 상에 Si2Y2O5인 2차상을 보다 균일하게 형성시킬 수 있고, 이를 통해서 소결체의 열전도도 개선에 상승된 효과를 발현할 수 있다.
또한, 상기 질화규소 분말은 평균입경이 2 ~ 4㎛일 수 있으며, 이를 통해 기계적 강도 및 열전도도가 개선된 소결체를 구현하기에 보다 유리할 수 있다.
상술한 질화규소 분말은 목적하는 소정의 형상, 예를 들어 원반형의 성형체로 제조된 뒤 소결공정을 거쳐서 질화규소 소결체(11)로 구현될 수 있다. 상기 성형체는 공지의 시트 적층법이나 프레스 성형법을 이용해 제조할 수 있다.
시트 적층법에 따르는 성형체 제조방법에 대해서 설명하면, 상술한 질화규소 분말을 용매 및 유기바인더와 혼합하여 얻어진 슬러리를 닥터 블레이드법 등의 공지된 방법에 따라 시트 상으로 성형하여 제조될 수 있다. 이후 제조된 세라믹 그린시트 여러 장을 적층 및 열압착하고 정해진 크기로 가공함을 통해서 성형체를 제조할 수 있다.
이때, 상기 슬러리에 구비되는 용매는 유기바인더를 용해시키고 질화규소 분말을 분산시켜 점도를 조절하기 위하여 유기용매를 사용할 수 있으며, 상기 유기용매로서 유기 바인더를 녹일 수 있는 물질은 제한 없이 사용될 수 있고, 일 예로 터피놀(Terpineol), 디하이드로 터피놀(Dihydro terpineol; DHT), 디하이드로 터피놀 아세테이트(Dihydro terpineol acetate; DHTA), 부틸카비톨아세테이트(Butyl Carbitol Acetate; BCA), 에틸렌글리콜, 에틸렌, 이소부틸알콜, 메틸에틸케톤, 부틸카비톨, 텍사놀(texanol)(2,2,4-트리메틸-1,3-펜탄디올모노이소부티레이트), 에틸벤젠, 이소프로필벤젠, 시클로헥사논, 시클로펜타논, 디메틸설폭사이드, 디에틸프탈레이트, 톨루엔, 이들의 혼합물 등을 사용할 수 있다. 이때 상기 용매는 질화규소 분말 100중량부에 대하여 50 ~ 100중량부를 혼합하는 것이 바람직하다. 상기 용매의 함량이 50중량부 미만이면 슬러리의 점도가 높아 테이프캐스팅을 수행하는데 어려움이 있고 코팅 두께를 조절하는데도 어려움이 있을 수 있으며, 상기 용매의 함량이 100중량부를 초과하면 슬러리의 점도가 너무 묽게 되어 건조하는데 시간이 오래 걸리고 두께를 조절하는데도 어려움이 있을 수 있다.
또한, 상기 유기바인더는 상기 질화규소 분말 100중량부에 대하여 5 ~ 20중량부 혼합하는 것이 바람직하다. 상기 유기바인더로는 에틸셀룰로오스(ethyl cellulose), 메틸셀룰로오스, 니트로셀룰로오스, 카르복시셀룰로오스 등의 셀룰로오스 유도체, 또는 폴리비닐알콜, 아크릴산에스테르, 메타크릴산에스테르, 폴리비닐부티랄 등의 고분자 수지일 수 있으며, 테이프캐스팅 방법(Tape casting method)으로 시트 형태의 성형체를 형성하는 것을 고려할 때, 상기 유기바인더로 폴리비닐부티랄을 사용할 수 있다.
한편, 상기 슬러리에는 분산제, 가소제 등 시트를 성형하기 위한 슬러리에 함유되는 공지의 물질을 더 포함할 수 있으며 본 발명은 이에 대해 특별히 한정하지 않는다.
한편, 성형체를 제조하기 위한 어느 일 그린시트에는 후술하는 정전전극(12)이 질화규소 소결체(11) 내부에 매설되도록 정전전극(12)의 형성을 위한 전극용 잉크가 처리될 수 있다. 상기 전극용 잉크는 도전성 성분과 용매 및 바인더 등을 혼합한 것이 사용될 수 있는데, 본 발명은 이에 대해 특별히 한정하지 않는다.
구현된 성형체는 공지의 방법을 통해서 소결되어 질화규소 소결체(11)를 형성할 수 있는데, 소결과정에서 내부에 구비된 전극용 잉크 역시 소결되어 정전전극(12)을 형성함에 따라서 최종 수득하고자 하는 정전 척(10)이 제조될 수 있다. 구체적으로 성형체는 1800 ~ 1900℃의 온도에서 0.5 ~ 1.0MPa 소결될 수 있으며, 이를 통해서 고품위의 질화규소 소결체를 구현하기에 보다 유리할 수 있다. 또한, 이로써 구현된 질화규소 소결체(11)는 일 예로 열전도도가 70 W/mK 이상, 바람직하게는 80 W/mK 이상, 보다 더 바람직하게는 90 W/mK 이상이고, 3점 꺽임강도가 650 MPa 이상, 바람직하게는 680 MPa 이상, 보다 바람직하게는 700 MPa 이상일 수 있다.
