WO2018194366A1 - 실란트로 실링된 정전척 및 이의 제조방법 - Google Patents

실란트로 실링된 정전척 및 이의 제조방법 Download PDF

Info

Publication number
WO2018194366A1
WO2018194366A1 PCT/KR2018/004491 KR2018004491W WO2018194366A1 WO 2018194366 A1 WO2018194366 A1 WO 2018194366A1 KR 2018004491 W KR2018004491 W KR 2018004491W WO 2018194366 A1 WO2018194366 A1 WO 2018194366A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
electrostatic chuck
sealing
curing
hexane
Prior art date
Application number
PCT/KR2018/004491
Other languages
English (en)
French (fr)
Inventor
김우병
최재영
박현수
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Publication of WO2018194366A1 publication Critical patent/WO2018194366A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/04Non-macromolecular organic compounds
    • C09K2200/0494Silicon-containing compounds

Definitions

  • the present invention relates to an electrostatic chuck sealed with a sealant, and more particularly, to an electrostatic chuck with improved electrochemical properties by sealing the pores of the sprayed layer in the electrostatic chuck with a polysilazane-based sealant.
  • a semiconductor device is processed in a number of unit processes, such as chemical vapor deposition, sputtering, photolithography, etching, ion implantation, etc. sequentially or repeatedly.
  • the wafer is fixed or chucked to a wafer support in the chamber. After processing the wafer, the process of dechucking for the next step is repeated several times.
  • Electrostatic chucks can be divided into high-resistance electrostatic chucks using coulomb forces and low-resistance electrostatic chucks that hold wafers by the A. Jehnson & K. Rahbek's Force, depending on the dielectric material. .
  • an electrostatic chuck to increase the precise position of the wafer in the semiconductor manufacturing apparatus is increasing, which is a conventional method of vacuum adsorption or transfer using a clamp to apply a physical force to the wafer It is to use the electrostatic force to prevent damage or contamination by foreign matter.
  • the electrostatic chuck is mainly composed of a ceramic thermal spray coating type and a ceramic plate type sintered by inserting electrodes in the ceramic.
  • Dual ceramic thermal spray coating type electrostatic chuck is a method of coating the ceramic coating layer formed on the aluminum base by the spraying method.
  • a first object of the present invention is to provide an electrostatic chuck sealed with a sealant.
  • the second object of the present invention is to provide an electrostatic chuck sealing method comprising the first object.
  • a sealant for sealing the electrostatic chuck and the thermal spraying layer of the electrostatic chuck is a sealant containing a polysilazane containing the following formula (1), does not contain carbon number ,
  • R 1 may be selected from the group consisting of N and H, and R 2 may provide an electrostatic chuck sealed with sealant comprising H or H 2 .
  • the sealant for sealing the sprayed layer of the electrostatic chuck may include an electrostatic chuck sealed with a sealant, which is chemically mixed with an organic solvent to form SiO 2 while sealing the electrostatic chuck.
  • the sealant is a sealant containing polysilazane, including the following formula (1), does not contain carbon number,
  • R 1 is selected from the group consisting of N and H, and R 2 includes H or H 2.
  • the electrostatic chuck is an electrostatic chuck having pores in the sprayed layer, and a tape dam is formed around the electrostatic chuck having pores in the sprayed layer, applying a sealant to the tape dam to seal the electrostatic chuck and the sealant.
  • Removing and curing the sealant sealed in the electrostatic chuck spray layer through heat treatment may provide an electrostatic chuck sealing method comprising the step of forming SiO 2 .
  • the sealant may include an electrostatic chuck sealing method, which is used by chemically mixing with an organic solvent in a weight ratio of 5% to 30%.
  • the organic solvent may provide an electrostatic chuck sealing method comprising hexane and di-butyl ether.
  • the sealant may include an electrostatic chuck sealing method, characterized in that the coating for more than 8 hours.
  • the formed SiO 2 may provide an electrostatic chuck sealing method having a dielectric constant of 3.9.
  • the sealant may include an electrostatic chuck sealing method, characterized in that the curing rate can be controlled by diluting with acetone or hexane.
  • the polysilazane-based sealant used for the electrostatic chuck sealing may form SiO 2 having a dielectric constant of 3.9 because no organic binder remains after curing.
  • the polysilazane-based sealant used for the electrostatic chuck sealing of the present invention can prevent the coulombic force from being lowered, thereby improving the electrical characteristics of the electrostatic chuck.
  • the sealant of the present invention can improve the electrostatic chuck life because it has excellent acid resistance to the material used during the epant process of the semiconductor process.
  • FIG. 1 is a cross-sectional view for explaining a process of sealing an electrostatic chuck with a sealant according to a first embodiment of the present invention.
  • FIG. 2 is an FT-IR spectral graph shown to analyze curing characteristics that change according to a curing temperature according to Example 1 of the present invention.
  • Figure 4 is a FT-IR spectrum graph shown to analyze the curing properties that change with the curing temperature according to Comparative Example 2 of the present invention.
  • Example 5 is a SEM analysis of the cross-section of the FT-IR spectrum graph and the thin film shown to analyze the acid resistance of the cured thin film according to Example 1 of the present invention.
  • Figure 6 is a SEM analysis of the cross-section of the FT-IR spectrum graph and the thin film shown to analyze the acid resistance of the cured thin film according to Comparative Example 1 of the present invention.
  • Example 8 is FT-IR spectral graphs shown for analyzing the acid resistance of the cured thin film according to Example 1 and Comparative Examples of the present invention.
  • FIG. 10 is an image in which a silicon layer is mapped to a thermal sprayed cross section through EDX in order to analyze sealing characteristics with time after application of a sealant according to Example 1 and Comparative Examples of the present invention.
  • FIG. 11 is a graph illustrating an electrical property evaluation after acid treatment using 37 wt% hydrochloric acid after sealing the sprayed layer according to Example 1 and Comparative Examples of the present invention.
  • Example 12 are images for comparing the state of materials before curing and after 8 hours curing of the sealant according to Example 1 of the present invention.
  • FIG. 13 shows EDX images analyzed to confirm whether the sealant is sealed on the surface of the thermal sprayed layer after applying the sealant according to Example 1 of the present invention by diluting the organic solvent.
  • Example 14 is an FT-IR graph analyzed to confirm the thin film characteristics of the sealant with different dilution ratios according to Example 2 of the present invention.
  • 15 to 20 are FT-IR graphs analyzed after etching for 30 seconds, 60 seconds and 180 seconds in a volume ratio 0.5% hydrofluoric acid solution to analyze the acid resistance of the sealant diluted in hexane according to Example 2 of the present invention. .
  • Example 21 are images for observing the curing rate of the sealant diluted in hexane according to Example 2 of the present invention.
  • FIG. 22 illustrates mapping images of silicon elements by analyzing EDX in order to confirm a sealing property according to the time of applying a sealant diluted to 16 wt% using hexane according to Example 2 of the present invention.
  • the present invention provides an electrostatic chuck sealed with sealant and a method of manufacturing the same.
  • the electrostatic chuck sealing method includes preparing a sealant, forming a tape dam by surrounding the electrostatic chuck having pores in the thermal spray layer, applying a sealant to the tape dam, sealing the electrostatic chuck, and the sealant. Removing and curing the sealant sealed in the electrostatic chuck spray layer through heat treatment to form SiO 2 .
  • the sealant for sealing the electrostatic chuck may contain a polysilazane system and seal pores generated in the thermal sprayed layer of the electrostatic chuck.
  • the sealant may seal the sprayed layer by simply applying a sealant to the electrostatic chuck without an additional heating process.
  • the sealant may form pure SiO 2 while simultaneously sealing pores in the sprayed layer of the electrostatic chuck.
  • the sealant may be diluted with acetone or hexane to control the curing rate to improve sealing properties.
  • FIG. 1 is a cross-sectional view for explaining a process of sealing an electrostatic chuck with a sealant according to a first embodiment of the present invention.
  • a process of sealing an electrostatic chuck having pores in a sprayed layer by a sealant is disclosed.
  • FIG. 1A illustrates an electrostatic chuck having pores in the thermal sprayed layer.
  • the electrostatic chuck 100 of FIG. 1A may be formed of a substrate 10, a thermal spray layer 20, an electrode layer 30, an electrical connector 40, and a gas inlet.
  • the thermal spray layer 20 has pores in accordance with repeated use of the electrostatic chuck. The pores generated in the sprayed layer 20 may interfere with the vacuum of the electrostatic chuck and cause contamination.
  • the sealant is a sealant containing polysilazane including the following Chemical Formula 1 and not containing carbon atoms
  • R 1 is selected from the group consisting of N and H, and R 2 includes H or H 2 .
  • the sealant may be used by mixing with an organic solvent.
