WO2020145055A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2020145055A1
WO2020145055A1 PCT/JP2019/049594 JP2019049594W WO2020145055A1 WO 2020145055 A1 WO2020145055 A1 WO 2020145055A1 JP 2019049594 W JP2019049594 W JP 2019049594W WO 2020145055 A1 WO2020145055 A1 WO 2020145055A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
air
facing surface
door facing
passage
Prior art date
Application number
PCT/JP2019/049594
Other languages
English (en)
French (fr)
Inventor
山本 雄大
鈴木 慎也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980088302.XA priority Critical patent/CN113302066A/zh
Publication of WO2020145055A1 publication Critical patent/WO2020145055A1/ja
Priority to US17/362,408 priority patent/US11712944B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00064Air flow details of HVAC devices for sending air streams of different temperatures into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00678Damper doors moved by rotation; Grilles the axis of rotation being in the door plane, e.g. butterfly doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00692Damper doors moved by translation, e.g. curtain doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00857Damper doors, e.g. position control characterised by the means connecting the initiating means, e.g. control lever, to the damper door
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00092Assembling, manufacturing or layout details of air deflecting or air directing means inside the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H2001/00721Air deflecting or air directing means

Definitions

  • the disclosure in this specification relates to a vehicle air conditioner.
  • Patent Document 1 discloses a vehicle air conditioner capable of adjusting the temperature and air volume of conditioned air by controlling a plurality of air mix doors.
  • the air mix door includes a cold air air mix door that adjusts the opening degree of the cold air passage and a warm air air mix door that adjusts the opening degree of the warm air passage.
  • the cold air air mix door includes a cold air bypass door that opens and closes a cold air bypass passage.
  • the cold air bypass door has a flat plate shape and is a plate door that rotates integrally with the rotary shaft.
  • a configuration is disclosed in which, in the bi-level mode, the temperature difference between the conditioned air blown from the face outlet and the conditioned air blown from the foot outlet is increased by opening the cold air bypass passage.
  • the cold air bypass door is in contact with the regulating member provided in the air conditioning case to maintain the stop position in two states, the fully closed state and the fully opened state.
  • the cold air bypass door is not in contact with the regulation member. Therefore, it is difficult to stably maintain the stop position of the cold air bypass door between the fully closed state and the fully open state. In other words, an error is likely to occur in the stop position of the cold air bypass door, and it has been difficult to stably adjust the amount of cold air flowing through the bypass passage.
  • vehicle air conditioners are in need of further improvement.
  • One disclosed purpose is to provide an air conditioning system for a vehicle that can stably adjust the flow rate of the conditioned air.
  • the vehicle air conditioner disclosed herein includes an air conditioning case in which an air passage through which conditioned air flowing toward the vehicle compartment flows is provided, and a plate-shaped door provided in the air passage and rotatable about a rotation axis.
  • a door facing surface capable of forming a gap through which the conditioned air can pass.
  • the door facing surface includes a first door facing surface and a second door facing surface.
  • the air conditioning case is provided so as to intersect with the first door facing surface and the second door facing surface, and includes a connecting surface that connects the first door facing surface and the second door facing surface.
  • the second door facing surface is located radially outward of the rotation axis with respect to the first door facing surface.
  • the vehicle air conditioner includes a first door facing surface and a second door facing surface, and the second door facing surface is located radially outward of the first door facing surface. positioned. Therefore, in the first intermediate state in which the door body faces the first door facing surface and in the second intermediate state in which the door body faces the second door facing surface, the door facing surface and the door body The size of the gap formed between and can be different. Therefore, in the open state of the door device, the flow rate of the conditioned air can be adjusted by using at least one of the two states having different opening degrees, the first intermediate state and the second intermediate state. Therefore, it is possible to provide a vehicle air conditioner capable of stably adjusting the flow rate of the conditioned air.
  • FIG. 1 It is sectional drawing which shows the internal structure of a vehicle air conditioner. It is a block diagram which shows the positional relationship of each opening part in an air conditioning case. It is an enlarged view showing a warm air mixed door in a fully closed state. It is an enlarged view showing a warm air mix door in a fully opened state. It is an enlarged view which shows the warm air mix door of a 1st intermediate state. It is an enlarged view which shows the warm air mix door of a 2nd intermediate state. It is an enlarged view which shows the rotation distance from the 1st intermediate state of a warm air mix door. It is a block diagram regarding control of a vehicle air conditioner. It is an enlarged view which shows the warm air mix door of the 1st intermediate state in 2nd Embodiment.
  • a vehicle air conditioner 1 is mounted on a vehicle.
  • the vehicle is, for example, an automobile equipped with a gasoline-powered engine.
  • an electric vehicle equipped with a traveling motor or a hybrid vehicle equipped with both an engine and a motor can be adopted.
  • the vehicle air conditioner 1 includes an air blowing unit that blows air and an air conditioning unit that adjusts the air temperature.
  • the vehicle air conditioner 1 is a device that adjusts the temperature of the taken-in air and blows it out into the vehicle interior.
  • the vehicle air conditioner 1 is a device that performs an air conditioning operation such as a heating operation, a cooling operation, and a dehumidifying operation of the vehicle interior.
  • the vehicle air conditioner 1 includes an air conditioning case 2 in which an air passage 2a through which air flows is formed.
  • An evaporator 6, a heater core 7, and a heater device 8 are housed inside the air conditioning case 2.
  • the heater core 7 is located downstream of the evaporator 6 in the flow of conditioned air.
  • the heater device 8 is located downstream of the heater core 7 in the flow of conditioned air.
  • the evaporator 6 is a heat exchanger in which a refrigerant flows, and the heat of vaporization when the refrigerant vaporizes from a liquid to a gas is removed from the surrounding air to cool the air.
  • the evaporator 6 provides an example of a cooler that generates cold air.
  • the heater core 7 is a heat exchanger in which high-temperature engine cooling water flows, and heats the surrounding air by using the heat of the engine cooling water.
  • the heater core 7 provides an example of a heater that generates warm air.
  • various heating devices such as an electric heater and a combustion heater can be used.
  • the heater device 8 provides an example of a heater that generates warm air.
  • the vehicle air conditioner 1 can perform air conditioning operation for passengers seated in the front seats.
  • the vehicle air conditioner 1 is provided with a defroster opening portion 21 for sucking the conditioned air blown to the front window of the vehicle into the duct.
  • the conditioned air sucked from the defroster opening 21 is blown out from the defroster outlet through the duct to the inside of the vehicle compartment of the front window.
  • the vehicle air conditioner 1 includes a face opening portion 31 for sucking the conditioned air blown toward the upper front part of the front seat into the duct.
  • the conditioned air sucked from the face opening 31 is blown into the vehicle compartment from the face outlet through the duct.
  • the vehicle air conditioner 1 includes a foot opening 41 for sucking the conditioned air blown out to the lower front portion of the front seat into the duct.
  • the conditioned air sucked from the foot opening 41 is blown into the vehicle compartment from the foot outlet through the duct.
  • the vehicle air conditioner 1 can perform air conditioning operation for passengers sitting in the rear seats.
  • the vehicle air conditioner 1 includes a rear face opening 131 for sucking the conditioned air blown out to the front upper part of the rear seat into the duct.
  • the conditioned air sucked from the rear face opening 131 passes through the duct and is blown out from the rear face outlet.
  • the vehicle air conditioner 1 includes a rear foot opening 141 for sucking the conditioned air blown out to the lower front portion of the rear seat into the duct.
  • the conditioned air sucked from the rear foot opening 141 is blown out from the rear foot outlet through the duct.
  • the air passage 2a includes a first cold air passage 15a, a second cold air passage 15b, a first warm air passage 16a, and a second warm air passage 16b.
  • the first cold air passage 15a and the second cold air passage 15b are passages for flowing the conditioned air without passing through the heater core 7 and the heater device 8, and the cold air cooled by the evaporator 6 passes through. ..
  • the first warm air passage 16a and the second warm air passage 16b are passages for flowing conditioned air through the heater core 7 and the heater device 8, and the warm air heated by the heater core 7 and the heater device 8 is It will pass.
  • the warm air flowing through the second warm air passage 16b is heated by both the heater core 7 and the heater device 8.
  • the warm air flowing through the second warm air passage 16b is likely to have a higher temperature than the warm air flowing through the first warm air passage 16a.
  • Each of the passages 15a, 15b, 16a, 16b is provided in the order of the first cool air passage 15a, the first warm air passage 16a, the second warm air passage 16b, and the second cool air passage 15b from the top in the vertical direction.
  • a mixing space 17 for mixing cold air and warm air is formed on the downstream side of each passage 15a, 15b, 16a, 16b.
  • the temperature of the conditioned air becomes a temperature between the temperature of the cold air and the temperature of the hot air by mixing the cold air and the hot air.
  • the temperature of the conditioned air in the mixing space 17 is not uniform.
  • the temperature tends to be low at a position near the first cold air passage 15a and the second cold air passage 15b.
  • the temperature tends to be high at a position close to the first warm air passage 16a and the second warm air passage 16b.
  • the warm air and the cold air are more mixed, and the temperature of the conditioned air tends to approach a uniform temperature.
  • the mixing space 17 is divided into upper and lower parts by a warm air mixing door 45.
  • a space above the warm air mixing door 45 is an upper mixing space 17a.
  • the space below the warm air mixing door 45 is the lower mixing space 17b.
  • the upper mixing space 17a and the lower mixing space 17b are connected by a mixing passage 18.
  • the warm air mix door 45 is provided in the mixing passage 18.
  • the warm air mix door 45 provides an example of a door device.
  • the upper mixing space 17a is a space for actively mixing the cold air passing through the first cold air passage 15a and the hot air passing through the first warm air passage 16a.
  • the upper mixing space 17a communicates with the defroster opening 21 and the face opening 31.
  • a warm air tunnel 50 is provided in the upper mixing space 17a.
  • the warm air tunnel 50 is a member that guides the warm air that has passed through the first warm air passage 16a toward the defroster opening 21 while maintaining a high temperature state.
  • the defroster opening 21 provides an example of an upper opening.
  • the face opening 31 provides an example of an upper opening.
  • the lower mixing space 17b is a space for actively mixing the cold air passing through the second cold air passage 15b and the warm air passing through the second warm air passage 16b.
  • the lower mixing space 17b communicates with the foot opening 41, the rear face opening 131, and the rear foot opening 141.
  • the foot opening 41 provides an example of a lower opening.
  • the rear face opening 131 provides an example of a lower opening.
  • the rear foot opening 141 provides an example of a lower opening.
  • the vehicle air conditioner 1 includes a first air mix door 12a and a second air mix door 12b.
  • the first air mix door 12a and the second air mix door 12b are located downstream of the evaporator 6 and upstream of the heater core 7 and the heater device 8.
  • the second air mix door 12b is located below the first air mix door 12a.
  • the first air mix door 12a By closing the first cold air passage 15a, the first air mix door 12a can be in a state where the conditioned air does not pass through the first cold air passage 15a but passes through the first warm air passage 16a.
  • the first air mix door 12a can close the first warm air passage 16a so that the conditioned air does not pass through the first warm air passage 16a but passes through the first cold air passage 15a.
  • the first air mix door 12a opens the first cold air passage 15a and the first warm air passage 16a at the same time so that the conditioned air passes through the first cold air passage 15a and the first warm air passage 16a at the same time. can do.
  • the air volume of the required temperature is adjusted by adjusting the air volume of the cool air and the air volume of the warm air as a whole. Can be wind.
  • the second air mix door 12b can close the second cold air passage 15b so that the conditioned air does not pass through the second cold air passage 15b but passes through the second warm air passage 16b.
  • the second air mix door 12b can close the second warm air passage 16b so that the conditioned air does not pass through the second warm air passage 16b but passes through the second cool air passage 15b.
  • the second air mix door 12b opens the second cold air passage 15b and the second warm air passage 16b at the same time so that the conditioned air passes through the second cold air passage 15b and the second warm air passage 16b at the same time. can do.
  • the air volume of the required temperature is adjusted by adjusting the air volume of the cool air and the air volume of the warm air as a whole. Can be wind.
  • FIG. 2 is a front view showing a schematic configuration of the air conditioning case 2, and is a schematic representation of the defroster opening 21, the face opening 31, the foot opening 41, the rear face opening 131, and the rear foot opening 141 in the air conditioning case 2. Shows the positional relationship of.
  • the face opening 31 includes a center face opening 31a and a side face opening 31b.
  • the center face opening 31a is an opening through which the conditioned air blown from the center of the passenger compartment toward the upper part of the front seat flows.
  • the center face opening 31a is a center face suction port that sucks in the conditioned air flowing toward the center face blowing port.
  • the center face openings 31a are provided at two locations on the air conditioning case 2.
  • the two center face openings 31a are arranged adjacent to each other in the left-right direction.
  • the side face opening 31b is an opening through which the conditioned air blown from the side of the vehicle interior toward the upper part of the front seat flows.
  • the side face opening 31b is a side face suction port that sucks in the conditioned air flowing toward the side face outlet.
  • the side face openings 31b are provided at two locations on the air conditioning case 2.
  • the two side face openings 31b are arranged on both outer sides in the direction in which the two center face openings 31a are arranged.
  • the face opening 31 includes four openings arranged side by side in the left-right direction. Of the four aligned openings, the two openings located inside are the center face openings 31a, and the two openings located outside are the side face openings 31b.
  • the face opening 31 does not have to be composed of four openings.
  • only one opening may be provided, and the inside of the opening may be divided into a plurality of openings to send the conditioned air to the center face outlet and the side face outlet.
  • the face openings 31 may be composed of fewer than four openings.
  • four openings arranged side by side in the left-right direction are provided in two steps in the vertical direction, and eight openings are used to finely adjust the air volume and direction of the conditioned air blown out from the center face outlet and the side face outlets. It may be possible.
  • the face openings 31 may be composed of more than four openings.
  • the foot openings 41 are provided in the lower part of the air conditioning case 2 and are provided at one location on each of the left side surface and the right side surface that form the left and right side surfaces of the air conditioning case 2.
  • the rear face opening 131 is provided in the lower part of the air conditioning case 2 and near the center of the air conditioning case 2 including the center position in the left-right direction.
  • the rear foot openings 141 are provided in two places on the lower surface of the air conditioning case 2 so as to be separated from each other in the left-right direction. In other words, in the air conditioning case 2, the rear foot opening 141 is formed closer to the center in the left-right direction than the foot opening 41. Further, a rear face opening 131 is formed closer to the center in the left-right direction than the rear foot opening 141.
  • the rear face opening 131 faces the second cold air passage 15b in the front-rear direction and is provided at substantially the same height.
  • the rear face opening 131 does not face the second warm air passage 16b in the front-rear direction, and is provided at a position displaced downward from the second warm air passage 16b. Therefore, the rear face opening 131 has a configuration in which it is easier to positively suck in cold air rather than warm air.
  • the vehicle air conditioner 1 includes a defroster door 22 that opens and closes the defroster opening 21.
  • the defroster door 22 can be switched between two states, a closed state in which the defroster opening 21 is closed and an open state in which the defroster opening 21 is opened.
  • the vehicle air conditioner 1 includes a face door 32 that opens and closes the face opening 31.
  • the face door 32 can be switched between two states, a closed state in which the face opening 31 is closed and an open state in which the face opening 31 is opened. In the open state of the face door 32, there are a fully open state in which the air conditioning air is sucked into the face opening 31 most, and a small open state in which the air conditioning air sucked into the face opening 31 is less than the fully opened state and more than the closed state. I have it.
  • the vehicle air conditioner 1 includes a rear face door 132 that opens and closes the rear face opening 131.
  • the rear face door 132 is interlocked with the face door 32, and is configured such that the opening degree of the face door 32 and the opening degree of the rear face door 132 are equal. However, the opening degree may be controlled independently of each other without interlocking the face door 32 and the rear face door 132.
  • the vehicle air conditioner 1 includes a foot door 42 that opens and closes the foot opening 41.
  • the foot door 42 can be switched between two states, a closed state in which the foot opening 41 is closed and an open state in which the foot opening 41 is opened. In the open state of the foot door 42, there are a fully open state in which the conditioned air is sucked into the foot opening 41 most, and a small open state in which the conditioned air is sucked into the foot opening 41 is less than the fully opened state and more than the closed state.
  • the vehicle air conditioner 1 includes a rear foot door 142 that opens and closes the rear foot opening 141.
  • the rear foot door 142 is interlocked with the foot door 42, and is configured such that the opening degree of the foot door 42 and the opening degree of the rear foot door 142 are equal. However, the opening degree may be controlled independently of each other without interlocking the foot door 42 and the rear foot door 142.
  • the face outlet, the rear face outlet, the foot outlet, and the rear foot outlet are provided with openable shutters.
  • the shutter is a component that adjusts the volume and direction of the conditioned air blown from the air outlet by manual operation by the passenger. For example, when the passenger closes the shutter of the face outlet, the conditioned air is not blown from the face outlet regardless of the opening/closing control of the face door 32.
  • the shutter is sometimes called a grill.
  • the vehicle air conditioner 1 includes a warm air mix door 45 that opens and closes the mixing passage 18.
  • the warm air mix door 45 can be switched between two states: a closed state in which the mixing passage 18 is closed and an open state in which the mixing passage 18 is opened. In the open state of the warm air mix door 45, the fully open state in which the conditioned air that can pass through the mixing passage 18 is the largest and the small open state in which the conditioned air that can pass through the mixing passage 18 is less than the fully opened state and more than the closed state And are included.
  • the warm air mix door 45 controls the temperature of the conditioned air in the upper mixing space 17a and the temperature of the conditioned air in the lower mixing space 17b by adjusting the opening of the mixing passage 18.
