WO2018199676A1 - Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법 - Google Patents

Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법 Download PDF

Info

Publication number
WO2018199676A1
WO2018199676A1 PCT/KR2018/004901 KR2018004901W WO2018199676A1 WO 2018199676 A1 WO2018199676 A1 WO 2018199676A1 KR 2018004901 W KR2018004901 W KR 2018004901W WO 2018199676 A1 WO2018199676 A1 WO 2018199676A1
Authority
WO
WIPO (PCT)
Prior art keywords
tac
coating layer
carbon
base material
carbon material
Prior art date
Application number
PCT/KR2018/004901
Other languages
English (en)
French (fr)
Inventor
조동완
Original Assignee
주식회사 티씨케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티씨케이 filed Critical 주식회사 티씨케이
Priority to EP18791723.2A priority Critical patent/EP3617175A4/en
Priority to JP2019558359A priority patent/JP6833068B2/ja
Priority to US16/607,490 priority patent/US10883170B2/en
Priority to CN201880028003.2A priority patent/CN110582476B/zh
Publication of WO2018199676A1 publication Critical patent/WO2018199676A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • C04B38/0096Pores with coated inner walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0063Cooling, e.g. freezing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4531Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase by C.V.D.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0025Compositions or ingredients of the compositions characterised by the crystal structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to a carbon material on which a coating layer containing TaC (tantalum carbide) is formed on a carbonaceous material and a method of manufacturing the same.
  • TaC tantalum carbide
  • a material coating technology including tantalum carbide has a special feature compared to conventional thin film materials in terms of heat resistance, abrasion resistance, and resistance to etching, and therefore, attention is particularly focused.
  • carbon materials in which a coating layer including TaC is formed on a carbon base material are applied to various industrial sites, such as semiconductor single crystal manufacturing apparatus members, precision machine tools, and engine parts.
  • the coating layer containing TaC formed at this time has often become a problem in the adhesive force with a base material. Therefore, various companies and research institutes have been made for a technology of forming a coating layer including TaC having high adhesion on a carbon base material.
  • An object of the present invention was conceived to solve the above-described problems, and is intended to form a carbon material having a coating layer including TaC having excellent adhesion and a high hardness and high surface scratch value with a carbon base material.
  • another object of the present invention is to prepare a carbon material having a coating layer containing TaC, the controllable parameters (selection of the carbon base material, coating of the coating layer containing TaC) in order to meet the properties specifications of the product of the required level Grain size, orientation characteristics, X-ray diffraction intensities, etc.) to provide an appropriate level of control.
  • Carbon material having a coating layer comprising TaC of the present invention is a carbon base material; And a coating layer comprising TaC having an average grain size of 10 ⁇ m to 50 ⁇ m formed on the surface of the carbon base material.
  • the surface hardness of the coating layer including the TaC may be 15 GPa or more.
  • the TaC-containing coating layer may have a ratio of the diffraction peak value of the (200) plane to the diffraction peak value of the (111) plane generated by X-ray diffraction of the XRD analysis at 0.40 or less. have.
  • the coating layer containing the TaC, the peak value of the (111) surface of the peak value generated by the X-ray diffraction of the XRD analysis may be the maximum.
  • the coating layer including the TaC, the half width of the diffraction line of the XRD analysis may be 0.15 ° or less.
  • the surface hardness of the coating layer including the TaC may be according to Equation 1 below.
  • the coating layer containing the TaC, the surface scratch test value may be at least 3.5N.
  • the carbon base material may have a content of TaC in a region of 80 ⁇ m to 150 ⁇ m in depth from the surface of the carbon base material of 15% by volume to 20% by volume.
  • the surface scratch value of the coating layer including the TaC may be according to Equation 2 below.
  • the thermal expansion coefficient of the carbon base material may be 7.0 ⁇ 10 ⁇ 6 / K to 7.5 ⁇ 10 ⁇ 6 / K.
  • Method for producing a carbon material having a coating layer comprising TaC of the present invention comprises the steps of preparing a carbon base material; And forming a coating layer including TaC on the carbon base material by using a CVD method at a temperature of 1500 ° C. or higher.
  • the step of heat treatment at a temperature of 1800 °C or more may be further included.
  • the step of forming a coating layer including the TaC and cooling between the step of heat treatment may further comprise a.
  • the forming of the coating layer including the TaC, the coating layer containing TaC according to the required surface hardness value of the carbon material having the coating layer containing the TaC is represented by the following [Equation 1] It may be formed to have a diffraction peak value of the (200) plane compared to the diffraction peak value of the (111) plane satisfying the].
  • the forming of the coating layer comprising the TaC, the coating layer containing the TaC according to the required surface scratch value of the carbon material including the coating layer comprising the TaC 2] may be to have a TaC content that satisfies.
  • the preparing of the carbon base material may include preparing a carbon base material having an average porosity of 15% by volume to 20% by volume.
  • the preparing of the carbon base material may include preparing a carbon base material having a thermal expansion coefficient of 7.0 ⁇ 10 ⁇ 6 / K to 7.5 ⁇ 10 ⁇ 6 / K.
  • the carbon material having the coating layer including TaC according to an embodiment of the present invention has an effect that can be variously used in various industrial equipments that require materials to precisely control high levels of physical properties.
  • FIG. 1 is a cross-sectional conceptual view of a carbon base material including pores provided in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional conceptual view of a carbon material having a coating layer including a carbon base material and TaC formed on the carbon base material according to one embodiment of the present invention.
  • FIG. 3 is a flow chart illustrating each step of a method of producing a carbon material having a coating layer comprising TaC, in accordance with one embodiment of the present invention.
  • FIG. 4 is a graph showing the correlation between the diffraction peak value of the (111) plane and the diffraction peak value of the (200) plane and the surface hardness value of the XRD analysis experiment according to the embodiment of the present invention.
  • 5a to 5d are SEM images of the surface of the coating layer containing TaC in the carbon material prepared in Examples and Comparative Examples of the present invention.
  • Figure 6 is a graph of the average grain size of one sample of a carbon material having a coating layer comprising a TaC prepared according to an embodiment of the present invention according to ASTM E112.
  • a problem in the process of forming a coating layer from a TaC material on a carbon material has been a problem in the hardness of the coated TaC layer and adhesion to the carbon material used as the base material.
  • research has been conducted to improve the hardness and adhesion of the coating layer including TaC that varies depending on various physical properties of the base material.
  • the present invention analyzes the porosity of the carbon material and the crystal and orientation characteristics of the TaC material on the extension of the above study, to secure a carbon material having a coating layer comprising TaC with high hardness and high base adhesion, effectively It is done.
  • Carbon material having a coating layer comprising TaC of the present invention is a carbon base material; And a coating layer comprising TaC having an average grain size of 10 ⁇ m to 50 ⁇ m formed on the surface of the carbon base material.
  • the carbon base material may include any base material containing carbon as a main component, including graphite.
  • the coating layer including TaC may include any material containing tantalum (Ta) and carbon (C) as main components.
  • the average grain size of the coating layer including the TaC may be 10 ⁇ m to 50 ⁇ m.
  • the average grain size is less than 10 ⁇ m, the hardness of the coating layer containing TaC is less than a predetermined level may cause a problem that is difficult to apply to a device for manufacturing a semiconductor typically requires a material of high hardness, the coating layer If the grain size exceeds 50 ⁇ m, the energy and cost of the process required to increase the grain size may be greatly increased, which may cause a problem of lowering the productivity of the product.
  • the surface hardness of the coating layer including the TaC may be 15 GPa or more.
  • Coating layer comprising TaC provided by the present invention can secure a high hardness surface hardness of 15 GPa or more.
  • the present invention can be analyzed by X-ray diffraction analysis of the characteristics of the crystallinity of the coating layer containing TaC provided by the present invention through the XRD analysis equipment.
  • a conventional XRD analysis equipment can be used for the X-ray diffraction analysis experiment.
  • the value of the diffraction peak found through the XRD analysis experiment is related to the diffraction intensity and means the maximum height of the peak.
  • the half width of the diffraction line means the width of the diffraction peak when the intensity is 1/2 of the maximum height, which may be an index of crystallinity.
  • a CVD method may be used in the process of forming a coating layer including TaC on a carbon base material, and in this case, temperature, pressure, and spray rate of each TaC precursor in a deposition process of a material including TaC While adjusting the X-ray diffraction line pattern of the coating layer containing TaC can be changed.
  • the TaC-containing coating layer may have a ratio of the diffraction peak value of the (200) plane to the diffraction peak value of the (111) plane generated by X-ray diffraction of the XRD analysis at 0.40 or less. have.
  • the ratio of the diffraction peak value exceeds 0.40, the surface hardness of the coating layer containing TaC is low, which may cause a problem that is difficult to apply to a device for manufacturing a semiconductor requiring a coating layer requiring a material having a high surface hardness.
  • the adhesion of the TaC coating layer with the carbonaceous base material is reduced, and the grain boundary that forms the boundary between grains is increased, thereby reducing the homogeneity of the material.
  • the ratio of the diffraction peak value exceeds 0.40, even if the ratio of the peak value only slightly rises, there is a problem that the surface hardness value is greatly reduced.
  • the ratio 0.40 of the diffraction peak value corresponds to a threshold value having an important meaning in one aspect of the present invention, and the coating layer including TaC having the diffraction peak value of 0.40 or less may have a high surface hardness value of a carbon material. This can be an important factor in implementation.
  • the ratio of the diffraction peak value of the (200) plane to the diffraction peak value of the (111) plane may be 0.01 or more. In addition, the ratio of the diffraction peak value of the (200) plane to the diffraction peak value of the (111) plane may be 0.19 or less, it may be preferable to form a coating layer containing TaC with high hardness.
  • the coating layer containing the TaC, the peak value of the (111) surface of the peak value generated by the X-ray diffraction of the XRD analysis may be the maximum.
  • XRD analysis of the coating layer containing TaC causes diffraction peaks of various planes due to the crystalline characteristics of the TaC material.
  • diffraction lines corresponding to the (220) plane, the (311) plane, the (111) plane, the (200) plane, and the like may be formed to have a noticeable intensity.
  • Carbon material having a coating layer comprising a TaC material provided by the present invention is characterized in that the X-ray diffraction peak value of the (111) plane is the maximum.
  • the coating layer including the TaC, the half width of the diffraction line of the XRD analysis may be 0.15 ° or less.
  • the surface hardness of the coating layer including the TaC may be according to Equation 1 below.
  • the carbon material provided in one aspect of the present invention derives a close correlation between the ratio of the diffraction peak value of the (200) plane of the coating layer containing TaC / the diffraction peak value of the (111) plane and the surface hardness value.
  • the surface hardness value of the coating layer including the TaC gradually increases. It tends to decrease.
  • the ratio of the diffraction peak value of the (200) plane / the diffraction peak value of the (111) plane increases, the decreasing width of the surface hardness value of the coating layer including TaC becomes larger and larger.
  • the coating layer containing the TaC, the surface scratch test value may be at least 3.5N.
  • the scratch test is a test method for confirming the adhesion of the thin film coating layer, which is commonly used in the industry because the specimen preparation is easy and easy to measure.
  • the scratch test calculates the adhesive force with a critical load value when the thin film is peeled off by moving the substrate while increasing the load on the surface of the thin film using a rounded stylus. Therefore, the higher the scratch value, the stronger the adhesion strength.
  • Surface scratch value of the coating layer including the TaC of the carbon material having a coating layer containing the TaC corresponding to an example of the present invention may be 3.5 N or more.
  • the surface scratch value of the coating layer including the TaC is less than 3.5 N, the adhesion to the surface of the base material is insufficient, which may cause a problem that is difficult to apply to the industry.
  • the surface scratch value of the coating layer containing the TaC is preferably 6.5 N or more.
  • the surface scratch value of the coating layer including the TaC is more preferably 8.0 N or more. The surface scratch value tends to increase on average as the TaC content in the region from 80 to 150 ⁇ m deep from the surface of the carbon base material increases.
  • the TaC content may be determined by impregnating the TaC component into pores on a carbon base material. At this time, as the average porosity of the region from 80 to 150 ⁇ m depth from the surface of the carbon base material increases, the adhesion between the coating layer containing the TaC and the carbon base material may increase.
