WO2013162270A1 - 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법 - Google Patents

약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법 Download PDF

Info

Publication number
WO2013162270A1
WO2013162270A1 PCT/KR2013/003486 KR2013003486W WO2013162270A1 WO 2013162270 A1 WO2013162270 A1 WO 2013162270A1 KR 2013003486 W KR2013003486 W KR 2013003486W WO 2013162270 A1 WO2013162270 A1 WO 2013162270A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
breast implant
layer
particles
breast
Prior art date
Application number
PCT/KR2013/003486
Other languages
English (en)
French (fr)
Inventor
허찬영
최영빈
박민
박수빈
이원석
김병휘
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to US14/396,982 priority Critical patent/US9642697B2/en
Publication of WO2013162270A1 publication Critical patent/WO2013162270A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/12Mammary prostheses and implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/04Materials or treatment for tissue regeneration for mammary reconstruction

Definitions

  • the present invention relates to a breast implant capable of controlled release of a drug and a method for producing the same, and more particularly, to a breast implant capable of controlled release of a drug in vivo after transplantation and a method for producing the same.
  • high value-added breast implants can be delivered by directly implanting particles that can deliver drugs that can address problems such as fibrosis in breast implant patients. Can provide.
  • the present inventors can provide a breast implant capable of controlled release of a drug by combining a drug layer including nano, micro, milli, or centimeter particles loaded with a drug on a breast implant during the study.
  • the present invention was completed by confirming the presence of the same.
  • a drug layer bound on some or all of the breast implants is
  • the drug layer is composed of a complex of drug-loaded particles and a biocompatible polymer
  • the drug loaded particles provide a breast implant consisting of a complex of drug and a biocompatible polymer.
  • the breast implant may further include a water-soluble polymer layer composed of a water-soluble polymer covering the upper portion of the drug layer.
  • breast implant means a medical article that preserves the shape or size of the breast during breast reconstruction for breast reconstructive surgery or cosmetic purposes.
  • the breast reconstructive surgery may be performed by placing the tissue expander coated with the drug delivery particles in the body for a predetermined time to secure the space point through the expansion of the skin and soft tissues, and then perform the implantation of the breast implant.
  • Implant insertion can be performed without insertion.
  • the tissue expander may use saline, but is not limited thereto.
  • tissue expander coated with the drug delivery particles may alleviate infection, inflammation or foreign body reaction through drug delivery during the period of insertion into the body.
  • the breast implant may use a conventional silicone back implant, silicone gel implant, or cohesive silicone gel implant, and the like, but is not limited thereto.
  • drug layer refers to a layer containing a drug.
  • the present invention seeks local delivery of drugs by directly coupling the drug delivery system to the surface of the breast implant, thereby providing a breast implant that can maximize the therapeutic effect.
  • the drug delivery system of the breast implant can control the drug release time by using external energy for the release behavior of the drug, thereby maximizing the therapeutic effect such as pharmacological non-invasive constructive blood surgery.
  • the external energy may be, but is not limited to, ultrasound, low frequency, thermal transfer, mechanical compression, sound pressure, positive pressure, laser, LED, ionizing radiation, LLLT (low power laser therapy) or electromagnetic field.
  • LLLT low power laser therapy
  • all wavelength ranges can be used as energy sources.
  • LEDs it is generally possible to use 830 nm, but is not limited now.
  • the drug component is formed in such a manner that the drug component is impregnated with a polymer material and coated on the surface thereof.
  • the drug may be rapidly released early to cause side effects due to this, and it is difficult to implement the drug delivery shape for a long time.
  • the present invention first forms a drug-loaded particle using a biocompatible polymer, and then forms the drug layer by binding the drug-loaded particle to the breast implant surface in a layer form using a biocompatible polymer. Controlled transfer is possible.
  • the present invention can control the drug release behavior by the diffusion of the drug due to the decomposition or breakdown of the polymer constituting the particles, or the polymer used to bind the particles in the form of a layer.
  • the diffusion rate of the drug may be controlled through the size of the particle, the type of the polymer, the thickness of the drug layer, the number of drug layers, or a combination thereof.
  • the rate of diffusion of the drug may be controlled through the number of drug layers, and the rate of diffusion of the drug may be controlled through the size of the particles. It can have a variety of forms of drug delivery through. Accordingly, in the present invention, the drug layer including the drug-loaded particles may be a single layer or a multilayer. Specifically, the drug layer of the present invention may be 1 to 5, but is not limited thereto.
  • the drug layer may be a combination of two to five layers composed of a composite of particles of the same size and a biocompatible polymer.
  • the drug layer may be one layer composed of a combination of particles of different sizes and a composite of a biocompatible polymer.
  • the drug layer may be a combination of particles loaded with the same drug, a monolayer composed of a composite of a biocompatible polymer, or a combination of two to five layers.
  • the drug layer may be a single layer composed of a composite of particles containing other drugs, a composite of a biocompatible polymer, or a combination of two to five layers.
  • the drug may be an antibiotic, leukotriene antagositst, non-steroidal anti-inflammatory agents or a combination thereof.
  • the drug may be zafirlukast (zafirlukast), franlukast (montelukast), montelukast (zileuton), gentamicin (gentamycin), bencomycin (vancomycin), penicillin (penicillin), Lincomycin, flurbiprofen, ibuprofen, ketoprofen or combinations thereof, but is not limited thereto.
  • the drug may be, but is not limited to, a fibrosis inhibitor, a proliferation inhibitor, an anti-ischemic complex, an anticoagulant, or a combination thereof.
  • the fibrosis inhibitor may be pirfenidone, mitomycin, acetylsalicylic acid, genistein, selenocystine or tranilast, which is now limited It is not.
  • the proliferation inhibitor is tamoxifen (tamoxifen), halofuginone (holofuginone), vitamin C, asiaticoside, cyclosporine A (cyclosporine), homoharringtonin (homoharringtonine), vitamin A, D-penicillamine (D -penicillamine) or liposomes, but is not limited thereto.
  • the anti-ischemic complex is Necrox-5 or Necrox-7, and the anticoagulant may be tissue-type plasminogen activator, urokinase (usokinase, thrombolytic agent), heparin or suramin. It is not limited.
  • the particles used in the present invention are not particularly limited in form, and spheres, cylinders, films, and the like may be used as necessary.
  • grains used by this invention are nanoparticles.
  • nano as used in the present invention means that the size (diameter or long axis) of the particles is on the order of several nanometers (nm).
  • the size of the nanoparticles in the present invention may range from 1 to 100 nm.
  • grains used by this invention are microparticles.
  • micro refers to particles having a size (diameter or long axis) of several hundred micrometers ( ⁇ m).
  • the size of the microparticles in the present invention may range from 100 to 500 ⁇ m.
  • the particles used in the present invention are preferably milli particles.
  • milli refers to particles having a size (diameter or long axis) of several to several tens of millimeters (mm).
  • the size of the milli particles in the present invention may range from 1 mm to 50 mm.
  • biocompatible polymer refers to a polymer having biocompatibility that does not cause a rejection reaction when implanted in vivo. That is, the polymer used for the particles in the present invention or forming the drug layer may be any polymer that has biocompatibility and can be used for breast implants. However, biodegradable biodegradable polymers over time after implantation in vivo are more preferable in terms of controlled release of the drug. In this case, the biodegradable polymer that can be used may preferably be used by selecting a biodegradable polymer for up to three months in the body.
  • the biodegradable polymer is biodegradable within a shorter time than the lower limit, the drug is rapidly released, which makes it difficult to release the drug for a long time. If biodegradation is impossible for a longer time than the upper limit, the body may induce an inflammatory response. There is a disadvantage.
  • the biodegradable polymers include poly (lactic acid), poly (glycolic acid), poly (lactic-co-glycolic acid), poly (ethylene glycol), poly (trimethylene carbonate), poly (caprolactone), poly (Dioxanone), and the like, but is not limited thereto.
  • biocompatible polymers that are not biodegradable include poly (methyl methacrylate), polyethylene (PE), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), poly Urethane (PU) and the like, but are not limited thereto.
  • the biocompatible polymer may be a biodegradable polymer, a non-biodegradable polymer, or a copolymer thereof, or may be a blend in which two or more kinds of polymers are mixed.
  • the biocompatible polymer is poly (lactic acid), poly (glycolic acid), poly (lactic-co-glycolic acid), poly (ethylene glycol), poly (trimethylene carbonate), poly (caprolactone), poly (di Oxanone), poly (methyl methacrylate), polyethylene (PE), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polyurethane (PU) and copolymers thereof It may be one or more selected from, but is not limited thereto.
  • water soluble polymer layer means a layer comprising a water soluble polymer.
  • the water-soluble polymer layer may serve to fix and protect the drug layer which is bound on the breast implant by being bonded to the breast implant so as to cover the upper drug layer.
  • the water soluble polymer layer is rapidly dissolved and disappeared after implantation into the body, and then the drug layer is exposed to initiate controlled release of the drug into surrounding tissue.
  • the water-soluble polymer layer of the present invention may be a layer composed of a water-soluble polymer.
  • the water-soluble polymer is polyvinyl alcohol (PVA), polyethylglycol (PEG), polyacrylamide (PAAM), polyvinylpyrrolidone (PVP), hydroxypropylation (HPC), hydroxypropylmethylation (HPMC) or carboxymethylethylcellulose (CMEC), but is not limited thereto.
  • PVA polyvinyl alcohol
  • PEG polyethylglycol
  • PAAM polyacrylamide
  • PVP polyvinylpyrrolidone
  • HPMC hydroxypropylation
  • HPMC hydroxypropylmethylation
  • CMEC carboxymethylethylcellulose
  • the present invention provides a method for producing a breast implant comprising the following steps.
  • step 1 1) preparing a drug loaded particle (step 1);
  • step 2 2) preparing a film composed of the composite of the particles and the biocompatible polymer (step 2);
  • step 3 bonding the film onto the breast implant (step 3).
  • step 3) may further comprise the step (step 4) of bonding the water-soluble polymer layer to cover the top of the film.
  • Step 1 is a step of preparing a drug-loaded particles, the step of preparing the particles in the form of a drug for the controlled release of the drug.
  • the drug-loaded particles may be composed of a complex of the drug and the biocompatible polymer for controlled release of the drug as described above.
  • the drug-loaded particles can be prepared by conventional methods or obtained commercially.
  • the drug-loaded particles may be a method of phase separation, interfacial polymerization, single / double emulsion, spray drying, fluidized bed, or the like. It can be prepared through.
  • the type of drug, particle size, and type of biocompatible polymer are the same as described in the description of the breast implant.
  • Step 2 is to prepare a film composed of the composite of the particles and the biocompatible polymer, a step of producing a film by mixing the particles and the biocompatible polymer.
  • the film preparation of step 2) may be carried out through solvent casting or electrospinning.
  • step 2) may include the following steps.
  • step 2-1 mixing the biocompatible polymer solution or melt with the particles (step 2-1);
  • step 2-2 preparing the mixture into a mold to form a film (step 2-2);
  • Step 2-1 is a step of mixing the biocompatible polymer solution or the melt and the particles, wherein the biocompatible polymer solution or the melt and the particles are mixed to prepare a mixture for producing a film form.
  • the biocompatible polymer solution is obtained by dissolving the biocompatible polymer in a solvent.
  • the type of biocompatible polymer that can be used is the same as described in the description of the breast implant, and the solvent may be selected according to the type of biocompatible polymer.
  • an organic solvent such as dimethylformamide (DMF), tetrahydrofuran (THF), methylchloroform (MC), or the like may be used, but is not limited thereto.
  • the biocompatible polymer melt is obtained by melting the biocompatible polymer without a separate solvent.
  • the mixture obtained by mixing the biocompatible polymer solution or melt with the particles may be in the form of a liquid or dough suitable for molding into a film form.
  • Step 2-2 is a step of preparing the mixture into a mold in the form of a film, and molding the mixture to prepare a film.
  • the mold may be manufactured using the master mold after producing a master mold having the same shape as the film to be formed.
  • the master mold may be prepared using poly (methyl methacrylate) (PMMA) sheet, poly (carbonate) (PC) sheet, poly (ethylene terephthalic acid) (PET) sheet, poly (ethylene naphthalate) (PEN) sheet, or the like. Can be produced in the form.
  • a material used in the mold may include poly (dimethylsiloxane) (PDMS), and the like, and the material used in the mold may be appropriately selected and used.
  • the shape of the film may be a variety of forms, such as a circle, a square, a triangle or a polygon, but is not limited thereto.
  • Step 2-3 is a step of drying the film, the step of drying the film to cure the film.
  • the method usable during the drying is not particularly limited. However, freeze drying is preferred to protect the properties of the material, and particularly vacuum freeze drying is preferred to remove residual solvent through high vacuum. Specifically, the freeze-drying temperature is preferably in the range of -40 to -50 ° C. On the other hand, the drying time may be performed for 12 hours to 48 hours.
  • Step 3 is a step of bonding the film on the breast implant, the film containing the drug-mounted particles by separating the top (base) and the base (base) of the breast implant to enable controlled release of the drug It is the step of combining.
  • the film bonding of step 3) may be performed by a method of totally covering the breast implant with a film, and may be additionally performed through a non-linear method by lattice, dot, sentence, or random application. May be, but is not limited thereto.
  • Step 4 is to bind the water-soluble polymer layer to cover the top of the film, it is a step of bonding the water-soluble polymer layer to fix or protect the film containing the drug.
  • the type of water-soluble polymer that can be used for the water-soluble polymer layer is the same as described in the description of the breast implant.
  • the present invention also provides a method of manufacturing a breast implant comprising the following steps.
  • step 1 1) preparing a drug loaded particle (step 1);
  • step 2 2) preparing a mixture by mixing the biocompatible polymer (step 2);
  • step 3 combining the mixture in layer form on the breast implant (step 3).
  • step 3) may further comprise the step (step 4) of bonding the water-soluble polymer layer to cover the top of the layer containing the drug.
  • the method may further include a step (step 5) of drying the breast implant to which the layer is bound after step 3) or step 4).