  • FIG. 3 which is an enlarged view of the portion surrounded by the alternate long and short dash line in FIG. 1, the foot door 42 and the warm air mix door 45 are continuously and integrally formed.
  • the warm air mix door 45 is a plate door in which the door body 44 rotates around the rotation shaft 43.
  • the door body 44 is a plate-shaped component provided so as to extend along the radial direction of the rotating shaft 43, and has a plurality of irregularities.
  • the warm air mix door 45 includes a rubber packing at the tip of the door body 44.
  • the warm air mix door 45 includes guide ribs extending in a direction intersecting with the door body 44.
  • the air conditioning case 2 has a door facing surface 70 that faces the warm air mix door 45 at a predetermined opening between the fully closed state and the fully open state.
  • the door facing surface 70 has a circumferential length of the rotating shaft 43 that is larger than the thickness dimension of the tip portion of the door body 44.
  • the circumferential length of the rotating shaft 43 in the door facing surface 70 will be described below.
  • a circle passing through the end of the door facing surface 70 closer to the rotation shaft 43 is set as a reference circle.
  • An intersection of the reference circle and a straight line connecting the end of the door facing surface 70 farther from the rotation shaft 43 and the center of the rotation shaft 43 is defined as an intersection.
  • the circumferential length of the rotating shaft 43 in the door facing surface 70 is the length on the circumference of the reference circle, and is the length from the end of the door facing surface 70 through which the reference circle passes to the intersection. ..
  • the door facing surface 70 is a surface that extends at an angle closer to the circumferential direction of the rotary shaft 43 than the radial direction of the rotary shaft 43.
  • a gap is formed between the door facing surface 70 and the tip portion of the door body 44. ..
  • a gap can be formed between the door facing surface 70 and the tip portion of the door body 44.
  • the conditioned air can flow through a gap formed between the door facing surface 70 and the door body 44.
  • the door facing surface 70 includes a first door facing surface 71 and a second door facing surface 72.
  • the second door facing surface 72 is located radially outside the rotating shaft 43 with respect to the first door facing surface 71. In other words, the distance from the second door facing surface 72 to the rotating shaft 43 is larger than the distance from the first door facing surface 71 to the rotating shaft 43. Therefore, the air conditioning case 2 is in a state in which a step is formed by the first door facing surface 71 and the second door facing surface 72.
  • the circumferential length W1a of the first door facing surface 71 and the circumferential length W2a of the second door facing surface 72 are larger than the thickness dimension of the tip portion of the door body 44.
  • the circumferential length W2a of the second door facing surface 72 is greater than the circumferential length W1a of the first door facing surface 71.
  • the inclination angle of the first door facing surface 71 is closer to the circumferential direction of the rotating shaft 43 than the inclination angle of the second door facing surface 72.
  • the air conditioning case 2 includes a connecting surface 81 that connects the first door facing surface 71 and the second door facing surface 72.
  • the inclination angle of the connecting surface 81 is closer to the radial direction of the rotary shaft 43 than the circumferential direction of the rotary shaft 43.
  • the connecting surface 81 is a surface that intersects the first door facing surface 71 and the second door facing surface 72 and extends.
  • the part providing the first door facing surface 71 and the part providing the second door facing surface 72 are different parts.
  • the second door facing surface 72 and the connecting surface 81 are formed as a single continuous component.
  • the first door facing surface 71 is formed.
  • the second door facing surface 72 have an appropriate positional relationship.
  • the first door facing surface 71 and the second door facing surface 72 do not have to be separate parts.
  • the first door facing surface 71 and the second door facing surface 72 may be formed as one continuous component. According to this, it is easy to prevent the component providing the second door facing surface 72 from falling off from the air conditioning case 2 providing the first door facing surface 71 due to vibrations during traveling of the vehicle. Further, the number of parts of the vehicle air conditioner 1 can be reduced.
  • first door facing surface 71 In the first door facing surface 71, one end is continuous with the connecting surface 81, and the other end is continuous with a part of the passage surface forming the first warm air passage 16a.
  • the inclination angle of the first door facing surface 71 is closer to the circumferential direction of the rotating shaft 43 than the inclination angle of the passage surface.
  • the second door facing surface 72 In the second door facing surface 72, one end is continuous with the connecting surface 81, and the other end is continuous with a part of the wall surface forming the upper mixing space 17a.
  • the warm air mix door 45 in FIG. 3 is in a fully closed state in which the door body 44 is rotated to the fully closed position.
  • the fully closed position is a position where the packing forming the tip of the door body 44 comes into contact with the contact surface 75 which is a part of the air conditioning case 2.
  • no gap is formed between the door body 44 and the contact surface 75. Therefore, a flow path for conditioned air is not formed between the door body 44 and the contact surface 75, and conditioned air cannot flow between the upper mixing space 17a and the lower mixing space 17b. Therefore, the warm air flowing through the first warm air passage 16a and the warm air flowing through the second warm air passage 16b are not mixed.
  • the warm air flowing through the first warm air passage 16a is sucked into the defroster opening 21 and the face opening 31 provided in the upper portion of the air conditioning case 2.
  • the warm air flowing through the second warm air passage 16b is sucked into the foot opening 41, the rear face opening 131, and the rear foot opening 141 provided in the lower portion of the air conditioning case 2.
  • the warm air mix door 45 in FIG. 4 is in a fully opened state in which the door body 44 is rotated to the fully opened position.
  • the fully open position is a position where the packing forming the tip of the door body 44 does not contact the air conditioning case 2 and the flow resistance of the door body 44 is small.
  • a large gap is formed between the door body 44 and the door facing surface 70. Therefore, the conditioned air can pass between the door body 44 and the door facing surface 70.
  • conditioned air can flow back and forth between the upper mixing space 17a and the lower mixing space 17b, and the warm air flowing through the first warm air passage 16a and the warm air flowing through the second warm air passage 16b are separated from each other. Mixed.
  • the warm air which has a higher temperature than the cold air, has a lower density than the cold air, and therefore easily flows into the upper mixing space 17a from the lower mixing space 17b.
  • a part of the warm air flowing through the second warm air passage 16b is sucked into the defroster opening 21 and the face opening 31 provided on the upper portion of the air conditioning case 2.
  • the temperature of the warm air flowing through the second warm air passage 16b is made higher than the temperature of the warm air flowing through the first warm air passage 16a. be able to. Therefore, the temperature of the conditioned air sucked into the defroster opening 21 and the face opening 31 can be made higher than that in the fully closed state of the warm air mix door 45.
  • the warm air mix door 45 in FIG. 5 is in the first intermediate state in which it is rotated to the first intermediate position.
  • the first intermediate position is a position where the packing forming the tip portion of the door body 44 faces the first door facing surface 71.
  • a slight gap is formed between the door body 44 and the first door facing surface 71. Therefore, the conditioned air can pass between the door body 44 and the first door facing surface 71.
  • a slight amount of conditioned air can flow back and forth between the upper mixing space 17a and the lower mixing space 17b, and the warm air flowing through the first warm air passage 16a and the second warm air passage 16b flowed. Mixed with warm air.
  • the circumferential length W1a of the first door facing surface 71 is larger than the thickness dimension of the tip portion of the door body 44. Therefore, there is a first intermediate position other than the position where the center of the first door facing surface 71 and the tip portion of the door body 44 face each other. In other words, even when the stop position of the front end portion of the door body 44 is slightly displaced from the center of the first door facing surface 71 in the circumferential direction, it is opposed to the center of the first door facing surface 71. The stop position where the gap amount is about the same as is the first intermediate position.
  • the warm air mix door 45 in FIG. 6 is in the second intermediate state in which it is rotated to the second intermediate position.
  • the second intermediate position is a position where the packing forming the tip portion of the door body 44 faces the second door facing surface 72.
  • a gap is formed between the door body 44 and the second door facing surface 72. Therefore, the conditioned air can pass between the door body 44 and the second door facing surface 72.
  • conditioned air can flow back and forth between the upper mixing space 17a and the lower mixing space 17b, and the warm air flowing through the first warm air passage 16a and the warm air flowing through the second warm air passage 16b. And are mixed.
  • the size of the gap formed between the door body 44 and the second door facing surface 72 in the second intermediate state is formed between the door body 44 and the first door facing surface 71 in the first intermediate state. Larger than the size of the gap. Therefore, in the second intermediate state, more warm air than in the first intermediate state can be mixed between the upper mixing space 17a and the lower mixing space 17b.
  • the mixing between the upper mixing space 17a and the lower mixing space 17b is most actively performed in the fully open state, and subsequently, the air volume mixed in the order of the second intermediate state and the first intermediate state decreases, and the fully closed state. Then, it will not be mixed.
  • the circumferential length W2a of the second door facing surface 72 is larger than the thickness dimension of the tip portion of the door body 44. Therefore, there is a second intermediate position other than the position where the center of the second door facing surface 72 and the tip portion of the door body 44 face each other. In other words, even when the stop position of the front end portion of the door body 44 is slightly displaced from the center of the second door facing surface 72 in the circumferential direction, it is opposed to the center of the second door facing surface 72.
  • the stop position where the gap amount is about the same as is the second intermediate position.
  • FIG. 7 shows three stop positions of the warm air mix door 45, that is, a fully closed position, a first intermediate position, and a fully opened position at the same time.
  • the rotation distance Lc1 from the first intermediate position to the fully closed position is smaller than the rotation distance Lo1 from the first intermediate position to the fully open position. Therefore, the rotation can be completed more quickly when the door main body 44 is rotated from the first intermediate position to the fully closed position than when the door main body 44 is rotated from the first intermediate position to the fully open position. it can.
  • the turning distance Lc1 may be larger than the turning distance Lo1.
  • the turning distance Lc1 may be the same as the turning distance Lo1.
  • the contact surface 75 is arranged closer to the first door facing surface 71 than the second door facing surface 72. Therefore, between the fully closed position and the fully open position, the first intermediate position is passed and then the second intermediate position is passed. On the other hand, between the fully open position and the fully closed position, the first intermediate position is passed after the second intermediate position is passed. Therefore, the amount of air that can pass through the mixing passage 18 can be adjusted stepwise between the fully closed state and the fully open state.
  • the contact surface 75 may be disposed at a position closer to the second door facing surface 72 than the first door facing surface 71.
  • FIG. 8 is a diagram showing a control system in the vehicle air conditioner 1.
  • the control unit (ECU) in this specification may also be called an electronic control unit (Electronic Control Unit).
  • the controller is provided by (a) an algorithm as a plurality of logics called if-then-else form, or (b) a trained model tuned by machine learning, for example, an algorithm as a neural network.
  • the control device is provided by a control system including at least one computer.
  • the control system may include multiple computers linked by a data communication device.
  • the computer includes at least one hardware processor that is a hardware processor.
  • the hardware processor can be provided by the following (i), (ii), or (iii).
  • the hardware processor may be at least one processor core that executes a program stored in at least one memory.
  • the computer is provided with at least one memory and at least one processor core.
  • the processor core is called CPU: Central Processing Unit, GPU: Graphics Processing Unit, RISC-CPU, etc.
  • the memory is also called a storage medium.
  • a memory is a non-transitional and tangible storage medium that stores "programs and/or data" readable by a processor in a non-transient manner.
  • the storage medium is provided by a semiconductor memory, a magnetic disk, an optical disk, or the like.
  • the program may be distributed by itself or as a storage medium in which the program is stored.
  • the hardware processor may be a hardware logic circuit.
  • the computer is provided by a digital circuit including a large number of programmed logic units (gate circuits).
  • the digital circuit is a logic circuit array, for example, ASIC: Application-Specific Integrated Circuit, FPGA: Field Programmable Gate Array, PGA: Programmable Gate Array, CPLD: Complex Programmable, etc.
  • the digital circuit may include a memory that stores programs and/or data.
  • the computer may be provided by analog circuitry.
  • the computer may be provided by a combination of digital circuits and analog circuits.
  • the (iii) hardware processor may be a combination of the above (i) and the above (ii).
  • (I) and (ii) are arranged on different chips or on a common chip. In these cases, the part (ii) is also called an accelerator.
  • control device The control device, signal source, and controlled object provide various elements. At least some of these elements can be referred to as blocks, modules, or sections. Furthermore, elements included in the control system are referred to as functional means only if they are intentional.
  • control unit and its method described in this disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be.
  • control unit and the method described in this disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • controller and techniques described in this disclosure combine a processor and memory programmed to perform one or more functions with a processor configured with one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
  • an air conditioning control unit 90 that controls the vehicle air conditioning system 1 is connected to an air conditioning sensor 91 and an air conditioning switch 92.
  • the air conditioning sensor 91 is a sensor including an outside air temperature sensor, an inside air temperature sensor, a solar radiation amount sensor, an evaporator temperature sensor, and the like.
  • the outside air temperature sensor is a sensor that measures the temperature outside the vehicle.
  • the inside air temperature sensor is a sensor that measures the temperature inside the vehicle interior, and includes two temperature sensors, a temperature sensor that measures the inside air temperature in the front of the vehicle interior and a temperature sensor that measures the inside air temperature in the rear of the vehicle interior.
  • Have The solar radiation amount sensor is a sensor that measures the amount of solar radiation received by the vehicle.
  • the evaporator temperature sensor is a temperature sensor that measures the surface temperature of the evaporator 6.
  • the air conditioning control unit 90 acquires various information used for air conditioning from the air conditioning sensor 91.
  • the air-conditioning sensor 91 includes a shutter sensor that detects the open/closed state of a shutter provided at the air-conditioning air outlet.
  • a shutter sensor for example, a touch sensor capable of detecting the presence or absence of contact can be used. In this case, when the shutter is closed, the touch sensor detects that the touch sensor is in contact, and when the shutter is open, the touch sensor detects that the touch sensor is not in contact, thereby detecting the shutter open/closed state. You can
  • the air conditioning switch 92 is a switch operated by an occupant, and includes an on/off switching switch for air conditioning operation, a set temperature switching switch, a switch for switching between inside air mode and outside air mode, and the like.
  • the air conditioning switch 92 includes a switch that allows an occupant to select which of a plurality of blowing modes is to be used for the air conditioning operation. However, when the air-conditioning operation is performed in the automatic mode, the blowing mode or the like is not switched by the operation of the passenger, but is automatically switched.
  • the air conditioning control unit 90 performs the air conditioning operation based on the air conditioning settings such as the temperature and the air volume set by the occupant using the air conditioning switch 92.
  • the air conditioning control unit 90 is connected to the first air mix door 12a and the second air mix door 12b.
  • the air conditioning control unit 90 adjusts the amount of cold air flowing through the first cold air passage 15a and the amount of warm air flowing through the first warm air passage 16a by controlling the opening of the first air mix door 12a.
  • the air conditioning control unit 90 adjusts the amount of cold air flowing through the second cold air passage 15b and the amount of warm air flowing through the second warm air passage 16b by controlling the opening of the second air mix door 12b.
  • the air conditioning control unit 90 is connected to the defroster door 22, the face door 32, and the foot door 42.
  • the air conditioning control unit 90 adjusts the amount of conditioned air sucked into the defroster opening 21 by switching the opening and closing of the defroster door 22.
  • the air conditioning control unit 90 adjusts the amount of conditioned air sucked into the face opening 31 by switching the opening and closing of the face door 32.
  • the air conditioning control unit 90 adjusts the amount of conditioned air sucked into the foot opening 41 by switching the opening and closing of the foot door 42.
  • the air conditioning control unit 90 is connected to the rear face door 132 and the rear foot door 142.
  • the air conditioning control unit 90 adjusts the amount of conditioned air sucked into the rear face opening 131 by switching the opening and closing of the rear face door 132.
  • the air conditioning control unit 90 adjusts the amount of conditioned air sucked into the rear foot opening 141 by switching the opening and closing of the rear foot door 142.
  • the air conditioning control unit 90 is connected to the warm air mix door 45.
  • the air conditioning control unit 90 adjusts the amount of conditioned air including the warm air flowing through the mixing passage 18 by controlling the opening degree of the warm air mix door 45.
  • the air conditioning control unit 90 can switch the opening degree of the warm air mix door 45 into four stages of a fully closed state, a first intermediate state, a second intermediate state, and a fully opened state.
  • the first intermediate state with the smallest opening may be used instead of the fully closed state.
  • the same vehicle air-conditioning system 1 is used for a vehicle type that is switched to three stages of a fully closed state, a first intermediate state, and a fully opened state, and a vehicle type that is switched to three stages of a fully closed state, a second intermediate state, and a fully opened state. You may make it use properly by using.
  • the vehicle air conditioner 1 has five modes as a blowout port mode: a defroster mode, a face mode, a foot mode, a bi-level (B/L) mode, and a foot defroster (F/D) mode.
  • a defroster mode a face mode
  • a foot mode a bi-level (B/L) mode
  • a foot defroster (F/D) mode a foot defroster mode
  • the types of outlet modes are not limited to the above modes.
  • Defroster mode is a mode that blows out air conditioning air from the defroster outlet.
  • the defroster door 22 is opened, and the face door 32, the foot door 42, the rear face door 132, and the rear foot door 142 are closed. Further, since the warm air that has flowed through the second warm air passage 16b flows into the upper mixing space 17a that communicates with the defroster opening 21, the warm air mix door 45 is fully opened.
  • the defroster mode is often used to eliminate fog on the front window.
  • Face mode is a mode in which air conditioning air is blown from the face outlet and the rear face outlet.