상술한 질화규소 소결체(11)의 외부면 적어도 일부에는 내식성 및 내플라즈마성 표면개질층(13)을 포함한다.
질화규소(Si3N4) 소결체는 우수한 열충격성을 가지나, 웨이퍼에 대해 수행되는 플라즈마 공정과 불산 등을 이용한 식각공정에서 손상될 우려가 있다. 이에 웨이퍼에 대해 수행되는 플라즈마 공정이나 식각공정에서 플라즈마 및 식각용액에 대한 내플라즈마성 및 내식성을 보완하기 위해서 표면개질층(13)을 외부면 적어도 일부에 포함할 수 있다.
상기 표면개질층(13)은 실리콘 카바이드(SiC)을 포함하는 층일 수 있다.
구체적으로, 실리콘 카바이드(SiC) 표면개질층(13)은 질화규소 소결체 외부면을 개질시켜 형성되는 것으로서, 이 때 개질은 침탄경화법(carburizing) 또는 산화 처리(oxidizing), 바람직하게는 침탄 열처리(carburization)에 의해 수행될 수 있다.
침탄경화법(carburizing)은 고체침탄법, 가스침탄법 또는 액체침탄법일 수 있으며, 구체적으로, 본 발명의 침탄경화법은 가스침탄법으로서, 프로판, 암모니아, 벤젠 및 LPG를 포함하는 혼합가스 하에서 수행할 수 있다. 구체적으로, 침탄경화법은 프로판 및 암모니아를 1 : 0.8 ~ 1.2 유량비, 바람직하게는 1 : 0.9 ~ 1.1 유량비로 포함할 수 있고, 프로판 및 벤젠을 1 : 0.8 ~ 1.2 유량비, 바람직하게는 1 : 0.9 ~ 1.1 유량비로 포함할 수 있으며, 프로판 및 LPG을 1 : 0.8 ~ 1.2 유량비, 바람직하게는 1 : 0.9 ~ 1.1 유량비로 포함할 수 있다.
또한, 침탄경화법은 700 ~ 1100℃, 바람직하게는 800 ~ 1000℃, 더욱 바람직하게는 850 ~ 950℃의 온도 조건에서 수행할 수 있다.
또한, 침탄경화법은 5 ~ 35 시간, 바람직하게는 15 ~ 30 시간, 더욱 바람직하게는 25 ~ 30 시간동안 수행할 수 있으며, 만일 침탄경화법 시간이 5시간 미만이면 침탄 열처리에 의해 형성되는 표면개질층(13) 두께의 문제가 있을 수 있고, 35시간을 초과하면 열팽창계수 차이에 의한 균열의 문제가 있을 수 있다.
한편, 앞서 언급한 침탄경화법을 수행한 후에는 침탄경화법을 수행한 면을 세척 및 건조를 수행한 후에 실리콘 카바이드(SiC) 표면개질층(13)이 형성될 수 있으며, 이 때, 건조는 50 ~ 90℃의 온도, 바람직하게는 60 ~ 80℃의 온도에서, 30 ~ 90분, 바람직하게는 45 ~ 75분동안 수행할 수 있지만, 이에 한정되는 것은 아니다.
또한, 산화 처리는 공기분위기 하 500 ~ 1300℃, 바람직하게는 600 ~ 900℃의 온도 조건에서 30 ~ 300분, 바람직하게는 30 ~ 90분, 더욱 바람직하게는 60 ~ 90분 동안 수행할 수 있다. 만일 산화 처리 온도가 500℃ 미만이면 표면개질층(13) 두께 미만으로 인한 합성에 문제가 있을 수 있고, 1300℃를 초과하면 SiO2화가 진행되어 내플라즈마성의 문제가 있을 수 있다.
또한, 상기 실리콘 카바이드(SiC) 표면개질층(13)은 두께가 0.2 nm 이상, 바람직하게는 200 ~ 2,000nm, 더욱 바람직하게는 500 ~ 1,000nm일 수 있으며, 만일 두께가 0.2 nm 미만이면 내플라즈마성의 문제가 있을 수 있다.