  • the organic solvent may include hexane and di-butyl ether, and the sealant may be chemically mixed with the organic solvent in a weight ratio of 5% to 30%.
  • the electrostatic chuck 100 includes a substrate 10, a sprayed layer 20, an electrode layer 30, an electrical connector 40, a tape dam 50, a sealant 60, and a gas inlet. Can be.
  • the sprayed layer 20 has pores according to the repeated use of the electrostatic chuck (100).
  • the sealant 60 may be prepared to seal the pores generated in the sprayed layer 20, and the tape dam 50 may be formed by surrounding the electrostatic chuck 100 with a tape. Subsequently, the sealant 60 may be applied to the electrostatic chuck 100 on which the tape dam 50 is formed to seal the pores generated in the sprayed layer 20 of the electrostatic chuck 100.
  • the sealant 60 is a sealant 60 containing polysilazane including the following Chemical Formula 1 and not including carbon number:
  • R 1 may be selected from the group consisting of N and H, and R 2 may include H or H 2 .
  • the sealant 60 may be coated for at least 8 hours to seal pores generated in the sprayed layer 20 of the electrostatic chuck 100.
  • the electrostatic chuck 100 includes a substrate 10, a thermal spray layer 20, an electrode layer 30, an electrical connector 40, a tape dam 50, a sealant 60, and a gas inlet. Can be.
  • the thermal sprayed layer 20 of the electrostatic chuck 100 is heat-treated when the electrostatic chuck 100 is heat treated.
  • the sealant 60 sealed in can be cured to form SiO 2 .
  • Figure 2 in order to analyze the curing characteristics that change depending on the curing temperature according to Example 1 of the present invention (a) of Figure 2 is a graph FT-IR analysis, Figure 2 (b) is a surface photograph This is disclosed.
  • thermosetting agent a thermosetting agent and having a C ⁇ O bond, and comprising the following Chemical Formula 2.
  • Polysiloxane including H 2 O and having a —CH 3 bond, and comprising the formula (3).
  • 5 to 7 are SEM images of FT-IR spectrum graphs and cross-sections of thin films shown to analyze acid resistance of the cured thin films according to Example 1, Comparative Example 1 and Comparative Example 2 of the present invention.
  • Example 1 the initial Si-O bond (a) can be confirmed that the oxidation proceeds after treatment with nitric acid (b) and hydrochloric acid (c) to form a more clear peak.
  • the thickness of the thin film of Example 1 of the present invention is increased by 1.5 to 2.0 times compared with Comparative Examples 1 to 2.
  • Comparative Example 1, Comparative Example 2 and Example 1 all form SiO 2 through vitrification after curing, but in the case of Comparative Examples not only Si-O bonds but also organic bonds are mixed to form a complete SiO 2 acid It is quickly etched in the atmosphere.
  • Example 1 it is made of pure SiO 2 can form a thick thin film. Therefore, in the case of Example 1, it can be confirmed that it has the outstanding acid resistance.
  • Example 8 is FT-IR spectral graphs shown for analyzing the acid resistance of the cured thin film according to Example 1 and Comparative Examples of the present invention.
  • FT-IR spectral graphs are disclosed for analyzing acid resistance of the sealant thin film cured at 80 over time in a 0.5% hydrofluoric acid solution.
  • Comparative Example 1 confirms that both the LO and TO phonon peaks of Si—O—Si are etched away in 30 seconds.
  • Comparative Example 2 retains the Si-O-Si bond for up to 30 seconds, but is rapidly etched after 60 seconds.
  • Example 1 forms complete SiO 2 , the bond between atoms is strong, and it can be confirmed that SiO 2 exists even after 180 seconds of etching time.
  • FIG. 10 is an image in which a silicon layer is mapped to a thermal sprayed cross section through EDX in order to analyze sealing characteristics with time after application of a sealant according to Example 1 and Comparative Examples of the present invention.
  • Comparative Example 1 can be confirmed that even after the elapse of 8 hours after the application of the sealant is not sealed to the interior of the sprayed layer.
  • Comparative Example 2 and Example 1 it can be confirmed that a large amount of silicon element is detected from 4 hours after the application of the sealant to the lower end of the sprayed layer.
  • the sealant of Example 1 seals the inside of the sprayed layer as time passes after application.
  • FIG. 11 is a graph illustrating an electrical property evaluation after acid treatment using 37 wt% hydrochloric acid after sealing the sprayed layer according to Example 1 and Comparative Examples of the present invention.
  • Comparative Example 1 has a short circuit voltage of 3,950 V and Comparative Example 2 has a 2,800 V.
  • Example 1 it can be seen that the electrical property is maintained even after the acid treatment with a short circuit voltage of 6,000 V.
  • Example 1 shows 17,500 to 19,000 M, and exceeds the mass production inspection standard of 3000 M or more.
  • Comparative Examples 1 to 2 are not measured because they are below the measurement limit line with a high resistance meter with a value of k units or less.
  • Example 12 are images for comparing the state of materials before curing and after 8 hours curing of the sealant according to Example 1 of the present invention.
  • (a) is a sealant before curing and (b) starts a sealant after curing for 8 hours.
  • the sealant is combined with moisture and oxygen in the air even at room temperature to start curing on the surface.
  • the sealant is also gelled after curing inside the sealant.
  • Table 1 shows a comparison of curing rates before and after mixing with the sealant using different solvents.
  • the solvent in which the pH value changes among the solvents and the solvent containing H 2 O starts to cure within 1 minute on average after mixing with the sealant.
  • a method for controlling the curing rate may be required.
  • the organic solvent for controlling the curing rate contains a solvent harmful to the human body, there is a risk in handling, it is preferable to select an organic solvent for minimizing toxicity. Accordingly, in the present invention, in order to seal the small pores deep inside the electrostatic chuck spray layer, the sealant is diluted using acetone and hexane as a method for controlling the curing rate.
  • Example 2 is a sealant prepared by diluting the sealant of Example 1 with acetone or hexane.
  • FIG. 13 shows EDX images analyzed to confirm whether the sealant is sealed on the surface of the thermal sprayed layer after applying the sealant according to Example 1 of the present invention by diluting the organic solvent.
  • the solvent used for dilution of the sealant is fixed with hexane.
  • Example 14 is an FT-IR graph analyzed to confirm the thin film characteristics of the sealant with different dilution ratios according to Example 2 of the present invention.
  • the hexane ratios based on the sealant are (a) 7.6 wt%, (b) 15.0 wt%, (c) 15.7 wt%, (e) 17.3 wt%, (e) 18.5 wt% and (f). )
  • the analyzed FT-IR graph is disclosed to confirm the thin film characteristics of the sealant diluted to 19.2 wt%.
  • (a) to (f) is a sealant diluted with hexane, and the sealant is FT-IR spectrum for confirming the Si-O bond after forming a thin film through heat curing at 80 °C for 3 hours. Therefore, (a) to (f) has a Si-O bond can be confirmed the difference in the bonding force according to the dilution ratio.
  • 15 to 20 are FT-IR graphs analyzed after etching for 30 seconds, 60 seconds and 180 seconds in a volume ratio 0.5% hydrofluoric acid solution to analyze the acid resistance of the sealant diluted in hexane according to Example 2 of the present invention. .
  • a sealant diluted to 7.6 wt% using hexane, and the FT-IR graph is disclosed after etching the sealant in a volume ratio of 0.5% hydrofluoric acid at 30 seconds, 60 seconds, and 180 seconds.
  • a sealant diluted to 15 wt% using hexane, and the FT-IR graph is disclosed after etching the sealant in a volume ratio of 0.5% hydrofluoric acid at 30 seconds, 60 seconds, and 180 seconds.
  • a sealant diluted to 16 wt% using hexane, and the FT-IR graph is disclosed after etching the sealant in a volume ratio of 0.5% hydrofluoric acid at 30 seconds, 60 seconds, and 180 seconds.
  • a sealant diluted to 17.3 wt% using hexane, and the FT-IR graph is disclosed after etching the sealant in a volume ratio of 0.5% hydrofluoric acid at 30 seconds, 60 seconds, and 180 seconds.
  • a sealant diluted to 18.5 wt% using hexane, and the FT-IR graph is disclosed after etching the sealant in a volume ratio of 0.5% hydrofluoric acid at 30 seconds, 60 seconds, and 180 seconds.
  • a sealant diluted to 19.2 wt% using hexane, and the FT-IR graph is disclosed after etching the sealant at a volume ratio of 0.5% hydrofluoric acid at 30 seconds, 60 seconds, and 180 seconds.
  • the Si-O bond of 800 cm -1 is reduced during etching, but since the 701 cm -1 Si-O bond is observed and remains after 180 seconds of etching, it is acid resistant. You can expect.
  • Example 21 are images for observing the curing rate of the sealant diluted in hexane according to Example 2 of the present invention.
  • Sealant images before curing and after 10 and 18 hours of curing of the sealant diluted to 16 wt% with hexane can be confirmed that curing does not proceed on the surface even after 10 hours of curing. In addition, it can be confirmed that the sealant is completely cured and vitrified after 18 hours of curing.
  • FIG. 22 illustrates mapping images of silicon elements by analyzing EDX in order to confirm the sealing property of the sealant diluted to 16 wt% using hexane according to the second embodiment of the present invention over time.
  • the sprayed layer is analyzed by EDX, and images of only silicon elements are disclosed. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