  • the face door 32 and the rear face door 132 are opened, and the defroster door 22, the foot door 42, and the rear foot door 142 are closed. Further, in order to reduce the temperature difference between the temperature of the conditioned air blown from the face outlet and the temperature of the conditioned air blown from the rear face outlet, the warm air mix door 45 is fully opened.
  • Face mode is often used during cooling operation. In the face mode, it is not always necessary to blow out the conditioned air from both the face outlet and the rear face outlet. For example, the conditioned air may be blown out only from the face outlet.
  • a ceiling blow-out port that blows air-conditioning air downward from the vicinity of the vehicle ceiling may be provided, and the air-conditioning wind may be blown out from the ceiling blowing port.
  • ⁇ Foot mode is a mode that blows out conditioned air mainly from the foot outlet and the rear foot outlet.
  • the foot door 42 and the rear foot door 142 are open.
  • the face door 32 and the rear face door 132 are in a closed state, and the defroster door 22 is in a small open state in which it is slightly opened.
  • the warm air flowing through the second warm air passage 16b is efficiently flowed to the lower mixing space 17b communicating with the foot opening 41, the warm air mix door 45 is fully closed.
  • the foot mode is often used during heating operation. In the foot mode, it is not always necessary to blow out the conditioned air from both the foot outlet and the rear foot outlet. For example, the conditioned air may be blown out only from the foot outlet.
  • the bi-level (B/L) mode is a mode in which approximately the same amount of conditioned air is blown out from each of the face outlet, the rear face outlet, the foot outlet, and the rear foot outlet.
  • the face door 32, the foot door 42, the rear face door 132, and the rear foot door 142 are open, and the defroster door 22 is closed. Further, since the warm air that has flowed through the second warm air passage 16b slightly flows into the upper mixing space 17a, the warm air mix door 45 is in the first intermediate state.
  • the bi-level (B/L) mode is often used during air conditioning operation at an intermediate temperature between cooling and heating.
  • the temperature of the conditioned air blown from the face outlet and the rear face outlet is made lower than the temperature of the conditioned air blown from the foot outlet and the rear foot outlet. In other words, it provides cool air to the upper body of the occupant and warm air to the feet of the occupant. This makes it easier for passengers to feel comfortable air conditioning.
  • it is necessary to maintain an appropriate temperature difference between the temperature of the conditioned air blown from the face outlet and the rear face outlet and the temperature of the conditioned air blown from the foot outlet and the rear foot outlet. is there.
  • the appropriate temperature difference is, for example, a temperature difference of about 10°C to 15°C.
  • the warm air mix door 45 may be in a state other than the first intermediate state.
  • the second intermediate state in which the mixing passage 18 is opened more than in the first intermediate state is set.
  • the temperature of the conditioned air blown from the face outlet is increased, and it is easy to appropriately maintain the temperature difference with the conditioned air blown from the foot outlet or the rear foot outlet.
  • the temperature of the conditioned air sucked into the foot opening 41 or the rear foot opening 141 is unlikely to rise. ..
  • the first intermediate state in which the mixing passage 18 is opened smaller than that in the second intermediate state is set.
  • the temperature of the air conditioning air blown from the face air outlet does not become too high, and it is easy to appropriately maintain the temperature difference from the air conditioning air blown from the foot air outlet or the rear foot air outlet.
  • the opening degree of the warm air mix door 45 may be controlled based on information other than the open/closed state of the rear face door 132. For example, when the shutter of the rear face outlet is closed by the operation of the occupant, the first intermediate state having a smaller opening than the second intermediate state may be set. Alternatively, in a vehicle model in which the rear face opening 131 is shielded by a shield plate in advance, the first intermediate state having a smaller opening than the second intermediate state may be used.
  • the foot defroster (F/D) mode is a mode in which approximately the same amount of conditioned air is blown from each of the foot outlet, the rear foot outlet, and the defroster outlet.
  • the foot door 42, the rear foot door 142, and the defroster door 22 are open, and the face door 32 and the rear face door 132 are closed. Further, since the warm air that has flowed through the second warm air passage 16b slightly flows toward the upper mixing space 17a, the warm air mix door 45 is in the first intermediate state.
  • the foot defroster (F/D) mode is often used when the windshield becomes cloudy during the heating operation in the foot mode.
  • the air conditioning control unit 90 can individually control the opening degrees of the defroster door 22, the face door 32, the foot door 42, the warm air mix door 45, the rear face door 132, and the rear foot door 142. When individually controlling, the rotation amount is adjusted by individually controlling the output of the servo motor.
  • the air conditioning control unit 90 can integrally control the opening degrees of the defroster door 22, the face door 32, the foot door 42, the warm air mix door 45, the rear face door 132, and the rear foot door 142 in an interlocking manner.
  • each door 22, 32, 42, 45, 132, 142 is connected in advance by an interlocking mechanism using gears or wires, and a stop position corresponding to each blowing mode is set. Thereby, for example, by controlling only the servomotor of the face door 32, the opening degree of the other doors 22, 42, 45, 132, 142 can be controlled in conjunction with the opening degree of the face door 32.
  • the vehicular air conditioner 1 includes the first door facing surface 71 and the second door facing surface 72 located outside the first door facing surface 71 in the radial direction of the rotating shaft 43. Equipped with. Therefore, the conditioned air can pass between the first intermediate state in which the door body 44 faces the first door facing surface 71 and the second intermediate state in which the door body 44 faces the second door facing surface 72. The size of the gap can be changed. Therefore, by appropriately selecting the first intermediate state with a small gap and the second intermediate state with a larger gap than the first intermediate state, the flow rate of the conditioned air can be stably adjusted.
  • the door facing surface 70 has a circumferential length larger than the thickness dimension of the tip portion of the door body 44. Therefore, even when the stop position of the door body 44 is slightly displaced due to the influence of the rotation control of the servo motor or the traveling vibration of the vehicle, the state where the door facing surface 70 and the door body 44 face each other is maintained. It's easy to do. Therefore, it is easy to stably maintain the size of the gap in the first intermediate state and the second intermediate state. Therefore, the flow rate of the conditioned air can be adjusted stably.
  • the stop position of the door body 44 varies. Occurs. Therefore, the fact that the door facing surface 70 has a circumferential length larger than the thickness dimension of the tip portion of the door body 44 means that the stop position of the door body 44 is controlled by the rotation control of the servo motor. Is particularly useful in
  • the air conditioning case 2 is provided so as to intersect with the first door facing surface 71 and the second door facing surface 72, and has a connecting surface 81 that connects the first door facing surface 71 and the second door facing surface 72. Therefore, it is easy to stably maintain the relative positional relationship between the first door facing surface 71 and the second door facing surface 72.
  • the circumferential length W2a of the second door facing surface 72 is larger than the circumferential length W1a of the first door facing surface 71.
  • the door facing surface 70 that is located farther from the rotation shaft 43 has a larger circumferential length of the door facing surface 70. Therefore, it is possible to secure a wide rotation angle that is allowed when the door body 44 is stopped at the second intermediate position.
  • the contact surface 75 is provided closer to the first door facing surface 71 than the second door facing surface 72.
  • the circumferential length of the rotating shaft 43 from the contact surface 75 to the first door facing surface 71 is smaller than the circumferential length of the rotating shaft 43 from the contact surface 75 to the second door facing surface 72.
  • the rotation from the fully closed position to the first intermediate position is easier to perform.
  • the door body 44 can be rotated from the fully closed position to the first intermediate position without passing through the second intermediate position. Therefore, compared with the case where the fully closed state and the second intermediate state are switched, the fully closed state and the first intermediate state are easily switched smoothly, and the flow rate of the conditioned air is easily adjusted stably.
  • the rotation distance Lc1 from the first intermediate position to the fully closed position is smaller than the rotation distance Lo1 from the first intermediate position to the fully open position. Therefore, it is easier to smoothly switch between the first intermediate state and the fully closed state, as compared with the case where the first intermediate state and the fully open state are switched. Therefore, it is easy to stably adjust the flow rate of the conditioned air by shortening the time during which the transition state of the conditioned air changes during the switching between the fully closed state and the first intermediate state.
  • the warm air mixing door 45 is provided in the mixing passage 18 that connects the upper mixing space 17a and the lower mixing space 17b. Therefore, the temperature difference between the temperature of the conditioned air in the upper mixing space 17a and the temperature of the conditioned air in the lower mixing space 17b can be adjusted by controlling the warm air mixing door 45. Therefore, in a mode such as the bi-level (B/L) mode, it is possible to appropriately maintain the temperature difference between the conditioned air blown from the face outlet and the conditioned air blown from the foot outlet.
  • B/L bi-level
  • the air conditioning control unit 90 determines the stop position of the door body 44 of the warm air mix door 45 based on the open/closed state of the rear face door 132 that opens/closes the rear face opening 131 that is more likely to take in cool air than warm air in the open state. Are in control.
  • the stop position of the door body 44 of the warm air mix door 45 is controlled based on the open/closed state of the door that tends to bias the temperature of the conditioned air in a predetermined space such as the lower mixing space 17b. Therefore, it is possible to control the warm air mix door 45 by predicting that the temperature of the conditioned air in the lower mixing space 17b is changed by switching the open/close state of the rear face door 132.
  • the temperatures of the face outlet and the foot outlet are the same. It is easy to keep the difference properly.
  • the second door facing surface 72 is formed as a different part from the first door facing surface 71. Therefore, by changing the shape of the component on which the second door facing surface 72 is formed, it is possible to change the air volume that the conditioned air can pass in the second intermediate state. Therefore, as compared with the case where the second door facing surface 72 is formed in an integral part that is continuous with the first door facing surface 71, the degree of freedom in shape of the second door facing surface 72 can be easily secured. Further, it is easy to provide the second door facing surface 72 having different specifications by changing the mounting position and the mounting angle when mounting the component on which the second door facing surface 72 is formed.
  • the shape of the second door facing surface 72 is optimized for each vehicle type, it is possible to use a component other than the component on which the second door facing surface 72 is formed as a common component. Therefore, it is easy to manufacture the vehicle air conditioner 1 in which the shape and position of the second door facing surface 72 are different.
  • warm air mix door 45 is formed integrally with the foot door 42
  • the axes of the warm air mix door 45 and the foot door 42 are separately provided, and they can be rotated independently of each other. Good.
  • the door facing surface 270 has a curved surface shape along the circumferential direction of the rotating shaft 43. Further, the door facing surface 270 includes a third door facing surface 273 in addition to the first door facing surface 271 and the second door facing surface 272.
  • the door facing surface 270 has a curved surface shape along the circumferential direction of the rotating shaft 43.
  • the distance from the tip portion of the door body 44 to the first door facing surface 271 is constant. ..
  • the two ends of the first door facing surface 271 are both provided on the same reference circle centered on the rotation shaft 43.
  • the two end portions of the second door facing surface 272 and the third door facing surface 273 are located on the respective reference circles.
  • the door facing surface 270 has three surfaces, a first door facing surface 271, a second door facing surface 272, and a third door facing surface 273.
  • the position where the tip portion of the door body 44 faces the first door facing surface 271 is the first intermediate position in the door body 44.
  • the position where the tip portion of the door body 44 faces the second door facing surface 272 is the second intermediate position in the door body 44.
  • the position where the front end portion of the door body 44 faces the third door facing surface 273 is the third intermediate position in the door body 44.
  • the air conditioning case 2 includes a first connecting surface 281 that connects the first door facing surface 271 and the second door facing surface 272.
  • the inclination angle of the first connecting surface 281 is closer to the radial direction of the rotary shaft 43 than the circumferential direction of the rotary shaft 43.
  • the first connection surface 281 is a surface that intersects the first door facing surface 271 and the second door facing surface 272 and extends.
  • the air conditioning case 2 includes a second connecting surface 282 that connects the second door facing surface 272 and the third door facing surface 273.
  • the inclination angle of the second connecting surface 282 is closer to the radial direction of the rotary shaft 43 than to the circumferential direction of the rotary shaft 43.
  • the second connecting surface 282 is a surface that extends so as to intersect the second door facing surface 272 and the third door facing surface 273.
  • the first connection surface 281 provides an example of the connection surface.
  • the first door facing surface 271 forming a part of the door facing surface 270 is provided at a position closest to the rotary shaft 43 in the radial direction of the rotary shaft 43.
  • the third door facing surface 273 forming a part of the door facing surface 270 is provided at a position farthest from the rotating shaft 43 in the radial direction of the rotating shaft 43.
  • the second door facing surface 272 forming a part of the door facing surface 270 is provided at a position between the first door facing surface 271 and the third door facing surface 273 in the radial direction of the rotating shaft 43.
  • the surface closest to the contact surface 75 is the first door facing surface 271, and the surface farthest from the contact surface 75 is , The third door facing surface 273.
  • the circumferential length of the door facing surface 270 is the length on the circumference of the reference circle, and is the creeping length from one end of the door facing surface 270 to the other end.
  • the circumferential length W1b of the first door facing surface 271 is greater than the circumferential length W2b of the second door facing surface 272.
  • the circumferential length W2b of the second door facing surface 272 is substantially equal to the circumferential length W3b of the third door facing surface 273. Therefore, the range of the rotation angle included in the first intermediate position is wider than the range of the rotation angle included in the second intermediate position and the range of the rotation angle included in the third intermediate position.
  • the door facing surface 270 has a curved surface shape extending along the circumferential direction of the rotating shaft 43. Therefore, even when the stop position of the door main body 44 varies within the rotation range of the first intermediate position, the gap formed between the first door facing surface 271 and the front end portion of the door main body 44 is reduced. The size can be kept constant. Therefore, as compared with the case where the door facing surface 270 does not extend along the circumferential direction of the rotating shaft 43, the amount of the conditioned air passing through the gap formed between the door facing surface 270 and the door body 44 can be accurately measured. Can be adjusted.
  • the door facing surface 270 is provided with a third door facing surface 273 located outside the second door facing surface 272 in the radial direction of the rotating shaft 43. Therefore, the flow rate of the conditioned air can be adjusted more finely than when the number of facing surfaces is two.
  • the circumferential length W1b of the first door facing surface 271 is greater than the circumferential length W2b of the second door facing surface 272. Therefore, the rotation range of the first intermediate position, which is the first intermediate state in which the gap formed between the door facing surface 270 and the door body 44 is the smallest, is wider than the second intermediate position and the third intermediate position. Can be secured. Therefore, although the servo motor is controlled so as to stop the door body 44 at the first intermediate position, the door body 44 stops at a position deviated from the first intermediate position due to too large a variation in the stop position. It is easy to control the situation that it ends up. Here, when the stop position of the door main body 44 deviates from the first intermediate position toward the fully open state, the door intermediate position becomes the second intermediate position.
  • the size of the gap formed between the door facing surface 270 and the door main body 44 is twice or more different between the first intermediate position and the second intermediate position. Therefore, in order to surely stop the door body 44 within the range of the first intermediate position, it is important to secure a large circumferential length W1b of the first door facing surface 271.
  • the door facing surface 270 is not limited to the case where the three surfaces of the first door facing surface 271, the second door facing surface 272, and the third door facing surface 273 are provided, and the number of facing surfaces facing the door body 44 is further defined. You may increase. According to this, as compared with the case where the door facing surface 270 has three surfaces, the flow rate of the conditioned air can be adjusted more finely.
  • the warm air mix door 45 has been described as an example of the door device having the plurality of facing surfaces of the first door facing surface 71 and the second door facing surface 72, but the warm air mix door 45 is described. It is also applicable to other doors. Further, the vehicle air conditioner 1 may be provided with a plurality of door devices such as the warm air mix door 45 having a plurality of intermediate states between the fully closed state and the fully opened state.
  • the vehicular air conditioner 1 having the first intermediate state and the second intermediate state is, for example, appropriately switched between four states of the fully closed state, the first intermediate state, the second intermediate state, and the fully open state.
  • the flow rate of the conditioned air can be finely controlled. Therefore, it is easy to provide appropriate air conditioning to the passenger.
  • the vehicle air conditioner 1 having the first intermediate state and the second intermediate state has, for example, a first mode in which three states of a fully closed state, a first intermediate state and a fully open state are switched, and a fully closed state and a second state. It is possible to select the second mode in which the three states of the intermediate state and the fully open state are switched. Therefore, the flow rate of the conditioned air can be controlled by switching which mode is used for various vehicles having different specifications. Therefore, the vehicle air conditioner 1 can be used as a common component for various vehicles having different specifications.
  • the disclosure in this specification and the drawings is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations on them based on them.
  • the disclosure is not limited to the combination of parts and/or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that may be added to the embodiments.
  • the disclosure includes omissions of parts and/or elements of the embodiments.
  • the disclosure encompasses replacements or combinations of parts and/or elements between one embodiment and another.
  • the disclosed technical scope is not limited to the description of the embodiments. It is to be understood that some technical scopes disclosed are shown by the description of the claims and include meanings equivalent to the description of the claims and all modifications within the scope.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