한편, 본 발명의 정전 척은 전력 500W 이상, 바람직하게는 500 ~ 700W, 더욱 바람직하게는 550 ~ 650W, CF4 가스 10 ~ 100 sccm, 바람직하게는 10 ~ 50 sccm, 더욱 바람직하게는 30sccm, O2 가스 0.1 ~ 50 sccm, 바람직하게는 1 ~ 20 sccm, 더욱 바람직하게는 5sccm, Ar 가스 1 ~ 70 sccm, 바람직하게는 5 ~ 30 sccm, 더욱 바람직하게는 10sccm가 포함된 혼합가스, 압력 1 ~ 30 mTorr, 바람직하게는 5 ~ 20 mTorr, 더욱 바람직하게는 10 mTorr의 조건을 가지는 플라즈마 환경에서, Si 웨이퍼의 식각율이 1.0nm/min일 때의 상대 식각율이 0.9nm/min 이하, 바람직하게는 0.8nm/min 이하, 더욱 바람직하게는 0.6 ~ 0.7nm/min일 수 있어, 우수한 내플라즈마성을 지닌다.
다음으로 상술한 질화규소 소결체(11) 내부에 매설된 정전전극(12)에 대해서 설명한다.
상기 정전전극(12)은 흡착 대상물, 일 예로 반도체 웨이퍼와 질화규소 소결체(11) 간에 정전력을 발생시켜서 반도체 웨이퍼를 질화규소 소결체(11) 상에 파지시키는 역할을 담당한다. 상기 정전력은 쿨롱 또는 존슨-라벡 타입일 수 있다.
상기 정전전극(12)은 통상적인 정전 척에 구비되는 정전전극의 재질일 수 있고, 예를 들어 텅스텐, 몰리브덴과 같은 도전성 성분에 의해 형성된 것일 수 있다. 또한, 정전전극(12)은 하나의 면전극으로 구비되거나 또는 한 쌍의 내부전극으로 구비될 수 있는데 이에 제한되는 것은 아니며, 통상적인 정전 척에 구비되는 정전전극의 개수, 형상, 크기로 질화규소 소결체(11)에 매설될 수 있다.
본 발명은 상술한 정전 척을 이용해 구현된 정전 척 히터를 포함한다. 이를 도 2를 참조하여 설명하면, 정전 척 히터(100)는 정전력을 이용해 흡착 대상물을 흡착 및 고정시키는 정전 척부(110)와 흡착 대상물에 제공될 열을 발생시키는 기능을 가지는 히터부(120)를 포함하여 구현된다. 또한, 정전 척 히터(100)는 흡착 대상물, 일 예로 반도체 웨이퍼가 흡착되는 제1면과 이에 대향하는 제2면을 가지는데, 상기 제1면이 정전 척부(110)의 어느 일면이 되고, 상기 제2면이 히터부(120)의 어느 일면이 되도록 정전 척부(110)와 히터부(120)가 위치한다.
상기 정전 척부(110)는 제1세라믹스 소결체(111), 상기 제1세라믹스 소결체(111)의 외부면 적어도 일부에 형성된 내플라즈마성 및 내식성 표면개질층(113) 및 상기 제1세라믹스 소결체(111) 내부에 매설된 정전전극(112)을 포함하며, 상기 히터부(120)는 제2세라믹스 소결체(121), 상기 제2세라믹스 소결체(121) 외부면 적어도 일부에 형성된 내플라즈마성 및 내식성 표면개질층(113) 및 상기 제2세라믹스 소결체(121) 내부에 매설된 적어도 하나의 저항 발열체(122)를 포함한다. 이때, 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 중 어느 하나 이상은 질화규소 소결체로 구비되며, 바람직하게는 상술한 정전 척(10)의 질화규소 소결체(11)일 수 있다.
또한, 바람직하게는 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 모두가 질화규소 소결체일 수 있다. 이에 따라서 상기 질화규소 소결체는 내플라즈마성 및 내식성 표면개질층(113)을 외부면 적어도 일부에 구비한다. 다만, 도 2는 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)의 외부면에 표면개질층(113)을 구비하는 것으로 도시했으나, 이에 제한되는 것은 아니며 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 중 어느 하나의 소결체에 표면개질층(113)을 구비하지 않을 수 있다.