  • Step 1 is a step of preparing a drug-loaded particles, the same as described in the description of the method for producing the breast implant.
  • Step 2 is a step of preparing a mixture by mixing the particles and the biocompatible polymer, a step of preparing a mixture of the particles and the biocompatible polymer for layer formation.
  • the particles may be in powder form suitable for bonding in layer form.
  • the biocompatible polymer may be mixed in the form of a powder, dissolved in a solvent, mixed in a solution form, or melted without a separate solvent and mixed in the form of a melt. That is, the mixture of the particles and the biocompatible polymer may be in the form of dough, powder or liquid suitable for bonding in layer form.
  • the type of biocompatible polymer that can be used is the same as described in the description of the breast implant.
  • the solvent may be appropriately selected depending on the type of the biocompatible polymer, and specifically, an organic solvent such as dimethylformamide (DMF), tetrahydrofuran (THF), methylchloroform (MC), etc. may be used, but is not limited thereto. no.
  • Step 3 is a step of binding the mixture in the form of a layer on the breast implant, the step of directly bonding the mixture in the form of a layer containing the drug-loaded particles on the breast implant to enable controlled release of the drug. .
  • the layer bonding method of step 3) may be spraying, dip coating, electrospinning, dropping, or brushing, but is not limited thereto.
  • step 3) may be repeated 2 to 5 times to prepare a breast implant having a multilayer structure having 2 to 5 drug layers.
  • step 4 the step of bonding the water-soluble polymer layer to cover the upper layer of the drug, the water-soluble polymer layer to cover the upper layer containing the drug to fix or protect the layer containing the drug It is the step of combining.
  • the type of water-soluble polymer that can be used for the water-soluble polymer layer is the same as described in the description of the breast implant.
  • Step 5 is a step of drying the breast implant to which the layer is bound, and drying the breast implant to which the mixture or water-soluble polymer containing the drug-loaded particles is bound in the form of a layer.
  • the method usable during the drying is not particularly limited. However, freeze drying is preferred to protect the properties of the material, and particularly vacuum freeze drying is preferred to remove residual solvent through high vacuum. Specifically, the freeze-drying temperature is preferably in the range of -40 to -50 ° C. On the other hand, the drying time may be performed for 12 hours to 48 hours.
  • the present invention constitutes a drug-mounted particle in a form in which biocompatible polymers are loaded with a drug, and forms the drug layer on the breast implant using the biocompatible polymer, thereby forming a polymer or drug layer.
  • the present invention has the effect of providing a breast implant capable of controlled release of the drug by binding the drug layer comprising the drug-loaded particles on the breast implant.
  • FIG 1 as an embodiment of the present invention briefly illustrates the manufacturing process of the silicon implant coated on the surface of the drug-based milliparticles.
  • Figure 2 is a graph showing the results of the release experiment of the drug mounted on the milliparticles as an embodiment of the present invention.
  • Figure 3 as an embodiment of the present invention (a) IM (intact implant), (b) PLGA_IM (PLGA-coated implant) and (c) PLGA_TR_IM (implant coated with a mixture of PLGA and tranilast (drug) implant) The image showing the results of observing the fiber layer thickness change according to the microscope.
  • IM intact implant
  • PLGA_IM PLGA-coated implant
  • PLGA_TR_IM implant coated with a mixture of PLGA and tranilast (drug) implant
  • FIG. 4 shows the change in fiber layer thickness according to each sample implantation of an IM (intact implant), PLGA_IM (PLGA-only implant) and PLGA_TR_IM (implant coated with a mixture of PLGA and tranilast (drug)) as an embodiment of the present invention. It is a graph showing the results of statistical significance analysis between each group.
  • FIG. 5 is a simplified illustration of the structure of a breast implant with one drug layer as one embodiment of the invention.
  • FIG. 6 schematically shows the structure of a breast implant having two drug layers composed of particles of different drugs and a composite of a biocompatible polymer as one embodiment of the present invention.
  • FIG. 7 is a schematic diagram of controlled release of a drug into surrounding tissue after implantation of the breast implant with the two drug layers as an embodiment of the present invention.
  • FIG. 8 illustrates a method of controlled release of a drug into surrounding tissue after implantation of a breast implant having three drug layers composed of particles of different drugs and a complex of biocompatible polymers as an embodiment of the present invention. It is a simplified diagram.
  • 9 is a controlled release of a drug into surrounding tissue after implantation of a breast implant with one drug layer consisting of a composite of biocompatible polymers and particles of different sizes loaded with the same drug as an embodiment of the invention. It is a simplified diagram of how to do this.
  • a water-soluble polymer layer composed of a water-soluble polymer that is coupled to a part of the breast implant, the drug layer consisting of a drug-mounted particles and a biocompatible polymer complex as part of the embodiment of the present invention is bonded to a part of the breast implant
  • This additionally coupled breast implant is a simplified schematic of the controlled release of the drug into surrounding tissue after implantation.
  • the drug layer including the drug-loaded particles is first prepared in a film-like layer and then onto the breast implant phase. It is a simplified schematic of the way of coupling to.
  • FIG. 12 illustrates a method of directly binding a drug loaded particle onto a breast implant as an embodiment of the present invention, to prepare a mixture including the drug loaded particle and spray or dip coat the same on the breast implant. It is a simplified diagram of the direct coupling method.
  • FIG. 13 illustrates a method of directly binding a drug loaded particle onto a breast implant according to an embodiment of the present invention, to prepare a mixture including the drug loaded particle, and to spray, drop, or spray the mixture onto the breast implant. It is a simplified schematic of the direct bonding method by brushing.
  • Antinitrifying agent tranilast is mixed (10% w / w) with biodegradable polymer poly (lactic-co-glycolic acid) (PLGA, drug delivery system), and then dissolved in DMF organic solvent. The solution was dropped on the implant surface by 10 [mu] l of each drop to coat the drug loaded milliparticles on the surface. In this case, a total of four milliparticles were formed, and the diameter of the milliparticles was 4 mm.
  • the drug-mounted milliparticles are bonded with a medical epoxy to face the inner side (the opposite surface) where the drug-mounted milliparticles are not coated.
  • a drug-loaded milliparticle-coated silicone implant (PLGA_TR_IM) was prepared. 1 shows a step of preparing a silicone implant (PLGA_TR_IM) coated on the surface of drug-containing milliparticles.
  • Poly (lactic-co-glycolic acid) (PLGA, drug delivery system) was dissolved in DMF organic solvent, and PLGA was coated on the surface by dropping 10 ⁇ l of each different solution onto a flat silicon implant surface. After the two PLGA coated silicone implants were prepared by the above method, the PLGA-coated inner surfaces (opposite surfaces) were bonded to each other with medical epoxy to prepare PLGA-coated implants (PLGA_IM). This was used as a control for drug efficacy evaluation.
  • the antinitrilizing agent, tranilast release experiment, was carried out on the milliparticle-coated silicone implant (PLGA_TR_IM) loaded with the drug prepared in Example. Prior to the release experiment, the amount of drug loaded per drop (10 ⁇ l) was measured and shown in Table 1 below.
  • the drug release experiment of the silicon implant (PLGA_TR_IM) coated on the surface of the milliparticles loaded with the drug prepared in Example was performed.
  • 2 ml of eluate were collected each day, 5 days, 7 days, 10 days and 14 days). In the collected eluate, the amount of drug released in each period was measured, and the same amount of PBS (pH 7.4, 37 ° C.) as the collected eluate was filled to maintain the sink condition.
  • Drug release test results are shown in FIG. 2.
  • the initial burst of drug at day 1 was about 60% and the remaining 40% was released slowly for 13 days. Therefore, it was confirmed that the drug was continuously released for a total of 14 days (about 2 weeks).
  • a desired drug release pattern may be induced.
  • IM is a sample that is not treated anything
  • PLGA_IM is a silicon implant sample coated only with biodegradable polymer (PLGA), which is a drug delivery system
  • PLGA_TR_IM is a sample coated with the milliparticles on the surface of the drug prepared in Example Means.
  • the rats were grafted to each rat, and the tissue around the sample was biopsyed, and the degree of fibrous layer formation was observed under a microscope by H & E staining. Based on the image, the thickness of the fibrous layer was measured from above the muscle, and the results are shown in Table 2 and FIG. 3.
  • the thickness of the fiber layer is 1082.32 ⁇ 90.25 ⁇ m
  • the fiber layer thickness is 1092.39 ⁇ 63.02 ⁇ m is similar to the experimental group transplanted IM Indicated.
  • the thickness of the fiber layer is 874.58 ⁇ 67.07 ⁇ m, and the thickness of the fiber layer is thinner than that of the experimental group in which the IM and PLGA_IM are implanted.
  • the silicon implant (PLGA_TR_IM) coated on the surface of the drug-loaded milliparticles of the present invention had an antifibrotic effect, indicating that the drug was released from the milli-particle on which the drug was mounted to exhibit an antifibrotic effect. .
  • FIG. 5 is a simplified illustration of the structure of a breast implant with one drug layer as one embodiment of the invention.
  • the breast implant of the present invention is a breast implant (1); And a drug layer composed of a complex of particles (2) loaded with a drug bound on the breast implant (1) and a biocompatible polymer (3).
  • FIG. 6 schematically shows a structure of a breast implant having two drug layers composed of a composite of biocompatible polymers and nanoparticles loaded with different drugs as an embodiment of the present invention.
  • the breast implant of the present invention is a breast implant (1); And two drug layers composed of a complex of particles (2, 2 ') loaded with different drugs bound on the breast implant (1) and a biocompatible polymer (3, 3').
  • FIG. 7 is a schematic diagram of a controlled release of a drug into surrounding tissue after implantation of the breast implant having the two drug layers as an embodiment of the present invention.
  • the drug layer located outside of the two drug layers containing particles loaded with different drugs first releases the drug for a predetermined time while being decomposed or decomposed, and then the drug layer located inside The drug can be controlled released in a manner that releases the drug.
  • FIG. 8 briefly illustrates a method of controlled release of a drug into a surrounding tissue after implantation of a breast implant having three drug layers composed of particles of different drugs and a complex of biocompatible polymers as an embodiment of the present invention. It is schematic.
  • the drug layer located at the outermost side of the three drug layers containing particles loaded with different drugs first releases the drug for a predetermined time while being decomposed or decomposed, and then the drug layer located at the middle.
  • the drug can be released for this period of time, and then the drug layer released in the last can release the drug in a controlled manner.
  • FIG. 9 illustrates a controlled release of a drug into surrounding tissue after implantation of a breast implant having one drug layer composed of a complex of particles of different sizes and a biocompatible polymer loaded with the same drug as an embodiment of the present invention. It is a simplified schematic.
  • the biocompatible polymer constituting the drug layer is decomposed or degraded so that particles having a small particle size and particles having a large particle size are simultaneously released into the surrounding tissue. Particles having a more easily decompose or disintegrate, thereby releasing the drug first, followed by controlled release of the drug in such a way that particles with a large particle size release the drug.
  • FIG. 7 or 8 showing the controlled release method of the drug according to the number of drug layers
  • FIG. 9 showing the controlled release method of the drug according to the particle size can be combined to create a more controlled controlled release of the drug. have.
  • FIG. 10 is a water-soluble layer in which a drug layer composed of a nano-, micro-, milli- or cm-based particle on which a drug is loaded and a composite of a biocompatible polymer is bonded to a portion of a breast implant as an embodiment of the present invention and covers an upper portion of the drug layer.
  • a simplified schematic of the controlled release of the drug into surrounding tissue after implantation of a breast implant with an additional, water-soluble polymer layer of polymer is implanted.
  • a water-soluble polymer layer composed of a water-soluble polymer covering the drug layer is coupled to a portion of the breast implant, the drug layer consisting of a drug-mounted particles and a biocompatible polymer complex as an embodiment of the present invention
  • the water-soluble polymer layer is dissolved and disappeared to expose the drug layer.
  • the drug is loaded from the drug layer by decomposing or degrading the biocompatible polymer constituting the drug layer. Controlled release of the drug in such a way that the particles are released into the surrounding tissue.
  • the breast implant of the present invention includes the drug in the drug layer together with the method of mounting the drug in the drug layer, drug delivery is controlled in the drug layer itself, and drug delivery is controlled in the particles, thereby making it possible to create a more diverse controlled release method of the drug. .
  • the type of drug contained in the drug and the drug itself included in the drug layer can be made a more diverse controlled controlled release of the drug for a variety of drugs.
  • Breast implants of the present invention can be prepared by binding the drug loaded particles onto the breast implants in an indirect or direct binding manner.
  • the drug layer containing the drug-loaded particles is first prepared in a film form layer and then on the breast implant phase It is a simplified schematic of the way of coupling to.
  • the drug-containing particles and the drug of the present invention are prepared by first preparing a film by a solution casting or electrospinning method using a biocompatible polymer and then coating the surface of the breast implant with the film.
  • FIG. 12 illustrates a method of directly binding a drug loaded particle onto a breast implant according to one embodiment of the present invention, to prepare a mixture including the drug loaded particle and spray or dip coat the same on the breast implant. It is a simplified schematic of the direct coupling method.
  • a mixture including drug-loaded particles and a biocompatible polymer is prepared, and is then used to form a layer directly on the surface of the breast implant by spray or dip coating.
  • Breast implants can be prepared that allow for controlled delivery of the drug of the invention.
  • FIG. 13 illustrates a method of directly binding a drug loaded particle onto a breast implant according to an embodiment of the present invention, to prepare a mixture including the drug loaded particle and to spray, drip, or brush the same on the breast implant. It is a simplified diagram of how to combine the method directly.
  • a layer is directly formed on the surface of the breast implant by electrospray, drip, or brushing.
  • a breast implant can be produced in a controlled delivery of the drug of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 유방 보형물 상에 약물이 탑재된 입자 포함하는 약물 층을 결합시킴으로써 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법에 관한 것이다.

Description

약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법
본 발명은 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 이식 후 생체 내에서 약물을 제어 방출할 수 있는 유방 보형물 및 이의 제조방법에 관한 것이다.
현재 유방암 등 유방 관련 질병으로 인한 유방 재건 수술 및 미용 목적을 위한 가슴 성형의 급격한 증가로 유방 보형물의 시장 규모가 빠른 속도로 커지고 있다.
대부분의 유방 보형물 이식 후, 이물반응(foreign body reaction)이 발생하여 유방 보형물 주위를 섬유조직이 둘러싸게 되어 구형구축을 일으키게 되는데 이는 이식 환자들에게 고통 및 염증을 발생시켜 약물을 최소 2주에서 최대 1년까지도 복용하고 있는 실정이다.
이에 환자들은 장기간 약물 복용으로 인한 경제적 부담 및 잦은 복용 횟수와 많은 양의 약물 복용으로 인한 약물 부작용을 겪게 된다.
유방 보형물 시장이 증가되고 있는 것을 고려할 때, 유방 보형물 이식 환자들에게 발생하는 섬유화와 같은 문제점을 해결할 수 있는 약물을 전달할 수 있는 입자를 직접 유방 보형물에 탑재하여 국소 제어 전달한다면 고부가 가치의 유방 보형물을 제공할 수 있다.
구형구축을 방지하기 위하여 유방보형물에 약물을 탑재한 종래 기술의 경우, 유방보형물에 탑재된 약물의 정량 분석이 이루어지지 않았기 때문에 재현성 있는 약물의 탑재량을 얻기 어려운 문제점을 가지고 있다.
또한, 유방보형물에 탑재된 약물의 방출 거동을 in vitro 및 in vivo에서 체계적으로 분석하지 않았기 때문에 약물이 전달되는 기간 및 전달되는 양에 따른 최적화된 치료 효과를 판단할 수 있는 근거가 부족하다.
그러므로, 약물의 전달 형상을 제어 및 프로그램화할 수 있는 접근의 유방보형물 개발이 요구된다.
또한, 현재 대부분의 약물은 최소 2주부터 최대 1년까지 경구 복용하기 때문에 이를 바탕으로 국소 전달시 약물의 서방형 장기간 전달이 요구된다.
이에 본 발명자는 상기와 같은 점을 감안하여 연구하던 중 유방 보형물 상에 약물이 탑재된 나노, 마이크로, 밀리 또는 센치 입자를 포함하는 약물 층을 결합시킴으로써 약물의 제어 방출이 가능한 유방 보형물을 제공할 수 있음을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 약물의 제어 방출이 가능한 유방 보형물을 제공하는 것이다.
본 발명의 다른 목적은 상기 약물의 제어 방출에 있어 하나 이상의 다양한 약물 대하여 독립적으로 제어 전달이 가능한 유방 보형물의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은
유방 보형물; 및
상기 유방 보형물의 일부 또는 전부 상에 결합된 약물 층을 포함하고,
상기 약물 층은 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되며;
상기 약물이 탑재된 입자는 약물과 생체적합성 고분자의 복합체로 구성된 유방 보형물을 제공한다.
바람직하기로, 상기 유방 보형물은 상기 약물 층 상부를 덮는 수용성 고분자로 구성된 수용성 고분자 층을 추가로 포함할 수 있다.
본 발명에서 사용하는 용어 "유방 보형물"은 유방 재건 수술 또는 미용 목적을 위한 가슴 성형시 유방의 형태나 크기를 보존하여 주는 의료용 물품을 의미한다.
본 발명에서, 유방 재건 수술은 약물전달입자로 표면이 코팅된 조직확장기를 일정시간 체내에 안치하여 피부 및 연조직의 확장을 통한 공간 점소를 확보한 후 상기 유방 보형물 삽입술을 시행할 수 있으며, 조직확장기 삽입 없이 보형물 삽입술을 시행할 수 있다. 상기 조직확장기는 식염수를 사용할 수 있으며, 이에 제한되는 것은 아니다.
또한, 상기 약물전달입자로 표면이 코팅된 조직확장기는 체내에 삽입된 기간 동안 약물 전달을 통해 감염, 염증 또는 이물반응 등을 완화시킬 수 있다.
본 발명에서, 유방 보형물은 통상의 실리콘 백 보형물, 실리콘 겔 보형물 또는 코헤시브 실리콘 겔 보형물 등을 사용할 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서 사용하는 용어 "약물 층"은 약물을 포함하고 있는 층을 의미한다.
본 발명은 유방 보형물의 표면에 직접 약물전달체계를 결합시켜 약물의 국소전달을 추구하고, 이를 통해 치료효과를 극대화할 수 있는 유방 보형물을 제공한다.
또한, 상기 유방 보형물의 약물전달체계는 약물의 방출 거동에 대한 외부 에너지를 이용하여 약물 방출 시간 제어가 가능하고, 이를 통해 약리적 비침습적 구축성혈술과 같은 치료효과를 극대화할 수 있다. 상기 외부 에너지는 초음파, 저주파, 열전사, 기계적 압박, 음압, 양압, 레이저, LED, 전리방사선, LLLT(저출력 레이저 치료법) 또는 전자기장일 수 있으나 이에 제한되는 것은 아니다. 초음파의 경우, 모든 파장대 영역을 에너지원으로 사용할 수 있다. LED의 경우 일반적으로 830 nm를 사용할 수 있으나, 이제 제한되는 것은 아니다.
종래 약물 전달이 가능하도록 구현된 유방 보형물의 경우 약물 성분이 그대로 고분자 물질 등에 함침되어 표면 코팅되는 방식으로 약물 층을 형성하고 있다. 이러한 경우, 초기에 약물이 급격하게 방출되어 이로 인한 부작용이 발생할 수 있으며, 장기간 약물 전달 형상을 구현하기 어려운 단점이 있다.
본 발명은 먼저, 생체적합성 고분자를 이용하여 약물이 탑재된 입자를 형성한 후, 상기 약물이 탑재된 입자를 유방 보형물 표면에 생체적합성 고분자를 이용하여 층 형태로 결합시킴으로써 약물 층을 형성하여 약물의 제어 전달이 가능하다.
즉, 본 발명은 상기 입자를 구성하는 고분자, 또는 상기 입자를 층 형태로 결합시키기 위해 사용되는 고분자의 분해 또는 와해에 따른 약물의 확산에 의해 약물 방출 거동을 제어할 수 있다. 구체적으로, 입자의 크기, 고분자의 종류, 약물 층의 두께, 약물 층의 개수, 또는 이들의 조합을 통해 약물의 확산 속도를 제어할 수 있다.
상기한 바와 같이, 약물 층의 개수를 통해 약물의 확산 속도를 제어할 수 있으며, 입자의 크기를 통해 약물의 확산 속도를 제어할 수 있는바, 다양한 약물 층의 조합 또는 다양한 크기의 입자의 조합을 통해 다양한 약물 전달의 형상을 가질 수 있다. 이에 따라, 본 발명에서 상기 약물이 탑재된 입자를 포함하는 약물 층은 단층일 수도 있고, 다층일 수도 있다. 구체적으로, 본 발명의 약물 층은 1 내지 5개일 수 있으며, 이에 제한되는 것은 아니다.
바람직한 구현예로서, 상기 약물 층은 크기가 동일한 입자와, 생체적합성 고분자의 복합체로 구성된 2개 내지 5개의 층의 조합일 수 있다.
또한, 바람직한 구현예로서, 상기 약물 층은 서로 크기가 다른 입자들의 조합과, 생체적합성 고분자의 복합체로 구성된 1개의 층일 수 있다.
또한, 바람직한 구현예로서, 상기 약물 층은 동일한 약물을 탑재한 입자와, 생체적합성 고분자의 복합체로 구성된 단층, 또는 2개 내지 5개의 층의 조합일 수 있다.
또한, 바람직한 구현예로서, 상기 약물 층은 다른 약물을 탑재한 입자와, 생체적합성 고분자의 복합체로 구성된 단층, 또는 2개 내지 5개의 층의 조합일 수 있다.
본 발명에서, 상기 약물은 항생제, 류코트레인 길항제(leukotriene antagositst), 비스테로이드계열의 항염증제(non-steroidal anti-inflammatory agents) 또는 이의 조합일 수 있다.
구체적으로, 상기 약물은 자피르루카스트(zafirlukast), 프란루카스트(pranlukast), 몬테루카스트(montelukast), 자일루톤(zileuton), 젠타마이신(gentamycin), 벤코마이신(vancomycin), 페니실린(penicillin), 린코마이신(lincomycin), 플로비프로펜(flurbiprofen), 이브로프로펜(ibuprofen), 케토프로펜(ketoprofen) 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.
또한, 상기 약물은 섬유화 억제제, 증식 억제제, 항허혈 복합체, 항응고제, 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.
상기 섬유화 억제제는 피르페니돈(pirfenidone), 마이토마이신(mitomycin), 아세틸 살리실산(acetylsalicylic acid), 제니스테인(genistein), 셀레노시스테인(selenocystine) 또는 트라닐라스트(tranilast)일 수 있으며, 이제 제한되는 것은 아니다.
상기 증식 억제제는 타목시펜(tamoxifen), 할로푸지논(holofuginone), 비타민 C, 아시아티코사이트(asiaticoside), 시클로스포린 A(cyclosporine), 호모해링토닌(homoharringtonine), 비타민 A, D-페니실라민(D-penicillamine) 또는 리포솜일 수 있으며, 이에 제한되는 것은 아니다.
상기 항허혈 복합체는 Necrox-5 또는 Necrox-7이며, 상기 항응고제는 조직 타입 플라스미노겐 활성화제(tissue-type plasminogen activator), 우로키나아제(usokinase, 혈전용해제), 헤파린 또는 수라민일 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서 사용하는 입자는 그 형태가 특별히 제한되지 않는 것으로, 필요에 따라 구, 원통, 필름 형태 등이 사용될 수 있다.
본 발명에서 사용하는 입자는 나노 입자인 것이 바람직하다. 본 발명에서 사용되는 용어 "나노"는 입자의 크기(직경 또는 장축)가 수 나노미터(㎚) 수준을 의미한다. 바람직하기로, 본 발명에서 상기 나노 입자의 크기는 1 내지 100 nm 범위일 수 있다.
또한, 본 발명에서 사용하는 입자는 마이크로 입자인 것이 바람직하다. 본 발명에서 사용되는 용어 "마이크로"는 입자의 크기(직경 또는 장축)가 수백 마이크로미터(㎛) 수준인 입자를 의미한다. 바람직하기로, 본 발명에서 상기 마이크로 입자의 크기는 100 내지 500 ㎛ 범위일 수 있다.
또한, 본 발명에서 사용되는 입자는 밀리 입자인 것이 바람직하다. 본 발명에서 사용되는 용어 “밀리”는 입자의 크기(직경 또는 장축)가 수 내지 수십 밀리미터(mm) 수준인 입자를 의미한다. 바람직하기로, 본 발명에서 상기 밀리 입자의 크기는 1 mm 내지 50 mm 범위일 수 있다.
본 발명에서 사용하는 용어 "생체적합성 고분자"는 생체 내에 임플란트 시술을 하였을 때 이식거부 반응을 일으키지 않는 생체적합성을 가진 고분자를 의미한다. 즉, 본 발명에서 입자에 사용되거나, 약물 층을 형성하는 고분자는 생체적합성을 가져 유방 보형물에 사용이 가능한 고분자라면 어느 것이나 가능하다. 다만, 생체 내에 이식 후 시간 경과에 따라 생분해 가능한 생분해성 고분자가 약물의 제어 방출 면에서 더욱 바람직하다. 이때 사용 가능한 생분해성 고분자는 바람직하기로 체내에서 최대 3개월 동안 생분해 가능한 고분자를 선택하여 사용할 수 있다. 만일 상기 생분해성 고분자가 상기 하한보다 짧은 기간 내에 생분해 가능할 경우에는 약물이 급속하게 방출되어 장기간에 걸친 약물 방출이 어려운 단점이 있고 상기 상한보다 긴 기간까지 생분해가 불가능할 경우에는 체내 염증 반응을 유도할 수 있는 단점이 있다. 구체적으로, 상기 생분해성 고분자로는 폴리(락트산), 폴리(글리콜산), 폴리(락틱-코-글리콜산), 폴리(에틸렌 글리콜), 폴리(트리메틸렌 카보네이트), 폴리(카프로락톤), 폴리(다이옥사논) 등이 있으며, 이에 제한되는 것은 아니다. 또한, 생체적합성 고분자로서 생분해성이 아닌 고분자로는 폴리(메틸 메타크릴레이트), 폴리에틸렌(PE), 폴리테트라플로오로에틸렌(PTFE), 폴리비닐클로라이드(PVC), 폴리디메틸실록산(PDMS), 폴리우레탄(PU) 등이 있으며, 이에 제한되는 것은 아니다. 상기 생체적합성 고분자는 생분해성 고분자, 생분해성이 아닌 고분자, 또는 이들의 공중합체일 수 있으며, 2종 이상의 고분자가 혼합되어 있는 블렌드일 수도 있다. 즉, 상기 생체적합성 고분자는 폴리(락트산), 폴리(글리콜산), 폴리(락틱-코-글리콜산), 폴리(에틸렌 글리콜), 폴리(트리메틸렌 카보네이트), 폴리(카프로락톤), 폴리(다이옥사논), 폴리(메틸 메타크릴레이트), 폴리에틸렌(PE), 폴리테트라플로오로에틸렌(PTFE), 폴리비닐클로라이드(PVC), 폴리디메틸실록산(PDMS), 폴리우레탄(PU) 및 이들의 공중합체로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서 사용하는 용어 "수용성 고분자 층"은 수용성 고분자를 포함하는 층을 의미한다. 본 발명에서, 상기 수용성 고분자 층은 약물 층 상부를 덮도록 유방 보형물에 결합됨으로써 유방 보형물 상에 결합되어 있는 약물 층을 고정 및 보호하는 역할을 할 수 있다. 상기 수용성 고분자 층은 체내에 이식된 후 빠르게 용해되어 사라지게 되고, 이후 약물 층이 노출되어 주변 조직으로의 약물의 제어 방출이 개시될 수 있다.
바람직하기로, 본 발명의 수용성 고분자 층은 수용성 고분자로 구성된 층일 수 있다.
본 발명에서, 상기 수용성 고분자는 폴리비닐알코올(PVA), 폴리에틸글리콜(PEG), 폴리아크릴아마이드(PAAM), 폴리비닐필롤리돈(PVP), 하이드록시프로필화(HPC), 하이드록시프로필메틸화(HPMC) 또는 카복시메틸에틸세룰로오스(CMEC)일 수 있으며, 이에 제한되는 것은 아니다.
또한, 본 발명은 하기 단계를 포함하는 유방 보형물의 제조방법을 제공한다.
1) 약물이 탑재된 입자를 준비하는 단계(단계 1);
2) 상기 입자와 생체적합성 고분자의 복합체로 구성된 필름을 제조하는 단계(단계 2); 및
3) 유방 보형물 상에 상기 필름을 결합시키는 단계(단계 3).
바람직하기로, 상기 단계 3) 이후에 상기 필름 상부를 덮도록 수용성 고분자 층을 결합시키는 단계(단계 4)를 추가로 포함할 수 있다.
상기 단계 1은, 약물이 탑재된 입자를 준비하는 단계로서, 약물의 제어 방출을 위하여 입자 형태의 약물이 탑재된 입자를 준비하는 단계이다.
본 발명에서, 상기 약물이 탑재된 입자는 상기한 바와 같이 약물의 제어 방출을 위하여 약물과 생체적합성 고분자의 복합체로 구성될 수 있다.
본 발명에서, 상기 약물이 탑재된 입자는 통상의 방법으로 제조하거나 또는 상업적으로 입수할 수 있다.
구체적으로, 상기 약물이 탑재된 입자는 상 분리(phase separation), 계면 중합(interfacial polymerization), 단일/다수 유화(single/double emulsion), 분무건조(spray drying), 유동층(fluidized bed) 등의 방법을 통해 제조할 수 있다.
상기 약물의 종류, 입자의 크기, 생체적합성 고분자의 종류는 상기 유방 보형물에 대한 설명에서 기재한 바와 동일하다.
상기 단계 2는, 상기 입자와 생체적합성 고분자의 복합체로 구성된 필름을 제조하는 단계로서, 입자와 생체적합성 고분자를 혼합하여 필름을 제조하는 단계이다.
본 발명에서, 상기 단계 2)의 필름 제조는 용매 캐스팅(solvent casting) 또는 전기방사(electrospinning)를 통해 수행될 수 있다.
구체적으로, 상기 단계 2)는 하기 단계를 포함할 수 있다.
2-1) 생체적합성 고분자 용액 또는 용융물과, 입자를 혼합하는 단계(단계 2-1);
2-2) 상기 혼합물을 몰드에 넣어 필름 형태로 제조하는 단계(단계 2-2); 및
2-3) 상기 필름을 건조시키는 단계(단계 2-3).
상기 단계 2-1은, 생체적합성 고분자 용액 또는 용융물과, 입자를 혼합하는 단계로서, 생체적합성 고분자 용액 또는 용융물과, 입자를 혼합하여 필름 형태로 제조하기 위한 혼합물을 제조하는 단계이다.
상기 생체적합성 고분자 용액은 용매 중에 생체적합성 고분자를 용해시켜 얻는다. 이때 사용할 수 있는 생체적합성 고분자의 종류는 상기 유방 보형물에 대한 설명에서 기재한 바와 동일하며, 용매는 생체적합성 고분자의 종류에 따라 선택할 수 있다. 구체적으로, 용매로는 디메틸포름아마이드(DMF), 테트라히드로푸란(THF), 메틸클로로포름(MC) 등과 같은 유기용매를 사용할 수 있으며, 이에 제한되는 것은 아니다.
상기 생체적합성 고분자 용융물은 별도의 용매 없이 생체적합성 고분자를 용융시켜 얻는다.
상기 생체적합성 고분자 용액 또는 용융물과, 입자를 혼합하여 얻은 혼합물은 필름 형태로 몰딩하기에 적합한 액상 또는 반죽(dough) 형태일 수 있다.
상기 단계 2-2는, 상기 혼합물을 몰드에 넣어 필름 형태로 제조하는 단계로서, 혼합물을 몰딩하여 필름 형태로 제조하는 단계이다.
상기 몰드는, 형성하고자 하는 필름과 동일한 형태의 마스터 몰드를 제작한 후 상기 마스터 몰드를 이용하여 제조할 수 있다. 상기 마스터 몰드는 폴리(메틸 메타크릴레이트)(PMMA) 시트, 폴리(카보네이트)(PC) 시트, 폴리(에틸렌 테레프탈산)(PET) 시트, 폴리(에틸렌 나프탈레이트)(PEN) 시트 등을 사용하여 원하는 형태로 제작할 수 있다. 상기 마스터 몰드를 이용한 몰드 제작시, 몰드에 사용되는 재료로는 폴리(디메틸실록산)(PDMS) 등이 있으며, 이에 한정되지 않고 당업계에 통상적으로 사용되는 것을 적절히 선택하여 사용할 수 있다.
또한, 상기 필름의 형태는 원형, 사각형, 삼각형 또는 다각형 등 다양한 형태일 수 있으며, 이에 제한되지 않는다.
상기 단계 2-3은, 상기 필름을 건조시키는 단계로서, 상기 필름이 경화되도록 필름을 건조시키는 단계이다.
상기 건조시 사용 가능한 방법은 특별히 제한되지 않는다. 다만, 재료의 특성을 보호하기 위해서 동결 건조가 바람직하며, 특히 높은 진공을 통해 잔류 용매를 제거하기 위해 진공 동결 건조가 바람직하다. 상기 동결 건조시 온도는 구체적으로 -40 ~ -50℃의 범위가 바람직하다. 한편, 건조 시간은 12 시간 내지 48 시간 동안 수행할 수 있다.
상기 단계 3은, 유방 보형물 상에 상기 필름을 결합시키는 단계로서, 약물의 제어 방출이 가능하도록 유방 보형물의 상부(dome) 및 하부(base)를 구분하여 상기 약물이 탑재된 입자를 포함하는 필름을 결합시키는 단계이다.
본 발명에서, 상기 단계 3)의 필름 결합은 필름으로 유방 보형물을 전체 피복(covering)하는 방법을 통해 수행될 수 있으며, 추가적으로 격자, 점형, 문형 또는 무작위 도포에 의한 비문형의 방법을 통해 수행될 수 있으나 이에 제한되는 것은 아니다.
상기 단계 4는, 상기 필름 상부를 덮도록 수용성 고분자 층을 결합시키는 단계로서, 약물이 포함된 필름을 고정 또는 보호하기 위하여 수용성 고분자 층을 결합시키는 단계이다.
상기 수용성 고분자 층에 사용 가능한 수용성 고분자의 종류는 상기 유방 보형물에 대한 설명에서 기재한 바와 동일하다.
또한, 본 발명은 하기 단계를 포함하는 유방 보형물의 제조방법을 제공한다.
1) 약물이 탑재된 입자를 준비하는 단계(단계 1);
2) 상기 생체적합성 고분자를 혼합하여 혼합물을 제조하는 단계(단계 2); 및
3) 유방 보형물 상에 상기 혼합물을 층 형태로 결합시키는 단계(단계 3).
바람직하기로, 상기 단계 3) 이후에 상기 약물이 포함된 층 상부를 덮도록 수용성 고분자 층을 결합시키는 단계(단계 4)를 추가로 포함할 수 있다.
바람직하기로, 상기 단계 3) 또는 단계 4) 이후에 상기 층이 결합된 유방 보형물을 건조시키는 단계(단계 5)를 추가로 포함할 수 있다.
상기 단계 1은, 약물이 탑재된 입자를 준비하는 단계로서, 상기 유방 보형물의 제조방법에 대한 설명에서 기재한 바와 동일하다.
상기 단계 2는, 상기 입자와 생체적합성 고분자를 혼합하여 혼합물을 제조하는 단계로서, 층 형성을 위한 입자와 생체적합성 고분자의 혼합물을 준비하는 단계이다.
상기 입자는 층 형태로 결합시키기에 적합한 분말(powder) 형태일 수 있다.
상기 생체적합성 고분자는 분말 형태로 혼합되거나, 용매 중에 용해시켜 용액 형태로 혼합되거나, 또는 별도의 용매 없이 용융시켜 용융물의 형태로 혼합될 수 있다. 즉, 상기 입자와 생체적합성 고분자의 혼합물은 층 형태로 결합시키기에 적합한 반죽(dough), 분말(powder) 또는 액상(liquid) 형태일 수 있다.
이때 사용할 수 있는 생체적합성 고분자의 종류는 상기 유방 보형물에 대한 설명에서 기재한 바와 동일하다. 또한, 용매는 생체적합성 고분자의 종류에 따라 적절히 선택할 수 있으며, 구체적으로 디메틸포름아마이드(DMF), 테트라히드로푸란(THF), 메틸클로로포름(MC) 등과 같은 유기용매를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 단계 3은, 유방 보형물 상에 상기 혼합물을 층 형태로 결합시키는 단계로서, 약물의 제어 방출이 가능하도록 유방 보형물 상에 상기 약물이 탑재된 입자를 포함하는 혼합물을 층 형태로 직접 결합시키는 단계이다.
본 발명에서, 상기 단계 3)의 층 결합 방법은 분무(spraying), 딥 코팅(dip coating), 전기방사(electrospinning), 점적(dropping) 또는 솔질(brushing)일 수 있으며, 이에 제한되지는 않는다.
본 발명에서, 상기 단계 3)을 2 내지 5회 반복 수행하여 2개 내지 5개의 약물 층을 갖는 다층 구조의 유방 보형물을 제조할 수 있다.
상기 단계 4는, 상기 약물이 포함된 층 상부를 덮도록 수용성 고분자 층을 결합시키는 단계로서, 상기 약물이 포함된 층을 고정 또는 보호하기 위하여 상기 약물이 포함된 층 상부를 덮도록 수용성 고분자 층을 결합시키는 단계이다.
상기 수용성 고분자 층에 사용 가능한 수용성 고분자의 종류는 상기 유방 보형물에 대한 설명에서 기재한 바와 동일하다.
상기 단계 5는, 상기 층이 결합된 유방 보형물을 건조시키는 단계로서, 상기 약물이 탑재된 입자를 포함하는 혼합물 또는 수용성 고분자가 층 형태로 결합된 유방 보형물을 건조시키는 단계이다.
상기 건조시 사용 가능한 방법은 특별히 제한되지 않는다. 다만, 재료의 특성을 보호하기 위해서 동결 건조가 바람직하며, 특히 높은 진공을 통해 잔류 용매를 제거하기 위해 진공 동결 건조가 바람직하다. 상기 동결 건조시 온도는 구체적으로 -40 ~ -50℃의 범위가 바람직하다. 한편, 건조 시간은 12 시간 내지 48 시간 동안 수행할 수 있다.
이하, 본 발명의 구성을 도면을 참조하여 상세히 설명한다.
본 발명은 생체적합성 고분자들이 약물을 탑재하고 있는 형태로 약물이 탑재된 입자를 구성하고, 상기 입자를 생체적합성 고분자를 이용하여 유방 보형물 상에 약물 층을 형성함으로써, 입자를 구성하는 고분자 또는 약물 층을 구성하는 고분자를 통한 약물의 확산 또는 고분자의 분해 속도에 의해 약물 방출 거동을 제어할 수 있는 유방 보형물을 제공할 수 있다.
본 발명은 유방 보형물 상에 약물이 탑재된 입자를 포함하는 약물 층을 결합시킴으로써 약물의 제어 방출이 가능한 유방 보형물을 제공할 수 있는 효과가 있다.
도 1은, 본 발명의 일 실시예로서 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트의 제조과정을 간략히 도시한 것이다.
도 2는, 본 발명의 일 실시예로서 밀리입자에 탑재된 약물의 방출 실험 결과를 나타낸 그래프이다.
도 3은, 본 발명의 일 실시예로서 (a) IM(intact implant), (b) PLGA_IM(PLGA만 코팅된 implant) 및 (c) PLGA_TR_IM(PLGA와 tranilast(약물) 혼합물이 코팅된 implant) 이식에 따른 섬유층 두께 변화를 현미경으로 관찰한 결과를 나타낸 이미지이다.
도 4는, 본 발명의 일 실시예로서 IM(intact implant), PLGA_IM(PLGA만 코팅된 implant) 및 PLGA_TR_IM(PLGA와 tranilast(약물) 혼합물이 코팅된 implant)의 각 샘플 이식에 따른 섬유층 두께 변화에 대한 각 그룹간 통계적 유의성 분석 결과를 나타낸 그래프이다.
도 5는, 본 발명의 일 구현예로서 1개의 약물 층을 갖는 유방 보형물의 구조를 간략히 도시한 것이다.
도 6은, 본 발명의 일 구현예로서 서로 다른 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되는 2개의 약물 층을 갖는 유방 보형물의 구조를 간략히 도시한 것이다.
도 7은, 본 발명의 일 구현예로서 상기 2개의 약물 층을 갖는 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 8은, 본 발명의 일 구현예로서 서로 다른 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되는 3개의 약물 층을 갖는 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 9는, 본 발명의 일 구현예로서 동일한 약물이 탑재된 서로 다른 크기의 입자와, 생체적합성 고분자의 복합체로 구성되는 1개의 약물 층을 갖는 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 10은, 본 발명의 일 구현예로서 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되는 약물 층이 유방 보형물의 일부에 결합되고, 상기 약물 층 상부를 덮는 수용성 고분자로 구성된 수용성 고분자 층이 추가로 결합된 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 11, 본 발명의 일 구현예로서 약물이 탑재된 입자를 유방 보형물 상에 간접적으로 결합시키는 방식으로서, 약물이 탑재된 입자를 포함하는 약물 층을 필름 형태의 층으로 먼저 제조한 후 유방 보형물 상에 결합시키는 방식을 간략히 도식화한 것이다.
도 12는, 본 발명의 일 구현예로서 약물이 탑재된 입자를 유방 보형물 상에 직접적으로 결합시키는 방식으로서, 약물이 탑재된 입자를 포함하는 혼합물을 제조하여 이를 유방 보형물 상에 분무 또는 딥 코팅 방법으로 직접 결합시키는 방식을 간략히 도식화한 것이다.
도 13은, 본 발명의 일 구현예로서 약물이 탑재된 입자를 유방 보형물 상에 직접적으로 결합시키는 방식으로서, 약물이 탑재된 입자를 포함하는 혼합물을 제조하여 이를 유방 보형물 상에 전기분무, 점적 또는 솔질 방법으로 직접 결합시키는 방식을 간략히 도식화한 것이다.
이하, 실시예를 통해 본 발명의 구성 및 효과를 보다 더 구체적으로 설명하고자 하나, 이들 실시예는 본 발명의 예시적인 기재일뿐 본 발명의 범위가 이들 실시예에만 한정되는 것은 아니다.
실시예: 약물이 탑재된 밀리입자 제조
본 발명에 따른 유방 보형물을 하기와 같이 제조하였으며, 특히 약물이 탑재된 밀리입자가 임플란트에 코팅되도록 하기와 같이 제조하였다.
항섬유화제인 트라닐라스트(tranilast)를 생분해성 고분자인 poly(lactic-co-glycolic acid)(PLGA, 약물 전달 체계)와 혼합(10 % w/w)한 후 DMF 유기용매에 녹이고, 평평한 실리콘 임플란트 표면 위에 상기 용액을 각 한 방울당 10 ㎕씩 떨어뜨려, 약물이 탑재된 밀리입자를 표면에 코팅시켰다. 이때, 밀리입자는 총 4개가 형성되도록 하였으며, 밀리입자의 지름은 4 mm이었다. 상기의 방법으로 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트 2개를 제조한 후 약물이 탑재된 밀리입자가 코팅되지 않은 안쪽면(반대쪽 표면)끼리 마주보도록 의료용 에폭시로 접합하여, 약물 효능 평가용 샘플인 약물이 탑재된 밀리입자가 코팅된 실리콘 임플란트(PLGA_TR_IM)를 제조하였다. 도 1에 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트(PLGA_TR_IM)의 제조단계를 나타내었다.
비교예 1: 무처리 임플란트 제조
실리콘 임플란트 2개를 의료용 에폭시로 접합하여 아무것도 처리하지 않은 임플란트(IM)을 제조하였다. 이를 약물 효능 평가를 위한 대조군으로 사용하였다.
비교예 2: PLGA를 처리한 임플란트 제조
poly(lactic-co-glycolic acid)(PLGA, 약물 전달 체계)를 DMF 유기용매에 녹이고, 평평한 실리콘 임플란트 표면 위에 상이 용액을 각 한 방울당 10 ㎕씩 떨어뜨려, PLGA를 표면에 코팅시켰다. 상기의 방법으로 PLGA가 표면에 코팅된 실리콘 임플란트 2개를 제조한 후 PLGA가 코팅되지 않은 안쪽면(반대쪽 표면)끼리 마주보도록 의료용 에폭시로 접합하여, PLGA만 코팅된 임플란트(PLGA_IM)을 제조하였다. 이를 약물 효능 평가를 위한 대조군으로 사용하였다.
실험예 1: In-vitro 약물 방출 분석
상기 실시예에서 제조한 약물이 탑재된 밀리입자가 코팅된 실리콘 임플란트(PLGA_TR_IM)에 항섬유화제인 트라닐라스트(tranilast) 방출 실험을 실시하였다. 방출 실험에 앞서 각 방울(10 ㎕) 당 탑재된 약물의 양을 측정하였으며, 하기 표 1에 나타내었다.
하기 표 1에 나타난 바와 같이, 한 방울당(10 ㎕) 탑재된 약물의 양이 이론값과 유사한 수치를 보이는 것을 확인하였다.
표 1
구분 약물 로딩양(㎍/10 ㎕(방울당))
이론값 20
실험값 18.4±0.19
상기의 결과를 바탕으로 상기 실시예에서 제조한 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트(PLGA_TR_IM)의 약물 방출실험을 수행하였다. 5 ㎖의 PBS(pH 7.4, 37℃)에 상기 실시예에서 제조한 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트(PLGA_TR_IM) 샘플(n=5)을 넣은 후 정해진 기간(1일, 3일, 5일, 7일, 10일 및 14일)에 각 2 ㎖의 용출액을 수집하였다. 수집된 용출액에서 각 기간에 방출된 약물의 양을 측정하고, sink condition을 유지하기 위하여 수집한 용출액과 동일한 양(2 ㎖)의 PBS(pH 7.4, 37℃)를 채워주었다. 약물 방출 실험 결과를 도 2에 나타내었다.
도 2에 나타난 바와 같이, 1일에 약물의 초기 버스트(initial burst)는 약 60%이었으며, 나머지 40%는 13일 동안 서서히 방출하였다. 따라서 약물이 총 14일(약 2주) 동안 지속적으로 방출되는 것을 확인하였다.
또한, 상기 제조된 밀리입자가 코팅된 유방 보형물을 생체적합성 고분자로 다시 코팅함으로서, 원하는 약물 방출 패턴을 유도할 수도 있다.
실험예 2: In-vivo 항섬유화 효과 분석
상기 실험예 1의 결과를 바탕으로 실험동물 모델을 통한 약물의 항섬유화 효과 분석을 실시하였다. 8주령의 rat(250 g~300 g)의 등 부위 피부 밑으로 상기 실시예 및 비교예 1-2에서 제조한 3가지 종류의 샘플(IM, PLGA_IM 및 PLGA_TR_IM)을 이식하였다. 이때, IM은 아무것도 처리하지 않은 샘플이고, PLGA_IM은 약물 전달체계인 생분해성 고분자(PLGA)만 코팅된 실리콘 임플란트 샘플이며 PLGA_TR_IM은 상기 실시예에서 제조한 약물이 탑재된 밀리입자가 표면에 코팅된 샘플을 의미한다. 각 샘플당 5마리의 rat의 등에 이식하고, 약물의 효용성 평가를 위한 섬유층(fibrous capsule) 두께 확인을 위하여 H&E staining을 이용하여 조직학적 평가를 실시하였다.
이식 2주차에 각 샘플이 이식된 rat를 희생시켜 샘플 주변의 조직을 생검(biopsy)한 후 H&E staining을 통하여 섬유층 형성 정도를 현미경으로 관찰하여 이미지를 얻었다. 상기 이미지를 바탕으로 근육 위부터 섬유층의 두께를 측정하였으며, 결과를 하기 표 2 및 도 3에 나타내었다.
표 2
구분 IM PLGA_IM PLGA_TR_IM
섬유층 두께(㎛) 1082.32±90.25 1092.39±63.02 874.58±67.07
상기 표 2 및 도 3에 나타난 바와 같이, IM을 이식한 경우에는 섬유층의 두께가 1082.32±90.25 ㎛이고, PLGA_IM을 이식한 경우에는 섬유층의 두께가 1092.39±63.02 ㎛로 IM를 이식한 실험군과 유사한 수치를 나타내었다. 반면, 본 발명의 PLGA_TR_IM을 이식한 경우에는 섬유층의 두께가 874.58±67.07 ㎛로, 상기 IM 및 PLGA_IM을 이식한 실험군에 비하여 섬유층의 두께가 얇게 나타났다. 따라서 본 발명의 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트(PLGA_TR_IM)가 항섬유화 효과가 있음을 확인하였으며, 이는 상기 약물이 탑재된 밀리입자로부터 약물이 방출됨으로써 항섬유화 효과를 나타내는 것을 나타낸다.
또한, 상기 각 샘플 이식을 통한 항섬유화 효과 분석의 유의성을 확인하기 위하여 Anova one-way(SPSS 프로그램)으로 통계학적 분석을 실시하였으며, 결과를 도 4에 나타내었다.
도 4에 나타난 바와 같이, IM과 PLGA_TR_IM 간 통계분석 결과 p < 0.05로 유의성이 있음을 확인하였다. 따라서 본 발명의 상기 실시예에서 제조한 약물이 탑재된 밀리입자가 표면에 코팅된 실리콘 임플란트(PLGA_TR_IM)가 통계적으로도 유의적인 약물 방출 효과가 있음을 확인하였다.
이하, 첨부된 도면을 참조하여 본 발명의 구현예에 따른 약물의 제어 방출이 가능한 유방 보형물을 상세히 설명하기로 한다.
도 5는 본 발명의 일 구현예로서 1개의 약물 층을 갖는 유방 보형물의 구조를 간략히 도시한 것이다.
도 5에서, 본 발명의 유방 보형물은 유방 보형물(1); 및 상기 유방 보형물(1) 상에 결합된 약물이 탑재된 입자(2)와, 생체적합성 고분자(3)의 복합체로 구성되는 약물 층을 포함한다.
도 6은 본 발명의 일 구현예로서 서로 다른 약물이 탑재된 나입자와, 생체적합성 고분자의 복합체로 구성되는 2개의 약물 층을 갖는 유방 보형물의 구조를 간략히 도시한 것이다.
도 6서, 본 발명의 유방 보형물은 유방 보형물(1); 및 상기 유방 보형물(1) 상에 결합된 각각 다른 약물이 탑재된 입자(2, 2')와, 생체적합성 고분자(3, 3')의 복합체로 구성되는 2개의 약물 층을 포함한다.
도 7은 본 발명의 일 구현예로서 상기 2개의 약물 층을 갖는 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 7에 도시된 바와 같이, 서로 다른 약물이 탑재된 입자가 포함된 2개의 약물 층 중에서 외부에 위치한 약물 층이 먼저 분해 또는 와해되면서 일정 시간 동안 약물을 방출한 뒤, 이후 내부에 위치한 약물 층이 약물을 방출하는 방식으로 약물을 제어 방출할 수 있다.
도 8은 본 발명의 일 구현예로서 서로 다른 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되는 3개의 약물 층을 갖는 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 8에 도시된 바와 같이, 서로 다른 약물이 탑재된 입자가 포함된 3개의 약물 층 중에서 최외부에 위치한 약물 층이 먼저 분해 또는 와해되면서 일정 시간 동안 약물을 방출한 뒤, 이후 중간에 위치한 약물 층이 일정 시간 동안 약물을 방출한 다음, 마지막으로 내부에 위치한 약물 층이 약물을 방출하는 방식으로 약물을 제어 방출할 수 있다.
도 9는 본 발명의 일 구현예로서 동일한 약물이 탑재된 서로 다른 크기의 입자와, 생체적합성 고분자의 복합체로 구성되는 1개의 약물 층을 갖는 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 9에 도시된 바와 같이, 약물 층을 구성하는 생체적합성 고분자가 분해 또는 와해됨으로써 작은 입자 크기를 갖는 입자와 큰 입자 크기를 갖는 입자가 동시에 주변 조직으로 방출되지만, 이후 상기 입자들 중에서 작은 입자 크기를 갖는 입자가 보다 쉽게 분해 또는 와해됨으로써 약물을 먼저 방출하고, 이후 큰 입자 크기를 갖는 입자가 약물을 방출하는 방식으로 약물을 제어 방출할 수 있다.
상기 약물 층의 개수에 따른 약물의 제어 방출 방식을 도시한 도 7 또는 도 8과, 입자 크기에 따른 약물의 제어 방출 방식을 도시한 도 9를 조합할 경우 더욱 다양한 약물의 제어 방출 방식을 만들 수 있다.
도 10은 본 발명의 일 구현예로서 약물이 탑재된 나노, 마이크로, 밀리 또는 센치 입자와, 생체적합성 고분자의 복합체로 구성되는 약물 층이 유방 보형물의 일부에 결합되고, 상기 약물 층 상부를 덮는 수용성 고분자로 구성된 수용성 고분자 층이 추가로 결합된 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 10은 본 발명의 일 구현예로서 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되는 약물 층이 유방 보형물의 일부에 결합되고, 상기 약물 층 상부를 덮는 수용성 고분자로 구성된 수용성 고분자 층이 추가로 결합된 유방 보형물이 이식된 후 주변 조직으로 약물을 제어 방출하는 방식을 간략히 도식화한 것이다.
도 10에 도시된 바와 같이, 유방 보형물이 이식된 후 수용성 고분자 층이 용해되어 사라지면서 약물 층이 노출되게 되고, 이후 상기 약물 층을 구성하는 생체적합성 고분자가 분해 또는 와해됨으로써 약물 층으로부터 약물이 탑재된 입자가 주변 조직으로 방출되는 방식으로 약물을 제어 방출할 수 있다.
본 발명의 유방 보형물은 약물을 입자에 탑재하는 방식과 함께 약물 그대로 약물 층에 포함시킬 경우 약물 층 자체에서도 약물 전달이 제어되고 입자에서도 약물 전달이 제어됨으로써 더욱 다양한 약물의 제어 방출 방식을 만들 수 있다. 이때 입자에 탑재되는 약물과 그 자체로 약물 층에 포함되는 약물의 종류를 달리할 경우 더욱 다양한 약물에 대해 더욱 다양한 약물의 제어 방출 방식을 만들 수 있다.
본 발명의 유방 보형물은 약물이 탑재된 입자를 유방 보형물 상에 간접 또는 직접 결합 방식으로 결합시켜 제조될 수 있다.
도 11은 본 발명의 일 구현예로서 약물이 탑재된 입자를 유방 보형물 상에 간접적으로 결합시키는 방식으로서, 약물이 탑재된 입자를 포함하는 약물 층을 필름 형태의 층으로 먼저 제조한 후 유방 보형물 상에 결합시키는 방식을 간략히 도식화한 것이다.
도 11에 도시된 바와 같이, 약물이 탑재된 입자와, 생체적합성 고분자를 이용하여 용액 캐스팅이나 전기방사 방법으로 필름을 먼저 제작한 후 상기 필름으로 유방 보형물의 표면을 피복하는 방식으로 본 발명의 약물의 제어 전달이 가능한 유방 보형물을 제조할 수 있다.
도 12는 본 발명의 일 구현예로서 약물이 탑재된 입자를 유방 보형물 상에 직접적으로 결합시키는 방식으로서, 약물이 탑재된 입자를 포함하는 혼합물을 제조하여 이를 유방 보형물 상에 분무 또는 딥 코팅 방법으로 직접 결합시키는 방식을 간략히 도식화한 것이다.
도 12에 도시된 바와 같이, 약물이 탑재된 입자와, 생체적합성 고분자를 포함하는 혼합물을 제조한 후, 이를 이용하여 분무 또는 딥 코팅 방법으로 유방 보형물의 표면에 직접적으로 층을 형성시키는 방식으로 본 발명의 약물의 제어 전달이 가능한 유방 보형물을 제조할 수 있다.
도 13은 본 발명의 일 구현예로서 약물이 탑재된 입자를 유방 보형물 상에 직접적으로 결합시키는 방식으로서, 약물이 탑재된 입자를 포함하는 혼합물을 제조하여 이를 유방 보형물 상에 전기분무, 점적 또는 솔질 방법으로 직접 결합시키는 방식을 간략히 도식화한 것이다.
도 13에 도시된 바와 같이, 약물이 탑재된 입자와, 생체적합성 고분자를 포함하는 혼합물을 제조한 후, 이를 이용하여 전기분무, 점적 또는 솔질 방법으로 유방 보형물의 표면에 직접적으로 층을 형성시키는 방식으로 본 발명의 약물의 제어 전달이 가능한 유방 보형물을 제조할 수 있다.