車両用空調装置は、空調ケース(2)と、回転軸(43)を中心に回動する板状のドア本体(44)を用いて空気通路(2a)を流れる空調風の量を調整するドア装置(45)とを備えている。車両用空調装置は、ドア本体の先端部分の厚さ寸法よりも大きな回転軸の周方向長さを有し、ドア本体の先端部分との間に空調風が通過可能な隙間を形成可能なドア対向面(70、270)を備えている。ドア対向面は、第1ドア対向面(71、271)と第2ドア対向面(72、272)とを備えている。空調ケースは、第1ドア対向面及び第2ドア対向面と交差して設けられ、第1ドア対向面と第2ドア対向面とを連結する連結面(81、281)を備えている。第2ドア対向面は、第1ドア対向面よりも回転軸に対して径方向の外側に位置している。

Description

車両用空調装置 関連出願の相互参照
 本出願は、2019年1月11日に出願された日本特許出願2019-3706号に基づくもので、ここにその記載内容を援用する。
 この明細書における開示は、車両用空調装置に関する。
 特許文献1は、複数のエアミックスドアを制御することで空調風の温度や風量を調整可能な車両用空調装置を開示している。エアミックスドアは、冷風通路の開度を調整する冷風エアミックスドアと温風通路の開度を調整する温風エアミックスドアとを備えている。冷風エアミックスドアは、冷風のバイパス通路を開閉する冷風バイパスドアを備えている。冷風バイパスドアは、平板状のものであって、回転軸と一体に回動する板ドアである。ここで、バイレベルモードにおいて、冷風バイパス通路を開くことで、フェイス吹き出し口から吹き出される空調風とフット吹き出し口から吹き出される空調風との温度差を大きくする構成が開示されている。従来技術として挙げられた先行技術文献の記載内容は、この明細書における技術的要素の説明として、参照により援用される。
特開2002-52917号公報
 従来技術の構成では、全閉状態と全開状態との2つの状態において、冷風バイパスドアは、空調ケースに設けられた規制部材と接触して停止位置を維持している。一方、全閉状態と全開状態との間の状態において、冷風バイパスドアは、規制部材と接触していない。このため、冷風バイパスドアの停止位置を全閉状態と全開状態との間の位置で安定して維持しにくい。言い換えると、冷風バイパスドアの停止位置に誤差が生じやすく、バイパス通路を流れる冷風の風量を安定して調整することが困難であった。上述の観点において、または言及されていない他の観点において、車両用空調装置にはさらなる改良が求められている。
 開示される1つの目的は、空調風の流量を安定して調整可能な車両用空調装置を提供することにある。
 ここに開示された車両用空調装置は、車室内に向かう空調風が流れる空気通路が内部に設けられている空調ケースと、空気通路に設けられ、回転軸を中心に回動する板状のドア本体を用いて空気通路を流れる空調風の量を調整するドア装置と、空気通路に設けられ、ドア本体の先端部分の厚さ寸法よりも大きな回転軸の周方向長さを有し、ドア本体の先端部分との間に空調風が通過可能な隙間を形成可能なドア対向面とを備える。ドア対向面は、第1ドア対向面と第2ドア対向面とを備える。空調ケースは、第1ドア対向面及び第2ドア対向面と交差して設けられ、第1ドア対向面と第2ドア対向面とを連結する連結面を備える。第2ドア対向面は、第1ドア対向面よりも回転軸に対して径方向の外側に位置している。
 開示された車両用空調装置によると、車両用空調装置は、第1ドア対向面と第2ドア対向面とを備え、第2ドア対向面は、第1ドア対向面よりも径方向の外側に位置している。このため、第1ドア対向面に対してドア本体を対向させた第1中間状態と、第2ドア対向面に対してドア本体を対向させた第2中間状態とにおいて、ドア対向面とドア本体との間に形成される隙間の大きさを異ならせることができる。したがって、ドア装置の開状態において、第1中間状態と第2中間状態との開度の異なる2つの状態の少なくともどちらかを用いて空調風の流量を調整することができる。よって、空調風の流量を安定して調整可能な車両用空調装置を提供することができる。
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
車両用空調装置の内部構成を示す断面図である。 空調ケースにおける各開口部の位置関係を示す構成図である。 全閉状態の温風ミックスドアを示す拡大図である。 全開状態の温風ミックスドアを示す拡大図である。 第1中間状態の温風ミックスドアを示す拡大図である。 第2中間状態の温風ミックスドアを示す拡大図である。 温風ミックスドアの第1中間状態からの回動距離を示す拡大図である。 車両用空調装置の制御に関するブロック図である。 第2実施形態における第1中間状態の温風ミックスドアを示す拡大図である。
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/または関連付けられる部分については、他の実施形態の説明を参照することができる。
 第1実施形態
 図1において、車両用空調装置1は、車両に搭載されている。車両は、例えばガソリン駆動のエンジンを搭載した自動車である。ただし、車両としては、走行用モータを搭載した電気自動車や、エンジンとモータの両方を搭載したハイブリッド自動車なども採用可能である。車両用空調装置1は、空気を送風する送風ユニットと空気温度を調整する空調ユニットを備えている。車両用空調装置1は、取り込まれた空気の温度を調整して車室内に吹き出す装置である。言い換えると、車両用空調装置1は、車室内の暖房運転や冷房運転や除湿運転などの空調運転を行う装置である。
 車両用空調装置1は、内部に空気が流れる空気通路2aが形成されている空調ケース2を備えている。空調ケース2の内部には、蒸発器6とヒータコア7とヒータ装置8とが収納されている。ヒータコア7は、空調風の流れにおいて蒸発器6よりも下流に位置している。ヒータ装置8は、空調風の流れにおいてヒータコア7よりも下流に位置している。蒸発器6は、内部に冷媒が流れており、冷媒が液体から気体に気化する際の気化熱を周囲の空気から奪うことで空気を冷却する熱交換器である。蒸発器6は、冷風を生成する冷却器の一例を提供する。ヒータコア7は、内部に高温のエンジン冷却水が流れており、エンジン冷却水の熱を用いて周囲の空気を加熱する熱交換器である。ヒータコア7は、温風を生成する加熱器の一例を提供する。ヒータ装置8としては、電気式ヒータや燃焼式ヒータなどの様々な加熱装置を利用可能である。ヒータ装置8としては、正の温度係数を有する電気式ヒータであるPTCヒータを用いることが好ましい。ヒータ装置8は、温風を生成する加熱器の一例を提供する。
 車両用空調装置1は、前席に着座している乗員に向けた空調運転を実施可能である。車両用空調装置1は、車両のフロントウィンドウに吹き出される空調風をダクト内に吸い込むためのデフロスタ開口部21を備えている。デフロスタ開口部21から吸い込まれた空調風は、ダクトを通ってデフロスタ吹き出し口からフロントウィンドウの車室内側に吹き出されることとなる。車両用空調装置1は、前席の前方上部に吹き出される空調風をダクト内に吸い込むためのフェイス開口部31を備えている。フェイス開口部31から吸い込まれた空調風は、ダクトを通ってフェイス吹き出し口から車室内に吹き出されることとなる。車両用空調装置1は、前席の前方下部に吹き出される空調風をダクト内に吸い込むためのフット開口部41を備えている。フット開口部41から吸い込まれた空調風は、ダクトを通ってフット吹き出し口から車室内に吹き出されることとなる。
 車両用空調装置1は、後席に着座している乗員に向けた空調運転を実施可能である。車両用空調装置1は、後席の前方上部に吹き出される空調風をダクト内に吸い込むためのリアフェイス開口部131を備えている。リアフェイス開口部131から吸い込まれた空調風は、ダクトを通ってリアフェイス吹き出し口から吹き出されることとなる。車両用空調装置1は、後席の前方下部に吹き出される空調風をダクト内に吸い込むためのリアフット開口部141を備えている。リアフット開口部141から吸い込まれた空調風は、ダクトを通ってリアフット吹き出し口から吹き出されることとなる。
 空気通路2aは、第1冷風通路15aと第2冷風通路15bと第1温風通路16aと第2温風通路16bとを備えている。第1冷風通路15aと第2冷風通路15bとは、ヒータコア7やヒータ装置8を経由せずに空調風を流すための通路であって、蒸発器6で冷却された冷風が通過することとなる。第1温風通路16aと第2温風通路16bとは、ヒータコア7やヒータ装置8を経由して空調風を流すための通路であって、ヒータコア7やヒータ装置8で加熱される温風が通過することとなる。第2温風通路16bを流れた温風は、ヒータコア7とヒータ装置8との両方によって加熱される。このため、第2温風通路16bを流れた温風は、第1温風通路16aを流れた温風よりも温度を高くしやすい。各通路15a、15b、16a、16bは、上下方向において上から第1冷風通路15a、第1温風通路16a、第2温風通路16b、第2冷風通路15bの順に並んで設けられている。
 各通路15a、15b、16a、16bの下流側には、冷風と温風とを混合させる混合空間17が形成されている。混合空間17においては、冷風と温風とが混合されることで、空調風の温度が冷風の温度と温風の温度との間の温度となる。ただし、混合空間17における空調風の温度は均一ではない。混合空間17において、第1冷風通路15aや第2冷風通路15bに近い位置は、温度が低くなりやすい。一方、混合空間17において、第1温風通路16aや第2温風通路16bに近い位置は、温度が高くなりやすい。また、各通路15a、15b、16a、16bから離れた下流に向かうほど、温風と冷風との混合が進んで空調風の温度が均一な温度に近づきやすい。
 混合空間17は、温風ミックスドア45によって上下に分割されている。混合空間17において、温風ミックスドア45よりも上方の空間は、上方混合空間17aである。混合空間17において、温風ミックスドア45よりも下方の空間は、下方混合空間17bである。上方混合空間17aと下方混合空間17bとは、混合通路18によってつながっている。温風ミックスドア45は、混合通路18に設けられている。温風ミックスドア45はドア装置の一例を提供する。
 上方混合空間17aは、第1冷風通路15aを通過した冷風と第1温風通路16aを通過した温風とを積極的に混合する空間である。上方混合空間17aは、デフロスタ開口部21およびフェイス開口部31と連通している。上方混合空間17aには、温風トンネル50が設けられている。温風トンネル50は、第1温風通路16aを通過した温風を温度の高い状態を維持しながらデフロスタ開口部21に向けて導く部材である。デフロスタ開口部21は、上方開口部の一例を提供する。フェイス開口部31は、上方開口部の一例を提供する。
 下方混合空間17bは、第2冷風通路15bを通過した冷風と第2温風通路16bを通過した温風とを積極的に混合する空間である。下方混合空間17bは、フット開口部41、リアフェイス開口部131およびリアフット開口部141と連通している。フット開口部41は、下方開口部の一例を提供する。リアフェイス開口部131は、下方開口部の一例を提供する。リアフット開口部141は、下方開口部の一例を提供する。
 車両用空調装置1は、第1エアミックスドア12aと第2エアミックスドア12bとを備えている。第1エアミックスドア12aと第2エアミックスドア12bとは、蒸発器6よりも下流であって、ヒータコア7やヒータ装置8よりも上流に位置している。第2エアミックスドア12bは、第1エアミックスドア12aよりも下方に位置している。
 第1エアミックスドア12aは、第1冷風通路15aを閉じることで、空調風が第1冷風通路15aを通過せず、第1温風通路16aを通過する状態とすることができる。あるいは、第1エアミックスドア12aは、第1温風通路16aを閉じることで、空調風が第1温風通路16aを通過せず、第1冷風通路15aを通過する状態とすることができる。第1エアミックスドア12aは、第1冷風通路15aと第1温風通路16aとを同時に一部分開くことで、空調風が第1冷風通路15aと第1温風通路16aとを同時に通過する状態とすることができる。この時、第1冷風通路15aを開く量と第1温風通路16aを開く量との割合を調整することで、全体として冷風の風量と温風の風量とを調整して必要な温度の空調風とすることができる。
 第2エアミックスドア12bは、第2冷風通路15bを閉じることで、空調風が第2冷風通路15bを通過せず、第2温風通路16bを通過する状態とすることができる。あるいは、第2エアミックスドア12bは、第2温風通路16bを閉じることで、空調風が第2温風通路16bを通過せず、第2冷風通路15bを通過する状態とすることができる。第2エアミックスドア12bは、第2冷風通路15bと第2温風通路16bとを同時に一部分開くことで、空調風が第2冷風通路15bと第2温風通路16bとを同時に通過する状態とすることができる。この時、第2冷風通路15bを開く量と第2温風通路16bを開く量との割合を調整することで、全体として冷風の風量と温風の風量とを調整して必要な温度の空調風とすることができる。
 図2は、空調ケース2の概略構成を示す正面図であって、空調ケース2におけるデフロスタ開口部21とフェイス開口部31とフット開口部41とリアフェイス開口部131とリアフット開口部141とのおおよその位置関係を示している。
 フェイス開口部31は、センターフェイス開口部31aとサイドフェイス開口部31bとを備えている。センターフェイス開口部31aは、車室内の中央部から前席の上部に向けて吹き出される空調風が流れる開口である。言い換えると、センターフェイス開口部31aは、センターフェイス吹き出し口に向けて流れる空調風を吸い込むセンターフェイス吸い込み口である。センターフェイス開口部31aは、空調ケース2の2箇所に設けられている。2つのセンターフェイス開口部31aは、左右方向に互いに隣り合って配置されている。
 サイドフェイス開口部31bは、車室内の側方部から前席の上部に向けて吹き出される空調風が流れる開口部である。言い換えると、サイドフェイス開口部31bは、サイドフェイス吹き出し口に向けて流れる空調風を吸い込むサイドフェイス吸い込み口である。サイドフェイス開口部31bは、空調ケース2の2箇所に設けられている。2つのサイドフェイス開口部31bは、2つ並んだセンターフェイス開口部31aの並び方向における両外側に配置されている。言い換えると、フェイス開口部31は、4つの開口部が左右方向に並んで構成されている。4つ並んだ開口部のうち内側に位置している2箇所の開口部がセンターフェイス開口部31aであり、外側に位置している2箇所の開口部がサイドフェイス開口部31bである。