한편, 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 중 어느 하나만이 질화규소 소결체인 경우 다른 하나는 통상적인 정전 척 히터에 채용되는 세라믹스 소결체일 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)는 동시 소결되어 하나의 몸체로 구현된 것일 수 있다. 즉, 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)는 상술한 질화규소 소결체(11)의 제조방법에서 설명된 것과 같이 세라믹스 성분을 그린시트로 제조한 뒤 이들을 적층시켜서 성형체를 제조할 수 있는데, 제1세라믹스 소결체(111)가 되는 그린시트들과, 제2세라믹스 소결체(121)가 되는 그린시트들을 적층시킨 상태에서 하나의 성형체로 제조하고, 이를 동시에 소결시켜서 하나의 몸체로 일체화된 세라믹스 소결체를 구현할 수 있다. 다만, 이에 제한되는 것은 아니며 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)는 각각이 독립적으로 제조된 뒤 공지의 접착방법을 이용해서 부착되어 일체화 될 수도 있음을 밝혀둔다.
한편, 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121) 사이에는 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)와는 상이한 조성을 가지는 별도의 중간층(미도시)을 더 포함할 수 있으며, 이를 통해서 정전전극(112) 및 저항성 발열체(122) 중 어느 일방으로부터 타방으로 전달되는 전류의 리크를 방지할 수 있다. 또는 상기 제1세라믹스 소결체(111) 및 제2세라믹스 소결체(121)의 조성이 상이할 경우 어느 일방의 소결체로부터 타방의 소결체로 어떤 성분이 확산되는 것을 방지할 수 있다.
또한, 상기 정전 척부(110)는 정전전극(112)을 포함하며, 상기 정전전극(112)은 통상적인 정전 척에 구비되는 정전전극 재질일 수 있고, 일 예로 몰리브덴 또는 텅스텐일 수 있다.
또한, 상기 히터부(120)는 제2세라믹스 소결체(121) 내부에 저항 발열체(122)를 구비하는데 상기 저항 발열체(122)는 통상적인 정전 척 히터 내 발열체로 사용되는 것은 제한 없이 채용될 수 있으며, 일 예로 텅스텐 또는 몰리브덴 등의 도전성 재료에 의해 형성된 것일 수 있다. 이때, 상기 저항 발열체(122)는 도 2에 도시된 것과 같이 여러 개가 제2세라믹스 소결체(121) 내부에 매설되거나, 하나의 저항 발열체가 나선형 등의 다양한 형상으로 구현되어 구비될 수도 있다. 한편, 저항 발열체(122)가 매설된 구체적 패턴은 통상적인 정전 척 히터 내 저항 발열체의 패턴을 제한 없이 채용할 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 본 발명은 상술한 본 발명에 따른 정전 척 히터(100) 및 상기 정전 척 히터(100)의 제2면 측에 배치되는 냉각부재를 포함하는 반도체 유지장치를 포함한다.
상기 냉각부재는 정전 척 히터(100) 상에 파지된 반도체 웨이퍼의 온도를 조절하기 위한 것으로써 히터부(120)를 통해 가열된 반도체 웨이퍼를 냉각시키는 역할을 할 수 있다. 상기 냉각부재는 반도체 유지장치에 통상적으로 채용되는 냉각부재의 경우 제한 없이 사용될 수 있다. 일 예로 상기 냉각부재는 알루미늄이나 티타늄으로 형성된 냉각 기판과 상기 냉각 기판 내부에 냉매가 흐를 수 있는 유로가 형성된 것일 수 있다.
또한, 상기 반도체 유지장치는 정전 척 히터(100) 및 냉각부재 이외에 반도체 유지장치에 채용되는 공지의 구성, 일 예로 정전 척 히터(100)의 정전전극(112) 및 저항 발열체(122)에 전류를 인가할 수 있는 전원, 포커스링용 정전 척을 구비한 포커스링 배치대, 이들을 지지하는 설치판 등 공지의 구성을 제한 없이 채용할 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
준비예 1 : 질화규소(Si3N4) 소결체의 산화처리
