WO2021006426A1 - 생체모사 조직 접착성 하이드로젤 패치 및 이의 용도 - Google Patents
생체모사 조직 접착성 하이드로젤 패치 및 이의 용도 Download PDFInfo
- Publication number
- WO2021006426A1 WO2021006426A1 PCT/KR2019/013673 KR2019013673W WO2021006426A1 WO 2021006426 A1 WO2021006426 A1 WO 2021006426A1 KR 2019013673 W KR2019013673 W KR 2019013673W WO 2021006426 A1 WO2021006426 A1 WO 2021006426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patch
- hydrogel
- hydrogel patch
- group
- cells
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1858—Platelet-derived growth factor [PDGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1858—Platelet-derived growth factor [PDGF]
- A61K38/1866—Vascular endothelial growth factor [VEGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0667—Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
- C12N2533/40—Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/80—Hyaluronan
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2537/00—Supports and/or coatings for cell culture characterised by physical or chemical treatment
- C12N2537/10—Cross-linking
Definitions
- the present invention relates to a catechol group or pyrogallol group modified biocompatible polymer hydrogel patch having excellent biocompatibility and tissue adhesion, and to a drug delivery, cell transplant, and tissue regeneration using the same.
- the present inventors freeze-dried hyaluronic acid derivatives modified with catechol group or pyrogallol group to deliver drug and cell delivery efficiency and user convenience. This remarkably excellent hydrogel patch was produced.
- an aspect of the present invention provides a hydrogel patch made of a biocompatible polymer modified with a catechol group or a pyrogallol group.
- catechol group refers to a functional group derived from a catechol-based compound including 1,2-dihydroxybenzene in which two hydroxy groups (-OH) are located adjacent to each other, and various functional groups by oxidation reaction group) and covalent cross-linking.
- the catechol-based compound is a broad concept including both catechol and derivatives thereof, and it is preferable to further include a terminal functional group for reacting with the biocompatible polymer in addition to the catechol group, but is not limited thereto.
- the catechol-based compound is catechol, 4-tert-butylcatechol (TBC), urushiol, alizarin, dopamine, dopamine hydrochloride , 3,4-dihydroxyphenylalanine (DOPA), caffeic acid, norepinephrine (preferably, L-norepinephrine), epinephrine (preferably, L( -)-epinephrine), 3,4-dihydroxyphenylacetic acid (DOPAC), isoprenaline, isoproterenol (preferably, DL-isoproterenol) and 3 ,4-dihydroxybenzoic acid (3,4-dihydroxybenzoic acid) may be selected from the group consisting of, in the present invention, as a catechol-based compound, dopamine hydrochloride was used, at this time, the dopamine hydrochloride Among the terminal functional groups, -NH 2 may react with the biocompatible polymer (in particular, hyaluronic
- pyrogallol group refers to a functional group derived from a pyrogallol compound including 1,2,3-trihydroxybenzene in which three hydroxy groups (-OH) are adjacent, It forms covalent crosslinking with various functional groups by oxidation reaction.
- oxidation reaction due to the rapidly oxidizing property, natural oxidation can take place within minutes without oxidizing agent treatment in environments with high oxygen concentration, such as in the human body.
- hydrogel patch when applying a hydrogel patch to actual clinical practice, it has the advantage that it can be applied directly without additional oxidizing agent treatment. .
- the pyrogallol-based compound is a broad concept including both pyrogallol and derivatives thereof, and it is preferable to further include a terminal functional group for reacting with the biocompatible polymer in addition to the pyrogallol group, but is not limited thereto.
- the pyrogallol-based compound is pyrogallol, 5-hydroxydopamine, tannic acid, gallic acid, epigallocatechin, epicatechin gallate (epicatechin).
- 5- It may be selected from the group consisting of tert-butyl pyrogallol (5-tert-Butylpyrogallol) and 5-methyl pyrogallol (5-Methylpyrogallol), and in the present invention, as a pyrogallol-based compound, 5-hydroxydopamine ( 5-hydroxydopamine) was used, and in this case, -NH 2 among the terminal functional groups of the 5-hydroxydopamine may react with the biocompatible polymer (in particular, hyaluronic acid).
- hydrogel patch refers to a structure in the form of a thin film having a certain thickness made of a biocompatible polymer, and has the advantage of being cut into a desired shape and used.
- the biocompatible polymer may be directly modified with the catechol group or the pyrogallol group by reacting with the terminal functional group present in the catechol-based compound or the pyrogallol-based compound.
- the biocompatible polymer may be selected from the group consisting of hyaluronic acid, heparin, cellulose, dextran, alginate, chitosan, chitin, collagen, gelatin, chondroitin sulfate, pectin, keratin, and fibrin, preferably hyaluronic acid.
- -COOH may react for modification of the catechol group or pyrogallol group.
- a hydrogel patch (hereinafter, referred to as a hydrogel patch) containing a biocompatible polymer modified with the catechol group or pyrogallol group is a living body modified with the catechol group or pyrogallol group.
- a solution-based hydrogel made of a compatible polymer hereinafter, referred to as a bulk hydrogel
- it has a nanofiber-based porous structure and has excellent swelling properties, so that cells or drugs can be effectively supported in the patch even in an in vivo environment.
- the hydrogel patch has superior mechanical properties and tissue adhesion than bulk hydrogel, so that the patch structure can be maintained for a long time in the in vivo environment, and can be attached to the tissue in vivo for a long time, and cells such as stem cells and organoids can be Effective transplantation can increase cell engraftment.
- the hydrogel patch may have a thickness of 0.05 to 10.0 mm, preferably may have a thickness of 0.1 to 5.0 mm, more preferably a thickness of 1.6 mm to 5.0 mm Can have
- the hydrogel patch may be prepared by the following steps:
- the (a) may be made by pouring 40, 80 or 160 ⁇ l of HA-CA or HA-PG solution into an 8 mm cylindrical mold, and the HA-CA or HA-PG The solution may be used at a concentration of 0.1 to 5%, preferably 0.5 to 3%.
- the capacity of the HA-CA or HA-PG solution is to make a polymer hydrogel patch having a thickness of 0.8, 1.6 or 3.2 mm, respectively, and the thickness of the HA-CA or HA-PG hydrogel patch of the present invention can be easily adjusted.
- (b) is a biocompatible polymer solution modified with a catechol group or a pyrogallol group is freeze-dried at -0.5°C to -100°C for 5 to 48 hours, or preferably It can be made by a method of freeze-drying for 12 hours to 36 hours at -50 °C to -100 °C below -zero.
- a biocompatible polymer solution modified with a catechol group or a pyrogallol group is lyophilized, the volume of the solution is reduced and a thin film-shaped hydrogel patch having a certain thickness is made.
- Another aspect of the present invention provides a drug delivery system comprising the hydrogel patch and a drug supported on the hydrogel patch.
- the drug may be a protein such as a growth factor, for example, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), keratinocytes Keratinocyte growth factor (KGF), growth and differentiation factor, hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), transforming growth factor (transforming growth factor (TGF), angiopoietin, erythropoietin, bone morphogenic protein (BMP), insulin-like growth factor, fibroblast growth factor (acidic and basic fibroblast growth factor), granulocyte-macrophage colony-stimulating factor (GM-CSF), brain-derived neurotrophic factor, glial cell-derived neurotrophic factor derived neurotrophic factor), nerve growth factor, stromal cell-derived factor-1 (SDF-1), substance P (substance P, SP), hypoxia-inducing factor-1 (Hypoxia-inducible factor-1, HIF-1), Dickkopf-related protein
- VEGF vascular end
- the drugs are acemethacin, acrivastine, aldosterone, antazoline, astemizole, azatadine, azelastine, bee Clomethasone, betamethasone, bromfenac, buclizine, carprofen, cetirizine, chloropyrillin, chlorpheniramine, clema Clemastine, cromolyn, cyclizine, cyproheptadine, dexamethasone, diazolinum, diclofenac, diphenhydramine, ebastine (ebastine), emedastine, epinastine, etodolac, fenbufen, fenoprofen, fexofenadine, fludrocortisone, Flurbiprofen, flurometholone, hydroxyzine, ibuprofen, indomethacin, ketoprofen, ketorolac trometh,
- the drug delivery system may additionally include a hydrogel patch and a material necessary to attach (crosslink) the drug to the target site to be delivered, for example, an oxidizing agent.
- a material necessary to attach (crosslink) the drug for example, an oxidizing agent.
- Sodium acid can be used.
- an oxidizing agent is applied or sprayed on the hydrogel patch, the catechol group is oxidized and a crosslinking reaction occurs.
- the method of loading a drug on a hydrogel patch is to prepare a hydrogel patch by mixing a drug with a biocompatible polymer solution modified with a catechol group or a pyrogallol group, or apply a drug to the hydrogel patch. Then, an oxidizing agent may be added to crosslink the drug to the hydrogel patch.
- the present inventors mixed an aqueous solution of hyaluronic acid (HA-CA) modified with a catechol group and VEGF, and lyophilized it to prepare an HA-CA hydrogel patch, and then confirmed the drug release pattern and wound healing effect. As a result, it was confirmed that there was no difference in drug effect between the HA-CA hydrogel patch prepared in the state containing the drug and the HA-CA hydrogel patch crosslinked after the patch was prepared. In addition, it was confirmed that the wound healing effect of the HA-CA hydrogel patch was superior compared to the HA-CA bulk hydrogel.
- HA-CA hyaluronic acid
- the present inventors introduced PDGF into the wound of a diabetes-induced mouse using the HA-PG hydrogel patch, and confirmed the wound healing effect.
- the wound healing effect was more excellent when PDGF was delivered using the HA-PG hydrogel patch compared to the HA-PG bulk hydrogel.
- Another aspect of the present invention provides a method of delivering a drug or cell to a target site comprising the following steps:
- the method of delivering drugs or cells to the target site is i) attaching a hydrogel patch to the target site and then performing steps (a) and (b), or ii) a hydrogel patch Contact with a drug or cell, attach a hydrogel patch to the target site, and then contact an oxidizing agent, or iii) a hydrogel patch carrying a drug or cell after passing through the steps (a) and (b) It can be made by attaching it to the site.
- the drug of (a) may use the same drug used in the drug delivery system, and the cells of (a) are stem cells, vascular endothelial cells, bone cells, chondrocytes, myocardium It may be selected from the group consisting of cells, muscle cells, epidermal cells, fibroblasts, nerve cells, hepatocytes, intestinal cells, gastric cells, skin cells, adipocytes, blood cells, immune cells, cellular spheroids and organoids.
- cell spheroid refers to a spherical three-dimensional cell aggregate formed by gathering a plurality of single cells.
- organoid refers to a three-dimensional cell aggregate (organ analogue) formed through self-renewal and self-organization from stem cells, and stem cells include adult stem cells (ASC). ), embryonic stem cell (ESC), induced pluripotent stem cell (iPSC), adipose derived stem cell (ADSC), mesenchymal stem cell (MSC) ), placental derived stem cells (PDSC) or neural stem cells (NSC), etc. may be used.
- ASC adult stem cells
- ESC embryonic stem cell
- iPSC induced pluripotent stem cell
- ADSC adipose derived stem cell
- MSC mesenchymal stem cell
- PDSC placental derived stem cells
- NSC neural stem cells
- the step of contacting the oxidizing agent of (b) may be performed by applying or spraying an oxidizing agent solution to the hydrogel patch to which the drug or cells are applied.
- the present inventors confirmed that the transplantation of mesenchymal stem cells to the ischemic myocardial infarction model rats by the above method increases the transplantation and engraftment efficiency of mesenchymal stem cells, improves heart function, and regenerates damaged myocardial tissue.
- wound recovery and skin tissue regeneration were promoted as a result of introducing VEGF to the wound on the back of the mouse by the above method. Therefore, it is possible to effectively introduce drugs and cells to the target site by the above method.
- the drug delivery system or the method of delivering the drug or cells to the target site is Alzheimer's, stroke, Parkinson's disease, epilepsy, cerebral hemorrhage, cerebral infarction, brain tumor, meningitis, spinal cord.
- the method of forming a structure that simulates the biological tissue may be a method of repeating the steps (a) and (b) once to a plurality of times.
- the stem cells of (b) are selected from adult stem cells, embryonic stem cells, induced pluripotent stem cells, adipose tissue-derived stem cells, mesenchymal stem cells, placenta-derived stem cells, and neural stem cells. May be, but is not limited thereto.
- the (b) when a catechol group is introduced in the hydrogel patch of (a), the (b) may be made by applying stem cells to the hydrogel patch and then contacting an oxidizing agent, Specifically, the oxidizing agent solution may be dropped or sprayed onto the hydrogel patch.
- the (b) when a pyrogallol group is introduced in the hydrogel patch of (a), the (b) may be formed by applying a solution containing stem cells to the hydrogel patch.
- the biological tissue may be blood vessels, skin, or liver, but is not limited thereto.
- the catechol group or pyrogallol group modified biocompatible polymer hydrogel patch of the present invention has remarkably excellent mechanical properties and adhesion compared to solution-based bulk hydrogels, so it can support cells and drugs for a long time in the body, and The cells and drugs can be safely and efficiently delivered into the body without damage.
- the catechol group or pyrogallol group-modified biocompatible polymer hydrogel patch is in the form of a thin film with a certain thickness, so it is easy to handle compared to bulk hydrogels, the procedure for use is very simple, and can be cut into a desired shape. It is convenient.
- a mold of a desired shape can be wrapped in single or multiple layers with a catechol-modified biocompatible polymer hydrogel patch to form a multi-layered hydrogel patch, and stem cells can be adhered to it to form a structure similar to an in vivo tissue.
- the hydrogel patch when modified with a pyrogallol group, it is naturally oxidized in an in vivo environment without a separate oxidizing agent, so it can be conveniently used in actual clinical practice.
- FIG. 1 schematically illustrates the manufacturing process (A) of catechol-modified hyaluronic acid (HA-CA) hydrogel patch, HA-CA hydrogel patch (B) having different thickness, and method of using the hydrogel patch (C) Show.
- A catechol-modified hyaluronic acid
- B catechol-modified hyaluronic acid
- C hydrogel patch
- FIG. 2 is a result of confirming the cytotoxicity and 3D culture of HA-CA bulk hydrogel (A) and HA-CA hydrogel patch (B).
- Figure 3 is a result of confirming the swelling degree (A and B), moisture content (C), and decomposition rate by hyaluronic acid decomposing enzyme (D) of HA-CA hydrogel patch and HA-CA bulk hydrogel (Gel) to be.
- Figure 4 is a result of confirming the internal structure of the HA-CA bulk hydrogel (Gel) and HA-CA hydrogel patch (Patch) with a scanning electron microscope.
- FIG. 6 shows a method of measuring tissue adhesion of HA-CA hydrogel patch and HA-CA bulk hydrogel (Gel) (A), and tissue adhesion (B and C) measured by the method and tissue adhesion date This is the result of checking (D).
- FIG. 10 is a left ventricular end diastolic diameter (A), left ventricular end systolic diameter (B) after stem cells are implanted in an ischemic myocardial infarction model rat by HA-CA hydrogel patch (MSC-patch) or injection method (MSC-injection). , It is the result of checking the heart rate factor (C) and the division reduction rate (D).
- FIG. 11 is a TTC staining (A and B), Masson's Trichrome staining of damaged heart tissue after transplanting stem cells to an ischemic myocardial infarction model rat by an HA-CA hydrogel patch (MSC-patch) or an injection method (MSC-injection). These are the results confirmed by (C and D).
- FIG. 12 is an artery specific marker (smooth muscle actin, SMA) after transplanting stem cells to an ischemic myocardial infarction model rat by an HA-CA hydrogel patch (MSC-patch) or an injection method (MSC-injection), and This is the result of staining with a capillary marker (CD31).
- SMA smooth muscle actin
- FIG. 13 is a result of confirming the engraftment of cells after transplanting fluorescently labeled organoids into the liver (A and B), stomach (C) and small intestine (D) using an HA-CA hydrogel patch.
- 15 is a result of manufacturing a tube-shaped multi-layer HA-CA hydrogel patch (A and B) and a result of manufacturing a multi-layered vascular mimetic structure (C) using the same.
- VEGF vascular endothelial growth factor
- Figure 18 shows the hair follicle regeneration (A and C), collagen production (B and D), and the degree of blood vessel formation (E and F) after introducing vascular endothelial growth factor (VEGF) using an HA-CA hydrogel patch in a mouse wound model. ) Is the result of checking.
- VEGF vascular endothelial growth factor
- FIG. 19 is a result of confirming the efficacy of wound treatment after introducing a drug using an HA-CA hydrogel patch or HA-CA bulk hydrogel in a mouse wound model.
- Figure 20 shows the degree of regeneration of the wound site after introduction of the drug using a HA-CA hydrogel patch or HA-CA bulk hydrogel in a mouse wound model, hematocillin & eosin staining (A) and Masson's Trichrome staining (B). This is the result of checking.
- A shows the molecular structure of hyaluronic acid (HA-PG) modified with pyrogallol
- B is a form obtained by gelation of HA-PG hydrogel patch and HA-PG bulk hydrogel
- C is HA-PG hydrogel patches with different thicknesses are shown.
- Figure 23 is a result of confirming the degree of swelling (A and B) and the degree of degradation (C) by hyaluronic acid decomposing enzyme of HA-PG hydrogel patch (Patch (PG)) and HA-PG bulk hydrogel (Gel (PG)) to be.
- Figure 25 shows the mechanical strength (A and B) of HA-PG hydrogel patch (Patch (PG)) and HA-PG bulk hydrogel (Gel (PG)), elastic modulus (C) according to the thickness of the HA-PG patch. This is the result of checking.
- 26 is a result of confirming the tissue adhesion (A and B) and attachment date (C) of the HA-PG hydrogel patch (Patch (PG)) and the HA-PG bulk hydrogel (Gel (PG)).
- Fig. 27 is a result of confirming whether or not stem cells are engrafted after stem cells are transplanted into the small intestine (A), liver (B), kidney (C) and stomach (D) using the HA-PG hydrogel patch.
- Figure 28 is a schematic process of implanting a fluorescently labeled organoid into the small intestine using an HA-PG hydrogel patch (A), in the small intestine (B), liver (C) and stomach (D) transplanted with the organoid. This is the result of checking whether the organoid is attached.
- 29 is a result of confirming the change in size of the wound over time after applying HA-PG hydrogel patch and human adipose derived stem cell (hADSC) to a diabetic mouse wound model.
- hADSC human adipose derived stem cell
- FIG. 30 is a result of confirming the level of hair follicle regeneration (A) and collagen production (B and C) at the wound site after applying the HA-PG hydrogel patch and hADSC to a diabetic mouse wound model.
- 31 is a result of confirming the wound treatment effect over time after applying the HA-PG hydrogel patch and platelet-derived growth factor (PDGF) to a diabetic mouse wound model.