 フェイス開口部31は、4つの開口部で構成されていなくてもよい。例えば、開口部を1つだけ設けて、開口部の内部を複数に仕切ることでセンターフェイス吹き出し口とサイドフェイス吹き出し口とのそれぞれの吹き出し口に空調風を送ってもよい。言い換えると、フェイス開口部31は、4つよりも少ない数の開口部で構成してもよい。あるいは、左右方向に並んだ4つの開口部を上下方向に2段設けて、8つの開口部を用いてセンターフェイス吹き出し口とサイドフェイス吹き出し口とから吹き出される空調風の風量や風向を細かく調整可能な構成としてもよい。言い換えると、フェイス開口部31は、4つよりも多い数の開口部で構成してもよい。
 フット開口部41は、空調ケース2の下部であって、空調ケース2の左右方向の側面を構成する左側面と右側面とのそれぞれに1箇所ずつ設けられている。リアフェイス開口部131は、空調ケース2の下部であって、空調ケース2の左右方向における真ん中の位置を含む中央寄りに設けられている。リアフット開口部141は、空調ケース2の下面において、左右方向に互いに離間して2箇所に設けられている。言い換えると、空調ケース2において、フット開口部41よりも左右方向の中央寄りにリアフット開口部141が形成されている。さらに、リアフット開口部141よりも左右方向の中央寄りにリアフェイス開口部131が形成されている。
 リアフェイス開口部131は、第2冷風通路15bと前後方向に対向して略同じ高さに設けられている。リアフェイス開口部131は、第2温風通路16bと前後方向に対向しておらず、第2温風通路16bよりも下方にずれた位置に設けられている。このため、リアフェイス開口部131は、温風よりも冷風を積極的に吸い込みやすい構成である。
 図1において、車両用空調装置1は、デフロスタ開口部21を開閉するデフロスタドア22を備えている。デフロスタドア22は、デフロスタ開口部21を閉じる閉状態とデフロスタ開口部21を開く開状態との2つの状態に切り替え可能である。デフロスタドア22の開状態においては、デフロスタ開口部21に吸い込まれる空調風が最も多い全開状態と、デフロスタ開口部21に吸い込まれる空調風が全開状態よりも少なく閉状態よりも多い小開状態とを備えている。
 車両用空調装置1は、フェイス開口部31を開閉するフェイスドア32を備えている。フェイスドア32は、フェイス開口部31を閉じる閉状態とフェイス開口部31を開く開状態との2つの状態に切り替え可能である。フェイスドア32の開状態においては、フェイス開口部31に吸い込まれる空調風が最も多い全開状態と、フェイス開口部31に吸い込まれる空調風が全開状態よりも少なく閉状態よりも多い小開状態とを備えている。車両用空調装置1は、リアフェイス開口部131を開閉するリアフェイスドア132を備えている。リアフェイスドア132は、フェイスドア32と連動しており、フェイスドア32の開度とリアフェイスドア132の開度とが等しい開度となるように構成されている。ただし、フェイスドア32とリアフェイスドア132とを連動させず、互いに独立して開度を制御するようにしてもよい。
 車両用空調装置1は、フット開口部41を開閉するフットドア42を備えている。フットドア42は、フット開口部41を閉じる閉状態とフット開口部41を開く開状態との2つの状態に切り替え可能である。フットドア42の開状態においては、フット開口部41に吸い込まれる空調風が最も多い全開状態と、フット開口部41に吸い込まれる空調風が全開状態よりも少なく閉状態よりも多い小開状態とを備えている。車両用空調装置1は、リアフット開口部141を開閉するリアフットドア142を備えている。リアフットドア142は、フットドア42と連動しており、フットドア42の開度とリアフットドア142の開度とが等しい開度となるように構成されている。ただし、フットドア42とリアフットドア142とを連動させず、互いに独立して開度を制御するようにしてもよい。
 フェイス吹き出し口とリアフェイス吹き出し口とフット吹き出し口とリアフット吹き出し口とには、開閉自在なシャッターが設けられている。シャッターは、乗員の手動操作によって、吹き出し口から吹き出される空調風の風量や風向を調整する部品である。例えば、乗員がフェイス吹き出し口のシャッターを閉じている場合、フェイスドア32の開閉制御によらず、フェイス吹き出し口からは空調風が吹き出されないこととなる。シャッターは、グリルと呼ばれることもある。
 車両用空調装置1は、混合通路18を開閉する温風ミックスドア45を備えている。温風ミックスドア45は、混合通路18を閉じる閉状態と混合通路18を開く開状態との2つの状態に切り替え可能である。温風ミックスドア45の開状態においては、混合通路18を通過可能な空調風が最も多い全開状態と、混合通路18を通過可能な空調風が全開状態よりも少なく閉状態よりも多い小開状態とが含まれる。温風ミックスドア45は、混合通路18の開度を調整することで、上方混合空間17aの空調風の温度と下方混合空間17bの空調風の温度を制御している。すなわち、上方混合空間17aの空調風の温度と下方混合空間17bの空調風の温度との温度差が大きすぎる場合には、温風ミックスドア45の開度を大きくして上方混合空間17aと下方混合空間17bとの間を通過する空調風の量を増やす。一方、上方混合空間17aの空調風の温度と下方混合空間17bの空調風の温度との温度差が小さすぎる場合には、温風ミックスドア45の開度を小さくして上方混合空間17aと下方混合空間17bとの間を通過する空調風の量を減らす。
 図1の一点鎖線で囲まれた部分を拡大して示す図3において、フットドア42と温風ミックスドア45とは、連続して一体に形成されている。言い換えると、フットドア42と温風ミックスドア45とは、共通の回転軸43を中心に回動している。温風ミックスドア45は、回転軸43を中心にドア本体44が回動する板ドアである。ドア本体44は、回転軸43の径方向に沿って延びるように設けられている板状の部品であって、複数の凹凸を有している。温風ミックスドア45は、ドア本体44の先端部分にゴム製のパッキンを備えている。温風ミックスドア45は、ドア本体44に対して交差する方向に延びるガイドリブを備えている。
 空調ケース2は、全閉状態から全開状態までの間の所定の開度で温風ミックスドア45と対向するドア対向面70を備えている。ドア対向面70は、ドア本体44の先端部分の厚さ寸法よりも大きな回転軸43の周方向長さを有している。ここで、ドア対向面70における回転軸43の周方向長さについて以下に説明する。回転軸43を中心とした円のうち、ドア対向面70において回転軸43に近い方の端部を通過する円を基準円とする。ドア対向面70において回転軸43から遠い方の端部と回転軸43の中心とを結ぶ直線と基準円とが交差する点を交差点とする。ドア対向面70における回転軸43の周方向長さとは、基準円の円周上の長さであって、基準円が通過するドア対向面70の端部から交差点までの長さのことである。
 ドア対向面70は、回転軸43の径方向よりも回転軸43の周方向に近い角度に傾斜して延びる面である。ドア対向面70と温風ミックスドア45とが回転軸43の径方向に対向した場合には、ドア対向面70とドア本体44の先端部分との間には、隙間が形成されることとなる。言い換えると、ドア対向面70は、ドア本体44の先端部分との間に隙間が形成可能である。空調風は、ドア対向面70とドア本体44との間に形成された隙間を通過して流れることができる。
 ドア対向面70は、第1ドア対向面71と第2ドア対向面72とを備えている。第2ドア対向面72は、第1ドア対向面71よりも回転軸43の径方向外側に位置している。言い換えると、第2ドア対向面72から回転軸43までの距離は、第1ドア対向面71から回転軸43までの距離よりも大きい。このため、空調ケース2には、第1ドア対向面71と第2ドア対向面72とによって段差が形成された状態である。
 第1ドア対向面71の周方向長さW1a及び第2ドア対向面72の周方向長さW2aは、ドア本体44の先端部分の厚さ寸法よりも大きい。第2ドア対向面72の周方向長さW2aは、第1ドア対向面71の周方向長さW1aよりも大きい。また、第1ドア対向面71の傾斜角度は、第2ドア対向面72の傾斜角度よりも回転軸43の周方向に近い角度である。
 空調ケース2は、第1ドア対向面71と第2ドア対向面72とを連結する連結面81を備えている。連結面81の傾斜角度は、回転軸43の周方向よりも回転軸43の径方向に近い角度である。言い換えると、連結面81は、第1ドア対向面71及び第2ドア対向面72と交差して延びる面である。
 第1ドア対向面71を提供する部品と第2ドア対向面72を提供する部品とは、別の部品である。第2ドア対向面72と連結面81とは、連続した1つの一体部品に形成されている。第1ドア対向面71が形成されている部品である空調ケース2に対して、第2ドア対向面72と連結面81とが形成されている部品を固定することで、第1ドア対向面71と第2ドア対向面72とを適切な位置関係としている。ただし、第1ドア対向面71と第2ドア対向面72とを別の部品としなくてもよい。例えば、第1ドア対向面71と第2ドア対向面72とを連続した1つの一体部品に形成してもよい。これによると、車両の走行時の振動などによって、第1ドア対向面71を提供する空調ケース2から第2ドア対向面72を提供する部品が脱落してしまうことを防ぎやすい。また、車両用空調装置1の部品点数を減らすことができる。
 第1ドア対向面71において、一方の端部は、連結面81と連続しており、他方の端部は、第1温風通路16aを形成する通路面の一部と連続している。第1ドア対向面71の傾斜角度は、この通路面の傾斜角度に比べて、回転軸43の周方向に近い角度である。第2ドア対向面72において、一方の端部は、連結面81と連続しており、他方の端部は、上方混合空間17aを形成する壁面の一部と連続している。
 図3における温風ミックスドア45は、ドア本体44が全閉位置まで回動した全閉状態である。全閉位置は、ドア本体44の先端部分をなすパッキンが空調ケース2の一部である接触面75と接触する位置である。全閉状態においては、ドア本体44と接触面75との間に隙間が形成されていない。このため、ドア本体44と接触面75との間に空調風の流路が形成されず、上方混合空間17aと下方混合空間17bとの間を空調風が行き来できない。したがって、第1温風通路16aを流れた温風と第2温風通路16bを流れた温風とが混合されない。全閉状態においては、第1温風通路16aを流れた温風が空調ケース2の上部に設けられたデフロスタ開口部21やフェイス開口部31に吸い込まれることとなる。一方、第2温風通路16bを流れた温風は、空調ケース2の下部に設けられたフット開口部41やリアフェイス開口部131やリアフット開口部141に吸い込まれることとなる。
 図4における温風ミックスドア45は、ドア本体44が全開位置まで回動した全開状態である。全開位置は、ドア本体44の先端部分をなすパッキンが空調ケース2と接触しておらず、ドア本体44の流路抵抗が小さな位置である。全開状態においては、ドア本体44とドア対向面70との間に大きな隙間が形成されている。このため、ドア本体44とドア対向面70との間を空調風が通過できる。全開状態においては、上方混合空間17aと下方混合空間17bとの間において、空調風が行き来でき、第1温風通路16aを流れた温風と第2温風通路16bを流れた温風とが混合される。特に、冷風よりも温度が高い温風は、冷風よりも密度が小さくなるため、下方混合空間17bから上方混合空間17aに流れ込みやすい。全開状態においては、第2温風通路16bを流れた温風の一部が空調ケース2の上部に設けられたデフロスタ開口部21やフェイス開口部31に吸い込まれることとなる。ここで、ヒータ装置8の温度をヒータコア7よりも高く設定することで、第1温風通路16aを流れた温風の温度よりも第2温風通路16bを流れた温風の温度を高くすることができる。したがって、デフロスタ開口部21やフェイス開口部31に吸い込まれる空調風の温度を、温風ミックスドア45の全閉状態よりも高くしやすい。
 図5における温風ミックスドア45は、第1中間位置まで回動した第1中間状態である。第1中間位置は、ドア本体44の先端部分をなすパッキンが第1ドア対向面71と対向する位置である。第1中間状態においては、ドア本体44と第1ドア対向面71との間に、わずかな隙間が形成されている。このため、ドア本体44と第1ドア対向面71との間を空調風が通過できる。第1中間状態においては、上方混合空間17aと下方混合空間17bとの間において、空調風がわずかに行き来でき、第1温風通路16aを流れた温風と第2温風通路16bを流れた温風とが混合される。第1中間状態においては、第2温風通路16bを流れた温風の一部が空調ケース2の上部に設けられたデフロスタ開口部21やフェイス開口部31に吸い込まれることとなる。したがって、ヒータ装置8の出力を高めて、デフロスタ開口部21やフェイス開口部31に吸い込まれる空調風の温度を、温風ミックスドア45の全閉状態よりもわずかに高くしやすい。
 第1ドア対向面71の周方向長さW1aは、ドア本体44の先端部分の厚さ寸法よりも大きい。このため、第1ドア対向面71の中央とドア本体44の先端部分とが対向する位置以外にも、第1中間位置が存在することとなる。言い換えると、ドア本体44の先端部分の停止位置が、第1ドア対向面71の中央から周方向にわずかにずれた場合であっても、第1ドア対向面71の中央と対向している場合と同程度の隙間量となる停止位置は、第1中間位置である。
 図6における温風ミックスドア45は、第2中間位置まで回動した第2中間状態である。第2中間位置は、ドア本体44の先端部分をなすパッキンが第2ドア対向面72と対向する位置である。第2中間状態においては、ドア本体44と第2ドア対向面72との間に、隙間が形成されている。このため、ドア本体44と第2ドア対向面72との間を空調風が通過できる。第2中間状態においては、上方混合空間17aと下方混合空間17bとの間において、空調風が行き来でき、第1温風通路16aを流れた温風と第2温風通路16bを流れた温風とが混合される。第2中間状態においては、第2温風通路16bを流れた温風の一部が空調ケース2の上部に設けられたデフロスタ開口部21やフェイス開口部31に吸い込まれることとなる。したがって、ヒータ装置8の出力を高めて、デフロスタ開口部21やフェイス開口部31に吸い込まれる空調風の温度を、温風ミックスドア45の全閉状態よりも高くしやすい。
 第2中間状態においてドア本体44と第2ドア対向面72との間に形成される隙間の大きさは、第1中間状態においてドア本体44と第1ドア対向面71との間に形成される隙間の大きさよりも大きい。したがって、第2中間状態においては、第1中間状態よりも多くの温風を上方混合空間17aと下方混合空間17bとの間で混合させることができる。上方混合空間17aと下方混合空間17bとの間での混合は、全開状態において最も積極的に行われ、続いて第2中間状態、第1中間状態の順に混合される風量が減り、全閉状態では、混合されない状態となる。
 第2ドア対向面72の周方向長さW2aは、ドア本体44の先端部分の厚さ寸法よりも大きい。このため、第2ドア対向面72の中央とドア本体44の先端部分とが対向する位置以外にも、第2中間位置が存在することとなる。言い換えると、ドア本体44の先端部分の停止位置が、第2ドア対向面72の中央から周方向にわずかにずれた場合であっても、第2ドア対向面72の中央と対向している場合と同程度の隙間量となる停止位置は、第2中間位置である。
 図7は、温風ミックスドア45の全閉位置と第1中間位置と全開位置との3つの停止位置を同時に示している。第1中間位置から全閉位置までの回動距離Lc1は、第1中間位置から全開位置までの回動距離Lo1よりも小さい。したがって、第1中間位置から全開位置にドア本体44を回動させる場合に比べて、第1中間位置から全閉位置にドア本体44を回動させる場合の方が素早く回動を完了させることができる。ただし、回動距離Lc1は、回動距離Lo1よりも大きくてもよい。あるいは、回動距離Lc1は、回動距離Lo1と同じ大きさでもよい。
 接触面75は、第2ドア対向面72よりも第1ドア対向面71に近い位置に配されている。したがって、全閉位置から全開位置に回動するまでの間には、第1中間位置を経由した後に第2中間位置を経由することとなる。一方、全開位置から全閉位置に回動するまでの間には、第2中間位置を経由した後に、第1中間位置を経由することとなる。よって、全閉状態から全開状態までの間において、混合通路18を通過可能な風量を段階的に調整することができる。ただし、接触面75を第1ドア対向面71よりも第2ドア対向面72に近い位置に配してもよい。
 図8は、車両用空調装置1における制御システムを示す図である。この明細書における制御装置(ECU)は、電子制御装置(Electronic Control Unit)とも呼ばれる場合がある。制御装置は、(a)if-then-else形式と呼ばれる複数の論理としてのアルゴリズム、または(b)機械学習によってチューニングされた学習済みモデル、例えばニューラルネットワークとしてのアルゴリズムによって提供される。
 制御装置は、少なくとも1つのコンピュータを含む制御システムによって提供される。制御システムは、データ通信装置によってリンクされた複数のコンピュータを含む場合がある。コンピュータは、ハードウェアのプロセッサである少なくとも1つのハードウェアプロセッサを含む。ハードウェアプロセッサは、以下の(i)、(ii)、または(iii)により提供することができる。
 (i)ハードウェアプロセッサは、少なくとも1つのメモリに格納されたプログラムを実行する少なくとも1つのプロセッサコアである場合がある。この場合、コンピュータは、少なくとも1つのメモリと、少なくとも1つのプロセッサコアとによって提供される。プロセッサコアは、CPU:Central Processing Unit、GPU:Graphics Processing Unit、RISC-CPUなどと呼ばれる。メモリは、記憶媒体とも呼ばれる。メモリは、プロセッサによって読み取り可能な「プログラムおよび/またはデータ」を非一時的に格納する非遷移的かつ実体的な記憶媒体である。記憶媒体は、半導体メモリ、磁気ディスク、または光学ディスクなどによって提供される。プログラムは、それ単体で、またはプログラムが格納された記憶媒体として流通する場合がある。
 (ii)ハードウェアプロセッサは、ハードウェア論理回路である場合がある。この場合、コンピュータは、プログラムされた多数の論理ユニット(ゲート回路)を含むデジタル回路によって提供される。デジタル回路は、ロジック回路アレイ、例えば、ASIC:Application-Specific Integrated Circuit、FPGA:Field Programmable Gate Array、PGA:Programmable Gate Array、CPLD:Complex Programmable Logic Deviceなどとも呼ばれる。デジタル回路は、プログラムおよび/またはデータを格納したメモリを備える場合がある。コンピュータは、アナログ回路によって提供される場合がある。コンピュータは、デジタル回路とアナログ回路との組み合わせによって提供される場合がある。
 (iii)ハードウェアプロセッサは、上記(i)と上記(ii)との組み合わせである場合がある。(i)と(ii)とは、異なるチップの上、または共通のチップの上に配置される。これらの場合、(ii)の部分は、アクセラレータとも呼ばれる。
 制御装置と信号源と制御対象物とは、多様な要素を提供する。それらの要素の少なくとも一部は、ブロック、モジュール、またはセクションと呼ぶことができる。さらに、制御システムに含まれる要素は、意図的な場合にのみ、機能的な手段と呼ばれる。
 この開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された1つまたは複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。代替的に、この開示に記載の制御部及びその手法は、1つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。代替的に、この開示に記載の制御部及びその手法は、1つまたは複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された1つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 図8において、車両用空調装置1を制御する空調制御部90は、空調用センサ91と空調用スイッチ92と接続されている。空調用センサ91は、外気温センサや内気温センサや日射量センサや蒸発器温度センサなどからなるセンサである。外気温センサは、車外の温度を測定するセンサである。内気温センサは、車室内の温度を測定するセンサであって、車室内の前方における内気温を測定する温度センサと、車室内の後方における内気温を測定する温度センサとの2つの温度センサを有している。日射量センサは、車両が受けている日射量を測定するセンサである。蒸発器温度センサは、蒸発器6の表面温度を測定する温度センサである。空調制御部90は、空調用センサ91から空調に用いる各種の情報を取得する。
 空調用センサ91は、空調風の吹き出し口に設けられたシャッターの開閉状態を検知するシャッターセンサを備えている。シャッターセンサには、例えば、接触の有無を検知可能なタッチセンサを用いることができる。この場合、シャッターの閉状態においては、タッチセンサが接触状態であることを検知し、シャッターの開状態においては、タッチセンサが接触状態にないことを検知することでシャッターの開閉状態を検知することができる。
 空調用スイッチ92は、乗員によって操作されるスイッチであって、空調運転のオンオフの切り替えスイッチや、設定温度の切り替えスイッチや、内気モードと外気モードとの切り替えを行うスイッチなどが含まれる。空調用スイッチ92には、複数の吹き出しモードのうち、どのモードで空調運転を行うかを乗員が選択するスイッチが含まれている。ただし、オートモードで空調運転を行う場合には、乗員による操作で吹き出しモードなどを切り替えるのではなく、自動で切り替えが行われる。空調制御部90は、空調用スイッチ92を用いて乗員が設定した温度や風量などの空調設定に基づいて空調運転を行うこととなる。
 空調制御部90は、第1エアミックスドア12aと第2エアミックスドア12bと接続されている。空調制御部90は、第1エアミックスドア12aの開度を制御することで、第1冷風通路15aを流れる冷風の量と第1温風通路16aを流れる温風の量を調整する。空調制御部90は、第2エアミックスドア12bの開度を制御することで、第2冷風通路15bを流れる冷風の量と第2温風通路16bを流れる温風の量を調整する。
 空調制御部90は、デフロスタドア22とフェイスドア32とフットドア42と接続されている。空調制御部90は、デフロスタドア22の開閉を切り替えることで、デフロスタ開口部21に吸い込まれる空調風の量を調整している。空調制御部90は、フェイスドア32の開閉を切り替えることで、フェイス開口部31に吸い込まれる空調風の量を調整している。空調制御部90は、フットドア42の開閉を切り替えることで、フット開口部41に吸い込まれる空調風の量を調整している。
 空調制御部90は、リアフェイスドア132とリアフットドア142と接続されている。空調制御部90は、リアフェイスドア132の開閉を切り替えることで、リアフェイス開口部131に吸い込まれる空調風の量を調整している。空調制御部90は、リアフットドア142の開閉を切り替えることで、リアフット開口部141に吸い込まれる空調風の量を調整している。
 空調制御部90は、温風ミックスドア45と接続されている。空調制御部90は、温風ミックスドア45の開度を制御することで、混合通路18を流れる温風を含む空調風の量を調整する。空調制御部90は、温風ミックスドア45の開度を全閉状態と第1中間状態と第2中間状態と全開状態との4段階に切り替え可能である。ただし、空調制御部90の制御において、全閉状態に変えて、最も開度の小さな第1中間状態を用いるなどしてもよい。あるいは、全閉状態と第1中間状態と全開状態との3段階に切り替える車種と、全閉状態と第2中間状態と全開状態との3段階に切り替える車種とを、同一の車両用空調装置1を用いて使い分けるようにしてもよい。
 車両用空調装置1に搭載されている各モードについて以下に説明する。車両用空調装置1は、吹き出し口モードとしてデフロスタモード、フェイスモード、フットモード、バイレベル(B/L)モード、フットデフロスタ(F/D)モードの5つのモードを備えている。ただし、吹き出し口モードの種類は上述のモードに限られない。
 デフロスタモードは、デフロスタ吹き出し口から空調風を吹き出すモードである。デフロスタモードにおいては、デフロスタドア22が開状態となり、フェイスドア32とフットドア42とリアフェイスドア132とリアフットドア142とは閉状態となる。また、第2温風通路16bを流れた温風をデフロスタ開口部21に連通している上方混合空間17aに流すため、温風ミックスドア45は、全開状態となる。デフロスタモードは、フロントウィンドウの曇りを解消する場合によく用いられる。
 フェイスモードは、フェイス吹き出し口とリアフェイス吹き出し口とから空調風を吹き出すモードである。フェイスモードにおいては、フェイスドア32とリアフェイスドア132とが開状態となり、デフロスタドア22とフットドア42とリアフットドア142とは閉状態となる。また、フェイス吹き出し口から吹き出される空調風の温度とリアフェイス吹き出し口から吹き出される空調風の温度との温度差を低減するため、温風ミックスドア45は、全開状態となる。フェイスモードは、冷房運転時によく用いられる。フェイスモードにおいて、必ずしもフェイス吹き出し口とリアフェイス吹き出し口との両方の吹き出し口から空調風を吹き出さなくてもよい。例えば、フェイス吹き出し口のみから空調風を吹き出すように構成してもよい。また、フェイス吹き出し口とリアフェイス吹き出し口以外の吹き出し口として車両天井付近から下方に空調風を吹き出す天井吹き出し口を備え、天井吹き出し口から空調風を吹き出す構成としてもよい。
 フットモードは、主にフット吹き出し口とリアフット吹き出し口とから空調風を吹き出すモードである。フットモードにおいては、フットドア42とリアフットドア142とが開状態となる。一方、フェイスドア32とリアフェイスドア132とは閉状態となり、デフロスタドア22は、わずかに開いた小開状態となる。また、第2温風通路16bを流れた温風をフット開口部41と連通している下方混合空間17bに効率的に流すため、温風ミックスドア45は、全閉状態となる。フットモードは、暖房運転時によく用いられる。フットモードにおいて、必ずしもフット吹き出し口とリアフット吹き出し口との両方の吹き出し口から空調風を吹き出さなくてもよい。例えば、フット吹き出し口のみから空調風を吹き出すように構成してもよい。
 バイレベル(B/L)モードは、フェイス吹き出し口とリアフェイス吹き出し口とフット吹き出し口とリアフット吹き出し口との各吹き出し口から略等しい量の空調風を吹き出すモードである。バイレベル(B/L)モードにおいては、フェイスドア32とフットドア42とリアフェイスドア132とリアフットドア142とが開状態となり、デフロスタドア22は閉状態となる。また、第2温風通路16bを流れた温風を上方混合空間17aにわずかに流すため、温風ミックスドア45は、第1中間状態となる。すなわち、フェイス開口部31に吸い込まれる空調風の温度とフット開口部41に吸い込まれる空調風の温度との温度差を適切に保つために、混合通路18をわずかに温風が通過可能な状態とする。バイレベル(B/L)モードは、冷房と暖房との中間温度の空調運転時によく用いられる。
 バイレベル(B/L)モードにおいては、フェイス吹き出し口およびリアフェイス吹き出し口から吹き出される空調風の温度を、フット吹き出し口およびリアフット吹き出し口から吹き出される空調風の温度よりも低くする。言い換えると、乗員の上半身に対して冷風を提供し、乗員の足もとには温風を提供する。これにより、乗員に快適な空調を実感させやすい。この時、フェイス吹き出し口およびリアフェイス吹き出し口から吹き出される空調風の温度と、フット吹き出し口およびリアフット吹き出し口から吹き出される空調風の温度との温度差を適切な温度差に維持する必要がある。適切な温度差とは、例えば10℃から15℃程度の温度差である。
 バイレベル(B/L)モードにおいて、温風ミックスドア45は、第1中間状態以外の状態としてもよい。例えば、リアフェイスドア132が開いているなどして、第2冷風通路15bを通過した冷風の多くがリアフェイス吹き出し口から吹き出される場合には、フット開口部41やリアフット開口部141に吸い込まれる空調風の温度が高くなりすぎる傾向にある。この場合には、第1中間状態よりも混合通路18を大きく開く第2中間状態にする。これにより、フェイス吹き出し口から吹き出される空調風の温度を高めて、フット吹き出し口やリアフット吹き出し口から吹き出される空調風との温度差を適切に維持しやすい。一方、リアフェイスドア132がフェイスドア32とは連動しておらず、リアフェイスドア132が閉じている場合には、フット開口部41やリアフット開口部141に吸い込まれる空調風の温度が上昇しにくい。この場合には、第2中間状態よりも混合通路18を小さく開く第1中間状態にする。これにより、フェイス吹き出し口から吹き出される空調風の温度が高くなりすぎることなく、フット吹き出し口やリアフット吹き出し口から吹き出される空調風との温度差を適切に維持しやすい。
 温風ミックスドア45の開度を、リアフェイスドア132の開閉状態以外の情報に基づいて制御してもよい。例えば、リアフェイス吹き出し口のシャッターが乗員の操作によって閉じられている場合には、第2中間状態よりも開度の小さな第1中間状態としてもよい。あるいは、リアフェイス開口部131があらかじめ遮蔽板で遮蔽されている仕様の車種においては、第2中間状態よりも開度の小さな第1中間状態としてもよい。
 フットデフロスタ(F/D)モードは、フット吹き出し口とリアフット吹き出し口とデフロスタ吹き出し口との各吹き出し口から略等しい量の空調風を吹き出すモードである。フットデフロスタ(F/D)モードにおいては、フットドア42とリアフットドア142とデフロスタドア22とが開状態となり、フェイスドア32とリアフェイスドア132とは閉状態となる。また、第2温風通路16bを流れた温風を上方混合空間17aに向けてわずかに流すため、温風ミックスドア45は、第1中間状態となる。フットデフロスタ(F/D)モードは、フットモードでの暖房運転中にフロントウィンドウが曇ってしまう場合によく用いられる。
 空調制御部90は、デフロスタドア22とフェイスドア32とフットドア42と温風ミックスドア45とリアフェイスドア132とリアフットドア142との開度を個別に制御可能である。個別に制御する場合、サーボモータの出力を個別に制御することで回動量を調整する。空調制御部90は、デフロスタドア22とフェイスドア32とフットドア42と温風ミックスドア45とリアフェイスドア132とリアフットドア142との開度を連動させて一体に制御可能である。連動させて制御する場合、各ドア22、32、42、45、132、142をギアやワイヤーを用いた連動機構であらかじめつなぎ、各吹き出しモードに対応する停止位置を設定しておく。これにより、例えば、フェイスドア32のサーボモータのみを制御することで、フェイスドア32の開度に連動させて、その他のドア22、42、45、132、142の開度を制御できる。
 上述した実施形態によると、車両用空調装置1は、第1ドア対向面71と、第1ドア対向面71よりも回転軸43の径方向の外側に位置している第2ドア対向面72とを備えている。このため、ドア本体44を第1ドア対向面71に対向させた第1中間状態と、ドア本体44を第2ドア対向面72と対向させた第2中間状態とで、空調風が通過可能な隙間の大きさを変化させることができる。したがって、隙間の小さな第1中間状態と、第1中間状態よりも隙間の大きな第2中間状態とを適切に選択することで、空調風の流量を安定して調整することができる。
 ドア対向面70は、ドア本体44の先端部分の厚さ寸法よりも大きな周方向長さを有している。このため、サーボモータの回転制御や車両の走行振動の影響などによって、ドア本体44の停止位置がわずかにずれた場合であっても、ドア対向面70とドア本体44とが対向した状態を維持しやすい。したがって、第1中間状態や第2中間状態における隙間の大きさを安定して維持しやすい。よって、空調風の流量を安定して調整することができる。
 通常、空調制御部90によるサーボモータの回動制御では、ドア本体44の停止位置を精度よく調整することが困難であり、同一の制御信号に対してもドア本体44の停止位置にはバラツキが生じる。このため、ドア対向面70がドア本体44の先端部分の厚さ寸法よりも大きな周方向長さを有していることは、サーボモータの回動制御によってドア本体44の停止位置を制御する場合において、特に有用である。
 空調ケース2は、第1ドア対向面71及び第2ドア対向面72と交差して設けられ、第1ドア対向面71と第2ドア対向面72とを連結する連結面81を備えている。このため、第1ドア対向面71と第2ドア対向面72との相対的な位置関係を安定して維持しやすい。
 第2ドア対向面72の周方向長さW2aは、第1ドア対向面71の周方向長さW1aよりも大きい。言い換えると、回転軸43から離れた位置に設けられているドア対向面70ほど、ドア対向面70の周方向長さを大きくしている。このため、第2中間位置にドア本体44が停止している状態として許容される回動角度を広く確保することができる。
 接触面75は、第2ドア対向面72よりも第1ドア対向面71に近い位置に設けられている。言い換えると、接触面75から第1ドア対向面71までの回転軸43の周方向長さは、接触面75から第2ドア対向面72までの回転軸43の周方向長さよりも小さい。このため、接触面75とドア本体44とが接触している全閉位置から第2中間位置までの回動に比べて、全閉位置から第1中間位置までの回動を素早く行いやすい。また、第2中間位置を経由することなく全閉位置から第1中間位置までドア本体44を回動することができる。したがって、全閉状態と第2中間状態とを切り替える場合に比べて、全閉状態と第1中間状態との切り替えをスムーズに行いやすく、空調風の流量を安定して調整しやすい。
 第1中間位置から全閉位置に至るまでの回動距離Lc1は、第1中間位置から全開位置に至るまでの回動距離Lo1よりも小さい。このため、第1中間状態と全開状態とを切り替える場合に比べて、第1中間状態と全閉状態との切り替えをスムーズに行いやすい。したがって、全閉状態と第1中間状態との切り替え時に空調風の流量が変化する過渡状態となる時間を短くして、空調風の流量を安定して調整しやすい。
 温風ミックスドア45は、上方混合空間17aと下方混合空間17bとをつなぐ混合通路18に設けられている。このため、上方混合空間17a内の空調風の温度と下方混合空間17b内の空調風の温度との温度差を温風ミックスドア45の制御によって調整できる。したがって、バイレベル(B/L)モードなどのモードにおいて、フェイス吹き出し口から吹き出される空調風とフット吹き出し口から吹き出される空調風との温度差を適切に保つことができる。
 空調制御部90は、開状態時に温風よりも冷風を多く取り込やすいリアフェイス開口部131を開閉するリアフェイスドア132の開閉状態に基づいて、温風ミックスドア45のドア本体44の停止位置を制御している。言い換えると、下方混合空間17bなどの所定空間内の空調風の温度を偏らせやすいドアの開閉状態に基づいて、温風ミックスドア45のドア本体44の停止位置を制御している。このため、リアフェイスドア132の開閉状態が切り替えられることにより、下方混合空間17bの空調風の温度が変化することを予測して温風ミックスドア45を制御できる。したがって、温度センサなどを用いて下方混合空間17bにおける空調風の温度を測定して温風ミックスドア45を制御する場合に比べて、フェイス吹き出し口の吹き出し温度とフット吹き出し口の吹き出し温度との温度差を適切に保ちやすい。
 第2ドア対向面72は、第1ドア対向面71とは異なる部品に形成されている。このため、第2ドア対向面72が形成されている部品の形状を変更することで、第2中間状態における空調風の通過可能な風量を変更することができる。したがって、第1ドア対向面71と連続する一体の部品に第2ドア対向面72が形成されている場合に比べて、第2ドア対向面72の形状自由度を高く確保しやすい。また、第2ドア対向面72が形成されている部品を取り付ける際の取り付け位置や取り付け角度を変更することで、異なる仕様の第2ドア対向面72を提供しやすい。このため、車種ごとに第2ドア対向面72の形状を最適化する場合に、第2ドア対向面72の形成されている部品以外の部品を共通部品として用いることが可能になる。したがって、第2ドア対向面72の形状や位置が異なる車両用空調装置1を製造しやすい。
 温風ミックスドア45がフットドア42と一体に形成されている場合を例に説明を行ったが、温風ミックスドア45とフットドア42との軸を別々に設けて、互いに独立して回動させてもよい。
 第2実施形態
 この実施形態は、先行する実施形態を基礎的形態とする変形例である。この実施形態では、ドア対向面270は、回転軸43の周方向に沿った曲面形状をなしている。また、ドア対向面270は、第1ドア対向面271と第2ドア対向面272に加えて、第3ドア対向面273を備えている。
 図9において、ドア対向面270は、回転軸43の周方向に沿った曲面形状である。言い換えると、ドア本体44の先端部分が、例えば第1ドア対向面271と対向している第1中間位置においては、ドア本体44の先端部分から第1ドア対向面271までの距離が一定である。第1ドア対向面271の2つの端部は、両方の端部がともに回転軸43を中心とした同一の基準円上に設けられている。第2ドア対向面272と第3ドア対向面273についても第1ドア対向面271と同様に、それぞれの基準円上に2つの端部が位置している。
 ドア対向面270は、第1ドア対向面271と第2ドア対向面272と第3ドア対向面273との3つの面を有している。ドア本体44の先端部分が第1ドア対向面271と対向している位置は、ドア本体44における第1中間位置である。ドア本体44の先端部分が第2ドア対向面272と対向している位置は、ドア本体44における第2中間位置である。ドア本体44の先端部分が第3ドア対向面273と対向している位置は、ドア本体44における第3中間位置である。
 空調ケース2は、第1ドア対向面271と第2ドア対向面272とを連結する第1連結面281を備えている。第1連結面281の傾斜角度は、回転軸43の周方向よりも回転軸43の径方向に近い角度である。言い換えると、第1連結面281は、第1ドア対向面271及び第2ドア対向面272と交差して延びる面である。空調ケース2は、第2ドア対向面272と第3ドア対向面273とを連結する第2連結面282を備えている。第2連結面282の傾斜角度は、回転軸43の周方向よりも回転軸43の径方向に近い角度である。言い換えると、第2連結面282は、第2ドア対向面272及び第3ドア対向面273と交差して延びる面である。第1連結面281は、連結面の一例を提供する。
 ドア対向面270の一部をなす第1ドア対向面271は、回転軸43の径方向において回転軸43から最も近い位置に設けられている。ドア対向面270の一部をなす第3ドア対向面273は、回転軸43の径方向において回転軸43から最も離れた位置に設けられている。ドア対向面270の一部をなす第2ドア対向面272は、回転軸43の径方向において第1ドア対向面271と第3ドア対向面273との間の位置に設けられている。
 第1ドア対向面271と第2ドア対向面272と第3ドア対向面273とのうち、接触面75に最も近い面は、第1ドア対向面271であり、接触面75から最も遠い面は、第3ドア対向面273である。
 ドア対向面270の周方向長さは、基準円の円周上の長さであって、ドア対向面270の一方の端部から他方の端部までの沿面長さのことである。第1ドア対向面271の周方向長さW1bは、第2ドア対向面272の周方向長さW2bよりも大きい。第2ドア対向面272の周方向長さW2bは、第3ドア対向面273の周方向長さW3bと略等しい長さである。したがって、第1中間位置に含まれる回動角度の範囲は、第2中間位置に含まれる回動角度の範囲及び第3中間位置に含まれる回動角度の範囲に比べて広い範囲である。
 上述した実施形態によると、ドア対向面270は、回転軸43の周方向に沿って延びている曲面形状である。このため、第1中間位置の回動範囲内でドア本体44の停止位置がばらついた場合であっても、第1ドア対向面271とドア本体44の先端部分との間に形成される隙間の大きさを一定に保つことができる。したがって、ドア対向面270が回転軸43の周方向に沿って延びていない場合に比べて、ドア対向面270とドア本体44との間に形成される隙間を通過する空調風の量を精度よく調整することができる。
 ドア対向面270は、第2ドア対向面272よりも回転軸43の径方向の外側に位置している第3ドア対向面273を備えている。このため、対向面の数が2つの場合に比べてより細かく空調風の流量を調整することができる。
 第1ドア対向面271の周方向長さW1bは、第2ドア対向面272の周方向長さW2bよりも大きな長さである。このため、ドア対向面270とドア本体44との間に形成される隙間の最も小さな第1中間状態となる第1中間位置の回動範囲を、第2中間位置や第3中間位置よりも広く確保することができる。したがって、第1中間位置でドア本体44を停止させるようにサーボモータを制御したにも関わらず、停止位置のバラツキが大きすぎることで第1中間位置から外れた位置でドア本体44が停止してしまうといった事態を抑制しやすい。ここで、第1中間位置から全開状態に近づく方向にドア本体44の停止位置がずれると、第2中間位置となる。第1中間位置と第2中間位置とでは、ドア対向面270とドア本体44との間に形成される隙間の大きさが倍以上異なる。よって、第1中間位置の範囲内にドア本体44を確実に停止させるために、第1ドア対向面271の周方向長さW1bを大きく確保することは重要である。
 ドア対向面270として、第1ドア対向面271と第2ドア対向面272と第3ドア対向面273との3つの面を備える場合に限られず、さらにドア本体44と対向する対向面の数を増やしてもよい。これによると、ドア対向面270として3つの面を有する場合に比べて、より細かく空調風の流量を調整することができる。
 他の実施形態
 温風ミックスドア45を第1ドア対向面71と第2ドア対向面72との複数の対向面を有するドア装置の一例とする場合について説明を行ったが、温風ミックスドア45以外のドアに対しても適用可能である。また、全閉状態と全開状態との間の状態である中間状態を複数備える構成である温風ミックスドア45のようなドア装置を、車両用空調装置1に複数備えるようにしてもよい。
 第1中間状態と第2中間状態とを有する車両用空調装置1は、例えば、全閉状態と第1中間状態と第2中間状態と全開状態との4つの状態を適切に切り替えることで、段階的に細かく空調風の流量を制御可能である。このため、乗員に対して適切な空調を提供しやすい。
 第1中間状態と第2中間状態とを有する車両用空調装置1は、例えば、全閉状態と第1中間状態と全開状態との3つの状態を切り替える第1モードと、全閉状態と第2中間状態と全開状態との3つの状態を切り替える第2モードとを選択可能である。このため、仕様の異なる様々な車両に対応してどちらのモードを使うかを切り替えることで、空調風の流量を制御可能である。したがって、仕様の異なる様々な車両に対して共通部品として車両用空調装置1を用いることができる。
 この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、1つの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。

 

Claims (7)

  1.  車室内に向かう空調風が流れる空気通路(2a)が内部に設けられている空調ケース(2)と、
     前記空気通路に設けられ、回転軸(43)を中心に回動する板状のドア本体(44)を用いて前記空気通路を流れる空調風の量を調整するドア装置(45)と、
     前記空気通路に設けられ、前記ドア本体の先端部分の厚さ寸法よりも大きな前記回転軸の周方向長さを有し、前記ドア本体の先端部分との間に空調風が通過可能な隙間を形成可能なドア対向面(70、270)とを備え、
     前記ドア対向面は、第1ドア対向面(71、271)と第2ドア対向面(72、272)とを備え、
     前記空調ケースは、前記第1ドア対向面及び前記第2ドア対向面と交差して設けられ、前記第1ドア対向面と前記第2ドア対向面とを連結する連結面(81、281)を備え、
     前記第2ドア対向面は、前記第1ドア対向面よりも前記回転軸に対して径方向の外側に位置している車両用空調装置。
  2.  前記第2ドア対向面(72)の前記周方向長さ(W2a)は、前記第1ドア対向面(71)の前記周方向長さ(W1a)よりも大きい請求項1に記載の車両用空調装置。
  3.  前記空調ケースは、前記ドア本体と接触して前記空気通路を閉じるための接触面(75)を備え、
     前記接触面は、前記第2ドア対向面よりも前記第1ドア対向面に近い位置に設けられている請求項1または請求項2に記載の車両用空調装置。
  4.  前記ドア装置において、前記ドア本体の停止位置には、前記ドア本体の先端部分が前記第1ドア対向面と対向する位置である第1中間位置と、前記空気通路を閉じる位置である全閉位置と、前記空気通路を最も大きく開く位置である全開位置とを有し、
     前記第1中間位置から前記全閉位置に至るまでの前記ドア本体の回動距離(Lc1)は、前記第1中間位置から前記全開位置に至るまでの前記ドア本体の回動距離(Lo1)よりも小さい請求項1から請求項3のいずれかに記載の車両用空調装置。
  5.  前記空調ケースは、
     前記車室内に吹き出すための空調風が流れる上方開口部(21、31)と、
     前記上方開口部よりも下方に設けられ、前記車室内に吹き出すための空調風が流れる下方開口部(41、131、141)とを備え、
     前記空気通路に設けられ、空気を冷却して冷風を生成する冷却器(6)と、
     前記空気通路に設けられ、空気を加熱して温風を生成する加熱器(7、8)と、
     前記上方開口部と連通して前記空気通路に設けられ、冷風と温風とを混合するための上方混合空間(17a)と、
     前記下方開口部と連通して前記空気通路に設けられ、冷風と温風とを混合するための下方混合空間(17b)とを備え、
     前記空気通路は、前記上方混合空間と前記下方混合空間とをつなぐ混合通路(18)を備え、
     前記ドア装置は、前記混合通路に設けられ、前記混合通路を流れる空調風の量を調整している請求項1から請求項4のいずれかに記載の車両用空調装置。
  6.  前記第2ドア対向面は、前記第1ドア対向面とは異なる部品に形成されている請求項1から請求項5のいずれかに記載の車両用空調装置。
  7.  前記ドア対向面(270)は、前記回転軸の周方向に沿って延びている曲面形状である請求項1から請求項6のいずれかに記載の車両用空調装置。

     
PCT/JP2019/049594 2019-01-11 2019-12-18 車両用空調装置 WO2020145055A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980088302.XA CN113302066A (zh) 2019-01-11 2019-12-18 车辆用空调装置
US17/362,408 US11712944B2 (en) 2019-01-11 2021-06-29 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-003706 2019-01-11
JP2019003706A JP7183804B2 (ja) 2019-01-11 2019-01-11 車両用空調装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/362,408 Continuation US11712944B2 (en) 2019-01-11 2021-06-29 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2020145055A1 true WO2020145055A1 (ja) 2020-07-16

Family

ID=71521267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049594 WO2020145055A1 (ja) 2019-01-11 2019-12-18 車両用空調装置

Country Status (4)

Country Link
US (1) US11712944B2 (ja)
JP (1) JP7183804B2 (ja)
CN (1) CN113302066A (ja)
WO (1) WO2020145055A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958617U (ja) * 1982-10-13 1984-04-17 株式会社日立製作所 自動車用空気調和装置
JP2001030739A (ja) * 1999-07-22 2001-02-06 Mitsubishi Heavy Ind Ltd ダンパ構造、車両用空気調和ユニット及び車両用空気調和装置
US20170291468A1 (en) * 2014-12-02 2017-10-12 Hanon Systems Dual zone type air conditioner for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052917A (ja) 2000-08-09 2002-02-19 Denso Corp 車両用空調装置
JP4638332B2 (ja) * 2005-02-24 2011-02-23 三菱重工業株式会社 空気調和ユニット及び車両用空気調和装置
JP2009006896A (ja) 2007-06-28 2009-01-15 Denso Corp 車両用空調装置
JP5703002B2 (ja) * 2010-12-06 2015-04-15 株式会社ケーヒン 車両用空気調和装置
DE112016001898T5 (de) * 2015-04-24 2018-01-04 Denso Corporation Fahrzeugklimatisierungsvorrichtung
JP6628086B2 (ja) * 2015-11-12 2020-01-08 三菱重工サーマルシステムズ株式会社 車両用空調装置
US11052726B2 (en) * 2016-01-18 2021-07-06 Hanon Systems Vehicle air-conditioning system
DE112017000158T5 (de) * 2016-04-22 2018-06-21 Hanon Systems Klimaanlage für Fahrzeuge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958617U (ja) * 1982-10-13 1984-04-17 株式会社日立製作所 自動車用空気調和装置
JP2001030739A (ja) * 1999-07-22 2001-02-06 Mitsubishi Heavy Ind Ltd ダンパ構造、車両用空気調和ユニット及び車両用空気調和装置
US20170291468A1 (en) * 2014-12-02 2017-10-12 Hanon Systems Dual zone type air conditioner for vehicle

Also Published As

Publication number Publication date
US20210323376A1 (en) 2021-10-21
JP2020111204A (ja) 2020-07-27
JP7183804B2 (ja) 2022-12-06
US11712944B2 (en) 2023-08-01
CN113302066A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
JP5128977B2 (ja) 自動車用空気調和装置
KR102470409B1 (ko) 차량용 좌,우 독립 공조장치
JP3960020B2 (ja) 車両用空調装置
WO2012114573A1 (ja) 車両用空調装置
JP6341114B2 (ja) 車両用空調装置
JP2009113538A (ja) 車両用空調装置
JP2001138728A (ja) 車両用空調装置
JP2009202687A (ja) 車両用空調装置
JP2001055037A (ja) 車両用空調装置
US11230163B2 (en) Vehicle air handling system
WO2014058009A1 (ja) 車両用空調装置
WO2020145055A1 (ja) 車両用空調装置
JP5407791B2 (ja) 車両用空調装置およびその吹出口
JP2005219574A (ja) 車両用空調装置
JP2020069967A (ja) 車両用空調装置
JP2018118523A (ja) 車両用空調装置
JP2004243932A (ja) 車両用空調装置
JP2016531782A (ja) 二元流れ構造及び冷気の分配器を有する自動車のための空気調和装置
JP2001030733A (ja) 車両用空調装置
KR20100016743A (ko) 차량용 공기조화장치
JP2009120079A (ja) 車両用シート空調装置
JP2020079048A (ja) 車両用空調装置
JP2020011669A (ja) 車両用空調装置
KR20210113790A (ko) 차량용 공조장치
JPH0345847Y2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909038

Country of ref document: EP

Kind code of ref document: A1