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체를 박스 전기로(Box Furnace)에 투입하고, 공기(Air)분위기 하 600℃의 온도 조건에서 60분 동안 산화처리를 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
준비예 2 : 질화규소(Si3N4) 소결체의 산화처리
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체를 박스 전기로(Box Furnace)에 투입하고, 공기(Air)분위기 하 1000℃의 온도 조건에서 60분 동안 산화처리를 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
준비예 3 : 질화규소(Si3N4) 소결체의 산화처리
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체를 박스 전기로(Box Furnace)에 투입하고, 공기(Air)분위기 하 1200℃의 온도 조건에서 60분 동안 산화처리를 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
준비예 4 : 질화규소(Si3N4) 소결체의 침탄경화법 수행
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체의 외부면의 일부에 탄소 분말을 스프레잉(Spraying)한 후, 습식 용액(NaCN 60중량% + KCN 40중량%)에 9시간동안 함침하는 액체침탄법을 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
준비예 5 : 질화규소(Si3N4) 소결체의 침탄경화법 수행
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체를 습식 용액(NaCN 60중량% + KCN 40중량%)에 9시간동안 함침하는 액체침탄법을 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
준비예 6 : 질화규소(Si3N4) 소결체의 침탄경화법 수행
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체의 외부면의 일부에 탄소 분말을 스프레잉(Spraying)한 후, 프로판, 암모니아, 벤젠 및 LPG를 1 : 1 : 1 : 1의 유량비로 포함하는 혼합가스 하 900℃의 온도 조건에서 12시간 동안 가스침탄법을 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
준비예 7 : 질화규소(Si3N4) 소결체의 침탄경화법 수행
질화규소(Si3N4) 소결체를 준비하였다.
준비한 질화규소 소결체를 프로판, 암모니아, 벤젠 및 LPG를 1 : 1 : 1 : 1의 유량비로 포함하는 혼합가스 하 900℃의 온도 조건에서 12시간 동안 가스침탄법을 수행하여, 질화규소 소결체의 외부면의 일부에 실리콘 카바이드(SiC) 표면개질층을 형성하였다.
실험예 1 : 실리콘 카바이드 표면개질층의 식각깊이, 식각율 및 Si 웨이퍼의 식각율이 1.0nm/min일 때의 상대 식각율 측정
준비예 1 ~ 7에서 형성된 실리콘 카바이드(SiC) 표면개질층 각각에 대하여, 하기 기재된 측정 조건으로 식각깊이, 식각율 및 Si 웨이퍼의 식각율이 1.0nm/min일 때의 상대 식각율을 측정하여 하기 표 1에 나타내었다.
*측정 조건*
측정 장비 : NIE 150
측정 장비의 기본 동작 기구 : 유도결합 플라즈마(ICP)
플라즈마 환경 : 전력 600W, CF4 가스 30 sccm, O2 가스 5sccm, Ar 가스 10sccm가 혼합된 혼합가스, 압력 10 mTorr, 노출시간 60분(Etching 5 min / Delay 5 min / 12 Step)
Figure PCTKR2022009287-appb-img-000001