  • the carbon base material may have a content of TaC in a region of 80 ⁇ m to 150 ⁇ m in depth from the surface of the carbon base material of 15% by volume to 20% by volume.
  • the carbon base material is a porous carbon material, and pores are formed therein, and when a coating layer including TaC is formed on the carbon base material, the TaC component may be impregnated into the pores to generate an impregnation region.
  • a high hardness TaC comprising a carbon base material 110 including an impregnated region 130 and a coating layer 120 including TaC formed on the carbon base material, according to an embodiment of the present invention.
  • a cross-sectional conceptual diagram of the coated carbon material is shown.
  • the impregnation region 130 may include a region 131 having a depth of 80 ⁇ m to 150 ⁇ m from the surface of the carbon base material.
  • the area from 80 to 150 ⁇ m deep from the surface of the carbon base material substantially affects the surface hardness of the coating layer and the base material adhesion of the coating layer in the area formed by the TaC component of the coating layer containing the TaC being impregnated into the pores of the carbon base material. It may be an area of influence.
  • the TaC content of the region from the surface of the carbon base material to a depth of 80 ⁇ m to 150 ⁇ m may be 15 to 20% by volume.
  • a coating layer including TaC having excellent adhesion to a carbon base material which is an effect intended in one aspect of the present invention, may be formed.
  • the TaC content when the TaC content is less than 15% by volume, there may be a problem that the adhesion to the coating layer containing TaC is weakened or the surface hardness is low, and when the TaC content is more than 20% by volume, graphite There may be a problem that the pores of the excessively formed to increase the surface roughness, or the surface of the coating layer is rough.
  • the content of TaC in the region is preferably 16.5% by volume to 20% by volume. Further, in the above region, the TaC content is more preferably 18% by volume to 20% by volume. Increasing the TaC content in the region means that the porosity on the carbon base material is high, and the material on which the coating layer including TaC formed on the carbon base material having a high porosity is substantially formed has better adhesion and surface hardness. do.
  • the region 131 from the carbon base material surface to a depth of 80 ⁇ m to 150 ⁇ m may include a first region 132 having a relatively shallow section from the carbon base material surface having a different TaC content, It may be divided into two regions of the second region 133 of a relatively deep section.
  • the first region is a layer adjacent to the coating layer including the TaC, and corresponds to a region where the TaC component can be sufficiently impregnated into the pores of the base material. Therefore, it is the area
  • Adhesion and surface hardness of the coating layer including TaC formed on the carbon base material may vary depending on process conditions such as process temperature and Ta / C ratio, but the above-mentioned region of the first region generated as a result of forming the coating layer including TaC When the TaC content is between 16% and 20% by volume, it may have a good surface hardness.
  • the second region is a layer adjacent to the first region that is deeper on the substrate surface than the first region, and corresponds to a region where the TaC component of the coating layer is relatively less impregnated.
  • the TaC content in this region can also affect the adhesion and surface hardness of the coating layer comprising TaC formed on the carbon matrix.
  • the coating layer including TaC formed on the carbon base material may have excellent adhesion and surface hardness.
  • the TaC content of the first region and the second region may be gradually changed.
  • the boundary between the first region and the second region may be formed at a depth of 40 ⁇ m to 70 ⁇ m from the surface of the coating layer including TaC of the carbon material.
  • the surface scratch value of the coating layer including the TaC may be according to Equation 2 below.
  • the surface scratch value (N) of the TaC coating layer according to an embodiment of the present invention is a formula of a primary function whose TaC content (vol%) is a variable in a region from 80 to 150 ⁇ m deep from the surface of the carbon base material. Will follow.
  • the surface scratch value (N) of the coating layer including the TaC thus determined is the content (vol%) x (0.65 to 0.7)-19.5 of TaC in the region from 80 to 150 ⁇ m deep from the surface of the carbon matrix. Can be represented.
  • the thermal expansion coefficient of the carbon base material may be 7.0 ⁇ 10 ⁇ 6 / K to 7.5 ⁇ 10 ⁇ 6 / K.
  • the thermal expansion coefficient of the carbon base material is an important factor in determining the adhesion between the carbon base material and the coating layer including TaC formed on the carbon base material.
  • a carbon base material may be prepared to form a carbon material having a coating layer containing TaC of the present invention so that the difference is not large with the coefficient of thermal expansion of the TaC material.
  • the thermal expansion coefficient of the carbon base material may be 7.0 ⁇ 10 ⁇ 6 / K to 7.5 ⁇ 10 ⁇ 6 / K.
  • FIG. 3 is a flow chart illustrating each step of a method of producing a carbon material having a coating layer comprising TaC, in accordance with one embodiment of the present invention.
  • Method for producing a carbon material having a coating layer comprising TaC of the present invention comprises the steps of preparing a carbon base material; And forming a coating layer including TaC on the carbon base material by using a CVD method at a temperature of 1500 ° C. or higher.
  • a deposition method using a CVD method of a TaC material is performed in a chamber maintaining a temperature of about 800 ° C. to 900 ° C. or starting to inject a raw material gas at a temperature of about several hundred ° C. It is gradually increasing the method of using the deposition.
  • the initial temperature to start the deposition by the CVD method to a high temperature of 1500 °C or more is carried out at isothermal.
  • the temperature may be formed at less than 2500 °C. If the temperature exceeds 2500 °C it is difficult to implement the equipment and the temperature is too high TaC component is difficult to be impregnated into the pores of the carbon base material may cause a problem that the adhesion is reduced.
  • the step of heat treatment at a temperature of 1800 °C or more may be further included.
  • after depositing a coating layer containing TaC by using a CVD method at a high temperature after the injection of the raw material gas may further include the step of further heat treatment by raising the temperature in the chamber. This has the effect of relieving residual stress, promoting grain size growth, and forming a more homogeneous coating layer, thereby improving physical properties of the coating layer including TaC of the product to be finally formed.
  • the step of forming a coating layer including the TaC and cooling between the step of heat treatment may further comprise a.
  • the cooling may be to cool the surface of the TaC coating layer, it may be to cool the entire carbon material.
  • the cooling step may be to take the carbon material out of the chamber to completely lower the temperature to room temperature, or may lower the temperature slightly compared to the temperature at which the step of forming the coating layer including TaC is performed.
  • the forming of the coating layer including the TaC, the coating layer containing TaC according to the required surface hardness value of the carbon material having the coating layer containing the TaC is represented by the following [Equation 1] It may be formed to have a diffraction peak value of the (200) plane compared to the diffraction peak value of the (111) plane satisfying the].
  • the X-ray diffraction peak of the coating layer containing TaC according to the surface hardness value of the product required from the process of producing the carbon material using the formula (1)
  • the process can be designed precisely to properly adjust the values.
  • the surface hardness of the coating layer including TaC to be produced can be precisely realized to a desired level, and in the process of forming the coating layer including TaC, the diffraction peak value of the (200) plane of the coating layer including TaC / (111)
  • By adjusting the ratio of the diffraction peak value of the surface it is possible to obtain a product that meets the specifications of the desired surface hardness.
  • the step of forming the coating layer containing TaC, the coating layer containing TaC according to the required surface scratch value of the carbon material including the TaC coating layer is represented by the following [Equation 2] It may be to have a satisfying TaC content.
  • the preparing of the carbon base material may include preparing a carbon base material having an average porosity of 15% by volume to 20% by volume.
  • preparing a carbon base material having an average porosity of 15% by volume to 20% by volume may be included.
  • preparing a carbon base material having an average porosity of 15% by volume to 20% by volume it may be possible to implement a high hardness coating layer including TaC having excellent adhesion and surface hardness, which is an effect intended in one aspect of the present invention.
  • the average porosity is preferably 16.5% by volume to 20% by volume.
  • the average porosity is more preferably 18 to 20% by volume.
  • Increasing the TaC content in the carbon base material means that the porosity on the carbon base material is high, and the material having the TaC coating layer formed on the carbon base material having a substantially high porosity has better adhesion and surface hardness.
  • the method of measuring the average porosity of the carbon base material can be measured through a mercury adsorption method (Prosimeter: porosity analyzer).
  • the forming of the coating layer including the TaC may include impregnating the pores of the carbon base material with a coating layer component including the TaC to form an impregnation area in contact with the coating layer in the carbon base material. It may include.
  • the coating layer on the carbon base material is formed at a high temperature, the coating layer component including the TaC begins to impregnate from the surface pores of the carbon base material to the pores inside. As a result, an impregnation region may be formed in the carbon base material to contact the coating layer.
  • An area of 80 to 150 ⁇ m deep from the surface of the carbon base material of the impregnated area may be a section that is substantially meaningful in determining the adhesion between the coating layer containing the TaC and the carbon base material and the surface hardness of the formed carbon material. have.
  • the preparing of the carbon base material may include preparing a carbon base material having a thermal expansion coefficient of 7.0 ⁇ 10 ⁇ 6 / K to 7.5 ⁇ 10 ⁇ 6 / K.
  • a carbon base material may be prepared to form a carbon material having a coating layer containing TaC of the present invention so that the difference is not large with the coefficient of thermal expansion of the TaC material.
  • a plurality of carbon materials having a coating layer containing TaC having a unique XRD diffraction peak value provided in one aspect of the present invention were prepared.
  • CVD treatment conditions for a carbon base material having a diameter of 400 mm and a thickness of 10 mm based on 1000 ° C. for carbon base materials having an average porosity (up to 15% by volume) from the surface of the carbon base material according to one aspect of the present invention Formed a TaC coating layer.
  • the composition ratio of C / Ta of the tantalum carbide coated film was adjusted to 1: 1.05.
  • the average porosity of each carbon base material was measured by mercury adsorption method.
  • a plurality of examples and comparative examples were prepared such that a ratio of diffraction peak values of the (200) plane to the diffraction peak values of the (111) plane of the coating layer including TaC formed under the above conditions was formed different from each other, and the surface hardness of each Was measured.
  • FIG. 4 is a graph showing the correlation between the diffraction peak value of the (111) plane and the diffraction peak value of the (200) plane and the surface hardness value of the XRD analysis experiment according to the embodiment of the present invention.
  • the surface hardness value is greatly changed before and after the ratio of the diffraction peak value is 0.40.
  • the ratio of the peak value is less than 0.4
  • the surface hardness value of the coating layer including TaC is formed at a high hardness of 15 GPa or more, whereas, if the ratio is less than 0.4, the surface hardness value is greatly increased even if the ratio of the peak value is slightly increased. It was confirmed that the decrease.
  • the ratio of the peak value becomes smaller in the section less than 0.1, it was confirmed that the increase rate of the surface hardness value gradually decreases.
  • Table 2 is a surface scratch test results according to the average porosity of the carbon base material of the carbon materials having a coating layer comprising TaC provided according to an embodiment provided by one aspect of the present invention.
  • the carbon base material having an average porosity of less than 15% by volume of the carbon base material it was confirmed that it is difficult to implement the high adhesive force intended in one aspect of the present invention.
  • the scratch value can be realized by 3.5 N or more by securing an average porosity of the intended carbon base material in a aspect of the present invention.
  • the average grain size of the coating layer containing TaC was measured according to ASTM E112, a standard test method for determining the average grain size.
  • Table 3 below shows the measured values of average grain size and surface hardness measured for the Examples and Comparative Examples provided in one aspect of the present invention.
  • 5a to 5d are SEM images of the surface of the coating layer containing TaC in the carbon material prepared in Examples and Comparative Examples of the present invention.
  • FIG. 5A is an SEM image of the surface of the coating layer including TaC of Comparative Example 2
  • FIG. 5B is an SEM image of the surface of the coating layer including TaC of Example 7
  • FIG. 5C is a coating layer of TaC of Example 8 SEM image of the surface
  • FIG. 5D is an SEM image of the coating layer surface comprising TaC of Example 9
  • FIG. 5E is an SEM image of the coating layer surface comprising TaC of Example 10.
  • FIG. 6 is a graph of the average grain size of one sample of carbon material having a coating layer including TaC prepared according to an embodiment of the present invention (Example 11) according to ASTM E112.
  • the average grain size was 14.9 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 탄소 모재 상에 TaC(탄화탄탈)를 포함하는 코팅층이 형성된 탄소재료 및 그 제조방법에 관한 것으로, 본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료는 탄소 모재; 및 상기 탄소 모재 표면 상에 형성되는 평균 결정립 크기가 10 ㎛ 내지 50 ㎛ 인 TaC를 포함하는 코팅층;을 포함한다.

Description

TAC를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
본 발명은 탄소 모재 상에 TaC(탄화탄탈)를 포함하는 코팅층이 형성된 탄소재료 및 그 제조방법에 관한 것이다.
모재 표면에 여러 종류의 소재로 된 박막을 도입하여, 재료의 내마모성, 내식성 등을 향상시키는 연구가 다방면으로 진행되고 있다. 그 중, 탄화탄탈(TaC)을 포함하는 소재 코팅 기술은 내열성, 내마모성 및 내가스에칭성 등의 측면에 있어서 기존의 박막 재료에 비해 우수한 특징을 가지기 때문에, 특히 관심이 집중되고 있다. 현재 TaC를 포함하는 코팅층을 탄소 모재 상에 형성시킨 탄소 재료들이 반도체용 단결정 제조장치 부재, 정밀 공작기, 엔진용 부품 등 다양한 산업 현장에 적용되어 사용되고 있다.
이 때 형성되는 TaC를 포함하는 코팅층은, 모재와의 부착력에 있어서 종종 문제가 되어 왔다. 따라서, 탄소 모재 상에 높은 부착력을 가지는 TaC를 포함하는 코팅층을 형성하는 기술에 대해 많은 기업체 및 연구기관에서 다양한 시도가 이루어지고 있다.
한편, 최근에는 TaC 소재를 포함하는 코팅층의 경도 또는 표면 내마모성의 물성을 제어할 수 있는 기술에 관심이 집중되고 있다. 요구되는 소재의 사용처를 고려하여 필요로 되는 코팅층의 물성을 예상하고, 그에 따라 필요한 정도의 물성을 가지는 TaC를 포함하는 코팅층을 형성할 수 있다면 산업계의 다양한 영역에 TaC 소재의 적용이 가능해 질 수 있다. 그러나 현재까지는 TaC를 포함하는 코팅층의 경도, 표면 스크래치 값 등의 물성에 대해 사전에 정밀하게 예측할 수 있는 기술이 없어서 TaC를 포함하는 코팅층을 형성하는 과정에서 형성될 코팅층의 물성에 대한 정확한 예측이 어려운 실정이었다. 또한 표면 경도, 표면 스크래치 값 등을 제어하기 위해 어떠한 변수를 어느 정도로 조절해야 하는지가 산업 현장에서 항상 불명확한 문제로 남아있었다.
본 발명의 목적은 상술한 문제들을 해결하기 위해 착안된 것으로서, 탄소 모재와 부착력이 우수하면서도 고경도와 높은 표면 스크래치 값을 지닌 TaC를 포함하는 코팅층을 갖는 탄소 재료를 형성할 수 있도록 하기 위한 것이다.
또한, 본 발명의 다른 목적은 TaC를 포함하는 코팅층을 갖는 탄소 재료를 제조함에 있어서, 요구되는 수준의 제품의 물성 스펙을 맞추기 위해 제어할 수 있는 변수(탄소 모재의 선정, TaC를 포함하는 코팅층의 결정립 크기, 배향적 특징, X선 회절 강도 등)들을 적절한 수준으로 제어하는 기술을 제공하기 위한 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료는 탄소 모재; 및 상기 탄소 모재 표면 상에 형성되는 평균 결정립 크기가 10 ㎛ 내지 50 ㎛ 인 TaC를 포함하는 코팅층;을 포함한다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층의 표면 경도는, 15 GPa 이상인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, XRD 분석의 X선 회절에 의해 발생하는 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비가 0.40 이하인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, XRD 분석의 X선 회절에 의해 발생하는 피크값 중, (111) 면의 피크값이 최대인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, XRD 분석의 회절선의 반치폭이 0.15° 이하인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층의 표면 경도는, 아래의 [수학식 1]에 따른 것일 수 있다.
Figure PCTKR2018004901-appb-img-000001
A: XRD 분석 시 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, 표면 스크래치 시험값이 3.5 N 이상인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄소 모재는, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC 의 함량이 15 부피% 내지 20 부피% 인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층의 표면 스크래치 값은, 아래의 [수학식 2]에 따른 것일 수 있다.
Figure PCTKR2018004901-appb-img-000002
본 발명의 일 실시예에 따르면, 상기 탄소 모재의 열팽창계수는, 7.0×10 -6/K 내지 7.5×10 -6/K 인 것일 수 있다.
본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법은 탄소 모재를 준비하는 단계; 및 상기 탄소 모재 상에 1500 ℃ 이상의 온도에서 CVD 법을 이용하여 TaC를 포함하는 코팅층을 형성하는 단계;를 포함한다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계후에, 1800 ℃ 이상의 온도에서 열처리하는 단계;를 더 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계와 상기 열처리하는 단계 사이에 냉각하는 단계;를 더 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 TaC 를 포함하는 코팅층을 갖는 탄소재료의 필요 표면 경도 값에 따라서 TaC를 포함하는 코팅층이 아래의 [수학식 1]을 만족하는 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값 을 가지도록 형성하는 것일 수 있다.
Figure PCTKR2018004901-appb-img-000003
A: XRD 분석 시 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 TaC를 포함하는 코팅층을 포함하는 탄소재료의 필요 표면 스크래치 값에 따라서 TaC를 포함하는 코팅층이 아래의 [수학식 2]를 만족하는 TaC 함량을 가지도록 하는 것일 수 있다.
Figure PCTKR2018004901-appb-img-000004
본 발명의 일 실시예에 따르면, 상기 탄소 모재를 준비하는 단계는, 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비하는 것을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄소 모재를 준비하는 단계는, 열팽창계수가 7.0×10 -6/K 내지 7.5×10 -6/K 인 탄소 모재를 준비하는 것을 포함할 수 있다.
본 발명의 일 측면에 따르면 탄소 모재와의 높은 부착력이 유지됨과 동시에 고경도를 가지는 TaC를 포함하는 코팅층이 형성된 탄소 재료가 제공되는 효과가 있다.
또한 본 발명의 다른 일 측면에 따르면 TaC를 포함하는 코팅층을 갖는 탄소 재료를 확보함에 있어서, 제조 전 단계에서부터 탄소 모재를 선정하고 TaC를 포함하는 코팅층의 회절 피크비를 조절하여 필요한 물성에 맞추어 제품을 제조할 수 있게 되는 효과가 있다.
이로써 본 발명의 일 실시예에 따른 TaC를 포함하는 코팅층을 갖는 탄소 재료는, 높은 수준의 물성을 정밀하게 제어해야 하는 소재가 필요로 되는 각종 산업 장비에 다양하게 활용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에서 제공하는 기공을 포함하는 탄소 모재의 단면 개념도이다.
도 2는 본 발명의 일 실시예에 따르는, 탄소 모재 및 탄소 모재 상에 형성된 TaC를 포함하는 코팅층이 형성된 탄소 재료의 단면 개념도이다.
도 3은 본 발명의 일 실시예에 따르는, TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법의 각 단계를 도시한 순서도이다.
도 4는 본 발명의 실시예에 따르는 XRD 분석 실험의 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비와 표면 경도 값 간의 상관관계를 드러내는 그래프이다.
도 5a 내지 도 5d는 본 발명의 실시예 및 비교예로 제조된 탄소 재료에 있어서, TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이다.
도 6은 본 발명의 일 실시예에 따라 제조된 TaC를 포함하는 코팅층을 갖는 탄소 재료 중 하나의 샘플을 ASTM E112에 따라 평균 결정립 크기를 측정한 그래프이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
일반적으로 탄소 재료 위에 TaC 소재로 코팅층을 형성하는 공정에서 문제되어 온 것은, 코팅된 TaC층의 경도 및 모재로 쓰이는 탄소 재료와의 부착력이다. 최근 다방면에 있어, 모재의 다양한 물리적 성질에 따라 변화하는 TaC를 포함하는 코팅층의 경도 및 부착력을 향상시키기 위한 연구가 행해져 왔다. 본 발명은 상기 연구의 연장선 상에서 탄소 재료의 기공률 및 TaC 소재의 결정과 배향적 특징을 분석하여, 효과적으로 고경도이면서 높은 모재 부착력을 구비한 TaC를 포함하는 코팅층을 갖는 탄소 재료를 확보하는 것을 그 목적으로 한다.