Claims (25)

  1. 유방 보형물; 및
    상기 유방 보형물의 일부 또는 전부 상에 결합된 약물 층을 포함하고,
    상기 약물 층은 약물이 탑재된 입자와, 생체적합성 고분자의 복합체로 구성되며;
    상기 약물이 탑재된 입자는 약물과 생체적합성 고분자의 복합체로 구성된 유방 보형물.
  2. 제1항에 있어서, 상기 약물 층 상부를 덮는 수용성 고분자로 구성된 수용성 고분자 층을 추가로 포함하는, 유방 보형물.
  3. 제1항에 있어서, 상기 약물 층은 1 내지 5개인, 유방 보형물.
  4. 제1항에 있어서, 상기 약물 층은 크기가 동일한 입자와, 생체적합성 고분자의 복합체로 구성된 2개 내지 5개의 층의 조합인, 유방 보형물.
  5. 제1항에 있어서, 상기 약물 층은 서로 크기가 다른 입자들의 조합과, 생체적합성 고분자의 복합체로 구성된 1개의 층인, 유방 보형물.
  6. 제1항에 있어서, 상기 약물은 항생제, 류코트레인 길항제, 비스테로이드계 항염증제 또는 이의 조합인, 유방 보형물.
  7. 제6항에 있어서, 상기 약물은 자피르루카스트(zafirlukast), 프란루카스트(pranlukast), 몬테루카스트(montelukast), 자일루톤(zileuton), 젠자마이신(gentamycin), 벤코바이신(vancomycin), 페니실린(penicillin), 린코마이신(lincomycin), 플로비프로펜(flurbiprofen), 이브프로펜(ibuprofen), 케토프로펜(ketoprofen), 멜로시캠(meloxicam), 피락시캠(piroxicam), 케토로락(ketorolac) 또는 이의 조합인, 유방 보형물.
  8. 제6항에 있어서, 상기 약물은 섬유화 억제제, 증식 억제제, 항허혈 복합체, 항응고제, 또는 이의 조합인 보조제를 추가적으로 포함하는, 유방 보형물.
  9. 제8항에 있어서, 상기 섬유화 억제제는 피르페니돈(pirfenidone), 마이토마이신(mitomycin), 아세틸 살리실산(acetylsalicylic acid), 제니스테인(genistein), 셀레노시스테인(selenocystine) 또는 트라닐라스트(trinilast)인, 유방 보형물.
  10. 제8항에 있어서, 상기 증식 억제제는 타목시펜(tamoxifen), 할로푸지논(holofuginone), 비타민 C, 아시아티코사이트(asiaticoside), 시클로스포린 A(cyclosporine), 호모해링토닌(homoharringtonine), 비타민 A, D-페니실라민(D-penicillamine) 또는 리포솜인, 유방 보형물.
  11. 제8항에 있어서, 상기 항허혈 복합체는 Necrox-5 또는 Necrox-7이며, 상기 항응고제는 조직 타입 플라스미노겐 활성화제(tissue-type plasminogen activator), 우로키나아제(usokinase, 혈전용해제), 헤파린 또는 수라민인 유방 보형물.
  12. 제1항에 있어서, 상기 입자의 크기는 1 내지 100 nm인, 유방 보형물.
  13. 제1항에 있어서, 상기 입자의 크기는 100 내지 500 ㎛인, 유방 보형물.
  14. 제1항에 있어서, 상기 입자의 크기는 1 mm 내지 50 mm인, 유방 보형물.
  15. 제1항에 있어서, 상기 생체적합성 고분자는 폴리(락트산), 폴리(글리콜산), 폴리(락틱-코-글리콜산), 폴리(에틸렌 글리콜), 폴리(트리메틸렌 카보네이트), 폴리(카프로락톤), 폴리(다이옥사논), 폴리(메틸 메타크릴레이트), 폴리에틸렌, 폴리테트라플로오로에틸렌, 폴리비닐클로라이드, 폴리디메틸실록산, 폴리우레탄 및 이들의 공중합체로부터 선택되는 1종 이상인, 유방 보형물.
  16. 제2항에 있어서, 상기 수용성 고분자는 폴리비닐알코올(PVA), 폴리에틸글리콜(PEG), 폴리아크릴아마이드(PAAM), 폴리비닐피롤리돈(PVP), 하이드록시프로필화(HPC), 하이드록시프로필메틸화(HPMC) 또는 카복시메틸에틸셀룰로오스(CMEC)인, 유방 보형물.
  17. 하기 단계를 포함하는 제1항의 유방 보형물의 제조방법:
    약물이 탑재된 입자를 준비하는 단계(단계 1);
    상기 입자와 생체적합성 고분자의 복합체로 구성된 필름을 제조하는 단계(단계 2); 및
    유방 보형물 상에 상기 필름을 결합시키는 단계(단계 3).
  18. 제17항에 있어서, 상기 단계 3) 이후에 상기 필름 상부를 덮도록 수용성 고분자 층을 결합시키는 단계(단계 4)를 추가로 포함하는 유방 보형물의 제조방법.
  19. 제17항에 있어서, 상기 단계 2)의 필름 제조는 용매 캐스팅(solvent casting) 또는 전기방사(electrospinning)를 통해 수행되는 유방 보형물의 제조방법.
  20. 제17항에 있어서, 상기 단계 3)의 필름 결합은 필름으로 유방 보형물을 피복(covering)하는 방법을 통해 수행되는 유방 보형물의 제조방법.
  21. 하기 단계를 포함하는 제1항의 유방 보형물의 제조방법:
    약물이 탑재된 입자를 준비하는 단계(단계 1);
    상기 입자와 생체적합성 고분자를 혼합하여 혼합물을 제조하는 단계(단계 2); 및
    유방 보형물 상에 상기 혼합물을 층 형태로 결합시키는 단계(단계 3).
  22. 제21항에 있어서, 상기 단계 3) 이후에 상기 약물이 포함된 층 상부를 덮도록 수용성 고분자 층을 결합시키는 단계(단계 4)를 추가로 포함하는 유방 보형물의 제조방법.
  23. 제21항 또는 제22항에 있어서, 상기 단계 3) 또는 단계 4) 이후에 상기 층이 결합된 유방 보형물을 건조시키는 단계(단계 5)를 추가로 포함하는 유방 보형물의 제조방법.
  24. 제21항에 있어서, 상기 단계 3)의 층 결합 방법은 분무(spraying), 딥 코팅(dip coating), 전기방사(electrospinning), 점적(dropping) 또는 솔질(brushing)인 유방 보형물의 제조방법.
  25. 제21항에 있어서, 상기 단계 3)을 2 내지 5회 반복 수행하는 유방 보형물의 제조방법.
PCT/KR2013/003486 2012-04-24 2013-04-24 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법 WO2013162270A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/396,982 US9642697B2 (en) 2012-04-24 2013-04-24 Breast prosthesis allowing controlled release of drug and production method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120042895 2012-04-24
KR10-2012-0042895 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013162270A1 true WO2013162270A1 (ko) 2013-10-31

Family

ID=49483492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003486 WO2013162270A1 (ko) 2012-04-24 2013-04-24 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법

Country Status (3)

Country Link
US (1) US9642697B2 (ko)
KR (1) KR101451011B1 (ko)
WO (1) WO2013162270A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797207A (zh) * 2016-04-01 2016-07-27 北京联合大学 一种金属基底上的药物释放载体及其制备方法
CN105903091A (zh) * 2016-04-14 2016-08-31 北京联合大学 一种具有可降解载药涂层的血管支架及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864941B1 (ko) * 2016-09-27 2018-06-05 연세대학교 산학협력단 보형물 및 이의 제조방법
KR102051983B1 (ko) * 2017-02-07 2019-12-04 연세대학교 산학협력단 섬유화 반응 억제용 보형물 및 이의 제조방법
KR102279313B1 (ko) * 2019-02-01 2021-07-22 서울대학교산학협력단 섬유화 반응 억제를 위한 약물이 코팅된 체내 삽입용 보형물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358080B1 (ko) * 2000-03-17 2002-10-25 한국화학연구원 생리활성물질을 서방화하는 다공성·생분해성 인공장기의제조방법
KR100496353B1 (ko) * 2002-04-15 2005-06-20 서울산업대학교 산학협력단 약물방출 능을 가진 생분해성 고분자를 이용한 조직공학용생분해성 고분자 지지체 및 그의 제조 방법
KR20050088288A (ko) * 2002-11-06 2005-09-05 알자 코포레이션 제어식 방출 데포 제형
KR20080073328A (ko) * 2005-11-16 2008-08-08 토카이 유니버시티 에듀케이셔널시스템 약제 방출 제어 조성물 및 약제 방출성 의료 기구
KR101067475B1 (ko) * 2009-11-19 2011-09-27 유원석 실리콘 오픈셀 폼층이 표면에 형성된 인공 유방 보형물 및 그 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376117A (en) * 1991-10-25 1994-12-27 Corvita Corporation Breast prostheses
US20060194008A1 (en) * 1999-09-22 2006-08-31 Princeton University Devices with multiple surface functionality
US9089407B2 (en) * 2001-04-23 2015-07-28 Massachusetts Institute Of Technology Antibacterial coatings that inhibit biofilm formation on implants
EA200701603A1 (ru) * 2004-01-29 2008-04-28 СМАРТ ИМПЛАНТ ПиЭлСи Протез и способ производства протеза
US8315700B2 (en) * 2006-02-08 2012-11-20 Tyrx, Inc. Preventing biofilm formation on implantable medical devices
CA2682190C (en) * 2007-03-29 2015-01-27 Tyrx Pharma, Inc. Biodegradable, polymer coverings for breast implants
JP2011528275A (ja) * 2008-07-17 2011-11-17 ミセル テクノロジーズ,インク. 薬物送達医療デバイス
US8420153B2 (en) * 2008-09-19 2013-04-16 Mentor Worldwide Llc Coating with antimicrobial agents
KR101067483B1 (ko) * 2009-06-02 2011-09-27 유원석 2중 미세 기공 구조의 실리콘 스폰지 비드 및 그 제조방법
US20110082545A1 (en) * 2009-10-01 2011-04-07 Lipose Corporation Drug eluting breast implant cover or coating
US8409279B2 (en) * 2009-10-01 2013-04-02 Lipose Corporation Breast implant implantation method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358080B1 (ko) * 2000-03-17 2002-10-25 한국화학연구원 생리활성물질을 서방화하는 다공성·생분해성 인공장기의제조방법
KR100496353B1 (ko) * 2002-04-15 2005-06-20 서울산업대학교 산학협력단 약물방출 능을 가진 생분해성 고분자를 이용한 조직공학용생분해성 고분자 지지체 및 그의 제조 방법
KR20050088288A (ko) * 2002-11-06 2005-09-05 알자 코포레이션 제어식 방출 데포 제형
KR20080073328A (ko) * 2005-11-16 2008-08-08 토카이 유니버시티 에듀케이셔널시스템 약제 방출 제어 조성물 및 약제 방출성 의료 기구
KR101067475B1 (ko) * 2009-11-19 2011-09-27 유원석 실리콘 오픈셀 폼층이 표면에 형성된 인공 유방 보형물 및 그 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797207A (zh) * 2016-04-01 2016-07-27 北京联合大学 一种金属基底上的药物释放载体及其制备方法
CN105903091A (zh) * 2016-04-14 2016-08-31 北京联合大学 一种具有可降解载药涂层的血管支架及其制备方法

Also Published As

Publication number Publication date
US9642697B2 (en) 2017-05-09
KR101451011B1 (ko) 2014-10-14
KR20130119890A (ko) 2013-11-01
US20150313707A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2013162270A1 (ko) 약물의 제어 방출이 가능한 유방 보형물 및 이의 제조방법
WO2016129967A1 (ko) 가교된 히알루론산 하이드로젤을 이용한 마이크로구조체 및 이의 제조방법
EP3313944A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
WO2021006426A1 (ko) 생체모사 조직 접착성 하이드로젤 패치 및 이의 용도
WO2021235767A1 (ko) 불가사리로부터 콜라겐 펩타이드를 얻는 방법, 불가사리 유래 콜라겐 펩타이드를 포함하는 탄성 리포좀 및 이를 포함하는 화장료 조성물
WO2021091246A1 (ko) 초기 방출 제어가 가능한 서방출성 미립구 및 이의 제조 방법
WO2018030612A1 (ko) 연부조직 질환의 예방 또는 치료용 다공성 고분자 마이크로스피어 및 이의 제조방법
WO2016043547A1 (ko) 조직 수복용 조성물 및 이의 제조방법
WO2014092239A1 (ko) 콜라겐과 피브린이 혼합된 조직 실란트 및 그 제조방법
WO2020096318A1 (ko) pH 민감성 탄소 나노입자, 이의 제조방법 및 이를 이용한 약물전달
WO2021162529A1 (ko) 페놀 유도체가 수식된 콘드로이틴 설페이트 하이드로젤 및 이의 용도
WO2022164277A1 (ko) 금속-유기 골격체 및 실리콘 조성물을 포함하는 실리콘 패치
WO2024167110A1 (ko) 마이크로니들 구조체
WO2016159620A1 (ko) 약물의 생분해성 폴리머 내 균질화 시스템: 스마트 폴리머 시스템
WO2011004936A1 (ko) 해양 멍게류 피부 각질로부터의 생활성 셀룰로오스 막의 제조 방법 및 이에 의하여 얻어지는 생활성 셀룰로오스 막
WO2022211493A1 (ko) 갈롤 유도체가 수식된 펙틴 및 그의 용도
WO2012081944A2 (en) Dental membrane and method of manufacturing the same
WO2021015588A1 (ko) 히알루론산 및 폴리에틸렌글리콜을 포함하는 생체적합성 하이드로겔
WO2021015471A1 (ko) 생체 이식용 스캐폴드
WO2022164122A1 (en) Immunosuppressive pharmaceutical composition including benzene derivative as immunosuppressant
WO2022154645A1 (ko) 히알루론산, 폴리에틸렌글리콜 및 실리콘 함유 성분을 포함하는 생체적합성 하이드로겔
WO2023106513A1 (ko) 태반-유래 줄기세포를 함유하는 피부 재생용 바이오패치형 세포치료제.
WO2019009641A1 (ko) 스핀코팅 기술과 동결건조 기술을 융합한 생체활성막 제조 방법 및 그에 의해 제조된 생체활성막
WO2020180033A1 (ko) 마이크로니들 어레이 및 이의 제조방법
WO2021167364A1 (en) Pharmaceutical composition comprising esomeprazole and sodium bicarbonate having excellent release properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14396982

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13781757

Country of ref document: EP

Kind code of ref document: A1