실란트로 실링된 정전척 및 이의 제조방법을 제공한다. 상기 실란트는 폴리실라잔계를 함유하고 정전척의 용사층을 실링하기 위한 것이다. 또한, 상기 실란트는 저온에서도 정전척의 용사층을 실링함과 동시에 순수한 SiO2를 형성할 수 있다. 따라서, 상기 실란트로 실링된 정전척은 내산성이 우수하여 정전척의 수명연장과 더불어 내전압 및 절연저항을 포함하는 전기적 특성을 향상시킬 수 있다.

Description

실란트로 실링된 정전척 및 이의 제조방법
본 발명은 실란트로 실링된 정전척에 관한 것으로, 더욱 상세하게는 폴리실라잔계 실란트로 정전척 내 용사층의 기공을 실링하여 전기화학적 특성이 향상된 정전척 및 이의 제조방법에 관한 것이다.
반도체소자는 화학기상증착, 스퍼터링, 포토리소그라피, 에칭, 이온주입 등 수 많은 단위 공정들이 순차적으로 또는 반복적으로 수행되며 가공되는데, 이러한 공정을 진행하기 위해서는 웨이퍼를 챔버 내부의 웨이퍼 지지대에 고정 또는 척킹시켜서 웨이퍼를 가공한 후, 다음 단계의 가공을 위해 디척킹하는 과정을 여러 번 반복하게 된다.
정전척(ESC)은 유전물질에 따라 쿨롱힘(Coulomb Force)을 이용하는 고저항 정전척과 존슨-라벡효과(A. Jehnson & K. Rahbek's Force)에 의하여 웨이퍼를 고정시키는 저저항 정전척으로 나눌 수 있다.
특히, 반도체 제조 장치 중 웨이퍼의 정밀한 위치 고정을 위하여 정전척(Electrostatic chuck)을 사용하는 경우가 증가하고 있으며 이는 기존에 진공 흡착하거나 또는 클램프를 이용하여 이송하는 방법은 웨이퍼에 물리적인 힘을 가하게 되어 손상되거나 이물질에 의하여 오염되는 것을 방지하기 위하여 정전기력을 이용하도록 한 것이다. 이러한 정전척은 세라믹 용사코팅 타입과 세라믹 내부에 전극을 삽입하여 소결한 세라믹 플레이트 타입이 주류를 이루고 있다.
이중 세라믹 용사코팅 타입의 정전척은 알루미늄 베이스의 상부에 형성되는 세라믹 코팅층을 용사의 방법에 의하여 코팅하는 방법이다. 하지만, 어느 정도 기공이 존재하게 되며 이러한 기공을 통하여 플라즈마상의 전하들이 알루미늄 베이스나 전극층에 침투하여 세라믹 코팅층에 아킹(Acring)을 일으키게 되며 이는 세라믹 코팅층에 손상을 가져오게 되어 평탄도가 떨어지거나 가스홀이 막히는 경우가 발생하는 것이다.
따라서, 정전척의 내구성을 떨어뜨리게 되고 정전척의 수명저하를 발생시키는 점은 해결해야 할 문제점이다.
본 발명이 해결하고자 하는 제1과제는 실란트로 실링된 정전척을 제공하는데 있다.
본 발명이 해결하고자 하는 제2과제는 제1과제를 포함하는 정전척 실링방법을 제공하는데 있다.
발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 측면은, 정전척 및 상기 정전척의 용사층을 실링하기 위한 실란트, 상기 실란트는 하기 화학식 1을 포함하고, 탄소수는 포함하지 않는 폴리실라잔을 함유하는 실란트이며,
<화학식 1>
Figure PCTKR2018004491-appb-I000001
상기 화학식 1에서 R1은 N 및 H로 이루어진 군에서 선택되고, R2는 H 또는 H2를 포함하는 것을 특징으로 하는 실란트로 실링된 정전척을 제공할 수 있다.
상기 정전척의 용사층을 실링하기 위한 실란트는 유기용매와 화학적으로 혼합되어 정전척을 실링하면서 SiO2를 형성하는 것을 특징으로 하는 실란트로 실링된 정전척을 포함할 수 있다.
상기 과제를 해결하기 위한 본 발명의 다른 일 측면은, 정전척을 실링하기 위한 실란트를 준비하는 단계, 상기 실란트는 하기 화학식 1을 포함하고, 탄소수는 포함하지 않는 폴리실라잔을 함유하는 실란트이며,
<화학식 1>
Figure PCTKR2018004491-appb-I000002
(상기 화학식 1에서 R1은 N 및 H로 이루어진 군에서 선택되고, R2는 H 또는 H2를 포함한다.)
상기 정전척은 용사층에 기공을 갖는 정전척이고 용사층에 기공을 갖는 정전척을 테이프로 둘러 테이프 댐을 형성하는 단계, 상기 테이프 댐에 실란트를 도포하여 정전척을 실링하는 단계 및 상기 실란트를 제거하고 열처리를 통해 정전척 용사층에 실링된 실란트를 경화시켜 SiO2를 형성하는 단계를 포함하는 정전척 실링방법을 제공할 수 있다.
상기 정전척을 실링하기 위한 실란트를 준비하는 단계에서 상기 실란트는 무게비 5% 내지 30%로 유기용매와 화학적으로 혼합하여 사용하는 것을 특징으로 하는 정전척 실링방법을 포함할 수 있다.
상기 유기용매는 헥산 및 디-부틸 에테르를 포함하는 것을 특징으로 하는 정전척 실링방법을 제공할 수 있다.
상기 테이프 댐에 실란트를 도포하여 정전척을 실링하는 단계에서 상기 실란트는 8시간 이상 도포하는 것을 특징으로 하는 정전척 실링방법을 포함할 수있다.
상기 실란트를 제거하고 열처리를 통해 정전척 용사층에 실링된 실란트을 경화시켜 SiO2를 형성하는 단계에서 상기 형성된 SiO2는 유전율이 3.9인 것을 특징으로 하는 정전척 실링방법을 제공할 수 있다.
상기 실란트는 아세톤 또는 헥산으로 희석하여 경화속도를 제어할 수 있는 것을 특징으로 하는 정전척 실링방법을 포함할 수 있다.
상술한 바와 같이 본 발명에 따르면, 정전척 실링을 위해 사용된 폴리실라잔계 실란트는 경화 후 유기결합물이 잔류하지 않기 때문에 유전율 3.9인 SiO2를 형성할 수 있다.
또한, 본 발명의 정전척 실링을 위해 사용된 폴리실라잔계 실란트는 저하되는 쿨롱 힘을 방지하여 정전척의 전기적 특성을 향상시킬 수 있다.
따라서, 본 발명의 실란트는 반도체 공정의 에찬트 공정 중에 사용되는 물질에 대하여 우수한 내산성을 갖기 때문에 정전척 수명을 향상시킬 수 있다.
다만, 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예 1에 따른 실란트로 정전척을 실링하는 과정을 설명하기 위한 단면도이다.
도 2는 본 발명의 실시예 1에 따른 경화온도에 따라 변화되는 경화특성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프이다.
도 3은 본 발명의 비교예 1에 따른 경화온도에 따라 변화되는 경화특성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프이다.
도 4는 본 발명의 비교예 2에 따른 경화온도에 따라 변화되는 경화특성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프이다.
도 5는 본 발명의 실시예 1에 따른 경화 박막의 내산성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프 및 박막의 단면을 SEM 분석한 이미지이다.
도 6은 본 발명의 비교예 1에 따른 경화 박막의 내산성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프 및 박막의 단면을 SEM 분석한 이미지이다.
도 7는 본 발명의 비교예 2의 따른 경화 박막의 내산성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프 및 박막의 단면을 SEM 분석한 이미지이다.
도 8은 본 발명의 실시예 1 및 비교예들에 따른 경화 박막의 내산성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프들이다.
도 9는 본 발명의 실시예 1에 따른 실란트 도포 전에 알루미나 용사층을 분석한 SEM 이미지들이다.
도 10은 본 발명의 실시예 1 및 비교예들에 따른 실란트 도포 후 시간이 경과함에 따른 실링특성을 분석하기 위해 용사층 단면을 EDX를 통해 실리콘 원소를 맵핑한 이미지들이다.
도 11은 본 발명의 실시예 1 및 비교예들에 따른 용사층 실링 후 37wt% 염산을 이용하여 산 처리한 후 전기물성평가를 분석한 그래프들이다.
도 12는 본 발명의 실시예 1에 따른 실란트의 경화 전과 8시간 경화 후의 물질의 상태를 비교하기 위한 이미지들이다.
도 13은 본 발명의 실시예 1에 따른 실란트를 유기용매에 희석하여 도포한 후에 용사층 표면에 실링여부를 확인하기 위해 분석한 EDX이미지들이다.
도 14는 본 발명의 실시예 2에 따라 희석비율을 달리한 실란트의 박막특성을 확인하기 위해 분석한 FT-IR 그래프이다.
도 15 내지 도 20은 본 발명의 실시예 2에 따라 헥산에 희석한 실란트의 내산성을 분석하기 위해 부피비 0.5% 불산용액에서 30초, 60초 및 180초 동안 에칭한 후에 분석한 FT-IR 그래프이다.
도 21은 본 발명의 실시예 2에 따라 헥산에 희석한 실란트의 경화속도를 관찰하기 위한 이미지들이다.
도 22는 본 발명의 실시예 2에 따라 헥산을 이용하여 16 wt%로 희석한 실란트를 도포한 시간에 따른 실링특성을 확인하기 위해 EDX를 분석하여 실리콘 원소를 맵핑 이미지들이다.
이하 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등을 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
본 발명은 실란트로 실링된 정전척 및 이의 제조방법을 제공한다. 예컨대, 정전척 실링방법은 실란트를 준비하는 단계, 용사층에 기공을 갖는 정전척을 테이프로 둘러 테이프 댐을 형성하는 단계, 상기 테이프 댐에 실란트를 도포하여 정전척을 실링하는 단계 및 상기 실란트를 제거하고 열처리를 통해 정전척 용사층에 실링된 실란트을 경화시켜 SiO2를 형성하는 단계를 포함할 수 있다.
또한, 상기 정전척을 실링하기 위한 상기 실란트는 폴리실라잔계를 함유하고 정전척의 용사층에 생긴 기공을 실링할 수 있다. 또한, 상기 실란트는 추가적인 가열 공정 없이 정전척에 실란트를 도포하는 것만으로 용사층을 실링할 수 있다. 또한, 상기 실란트는 정전척의 용사층에 기공을 실링함과 동시에 순수한 SiO2를 형성할 수 있다.
또한, 상기 실란트는 아세톤 또는 헥산으로 희석하여 경화속도를 제어하여 실링특성을 향상시킬 수 있다.
실시예 1
도 1은 본 발명의 실시예 1에 따른 실란트로 정전척을 실링하는 과정을 설명하기 위한 단면도이다.
도 1을 참조하면, 실란트에 의해 용사층에 기공을 갖는 정전척을 실링하는 과정이 개시된다.
도 1의 (a)는 용사층에 기공을 갖는 정전척을 도시화한 것이다. 도 1의 (a)의 정전척(100)은 기판(10), 용사층(20), 전극층(30), 전기커넥트(40) 및 가스 유입구로 구성될 수 있다. 또한, 상기 용사층(20)은 반복되는 정전척 사용에 따라 기공을 갖는다. 상기 용사층(20)에 발생된 기공은 정전척의 진공을 방해하고 오염을 유발할 수 있다.
따라서, 정전척(100) 내 용사층(20)에 발생된 기공을 실링하기 위한 실란트를 준비한다. 상기 실란트는 하기 화학식 1을 포함하고, 탄소수는 포함하지 않는 폴리실라잔을 함유하는 실란트이고
<화학식 1>
Figure PCTKR2018004491-appb-I000003
상기 화학식 1에서 R1은 N 및 H로 이루어진 군에서 선택되고, R2는 H 또는 H2를 포함한다. 또한, 상기 실란트는 유기용매와 혼합하여 사용할 수 있다. 예컨대, 상기 유기용매는 헥산(hexane) 및 디-부틸 에테르(di-butyl ether)를 포함할 수 있으며, 상기 실란트는 무게비 5% 내지 30%로 유기용매와 화학적으로 혼합하여 사용할 수 있다.
도 2의 (b)는 정전척(100)은 기판(10), 용사층(20), 전극층(30), 전기커넥트(40), 테이프 댐(50), 실란트(60) 및 가스 유입구로 구성될 수 있다.
또한, 상기 용사층(20)은 반복되는 정전척(100) 사용에 따라 기공을 갖는다. 상기 용사층(20)에 발생된 기공을 실링하기 위해 실란트(60)를 준비하고 정전척(100)을 테이프로 둘러 테이프 댐(50)을 형성할 수 있다. 이어서, 테이프 댐(50)이 형성된 정전척(100)에 실란트(60)를 도포하여 정전척(100)의 용사층(20)에 발생된 기공을 실링할 수 있다. 예컨대, 상기 실란트(60)는 하기 화학식 1을 포함하고, 탄소수는 포함하지 않는 폴리실라잔을 함유하는 실란트(60)이고
<화학식 1>
Figure PCTKR2018004491-appb-I000004
상기 화학식 1에서 R1은 N 및 H로 이루어진 군에서 선택되고, R2는 H 또는 H2를 포함할 수 있다. 또한, 상기 실란트(60)는 8시간 이상 도포하여 정전척(100)의 용사층(20)에 발생된 기공을 실링할 수 있다.
도 2의 (c)는 정전척(100)은 기판(10), 용사층(20), 전극층(30), 전기커넥트(40), 테이프 댐(50), 실란트(60) 및 가스 유입구로 구성될 수 있다.
또한, 상기 정전척(100)의 용사층(20)에 발생된 기공이 상기 실란트(60)에 의해 실링된 후에는 상기 정전척(100)을 열처리 하면 정전척(100)의 용사층(20)에 실링된 실란트(60)는 경화되어 SiO2를 형성할 수 있다.
도 2 내지 도 4는 본 발명의 실시예 1, 비교예 1 및 비교예 2에 따른 경화온도에 따라 변화되는 경화특성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프들이다.
도 2를 참조하면, 본 발명의 실시예 1에 따른 경화온도에 따라 변화되는 경화특성을 분석하기 위해서 도 2의 (a)는 FT-IR 분석한 그래프이며, 도 2의 (b)는 표면사진이 개시된다.
도 2의 FT-IR 분석결과 실리콘과 산소가 결합된 피크를 확인할 수 있다. 또한, 경화온도가 상승하여도 실리콘과 산소가 결합된 피크가 유지되는 것으로 보아 실링 후에 SiO2가 정전척 용사층 표면에 존재한다는 것을 확인할 수 있다.
도 3 내지 도 4를 참조하면, 본 발명의 비교예 1 내지 비교예 2에 따른 경화온도에 따라 변화되는 경화특성을 분석하기 위해서 도 3 내지 도 4의 (a)는 FT-IR 분석한 그래프이며, 도 3 내지 도 4의 (b)는 표면사진이 개시된다.
비교예 1
열경화제를 포함하며 C=O 결합을 갖으며, 하기 화학식 2를 포함하는 폴리실록산이다.
<화학식 2>
Figure PCTKR2018004491-appb-I000005
비교예 2
H2O를 포함하며 -CH3 결합을 갖으며, 하기 화학식 3을 포함하는 폴리실록산이다.
<화학식 3>
Figure PCTKR2018004491-appb-I000006
도 5 내지 도 7은 본 발명의 실시예 1, 비교예 1 및 비교예 2에 따른 경화 박막의 내산성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프 및 박막의 단면을 SEM 분석한 이미지들이다.
도 5 내지 도 7을 참조하면, 도 5의 실시예 1, 도 6의 비교예 1 및 도 7의 비교예 2의 박막의 내산성을 분석한 결과가 개시된다.
도 5 내지 도 7에 개시된 (a) 80 ℃ 경화 후, (b) 68 wt% 질산 용액에서 20 시간 도포 후, (c) 37 wt% 염산 용액에서 20 시간 도포 후 박막의 FT-IR 스펙트럼, (e) 80 ℃ 경화 후, (f) 68 wt% 질산 용액에서 20 시간 도포 후, (g) 37 wt% 염산 용액에서 20 시간 도포 후 박막의 단면 SEM 이미지들이다.
실시예 1의 경우, 처음 (a)의 Si-O 결합은 질산 (b) 및 염산 (c) 처리 후 산화가 진행되어 더 명확한 피크를 형성하는 것을 확인할 수 있다. 또한, 비교예 1 내지 비교예 2와 비교하여 본 발명의 실시예 1의 박막의 두께는 1.5 내지 2.0 배 증가하는 것을 확인할 수 있다. 아울러, 비교예 1, 비교예 2 및 실시예 1은 모두 경화 후 유리화를 통해 SiO2를 형성하나, 비교예들의 경우 Si-O 결합뿐만 아니라 유기결합이 혼재되어 있어 완전한 SiO2를 형성하지 못해 산 분위기에서 빠르게 에칭되는 것이다. 반면, 실시예 1의 경우 순수한 SiO2로 이루어져 있어 두께가 두꺼운 박막을 형성할 수 있다. 따라서, 실시예 1의 경우, 우수한 내산성을 갖는 것을 확인할 수 있다.
도 8은 본 발명의 실시예 1 및 비교예들에 따른 경화 박막의 내산성을 분석하기 위해 나타낸 FT-IR 스펙트럼 그래프들이다.
도 8을 참조하면, 80 에서 경화시킨 실란트 박막에 내산성을 분석하기에 대위한 것으로 상기 실란트 박막이 부피비 0.5% 불산 용액에서 시간이 경과함에 따른 FT-IR 스펙트럼 그래프들이 개시된다.
도 8의 (a) 비교예 1, (b) B-비교예 2, (c) C-실시예 1의 FT-IR 스펙트럼 그래프이다.
비교예 1은 Si-O-Si의 LO 및 TO phonon 피크는 30초 만에 모두 에칭되어 사라지는 것을 확인할 수 있다. 또한, 비교예 2는 30초까지는 Si-O-Si의 결합을 유지하지만, 60초 이후 급격히 에칭된다. 반면, 실시예 1은 완전한 SiO2를 형성하기 때문에 원자간 결합이 강해 에칭 시간이 180초 경과 후에도 SiO2가 존재하는 것을 확인할 수 있다.
도 9는 본 발명의 실시예 1에 따른 실란트 도포 전에 알루미나 용사층을 분석한 SEM 이미지들이다.
도 9를 참조하면, (a) 150 배, (b) 500 배, (c) 1000 배 및 (d) 2000 배로 알루미나 용사층을 분석한 SEM 이미지들이며, 알루미나 분말과 분말 사이의 틈이 지름 1 내지 10 ㎛인 기공을 갖는 것을 확인할 수 있다.
도 10은 본 발명의 실시예 1 및 비교예들에 따른 실란트 도포 후 시간이 경과함에 따른 실링특성을 분석하기 위해 용사층 단면을 EDX를 통해 실리콘 원소를 맵핑한 이미지들이다.
도 10을 참조하면, (a) 비교예 1, (b) 비교예 2, (c) 실시예 1이며, 실란트 도입 후 시간이 경과함에 따른 실링특성을 평가하기 위해 용사층 단면을 EDX를 통해 실리콘 원소를 맵핑한 이미지들이 개시된다.
비교예 1은 실란트 도포 후 8 시간 경과 후에도 용사층 내부까지 실링되지 않는 것을 확인할 수 있다. 비교예 2와 실시예 1은 실란트 도포 4시간 경과 후부터 용사층 하단부까지 실리콘 원소의 양이 많이 검출된 것을 확인할 수 있다. 특히, 실시예 1의 실란트는 도포 후 시간이 경과함에 따라 용사층 내부를 실링하는 것을 확인할 수 있다.
도 11은 본 발명의 실시예 1 및 비교예들에 따른 용사층 실링 후 37wt% 염산을 이용하여 산 처리한 후 전기물성평가를 분석한 그래프들이다.
도 11을 참조하면, (a) 비교예 1, (b) 비교예 2, (c) 실시예 1이며, 용사층 실링 후 37wt% 염산을 이용하여 산 처리한 후 전기물성평가를 분석한 그래프들이 개시된다.
비교예 1은 단락전압이 3,950 V이고 비교예 2는 2,800 V이다. 반면, 실시예 1은 단락전압이 6,000 V로 산처리 후에도 전기적 물성 특성이 유지되는 것을 확인할 수 있다. 또한, 저항 분석 결과, 실시예 1은 17,500 내지 19,000 M을 나타내므로 3000 M 이상의 양산제품 검수 기준을 상회한다. 반면, 비교예 1 내지 비교예 2는 k 대 이하의 수치로 고저항계로 측정 한계선 아래에 있어 측정이 되지 않는다.
도 12는 본 발명의 실시예 1에 따른 실란트의 경화 전과 8시간 경화 후의 물질의 상태를 비교하여 위한 이미지들이다.
도 12를 참조하면, (a)는 경화 전 실란트이고 (b)는 8시간 경화 후 실란트가 개시된다. 상기 실란트는 상온에서도 공기 중 수분 및 산소와 결합하여 표면에서 경화가 시작된다. 아울러, (b) 8시간 경화 후에는 실란트 내부에서도 경화되어 실란트가 겔(gel)화되는 것을 확인할 수 있다.
하기 표 1은 다른 용매를 이용하여 실란트에 혼합하기 전과 후의 경화속도를 비교하여 나타낸 것이다.
혼합 물질명 혼합 후 상온경화 시간 (min) 혼합 전 상온경화 대비 경화속도
NaOH ≤ 1 빠름
30 vol.% Hydrogen ≤ 1
Ammonia ≤ 1
Acetonitrile ≤ 5
Citric acid ≤ 1
혼합 물질명 혼합 후 상온경화 시간 (h) 혼합 전 상온경화 대비 경화속도
99.5 vol.% Acetone ≥ 15 느림
99.5 vol.% Hexane ≥ 15
표 1을 참조하면, 용매들 중에 pH의 값이 변화하는 용매 및 H2O가 포함된 용매는 실란트와 혼합 후 평균적으로 1분 이내에 경화가 시작되는 것을 확인할 수 있다. 또한, 유기용매와 실란트를 혼합하면, 상온에서 15 시간 이후부터 경화가 진행되는 것을 확인할 수 있다. 따라서, 정전척 용사층 내부에 깊숙한 곳에 작은 기공까지 실링하기 위해서는 경화속도를 제어하기 위한 방법이 필요할 수 있다. 또한, 경화속도를 제어하기 위한 유기용매는 인체에 유해한 용매가 함유되어 취급 시에 위험성이 있기 때문에 독성을 최소화하기 위한 유기용매를 선정하는 바람직하다. 따라서, 본 발명에서는 정전척 용사층 내부에 깊숙한 곳에 작은 기공까지 실링하기 위해서는 경화속도를 제어하기 위한 방법으로 아세톤 및 헥산을 이용하여 실란트를 희석한다.
실시예 2
실시예 2는 실시예 1의 실란트를 아세톤 또는 헥산으로 희석하여 제조한 실란트이다.
도 13은 본 발명의 실시예 1에 따른 실란트를 유기용매에 희석하여 도포한 후에 용사층 표면에 실링여부를 확인하기 위해 분석한 EDX이미지들이다.
도 13을 참조하면, (a) 아세톤 또는 (b) 헥산을 이용하여 실란트와 1:1 부피비로 희석해 제조한 실란트이며 상기 실란트로 정전척을 9시간 동안 도포한 후에 80 에서 3 시간 열처리하여 정전척의 용사층 단면을 EDX분석하여 실리콘을 맵핑한 이미지가 개시된다.
(a) 실란트를 아세톤에 희석한 경우, 용사층 표면에서 100 μm 깊이까지 실리콘 원소가 침투하나, 200 μm 이상의 깊이까지는 실리콘 원소가 발견되지 않는 것으로 보아 실란트가 침투하지 못한 것을 확인할 수 있다. 이처럼, 실란트를 아세톤으로 희석한 (a)는 용액 표면에서는 빠르게 경화되지 않으나, 용액 내부에서부터 경화가 시작되어 용사층 표면에 먼저 SiO2 막을 형성하게 되어 용사층 200 μm 이상의 내부까지 실란트가 침투하지 못하여 용사층 200 μm 이상의 깊이에서는 실리콘 원소가 발견되지 않는 것이다.
반면, (b) 실란트를 헥산에 희석한 경우, 실란트를 도포한지 9시간 경과후 용사층 표면에서 400 μm 깊이의 bottom까지 실리콘 원소가 침투하여 실링된 것을 확인할 수 있다.
따라서, 정전척 용사층의 실링특성을 향상시키기 위하여 이하, 실란트 희석에 사용되는 용매는 헥산으로 고정한다.
도 14는 본 발명의 실시예 2에 따라 희석비율을 달리한 실란트의 박막특성을 확인하기 위해 분석한 FT-IR 그래프이다.
도 14를 참조하면, 실란트를 기준으로 헥산 비율을 (a) 7.6 wt%, (b) 15.0 wt%, (c) 15.7 wt%, (e) 17.3 wt%, (e) 18.5 wt% 및 (f) 19.2 wt%로 희석한 실란트의 박막특성을 확인하기 위한 분석한 FT-IR 그래프가 개시된다.
(a) 내지 (f)는 헥산으로 희석된 실란트이며, 상기 실란트는 80 ℃에서 3 시간의 열경화를 통해 박막을 형성시킨 후에 Si-O 결합을 확인하기 위한 FT-IR 스펙트럼이 측정된다. 따라서, (a) 내지 (f)는 Si-O 결합을 가지며 희석비율에 따라 결합력의 차이를 확인할 수 있다.
도 15 내지 도 20은 본 발명의 실시예 2에 따라 헥산에 희석한 실란트의내산성을 분석하기 위해 부피비 0.5% 불산용액에서 30초, 60초 및 180초 동안 에칭한 후에 분석한 FT-IR 그래프이다.
도 15를 참조하면, 헥산을 이용하여 7.6 wt%로 희석한 실란트이며, 상기 실란트를 부피비 0.5% 불산에 30초, 60초 및 180초로 에칭한 후 FT-IR 그래프가 개시된다.
아울러, 헥산을 이용하여 7.6 wt%로 희석한 실란트의 경우, 에칭 60초 이후 800 cm-1에서 관찰되던 Si-O 결합이 급격하게 사라지므로 내산성이 감소되는 것을 확인할 수 있다.
도 16을 참조하면, 헥산을 이용하여 15 wt%로 희석한 실란트이며, 상기 실란트를 부피비 0.5% 불산에 30초, 60초 및 180초로 에칭한 후 FT-IR 그래프가 개시된다.
아울러, 헥산을 이용하여 15 wt%로 희석한 실란트의 경우, 에칭이 되면서 800 cm-1의 Si-O 결합은 줄어들면서, 701 cm-1의 Si-O 결합이 관찰된다. 또한, 180초 에칭한 후에는 Si-O 결합이 존재하나 줄어든 것을 확인할 수 있다.
도 17를 참조하면, 헥산을 이용하여 16 wt%로 희석한 실란트이며, 상기 실란트를 부피비 0.5% 불산에 30초, 60초 및 180초로 에칭한 후 FT-IR 그래프가 개시된다.
아울러, 헥산을 이용하여 16 wt%로 희석한 실란트의 경우, 180초 에칭한 후에도 Si-O 결합이 남아있는 것을 확인할 수 있다.
도 18를 참조하면, 헥산을 이용하여 17.3 wt%로 희석한 실란트이며, 상기 실란트를 부피비 0.5% 불산에 30초, 60초 및 180초로 에칭한 후 FT-IR 그래프가 개시된다.
아울러, 헥산을 이용하여 17.3 wt%로 희석한 실란트의 경우, 에칭이 되면서 800 cm-1의 Si-O 결합은 줄어드나, 701 cm-1의 Si-O 결합이 관찰되어 180초 에칭한 후에도 남아있으므로 내산성을 기대할 수 있다.
도 19를 참조하면, 헥산을 이용하여 18.5 wt%로 희석한 실란트이며, 상기 실란트를 부피비 0.5% 불산에 30초, 60초 및 180초로 에칭한 후 FT-IR 그래프가 개시된다.
아울러, 헥산을 이용하여 18.5 wt%로 희석한 실란트의 경우, 에칭이 되면서 800 cm-1의 Si-O 결합은 줄어드나, 701 cm-1의 Si-O 결합이 관찰되어 180초 에칭한 후에도 남아있으므로 내산성을 기대할 수 있다.
도 20을 참조하면, 헥산을 이용하여 19.2 wt%로 희석한 실란트이며, 상기 실란트를 부피비 0.5% 불산에 30초, 60초 및 180초로 에칭한 후 FT-IR 그래프가 개시된다.
헥산을 이용하여 19.2 wt%로 희석한 실란트의 경우, 에칭이 되면서 800 cm-1의 Si-O 결합은 줄어드나, 701 cm-1의 Si-O 결합이 관찰되어 180초 에칭한 후에도 남아있으므로 내산성을 기대할 수 있다.
도 21은 본 발명의 실시예 2에 따라 헥산에 희석한 실란트의 경화속도를 관찰하기 위한 이미지들이다.
도 21을 참조하면, 헥산을 이용하여 16 wt%로 희석한 실란트이며, 상기 실란트가 경화 시간이 경과함에 따라 경화되는 것을 관찰한 이미지들이 개시된다.
헥산을 이용하여 16 wt%로 희석한 실란트의 경화 전과 10 시간 및 18시간 경화 후의 실란트 이미지들이다. 이처럼, 헥산을 이용하여 16 wt%로 희석한 실란트는 경화 10 시간 후에도 표면에서 경화가 진행이 되지 않는 것을 확인할 수 있다. 또한, 상기 실란트는 경화 18 시간 후에 완전히 경화되어 유리화된 것을 확인할 수 있다.
도 22는 본 발명의 실시예 2에 따라 헥산을 이용하여 16 wt%로 희석한 실란트의 도포한 시간에 따른 실링특성을 확인하기 위해 EDX를 분석하여 실리콘 원소를 맵핑 이미지들이다.
도 22를 참조하면, 16 wt%로 희석한 실란트의 실링특성을 알아보기 위해 4시간, 6시간, 8시간 및 10시간 도포한 후 용사층을 EDX로 분석하여 실리콘 원소만 맵핑한 이미지들이 개시된다.
도포시간이 길어짐에 따라 용사층 내부로 침투되는 실리콘 원소의 양이 증가하는 것을 확인할 수 있다. 아울러, 도포한 후 4시간 및 6시간 보다 8시간 이상으로 도포하였을 때 실리콘 원소가 많이 검출된 것으로 보아 실링특성이 향상되는 것을 확인할 수 있다. 또한, 8시간 도포한 것과 10시간 도포한 것은 용사층 내 실리콘 원소에 크게 차이가 나지 않는다. 아울러, 도포 시간은 8시간 이상인 것이 바람직하다.
따라서, 실란트를 이용한 정전척 실링방법을 통해 저온경화에서도 순수한 SiO2를 이루어 뛰어난 유전특성 및 내산성을 향상시킬 수 있다. 또한, 종래의 폴리실록산계 실란트의 단점을 보완하여 정전척의 수명 연장뿐만 아니라 우수한 내전압특성 및 고저항을 포함하는 전기적 특성을 향상시킬 수 있다.
아울러, 본 발명의 실란트의 경화속도를 제어를 위해 헥산을 이용하여 실란트를 희석함으로써, 정전척 용사층의 실링특성을 향상시킬 수 있다.

Claims (8)

  1. 정전척 및
    상기 정전척의 용사층을 실링하기 위한 실란트;
    상기 실란트는 하기 화학식 1을 포함하고, 탄소수는 포함하지 않는 폴리실라잔을 함유하는 실란트이며,
    <화학식 1>
    Figure PCTKR2018004491-appb-I000007
    상기 화학식 1에서 R1은 N 및 H로 이루어진 군에서 선택되고, R2는 H 또는 H2를 함유하고 정전척을 실링하는 것을 특징으로 하는 실란트로 실링된 정전척.
  2. 제1 항에 있어서, 상기 정전척의 용사층을 실링하기 위한 실란트는 유기용매와 화학적으로 혼합되어 정전척을 실링하면서 SiO2를 형성하는 것을 특징으로 하는 실란트로 실링된 정전척.
  3. 정전척을 실링하기 위한 실란트를 준비하는 단계;
    상기 실란트는 하기 화학식 1을 포함하고, 탄소수는 포함하지 않는 폴리실라잔을 함유하는 실란트이고
    <화학식 1>
    Figure PCTKR2018004491-appb-I000008
    (상기 화학식 1에서 R1은 N 및 H로 이루어진 군에서 선택되고, R2는 H 또는 H2를 포함한다.)
    상기 정전척은 용사층에 기공을 갖는 정전척이고 상기 정전척을 테이프로 둘러 테이프 댐을 형성하는 단계;
    상기 테이프 댐에 실란트를 도포하여 정전척을 실링하는 단계; 및
    상기 실란트를 제거하고 열처리를 통해 정전척 용사층에 실링된 실란트를 경화시켜 SiO2를 형성하는 단계를 포함하는 정전척 실링방법.
  4. 제3 항에 있어서, 상기 정전척을 실링하기 위한 실란트를 준비하는 단계에서
    상기 실란트는 무게비 5% 내지 30%로 유기용매와 화학적으로 혼합하여 사용하는 것을 특징으로 하는 정전척 실링방법.
  5. 제4 항에 있어서, 상기 유기용매는 헥산 및 디-부틸 에테르를 포함하는 것을 특징으로 하는 정전척 실링방법.
  6. 제3 항에 있어서, 상기 테이프 댐에 실란트를 도포하여 정전척을 실링하는 단계에서
    상기 실란트는 8시간 이상 도포하는 것을 특징으로 하는 정전척 실링방법.
  7. 제3 항에 있어서, 상기 실란트를 제거하고 열처리를 통해 정전척 용사층에 실링된 실란트을 경화시켜 SiO2를 형성하는 단계에서
    상기 형성된 SiO2는 유전율이 3.9인 것을 특징으로 하는 정전척 실링방법.
  8. 제3 항에 있어서, 상기 실란트는 아세톤 또는 헥산으로 희석하여 경화속도를 제어할 수 있는 것을 특징으로 하는 정전척 실링방법.
PCT/KR2018/004491 2017-04-18 2018-04-18 실란트로 실링된 정전척 및 이의 제조방법 WO2018194366A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170049667A KR102066271B1 (ko) 2017-04-18 2017-04-18 정전척 실링방법
KR10-2017-0049667 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018194366A1 true WO2018194366A1 (ko) 2018-10-25

Family

ID=63857139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004491 WO2018194366A1 (ko) 2017-04-18 2018-04-18 실란트로 실링된 정전척 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102066271B1 (ko)
WO (1) WO2018194366A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052647A (ko) 2019-10-29 2021-05-11 (주)제니스월드 세라믹 용사 코팅층의 절연 특성 향상을 위한 무용제 저점도 에폭시계 실란트 조성물 및 이를 이용한 세라믹 코팅 부품
KR20210062480A (ko) 2019-11-21 2021-05-31 (주)제니스월드 유무기 하이브리드 조성물을 이용한 바이폴라 정전척의 제조방법
KR102387231B1 (ko) * 2020-07-17 2022-04-15 와이엠씨 주식회사 정전척의 유전체 층의 봉공처리방법
KR20220168743A (ko) 2021-06-17 2022-12-26 주식회사 투피엘 정전척용 절연 함침액 조성물 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070037516A (ko) * 2001-05-25 2007-04-04 동경 엘렉트론 주식회사 기판 테이블, 그 제조 방법 및 플라즈마 처리 장치
KR100997374B1 (ko) * 2009-08-21 2010-11-30 주식회사 코미코 정전척 및 이의 제조 방법
KR20110081043A (ko) * 2010-01-07 2011-07-13 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 폴리실라잔을 함유하는 코팅 조성물
KR101352816B1 (ko) * 2006-01-18 2014-01-20 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 실리카질 막의 제조 방법 및 이 제조 방법에 의하여 제조된실리카질 막이 부착된 기판
KR101434681B1 (ko) * 2005-11-02 2014-08-26 프랙스에어 테크놀로지, 인코포레이티드 공극 감축 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115527B1 (ko) * 2010-02-01 2012-02-27 (주)포인트엔지니어링 정전척

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070037516A (ko) * 2001-05-25 2007-04-04 동경 엘렉트론 주식회사 기판 테이블, 그 제조 방법 및 플라즈마 처리 장치
KR101434681B1 (ko) * 2005-11-02 2014-08-26 프랙스에어 테크놀로지, 인코포레이티드 공극 감축 방법
KR101352816B1 (ko) * 2006-01-18 2014-01-20 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 실리카질 막의 제조 방법 및 이 제조 방법에 의하여 제조된실리카질 막이 부착된 기판
KR100997374B1 (ko) * 2009-08-21 2010-11-30 주식회사 코미코 정전척 및 이의 제조 방법
KR20110081043A (ko) * 2010-01-07 2011-07-13 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 폴리실라잔을 함유하는 코팅 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, JAE YOUNG ET AL.: "Improvement of Sealing Property of Electrostatic Chuck by Applying Polysilazane Sealant", JOURNAL OF THE KOREAN INSTITUTE OF SURFACE ENGINEERING, vol. 49, no. 6, 21 November 2016 (2016-11-21), pages 567 - 574, XP055560213, Retrieved from the Internet <URL:DOI:10.5695/JKISE.2016.49.6.567> *
CHOI, JAE YOUNG ET AL.: "Study on the Characteristics of Si02 Thin Film by Polysilazane Concentration", KOREAN POWDER METALLURGY INSTITUTE GENERAL MEETING AND SPRING CONFERENCE, HOTEL HYUNDAI GYEONGJU, 6 April 2017 (2017-04-06) *

Also Published As

Publication number Publication date
KR102066271B1 (ko) 2020-01-14
KR20180116857A (ko) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2018194366A1 (ko) 실란트로 실링된 정전척 및 이의 제조방법
WO2021096326A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2019004589A1 (ko) 질화 알루미늄 소결체 및 이를 포함하는 반도체 제조 장치용 부재
WO2020141925A1 (ko) 방열 시트 제조방법
US7645526B2 (en) Member for plasma etching device and method for manufacture thereof
WO2014084472A1 (ko) 웨이퍼 식각 시스템 및 이를 이용한 웨이퍼 식각 공정
WO2020096267A1 (ko) 정전 척 및 그 제조 방법
WO2021033884A1 (ko) 플라즈마 식각 방법
WO2020204394A1 (ko) 미소 소자 흡착 픽커
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
CN112908919B (zh) 静电吸盘装置及包括该静电吸盘装置的等离子体处理装置
WO2017209325A1 (ko) 정전척 및 그 제조방법
WO2018199680A1 (ko) Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
CN100587870C (zh) 固体电解电容及其制造方法
WO2017183872A1 (ko) 건식 에칭장치
WO2020067617A1 (ko) 2차원 물질의 전기적 특성 회복 및 산화 안정성 개선 방법
KR20100090559A (ko) 에어로졸 코팅층을 갖는 정전척 및 그 제조방법
WO2016182118A1 (ko) 이온주입을 통한 지지층 기반의 그래핀의 도핑 방법
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
WO2018074780A1 (ko) 건식 에칭장치 및 그 제어방법
WO2018199676A1 (ko) Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
WO2018174464A1 (ko) 고분자 기판의 선택적 접합방법
WO2020256394A1 (ko) 복합재의 제조 방법 및 복합재
JPS62286247A (ja) 静電チヤツク板及びその製造方法
WO2024014784A1 (ko) 웨이퍼 본딩 방법 및 웨이퍼 본딩 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787030

Country of ref document: EP

Kind code of ref document: A1