본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료는 탄소 모재; 및 상기 탄소 모재 표면 상에 형성되는 평균 결정립 크기가 10 ㎛ 내지 50 ㎛ 인 TaC를 포함하는 코팅층;을 포함한다.
상기 탄소 모재는, 그라파이트를 포함하여 탄소를 주성분으로 한 모재는 무엇이든 포함될 수 있다. 상기 TaC를 포함하는 코팅층은 탄탈륨(Ta) 및 탄소(C)를 주성분으로 함유하는 어떠한 재료도 포함될 수 있다.
이 때 상기 TaC를 포함하는 코팅층의 평균 결정립 크기는 10 ㎛ 내지 50 ㎛ 인 것일 수 있다. 상기 평균 결정립의 크기가 10 ㎛ 미만의 경우 TaC를 포함하는 코팅층의 경도가 일정 수준 미만으로 형성되어 통상적으로 높은 경도의 소재를 필요로 하는 반도체 제조용 장치에 적용하기 어려운 문제가 생길 수 있고, 코팅층의 결정립 크기가 50 ㎛ 를 초과할 경우 결정립 크기를 키우는데 필요로 되는 공정 상의 에너지, 비용이 크게 증가하여 제품의 생산성을 저하시키는 문제가 생길 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층의 표면 경도는, 15 GPa 이상인 것일 수 있다.
본 발명에서 제공하는 TaC를 포함하는 코팅층은 15 GPa 이상의 고경도 표면 경도를 확보할 수 있다.
한편, 본 발명의 일 측면에 따르면 본 발명에서 제공하는 TaC를 포함하는 코팅층의 결정성에 관한 특징을 XRD 분석 장비를 통한 X선 회절 분석을 통해 분석할 수 있다. 이 때 X선 회절 분석 실험에는 통상의 XRD 분석 장비를 이용할 수 있다. XRD 분석 실험을 통해 파악되는 회절 피크의 값은 회절 강도에 관한 것으로 피크의 최대 높이를 의미한다. 또한 회절선의 반치폭은 상기 최대 높이의 1/2의 강도일 때의 회절 피크의 폭을 의미하는데, 이는 결정성의 지표가 될 수 있다.
본 발명의 일 측면에 따르면 TaC를 포함하는 코팅층을 탄소 모재상에 형성하는 과정에서 CVD 법을 이용할 수 있고, 이 경우 TaC를 포함하는 소재의 증착 공정에서 온도, 압력 및 TaC 전구체 각각의 분사 속도 등을 조절하면서 TaC를 포함하는 코팅층의 X선 회절 선 패턴을 변화시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, XRD 분석의 X선 회절에 의해 발생하는 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비가 0.40 이하인 것일 수 있다.
상기 회절 피크값의 비가 0.40을 초과할 경우 TaC를 포함하는 코팅층의 표면 경도가 낮게 형성되어 높은 표면 경도의 소재를 필요로 하는 코팅층이 요구되는 반도체 제조용 장치 등에 적용하기 어려운 문제가 생길 수 있다. 또한 TaC 코팅층의 탄소 모재와의 부착력이 감소되고 결정립 간의 경계를 형성하는 결정립계가 증가되어 재료의 균질성을 감소시키는 문제가 생길 수 있다. 한편, 상기 회절 피크값의 비가 0.40을 초과할 경우 피크값의 비가 약간만 상승하더라도 큰 폭으로 상기 표면 경도값이 감소되는 문제가 발생한다. 따라서, 상기 회절 피크값의 비 0.40은 본 발명의 일 측면에 있어서 중요한 의미를 가지는 임계값에 해당하는 것이며 0.40 이하의 상기 회절 피크값을 가지는 TaC를 포함하는 코팅층은 탄소 재료의 높은 표면 경도값을 구현하는데 있어서 중요한 요인이 될 수 있다.
또한, 상기 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비는 0.01 이상인 것일 수 있다. 또한, 상기 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비는 0.19 이하인 것이 TaC를 포함하는 코팅층을 고경도로 형성하기에 바람직할 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, XRD 분석의 X선 회절에 의해 발생하는 피크값 중, (111) 면의 피크값이 최대인 것일 수 있다.
TaC를 포함하는 코팅층을 XRD 분석 실험할 경우 TaC 소재의 결정성 특징으로 인해 다양한 면의 회절 피크가 발생한다. 예를 들어 (220)면, (311)면, (111)면, (200)면 등에 해당하는 회절 선이 두드러지는 강도로 형성될 수 있다. 본 발명에서 제공하는 TaC 소재를 포함하는 코팅층을 갖는 탄소재료는 (111)면의 X선 회절 피크 값이 최대인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, XRD 분석의 회절선의 반치폭이 0.15° 이하인 것일 수 있다. 이에 의해, 높은 결정성을 가지면서 TaC 결정립의 평균 크기가 충분히 크도록 형성된 TaC를 포함하는 코팅층을 형성할 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층의 표면 경도는, 아래의 [수학식 1]에 따른 것일 수 있다.
Figure PCTKR2018004901-appb-img-000005
A: XRD 분석 시 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값
본 발명의 일 측면에서 제공하는 탄소 재료는, TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값의 비와 표면 경도 값 간에 밀접한 연관성이 도출된다.
본 발명의 일 측면에서 제공하는 탄소 재료는 상기 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값의 비가 증가할수록 TaC를 포함하는 코팅층의 표면 경도 값이 점차 감소하는 경향을 보인다. 이 때 상기 (200) 면의 회절 피크값 / (111) 면의 회절 피크값의 비가 증가할수록 TaC를 포함하는 코팅층의 표면 경도 값의 감소 폭은 점점 더 크게 나타나게 된다. 이러한 경향을 상기 (200) 면의 회절 피크값 / (111) 면의 회절 피크값의 비를 변수로 하고 음의 2차 계수를 가지는 2차 함수식에 적절한 절편의 폭을 결정하여 표면 경도 값을 표현할 수 있다([수학식 1]).
따라서 본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료의 경우, 이러한 [수학식 1]을 이용하여 탄소 재료를 제조하는 과정에서부터 요구되는 제품의 표면 경도 값에 따라 TaC를 포함하는 코팅층의 X선 회절 피크값을 적절히 조절하도록 공정을 정밀하게 설계할 수 있다. 이로써 원하는 수준의 물성이 확보된 TaC 코팅층을 형성할 수 있는 장점이 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층은, 표면 스크래치 시험값이 3.5 N 이상인 것일 수 있다.
상기 TaC를 포함하는 코팅층의 우수한 부착력을 확인하는 방법으로서, 4- Point Bening시험, Peel-Off 시험, Scotch tape 시험, Direct Full Off 시험을 비롯한 다양한 시험방법들이 이용되고 있다. 그 중, 스크래치 시험(Scrach Test)은, 시편 준비가 쉽고 측정이 간편하여, 산업계에서 흔히 이용되고 있는, 박막 코팅층의 부착력을 확인하는 시험방법이다. 상기 스크래치 시험은 끝이 둥근 탐사침(stylus)을 이용하여 박막의 표면에 하중을 증가시키면서 기판을 이동시켜 박막이 벗겨질 때의 임계 하중 값을 가지고 접착력을 계산한다. 따라서, 스크래치 값이 높을수록 부착력의 세기가 강함을 의미한다. 본 발명의 일 예에 해당하는 TaC를 포함하는 코팅층을 갖는 탄소 재료의, 상기 TaC를 포함하는 코팅층의 표면 스크래치 값은 3.5 N 이상일 수 있다. 상기 TaC를 포함하는 코팅층의 표면 스크래치 값이 3.5 N 미만일 경우, 모재 표면과의 부착력이 부족해져 산업에 적용되기 어려운 문제점이 생길 수 있다. 또한, 상기 TaC를 포함하는 코팅층의 표면 스크래치 값은 6.5 N 이상인 것이 바람직하다. 또한, 상기 TaC를 포함하는 코팅층의 표면 스크래치 값은 8.0 N 이상인 것이 더욱 바람직하다. 상기 표면 스크래치 값은, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량이 증가할수록 평균적으로 증가하는 경향을 보인다. 상기 TaC의 함량은 탄소 모재상의 기공으로 상기 TaC 성분이 함침되어 결정되는 것일 수 있다. 이 때 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 평균 기공율이 증가할수록, 상기 TaC를 포함하는 코팅층과 상기 탄소 모재간의 부착력이 증가할 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄소 모재는, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC 의 함량이 15 부피% 내지 20 부피% 인 것일 수 있다.
도 1에는, 본 발명의 상기 일 실시예에서 제공하는, 탄소 모재(110)의 단면 개념도가 도시되어 있다. 상기 탄소 모재는 다공성 탄소 재질로서 내부에 기공이 형성되어 있고, 상기 탄소 모재 상에 TaC를 포함하는 코팅층이 형성되면, 상기 기공으로 TaC 성분이 함침되어 함침 영역이 생성될 수 있다.
도 2에는, 본 발명의 일 실시예에 따른, TaC 성분이 함침 영역(130)을 포함하는 탄소 모재(110) 및 탄소 모재 상에 형성된 TaC를 포함하는 코팅층(120)을 포함하는, 고경도 TaC 코팅 탄소 재료의 단면 개념도가 도시되어 있다. 상기 함침 영역(130)은 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역(131)을 포함할 수 있다. 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역은, 상기 TaC를 포함하는 코팅층의 TaC 성분이 상기 탄소 모재의 기공으로 함입되어 형성된 영역의, 실질적으로 코팅층의 표면 경도 및 모재 부착력에 영향을 미치는 영역일 수 있다.
또한, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의, TaC의 함량은 15 부피% 내지 20 부피% 인 것일 수 있다. 상기 영역의 TaC 함량이 15 부피% 내지 20 부피% 인 경우, 본 발명의 일 측면에서 의도하는 효과인, 탄소 모재와의 부착력이 우수한 TaC를 포함하는 코팅층이 형성될 수 있다. 상기 영역의, TaC의 함량이 15 부피% 미만의 경우에는, TaC를 포함하는 코팅층과의 부착력이 약해지거나 표면 경도가 낮게 형성되는 문제점이 있을 수 있고, TaC 함량이 20 부피% 초과의 경우에는 그라파이트의 기공이 과하게 형성되어 표면 조도를 증가시키거나, 코팅층의 표면이 거칠게 형성되는 문제점이 있을 수 있다. 또한, 상기 영역의, TaC의 함량은 16.5 부피% 내지 20 부피% 인 것이 바람직하다. 또한, 상기 영역의, TaC의 함량은 18 부피% 내지 20 부피% 인 것이 보다 바람직하다. 상기 영역의 TaC의 함량이 증가한다는 것은, 탄소 모재상의 기공률이 높다는 것을 의미하고, 실질적으로 기공률이 높은 탄소 모재상에 형성된 TaC를 포함하는 코팅층이 형성된 재료일 수록, 더욱 우수한 부착력 및 표면 경도를 가지게 된다.
도 2에 도시된 바와 같이, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역(131)은, TaC 함량이 상이한, 상기 탄소 모재 표면으로부터 상대적으로 얕은 구간의 제 1 영역(132)과, 상대적으로 깊은 구간의 제 2 영역(133)의 두 영역으로 구분할 수 있다.
상기 제 1 영역은, 상기 TaC를 포함하는 코팅층과 인접한 층으로서, TaC 성분이 모재의 기공으로 충분히 함침 될 수 있는 영역에 해당한다. 따라서, 탄소 모재에서 가장 높은 함침율이 발현되는 영역이다. 상기 탄소 모재 상에 형성된 TaC를 포함하는 코팅층의 부착력 및 표면경도는, 공정 온도 및 Ta/C 비율 등의 공정 조건에 따라 달라질 수 있으나, TaC를 포함하는 코팅층 형성 결과 생성된 상기 제 1 영역의 상기 TaC 함량이 16 부피% 내지 20 부피% 일 때, 우수한 표면 경도를 가질 수 있다. 상기 제 2 영역은, 상기 제 1 영역보다 모재 표면에서 더 깊은, 상기 제 1 영역과 인접한 층으로서, 상기 코팅층의 TaC 성분이 상대적으로 덜 함침되는 영역에 해당한다. 그러나, 이 영역의 TaC 함량 또한, 탄소 모재 상에 형성된 TaC를 포함하는 코팅층의 부착력 및 표면 경도에 영향을 미칠 수 있다. 상기 제 2 영역의 상기 TaC 함량이 13 부피% 내지 18 부피% 일 때, 상기 탄소 모재 상에 형성된 TaC를 포함하는 코팅층은, 우수한 부착력 및 표면 경도를 가질 수 있다. 상기 제 1 영역과 제 2 영역의 TaC 함량은 점진적으로 변화하는 것일 수 있다. 상기 제 1 영역과 제 2 영역 간의 경계는 탄소 재료의 TaC를 포함하는 코팅층 표면으로부터 40 ㎛ 내지 70 ㎛ 깊이에 형성될 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층의 표면 스크래치 값은, 아래의 [수학식 2]에 따른 것일 수 있다.
Figure PCTKR2018004901-appb-img-000006
상기 탄소 모재 상에 형성된 TaC를 포함하는 코팅층의 탄소 모재와의 부착력을 결정하는 요인은 다양하게 존재할 수 있다. 그 중 하나의 요인으로서 상기와 같이 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC 함량은 상기 TaC를 포함하는 코팅층의 부착력을 결정하는데 큰 영향을 미치게 된다. 본 발명의 일 예에 따른 상기 TaC 코팅층의 표면 스크래치 값 (N) 은, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의, TaC의 함량 (부피%)을 변수로 하는 일차함수의 수식을 따르게 된다. 그에 따라 결정된 상기 TaC를 포함하는 코팅층의 표면 스크래치 값(N)은, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량 (부피%)×(0.65 내지 0.7) - 19.5 의 값을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄소 모재의 열팽창계수는, 7.0×10 -6/K 내지 7.5×10 -6/K 인 것일 수 있다.
탄소 모재의 열팽창계수는 탄소 모재와 상기 탄소 모재 상에 형성된 TaC를 포함하는 코팅층 간의 부착력을 결정하는데 중요한 요인이 된다. TaC를 포함하는 코팅층의 열팽창계수를 고려할 때, TaC 소재의 열팽창계수와 차이가 크지 않도록 탄소 모재를 준비하여 본 발명의 TaC를 포함하는 코팅층을 가지는 탄소 재료를 형성할 수 있다. 이 때 탄소 모재의 열팽창계수는 7.0×10 -6/K 내지 7.5×10 -6/K 인 것일 수 있다. 이로써 TaC를 포함하는 코팅층의 온도변화에 의한 팽창이나 수축이 발생할 때, 탄소 모재와의 사이에서 열응력을 최소화할 수 있고 코팅층의 부착성을 향상시킬 수 있다.
도 3은 본 발명의 일 실시예에 따르는, TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법의 각 단계를 도시한 순서도이다.
본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법은 탄소 모재를 준비하는 단계; 및 상기 탄소 모재 상에 1500 ℃ 이상의 온도에서 CVD 법을 이용하여 TaC를 포함하는 코팅층을 형성하는 단계;를 포함한다.
일반적으로 사용되는 TaC 소재의 CVD 법을 이용한 증착 방법은 800 ℃ 내지 900 ℃ 정도의 온도를 유지하는 챔버 내에서 증착 공정을 수행하거나 또는 수백 ℃ 정도 되는 온도에서 원료 가스를 분사하기 시작하고 챔버 내의 온도를 점차 올려가며 증착을 수행하는 방법을 사용하고 있다.
그러나 본 발명의 일 측면에서는 CVD 법에 의해 증착을 시작하는 초기 온도를 1500 ℃ 이상의 고온으로 형성하여 등온에서 수행하는 것을 특징으로 한다. 이로써 본 발명의 일 측면에서 의도하는 탄소 모재와의 높은 부착력 및 높은 표면 경도를 확보할 수 있다. 다만 상기 온도는 2500 ℃ 미만에서 형성되는 것일 수 있다. 상기 온도가 2500℃ 를 초과하는 경우에는 장비의 구현이 어렵고 온도가 너무 높아 TaC 성분이 상기 탄소 모재의 기공 안으로 함침되기 어려워져 부착력이 감소하는 문제점이 생길 수도 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계후에, 1800 ℃ 이상의 온도에서 열처리하는 단계;를 더 포함하는 것일 수 있다.
본 발명의 일 측면에서는 고온에서 CVD 법을 이용하여 TaC를 포함하는 코팅층을 증착한 후, 원료 가스의 분사를 마친 후 챔버 내에서 온도를 더 올려서 추가적으로 열처리하는 단계를 더 포함할 수 있다. 이는 잔류 응력을 완화시키고 결정립 크기의 성장을 촉진시키며 보다 균질한 코팅층을 형성되도록 하여 최종적으로 형성될 제품의 TaC를 포함하는 코팅층의 물성을 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계와 상기 열처리하는 단계 사이에 냉각하는 단계;를 더 포함하는 것일 수 있다. 이 때, 상기 냉각하는 단계는 TaC 코팅층 표면을 냉각하는 것일 수 있으며, 탄소 재료 전체를 냉각하는 것일 수 있다. 이 때 상기 냉각하는 단계는 탄소 재료를 챔버 밖으로 꺼내어 상온까지 온도를 완전히 낮추는 것일 수도 있고, TaC를 포함하는 코팅층을 형성하는 단계가 수행되는 온도에 비해 약간의 온도를 낮추는 것일 수도 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 TaC 를 포함하는 코팅층을 갖는 탄소재료의 필요 표면 경도 값에 따라서 TaC를 포함하는 코팅층이 아래의 [수학식 1]을 만족하는 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값을 가지도록 형성하는 것일 수 있다.
Figure PCTKR2018004901-appb-img-000007
A: XRD 분석 시 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값
본 발명의 TaC를 포함하는 코팅층을 갖는 탄소 재료의 경우, 이러한 [수학식 1]을 이용하여 탄소 재료를 제조하는 과정에서부터 요구되는 제품의 표면 경도 값에 따라 TaC를 포함하는 코팅층의 X선 회절 피크값을 적절히 조절하도록 공정을 정밀하게 설계할 수 있다. 이로써 생성될 TaC를 포함하는 코팅층의 표면 경도를 원하는 수준으로 정밀하게 구현할 수 있으며, TaC를 포함하는 코팅층을 형성하는 과정에서 상기 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값의 비를 조절하여 원하는 표면 경도의 스펙에 맞는 제품을 확보할 수 있다.
본 발명의 일 실시예에 따르면, 상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 TaC 코팅층을 포함하는 탄소재료의 필요 표면 스크래치 값에 따라서 TaC를 포함하는 코팅층이 아래의 [수학식 2]를 만족하는 TaC 함량을 가지도록 하는 것일 수 있다.
Figure PCTKR2018004901-appb-img-000008
본 발명의 일 실시예에 따르면, 상기 탄소 모재를 준비하는 단계는, 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비하는 것을 포함할 수 있다.
본 발명의 일 측면에서는, 부착력이 좋은 TaC를 포함하는 코팅층을 탄소 모재를 상에 형성하기 위해, 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비하는 단계를 포함할 수 있다. 상기 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비함으로써, 본 발명의 일 측면에서 의도하는 효과인, 부착력 및 표면 경도가 우수한 TaC를 포함하는 고경도 코팅층의 구현이 가능할 수 있다. 또한, 상기 평균 기공율은 16.5 부피% 내지 20 부피% 인 것이 바람직하다. 또한, 상기 평균 기공율은 18 부피% 내지 20 부피% 인 것이 보다 바람직하다. 탄소 모재 내의 TaC 의 함량이 증가한다는 것은, 탄소 모재상의 기공률이 높다는 것을 의미하고, 실질적으로 기공률이 높은 탄소 모재 상에 TaC 코팅층이 형성된 재료일 수록, 더욱 우수한 부착력 및 표면경도를 가지게 된다. 상기 탄소 모재의 평균 기공율 측정 방법은 수은흡착법(Prosimeter : 기공률 분석기)을 통해 측정할 수 있다.
본 발명의 일 예로, 상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 탄소 모재의 기공들에 TaC를 포함하는 코팅층 성분이 함침되어, 상기 탄소 모재의 내부에 상기 코팅층과 접하는 함침 영역을 형성하는 것을 포함할 수 있다. 상기 탄소 모재 상의 상기 코팅층이 고온에서 형성될 경우, 상기 TaC를 포함하는 코팅층 성분은 상기 탄소 모재의 표층 기공에서부터 안쪽의 기공에 이르기까지 함침되기 시작한다. 이로써, 상기 탄소 모재의 내부에 상기 코팅층과 접하는 함침 영역이 형성될 수 있다. 상기 함침 영역의 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역은, 상기 TaC를 포함하는 코팅층과 탄소 모재 간의 부착력 및 형성된 탄소 재료의 표면 경도를 결정하는데 있어 실질적으로 의미를 가지는 구간이 될 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄소 모재를 준비하는 단계는, 열팽창계수가 7.0×10 -6/K 내지 7.5×10 -6/K 인 탄소 모재를 준비하는 것을 포함할 수 있다.
TaC를 포함하는 코팅층의 열팽창계수를 고려할 때, TaC 소재의 열팽창계수와 차이가 크지 않도록 탄소 모재를 준비하여 본 발명의 TaC를 포함하는 코팅층을 가지는 탄소 재료를 형성할 수 있다.
실시예
CVD 기법에 의해, 본 발명의 일 측면에서 제공하는 특유의 XRD 회절 피크값이 있는 TaC를 포함하는 코팅층을 갖는 탄소 재료를 복수 개 제조하였다. 본 발명의 일 측면에 따른 탄소 모재 표면으로부터 깊이 100 ㎛ 까지의 평균 기공율(15 부피% 이상)을 갖는 탄소 모재들에 대하여, 1000 ℃기준의 직경 400mm 및 두께 10 mm의 탄소 기재에, CVD 처리조건에서 TaC 코팅층을 형성하였다. 이 때, 탄화탄탈 피복막의 C/Ta의 조성비는 1:1.05로 조정하였다. 각각의 탄소 모재의 평균 기공율은 수은흡착법으로 측정하였다.
(1) XRD 분석 시 피크값의 비와 코팅층 표면 경도 간의 관계 확인
상기의 조건 하에서 형성된 TaC를 포함하는 코팅층의 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비가 서로 상이하게 형성되도록 복수 개의 실시예 및 비교예를 제조하고 각각에 대한 표면 경도를 측정하였다.
Figure PCTKR2018004901-appb-img-000009
도 4는 본 발명의 실시예에 따르는 XRD 분석 실험의 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비와 표면 경도 값 간의 상관관계를 드러내는 그래프이다.
도 4의 그래프를 통해, 상기 회절 피크값의 비가 0.40을 기준으로 하여 그 전후에서 상기 표면 경도 값이 크게 변화됨을 확인할 수 있다. 다시 말해, 상기 피크값의 비가 0.4 미만의 경우 TaC를 포함하는 코팅층의 표면 경도 값이 15 GPa 이상의 고경도로 형성되는 반면에 0.4 미만의 경우 상기 피크값의 비가 조금만 증가하더라도 표면 경도 값이 큰 폭으로 감소함을 확인할 수 있었다. 한편, 피크값의 비는 0.1 미만의 구간에서 점점 작아질 수록 표면 경도 값의 증가율은 점점 줄어드는 것을 확인할 수 있었다.
또한, 상기 실험 결과를 통해, 상기 회절 피크값의 비와 상기 표면 경도 값간에, 상기 회절 피크값의 비를 변수로 하고 일정 범위의 오차 범위 안에 표면 경도 값이 모두 포함되는 이차함수의 상관관계가 성립함을 확인할 수 있었다. 상관관계는 위에서 설명한 [수학식 1]과 같다.
(2) 탄소 모재의 평균 기공율과 TaC 코팅층의 표면 스크래치 관계 확인
상기의 조건 하에서 탄소 모재의 평균 기공율을 다르게 형성하여 제조된 TaC를 포함하는 코팅층이 형성된 탄소 재료들 각각에, 스크래치 시험을 수행하였다. 하기의 [표 2]은 본 발명의 일 측면에서 제공하는 실시예에 따라 제공된 TaC를 포함하는 코팅층을 가진 탄소 재료들의 탄소 모재의 평균 기공율에 따른 표면 스크래치 시험 결과값이다.
Figure PCTKR2018004901-appb-img-000010
실시예 4 내지 실시예 6을 통해 본 발명의 일 측면에서 제공하는 탄소 모재인, 탄소 모재의 평균 기공율이 15 부피% 이상에 해당할 경우, 표면 스크래치 값은 3.5 N 이상으로 형성되는 것을 확인할 수 있었다.
이를 통해, 상기 탄소 모재의 평균 기공율이 15 부피% 미만인 탄소 모재의 경우, 본 발명의 일 측면에서 의도하는 높은 부착력을 구현하기 어려움이 확인되었다. 또한, 본 발명의 일 측면에서 의도하는 탄소 모재의 평균 기공율을 일정 수준 이상으로 확보함으로써, 상기 스크래치 값을 3.5 N 이상 구현할 수 있음이 확인되었다. 상기 실험 결과를 통해, 탄소 모재의 평균 기공율이 높아질수록, 상기 탄소 모재 상의 TaC 코팅층의 부착력이 증가함을 알 수 있었다. 또한, 상기 실험 결과를 통해, 탄소 모재의 평균 기공율과 상기 탄소 모재 상의 TaC 코팅층의 스크래치 값 간에, 상기 탄소 모재 상의 TaC 코팅층의 표면 스크래치 값을 변수로 하는 일차함수의 상관관계가 성립함을 확인할 수 있었다. 상관관계는 위에서 설명한 [수학식 2]와 같다.
(3) TaC를 포함하는 코팅층의 평균 결정립 크기와 표면 경도 간의 관계 확인
상기의 조건 하에서 TaC를 포함하는 코팅층의 평균 결정립 크기와 표면 경도 간의 관계를 확인하기 위하여 평균 결정립 크기를 달리 하여 복수 개의 실시예 및 비교예를 제조하고 각각의 경우에 표면 경도를 측정하였다.
이 때, TaC를 포함하는 코팅층의 평균 결정립 크기의 측정은 평균 결정립 크기를 결정하는 표준 테스트 방법인 ASTM E112에 따라 측정하였다.
하기의 [표 3]은 본 발명의 일 측면에서 제공하는 실시예 및 비교예에 대해서측정된 평균 결정립 크기와 표면 경도의 측정값을 나타낸 것이다.
Figure PCTKR2018004901-appb-img-000011
[표 3]에 제시된 측정값 결과를 통해 평균 결정립 크기가 일정 수준 이상으로 증가하게 되면 표면 경도 값이 크게 상승하는 구간이 존재하는 것을 확인할 수 있다.
도 5a 내지 도 5d는 본 발명의 실시예 및 비교예로 제조된 탄소 재료에 있어서, TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이다.
도 5a는 비교예 2의 TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이고, 도 5b는 실시예 7의 TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이고, 도 5c는 실시예 8의 TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이고, 도 5d는 실시예 9의 TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이고, 도 5e는 실시예 10의 TaC를 포함하는 코팅층 표면에 대한 SEM 이미지이다.
도 6은 본 발명의 일 실시예에 따라 제조된 TaC를 포함하는 코팅층을 갖는 탄소 재료 중 하나의 샘플(실시예 11)을 ASTM E112에 따라 평균 결정립 크기를 측정한 그래프이다.
도 6에서 측정한 샘플(실시예 11)의 경우, 평균 결정립 크기가 14.9 ㎛ 를 나타내고 있다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (17)

  1. 탄소 모재; 및
    상기 탄소 모재 표면 상에 형성되는 평균 결정립 크기가 10 ㎛ 내지 50 ㎛ 인 TaC를 포함하는 코팅층;을 포함하는,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  2. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층의 표면 경도는, 15 GPa 이상인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  3. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층은, XRD 분석의 X선 회절에 의해 발생하는 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값의 비가 0.40 이하인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  4. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층은, XRD 분석의 X선 회절에 의해 발생하는 피크값 중, (111) 면의 피크값이 최대인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  5. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층은, XRD 분석의 회절선의 반치폭이 0.15 ° 이하인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  6. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층의 표면 경도는, 아래의 [수학식 1]에 따른 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
    Figure PCTKR2018004901-appb-img-000012
    A: XRD 분석 시 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값
  7. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층은, 표면 스크래치 시험값이 3.5 N 이상인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  8. 제1항에 있어서,
    상기 탄소 모재는, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC 의 함량이 15 부피% 내지 20 부피% 인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  9. 제1항에 있어서,
    상기 TaC를 포함하는 코팅층의 표면 스크래치 값은, 아래의 [수학식 2]에 따른 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
    Figure PCTKR2018004901-appb-img-000013
  10. 제1항에 있어서,
    상기 탄소 모재의 열팽창계수는, 7.0×10 -6/K 내지 7.5×10 -6/K 인 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료.
  11. 탄소 모재를 준비하는 단계; 및
    상기 탄소 모재 상에 1500 ℃ 이상의 온도에서 CVD 법을 이용하여 TaC를 포함하는 코팅층을 형성하는 단계;를 포함하는,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
  12. 제11항에 있어서,
    상기 TaC를 포함하는 코팅층을 형성하는 단계 후에, 1800 ℃ 이상의 온도에서 열처리하는 단계;를 더 포함하는 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
  13. 제12항에 있어서,
    상기 TaC를 포함하는 코팅층을 형성하는 단계와 상기 열처리하는 단계 사이에 냉각하는 단계;를 더 포함하는 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
  14. 제11항에 있어서,
    상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 TaC 를 포함하는 코팅층을 갖는 탄소재료의 필요 표면 경도 값에 따라서 TaC를 포함하는 코팅층이 아래의 [수학식 1]을 만족하는 (111) 면의 회절 피크값 대비 (200) 면의 회절 피크값을 가지도록 형성하는 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
    Figure PCTKR2018004901-appb-img-000014
    A: XRD 분석 시 TaC를 포함하는 코팅층의 (200) 면의 회절 피크값 / (111) 면의 회절 피크값
  15. 제11항에 있어서,
    상기 TaC를 포함하는 코팅층을 형성하는 단계는, 상기 TaC를 포함하는 코팅층을 포함하는 탄소재료의 필요 표면 스크래치 값에 따라서 TaC를 포함하는 코팅층이 아래의 [수학식 2]를 만족하는 TaC 함량을 가지도록 하는 것인,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
    Figure PCTKR2018004901-appb-img-000015
  16. 제11항에 있어서,
    상기 탄소 모재를 준비하는 단계는, 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비하는 것을 포함하는,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
  17. 제11항에 있어서,
    상기 탄소 모재를 준비하는 단계는, 열팽창계수가 7.0×10 -6/K 내지 7.5×10 -6/K 인 탄소 모재를 준비하는 것을 포함하는,
    TaC를 포함하는 코팅층을 갖는 탄소 재료의 제조방법.
PCT/KR2018/004901 2017-04-28 2018-04-27 Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법 WO2018199676A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18791723.2A EP3617175A4 (en) 2017-04-28 2018-04-27 CARBON MATERIAL WITH COATING LAYER, INCLUDING TAC, AND METHOD FOR THE PRODUCTION OF SUCH CARBON MATERIAL
JP2019558359A JP6833068B2 (ja) 2017-04-28 2018-04-27 TaCを含んでいるコーティング層を有する炭素材料及びその製造方法
US16/607,490 US10883170B2 (en) 2017-04-28 2018-04-27 Carbon material having coating layer comprising tac, and method for producing said carbon material
CN201880028003.2A CN110582476B (zh) 2017-04-28 2018-04-27 具有包含TaC的涂层的碳材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0054799 2017-04-28
KR1020170054799A KR101907900B1 (ko) 2017-04-28 2017-04-28 TaC를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018199676A1 true WO2018199676A1 (ko) 2018-11-01

Family

ID=63919830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004901 WO2018199676A1 (ko) 2017-04-28 2018-04-27 Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법

Country Status (7)

Country Link
US (1) US10883170B2 (ko)
EP (1) EP3617175A4 (ko)
JP (1) JP6833068B2 (ko)
KR (1) KR101907900B1 (ko)
CN (1) CN110582476B (ko)
TW (1) TWI735780B (ko)
WO (1) WO2018199676A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807834A (zh) * 2021-01-18 2022-07-29 重庆理工大学 一种低摩擦系数高耐磨的CrAlN/CrAlSiN/TaC复合涂层及其制备方法
CN115198253A (zh) * 2022-07-05 2022-10-18 苏州步科斯新材料科技有限公司 一种石墨基体表面碳化钽涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084057A (ja) * 2002-06-28 2004-03-18 Ibiden Co Ltd 炭素複合材料
KR20070020225A (ko) * 2005-02-14 2007-02-20 토요 탄소 가부시키가이샤 탄화탄탈 피복 탄소재료 및 그 제조 방법
JP2009137789A (ja) * 2007-12-05 2009-06-25 Sumitomo Electric Ind Ltd 炭化タンタル焼結体およびその製造方法ならびに成形用型およびターゲット材
KR20120104260A (ko) * 2009-12-28 2012-09-20 도요탄소 가부시키가이샤 탄화탄탈 피복 탄소재료 및 그 제조방법
KR20170133155A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 탄화탄탈 코팅 탄소 재료
KR20170133191A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 고경도 TaC 코팅 탄소 재료 및 그 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696074A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Hard exterior decorative parts for watch
US20050064247A1 (en) * 2003-06-25 2005-03-24 Ajit Sane Composite refractory metal carbide coating on a substrate and method for making thereof
US7463614B2 (en) 2004-12-16 2008-12-09 Utstarcom, Inc. Method and apparatus to facilitate provision of an IPv6 prefix
CN100450978C (zh) * 2005-02-14 2009-01-14 东洋炭素株式会社 碳化钽被覆碳材料及其制造方法
JP3779314B1 (ja) * 2005-02-14 2006-05-24 東洋炭素株式会社 炭化タンタル被覆炭素材料およびその製造方法
CN100338254C (zh) * 2006-04-12 2007-09-19 华北电力大学 一种原位生成超细晶碳化物金属陶瓷涂层的制备方法
JP4641536B2 (ja) * 2007-07-27 2011-03-02 東洋炭素株式会社 還元性雰囲気炉用炭素複合材料及びその製造方法
JP4641535B2 (ja) * 2007-07-27 2011-03-02 東洋炭素株式会社 還元性雰囲気炉用炭素複合材料及びその製造方法
US20100179045A1 (en) * 2009-01-12 2010-07-15 Goodrich Corporation Methods and apparatus relating to a composite material
JP5267709B2 (ja) * 2011-09-14 2013-08-21 株式会社豊田中央研究所 高耐熱部材、その製造方法、黒鉛ルツボおよび単結晶インゴットの製造方法
JP5696074B2 (ja) 2012-03-16 2015-04-08 株式会社東芝 半導体装置
CN106298448A (zh) * 2016-08-08 2017-01-04 中国人民解放军国防科学技术大学 碳基体表面TaC涂层及其制备方法
KR20190073788A (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 CVD를 이용한 TaC 코팅층의 제조방법 및 그를 이용하여 제조한 TaC의 물성

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084057A (ja) * 2002-06-28 2004-03-18 Ibiden Co Ltd 炭素複合材料
KR20070020225A (ko) * 2005-02-14 2007-02-20 토요 탄소 가부시키가이샤 탄화탄탈 피복 탄소재료 및 그 제조 방법
JP2009137789A (ja) * 2007-12-05 2009-06-25 Sumitomo Electric Ind Ltd 炭化タンタル焼結体およびその製造方法ならびに成形用型およびターゲット材
KR20120104260A (ko) * 2009-12-28 2012-09-20 도요탄소 가부시키가이샤 탄화탄탈 피복 탄소재료 및 그 제조방법
KR20170133155A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 탄화탄탈 코팅 탄소 재료
KR20170133191A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 고경도 TaC 코팅 탄소 재료 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617175A4 *

Also Published As

Publication number Publication date
CN110582476A (zh) 2019-12-17
KR101907900B1 (ko) 2018-10-16
US20200140997A1 (en) 2020-05-07
CN110582476B (zh) 2022-05-24
JP2020517571A (ja) 2020-06-18
EP3617175A1 (en) 2020-03-04
JP6833068B2 (ja) 2021-02-24
TWI735780B (zh) 2021-08-11
EP3617175A4 (en) 2020-04-22
TW201902858A (zh) 2019-01-16
US10883170B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2018199680A1 (ko) Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
WO2018199676A1 (ko) Tac를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
WO2017204535A1 (ko) 고경도 tac 코팅 탄소 재료 및 그 제조방법
WO2016072724A1 (ko) 플라즈마 내식각성이 향상된 공정부품 및 공정부품의 플라즈마 내식각성 강화 처리 방법
WO2019182306A1 (ko) 하이브리드 코팅법을 이용한 그라파이트 모재의 코팅방법
WO2017204534A1 (ko) 탄화탄탈 코팅 탄소 재료
WO2018194366A1 (ko) 실란트로 실링된 정전척 및 이의 제조방법
WO2018117557A1 (ko) 반도체 제조용 부품, 복합체 코팅층을 포함하는 반도체 제조용 부품 및 그 제조방법
WO2020067837A1 (ko) 복합재
WO2019054617A1 (ko) 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
KR102600114B1 (ko) 탄화탄탈 코팅 탄소 재료 및 이의 제조방법
WO2020213847A1 (ko) Sic 소재 및 이의 제조방법
KR102150510B1 (ko) Cvd 방식으로 형성된 sic 구조체
WO2020213835A1 (ko) 탄화규소-질화규소 복합소재의 제조방법 및 이에 따른 탄화규소-질화규소 복합소재
WO2018034532A1 (ko) Sic 소재 및 sic 복합 소재
WO2016021886A1 (ko) 탄화규소 에피 웨이퍼 및 그 제조 방법
KR20140078533A (ko) 열분해 질화붕소 피복 탄소질 기재의 제조방법
WO2017204536A1 (ko) 탄화탄탈 다중코팅 재료 및 그 제조방법
JP7204960B2 (ja) Cvd方式で形成されたsic構造体
KR102150515B1 (ko) Cvd 방식으로 형성된 sic 구조체
KR102150506B1 (ko) Cvd 방식으로 형성된 sic 구조체
KR20010002267A (ko) 알루미늄 나이트라이드의 표면 개질 방법
WO2024010101A1 (ko) 반도체 제조장치용 부품 및 그의 제조방법
KR20100041355A (ko) 그라파이트 폼 구조물
WO2024054027A1 (ko) α-AL2O3 상 양극산화 알루미늄 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018791723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018791723

Country of ref document: EP

Effective date: 20191128