Claims (19)

  1. 질화규소(Si3N4) 소결체;
    상기 질화규소 소결체 외부면을 적어도 일부를 덮는 내식성 및 내플라즈마성 실리콘 카바이드(SiC) 표면개질층; 및
    상기 질화규소 소결체 내부에 매설된 정전전극;을 포함하는 정전 척.
  2. 제1항에 있어서,
    상기 정전 척은 전력 500W 이상, CF4 가스 10 ~ 100 sccm, O2 가스 0.1 ~ 50 sccm, Ar 가스 1 ~ 70 sccm가 포함된 혼합가스, 압력 1 ~ 30 mTorr의 조건을 가지는 플라즈마 환경에서, Si 웨이퍼의 식각율이 1.0nm/min일 때의 상대 식각율이 0.9nm/min 이하인 것을 특징으로 하는 정전 척.
  3. 제1항에 있어서,
    상기 실리콘 카바이드(SiC) 표면개질층은 질화규소 소결체 외부면을 개질시켜 형성되며,
    상기 개질은 침탄경화법(carburizing) 또는 산화 처리(oxidizing)에 의해 수행되는 것을 특징으로 하는 정전 척.
  4. 제3항에 있어서,
    상기 침탄경화법은 프로판, 암모니아, 벤젠 및 LPG를 포함하는 혼합가스 하 700 ~ 1100℃의 온도 조건에서 5 ~ 35 시간동안 수행하는 것을 특징으로 하는 정전 척.
  5. 제3항에 있어서,
    상기 산화처리는 공기분위기(Air) 하 500 ~ 1300℃의 온도 조건에서 30 ~ 300분 동안 수행하는 것을 특징으로 하는 정전 척.
  6. 제1항에 있어서,
    상기 실리콘 카바이드(SiC) 표면개질층은 0.2 nm 이상의 두께를 가지는 것을 특징으로 하는 정전 척.
  7. 제1항에 있어서,
    상기 질화규소 소결체는 다결정 실리콘이 8 중량% 이하인 질화규소 분말이 소결되어 형성된 정전 척.
  8. 제1항에 있어서,
    상기 질화규소 소결체는 α 결정상과 β 결정상의 중량 총합에서 α 결정상의 중량비가 0.7 이상인 인 질화규소 분말이 소결되어 형성된 정전 척.
  9. 제1항에 있어서,
    상기 질화규소 소결체는 열전도도가 90W/mK 이상이고, 3점 꺽임강도가 700 MPa 이상인 정전 척.
  10. 제1항에 있어서,
    상기 질화규소 소결체는 질화규소 분말을 소결시켜 제조하며, 상기 질화규소 분말은
    금속 실리콘 분말, 및 희토류 원소 함유 화합물과 마그네슘 함유 화합물을 포함하는 결정상 제어 분말을 포함하는 혼합원료분말을 제조하는 단계;
    상기 혼합원료분말에 용매 및 유기바인더를 혼합하여 슬러리를 형성시킨 뒤 분무건조시켜서 소정의 입경을 가지는 그래뉼을 제조하는 단계;
    상기 그래뉼에 소정의 압력으로 질소가스를 가하면서 1200 ~ 1500℃ 범위 내 소정의 온도로 질화처리하는 단계; 및
    질화처리된 그래뉼을 분쇄시키는 단계;를 포함하여 제조되는 정전 척.
  11. 제10항에 있어서,
    상기 금속 실리콘 분말은 분쇄 중 금속 불순물로 오염되는 것을 최소화하기 위하여 다결정 금속 실리콘 스크랩(scrap) 또는 단결정 실리콘 웨이퍼 스크랩을 건식 분쇄시킨 것인 정전 척.
  12. 제10항에 있어서,
    상기 금속 실리콘 분말은 평균입경이 0.5 내지 4㎛, 희토류 원소 함유 화합물 분말은 평균입경이 0.1 내지 1㎛, 마그네슘 함유 화합물 분말은 평균입경이 0.1 내지 1㎛인 정전 척.
  13. 제10항에 있어서,
    상기 그래뉼은 D50 값이 100㎛ 이하인 정전 척
  14. 제10항에 있어서,
    상기 희토류 원소 함유 화합물은 산화이트륨이며, 상기 마그네슘 함유 화합물은 산화마그네슘이고,
    혼합원료분말에 상기 산화이트륨은 2 내지 5몰%, 상기 산화마그네슘은 2 내지 10몰%로 포함되는 정전 척.
  15. 제10항에 있어서,
    질화처리 시 상기 질소가스는 0.1 내지 0.2MPa의 압력으로 가해지는 정전 척.
  16. 제10항에 있어서,
    질화처리 시 1000℃ 이상에서부터 소정의 온도까지 0.5 내지 10℃/분의 승온속도로 가열되는 정전 척.
  17. 웨이퍼가 흡착되는 제1면과 이에 대향하는 제2면을 가지는 정전 척 히터에 있어서, 상기 정전 척 히터는
    어느 일면이 상기 제1면인 제1세라믹스 소결체 및 상기 제1세라믹스 소결체 내부에 매설된 정전전극을 포함하는 정전 척부; 및
    어느 일면이 상기 제2면인 제2세라믹스 소결체 및 상기 제2세라믹스 소결체 내부에 매설된 적어도 하나의 저항 발열체를 포함하는 히터부;를 구비하며,
    상기 제1세라믹스 소결체 및 제2세라믹스 소결체 중 어느 하나 이상은 외부면의 적어도 일부에 내플라즈마성 및 내식성 실리콘 카바이드(SiC) 표면개질층이 구비된 질화규소 소결체인 정전 척 히터.
  18. 제17항에 있어서,
    상기 제1세라믹스 소결체 및 제2세라믹스 소결체는 동시 소결되어 하나의 몸체로 구현되는 정전 척 히터.
  19. 제16항에 따른 정전 척 히터; 및
    상기 정전 척 히터의 제2면측에 배치되는 냉각부재;를 포함하는 반도체 유지장치.
PCT/KR2022/009287 2021-06-29 2022-06-29 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치 WO2023277559A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0084527 2021-06-29
KR1020210084527A KR20230001692A (ko) 2021-06-29 2021-06-29 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치