- PDGF platelet-derived growth factor
- FIG. 32 is a HA-PG hydrogel patch to produce a multilayer structure similar to an in vivo tissue.
- HA-CA catechol-functionalized hyaluronic acid
- the HA-CA hydrogel patch cut into a specific shape was placed on the surface of the target tissue, and the desired drug or cells were applied on the patch. Thereafter, sodium periodate (NaIO4; oxidizing agent) was sprayed onto the HA-CA hydrogel patch so that the cells or drugs were encapsulated in the patch.
- NaIO4 sodium periodate
- Examples 1-1 to 1-5 a 1.6 mm thick HA-CA hydrogel patch was used.
- A shows the manufacturing process of the HA-CA hydrogel patch
- B shows the HA-CA hydrogel patch with different thickness
- C schematically shows the method of using the HA-CA hydrogel patch for the target tissue. Show.
- HA-CA bulk hydrogel was produced. The final concentration of HA-CA in the finished HA-CA bulk hydrogel is 2%.
- the prepared HA-CA bulk hydrogel was used for structural analysis and cytotoxicity analysis.
- HA-CA bulk hydrogel containing drugs or cells was prepared by premixing the HA-CA solution with the drug or cells and then adding sodium periodate solution.
- Example 1-1 Characterization of HA-CA hydrogel patch
- HA-CA hydrogel patch or HA-CA bulk hydrogel prepared in the above preparation were placed on the bottom of the 6-well cell culture plate, and dispensing human adipose derived stem cells (hADSC) During incubation. Cell viability was confirmed according to the manufacturer's protocol using Live/Dead assay (Invitrogen; USA) on days 0, 3 and 7 of culture.
- hADSC human adipose derived stem cells
- HA-CA hydrogel patch or HA-CA bulk hydrogel was immersed in PBS at 37° C. similar to in vivo conditions for 7 days, and the degree of swelling was measured after 12 hours, 1 day, 3 days and 7 days.
- the swelling degree of the HA-CA hydrogel patch was about 4 times higher than that of the HA-CA bulk hydrogel (Fig. 3A), and the actual moisture content was higher in the HA-CA bulk hydrogel than the HA-CA hydrogel patch. (B and C in Fig. 3).
- HA-CA hydrogel patch or HA-CA bulk hydrogel was immersed in PBS at 37° C., and hyaluronic acid degrading enzyme was treated until decomposition.
- the degree of decomposition over time was measured.
- HA-CA bulk hydrogel was rapidly degraded within 2 hours after treatment with hyaluronic acid degrading enzyme and completely degraded after 6 hours, but HA-CA hydrogel patch remained after 24 hours treatment with hyaluronic acid degrading enzyme. It was found that the decomposition rate by was slow (Fig. 3D).
- the internal structure of the HA-CA hydrogel patch and the HA-CA bulk hydrogel was confirmed using a scanning electron microscope. As a result, it was confirmed that the HA-CA bulk hydrogel had a porous structure of micrometer ( ⁇ m) size, while the HA-CA hydrogel patch had a nanofiber-based porous structure (FIG. 4). This result means that the HA-CA hydrogel patch has a more dense internal structure than the HA-CA bulk hydrogel, and the surface area modified with catechol is increased by the nanofiber structure, so that the tissue adhesion can be excellent.
- the modulus of elasticity of the HA-CA hydrogel patch and the HA-CA bulk hydrogel was measured at a frequency between 0.1 and 10 Hz using a rheometer.
- both the HA-CA hydrogel patch and the HA-CA bulk hydrogel showed that the G'value was higher than the G'value, indicating that the internal structure was formed of a stable polymer network (FIG. 5A).
- the average modulus of elasticity of the HA-CA bulk hydrogel was about 260 Pa, while the elastic modulus of the HA-CA hydrogel patch was about 11 kPa, indicating that the elastic modulus increased by about 50 times or more (Fig. B).
- the elastic modulus of the HA-CA hydrogel patch prepared in Preparation Example 1 it was found that the elastic modulus significantly increased from 0.8 kPa to 5 and 14 kPa as the thickness of the patch increased (FIG. 5 In C), the increase in the elastic modulus means that the mechanical strength becomes excellent.
- the above experimental results mean that the mechanical strength of the HA-CA hydrogel patch is remarkably excellent compared to the HA-CA bulk hydrogel, and the mechanical strength of the HA-CA hydrogel patch can be easily controlled by adjusting the thickness.
- the HA-CA bulk hydrogel had an adhesive strength of about 1.5 N, whereas the HA-CA hydrogel patch showed an adhesive strength of about 5.5 N, indicating that the tissue adhesion was improved by more than 3.5 times (B in FIG. 6). And C).
- the area of the adhesion-tensile length graph (B in FIG. 6) was measured to calculate the amount of work required to separate the HA-CA bulk hydrogel or hydrogel patch attached to the pig heart tissue (attachment date).
- attachment date the tissue attachment date of the HA-CA hydrogel patch increased by 8 times or more than that of the HA-CA bulk hydrogel (FIG. 6D).
- the HA-CA hydrogel patch or HA-CA bulk hydrogel was put on the surface of stainless steel, and the adhesion was measured in the same manner as in Experimental Example 1-5.
- the HA-CA bulk hydrogel had an adhesive strength of about 12 N
- the HA-CA hydrogel patch showed an adhesive strength of about 30 N
- the adhesive strength was improved by 2.5 times or more (Fig. 7A and B).
- the attachment date was calculated to separate the HA-CA bulk hydrogel or hydrogel patch attached to the stainless steel surface. As a result, it was found that the attachment date of the HA-CA hydrogel patch increased by 5.5 times or more than that of the HA-CA bulk hydrogel (FIG. 7C).
- Example 1-2 Confirmation of long-term adhesion ability of HA-CA hydrogel patch
- the HA-CA hydrogel patch of the present invention can be attached to various organs. After anesthetizing the mouse, the HA-CA hydrogel patch was put on the kidney, liver, and intestine by opening the kidney, and human adipose derived stem cells (hADSC) were dropped, and then an oxidizing agent was sprayed and sutured. After 24 hours, the mice were sacrificed to separate the kidney, liver, and intestine, and after visually checking whether the HA-CA hydrogel patch was attached, a tissue section was made and stained with hematocillin & eosin.
- hADSC human adipose derived stem cells
- the HA-CA hydrogel patch adhered well to the surface of the organ with high moisture even after 24 hours. It was also confirmed through the tissue staining results that the HA-CA hydrogel patch was attached to the kidney, liver and intestine (FIG. 8).
- HC-CA hydrogel patch can be attached to various organs and tissues in vivo, so that non-invasive cell transplantation into various organs and tissues is possible.
- Example 1-3 HA-CA hydrogel patch treatment efficacy of myocardial infarction
- stem cell transplantation is mainly performed by direct injection into the damaged tissue, but has disadvantages of low stem cell delivery and engraftment efficiency, and risk of bleeding and tissue damage due to injection.
- the stem cell transplantation method using an adhesive patch has the advantage of being able to effectively transplant stem cells into a large tissue area non-invasively. Therefore, the results were confirmed after stem cells were transplanted using the HA-CA hydrogel patch of the present invention.
- Ischemic myocardial infarction Ischemic myocardial infarction
- open the chest place the HA-CA hydrogel patch on the heart, and then add 2x10 5 rat bone marrow-derived mesenchymal stem cells I dropped the dog. Thereafter, an oxidizing agent was sprayed on the HA-CA hydrogel patch to encapsulate MSC in the HA-CA hydrogel patch.
- the surgical site was sutured, and the heart tissue in which myocardial infarction occurred on the third day of MSC transplantation was extracted, and hematocillin & eosin staining was performed according to a method known in the art.
- HA-CA hydrogel patch (MSC-patch) containing MSC is firmly attached to the surface of the heart tissue (Fig. 9A), and this result shows that the HA-CA hydrogel patch is beating. It means that it can stably adhere to the heart surface and maintain adhesion.
- MSCs labeled with a fluorescent substance (Paul Karl Horan 26, PKH26) were directly injected into rats or implanted using a HA-CA hydrogel patch in the same manner as above.
- a fluorescent substance Paul Karl Horan 26, PKH26
- MSCs implanted on the outer wall of the heart using the HA-CA hydrogel patch migrated into the damaged heart tissue.
- MSC engraftment and migration efficiency was significantly higher (FIG. 9B).
- TTC staining (2,3,5-Triphenyltetrazolium chloride) stains only normal myocardial tissue in red, and the area where the tissue is necrotic due to myocardial infarction is not stained and looks white.
- the HA-CA hydrogel patch itself promotes the migration and engraftment of cells in vivo, which is helpful for tissue regeneration, and provides a space for cells to survive, thereby preventing MSC damage to myocardial tissue caused by ischemic disease. It was confirmed that it can be reduced to a significantly better level than the direct injection method. In addition, it was found that the use of the HA-CA hydrogel patch can be applied very effectively to the actual treatment of heart disease because the MSC transplantation and engraftment efficiency are remarkably excellent.
- MSCs implanted with HA-CA hydrogel patch regenerate blood vessels.
- cardiac tissue section slide of (3) was stained with arteriole-specific markers (smooth muscle actin, SMA) and capillary markers (CD31).
- Example 1-4 Cell transplantation and tissue regeneration efficacy of HA-CA hydrogel patch
- mice were anesthetized and then opened, and cell organoids labeled with DiI fluorescence were placed on the surfaces of the liver, stomach, and small intestine, and the HA-CA hydrogel patch was attached in the form of a tape to fix the organoids on the surface of each organ.
- the stomach and the small intestine were separated 3 days after organoid transplantation, and the liver was separated after 7 days to determine whether or not the organoids were attached. As a result, it was found that organoids were successfully attached to the liver and integrated with the existing liver tissue (Fig. 13A and B).
- the HA-CA hydrogel patch of the present invention has a multilayer structure similar to that of the in vivo tissue.
- Red and green HA-CA hydrogel patches were produced using color ink, and a multilayer patch structure was formed by placing another HA-CA hydrogel patch on one HA-CA hydrogel patch. At this time, a separate adhesive was not used and the adhesiveness of the HA-CA hydrogel patch itself was used. As a result of the experiment, it was possible to fabricate a patch structure consisting of three and five layers (Fig. 14A).
- a multilayered three-dimensional cell structure was repeated by placing hADSC labeled with a fluorescent material on one HA-CA hydrogel patch, placing another HA-CA hydrogel patch on it, and then placing hADSC labeled with a fluorescent material again. Formed. At this time, hADSC labeled with a different fluorescent substance for each layer was used. As a result, it was confirmed that a tissue structure composed of a multilayer sheet in which different cells exist for each layer can be implemented using the HA-CA hydrogel patch (FIG. 14B).
- Fig. 15A After winding the cylindrical mold with a red and green HA-CA hydrogel patch, the mold was removed to make a tube-shaped multi-layer HA-CA hydrogel patch (Fig. 15A), and it has elasticity and pressure is applied to it. It could be confirmed that even if it was deformed, it was restored back to its original shape (FIG. 15B).
- human vascular endothelial cells (HUVEC) were attached to one layer and hADSC was attached to the other layer, resulting in a structure similar to that of human blood vessels.
- Example 1-5 Drug delivery using HA-CA hydrogel patch
- a HA-CA hydrogel patch was produced according to the method of Preparation Example 1, vascular endothelial growth factor (hereinafter, referred to as VEGF) was sprayed on the patch, and an oxidizing agent was applied to encapsulate VEGF in the patch ( Patch (CA)-VEGF experimental group).
- Patch (CA)-VEGF experimental group As a comparative group, HA-CA aqueous solution and VEGF were mixed and lyophilized to prepare an HA-CA hydrogel patch, and then an oxidizing agent was applied (Patch (CA)-VEGF/FD experimental group).
- the comparison group is a drug delivery form that is considered to be the most convenient when using the HA-CA hydrogel patch in actual clinical practice.
- the two types of HA-CA hydrogel patches containing VEGF were immersed in PBS at 37°C, and the VEGF release pattern according to the presence or absence of hyaluronidase treatment was analyzed by ELISA.
- the use of the HA-CA hydrogel patch of the present invention can effectively deliver the drug to a wound area with increased hyaluronic acid decomposing enzyme activity, such as a wound, and enhance the therapeutic effect of the wound area.
- the HA-CA hydrogel patch was put on the patch, FITC-BSA protein was sprayed on the patch, and an oxidizing agent was applied to crosslink the patch. After a certain period of time, the tissue of the wound site was separated and stained. As a result, it was confirmed that the HA-CA hydrogel patch loaded with the FITC-BSA protein was firmly attached to the muscle layer of the wound site (FIG. 17A).
- a wound with a diameter of 8 mm was made using a punch on the back of the mouse and divided into 4 groups to check the skin regeneration and wound treatment effects of the HA-CA hydrogel patch: 1. Control group (No treatment); 2. Apply only HA-CA hydrogel patch (Patch(CA) only); 3. VEGF encapsulation in HA-CA hydrogel patch (Patch(CA)-VEGF); And 4. After mixing the VEGF and HA-CA solution, lyophilization was performed to prepare a patch, and then crosslinked (Freeze-dried patch; Patch(CA)-VEGF/FD).
- the wound site was stained with hematocillin & eosin and confirmed by image-based quantitative analysis.
- a wound with a diameter of 8 mm was made with a punch on the back of the mouse, and the wound treatment efficacy of the HA-CA hydrogel patch and the HA-CA bulk hydrogel was compared.
- VEGF was premixed in the HA-CA solution, lyophilized, and dissolved in PBS, and then crosslinked in the form of HA-CA bulk hydrogel (Freeze-dried bulk hydrogel; Bulk(CA)-VEGF/FD).
- the HA-CA hydrogel patch was prepared by mixing the HA-CA solution and VEGF in advance, lyophilizing it in the form of a patch, and then crosslinking the patch with an oxidizing agent (Freeze-dried patch; Patch(CA)-VEGF/FD).
- mice were sacrificed on the 16th day of the experiment, and the wound site was stained with hematocillin & eosin.
- the wound site was stained with hematocillin & eosin.
- more cells were found in the experimental group (Patch(CA)-VEGF/FD) that delivered VEGF with the HA-CA hydrogel patch than the experimental group (Bulk(CA)-VEGF/FD) that delivered VEGF with the HA-CA bulk hydrogel.
- FIG. 20A shows that a remarkably large number of wound areas were regenerated.
- HA-PG Pyrogallol-functionalized hyaluronic acid
- PBS phosphate-buffered saline
- oxidant solution 3:1 (v/v)
- the final concentration of HA-PG in the finished HA-PG bulk hydrogel was 1%, and the prepared HA-PG bulk hydrogel was used for structural analysis.
- HA-PG bulk hydrogel not treated with sodium periodate solution was used to allow natural oxidation in the body.
- A shows the molecular structure of HA-PG
- B is a gelation of HA-PG hydrogel patch and HA-PG bulk hydrogel
- C is HA-PG hydrogel patch having different thickness. Show.
- Example 2-1 Characterization of HA-PG hydrogel patch
- HA-PG hydrogel patch or HA-PG bulk hydrogel prepared in the above preparation on the bottom of the 6-well cell culture plate, and dispense human adipose derived stem cells (hADSC) for 7 days. Cultured. Cell viability was confirmed according to the manufacturer's protocol using Live/Dead assay (Invitrogen; USA) on days 0, 3 and 7 of culture.
- hADSC human adipose derived stem cells
- HA-PG hydrogel patch or HA-PG bulk hydrogel was immersed in PBS at 37° C. similar to in vivo conditions for 7 days, and the degree of swelling was measured after 9 hours, 1 day, 3 days and 7 days.
- the swelling degree of the HA-PG hydrogel patch was about two times lower than that of the HA-PG bulk hydrogel (Fig. 23A and B), and this result showed that the HA-PG hydrogel patch was It shows that it has a denser internal structure than bulk hydrogels.
- HA-PG hydrogel patch or HA-PG bulk hydrogel was immersed in PBS at 37° C., and hyaluronic acid degrading enzyme was treated until decomposition.
- the degree of decomposition over time was measured.
- HA-PG bulk hydrogel is rapidly degraded after treatment with hyaluronic acid degrading enzyme and is completely degraded before 24 hours, but HA-PG hydrogel patch remains after 600 hours of hyaluronic acid decomposing enzyme treatment and is degraded by enzymes. It was found that the speed was slow (FIG. 23C).
- the internal structure of the HA-PG hydrogel patch (Patch(PG)) and the HA-PG bulk hydrogel (Gel(PG)) was confirmed using a scanning electron microscope. As a result, it was confirmed that the HA-PG bulk hydrogel had a micron ( ⁇ m)-sized porous structure, while the HA-PG hydrogel patch had a more dense nanofiber-based porous structure (FIG. 24).
- HA-PG hydrogel patch can form a more dense internal structure than the HA-PG bulk hydrogel, and the surface area of the polymer modified with pyrogallol is greatly increased, resulting in excellent mechanical properties and adhesion. Means.
- the modulus of elasticity of HA-PG hydrogel patch (Patch(PG)) and HA-PG bulk hydrogel (Gel(PG)) was measured using a rheometer at a frequency of 0.1 to 10 Hz.
- both the HA-PG hydrogel patch and the HA-PG bulk hydrogel had a G'value higher than the G'value, indicating that the internal structure was composed of a stable polymer network (FIG. 25A).
- the average modulus of elasticity of the HA-PG bulk hydrogel was about 1.5 kPa, while the elastic modulus of the HA-PG hydrogel patch was about 18 kPa, indicating that the elastic modulus increased by about 10 times or more (Fig. 25).
- the HA-PG bulk hydrogel had an adhesive strength of about 1.6 N
- the HA-PG hydrogel patch showed an adhesive strength of about 4 N, indicating that the tissue adhesion was improved by 2.5 times or more (FIG. 26A And B).
- attachment date the amount of work required to separate the HA-PG bulk hydrogel or HA-PG hydrogel patch attached to the skin (attachment date) was calculated by measuring the area of the adhesion-tensile length graph (A in FIG. 26). As a result, it was found that the tissue attachment date of the HA-PG hydrogel patch was increased by 2.5 times or more than that of the HA-PG bulk hydrogel (FIG. 26C).
- Example 2-2 Cell transplantation efficacy of HA-PG hydrogel patch
- the HA-PG hydrogel patch was placed on the small intestine, liver, kidney, and stomach by anesthetizing the mouse, and then the DiI fluorescence-labeled hADSC was dropped and then sealed. After 24 hours, the mice were sacrificed to separate the kidney, liver, and intestine, and after visually checking whether the HA-PG hydrogel patch was attached, the engraftment of hADSC was observed. As a result, it was found that the HA-PG hydrogel patch was well attached to the surface of the organs with high moisture even after 24 hours, and the HA-PG hydrogel patch was attached to the small intestine, liver, kidney and stomach through the tissue staining results. , it was confirmed that hADSC was also attached (FIG. 27 ).
- the HA-PG hydrogel patch can be attached to various organs and tissues in an in vivo environment with a lot of moisture, so that non-invasive cell transplantation into various organs and tissues is possible.
- organoids have excellent therapeutic efficacy such as tissue regeneration, no effective transplant methods have been developed because of their large size. Therefore, it was confirmed whether the HA-PG hydrogel patch of the present invention can be used for organoid transplantation.
- Organoids labeled with DiI fluorescence were placed on the small intestine, liver, or on the stomach, and the HA-PG hydrogel patch was covered, and then the organoids were fixed on the surface of each tissue by a natural oxidation method (FIG. 28A). After 24 hours, the tissues at the site where the organoids were transplanted were separated and stained. As a result, it was found that the transplanted organoids were successfully attached to each tissue and integrated with the existing tissues (Fig. 28B is the small intestine, C is the liver. And D is the stomach tissue).
- the HA-PG hydrogel patch is crosslinked by natural oxidation by dissolved oxygen in the body, so the size of the target site is adjusted by a one-step method of attaching the HA-PG hydrogel patch and organoids to the target site. It can be seen that large organoids are firmly fixed and can be implanted.
- Diabetes is a metabolic disease caused by decreased insulin secretion and insulin resistance and causes various complications such as diabetic retinopathy and renal failure. In particular, it causes diabetic wounds such as diabetic foot ulcers. Diabetic wounds are more difficult to treat and regenerate than ordinary wounds due to blood circulation disorders and high blood sugar levels. it's difficult. Therefore, it was confirmed whether the HA-PG hydrogel patch of the present invention can be used for diabetic wound treatment.
- mice were fasted for 24 hours, and streptozotocin, a drug that selectively damages pancreatic ⁇ -cells, was administered intraperitoneally at a concentration of 100 mg/kg to induce diabetes. After 2 weeks, the change in blood glucose was measured, and it was determined that diabetes was induced if the blood glucose was 300 mg/dL or more.
- a wound with a diameter of 8 mm was made using a punch on the back of a mouse in which diabetes was induced, and hADSC was dispensed into the following 6 groups, and then skin regeneration and wound treatment effects were confirmed: 1. Control group (No treatment); 2. HA-PG bulk hydrogel only (Gel(PG) only); 3. Apply HA-PG hydrogel patch only (Patch (PG) only); 4. hADSC only applied directly (hADSC only); 5. Apply after mixing HA-PG bulk hydrogel and hADSC (Gel(PG)-hADSC); And 6. HADSC dispensing (Patch(PG)-hADSC) with the HA-PG hydrogel patch on the wound site.
- the HA-PG hydrogel patch is placed on the wound site, it is crosslinked in a natural oxidation method by the environment including oxygen in the body such as body fluids without treatment with an oxidizing agent, so that cell transplantation is possible. Because it can be prevented, the HA-PG patch is considered to be a suitable formulation for clinical application.
- the HA-PG hydrogel patch of the present invention can be usefully used in the treatment of diabetic wounds, which are difficult to treat and recover compared to general wounds, and tissue damage is gradually severe.
- Example 2-3 Drug delivery using HA-PG hydrogel patch
- a diabetic mouse model was produced in the same manner as in Example 2-3.
- a wound with a diameter of 8 mm is made using a punch on the back of a mouse with diabetes, divided into 6 groups, and platelet-derived growth factor (PDGF) is applied, and the effect of skin regeneration and wound treatment is confirmed.
- PDGF platelet-derived growth factor
- Example 2-4 Formation of multi-layered structure using HA-PG hydrogel patch
- in vivo tissues such as skin and blood vessels have a multilayered structure
- a multilayered structure similar to that of in vivo tissues was fabricated with the HA-PG hydrogel patch of the present invention.
- Red and green HA-PG hydrogel patches were produced using color ink, and a multilayer patch structure was formed by placing another HA-PG hydrogel patch on one HA-PG hydrogel patch. At this time, a separate adhesive was not used and the adhesiveness of the HA-PG hydrogel patch itself was used. As a result of the experiment, it was possible to fabricate a patch structure consisting of three and five layers (FIG. 32).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Dermatology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Organic Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Rheumatology (AREA)
- Hematology (AREA)
- Virology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
Abstract
본 발명은 생체적합성 및 조직 접착력이 우수한 카테콜기 또는 파이로갈롤기 수식 생체적합성 고분자 하이드로젤 패치 및 이를 이용한 약물 전달, 세포 이식, 조직 재생 용도에 관한 것이다. 상기 카테콜기 또는 파이로갈롤기 수식 생체적합성 고분자 하이드로젤 패치는 용액 기반의 벌크 하이드로젤과 비교하여 현저히 우수한 기계적 물성 및 조직 접착력을 가지므로 체내에서 장기간 세포 및 약물을 담지하여 목적부위로 안전하고 효율적으로 전달할 수 있다.
Description
본 발명은 생체적합성 및 조직 접착력이 우수한 카테콜기 또는 파이로갈롤기 수식 생체적합성 고분자 하이드로젤 패치 및 이를 이용한 약물 전달, 세포 이식 및 조직 재생 용도에 관한 것이다.
질병이나 사고에 의하여 손상된 조직 및 장기를 효과적으로 회복시키기 위해서는 생체 내외에 약물 및 세포를 효율적으로 전달할 수 있어야 한다. 이에 따라 약물 및 세포를 전달하기 위한 많은 연구가 진행되어 왔지만 실제 임상에 사용되어 만족할만한 수준의 치료 효과를 보이는 시스템은 아직까지 개발이 부족하다.
세포 전달의 경우 기존에는 주로 직접 주사 방법이 사용되었으나, 이 방법은 주사할 때의 압력에 의해 세포가 파괴되고, 조직 손상 및 출혈의 위험성이 존재한다. 이 한계를 극복하기 위해 고분자 패치 기반 세포 전달 기술들이 개발되었으나 패치를 조직 표면 위에 부착시키기 위해서 여전히 봉합사(suture) 혹은 접착제(glue) 등을 추가적으로 사용해야 한다. 또한, 봉합에 의해 조직의 직접적 손상이 일어날 수 있고, 접착제 이용 시에는 세포를 탑재한 패치와 조직 사이에 완전한 밀착이 이루어지지 못하여 손상 조직으로 세포 전달 효율이 크게 떨어지는 단점이 존재한다. 추가적인 처리로 인해 시술 시간 또한 길어질 수 있어 이로 인해 치료 효과가 절감되는 경우가 빈번히 발생한다.
약물 전달의 경우 경구 투여와 같은 기존의 단순 투여 방식은 약물의 빠른 분해 및 확산으로 인해 약물 체류 시간이 짧은 문제점이 존재하며, 효과적인 치료를 위해서는 많은 양의 약물을 주입하거나 약물 주입 빈도가 높아질 수밖에 없었다.
기존의 약물 및 세포 전달 방법의 문제를 해결하기 위해 하이드로젤을 이용한 전달 방법에 관한 연구가 진행되었으나 대부분이 하이드로젤 용액에 약물 또는 세포를 탑재하고 가교시켜 젤 형성을 유도하는 방식에 관한 연구였다. 그러나 상기 방식은 하이드로젤을 생체에 주입하는 형태로 적용되기 때문에 하이드로젤을 다루는 사용자의 숙련도에 따라 결과가 달라질 가능성이 많고 사용자의 편의성이 크게 떨어지는 문제가 있다. 또한, 주사를 통하여 생체 내로 주입되기 때문에 조직 손상 및 출혈의 위험성이 여전히 존재하고, 기존의 하이드로젤은 물성 및 접착력이 생체 내에서 장기간 유지되기에는 부족한 경우가 많았다.
조직 손상 가능성, 사용자 불편, 세포 및 약물 전달의 비효율성과 같은 종래 기술의 한계를 극복하기 위하여 본 발명자들은 카테콜기 또는 파이로갈롤기가 수식된 히알루론산 유도체를 동결건조시켜 약물 및 세포 전달 효율과 사용자 편의성이 현저히 우수한 하이드로젤 패치를 제작하였다.
본 발명의 목적은 생체적합성, 접착력, 기계적 물성 및 사용편의성이 우수한 하이드로젤 패치 및 이를 이용한 약물 전달, 세포 이식 및 조직 재생 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 양상은 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자로 이루어진 하이드로젤 패치를 제공한다.
본 명세서에 사용된 용어, “카테콜기”는 히드록시기(-OH) 두 개가 인접 위치한 1,2-디하이드록시벤젠(dihydroxybenzene)을 포함하는 카테콜계 화합물 유래 작용기로서, 산화반응에 의해서 여러가지 작용기(functional group)와 공유 가교(cross-linking)를 형성한다. 상기 카테콜계 화합물은 카테콜 및 이의 유도체를 모두 포함하는 광범위한 개념으로, 상기 카테콜기 외에 상기 생체적합성 고분자와 반응하기 위한 말단 작용기를 추가로 포함하는 것이 바람직하나, 이에 한정되지 않는다. 상기 카테콜계 화합물은 카테콜(catechol), 4-tert-부틸카테콜(4-tert-butylcatechol; TBC), 우루시올(urushiol), 알리자린(alizarin), 도파민(dopamine), 도파민 하이드로클로라이드(dopamine hydrochloride), 3,4-디하이드록시페닐알라닌(3,4-dihydroxyphenylalanine; DOPA), 카페익산(caffeic acid), 노르에피네프린(norepinephrine)(바람직하게, L-norepinephrine), 에피네프린(epinephrine)(바람직하게, L(-)-epinephrine), 3,4-디하이드록시페닐아세트산(3,4-dihydroxyphenylacetic acid; DOPAC), 이소프레날린(isoprenaline), 이소프로테레놀(isoproterenol)(바람직하게, DL-isoproterenol) 및 3,4-디하이드록시벤조산(3,4-dihydroxybenzoic acid)로 이루어진 군에서 선택될 수 있고, 본 발명에서는 카테콜계 화합물로서, 도파민 하이드로클로라이드(dopamine hydrochloride)를 사용하였고, 이때, 상기 도파민 하이드로클로라이드의 말단 작용기 중에 -NH2가 상기 생체적합성 고분자(특히, 히알루론산)와 반응할 수 있다.
또한, 본 명세서에 사용된 용어, “파이로갈롤기”는 히드록시기(-OH) 세 개가 인접 위치한 1,2,3-트리하이드록시벤젠(trihydroxybenzene)을 포함하는 파이로갈롤계 화합물 유래 작용기로서, 산화반응에 의해서 여러 가지 작용기(functional group)와 공유 가교(crosslinking)를 형성한다. 특히 빠르게 산화되는 특성으로 인해 인체 내와 같이 산소농도가 높은 환경에서는 산화제 처리 없이 자연산화가 수 분내로 이루어질 수 있으므로 하이드로젤 패치를 실제 임상에 적용할 때 별도의 산화제 처리 없이 바로 적용이 가능한 장점이 있다. 상기 파이로갈롤계 화합물은 파이로갈롤 및 이의 유도체를 모두 포함하는 광범위한 개념으로, 상기 파이로갈롤기 외에 상기 생체적합성 고분자와 반응하기 위한 말단 작용기를 추가로 포함하는 것이 바람직하나, 이에 한정되지 않는다. 상기 파이로갈롤계 화합물은 파이로갈롤(pyrogallol), 5-하이드록시도파민(5-hydroxydopamine), 타닌산(tannic acid), 갈산 (gallic acid), 에피갈로카테킨(epigallocatechin), 에피카테킨 갈레이트(epicatechin gallate), 에피갈로카테킨 갈레이트(epigallocatechin gallate), 2,3,4-트리하이드록시벤즈알데하이드(2,3,4-trihydroxybenzaldehyde), 2,3,4-트리하이드록시벤조산(2,3,4-Trihydroxybenzoic acid), 3,4,5-트리하이드록시벤즈알데하이드(3,4,5-Trihydroxybenzaldehyde), 3,4,5-트리하이드록시벤즈아마이드(3,4,5-Trihydroxybenzamide), 5-tert-부틸파이로갈롤(5-tert-Butylpyrogallol) 및 5-메틸파이로갈롤(5-Methylpyrogallol)로 이루어진 군에서 선택될 수 있고, 본 발명에서는 파이로갈롤계 화합물로서, 5-하이드록시도파민(5-hydroxydopamine)을 사용하였고, 이때, 상기 5-하이드록시도파민의 말단 작용기 중에 -NH2가 상기 생체적합성 고분자(특히, 히알루론산)와 반응할 수 있다.
본 명세서에 사용된 용어, "하이드로젤 패치(hydrogel patch)"는 생체적합성 고분자로 이루어진 일정 두께를 갖는 얇은 막 형태의 구조물을 말하며, 원하는 형태로 잘라서 사용할 수 있는 장점이 있다.
본 발명의 일 구체예에 있어서, 상기 생체적합성 고분자는 상기 카테콜계 화합물 또는 상기 파이로갈롤계 화합물에 존재하는 말단 작용기와 반응하여 직접적으로 상기 카테콜기 또는 파이로갈롤기로 수식될 수 있다. 상기 생체적합성 고분자는 히알루론산, 헤파린, 셀룰로스, 덱스트란, 알지네이트, 키토산, 키틴, 콜라겐, 젤라틴, 콘드로이틴황산, 펙틴, 케라틴 및 피브린으로 이루어진 군에서 선택될 수 있으며, 바람직하게는 히알루론산인데, 이때, 상기 히알루론산의 말단 작용기 중에 -COOH가 상기 카테콜기 또는 파이로갈롤기의 수식을 위해 반응할 수 있다.
본 발명의 일 구체예에 있어서, 상기 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자를 포함하는 하이드로젤 패치(이하, 하이드로젤 패치로 기재함)는 상기 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자로 이루어진 용액 기반 하이드로젤(이하, 벌크 하이드로젤로 기재함)과 비교하여 나노섬유 기반의 다공성 구조를 가지고, 팽윤성이 뛰어나므로 생체내 환경에서도 패치 내에 세포 또는 약물을 효과적으로 담지할 수 있다.
또한, 상기 하이드로젤 패치는 벌크 하이드로젤보다 기계적 물성 및 조직 접착력이 우수하여 생체 내 환경에서 패치 구조를 오랫동안 유지할 수 있고, 생체 내 조직에 장기간 부착할 수 있으며, 줄기세포, 오가노이드 등의 세포를 효과적으로 이식하여 세포 생착율을 높일 수 있다.
본 발명의 일 구체예에 있어서, 상기 하이드로젤 패치는 0.05 내지 10.0 ㎜의 두께를 가질 수 있고, 바람직하게는 0.1 내지 5.0 ㎜의 두께를 가질 수 있으며, 더욱 바람직하게는 1.6 mm 내지 5.0 mm의 두께를 가질 수 있다.
본 발명의 일 구체예에 있어서, 상기 하이드로젤 패치는 하기 단계로 제조될 수 있다:
(a) 평평한 표면에 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자 용액을 고르게 붓는 단계; 및
(b) 상기 용액을 영하 0.5℃ 내지 영하 100℃에서 5시간 내지 48시간 동안 동결건조시키는 단계.
본 발명의 일 구체예에 있어서, 상기 (a)는 8 ㎜ 원통 몰드에 HA-CA 또는 HA-PG 용액을 40, 80 또는 160 ㎕씩 붓는 방식으로 이루어질 수 있으며, 상기 HA-CA 또는 HA-PG 용액은 0.1 내지 5% 농도, 바람직하게는 0.5 내지 3% 농도로 사용될 수 있다. 상기 HA-CA 또는 HA-PG 용액의 용량은 각각 0.8, 1.6 또는 3.2 ㎜ 두께의 고분자 하이드로젤 패치를 만들기 위한 것으로 본 발명의 HA-CA 또는 HA-PG 하이드로젤 패치는 두께를 손쉽게 조절할 수 있다.
본 발명의 일 구체예에 있어서, 상기 (b)는 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자 용액을 영하 0.5℃ 내지 영하 100℃ 에서 5시간 내지 48시간 동안 동결건조시키거나, 바람직하게는 영하 50℃ 내지 영하 100℃에서 12시간 내지 36시간 동안 동결건조시키는 방법으로 이루어질 수 있다. 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자 용액을 동결건조시키면 용액의 부피가 축소하면서 일정한 두께를 갖는 얇은 막 형태의 하이드로젤 패치가 만들어진다.
본 발명의 다른 양상은 상기 하이드로젤 패치 및 하이드로젤 패치에 담지된 약물을 포함하는 약물 전달체를 제공한다.
본 발명의 일 구체예에 있어서, 상기 약물은 성장인자와 같은 단백질일 수 있으며, 예를 들어 혈관내피 성장인자 (vascular endothelial growth factor, VEGF), 표피 성장인자 (epidermal growth factor, EGF), 각질세포 성장인자 (keratinocyte growth factor, KGF), 성장분화인자 (growth and differentiation factor), 간세포 성장인자 (hepatocyte growth factor, HGF), 혈소판유래 성장인자 (platelet-derived growth factor, PDGF), 형질전환 성장인자 (transforming growth factor, TGF), 안지오포이에틴 (angiopoietin), 에리스로포이에틴 (erythropoietin), 골형성단백질 (bone morphogenic protein, BMP), 인슐린성 성장인자 (insulin-like growth factor), 섬유아세포성장인자 (acidic and basic fibroblast growth factor), 과립구-대식세포 콜로니-자극 인자(granulocyte-macrophage colony-stimulating factor, GM-CSF), 뇌유래신경영양인자 (brain-derived neurotrophic factor), 신경아교세포-유래 신경영양인자 (glial cell-derived neurotrophic factor), 신경성장인자 (nerve growth factor), 기저세포-유래 인자-1(stromal cell-derived factor-1, SDF-1), 물질 P (substance P, SP), 저산소증-유도 인자-1 (Hypoxia-inducible factor-1, HIF-1), 디코프-연관 단백질-1 (Dickkopf-related protein-1, DKK-1), 인터루킨 (interleukin), 펨브롤리주맙 (Pembrolizumab; 제품명 키트루다(Keytruda)), 니볼루맙(nivolumab; 제품명 옵디보(Opdivo)), 아테졸리주맙(atezolizumab; 제품명 티센트릭(Tecentriq)), 이필리무맙(Ipilimumab; 제품명 여보이(Yervoy)), 블리나투모맙(blinatumomab; 제품명 블린사이토(Blincyto)), 트라스투주맙 (trastuzumab; 제품명 허셉틴(Herceptin)), 세툭시맙 (cetuximab; 제품명 얼비툭스(Erbitux)) 및 베바시주맙(bevacizumab; 제품명 아바스틴(Avastin))으로 이루어진 군에서 선택될 수 있다.
또한, 상기 약물은 아세메타신 (acemethacin), 아크리바스틴 (acrivastine), 알도스테론 (aldosterone), 안타졸린 (antazoline), 아스테미졸 (astemizole), 아자타딘 (azatadine), 아젤라스틴 (azelastine), 베클로메타손 (beclomethasone), 베타메타손 (betamethasone), 브롬페낙 (bromfenac), 부클리진 (buclizine), 카르프로펜 (carprofen), 세티리진 (cetirizine), 클로로피릴린, 클로르페니라민 (chlorpheniramine), 클레마스틴 (clemastine), 크로몰린( cromolyn), 시클리진 (cyclizine), 시프로헵타딘 (cyproheptadine), 덱사메타손 (dexamethasone), 디아졸린 (diazolinum), 디클로페낙 (diclofenac), 디펜히드라민 (diphenhydramine), 에바스틴 (ebastine), 에메다스틴 (emedastine), 에피나스틴 (epinastine), 에토돌락 (etodolac), 펜부펜 (fenbufen), 페노프로펜 (fenoprofen), 펙소페나딘 (fexofenadine), 플루드로코르티손 (fludrocortisone), 플루르비프로펜 (flurbiprofen), 플루로메탈론 (fluorometholone), 히드록시진 (hydroxyzine), 이부프로펜 (ibuprofen), 인도메타신 (indomethacin), 케토프로펜 (ketoprofen), 케토롤락 트로메타민 (ketorolac tromethamine), 케토티펜 (ketotifen), 레보카바스틴 (levocabastine), 레보세티리진 (levocetirizine), 로독사미드 (lodoxamide), 로라타딘 (loratadine), 로테프레드놀 (loteprednol), 록소프로펜 (loxoprofen), 메드리손 (medrysone), 메피바카인 (mepivacaine), 메퀴타진 (mequitazine), 메트딜라진 (methdilazine), 메타피릴렌 (metapyrilene), 나부메톤 (nabumetone), 나파졸린 (naphazoline), 나프록센 (naproxen), 네도크로밀 (nedocromil), 노라스테미졸 (norastemizole), 노레바스틴 (norebastine), 올로파타딘 (olopatadine), 페니다민 (fenidamin), 페닐에프린 (phenylephrine), 옥사토마이드 (oxatomide), 옥시메타졸린 (oxymetazoline), 페미롤라스트 (pemirolast), 페니라민 (peniramin), 피쿠마스트 (picumast), 프레드니솔론 (prednisolone), 프로메타진 (promethazine), 리멕솔론 (rimexolone), 레피리나스트 (leprinast), 몬테루카스트 (montelukast), 술린닥 (sulindac), 수프로펜 (suprofen), 자퍼루카스 트 (zafirlukast), 테트라하이드로졸린 (tetrahydrozoline), 테르페나딘 (terfenadine), 티아프로펜산 (tiaprofenic acid), 토메팀, 트라닐라스트 (tranilast), 트리암시놀론 (triamcinolone), 트리메프라진 (trimeprazine), 트리프롤리딘 (triprolidine), 도네페질 (donepezil), 리바스티그민 (rivastigmine), 갈란타민 (galantamine), 메만틴 (memantine), 리도카인 (lidocaine), 케타민 (ketamine), 메토트랙세이트 (methotrexate), 사이클로스포린 (cyclosporine), 시스플라틴 (cisplatinum), 카페시타빈 (capecitabine), 옥살리플라틴 (Oxaliplatin), 독소루비신 (doxorubicin; 제품명 아드리아마이신(Adriamycin)), 미토마이신-C (mitomycin-C), 다우노마이신 (daunomycin), 에피루비신 (epirubicin), 타목시펜 (tamoxifen), 소라페닙 (sorafenib), 5-플루오로우라실 (5-fluorouracil), 파클리탁셀 (paclitaxel), 덱시부프로펜 (dexibuprofen), 피록시캄 (poroxicam), 약제학적으로 허용되는 이들의 염 및 이들의 혼합물로 이루어진군에서 선택되는 약물일 수 있다.
본 발명의 일 구체예에 있어서, 상기 약물 전달체는 하이드로젤 패치와 약물을 전달하고자 하는 목적부위에 부착(가교)시키는데 필요한 물질, 예를들어 산화제를 추가로 포함할 수 있으며, 산화제로는 과요오드산 나트륨이 사용될 수 있다. 하이드로젤 패치에 산화제를 도포하거나 또는 분사하면 카테콜기가 산화되어 가교반응이 일어난다.
본 발명의 일 구체예에 있어서, 하이드로젤 패치에 약물을 담지하는 방법은 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자 용액과 약물을 혼합시켜 하이드로젤 패치를 제조하거나 하이드로젤 패치에 약물을 도포한 후 산화제를 추가하여 하이드로젤 패치에 약물을 가교시키는 방법을 사용할 수 있다.
본 발명자들은 카테콜기로 수식된 히알루론산(HA-CA) 수용액과 VEGF를 혼합하고, 이를 동결건조시켜 HA-CA 하이드로젤 패치를 제작한 후 약물 방출 양상 및 상처 치료 효과를 확인하였다. 그 결과, 약물이 포함된 상태로 제작된 HA-CA 하이드로젤 패치와 패치 제작 후 약물을 가교시킨 HA-CA 하이드로젤 패치 사이에 약물 효과에 차이가 없는 것을 확인하였다. 또한, HA-CA 벌크 하이드로젤과 비교하여 HA-CA 하이드로젤 패치의 상처 치료 효과가 우수한 것을 확인하였다.
또한, 본 발명자들은 HA-PG 하이드로젤 패치를 사용하여 당뇨가 유발된 마우스의 창상에 PDGF를 도입하고, 상처 치료 효과를 확인하였다. 그 결과, PDGF를 HA-PG 고분자 용액에 미리 혼합하고 동결건조하여 제작한 HA-PG 하이드로젤 패치와 패치 제작 후 PDGF를 가교시킨 HA-PG 하이드로젤 패치 사이에 상처 치료 효과에 차이가 없는 것을 확인하였다. 또한, HA-PG 벌크 하이드로젤과 비교하여 HA-PG 하이드로젤 패치를 이용하여 PDGF를 전달한 경우에 상처 치료 효과가 더 우수한 것을 확인하였다.
본 발명의 다른 양상은 하기 단계를 포함하는 목적부위에 약물 또는 세포를 전달하는 방법을 제공한다:
(a) 상기 하이드로젤 패치에 약물 또는 세포를 접촉시키는 단계; 및
상기 (a)의 하이드로젤 패치에서 카테콜기가 도입된 경우, 선택적으로, (b) 상기 (a)의 하이드로젤 패치에 산화제를 접촉시키는 단계.
본 발명의 일 구체예에 있어서, 상기 목적부위에 약물 또는 세포를 전달하는 방법은 i) 목적부위에 하이드로젤 패치를 부착시킨 후 (a) 및 (b) 단계를 수행하거나, ii) 하이드로젤 패치에 약물 또는 세포를 접촉시키고, 목적부위에 하이드로젤 패치를 부착시킨 후 산화제를 접촉시키거나, 또는 iii) 상기 (a) 및 (b) 단계를 거친 후 약물 또는 세포가 담지된 하이드로젤 패치를 목적부위에 부착시키는 방식으로 이루어질 수 있다.
본 발명의 일 구체예에 있어서, 상기 (a)의 약물은 약물 전달체에 사용된 것과 동일한 약물을 사용할 수 있고, 상기 (a)의 세포는 줄기세포, 혈관내피세포, 골세포, 연골세포, 심근세포, 근육세포, 표피세포, 섬유아세포, 신경세포, 간세포, 장세포, 위세포, 피부세포, 지방세포, 혈액세포, 면역세포, 세포 스페로이드 및 오가노이드로 이루어진 군에서 선택될 수 있다.
본 명세서에 사용된 용어, "세포 스페로이드(cell spheroid)"는 다수의 단일세포들이 모여 형성된 구 형태의 3차원 세포집합체를 의미한다.
본 명세서에 사용된 용어, "오가노이드(organoid)"는 줄기세포로부터 자가 재생 및 자가 조직화를 통해 형성된 3차원 세포집합체(장기 유사체)를 의미하며, 줄기세포에는 성체줄기세포(adult stem cell, ASC), 배아줄기세포(embryonic stem cell, ESC), 유도만능줄기세포(induced pluripotent stem cell, iPSC), 지방조직 유래 줄기세포(adipose derived stem cell, ADSC), 중간엽 줄기세포(mesenchymal stem cell, MSC), 태반 유래 줄기세포(placental derived stem cell, PDSC) 또는 신경줄기세포(neural stem cell, NSC) 등이 사용될 수 있다. 줄기세포를 인체 내 환경을 모방하여 3차원으로 배양하므로 인체의 생리활성 기능을 유사하게 재현할 수 있고, 환자의 조직으로부터 장기유사체를 구축함으로써 환자의 유전정보를 기반으로 한 질병 모델링, 약물스크리닝 등을 가능하게 한다.
본 발명의 일 구체예에 있어서, 상기 (b)의 산화제를 접촉시키는 단계는 약물 또는 세포가 도포된 하이드로젤 패치에 산화제 용액을 도포하거나 분사하는 방식으로 이루어질 수 있다.
본 발명자들은 상기 방법으로 허혈성 심근경색 모델 랫트에 중간엽 줄기세포를 이식한 결과 중간엽 줄기세포의 이식 및 생착 효율이 증가하고, 심장기능이 개선되며, 손상된 심근조직이 재생되는 것을 확인하였다. 또한, 마우스의 등 부위 창상에 상기 방법으로 VEGF를 도입한 결과 창상 회복 및 피부 조직 재생이 촉진되는 것을 확인하였다. 따라서, 상기 방법으로 목적부위에 효과적으로 약물 및 세포를 도입할 수 있다.
본 발명의 일 구체예에 있어서, 상기 약물 전달체, 또는 목적 부위에 약물 또는 세포를 전달하는 방법은 알츠하이머, 뇌졸중 (stroke), 파킨슨병, 뇌전증 (epilepsy), 뇌출혈, 뇌경색, 뇌종양, 뇌수막염, 척수손상, 피부창상, 습진, 아토피, 대상포진, 무좀(피부사상균증), 지루성피부염, 욕창, 건선, 봉소염, 모낭염, 수족구병, 한포진, 사마귀, 티눈, 위장 손상, 위 궤양, 십이지장 궤양, 궤양대장염, 크론병, 골 결손, 골다공증, 연골 파열, 연골 연화증, 근육 손상, 인대/건손상, 근막염, 골수섬유증, 관절염, 그레이브스병(Grave's disease), 루푸스, 백내장, 녹내장, 황반변성, 망막 손상, 간 경변증, 알코올성 간질환(지방간), 간경화, 신부전, 규폐증(silicosis), 낭종성 폐질환, 폐쇄성 폐질환, 만성 폐질환, 폐렴, 폐섬유증,낭포성 섬유증, 편도결석, 기관기확장증, 기관협착, 성대/후두 결절, 치주염, 구내염, 구순포진, 고지혈증, 고콜레스테롤혈증, 이상지질혈증, 말초혈관병, 하지허혈, 동맥경화, 심근섬유증, 심근경색, 심근병증, 심부전, 협심증, 담도염, 췌장염, 위염, 역류성 식도염, 식도협착증, 식도게실 (esophagus diverticula), 식도근종, 특발성 식도확장증, 플러머-빈슨증후군 (Plummer-Vinson syndrome), 식도정맥류, 간염, 중이염, 기관지염, 갑상선염, 결막염, 혈관염, 편도선염, 척추염, 신우신염, 방광염, 염좌, 늑막염, 갑상선암, 난소암, 자궁경부암, 폐암, 위암, 간암, 유방암, 다발성골수종, 소화기암, 췌장암, 담석증, 담낭암, 담도암, 대장암, 전립선암, 림프종, 골연부조직암, 두경부암, 혈액암, 식도암, 골육종, 후두암, 당뇨병, 당뇨성 족부궤양, 당뇨성 망막변증, 당뇨병콩팥병증, 당뇨병신경병증 또는 비만의 치료 및 개선에 사용될 수 있다.
본 발명의 또 다른 양상은
(a) 일정 형태의 몰드를 하이드로젤 패치로 감싸는 단계;
(b) 상기 하이드로젤 패치에 줄기세포를 접촉시키는 단계를 포함하는, 생체 조직을 모사한 구조체 형성 방법을 제공한다.
본 발명의 일 구체예에 있어서, 상기 생체 조직을 모사한 구조체 형성 방법은 (a) 및 (b)의 단계를 1회 내지 복수회 반복하는 방법일 수 있다.
본 발명의 일 구체예에 있어서, 상기 (b)의 줄기세포는 성체줄기세포, 배아줄기세포, 유도만능줄기세포, 지방조직 유래 줄기세포, 중간엽 줄기세포, 태반 유래 줄기세포 및 신경줄기세포에서 선택될 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구체예에 있어서, 상기 (a)의 하이드로젤 패치에서 카테콜기가 도입된 경우, 상기 (b)는 하이드로젤 패치에 줄기세포를 도포한 후 산화제를 접촉하는 방법으로 이루어질 수 있으며, 구체적으로 하이드로젤 패치에 산화제 용액을 떨어뜨리거나 분사하는 방식으로 이루어질 수 있다. 또한, 상기 (a)의 하이드로젤 패치에서 파이로갈롤기가 도입된 경우, 상기 (b)는 하이드로젤 패치에 줄기세포를 포함하는 용액을 도포하는 방법으로 이루어질 수 있다.
본 발명의 일 구체예에 있어서, 상기 생체 조직은 혈관, 피부 또는 간일 수 있으나, 이에 제한되지 않는다.
본 발명의 카테콜기 또는 파이로갈롤기 수식 생체적합성 고분자 하이드로젤 패치는 용액 기반의 벌크 하이드로젤과 비교하여 현저히 우수한 기계적 물성, 접착력을 가지므로 체내에서 장시간 동안 세포 및 약물을 담지할 수 있고, 조직의 손상 없이 상기 세포 및 약물을 안전하고 효율적으로 체내로 전달할 수 있다. 또한, 상기 카테콜기 또는 파이로갈롤기 수식 생체적합성 고분자 하이드로젤 패치는 일정한 두께의 얇은 막 형태이므로 벌크 하이드로젤과 비교하여 다루기가 용이하고 사용 절차가 매우 간단하며, 원하는 모양으로 자를 수 있으므로 사용하기 편리하다. 추가로 원하는 형태의 몰드를 카테콜 수식 생체적합성 고분자 하이드로젤 패치로 단일 또는 여러 겹으로 감싸 다층 하이드로젤 패치를 제작할 수 있고, 여기에 줄기세포를 접착시킴으로써 생체 내 조직과 유사한 구조체를 형성할 수 있다.
특히, 상기 하이드로젤 패치에서 파이로갈롤기가 수식된 경우, 별도의 산화제 없이도 생체 내 환경에서 자연산화되므로 실제 임상에서 간편하게 사용할 수 있다.
도 1은 카테콜로 수식된 히알루론산(HA-CA) 하이드로젤 패치의 제작 과정(A), 두께가 다른 HA-CA 하이드로젤 패치(B) 및 상기 하이드로젤 패치의 사용 방법(C)을 개략적으로 보여준다.
도 2는 HA-CA 벌크 하이드로젤(A)과 HA-CA 하이드로젤 패치(B)의 세포독성 및 3차원 배양 여부를 확인한 결과이다.
도 3은 HA-CA 하이드로젤 패치(Patch)와 HA-CA 벌크 하이드로젤(Gel)의 팽윤도(A 및 B), 수분 함유량(C) 및 히알루론산 분해 효소에 의한 분해 속도(D)를 확인한 결과이다.
도 4는 주사 전자 현미경으로 HA-CA 벌크 하이드로젤(Gel)과 HA-CA 하이드로젤 패치(Patch)의 내부 구조를 확인한 결과이다.
도 5는 HA-CA 하이드로젤 패치(Patch)와 HA-CA 벌크 하이드로젤(Gel)의 기계적 강도(A 및 B), HA-CA 하이드로젤 패치의 두께에 따른 탄성계수(C)를 확인한 결과이다.
도 6은 HA-CA 하이드로젤 패치(Patch)와 HA-CA 벌크 하이드로젤(Gel)의 조직 접착력 측정 방법을 보여주고(A), 그 방법으로 측정된 조직 접착력(B 및 C)과 조직 부착일(D)을 확인한 결과이다.
도 7은 HA-CA 하이드로젤 패치(Patch)와 HA-CA 벌크 하이드로젤(Gel)의 스테인리스강 접착력(A 및 B)과 부착일(C)을 확인한 결과이다.
도 8은 HA-CA 하이드로젤 패치를 사용하여 신장, 간 및 장에 줄기세포를 이식한 후 하이드로젤 패치의 부착유지 여부과 줄기세포의 생착 여부를 확인한 결과이다.
도 9는 심근 경색이 유발된 허혈 조직에 줄기세포를 HA-CA 하이드로젤 패치(MSC-patch) 또는 주사 방법(MSC-injection)으로 이식한 후 줄기세포의 생착 여부를 확인한 결과이다.
도 10은 허혈성 심근경색 모델 랫트에 줄기세포를 HA-CA 하이드로젤 패치(MSC-patch) 또는 주사 방법(MSC-injection)으로 이식한 후 좌심실 이완기말 직경(A), 좌심실 수축기말 직경(B), 심박출계수(C) 및 구획단축률(D)을 확인한 결과이다.
도 11은 허혈성 심근경색 모델 랫트에 줄기세포를 HA-CA 하이드로젤 패치(MSC-patch) 또는 주사 방법(MSC-injection)으로 이식한 후 손상된 심장 조직을 TTC 염색(A 및 B), Masson’s Trichrome 염색(C 및 D)으로 확인한 결과이다.
도 12는 허혈성 심근경색 모델 랫트에 줄기세포를 HA-CA 하이드로젤 패치(MSC-patch) 또는 주사 방법(MSC-injection)으로 이식한 후 손상 부위를 소동맥 특이적 마커 (smooth muscle actin, SMA) 및 모세혈관 마커 (CD31)로 염색한 결과이다.
도 13은 HA-CA 하이드로젤 패치를 사용하여 형광으로 표지된 오가노이드를 간(A 및 B), 위(C) 및 소장(D)에 이식한 후 세포의 생착 여부를 확인한 결과이다.
도 14는 다층 구조의 HA-CA 하이드로젤 패치 제작 결과(A) 및 이를 이용하여 다층의 생체내 구조를 모사(B)한 후 확인한 결과이다.
도 15는 튜브 형태의 다층 HA-CA 하이드로젤 패치 제작 결과(A 및 B) 및 이를 이용하여 다층의 혈관 모사 구조체(C)를 제작한 결과이다.
도 16은 히알루론산 분해효소가 존재하는 생체내 환경을 모사한 조건에서 HA-CA 하이드로젤 패치의 약물 방출 양상을 확인한 결과이다.
도 17은 마우스 창상 모델에 HA-CA 하이드로젤 패치를 사용하여 혈관내피 성장인자(VEGF)를 도입한 후 시간 경과에 따른 창상 치료 효과를 확인한 결과이다.
도 18은 마우스 창상 모델에 HA-CA 하이드로젤 패치를 사용하여 혈관내피 성장인자(VEGF)를 도입한 후 모낭 재생(A 및 C), 콜라겐 생성(B 및 D) 및 혈관 형성 정도(E 및 F)를 확인한 결과이다.
도 19는 마우스 창상 모델에 HA-CA 하이드로젤 패치 또는 HA-CA 벌크 하이드로젤을 사용하여 약물을 도입한 후 창상 치료 효능을 확인한 결과이다.
도 20은 마우스 창상 모델에 HA-CA 하이드로젤 패치 또는 HA-CA 벌크 하이드로젤을 사용하여 약물을 도입한 후 창상 부위의 재생 정도를 헤마토실린&에오신 염색(A)과 Masson’s Trichrome 염색(B)으로 확인한 결과이다.
도 21에서 A는 파이로갈롤로 수식된 히알루론산(HA-PG)의 분자 구조를 보여주고, B는 HA-PG 하이드로젤 패치 및 HA-PG 벌크 하이드로젤을 겔화(gelation)시킨 형태, C는 두께가 상이한 HA-PG 하이드로젤 패치를 보여준다.
도 22는 HA-PG 하이드로젤 패치(Patch(PG))와 HA-PG 벌크 하이드로젤(Gel(PG))의 세포독성 여부를 확인한 결과이다.
도 23은 HA-PG 하이드로젤 패치(Patch(PG))와 HA-PG 벌크 하이드로젤(Gel(PG))의 팽윤도(A 및 B) 및 히알루론산 분해 효소에 의한 분해 정도(C)를 확인한 결과이다.
도 24는 주사 전자 현미경으로 HA-PG 하이드로젤 패치(Patch(PG))와 HA-PG 벌크 하이드로젤(Gel(PG))의 내부 구조를 확인한 결과이다.
도 25는 HA-PG 하이드로젤 패치(Patch(PG))와 HA-PG 벌크 하이드로젤(Gel(PG))의 기계적 강도(A 및 B), HA-PG 패치의 두께에 따른 탄성계수(C)를 확인한 결과이다.
도 26은 HA-PG 하이드로젤 패치(Patch(PG))와 HA-PG 벌크 하이드로젤(Gel(PG))의 조직 접착력(A 및 B) 및 부착일(C)을 확인한 결과이다.
도 27은 HA-PG 하이드로젤 패치를 사용하여 소장(A), 간(B), 신장(C) 및 위(D)에 줄기세포를 이식한 후 줄기세포의 생착 여부를 확인한 결과이다.
도 28은 HA-PG 하이드로젤 패치를 사용하여 소장에 형광으로 표지된 오가노이드를 이식하는 개략적인 과정(A), 오가노이드를 이식한 소장(B), 간(C) 및 위(D)에서 오가노이드의 부착 여부를 확인한 결과이다.
도 29는 당뇨성 마우스 창상 모델에 HA-PG 하이드로젤 패치와 인간 지방 유래 줄기세포(human adipose derived stem cell, hADSC)를 적용한 후 시간 경과에 따른 창상의 크기 변화를 확인한 결과이다.
도 30은 당뇨성 마우스 창상 모델에 HA-PG 하이드로젤 패치와 hADSC를 적용한 후 창상 부위의 모낭 재생(A) 및 콜라겐 생성(B 및 C) 수준을 확인한 결과이다.
도 31은 당뇨성 마우스 창상 모델에 HA-PG 하이드로젤 패치와 혈소판유래 성장인자(platelet-derived growth factor, PDGF)을 적용한 후 시간 경과에 따른 창상 치료 효과를 확인한 결과이다.
도 32는 HA-PG 하이드로젤 패치로 생체내 조직과 유사한 다층 구조를 제작한
후 확인한 결과이다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
제조예 1
(1) HA-CA 하이드로젤 패치 제작
도파민 하이드로클로라이드(dopamine hydrochloride)를 사용하여 카테콜이 수식된 히알루론산(catechol-functionalized hyaluronic acid; 이하, HA-CA로 기재함)을 증류수에 1% 농도로 용해시키고, 8 ㎜ 원통 몰드에 상기 1% HA-CA 용액을 각각 40, 80 또는 160 ㎕씩 부은 후 -80℃에서 하룻밤 동안 동결건조시켜 0.8, 1.6, 3.2 ㎜ 두께의 HA-CA 하이드로젤 패치를 제작하였다. 제작된 HA-CA 하이드로젤 패치는 건조된 상태이므로 보관이 용이하고, 얇은 막 형태이므로 원하는 모양으로 용이하게 자를 수 있어 사용이 간편하다.
특정 모양으로 자른 HA-CA 하이드로젤 패치를 표적 조직의 표면 위에 올리고, 원하는 약물 또는 세포를 패치 위에 도포하였다. 이후, 과요오드산 나트륨(sodium periodate, NaIO4; 산화제)을 HA-CA 하이드로젤 패치에 뿌려 세포 또는 약물이 패치에 캡슐화되도록 하였다.
이전 실험에서, HA-CA의 농도가 1%보다 높은 경우 하이드로젤 패치가 너무 단단하여 세포 및 약물이 하이드로젤 패치 내부로 효과적으로 침투하지 못하였고, 낮은 경우에는 하이드로젤 패치의 구조가 충분히 유지되지 못해 세포 및 약물이 손실되었다. 또한, HA-CA 하이드로젤 패치가 지나치게 두꺼우면 세포 및 약물이 하이드로젤 패치 내부로 효과적으로 침투하지 못하며, 너무 얇은 경우에는 하이드로젤 패치를 다루기 어렵고, 산화제를 도포한 후 하이드로젤 패치의 구조가 오랜 시간 유지되지 못하는 단점이 있다.
실시예 1-1 내지 1-5에서는 1.6 ㎜ 두께의 HA-CA 하이드로젤 패치를 사용하였다.
도 1에서 A는 HA-CA 하이드로젤 패치의 제작 과정을 나타내고, B는 두께가 다른 HA-CA 하이드로젤 패치를 보여주며, C는 목적 조직에 HA-CA 하이드로젤 패치를 사용하는 방법을 개략적으로 보여준다.
(2) HA-CA 벌크 하이드로젤 제작
HA-CA를 인산완충생리식염수(Phosphate-buffered saline, PBS)에 용해시키고, 이 용액에 과요오드산 나트륨 용액을 첨가(HA-CA 용액:산화제 용액 = 3:1 (v/v))하여 HA-CA 벌크 하이드로젤을 제작하였다. 완성된 HA-CA 벌크 하이드로젤에서 HA-CA의 최종 농도는 2%이다. 제작한 HA-CA 벌크 하이드로젤은 구조 분석 및 세포독성 분석 등에 사용하였다. 약물 또는 세포를 포함하는 HA-CA 벌크 하이드로젤은 HA-CA 용액과 약물 또는 세포를 미리 혼합한 후 과요오드산 나트륨 용액을 첨가하여 제조하였다.
실시예 1-1: HA-CA 하이드로젤 패치의 특성 분석
(1) 세포독성 확인
6-웰 세포 배양 플레이트의 바닥에 상기 제조예에서 제작한 HA-CA 하이드로젤 패치 또는 HA-CA 벌크 하이드로젤을 놓고, 인간 지방 유래 줄기세포 (human adipose derived stem cell, hADSC)를 분주하여 7일 동안 배양하였다. 배양 0일, 3일 및 7일 차에 Live/Dead assay (Invitrogen; 미국)를 사용하여 제조사의 프로토콜에 따라 세포 생존율을 확인하였다.
그 결과, 이미 생체적합성이 검증된 HA-CA 벌크 하이드로젤은 세포 독성이 없는 것을 알 수 있었고(도 2의 A), HA-CA 하이드로젤 패치 또한 세포 독성이 없는 것을 확인할 수 있었다(도 2의 B). 또한, XZ 축 사진에 나타난 바와 같이 HA-CA 하이드로젤 패치에서 세포가 단층이 아닌 3차원으로 분포되어 있는 것을 알 수 있었다. 이 결과는 HA-CA 벌크 하이드로젤의 제형을 HA-CA 하이드로젤 패치로 변형시켜도 히알루론산의 생체적합성은 그대로 유지되고, 세포의 3차원 배양도 가능함을 의미한다.
(2) 팽윤도(swelling) 및 분해 속도 확인
생체내 조건과 유사한 37℃의 PBS에 HA-CA 하이드로젤 패치 또는 HA-CA 벌크 하이드로젤을 7일 동안 담그고, 12시간, 1일, 3일 및 7일 후에 팽윤도를 측정하였다. 측정 결과, HA-CA 하이드로젤 패치의 팽윤도가 HA-CA 벌크 하이드로젤 보다 약 4배 정도 높았고(도 3의 A), 실제 수분 함량은 HA-CA 벌크 하이드로젤이 HA-CA 하이드로젤 패치보다 높았다(도 3의 B 및 C).
또한, 실제 생체내 환경은 다양한 분해효소가 존재하므로 37℃의 PBS에 HA-CA 하이드로젤 패치 또는 HA-CA 벌크 하이드로젤을 담그고, 분해될 때까지 히알루론산 분해효소를 처리하였다. 일정 시간마다 HA-CA 하이드로젤 패치 및 HA-CA 벌크 하이드로젤의 무게를 측정하여 시간 경과에 따른 분해 정도를 측정하였다. 측정 결과, HA-CA 벌크 하이드로젤은 히알루론산 분해효소를 처리한 후 2시간 이내에 빠르게 분해되어 6시간 후에는 완전히 분해되나, HA-CA 하이드로젤 패치는 히알루론산 분해효소 처리 24시간 이후에도 남아 있어 효소에 의한 분해 속도가 느린 것을 알 수 있었다(도 3의 D).
(3) 내부 구조 확인
주사 전자 현미경을 사용하여 HA-CA 하이드로젤 패치 및 HA-CA 벌크 하이드로젤의 내부 구조를 확인하였다. 그 결과, HA-CA 벌크 하이드로젤은 마이크로미터(㎛) 크기의 다공성 구조를 갖는 반면, HA-CA 하이드로젤 패치는 나노섬유 기반의 다공성 구조를 나타내는 것을 확인할 수 있었다(도 4). 이 결과는 HA-CA 벌크 하이드로젤보다 HA-CA 하이드로젤 패치가 더 조밀한 내부 구조를 갖고, 나노섬유 구조에 의해 카테콜로 수식된 표면적이 증가하므로 조직 접착력이 우수할 수 있음을 의미한다.
(4) 기계적 강도 측정
레오미터를 사용하여 주파수 0.1 내지 10 Hz 사이에서 HA-CA 하이드로젤 패치와 HA-CA 벌크 하이드로젤의 탄성계수를 측정하였다. 측정 결과, HA-CA 하이드로젤 패치와 HA-CA 벌크 하이드로젤 모두 G’ 수치가 G“ 수치보다 높은 것으로 나타나 내부 구조가 안정적인 고분자 네트워크로 구성된 것을 확인할 수 있었다(도 5의 A).
또한, HA-CA 벌크 하이드로젤의 평균 탄성계수는 약 260 Pa인 반면, HA-CA 하이드로젤 패치의 탄성계수는 약 11 kPa로 나타나 탄성계수가 약 50배 이상 증가한 것을 알 수 있었다(도 5의 B). 상기 제조예 1에서 제작한 HA-CA 하이드로젤 패치의 탄성계수를 측정한 결과, 패치의 두께가 증가함에 따라 탄성계수가 0.8 kPa에서 5 및 14 kPa로 현저하게 증가하는 것을 알 수 있었으며(도 5의 C), 탄성계수가 증가하는 것은 기계적 강도가 우수해지는 것을 의미한다.
상기 실험 결과들은 HA-CA 벌크 하이드로젤과 비교하여 HA-CA 하이드로젤 패치의 기계적 강도가 현저히 우수하고, HA-CA 하이드로젤 패치는 두께를 조절함으로써 기계적 강도를 용이하게 조절할 수 있음을 의미한다.
(5) 생체조직 접착력 측정
돼지 심장 조직에 HA-CA 하이드로젤 패치를 올린 후 산화제를 분사하거나, 산화제를 섞어 가교를 유도한 HA-CA 벌크 하이드로젤을 올린 후, 돼지 심장 조직이 부착되어 있는 프로브(probe)로 누른 후 10분 동안 방치하였다. 이후, 접착력 측정기로 HA-CA 하이드로젤 패치와 HA-CA 벌크 하이드로젤의 조직 접착력을 측정하였다(도 6의 A).
측정 결과, HA-CA 벌크 하이드로젤은 약 1.5 N의 접착력을 가지는 반면, HA-CA 하이드로젤 패치는 약 5.5 N의 접착력을 보여 조직 접착력이 3.5배 이상 향상되는 것을 알 수 있었다(도 6의 B 및 C).
또한, 접착력-인장길이 그래프(도 6의 B)의 면적을 측정하여 돼지 심장 조직에 부착된 HA-CA 벌크 하이드로젤 또는 하이드로젤 패치를 분리하는데 필요한 일의 양(부착일)을 계산하였다. 그 결과, HA-CA 하이드로젤 패치의 조직 부착일이 HA-CA 벌크 하이드로젤보다 8배 이상 증가하는 것을 알 수 있었다(도 6의 D).
(6) 접착력 측정 (스테인리스강 표면)
스테인리스강(stainless steel) 표면에 HA-CA 하이드로젤 패치 또는 HA-CA 벌크 하이드로젤을 올리고 상기 실험예 1-5와 동일한 방법으로 접착력을 측정하였다.
측정 결과, HA-CA 벌크 하이드로젤은 약 12 N의 접착력을 가지는 반면, HA-CA 하이드로젤 패치는 약 30 N의 접착력을 보여 2.5배 이상 접착력이 향상되는 것을 알 수 있었다(도 7의 A 및 B).
또한, 접착력-인장길이 그래프(도 7의 A)의 면적을 측정하여 스테인리스강 표면에 부착된 HA-CA 벌크 하이드로젤 또는 하이드로젤 패치를 분리하는데 부착일을 계산하였다. 그 결과, HA-CA 하이드로젤 패치의 부착일이 HA-CA 벌크 하이드로젤보다 5.5배 이상 증가하는 것을 알 수 있었다(도 7의 C).
실시예 1-2: HA-CA 하이드로젤 패치의 장기 접착능 확인
생체내 환경은 수분이 많은 상태이므로 본 발명의 HA-CA 하이드로젤 패치가 다양한 장기에 부착할 수 있는지 확인하였다. 마우스를 마취시킨 후 개복하여 신장, 간 및 장에 HA-CA 하이드로젤 패치를 올리고, 인간 지방줄기세포(human adipose derived stem cells, hADSC)를 떨어뜨린 후 산화제를 뿌리고 봉합하였다. 24시간 후 마우스를 희생시켜 신장, 간 및 장을 분리하고, HA-CA 하이드로젤 패치의 부착 여부를 육안으로 확인한 후 조직 절편을 만들어 헤마토실린&에오신 염색을 수행하였다. 그 결과, 24시간 후에도 수분이 많은 장기 표면에 HA-CA 하이드로젤 패치가 잘 부착되어 있는 것을 알 수 있었다. 조직 염색 결과를 통해서도 신장, 간 및 장에 HA-CA 하이드로젤 패치가 부착되어 있는 것을 확인할 수 있었다(도 8).
본 결과는 HC-CA 하이드로젤 패치가 다양한 장기 및 생체내 조직에 부착할 수 있으므로 다양한 장기 및 조직에 비침습적 세포 이식이 가능함을 의미한다.
실시예 1-3: HA-CA 하이드로젤 패치의 심근경색 치료 효능
(1) 줄기세포 이식 및 생착 효율 확인
기존의 줄기세포 이식술은 주로 손상이 일어난 조직에 직접 주사를 하는 방식으로 진행되었으나 줄기세포의 전달 및 생착 효율이 낮고, 주사로 인한 출혈 및 조직 손상의 위험이 있는 단점이 있다. 이에 비해 접착성 패치를 이용한 줄기세포 이식 방법은 비침습적으로 넓은 조직 부위에 효과적으로 줄기세포 이식이 가능한 장점이 있다. 따라서, 본 발명의 HA-CA 하이드로젤 패치를 사용하여 줄기세포를 이식한 후 결과를 확인하였다.
허혈성 심근경색(ischemic myocardial infarction) 모델 랫트를 마취시킨 후 가슴을 열고, 심장에 HA-CA 하이드로젤 패치를 올린 후 랫트 골수유래 중간엽 줄기세포 (mesencymal stem cell; 이하 MSC로 기재함)를 2x105개 떨어뜨렸다. 이후 HA-CA 하이드로젤 패치에 산화제를 스프레이하여 MSC가 HA-CA 하이드로젤 패치에 캡슐화되도록 하였다. 수술 부위를 봉합하고, MSC 이식 3일차에 심근경색이 일어난 심장 조직을 추출하여 당업계에 알려진 방법에 따라 헤마토실린&에오신 염색을 수행하였다. 염색 결과, MSC를 포함하는 HA-CA 하이드로젤 패치(MSC-patch)가 심장 조직 표면에 단단히 부착되어 있는 것을 확인할 수 있었으며(도 9의 A), 이 결과는 HA-CA 하이드로젤 패치가 박동하는 심장 표면에도 안정적으로 잘 부착하고, 부착력을 유지할 수 있음을 의미한다.
또한, 형광물질(Paul Karl Horan 26, PKH26)로 표지된 MSC를 랫트에 직접 주입하거나 상기와 동일한 방식으로 HA-CA 하이드로젤 패치를 사용하여 이식하였다. MSC 이식 2주 후에 추적한 결과, HA-CA 하이드로젤 패치를 사용하여 심장외벽에 이식한 MSC가 손상이 일어난 심장 조직 내로 이동한 것을 확인할 수 있었다. 직접 주사를 통한 기존 MSC 이식술(MSC-injection)보다 HA-CA 하이드로젤 패치를 이용(MSC-patch)할 때 MSC의 생착 및 이동 효율이 현저히 높았다(도 9의 B).
(2) 심초음파 검사를 통한 심장 기능성 평가
허혈성 심근경색 모델 랫트를 마취시킨 후 좌심실 관상동맥결찰을 실시하여 급성 심근경색을 유발하였다. 이후 랫트를 아래 그룹으로 나누어 해당처치를 한 후 심근경색의 치료 효과를 비교하였다: 대조군(생리식염수 주사, Saline); 실험군 1 (HA-CA 하이드로젤 패치만 부착, Patch only); 실험군 2 (직접 주사로 MSC 이식, MSC-injection); 및 실험군 3 (HA-CA 하이드로젤 패치를 이용해 MSC 이식, MSC-patch). 실험 4주 후에 심초음파 검사(echocardiography)를 실시하여 심장 기능 개선 효과를 평가하였다.
평가 결과, 대조군과 비교하여 실험군 3에서 좌심실 수축기말 직경(left ventricle end-systolic dimension, LVIDs)이 유의미하게 감소한 것을 알 수 있었으며, 이는 HA-CA 하이드로젤 패치로 이식된 MSC가 심장 조직의 손상을 효과적으로 감소시켜 허혈 심장이 비대해지는 것을 방지하였음을 의미한다(도 10의 B). 심장의 수축 기능을 평가할 수 있는 지표인 심박출계수(Ejection fraction) 또한 대조군과 비교하여 실험군 3에서 향상되는 것을 알 수 있었다(도 10의 C). 좌심실 구획단축률(Fractional shortening)도 대조군과 비교하여 실험군 3에서 향상되었다(도 10의 D).
본 실험 결과를 통해 HA-CA 하이드로젤 패치로 MSC를 이식하여 허혈성 심근경색을 효과적으로 치료할 수 있음을 확인하였다.
(3) 조직학 분석을 통한 허혈 조직 검사
HA-CA 하이드로젤 패치로 이식된 MSC가 손상된 심근조직을 재생하는지 확인하기 위해 손상된 심장의 조직학적 분석을 수행하였다. TTC 염색(2,3,5-Triphenyltetrazolium chloride)은 정상 심근조직만 붉은색으로 염색시키며, 심근경색으로 인해 조직이 괴사된 부분은 염색이 되지 않아 흰색으로 보인다.
상기 실험예 3-2 종료 후 랫트를 마취시키고 심근 조직을 분리하여 조직 절편 슬라이드를 만든 후 당업계에 알려진 방법에 따라 TTC 염색을 수행하였다. 수행 결과, 실험군 3(MSC-patch)에서는 흰색 부분이 거의 보이지 않아 대조군(Saline)과 비교하여 괴사조직 면적(Infarct size)이 유의미하게 감소한 것을 알 수 있었다. 한편, 실험군 1(Patch only)의 경우 MSC를 이식하지 않았음에도 불구하고 실험군 2(MSC-injection)와 유사한 수준의 조직 괴사 억제 효과를 나타내는 것을 알 수 있었다(도 11의 A 및 B).
또한, 랫트로부터 심근경색이 유발된 심장을 분리한 후 조직 절편을 만들고, Masson’s Trichrome 염색을 수행하여 허혈에 의한 심장 조직의 섬유화(fibrosis) 정도를 확인하였다. 그 결과, 실험군 3의 섬유화 억제 효과가 현저히 우수하여 정상 심근조직이 잘 유지되는 것을 확인할 수 있었다. 실험군 2 또한 대조군과 비교하여 유의미한 섬유화 억제 효과를 보였다(도 11의 C 및 D).
본 실험 결과를 통하여 HA-CA 하이드로젤 패치 자체가 조직 재생에 도움이 되는 생체내 세포의 이동 및 생착을 촉진하고, 세포가 생존할 수 있는 공간을 제공함으로써 허혈 질환에 의한 심근조직의 손상을 MSC를 직접 주사한 방법보다 현저히 우수한 수준으로 감소시킬 수 있음을 확인하였다. 또한, HA-CA 하이드로젤 패치를 사용하면 MSC의 이식 및 생착 효율이 현저히 우수하므로 실제 심장질환 치료에 매우 효과적으로 적용될 수 있음을 알 수 있었다.
(4) 혈관 재생 여부 확인
HA-CA 하이드로젤 패치로 이식된 MSC가 혈관을 재생시키는지 확인하였다. 구체적으로 상기 (3)의 심장 조직 절편 슬라이드를 소동맥 특이적 마커 (smooth muscle actin, SMA) 및 모세혈관 마커 (CD31)로 염색하였다.
염색 결과, 대조군과 비교하여 실험군 3(MSC-patch)에서 소동맥 및 모세혈관이 현저하게 많이 재생된 것을 확인할 수 있었다(도 12의 A 및 B). 이 결과를 통해 HA-CA 하이드로젤 패치를 이용한 MSC 이식 방법이 기존의 MSC 주입 방식 보다 혈관 재생에 현저하게 효과적임을 알 수 있었다.
실시예 1-4: HA-CA 하이드로젤 패치의 세포 이식 및 조직 재생 효능
(1) 오가노이드 이식
기존의 주사를 통한 세포 주입 방식은 세포 스페로이드(spheroid) 또는 오가노이드(organoid)와 같이 큰 세포 덩어리를 효율적으로 이식하기 어렵다. 이식 시 주사 바늘을 통과할 때의 압력으로 세포 구조가 파괴되고 세포가 사멸하는 등의 문제점이 있기 때문이다. 따라서 본 발명의 HA-CA 하이드로젤 패치를 사용하여 세포 오가노이드 이식을 수행하였다.
마우스를 마취시킨 후 개복하고, 간, 위 및 소장 표면에 DiI 형광으로 표지된 세포 오가노이드를 올린 후 HA-CA 하이드로젤 패치를 테이프 형태로 붙여 오가노이드를 각 장기의 표면에 고정시켰다.
오가노이드 이식 3일 후에 위와 소장을 분리하고, 7일 후에는 간을 분리하여 오가노이드의 부착 여부를 확인하였다. 그 결과, 간에 오가노이드가 성공적으로 부착되어 기존 간 조직과 통합된 것을 알 수 있었다(도 13의 A 및 B).
또한, 위 및 소장에도 오가노이드가 성공적으로 부착된 것을 알 수 있었다(도 13의 C 및 D).
(2) 시트(sheet) 형태의 다층 구조 형성
피부, 혈관과 같이 생체 내 조직은 다층 구조로 이루어져 있으므로 본 발명의 HA-CA 하이드로젤 패치로 생체 내 조직과 유사한 다층 구조를 제작하였다.
컬러 잉크를 사용하여 적색과 녹색의 HA-CA 하이드로젤 패치를 제작하고, 하나의 HA-CA 하이드로젤 패치 위에 다른 HA-CA 하이드로젤 패치를 올려 다층 패치 구조체를 형성시켰다. 이때 별도의 접착제는 사용하지 않고 HA-CA 하이드로젤 패치 자체의 접착성을 이용하였다. 실험 결과, 3층 및 5층으로 이루어진 패치 구조체를 제작할 수 있었다(도 14의 A).
또한, 하나의 HA-CA 하이드로젤 패치에 형광물질로 표지된 hADSC를 올리고, 이 위에 다른 HA-CA 하이드로젤 패치를 올린 후 다시 형광물질로 표지된 hADSC를 올리는 방식을 반복하여 다층의 삼차원 세포 구조체를 형성시켰다. 이때 매 층마다 다른 형광물질로 표지된 hADSC를 사용하였다. 그 결과, HA-CA 하이드로젤 패치를 사용하여 층마다 서로 다른 세포가 존재하는 다층 시트로 구성된 조직 구조를 구현할 수 있음을 확인하였다(도 14의 B).
원통 모양의 몰드를 적색과 녹색의 HA-CA 하이드로젤 패치로 감은 후 몰드를 제거하여 튜브 형태의 다층 HA-CA 하이드로젤 패치를 만들 수 있었고(도 15의 A), 탄성이 있어 압력을 가해 형태를 변형시켜도 원래 형태로 다시 복원되는 것을 확인할 수 있었다(도 15의 B). 튜브 형태의 다층 HA-CA 하이드로젤 패치 제작 시 한 층에는 인간 혈관내피세포 (HUVEC), 다른 층에는 hADSC를 부착시킨 결과, 인체 혈관과 유사한 구조를 제작할 수 있었다.
실시예 1-5: HA-CA 하이드로젤 패치를 이용한 약물 전달
(1) 약물 방출 양상 확인
제조예 1의 방법에 따라 HA-CA 하이드로젤 패치를 제작하고, 패치에 혈관내피성장인자(vascular endothelial growth factor; 이하, VEGF로 기재함)를 뿌린 후 산화제를 도포하여 패치에 VEGF를 캡슐화시켰다(Patch (CA)-VEGF 실험군). 비교군으로는 HA-CA 수용액과 VEGF를 혼합한 후 동결건조시켜 HA-CA 하이드로젤 패치를 제작한 후 산화제를 도포하였다(Patch (CA)-VEGF/FD 실험군). 상기 비교군은 실제 임상에서 HA-CA 하이드로젤 패치를 사용하는 경우 편의성이 가장 우수할 것으로 생각되는 약물 전달 형태이다. VEGF를 포함하는 상기 두 종의 HA-CA 하이드로젤 패치를 37℃의 PBS에 담그고, 히알루론산 분해효소(hyaluronidase) 처리 유무에 따른 VEGF 방출 양상을 ELISA로 분석하였다.
분석 결과, VEGF를 함께 동결건조시킨 HA-CA 하이드로젤 패치, 별도로 VEGF를 도입한 HA-CA 하이드로젤 패치 모두 유사한 VEGF 방출 양상을 보이는 것을 알 수 있었다(도 16). 또한, 단백질의 다양한 친핵성 작용기들과 카테콜의 강한 결합으로 인해 분해효소가 없는 환경(- hyaluronidase)에서는 VEGF의 방출이 잘 일어나지 않은 반면, 생체 내 환경을 모사해 분해효소를 처리한 환경(+ hyaluronidase)에서는 효과적으로 VEGF가 방출되는 것을 확인할 수 있었다(도 16).
따라서 본 발명의 HA-CA 하이드로젤 패치를 사용하면 창상과 같이 히알루론산 분해효소의 활성이 증가된 상처 부위에 효과적으로 약물을 전달할 수 있고, 상처 부위의 치료 효과를 높일 수 있을 것으로 예상된다.
(2) 마우스 창상 치료 효능 평가
마우스 등 부위에 펀치를 사용해 지름 8 ㎜의 창상을 만든 후 HA-CA 하이드로젤 패치를 올리고, 패치에 FITC-BSA 단백질을 뿌린 후 산화제를 도포하여 패치를 가교시켰다. 일정 시간이 지난 후 해당 창상 부위의 조직을 분리하여 염색한 결과 FITC-BSA 단백질이 탑재된 HA-CA 하이드로젤 패치가 창상 부위의 근육층에 단단히 부착되어 있는 것을 확인할 수 있었다(도 17의 A).
마우스 등 부위에 펀치를 사용해 지름 8 ㎜의 창상을 만들고 4개 그룹으로 나누어 HA-CA 하이드로젤 패치의 피부 재생 및 창상 치료 효과를 확인하였다: 1. 대조군(No treatment); 2. HA-CA 하이드로젤 패치만 적용(Patch(CA) only); 3. HA-CA 하이드로젤 패치에 VEGF 캡슐화 (Patch(CA)-VEGF); 및 4. VEGF와 HA-CA 용액을 혼합한 후 동결건조시켜 패치 제작한 후 가교 (Freeze-dried patch; Patch(CA)-VEGF/FD).
확인 결과, 창상 부위에 VEGF를 전달한 Patch(CA)-VEGF 그룹 및 Patch(CA)-VEGF/FD 그룹에서 유의미하게 창상 크기가 빠르게 줄어드는 것을 알 수 있었으며, 상기 두 그룹은 유사한 창상 치료 효능을 보였다(도 17의 B 및 C). 이 결과를 통하여 HA-CA 하이드로젤 패치에 미리 약물을 탑재한 후 동결건조시켜도 약물의 효과에 큰 차이가 없는 것을 알 수 있었으며, 이는 사용자의 편의성을 높일 수 있다.
창상 부위의 피부 재생 수준을 평가하기 위해 실험 12일 차에 창상 부위를 헤마토실린&에오신으로 염색하고 이미지 기반 정량 분석으로 확인하였다.
확인 결과, 창상 부위에 VEGF를 전달한 Patch(CA)-VEGF 그룹 및 Patch(CA)-VEGF/FD 그룹에서 모낭 재생이 활발히 일어난 것을 알 수 있었다(도 18의 A 및 C). 또한, Masson’s trichrome 염색을 통하여 창상 부위에 VEGF를 전달한 Patch(CA)-VEGF 그룹 및 Patch(CA)-VEGF/FD 그룹에서 콜라겐 재생 또한 증가한 것을 확인할 수 있었다(도 18의 B 및 D). 혈관 형성 효과를 확인하기 위해 모세혈관마커(CD31)로 면역 염색을 수행한 결과, 창상 부위에 VEGF를 전달한 Patch(CA)-VEGF 그룹 및 Patch(CA)-VEGF/FD 그룹에서 더 많은 혈관이 형성된 것을 알 수 있었다(도 18의 E 및 F).
(3) 마우스 창상 치료 효능 비교
마우스 등 부위에 펀치로 지름 8 ㎜의 창상을 만들고, HA-CA 하이드로젤 패치와 HA-CA 벌크 하이드로젤의 창상 치료 효능을 비교하였다. 구체적으로 HA-CA 용액에 VEGF를 미리 혼합한 후 동결건조시키고, 이를 다시 PBS에 용해시킨 후 HA-CA 벌크 하이드로젤 형태로 가교시켰다(Freeze-dried bulk hydrogel; Bulk(CA)-VEGF/FD). HA-CA 하이드로젤 패치는 HA-CA 용액과 VEGF를 미리 혼합한 후 패치 형태로 동결건조시키고, 이후 산화제로 패치를 가교시켜 제작하였다(Freeze-dried patch; Patch(CA)-VEGF/FD).
16일 동안 창상 크기의 감소 정도를 관찰한 결과, HA-CA 벌크 하이드로젤로 VEGF를 전달한 실험군(Bulk(CA)-VEGF/FD)보다 HA-CA 하이드로젤 패치로 VEGF를 전달한 실험군(Patch(CA)-VEGF/FD)에서 창상 크기가 빠르게 감소하는 것을 확인할 수 있었다 (도 19의 A 및 B).
창상 부위의 피부 재생 정도를 확인하기 위해 실험 16일차에 마우스를 희생시켜 창상 부위를 헤마토실린&에오신으로 염색하였다. 그 결과, HA-CA 벌크 하이드로젤로 VEGF를 전달한 실험군(Bulk(CA)-VEGF/FD)보다 HA-CA 하이드로젤 패치로 VEGF를 전달한 실험군(Patch(CA)-VEGF/FD)에서 세포들이 많이 생성되어 창상 부위가 현저히 많이 재생된 것을 확인할 수 있었다(도 20의 A). 또한, 창상 부위를 Masson’s Trichrome으로 염색한 결과, 콜라겐 재생 또한 Patch(CA)-VEGF/FD 실험군에서 더 많이 일어난 것을 알 수 있었다(도 20의 B). 상기 실험 결과는 동일한 물질로 이루어져 있다고 하더라도 하이드로젤 패치 제형이 기존의 용액 기반 벌크 하이드로젤 제형보다 치료 효능이 더 우수함을 의미한다.
제조예 2
(1) HA-PG 하이드로젤 패치 제작
5-하이드록시도파민(5-hydroxydopamine)을 사용하여 파이로갈롤이 수식된 히알루론산(pyrogallol-functionalized hyaluronic acid; 이하, HA-PG로 기재함)을 증류수에 1% 농도로 용해시키고, 8 ㎜ 원통 몰드에 상기 1% HA-PG 용액을 각각 40, 80 또는 160 ㎕씩 부은 후 -80℃에서 하룻밤 동안 동결건조시켜 0.8, 1.6, 3.2 ㎜ 두께의 HA-PG 하이드로젤 패치를 제작하였다. 제작된 HA-PG 하이드로젤 패치는 건조된 상태이므로 보관이 용이하고, 얇은 막 형태이므로 원하는 모양으로 용이하게 자를 수 있어 사용이 간편하다.
이전 실험에서, HA-PG의 농도가 1%보다 높은 경우 하이드로젤 패치가 너무 단단하여 세포 및 약물이 하이드로젤 패치 내부로 효과적으로 침투하지 못하였고, 낮은 경우에는 하이드로젤 패치의 구조가 충분히 유지되지 못해 세포 및 약물이 손실되었다. 또한, 하이드로젤 패치가 지나치게 두꺼우면 세포 및 약물이 패치 내부로 효과적으로 침투하지 못하고, 너무 얇으면 하이드로젤 패치를 다루기 어려우며, 하이드로젤 패치의 구조가 오랜 시간 유지되지 못하는 단점이 있다. 실시예 2-1 내지 2-3에서는 1.6 ㎜ 두께의 HA-PG 하이드로젤 패치를 사용하였다.
(2) HA-PG 벌크 하이드로젤 제작
HA-PG를 인산완충생리식염수(Phosphate-buffered saline, PBS)에 용해시키고, 이 용액에 과요오드산 나트륨 용액을 첨가(HA-PG 용액:산화제 용액 = 3:1 (v/v))하여 HA-PG 벌크 하이드로젤을 제작하였다. 완성된 HA-PG 벌크 하이드로젤에서 HA-PG의 최종 농도는 1%이며, 제작한 HA-PG 벌크 하이드로젤은 구조 분석에 사용하였다.
세포 이식 및 약물 전달 실험에는 과요오드산 나트륨 용액을 처리하지 않은 HA-PG 벌크 하이드로젤을 사용하여 체내에서 자연산화가 이루어지도록 하였다.
도 21에서 A는 HA-PG의 분자 구조를 보여주고, B는 HA-PG 하이드로젤 패치 및 HA-PG 벌크 하이드로젤을 겔화(gelation)시킨 형태, C는 두께가 상이한 HA-PG 하이드로젤 패치를 보여준다.
실시예 2-1: HA-PG 하이드로젤 패치의 특성 분석
(1) 세포독성 확인
6-웰 세포 배양 플레이트의 바닥에 상기 제조예에서 제작한 HA-PG 하이드로젤 패치 또는 HA-PG 벌크 하이드로젤을 놓고 인간 지방 유래 줄기세포(human adipose derived stem cell, hADSC)를 분주하여 7일 동안 배양하였다. 배양 0일, 3일 및 7일 차에 Live/Dead assay (Invitrogen; 미국)를 사용하여 제조사의 프로토콜에 따라 세포 생존율을 확인하였다.
그 결과, HA-PG 벌크 하이드로젤(Gel(PG)) 및 HA-PG 하이드로젤 패치(Patch (PG)) 모두 세포 독성이 없는 것을 확인할 수 있었다(도 22). 이 결과는 HA-PG 벌크 하이드로젤의 제형을 HA-PG 하이드로젤 패치로 변형하여도 히알루론산의 생체적합성은 그대로 유지됨을 의미한다.
(2) 팽윤도(swelling) 및 분해 속도 확인
생체내 조건과 유사한 37℃의 PBS에 HA-PG 하이드로젤 패치 또는 HA-PG 벌크 하이드로젤을 7일 동안 담그고, 9시간, 1일, 3일 및 7일 후에 팽윤도를 측정하였다. 측정 결과, HA-PG 하이드로젤 패치의 팽윤도가 HA-PG 벌크 하이드로젤보다 약 2배 정도 낮은 것을 알 수 있었으며(도 23의 A 및 B), 이 결과는 HA-PG 하이드로젤 패치가 HA-PG 벌크 하이드로젤보다 더 조밀한 내부 구조를 가지고 있음을 보여준다.
또한, 실제 생체내 환경은 다양한 분해효소가 존재하므로 37℃의 PBS에 HA-PG 하이드로젤 패치 또는 HA-PG 벌크 하이드로젤을 담그고, 분해될 때까지 히알루론산 분해효소를 처리하였다. 일정 시간마다 HA-PG 하이드로젤 패치 및 HA-PG 벌크 하이드로젤의 무게를 측정하여 시간 경과에 따른 분해 정도를 측정하였다. 측정 결과, HA-PG 벌크 하이드로젤은 히알루론산 분해효소를 처리한 후 빠르게 분해되어 24시간 이전에 완전히 분해되나, HA-PG 하이드로젤 패치는 히알루론산 분해효소 처리 600시간 이후에도 남아 있어 효소에 의한 분해 속도가 느린 것을 알수 있었다(도 23의 C).
(3) 내부 구조 확인
주사 전자 현미경을 사용하여 HA-PG 하이드로젤 패치(Patch(PG)) 및 HA-PG 벌크 하이드로젤 (Gel(PG))의 내부 구조를 확인하였다. 그 결과, HA-PG 벌크 하이드로젤은 마이크로미터(㎛) 크기의 다공성 구조를 갖는 반면, HA-PG 하이드로젤 패치는 좀더 조밀한 나노섬유 기반의 다공성 구조를 나타내는 것을 확인할 수 있었다(도 24).
이 결과는 HA-PG 벌크 하이드로젤보다 HA-PG 하이드로젤 패치가 더 조밀한 내부 구조를 형성할 수 있고, 파이로갈롤로 수식된 고분자의 표면적이 크게 증가되어 기계적 물성과 접착능이 우수할 수 있음을 의미한다.
(4) 기계적 강도 측정
레오미터를 사용하여 주파수 0.1 내지 10 Hz 사이에서 HA-PG 하이드로젤 패치(Patch(PG))와 HA-PG 벌크 하이드로젤(Gel(PG))의 탄성계수를 측정하였다.
측정 결과, HA-PG 하이드로젤 패치와 HA-PG 벌크 하이드로젤 모두 G‘ 수치가 G“ 수치보다 높은 것으로 나타나 내부 구조가 안정적인 고분자 네트워크로 구성된 것을 확인할 수 있었다(도 25의 A). 또한, HA-PG 벌크 하이드로젤의 평균 탄성계수는 약 1.5 kPa인 반면, HA-PG 하이드로젤 패치의 탄성계수는 약 18 kPa로 나타나 탄성계수가 약 10배 이상 증가한 것을 알 수 있었다(도 25의 B). 상기 제조예 1에서 제작한 두께가 다른 HA-PG 하이드로젤 패치의 탄성계수를 측정한 결과, 패치의 두께가 증가함에 따라 탄성계수가 5 kPa에서 27 및 46 kPa로 현저하게 증가하는 것을 알 수 있었으며(도 25의 C), 탄성계수가 증가하는 것은 기계적 강도가 우수해지는 것을 의미한다.
상기 실험 결과는 HA-PG 벌크 하이드로젤과 비교하여 HA-PG 하이드로젤 패치의 기계적 강도가 현저히 우수하고, HA-PG 하이드로젤 패치는 두께를 조절함으로써 기계적 강도를 용이하게 조절할 수 있음을 의미한다.
(5) 조직 접착력 측정
마우스의 등쪽 부위 피부를 절개하여 HA-PG 하이드로젤 패치(Patch(PG)) 또는 HA-PG 벌크 하이드로젤(Gel(PG))을 올린 후 체내 용존 산소로 인한 자연산화 방식으로 패치의 가교(부착)를 유도하였다. 자연산화를 통한 가교가 완전히 진행된 후(약 5분 이내) 피부 조직을 적출하고 택 테스트(Tack test) 방법으로 피부 조직에서 HA-PG 벌크 하이드로젤 또는 HA-PG 하이드로젤 패치를 떼어내는 힘을 측정하여 조직 부착력을 비교하였다.
측정 결과, HA-PG 벌크 하이드로젤은 약 1.6 N의 접착력을 가지는 반면, HA-PG 하이드로젤 패치는 약 4 N의 접착력을 보여 조직 접착력이 2.5배 이상 향상되는 것을 알 수 있었다(도 26의 A 및 B).
또한, 접착력-인장길이 그래프(도 26의 A)의 면적을 측정하여 피부에 부착된 HA-PG 벌크 하이드로젤 또는 HA-PG 하이드로젤 패치를 분리하는데 필요한 일의 양(부착일)을 계산하였다. 그 결과, HA-PG 하이드로젤 패치의 조직 부착일이 HA-PG 벌크 하이드로젤보다 2.5배 이상 증가하는 것을 알 수 있었다(도 26의 C).
실시예 2-2: HA-PG 하이드로젤 패치의 세포 이식 효능
(1) 줄기세포 이식
마우스를 마취시킨 후 개복하여 소장, 간, 신장 및 위에 HA-PG 하이드로젤 패치를 올리고, DiI 형광이 표지된 hADSC를 떨어뜨린 후 봉합하였다. 24시간 후 마우스를 희생시켜 신장, 간 및 장을 분리하고, HA-PG 하이드로젤 패치의 부착 여부를 육안으로 확인한 후 hADSC의 생착 여부를 관찰하였다. 그 결과, 24시간 후에도 수분이 많은 장기 표면에 HA-PG 하이드로젤 패치가 잘 부착되어 있는 것을 알 수 있었으며, 조직 염색 결과를 통해서도 소장, 간, 신장 및 위에 HA-PG 하이드로젤 패치가 부착되어 있고, hADSC 또한 부착되어 있는 것을 확인할 수 있었다(도 27).
본 결과는 HA-PG 하이드로젤 패치가 수분이 많은 생체내 환경에서 다양한 장기 및 조직에 부착할 수 있으므로 다양한 장기 및 조직에 비침습적 세포 이식이 가능함을 의미한다.
(2) 오가노이드 이식
오가노이드는 조직 재생과 같은 뛰어난 치료 효능에도 불구하고 큰 사이즈 때문에 효과적인 이식 방법이 개발된 것이 없는 실정이다. 따라서 본 발명의 HA-PG 하이드로젤 패치가 오가노이드 이식에 사용될 수 있는지 확인하였다.
소장, 간 또는 위에 DiI 형광으로 표지된 오가노이드를 얹고, HA-PG 하이드로젤 패치를 덮은 후 자연산화 방식으로 오가노이드가 각 조직 표면에 고정되도록 하였다(도 28의 A). 24시간 후 오가노이드를 이식한 부위의 조직을 분리하여 염색한 결과, 이식한 오가노이드가 각 조직에 성공적으로 부착하여 기존 조직과 통합된 것을 알 수 있었다(도 28의 B는 소장, C는 간 및 D는 위 조직임).
상기 실험 결과를 통해 HA-PG 하이드로젤 패치는 체내 용존산소에 의한 자연산화 방식으로 가교되므로 HA-PG 하이드로젤 패치와 오가노이드를 목적 부위에 붙이는 원스텝(one-step) 방법으로 목적 부위에 사이즈가 큰 오가노이드를 단단히 고정시키고, 이식할 수 있음을 알 수 있다.
(3) 창상 치료 효능
당뇨(diabetes)는 인슐린 분비 감소, 인슐린 내성 등의 원인으로 발생하는 대사성 질환으로 당뇨망막병증, 신부전증 등과 같은 다양한 합병증을 야기한다. 특히, 당뇨성 족부궤양(diabetic foot ulcers) 등과 같은 당뇨성 창상(diabetic wounds)을 유발하는데, 당뇨성 창상은 혈액 순환 장애, 혈액 내 높은 혈당 수준 등으로 인하여 일반 창상에 비해 치료 및 조직 재생이 매우 어렵다. 따라서, 본 발명의 HA-PG 하이드로젤 패치가 당뇨성 창상 치료에 활용될 수 있는지 확인하였다.
마우스를 24시간 동안 절식시키고, 췌장 β-세포를 선택적으로 손상시키는 약물인 스트렙토조토신을 100 ㎎/㎏ 농도로 복강에 투여하여 당뇨를 유발시켰다. 2주 경과 후 혈당 변화를 측정하여 혈당이 300 ㎎/dL 이상인 경우 당뇨가 유발된 것으로 판정하였다.
당뇨가 유발된 마우스의 등 부위에 펀치를 사용해 지름 8 ㎜의 창상을 만들고, 하기 6개 그룹으로 나누어 hADSC를 분주한 후 피부 재생 및 창상 치료 효과를 확인하였다: 1. 대조군(No treatment); 2. HA-PG 벌크 하이드로젤만 적용(Gel(PG) only); 3. HA-PG 하이드로젤 패치만 적용(Patch (PG) only); 4. hADSC만 직접 적용(hADSC only); 5. HA-PG 벌크 하이드로젤과 hADSC를 혼합한 후 적용(Gel(PG)-hADSC); 및 6. 창상 부위에 HA-PG 하이드로젤 패치를 올리고 hADSC 분주(Patch(PG)-hADSC).
12일 동안 창상의 크기 변화를 관찰한 결과, HA-PG 하이드로젤 패치를 올리고 hADSC를 분주한 그룹(Patch(PG)-hADSC)에서 창상 크기가 가장 빠르게 감소하는 것을 확인할 수 있었다(도 29).
실험 12일차에 창상 부위의 조직을 분리하여 피부 재생 정도를 확인하였다. 헤마토실린&에오신으로 염색한 결과, HA-PG 하이드로젤 패치를 올리고 hADSC를 분주한 그룹(Patch(PG)-hADSC)에서 모낭이 재생된 것을 확인하여 다른 그룹에 비해 성숙한 조직 재생이 일어난 것을 알 수 있었다(도 30의 A). 또한, Masson’s trichrome 염색을 수행한 결과, 콜라겐 재생 또한 Patch(PG)-hADSC 그룹에서 가장 활발하게 일어난 것을 확인할 수 있었다(도 30의 B 및 C).
상기 실험 결과를 통하여 창상 부위에 HA-PG 하이드로젤 패치를 얹으면 산화제 처리 없이 체액 등 체내 산소를 포함한 환경에 의해 자연산화 방식으로 가교되므로 간편하게 세포 이식이 가능함을 알 수 있으며, 산화제에 의한 부작용을 막을 수 있어 HA-PG 패치는 임상 적용에 적합한 제형이라 판단된다. 또한, 일반 창상에 비해 치료 및 회복이 어렵고, 점차 조직 손상이 심해지는 당뇨병성 창상 치료에 본 발명의 HA-PG 하이드로젤 패치가 유용하게 활용될 수 있음을 알 수 있다.
실시예 2-3: HA-PG 하이드로젤 패치를 이용한 약물 전달
실시예 2-3과 동일한 방법으로 당뇨성 마우스 모델을 제작하였다. 당뇨가 유발된 마우스의 등 부위에 펀치를 사용해 지름 8 ㎜의 창상을 만들고, 6개 그룹으로 나누어 혈소판유래 성장인자(platelet-derived growth factor, PDGF)를 도포한 후 피부 재생 및 창상 치료 효과를 확인하였다: 대조군(No treatment); HA-PG 벌크 하이드로젤만 적용(Gel(PG) only); HA-PG 하이드로젤 패치만 적용(Patch (PG) only); HA-PG 벌크 하이드로젤에 PDGF 캡슐화(Gel(PG)-PDGF); HA-PG 하이드로젤 패치에 PDGF 캡슐화 (Patch (PG)-PDGF); 및 PDGF와 HA-PG 용액을 함께 동결건조시켜 패치 제작한 후 가교 (Freeze-dried patch; Patch (PG)-PDGF/FD).
10일 동안 창상 크기가 줄어드는 것을 관찰한 결과, HA-PG 하이드로젤 패치를 적용한 Patch(PG)-PDGF 그룹과 Patch(PG)-PDGF/FD 그룹에서는 10일 차에 창상이 약 80% 정도 회복된 반면, HA-PG 벌크 하이드로젤을 적용한 그룹과 대조군에서는 창상이 60% 정도만 회복된 것을 확인할 수 있었다(도 31의 A 및 B). 또한, Patch(PG)-PDGF 그룹과 Patch(PG)-PDGF/FD 그룹은 창상 치료 효능에 유의미한 차이가 없었으며, 이 결과는 HA-PG 하이드로젤 패치에 미리 약물을 탑재한 후 동결건조시켜도 약물의 효과에 큰 차이가 없음을 의미한다.
실시예 2-4: HA-PG 하이드로젤 패치를 이용한 다층 구조체 형성
피부, 혈관과 같이 생체 내 조직은 다층 구조로 이루어져 있으므로 본 발명의 HA-PG 하이드로젤 패치로 생체 내 조직과 유사한 다층 구조를 제작하였다.
컬러 잉크를 사용하여 적색과 녹색의 HA-PG 하이드로젤 패치를 제작하고, 하나의 HA-PG 하이드로젤 패치 위에 다른 HA-PG 하이드로젤 패치를 올려 다층 패치 구조체를 형성시켰다. 이때 별도의 접착제는 사용하지 않고 HA-PG 하이드로젤 패치 자체의 접착성을 이용하였다. 실험 결과, 3층 및 5층으로 이루어진 패치 구조체를 제작할 수 있었다(도 32).
Claims (15)
- 카테콜기 또는 파이로갈롤기가 수식된 생체적합성 고분자를 포함하는 하이드로젤 패치.
- 제1항에 있어서, 상기 카테콜기는 카테콜(catechol), 4-tert-부틸카테콜(4-tert-butylcatechol; TBC), 우루시올(urushiol), 알리자린(alizarin), 도파민(dopamine), 도파민 하이드로클로라이드(dopamine hydrochloride), 3,4-디하이드록시페닐알라닌(3,4-dihydroxyphenylalanine; DOPA), 카페익산(caffeic acid), 노르에피네프린(norepinephrine), 에피네프린(epinephrine), 3,4-디하이드록시페닐아세트산(3,4-dihydroxyphenylacetic acid; DOPAC), 이소프레날린(isoprenaline), 이소프로테레놀(isoproterenol) 및 3,4-디하이드록시벤조산(3,4-dihydroxybenzoic acid)로 이루어진 군에서 선택된 카테콜계 화합물 유래이고,상기 파이로갈롤기는 파이로갈롤(pyrogallol), 5-하이드록시도파민(5-hydroxydopamine), 타닌산(tannic acid), 갈산 (gallic acid), 에피갈로카테킨(epigallocatechin), 에피카테킨 갈레이트(epicatechin gallate), 에피갈로카테킨 갈레이트(epigallocatechin gallate), 2,3,4-트리하이드록시벤즈알데하이드(2,3,4-trihydroxybenzaldehyde), 2,3,4-트리하이드록시벤조산(2,3,4-Trihydroxybenzoic acid), 3,4,5-트리하이드록시벤즈알데하이드(3,4,5-Trihydroxybenzaldehyde), 3,4,5-트리하이드록시벤즈아마이드(3,4,5-Trihydroxybenzamide), 5-tert-부틸파이로갈롤(5-tert-Butylpyrogallol) 및 5-메틸파이로갈롤(5-Methylpyrogallol)로 이루어진 군에서 선택된 파이로갈롤계 화합물 유래인, 하이드로젤 패치.
- 제1항에 있어서, 상기 생체적합성 고분자는 히알루론산, 헤파린, 셀룰로스, 덱스트란, 알지네이트, 키토산, 키틴, 콜라겐, 젤라틴, 콘드로이틴황산, 펙틴, 케라틴 및 피브린으로 이루어진 군에서 선택되는 것인, 하이드로젤 패치.
- 제1항에 있어서, 상기 하이드로젤 패치는 0.05 내지 10.0 ㎜의 두께를 갖는 것인, 하이드로젤 패치.
- 제1항의 하이드로젤 패치; 및상기 하이드로젤 패치에 담지된 약물을 포함하는, 약물 전달체.
- 제5항에 있어서, 상기 약물은 혈관내피 성장인자, 표피 성장인자, 각질세포 성장인자, 성장분화인자, 간세포 성장인자, 혈소판유래 성장인자, 형질전환 성장인자, 안지오포이에틴, 에리스로포이에틴, 골형성단백질, 인슐린성 성장인자, 섬유아세포성장인자, 과립구-대식세포 콜로니-자극 인자, 뇌유래신경영양인자, 신경아교세포-유래 신경영양인자, 신경성장인자, 기저세포-유래 인자-1, 물질 P, 저산소증-유도 인자-1, 디코프-연관 단백질-1, 인터루킨, 펨브롤리주맙, 니볼루맙, 아테졸리주맙, 이필리무맙, 블리나투모맙, 트라스투주맙, 세툭시맙 및 베바시주맙으로 이루어진 군에서 선택되는 것인, 약물 전달체.
- 제5항에 있어서, 상기 약물은 아세트메타신, 아크리바스틴, 알도스테론, 안타졸린, 아스테미졸, 아자타딘, 아젤라스틴, 베클로메타손, 베타메타손, 브롬페낙, 부클리진, 카르프로펜, 세티리진, 클로로피릴린, 클로로페니라민, 클레마스틴, 크로몰린, 시클리진, 시프로헵타딘, 덱사메타손, 디아졸린, 디클로페낙, 디펜히드라민, 에바스틴, 에메다스틴, 에피나스틴, 에토돌락, 펜부펜, 페노프로펜, 펙소페나딘, 플루드로코르티손, 플루르비프로펜, 플루 로메탈론, 히드록시진, 이부프로펜, 인도메타신, 케토프로펜, 케토롤락 트로메타민, 케토티펜, 레보카바스틴, 레보세테리진, 로독사미드, 로라타딘, 로테프레드놀, 록소프로펜, 메드리손, 메피바카인, 메퀴타진, 메트딜라진, 메타피릴렌, 나부메톤, 나파졸린, 나프록센, 네도크로밀, 노라스테미졸, 노레바스틴, 올로파타딘, 페니다민, 페닐에프린, 옥사타미드, 옥시메타졸린, 페미롤라스트, 페니라민, 피쿠마스트, 프레드니실론, 프로메타진, 리멕살론, 레피리나스트, 몬테루카스트, 술린닥, 수프로펜, 자퍼루카스트, 테트라히도졸린, 테르페나딘, 티아프로펜산, 토메팀, 트라닐라스트, 트리암시놀론, 트리메프라진, 트리프롤리딘, 도네페질, 리바스티그민, 갈란타민, 메만틴, 리도카인, 케타민, 메토트랙세이트, 사이클로스포린, 시스플라틴, 카페시타빈, 옥살리플라틴, 독소루비신, 미토마이신-C, 다우노마이신, 에피루비신, 타목시펜, 소라페닙, 5-플루오로우라실, 파클리탁셀, 덱시부프로펜, 피록시캄, 약제학적으로 허용되는 이들의 염 및 이들의 혼합물로 이루어진 군에서 선택되는 것인, 약물 전달체.
- (a) 제1항의 하이드로젤 패치에 약물 또는 세포를 접촉시키는 단계를 포함하는 목적부위에 약물 또는 세포를 전달하는 방법.
- 제8항에 있어서, 상기 (a)의 약물은 혈관내피 성장인자, 표피 성장인자, 각질세포 성장인자, 성장분화인자, 간세포 성장인자, 혈소판유래 성장인자, 형질전환 성장인자, 안지오포이에틴, 에리스로포이에틴, 골형성단백질, 인슐린성 성장인자, 섬유아세포성장인자, 과립구-대식세포 콜로니-자극 인자, 뇌유래신경영양인자, 신경아교세포-유래 신경영양인자, 신경성장인자, 기저세포-유래 인자-1, 물질 P, 저산소증-유도 인자-1, 디코프-연관 단백질-1, 인터루킨, 펨브롤리주맙, 니볼루맙, 아테졸리주맙, 이필리무맙, 블리나투모맙, 트라스투주맙, 세툭시맙 및 베바시주맙으로 이루어진 군에서 선택되는 것인, 목적부위에 약물 또는 세포를 전달하는 방법.
- 제8항에 있어서, 상기 (a)의 약물은 아세트메타신, 아크리바스틴, 알도스테론, 안타졸린, 아스테미졸, 아자타딘, 아젤라스틴, 베클로메타손, 베타메타손, 브롬페낙, 부클리진, 카르프로펜, 세티리진, 클로로피릴린, 클로로페니라민, 클레마스틴, 크로몰린, 시클리진, 시프로헵타딘, 덱사메타손, 디아졸린, 디클로페낙, 디펜히드라민, 에바스틴, 에메다스틴, 에피나스틴, 에토돌락, 펜부펜, 페노프로펜, 펙소페나딘, 플루드로코르티손, 플루르비프로펜, 플루 로메탈론, 히드록시진, 이부프로펜, 인도메타신, 케토프로펜, 케토롤락 트로메타민, 케토티펜, 레보카바스틴, 레보세테리진, 로독사미드, 로라타딘, 로테프레드놀, 록소프로펜, 메드리손, 메피바카인, 메퀴타진, 메트딜라진, 메타피릴렌, 나부메톤, 나파졸린, 나프록센, 네도크로밀, 노라스테미졸, 노레바스틴, 올로파타딘, 페니다민, 페닐에프린, 옥사타미드, 옥시메타졸린, 페미롤라스트, 페니라민, 피쿠마스트, 프레드니실론, 프로메타진, 리멕살론, 레피리나스트, 몬테루카스트, 술린닥, 수프로펜, 자퍼루카스트, 테트라히도졸린, 테르페나딘, 티아프로펜산, 토메팀, 트라닐라스트, 트리암시놀론, 트리메프라진, 트리프롤리딘, 도네페질, 리바스티그민, 갈란타민, 메만틴, 리도카인, 케타민, 메토트랙세이트, 사이클로스포린, 시스플라틴, 카페시타빈, 옥살리플라틴, 독소루비신, 미토마이신-C, 다우노마이신, 에피루비신, 타목시펜, 소라페닙, 5-플루오로우라실, 파클리탁셀, 덱시부프로펜, 피록시캄, 약제학적으로 허용되는 이들의 염 및 이들의 혼합물로 이루어진 군에서 선택되는 것인, 목적부위에 약물 또는 세포를 전달하는 방법.
- 제8항에 있어서, 상기 (a)의 세포는 줄기세포, 혈관내피세포, 골세포, 연골세포, 심근세포, 근육세포, 표피세포, 섬유아세포, 신경세포, 간세포, 장세포, 위세포, 피부세포, 지방세포, 혈액세포, 면역세포, 세포 스페로이드 및 오가노이드로 이루어진 군에서 선택되는 것인, 목적부위에 약물 또는 세포를 전달하는 방법.
- 제8항에 있어서, 상기 (a)의 하이드로젤 패치에서 카테콜기가 수식된 경우, (b) 상기 (a)의 하이드로젤 패치에 산화제를 접촉시키는 단계를 추가로 포함하는, 목적부위에 약물 또는 세포를 전달하는 방법.
- (a) 일정 형태의 몰드를 제1항의 하이드로젤 패치로 감싸는 단계;(b) 상기 하이드로젤 패치에 줄기세포를 접촉시키는 단계를 포함하는, 생체 조직을 모사한 구조체 형성 방법.
- 제13항에 있어서, 상기 (b)의 줄기세포는 성체줄기세포, 배아줄기세포, 유도만능줄기세포, 지방조직 유래 줄기세포, 중간엽 줄기세포, 태반 유래 줄기세포 및 신경줄기세포로 이루어진 군에서 선택되는 것인, 생체 조직을 모사한 구조체 형성 방법.
- 제13항에 있어서, 상기 (a)의 하이드로젤 패치에서 카테콜기가 수식된 경우, 상기 (b)는 하이드로젤 패치에 세포를 도포한 후 산화제를 접촉시키는 단계인 것인, 생체 조직을 모사한 구조체 형성 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022501271A JP2022540223A (ja) | 2019-07-09 | 2019-10-17 | 生体模倣組織接着性ハイドロジェルパッチ及びその用途 |
EP19937259.0A EP3981393A4 (en) | 2019-07-09 | 2019-10-17 | TISSUE ADHESIVE BIOMIMETIC HYDROGEL PATCH AND ITS USE |
US17/597,464 US20220280442A1 (en) | 2019-07-09 | 2019-10-17 | Bio-inspired tissue-adhesive hydrogel patch and uses thereof |
CN201980098290.9A CN114072132A (zh) | 2019-07-09 | 2019-10-17 | 仿生组织黏附性水凝胶贴片及其用途 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190082681A KR102308719B1 (ko) | 2019-07-09 | 2019-07-09 | 생체모사 조직 접착성 하이드로젤 패치 및 이의 용도 |
KR10-2019-0082681 | 2019-07-09 | ||
KR10-2019-0082682 | 2019-07-09 | ||
KR1020190082682A KR20210007071A (ko) | 2019-07-09 | 2019-07-09 | 세포 이식 및 약물 전달용 하이드로젤 패치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021006426A1 true WO2021006426A1 (ko) | 2021-01-14 |
Family
ID=74114051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/013673 WO2021006426A1 (ko) | 2019-07-09 | 2019-10-17 | 생체모사 조직 접착성 하이드로젤 패치 및 이의 용도 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220280442A1 (ko) |
EP (1) | EP3981393A4 (ko) |
JP (1) | JP2022540223A (ko) |
CN (1) | CN114072132A (ko) |
WO (1) | WO2021006426A1 (ko) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113214476A (zh) * | 2021-05-11 | 2021-08-06 | 上海交通大学 | 一种仿生糖聚肽水凝胶及其制备方法和应用 |
WO2021162529A1 (ko) * | 2020-02-14 | 2021-08-19 | 연세대학교 산학협력단 | 페놀 유도체가 수식된 콘드로이틴 설페이트 하이드로젤 및 이의 용도 |
CN113698539A (zh) * | 2021-09-22 | 2021-11-26 | 四川大学 | 氧气调控力学性能的生物封闭材料及其制备方法 |
CN113941025A (zh) * | 2021-10-27 | 2022-01-18 | 四川大学华西医院 | 一种组织粘附性水凝胶及其用途 |
WO2022211493A1 (ko) * | 2021-03-31 | 2022-10-06 | 연세대학교 산학협력단 | 갈롤 유도체가 수식된 펙틴 및 그의 용도 |
KR20220136219A (ko) * | 2021-03-31 | 2022-10-07 | 연세대학교 산학협력단 | 갈롤 유도체가 수식된 펙틴 및 그의 용도 |
CN115252880A (zh) * | 2022-08-26 | 2022-11-01 | 南京大学 | 一种基于相分离的生物胶水及其制备方法和应用 |
CN115887741A (zh) * | 2022-11-10 | 2023-04-04 | 东莞博捷生物科技有限公司 | 一种可吸收骨蜡及其制备方法 |
WO2023108277A1 (en) * | 2021-12-14 | 2023-06-22 | Agile Pharmaceuticals Solutions Inc. | Cannabinoid and psychedelic formulations comprising hydrotropic agents |
WO2023234747A1 (ko) * | 2022-06-02 | 2023-12-07 | 연세대학교 산학협력단 | 페놀기 유도체가 수식된 펙틴 및 그의 용도 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114644766B (zh) * | 2022-03-24 | 2023-09-05 | 福建师范大学 | 一种温敏脱粘的湿态组织粘附水凝胶及其制备方法 |
CN114773629B (zh) * | 2022-05-20 | 2024-04-12 | 昆明理工大学 | 用于创伤性脑损伤的可注射光固化止血水凝胶的制备方法 |
CN116139334A (zh) * | 2022-12-13 | 2023-05-23 | 上海市同仁医院 | 强粘附可注射型透明质酸双网络水凝胶及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012136701A1 (en) * | 2011-04-05 | 2012-10-11 | Universitätsklinikum Freiburg | Biocompatible and biodegradable gradient layer system for regenerative medicine and for tissue support |
US20150306230A1 (en) * | 2014-04-28 | 2015-10-29 | Celanese Acetate Llc | Drug delivery vehicles comprising cellulose derivatives, starch derivatives, and combinations thereof |
KR20160029941A (ko) * | 2014-09-05 | 2016-03-16 | 단국대학교 천안캠퍼스 산학협력단 | 나노 패턴이 형성된 조직 재생용 지지체의 제조방법 |
US9320826B2 (en) * | 2010-11-09 | 2016-04-26 | Kensey Nash Corporation | Adhesive compounds and methods use for hernia repair |
WO2018143736A1 (ko) * | 2017-02-02 | 2018-08-09 | (주)앰틱스바이오 | 갈롤기로 수식된 히알루론산 유도체를 기재로 하는 하이드로젤 및 이의 용도 |
KR20180127634A (ko) * | 2016-03-24 | 2018-11-29 | 스템매터스, 바이오테크놀로지아 이 메디시나 리제네레티바, 에스.에이. | 젤란 검 하이드로겔(gellan gum hydrogels), 제조, 방법 및 그 용도 |
KR20190052547A (ko) * | 2017-11-08 | 2019-05-16 | 재단법인 아산사회복지재단 | 세포 배양 기재 및 세포 시트를 제조하는 방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8642088B2 (en) * | 2009-09-04 | 2014-02-04 | Wisconsin Alumni Research Foundation | Tannin-chitosan composites |
WO2013180457A1 (ko) * | 2012-05-29 | 2013-12-05 | 한국교통대학교 산학협력단 | 접착특성을 갖는 항균 유기 공중합체, 그 유기 공중합체의 제조방법, 그 유기 공중합체가 코팅된 항균 코팅필름 및 그 코팅필름의 코팅방법 |
KR101942220B1 (ko) * | 2018-07-10 | 2019-01-24 | 서울대학교병원 | 카테콜기가 도입된 키토산 멤브레인 및 이의 제조방법 |
-
2019
- 2019-10-17 JP JP2022501271A patent/JP2022540223A/ja active Pending
- 2019-10-17 CN CN201980098290.9A patent/CN114072132A/zh active Pending
- 2019-10-17 WO PCT/KR2019/013673 patent/WO2021006426A1/ko unknown
- 2019-10-17 EP EP19937259.0A patent/EP3981393A4/en active Pending
- 2019-10-17 US US17/597,464 patent/US20220280442A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9320826B2 (en) * | 2010-11-09 | 2016-04-26 | Kensey Nash Corporation | Adhesive compounds and methods use for hernia repair |
WO2012136701A1 (en) * | 2011-04-05 | 2012-10-11 | Universitätsklinikum Freiburg | Biocompatible and biodegradable gradient layer system for regenerative medicine and for tissue support |
US20150306230A1 (en) * | 2014-04-28 | 2015-10-29 | Celanese Acetate Llc | Drug delivery vehicles comprising cellulose derivatives, starch derivatives, and combinations thereof |
KR20160029941A (ko) * | 2014-09-05 | 2016-03-16 | 단국대학교 천안캠퍼스 산학협력단 | 나노 패턴이 형성된 조직 재생용 지지체의 제조방법 |
KR20180127634A (ko) * | 2016-03-24 | 2018-11-29 | 스템매터스, 바이오테크놀로지아 이 메디시나 리제네레티바, 에스.에이. | 젤란 검 하이드로겔(gellan gum hydrogels), 제조, 방법 및 그 용도 |
WO2018143736A1 (ko) * | 2017-02-02 | 2018-08-09 | (주)앰틱스바이오 | 갈롤기로 수식된 히알루론산 유도체를 기재로 하는 하이드로젤 및 이의 용도 |
KR20190052547A (ko) * | 2017-11-08 | 2019-05-16 | 재단법인 아산사회복지재단 | 세포 배양 기재 및 세포 시트를 제조하는 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3981393A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021162529A1 (ko) * | 2020-02-14 | 2021-08-19 | 연세대학교 산학협력단 | 페놀 유도체가 수식된 콘드로이틴 설페이트 하이드로젤 및 이의 용도 |
KR102550712B1 (ko) * | 2021-03-31 | 2023-07-04 | 연세대학교 산학협력단 | 갈롤 유도체가 수식된 펙틴 및 그의 용도 |
WO2022211493A1 (ko) * | 2021-03-31 | 2022-10-06 | 연세대학교 산학협력단 | 갈롤 유도체가 수식된 펙틴 및 그의 용도 |
KR20220136219A (ko) * | 2021-03-31 | 2022-10-07 | 연세대학교 산학협력단 | 갈롤 유도체가 수식된 펙틴 및 그의 용도 |
CN113214476A (zh) * | 2021-05-11 | 2021-08-06 | 上海交通大学 | 一种仿生糖聚肽水凝胶及其制备方法和应用 |
CN113698539A (zh) * | 2021-09-22 | 2021-11-26 | 四川大学 | 氧气调控力学性能的生物封闭材料及其制备方法 |
CN113941025A (zh) * | 2021-10-27 | 2022-01-18 | 四川大学华西医院 | 一种组织粘附性水凝胶及其用途 |
WO2023108277A1 (en) * | 2021-12-14 | 2023-06-22 | Agile Pharmaceuticals Solutions Inc. | Cannabinoid and psychedelic formulations comprising hydrotropic agents |
WO2023234747A1 (ko) * | 2022-06-02 | 2023-12-07 | 연세대학교 산학협력단 | 페놀기 유도체가 수식된 펙틴 및 그의 용도 |
CN115252880A (zh) * | 2022-08-26 | 2022-11-01 | 南京大学 | 一种基于相分离的生物胶水及其制备方法和应用 |
CN115252880B (zh) * | 2022-08-26 | 2023-11-17 | 南京大学 | 一种基于相分离的生物胶水及其制备方法和应用 |
CN115887741A (zh) * | 2022-11-10 | 2023-04-04 | 东莞博捷生物科技有限公司 | 一种可吸收骨蜡及其制备方法 |
CN115887741B (zh) * | 2022-11-10 | 2024-03-19 | 东莞博捷生物科技有限公司 | 一种可吸收骨蜡及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022540223A (ja) | 2022-09-14 |
EP3981393A1 (en) | 2022-04-13 |
CN114072132A (zh) | 2022-02-18 |
EP3981393A4 (en) | 2023-07-19 |
US20220280442A1 (en) | 2022-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021006426A1 (ko) | 생체모사 조직 접착성 하이드로젤 패치 및 이의 용도 | |
Luo et al. | Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries | |
WO2018143736A1 (ko) | 갈롤기로 수식된 히알루론산 유도체를 기재로 하는 하이드로젤 및 이의 용도 | |
CN105517587B (zh) | 伤口愈合与组织工程 | |
WO2021162529A1 (ko) | 페놀 유도체가 수식된 콘드로이틴 설페이트 하이드로젤 및 이의 용도 | |
WO2014063194A1 (en) | Elastic hydrogel | |
JP2022066207A (ja) | 虚血性疾患または虚血性損傷を処置するための心臓線維芽細胞由来細胞外マトリックスおよびその注射可能製剤 | |
KR102692749B1 (ko) | 세포 이식 및 약물 전달용 하이드로젤 패치 | |
JP2004523484A (ja) | 電気処理されたコラーゲン | |
US20210180013A1 (en) | Improved methods for inducing tissue regeneration and senolysis in mammalian cells | |
WO2014092239A1 (ko) | 콜라겐과 피브린이 혼합된 조직 실란트 및 그 제조방법 | |
KR102308719B1 (ko) | 생체모사 조직 접착성 하이드로젤 패치 및 이의 용도 | |
Chen et al. | Gelatin nanofiber-reinforced decellularized amniotic membrane promotes axon regeneration and functional recovery in the surgical treatment of peripheral nerve injury | |
Sharma et al. | Fabrication, characterization and in vivo assessment of cardiogel loaded chitosan patch for myocardial regeneration | |
WO2022050694A1 (ko) | 연골 또는 골 질환의 예방 또는 치료용 생체모사 조직 접착성 하이드로젤 패치 | |
US20230355518A1 (en) | Decellularized tissue-derived extracellular matrix functionalized with phenol derivative and use thereof | |
Chen et al. | A polyphenol-derived redox-active and conductive nanoparticle-reinforced hydrogel with wet adhesiveness for myocardial infarction repair by simultaneously stimulating anti-inflammation and calcium homeostasis pathways | |
WO2020185041A2 (ko) | 세로토닌 수식 히알루론산을 포함하는 하이드로젤 및 이의 용도 | |
WO2022050695A1 (ko) | 세포외기질이 담지된 생체모사 조직 접착성 하이드로젤 패치 | |
Yang et al. | The occurrence and development mechanisms of esophageal stricture: state of the art review | |
WO2017018717A1 (ko) | 진피 필러용 하이드로젤 조성물 | |
US20240066070A1 (en) | Methods for the ex vivo induction of tissue regeneration in microbiopsies | |
JP2010163435A (ja) | 電気処理されたコラーゲン | |
WO2022211523A1 (ko) | 인공 조직 제작을 위한 페놀 유도체로 수식된 조직 유래 세포외기질 유도체 | |
WO2022114874A1 (ko) | 탈세포 세포외기질을 이용한 이식용 조직 겔 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19937259 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022501271 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019937259 Country of ref document: EP Effective date: 20220105 |