Publications (1)

Publication Number Publication Date
WO2023277559A1 true WO2023277559A1 (ko) 2023-01-05

Family

ID=84690458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009287 WO2023277559A1 (ko) 2021-06-29 2022-06-29 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치

Country Status (2)

Country Link
KR (1) KR20230001692A (ko)
WO (1) WO2023277559A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090048449A (ko) * 2006-08-10 2009-05-13 스미토모 오사카 세멘토 가부시키가이샤 정전척 장치
KR101402234B1 (ko) * 2008-02-11 2014-05-30 (주)소슬 플라즈마 식각 장치
JP5751672B2 (ja) * 2011-08-30 2015-07-22 国立研究開発法人産業技術総合研究所 窒化ケイ素焼結体の製造方法
KR20170036740A (ko) * 2014-09-16 2017-04-03 엔지케이 인슐레이터 엘티디 세라믹 구조체, 기판 유지 장치용 부재 및 세라믹 구조체의 제법
KR20190142384A (ko) * 2018-03-26 2019-12-26 엔지케이 인슐레이터 엘티디 웨이퍼 지지대

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670416B2 (ja) 1995-11-01 2005-07-13 日本碍子株式会社 金属包含材および静電チャック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090048449A (ko) * 2006-08-10 2009-05-13 스미토모 오사카 세멘토 가부시키가이샤 정전척 장치
KR101402234B1 (ko) * 2008-02-11 2014-05-30 (주)소슬 플라즈마 식각 장치
JP5751672B2 (ja) * 2011-08-30 2015-07-22 国立研究開発法人産業技術総合研究所 窒化ケイ素焼結体の製造方法
KR20170036740A (ko) * 2014-09-16 2017-04-03 엔지케이 인슐레이터 엘티디 세라믹 구조체, 기판 유지 장치용 부재 및 세라믹 구조체의 제법
KR20190142384A (ko) * 2018-03-26 2019-12-26 엔지케이 인슐레이터 엘티디 웨이퍼 지지대

Also Published As

Publication number Publication date
KR20230001692A (ko) 2023-01-05

Similar Documents

Publication Publication Date Title
TWI538030B (zh) heating equipment
US7948735B2 (en) Electrostatic chuck and method for manufacturing the same
WO2015003508A1 (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
JP2001351966A (ja) サセプタ及びサセプタの製造方法
WO2019004589A1 (ko) 질화 알루미늄 소결체 및 이를 포함하는 반도체 제조 장치용 부재
KR20170141340A (ko) 정전척용 세라믹 소결체 및 그 제조방법
WO2018194366A1 (ko) 실란트로 실링된 정전척 및 이의 제조방법
US6919286B2 (en) Aluminum nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
WO2023277559A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
WO2021132893A1 (ko) 내플라즈마 유리 및 그 제조방법
WO2022250394A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
WO2019054617A1 (ko) 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
JP2005093919A (ja) 静電チャック及びその製造方法
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
WO2022197145A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
KR20230042679A (ko) 복합 소결체 및 복합 소결체의 제조 방법
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
JP2002220282A (ja) 窒化アルミニウム焼結体とその製造方法
WO2022235067A1 (ko) 질화규소 기판 제조방법 및 이를 통해 제조된 질화규소 기판
TWI606026B (zh) Method for using C/C composite with SiC coating formed thereon
KR20230109114A (ko) 정전 척 히터 소결체 제조용 세라믹 조성물 및 이를 이용한 정전 척 히터용 질화규소 소결체 제조방법
JP4570372B2 (ja) 耐プラズマ性半導体製造装置用部材
WO2022139240A1 (ko) 내플라즈마 세라믹 기판 및 그 제조방법
WO2022270832A1 (ko) 전극 패턴이 내장된 고정밀 소결체 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE