WO2020143274A1 - 垂直结构蓝光发光二极管及其制备方法 - Google Patents

垂直结构蓝光发光二极管及其制备方法 Download PDF

Info

Publication number
WO2020143274A1
WO2020143274A1 PCT/CN2019/112933 CN2019112933W WO2020143274A1 WO 2020143274 A1 WO2020143274 A1 WO 2020143274A1 CN 2019112933 W CN2019112933 W CN 2019112933W WO 2020143274 A1 WO2020143274 A1 WO 2020143274A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
blue light
emitting diode
nitride epitaxial
thickness
Prior art date
Application number
PCT/CN2019/112933
Other languages
English (en)
French (fr)
Inventor
王永进
倪曙煜
袁佳磊
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Priority to JP2021539872A priority Critical patent/JP2022516669A/ja
Publication of WO2020143274A1 publication Critical patent/WO2020143274A1/zh
Priority to US17/372,316 priority patent/US20210336097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to the fields of lighting, display and optical communication, in particular to a vertical structure blue light-emitting diode and a preparation method thereof.
  • Light emitting diodes (Light Emitting Diode, LED) have the advantages of small size, high efficiency, long life, etc., and have broad application prospects in the fields of lighting, display and optical communication.
  • Traditional light-emitting diodes use sapphire as the growth substrate.
  • the sapphire substrate is not conductive, the conventional light-emitting diode usually adopts a lateral structure with electrodes on the same side.
  • This lateral structure has at least the following two shortcomings: on the one hand, the current flows in the N-type layer laterally unequal, and there is current congestion, which causes the local heat generation of the LED device to be high, which affects the performance of the device; on the other hand The thermal conductivity of the sapphire substrate is poor, which limits the heat dissipation of the light emitting diode device and affects the service life of the light emitting diode device.
  • a vertical structure light-emitting diode has appeared in the prior art.
  • the invention provides a vertical structure blue light emitting diode and a preparation method thereof, which are used to solve the problem of low light output efficiency of the existing blue light emitting diode.
  • the present invention provides a vertical structure blue light emitting diode, including:
  • a conductive substrate having a first surface and a second surface opposite to the first surface;
  • a metal reflective layer located on the first surface
  • a nitride epitaxial layer, located on the surface of the metal reflective layer, includes a P-type GaN layer, a quantum well layer, a preparation layer, and an N-type GaN layer sequentially stacked in a direction perpendicular to the conductive substrate, and the nitride epitaxial layer The thickness of the layer is less than the blue light wavelength;
  • An N-type electrode located on the surface of the N-type GaN layer
  • a P-type electrode is located on the second surface.
  • the thickness of the nitride epitaxial layer is 350 nm or less.
  • it further includes a NiSn bonding layer between the conductive substrate and the metal reflective layer.
  • the vertical structure blue light emitting diode has a stepped structure;
  • the stepped structure includes a lower step and an upper step formed by the nitride epitaxial layer;
  • the lower step includes the P-type electrode and the conductive The substrate and the metal reflective layer, and the lower step protrudes from the upper step in a direction parallel to the conductive substrate.
  • the thickness of the P-type GaN layer is 115 nm to 135 nm
  • the thickness of the quantum well layer is 40 nm to 60 nm
  • the thickness of the preparation layer is 60 nm to 80 nm.
  • the present invention also provides a method for preparing a vertical structure blue light emitting diode, including the following steps:
  • the surface of the growth substrate has a nitride epitaxial layer and a metal reflective layer
  • the nitride epitaxial layer includes buffers stacked sequentially in a direction perpendicular to the growth substrate Layer, undoped GaN layer, N-type GaN layer, preparation layer, quantum well layer, P-type GaN layer
  • the metal reflective layer is located on the surface of the P-type GaN layer
  • the conductive substrate includes a first surface and A second surface opposite to the first surface, the second surface having a P-type electrode;
  • An N-type electrode is formed on the surface of the remaining N-type GaN layer.
  • the thickness of the remaining nitride epitaxial layer is 350 nm or less.
  • the specific steps of bonding a growth substrate and a conductive substrate include:
  • the first NiSn bonding layer and the second NiSn bonding layer are bonded.
  • the specific steps of etching the nitride epitaxial layer include:
  • the thickness is less than the blue light wavelength
  • the stepped structure includes a lower step and the remaining nitride epitaxial layer in the device region
  • the lower step includes the P-type electrode, the conductive substrate and the metal reflective layer, and the lower step protrudes from the upper step in a direction parallel to the conductive substrate.
  • the thickness of the P-type GaN layer is 115 nm to 135 nm
  • the thickness of the quantum well layer is 40 nm to 60 nm
  • the thickness of the preparation layer is 60 nm to 80 nm.
  • the vertical structure blue light emitting diode and the preparation method thereof provided by the invention improve the electric injection efficiency due to the vertical structure of the device; at the same time, the thickness of the nitride epitaxial layer is set to be less than the blue light wavelength, so that the vertical structure blue light emitting diode is not affected
  • the restriction of the constraint mode reduces or even eliminates the transmission of light emitted by the light emitting diode inside the nitride epitaxial layer, reduces the internal absorption loss, and greatly improves the light emitting efficiency of the light emitting diode; at the same time, the setting of the metal reflective layer further enhances the light emission The light output efficiency of the diode.
  • FIG. 1 is a schematic structural view of a vertical structure blue light-emitting diode in a specific embodiment of the present invention
  • FIG. 2 is a flow chart of a method for preparing a vertical structure blue light-emitting diode in a specific embodiment of the present invention
  • 3A-3G are schematic cross-sectional views of main processes in the process of preparing a vertical structure blue light-emitting diode in a specific embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of the vertical structure blue light emitting diode in the specific embodiment of the present invention.
  • the vertical structure blue light emitting diode provided by this specific embodiment includes:
  • a conductive substrate 10 the conductive substrate 10 having a first surface and a second surface opposite to the first surface;
  • the metal reflective layer 11 is located on the first surface
  • a nitride epitaxial layer, located on the surface of the metal reflective layer 11, includes a P-type GaN layer 12, a quantum well layer 13, a preparation layer 18, and an N-type GaN layer 14 sequentially stacked in a direction perpendicular to the conductive substrate 10 ,
  • the thickness of the nitride epitaxial layer is less than the blue light wavelength;
  • An N-type electrode 15 located on the surface of the N-type GaN layer 14;
  • the P-type electrode 16 is located on the second surface.
  • the wavelength range of blue light emitted by the vertical structure blue light emitting diode is preferably 450 nm to 470 nm.
  • the quantum well layer 13 described in this specific embodiment may be an InGaN/GaN quantum well layer.
  • the conductive substrate 10 may be a metal substrate or a silicon substrate.
  • the conductive substrate 10 is preferably a Si (100) substrate.
  • the material of the preparation layer 18 may be GaN or InGaN.
  • the material of the N-type electrode 15 and the P-type electrode 16 may be chromium, platinum or gold.
  • the material of the metal reflective layer 11 may be silver, nickel or silver-nickel alloy. An ohmic contact is formed between the metal reflective layer 11 and the P-type GaN layer 12.
  • the N-type electrode 15 and the P-type electrode 16 are located on opposite sides of the conductive substrate 10, and almost all current flows vertically through the nitride epitaxial layer, and almost no current flows laterally , Improve the efficiency of electric injection.
  • the thickness of the nitride epitaxial layer is set to be less than the blue light wavelength, so that the vertical structure blue light-emitting diode is not restricted by the constraint mode, reducing or even eliminating the transmission of the light emitted by the light-emitting diode inside the nitride epitaxial layer and reducing the internal
  • the absorption loss makes the light emitting efficiency of the light emitting diode greatly improved.
  • the arrangement of the metal reflective layer 11 reduces light loss, thereby further enhancing the light emitting efficiency of the light emitting diode.
  • the thickness of the nitride epitaxial layer is below 350 nm.
  • the vertical structure blue light emitting diode further includes a NiSn bonding layer 17 between the conductive substrate 10 and the metal reflective layer 11.
  • the vertical structure blue light emitting diode is obtained by bonding the conductive substrate 10 and the growth substrate, and the bonding layer 17 is formed by the first NiSn bonding layer on the first surface of the conductive substrate 10 and The second NiSn bonding layer on the bonding surface of the growth substrate is formed by bonding.
  • the vertical structure blue light emitting diode has a stepped structure;
  • the stepped structure includes a lower step and an upper step formed by the nitride epitaxial layer;
  • the lower step includes the P-type electrode 16, the The conductive substrate 10 and the metal reflective layer 11, and the lower step protrudes from the upper step in a direction parallel to the conductive substrate 10.
  • the metal reflective layer 11 and the nitride epitaxial layer are sequentially stacked on the first surface of the conductive substrate 10 along the Y-axis direction, and the upper step is stacked on the lower surface along the Y-axis direction A step surface, the lower step protrudes from the upper step in the X-axis direction.
  • the stepped structure it is convenient to form a passivation layer on the surface of the nitride epitaxial layer later, so as to protect the nitride epitaxial layer.
  • the thickness of the P-type GaN layer 12 is 115 nm to 135 nm
  • the thickness of the quantum well layer 13 is 40 nm to 60 nm
  • the thickness of the preparation layer 18 is 60 nm to 80 nm.
  • the thickness of the P-type GaN layer 12 is 125 nm
  • the thickness of the quantum well layer 13 is 50 nm
  • the thickness of the preparation layer 18 is 70 nm.
  • FIG. 2 is a flowchart of a method for preparing a blue light emitting diode with a vertical structure in the embodiment of the present invention.
  • FIGS. 3A-3G are the present invention.
  • the preparation method of the vertical structure blue light emitting diode provided by this embodiment includes the following steps:
  • a growth substrate 20 and a conductive substrate 10 are bonded to obtain a structure as shown in FIG. 3C.
  • the surface of the growth substrate 20 has a nitride epitaxial layer and a metal reflective layer 11, the nitride epitaxial layer It includes a buffer layer 22, an undoped GaN (u-GaN) layer 21, an N-type GaN layer 14, a preparation layer 18, a quantum well layer 13, and a P-type stacked sequentially in a direction perpendicular to the growth substrate 20 GaN layer 12, the metal reflective layer 11 is located on the surface of the P-type GaN layer 12, as shown in FIG. 3A; the conductive substrate 10 includes a first surface and a second surface opposite to the first surface, so The second surface has a P-type electrode 16, as shown in FIG. 3B.
  • the growth substrate 20 may be a group III-V material substrate, a sapphire substrate or a silicon substrate.
  • the growth substrate 20 is a Si (111) substrate.
  • the specific steps for forming the growth substrate 20 include:
  • a metal reflective layer 11 is formed on the surface of the P-type GaN layer 12.
  • the specific method for forming the metal reflective layer 11 on the surface of the P-type GaN layer 12 can be selected by those skilled in the art according to actual needs, for example, an electron beam evaporation process can be used.
  • the quantum well layer 13 described in this specific embodiment may be an InGaN/GaN quantum well layer.
  • the conductive substrate 10 may be a metal substrate or a silicon substrate.
  • the conductive substrate 10 is preferably a Si (100) substrate.
  • the material of the preparation layer 18 may be GaN or InGaN.
  • the material of the metal reflective layer 11 may be silver, nickel or silver-nickel alloy. An ohmic contact is formed between the metal reflective layer 11 and the P-type GaN layer 12.
  • the material of the buffer layer 22 may be AlN/AlGaN to reduce the stress between the growth substrate 20 and the nitride epitaxial layer.
  • each layer in the nitride epitaxial layer initially formed in the growth substrate 20 is as follows: the buffer layer 22 is 0.6 ⁇ m to 0.8 ⁇ m, and the undoped GaN (u-GaN) layer 21 0.7 ⁇ m to 0.9 ⁇ m, the N-type GaN layer 14 is 2.7 ⁇ m to 2.9 ⁇ m, the preparation layer 18 is 60 nm to 80 nm, the quantum well layer 13 is 40 nm to 60 nm, and the P-type GaN layer 12 is 115nm ⁇ 135nm.
  • the thickness of the buffer layer 22 of AlN/AlGaN material is 0.7 ⁇ m
  • the thickness of the undoped GaN (u-GaN) layer 21 is 0.8 ⁇ m
  • the thickness of the N-type GaN layer 14 is At 2.8 ⁇ m
  • the thickness of the preparation layer 18 of GaN material is 70 nm
  • the thickness of the InGaN/GaN quantum well layer is 50 nm
  • the thickness of the P-type GaN layer 12 is 125 nm.
  • the conductive substrate 10 and the growth substrate 20 are bonded in the Y-axis direction with the metal reflective layer 11 facing the first surface of the conductive substrate 10.
  • the specific steps of bonding a growth substrate 20 and a conductive substrate 10 include:
  • the first NiSn bonding layer 171 and the second NiSn bonding layer 172 are bonded.
  • step S22 the growth substrate 20 is peeled off, as shown in FIG. 3D.
  • Step S23 etching the nitride epitaxial layer, removing the buffer layer 22 and the undoped GaN layer 21, and thinning the N-type GaN layer 14, so that the remaining nitride epitaxial layer
  • the thickness is less than the blue wavelength, as shown in Figure 3F.
  • the wavelength range of the blue light emitted by the blue light emitting diode with a vertical structure is preferably 460 nm to 470 nm.
  • the thickness of the remaining nitride epitaxial layer is 350 nm or less.
  • the thickness of the remaining nitride epitaxial layer in this specific embodiment refers to the remaining N-type GaN layer 14, the preparation layer 18, and the quantum well layer 13 after the etching process of step 23 With the total thickness of the P-type GaN layer 12.
  • the specific steps of etching the nitride epitaxial layer include:
  • the stepped structure includes a lower step and is epitaxial by the remaining nitride in the device region
  • the upper step is shown in FIG. 3F.
  • the nitride epitaxial layer on the periphery of the device region is removed.
  • the metal reflective layer 11 and the nitride epitaxial layer are sequentially stacked on the first surface of the conductive substrate 10 along the Y-axis direction, and the upper step is stacked on the surface of the lower step along the Y-axis direction.
  • the lower step protrudes from the upper step in the X-axis direction.
  • Step S24 forming an N-type electrode 15 on the surface of the remaining N-type GaN layer 14, as shown in FIG. 3G.
  • the N-type electrode 15 may be formed by vapor-depositing a metal electrode.
  • the material of the N-type electrode 15 and the P-type electrode 16 may be chromium, platinum or gold.
  • the vertical structure blue light emitting diode and the preparation method thereof provided by the specific embodiment improve the electric injection efficiency due to the vertical structure of the device; at the same time, the thickness of the nitride epitaxial layer is set to be smaller than the blue light wavelength, so that the vertical structure blue light emitting diode Unrestricted by the constrained mode, reducing or even eliminating the transmission of light emitted by the light-emitting diode inside the nitride epitaxial layer, reducing the internal absorption loss, and greatly improving the light-emitting diode light-emitting efficiency; at the same time, the metal reflective layer is further enhanced The light output efficiency of the light-emitting diode.

Abstract

垂直结构蓝光发光二极管,包括:导电衬底(10),所述导电衬底(10)具有第一表面以及与所述第一表面相对的第二表面;金属反射层(11),位于所述第一表面;氮化物外延层,位于所述金属反射层(11)表面,包括沿垂直于所述导电衬底(10)的方向依次叠置的P型GaN层(12)、量子阱层(13)、准备层(18)和N型GaN层(14),所述氮化物外延层的厚度小于蓝光波长;N型电极(15),位于所述N型GaN层表面(14);P型电极(16),位于所述第二表面。所述的垂直结构蓝光发光二极管,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高。

Description

垂直结构蓝光发光二极管及其制备方法 技术领域
本发明涉及照明、显示和光通信领域,尤其涉及一种垂直结构蓝光发光二极管及其制备方法。
背景技术
发光二极管(Light Emitting Diode,LED)具有体积小、效率高、寿命长等优点,在照明、显示和光通信领域具有广泛的应用前景。传统的发光二极管以蓝宝石为生长衬底。然而,由于蓝宝石衬底不导电,所以传统的发光二极管通常是采用电极在同一侧的横向结构。这种横向结构至少存在以下两个方面的缺点:一方面,电流在N型层中横向流动不等距,存在电流拥堵现象,导致发光二极管器件局部发热量较高,影响器件性能;另一方面,蓝宝石衬底的导热性较差,限制了发光二极管器件的散热,影响发光二极管器件的使用寿命。为了克服横向发光二极管器件的缺陷,现有技术中出现了垂直结构发光二极管。
然而,在现有的垂直结构发光二极管中,由于厚膜的限制,存在许多光学约束模式(Confined Mode)。当电子注入、垂直结构发光二极管发光时,大部分出射光会被限制在发光二极管外延层的厚膜中,造成膜内传输、吸收,极大的降低了发光二极管的出光效率。
因此,如何避免发光二极管器件的厚度对出射光线的约束,以提高发光二极管的出光效率,是目前亟待解决的技术问题。
发明内容
本发明提供一种垂直结构蓝光发光二极管及其制备方法,用于解决现有的蓝光发光二极管出光效率较低的问题。
为了解决上述问题,本发明提供了一种垂直结构蓝光发光二极管,包括:
导电衬底,所述导电衬底具有第一表面以及与所述第一表面相对的第二表面;
金属反射层,位于所述第一表面;
氮化物外延层,位于所述金属反射层表面,包括沿垂直于所述导电衬底的方向依次叠置的P型GaN层、量子阱层、准备层和N型GaN层,所述氮化物 外延层的厚度小于蓝光波长;
N型电极,位于所述N型GaN层表面;
P型电极,位于所述第二表面。
优选的,所述氮化物外延层的厚度在350nm以下。
优选的,还包括位于所述导电衬底与所述金属反射层之间的NiSn键合层。
优选的,所述垂直结构蓝光发光二极管呈台阶状结构;所述台阶状结构包括下台阶以及由所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
优选的,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
为了解决上述问题,本发明还提供了一种垂直结构蓝光发光二极管的制备方法,包括如下步骤:
键合一生长衬底和一导电衬底,所述生长衬底表面具有氮化物外延层和金属反射层,所述氮化物外延层包括沿垂直于所述生长衬底的方向依次叠置的缓冲层、未掺杂的GaN层、N型GaN层、准备层、量子阱层、P型GaN层,所述金属反射层位于所述P型GaN层表面;所述导电衬底包括第一表面以及与所述第一表面相对的第二表面,所述第二表面具有P型电极;
剥离所述生长衬底;
刻蚀所述氮化物外延层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
形成N型电极于残留的所述N型GaN层表面。
优选的,残留的所述氮化物外延层的厚度在350nm以下。
优选的,键合一生长衬底和一导电衬底的具体步骤包括:
于所述金属反射层表面形成第一NiSn键合层;
于所述导电衬底的所述第一表面形成第二NiSn键合层;
键合所述第一NiSn键合层与所述第二NiSn键合层。
优选的,刻蚀所述氮化物外延层的具体步骤包括:
刻蚀所述氮化物外延层至所述N型GaN层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
于残留的所述氮化物外延层中定义器件区域;
刻蚀所述器件区域外围的残留的所述氮化物外延层至所述金属反射层,形成台阶状结构;所述台阶状结构包括下台阶以及由器件区域内的残留的所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
优选的,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
本发明提供的垂直结构蓝光发光二极管及其制备方法,由于器件采用垂直结构,提高了电注入效率;同时将氮化物外延层的厚度设置为小于蓝光波长,使得所述垂直结构蓝光发光二极管不受约束模式的限制,减少甚至是消除了发光二极管出射光线在氮化物外延层内部的传输,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高;同时,金属反射层的设置进一步增强了发光二极管的出光效率。
附图说明
附图1是本发明具体实施方式中垂直结构蓝光发光二极管的结构示意图;
附图2是本发明具体实施方式中垂直结构蓝光发光二极管的制备方法流程图;
附图3A-3G是本发明具体实施方式中在制备垂直结构蓝光发光二极管的过程中主要的工艺截面示意图。
具体实施方式
下面结合附图对本发明提供的垂直结构蓝光发光二极管及其制备方法的具体实施方式做详细说明。
本具体实施方式提供了一种垂直结构蓝光发光二极管,附图1是本发明具体实施方式中垂直结构蓝光发光二极管的结构示意图。如图1所示,本具体实 施方式提供的垂直结构蓝光发光二极管包括:
导电衬底10,所述导电衬底10具有第一表面以及与所述第一表面相对的第二表面;
金属反射层11,位于所述第一表面;
氮化物外延层,位于所述金属反射层11表面,包括沿垂直于所述导电衬底10的方向依次叠置的P型GaN层12、量子阱层13、准备层18和N型GaN层14,所述氮化物外延层的厚度小于蓝光波长;
N型电极15,位于所述N型GaN层14表面;
P型电极16,位于所述第二表面。
具体来说,所述垂直结构蓝光发光二极管发出的蓝光的波长范围优选为450nm~470nm。本具体实施方式中所述的量子阱层13可以为InGaN/GaN量子阱层。所述导电衬底10可以为金属衬底,也可以为硅衬底。所述导电衬底10优选为Si(100)衬底。所述准备层18的材料可以为GaN,也可以为InGaN。所述N型电极15与所述P型电极16的材料可以为铬、铂或者金。所述金属反射层11的材料可以为银、镍或者银镍合金。所述金属反射层11与所述P型GaN层12之间形成欧姆接触。
本具体实施方式中,所述N型电极15与所述P型电极16位于所述导电衬底10的相对两侧,电流几乎全部垂直流过所述氮化物外延层,几乎没有横向流动的电流,提高了电注入效率。同时将氮化物外延层的厚度设置为小于蓝光波长,使得所述垂直结构蓝光发光二极管不受约束模式的限制,减少甚至是消除了发光二极管出射光线在氮化物外延层内部的传输,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高。另外,所述金属反射层11的设置减少了光线损失,从而,进一步增强了发光二极管的出光效率。
为了进一步提高所述垂直结构蓝光发光二极管的出光效率,优选的,所述氮化物外延层的厚度在350nm以下。
优选的,所述垂直结构蓝光发光二极管还包括位于所述导电衬底10与所述金属反射层11之间的NiSn键合层17。
所述垂直结构蓝光发光二极管由导电衬底10与生长衬底键合得到,所述 键合层17由位于所述导电衬底10的所述第一表面上的第一NiSn键合层与位于所述生长衬底键合面上的第二NiSn键合层键合形成。
优选的,所述垂直结构蓝光发光二极管呈台阶状结构;所述台阶状结构包括下台阶以及由所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极16、所述导电衬底10与所述金属反射层11,且所述下台阶沿平行于所述导电衬底10的方向突出于所述上台阶。
具体来说,所述金属反射层11与所述氮化物外延层沿Y轴方向依次叠置于所述导电衬底10的第一表面,所述上台阶沿Y轴方向叠置于所述下台阶表面,所述下台阶沿X轴方向突出于所述上台阶。通过形成所述台阶状结构,便于后续在所述氮化物外延层表面形成钝化层,以对所述氮化物外延层进行保护。
优选的,所述P型GaN层12的厚度为115nm~135nm,所述量子阱层13的厚度为40nm~60nm,所述准备层18的厚度为60nm~80nm。
举例来说,所述P型GaN层12的厚度为125nm,所述量子阱层13的厚度为50nm,所述准备层18的厚度为70nm。
不仅如此,本具体实施方式还提供了一种垂直结构蓝光发光二极管的制备方法,附图2是本发明具体实施方式中垂直结构蓝光发光二极管的制备方法流程图,附图3A-3G是本发明具体实施方式中在制备垂直结构蓝光发光二极管的过程中主要的工艺截面示意图,本具体实施方式制备的垂直结构蓝光发光二极管的具体结构可参见图1。如图1-图2、图3A-图3G所示,本具体实施方式提供的垂直结构蓝光发光二极管的制备方法,包括如下步骤:
步骤S21,键合一生长衬底20和一导电衬底10,得到如图3C所示的结构,所述生长衬底20表面具有氮化物外延层和金属反射层11,所述氮化物外延层包括沿垂直于所述生长衬底20的方向依次叠置的缓冲层22、未掺杂的GaN(u-GaN)层21、N型GaN层14、准备层18、量子阱层13、P型GaN层12,所述金属反射层11位于所述P型GaN层12表面,如图3A所示;所述导电衬底10包括第一表面以及与所述第一表面相对的第二表面,所述第二表面具有P型电极16,如图3B所示。
所述生长衬底20可以为Ⅲ-Ⅴ族材料衬底、蓝宝石衬底或者硅衬底。优选的,所述生长衬底20为Si(111)衬底。形成所述生长衬底20的具体步骤包括:
依次沉积缓冲层22、未掺杂的GaN(u-GaN)层21、N型GaN层14、准备层18、量子阱层13、P型GaN层12于所述生长衬底20表面;
形成金属反射层11于所述P型GaN层12表面。
其中,形成金属反射层11于所述P型GaN层12表面的具体方法,本领域技术人员可以根据实际需要进行选择,例如可以采用电子束蒸发工艺。
本具体实施方式中所述的量子阱层13可以为InGaN/GaN量子阱层。所述导电衬底10可以为金属衬底,也可以为硅衬底。所述导电衬底10优选为Si(100)衬底。所述准备层18的材料可以为GaN,也可以为InGaN。所述金属反射层11的材料可以为银、镍或者银镍合金。所述金属反射层11与所述P型GaN层12之间形成欧姆接触。所述缓冲层22的材料可以为AlN/AlGaN,用于降低所述生长衬底20与氮化物外延层之间的应力。
在所述生长衬底20中初始形成的所述氮化物外延层中各层的厚度如下:所述缓冲层22为0.6μm~0.8μm、所述未掺杂的GaN(u-GaN)层21为0.7μm~0.9μm、所述N型GaN层14为2.7μm~2.9μm、所述准备层18为60nm~80nm、所述量子阱层13为40nm~60nm、所述P型GaN层12为115nm~135nm。举例来说,AlN/AlGaN材料的所述缓冲层22的厚度为0.7μm、所述未掺杂的GaN(u-GaN)层21的厚度为0.8μm、所述N型GaN层14的厚度为2.8μm、GaN材料的所述准备层18的厚度为70nm、InGaN/GaN量子阱层的厚度为50nm、所述P型GaN层12的厚度为125nm。
在键合过程中,以所述金属反射层11朝向所述导电衬底10的所述第一表面的方式,沿Y轴方向键合所述导电衬底10与所述生长衬底20。
具体来说,键合一生长衬底20和一导电衬底10的具体步骤包括:
于所述金属反射层11表面形成第一NiSn键合层171;
于所述导电衬底20的所述第一表面形成第二NiSn键合层172;
键合所述第一NiSn键合层171与所述第二NiSn键合层172。
步骤S22,剥离所述生长衬底20,如图3D所示。
步骤S23,刻蚀所述氮化物外延层,去除所述缓冲层22和所述未掺杂的GaN层21,并减薄所述N型GaN层14,使得残留的所述氮化物外延层的厚度小于蓝光波长,如图3F所示。本具体实施方式中所述垂直结构蓝光发光二极管发出的蓝光的波长范围优选为460nm~470nm。
为了进一步提高所述垂直结构蓝光发光二极管的出光效率,优选的,残留的所述氮化物外延层的厚度在350nm以下。本具体实施方式中所述的残留的所述氮化物外延层的厚度是指经过步骤23的刻蚀工艺,残留的所述N型GaN层14、所述准备层18、所述量子阱层13与所述P型GaN层12的总的厚度。
优选的,刻蚀所述氮化物外延层的具体步骤包括:
刻蚀所述氮化物外延层至所述N型GaN层14,去除所述缓冲层22和所述未掺杂的GaN层21,并减薄所述N型GaN层14,使得残留的所述氮化物外延层的厚度小于蓝光波长,如图3E所示;
于残留的所述氮化物外延层中定义器件区域;
刻蚀所述器件区域外围的残留的所述氮化物外延层至所述金属反射层11,形成台阶状结构;所述台阶状结构包括下台阶以及由器件区域内的残留的所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极16、所述导电衬底10与所述金属反射层11,且所述下台阶沿平行于所述导电衬底10的方向突出于所述上台阶,如图3F所示。
具体来说,所述器件区域外围的所述氮化物外延层被去除。所述金属反射层11与所述氮化物外延层沿Y轴方向依次叠置于所述导电衬底10的第一表面,所述上台阶沿Y轴方向叠置于所述下台阶表面,所述下台阶沿X轴方向突出于所述上台阶。通过形成所述台阶状结构,便于后续在所述氮化物外延层表面形成钝化层,以对所述氮化物外延层进行保护。
步骤S24,形成N型电极15于残留的所述N型GaN层14表面,如图3G所示。
具体来说,可以采用蒸镀金属电极的方式形成所述N型电极15。所述N型电极15与所述P型电极16的材料可以均为铬、铂或者金。
本具体实施方式提供的垂直结构蓝光发光二极管及其制备方法,由于器件采用垂直结构,提高了电注入效率;同时将氮化物外延层的厚度设置为小于蓝光波长,使得所述垂直结构蓝光发光二极管不受约束模式的限制,减少甚至是消除了发光二极管出射光线在氮化物外延层内部的传输,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高;同时,金属反射层的设置进一步增强了发光二极管的出光效率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种垂直结构蓝光发光二极管,其特征在于,包括:
    导电衬底,所述导电衬底具有第一表面以及与所述第一表面相对的第二表面;
    金属反射层,位于所述第一表面;
    氮化物外延层,位于所述金属反射层表面,包括沿垂直于所述导电衬底的方向依次叠置的P型GaN层、量子阱层、准备层和N型GaN层,所述氮化物外延层的厚度小于蓝光波长;
    N型电极,位于所述N型GaN层表面;
    P型电极,位于所述第二表面。
  2. 根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,所述氮化物外延层的厚度在350nm以下。
  3. 根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,还包括位于所述导电衬底与所述金属反射层之间的NiSn键合层。
  4. 根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,所述垂直结构蓝光发光二极管呈台阶状结构;所述台阶状结构包括下台阶以及由所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
  5. 根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
  6. 一种垂直结构蓝光发光二极管的制备方法,其特征在于,包括如下步骤:
    键合一生长衬底和一导电衬底,所述生长衬底表面具有氮化物外延层和金属反射层,所述氮化物外延层包括沿垂直于所述生长衬底的方向依次叠置的缓冲层、未掺杂的GaN层、N型GaN层、准备层、量子阱层、P型GaN层,所述金属反射层位于所述P型GaN层表面;所述导电衬底包括第一表面以及与所述第一表面相对的第二表面,所述第二表面具有P型电极;
    剥离所述生长衬底;
    刻蚀所述氮化物外延层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
    形成N型电极于残留的所述N型GaN层表面。
  7. 根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,残留的所述氮化物外延层的厚度在350nm以下。
  8. 根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,键合一生长衬底和一导电衬底的具体步骤包括:
    于所述金属反射层表面形成第一NiSn键合层;
    于所述导电衬底的所述第一表面形成第二NiSn键合层;
    键合所述第一NiSn键合层与所述第二NiSn键合层。
  9. 根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,刻蚀所述氮化物外延层的具体步骤包括:
    刻蚀所述氮化物外延层至所述N型GaN层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
    于残留的所述氮化物外延层中定义器件区域;
    刻蚀所述器件区域外围的残留的所述氮化物外延层至所述金属反射层,形成台阶状结构;所述台阶状结构包括下台阶以及由器件区域内的残留的所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
  10. 根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
PCT/CN2019/112933 2019-01-09 2019-10-24 垂直结构蓝光发光二极管及其制备方法 WO2020143274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539872A JP2022516669A (ja) 2019-01-09 2019-10-24 垂直構造の青光発光ダイオード及びその製造方法
US17/372,316 US20210336097A1 (en) 2019-01-09 2021-07-09 Vertical blue light emitting diode and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910018312.8 2019-01-09
CN201910018312.8A CN109994578B (zh) 2019-01-09 2019-01-09 垂直结构蓝光发光二极管及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/372,316 Continuation US20210336097A1 (en) 2019-01-09 2021-07-09 Vertical blue light emitting diode and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2020143274A1 true WO2020143274A1 (zh) 2020-07-16

Family

ID=67129940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112933 WO2020143274A1 (zh) 2019-01-09 2019-10-24 垂直结构蓝光发光二极管及其制备方法

Country Status (4)

Country Link
US (1) US20210336097A1 (zh)
JP (1) JP2022516669A (zh)
CN (1) CN109994578B (zh)
WO (1) WO2020143274A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994578B (zh) * 2019-01-09 2020-12-11 南京邮电大学 垂直结构蓝光发光二极管及其制备方法
CN110556460A (zh) * 2019-08-28 2019-12-10 南京南邮信息产业技术研究院有限公司 一种超薄垂直结构黄光led及其制备方法
CN110783439A (zh) * 2019-10-31 2020-02-11 南京亮芯信息科技有限公司 集成dbr的垂直结构led及其形成方法
CN114597231A (zh) * 2022-05-10 2022-06-07 上海南麟电子股份有限公司 基于纳米线mosfet的压控led及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126022A1 (en) * 2005-12-06 2007-06-07 Samsung Electro-Mechanics Co., Ltd. Vertical gallium-nitride based light emitting diode and manufacturing of the same
CN101523623A (zh) * 2006-10-02 2009-09-02 皇家飞利浦电子股份有限公司 包括由光子晶体限定的阵列发射体的发光设备
US20150028356A1 (en) * 2013-07-29 2015-01-29 Gwangju Institute Of Science And Technology Light emitting diode having multi-junction structure and method of fabricating the same
CN108281522A (zh) * 2017-12-28 2018-07-13 映瑞光电科技(上海)有限公司 一种垂直结构的发光二极管及其制备方法
CN109994578A (zh) * 2019-01-09 2019-07-09 南京邮电大学 垂直结构蓝光发光二极管及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247437B2 (ja) * 1992-03-10 2002-01-15 旭化成株式会社 窒化物系半導体素子およびその製造方法
JP2005277372A (ja) * 2004-02-25 2005-10-06 Sanken Electric Co Ltd 半導体発光素子及びその製造方法
JP2008159954A (ja) * 2006-12-26 2008-07-10 Showa Denko Kk Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2011124311A (ja) * 2009-12-09 2011-06-23 Toshiba Corp 半導体発光素子の製造方法および積層構造体
WO2013010389A1 (zh) * 2011-07-15 2013-01-24 中国科学院半导体研究所 发光二极管封装结构及其制造方法
CN104576872B (zh) * 2013-10-12 2017-05-17 山东浪潮华光光电子股份有限公司 一种半导体发光二极管芯片及其制作方法
JP2016139700A (ja) * 2015-01-27 2016-08-04 ウシオ電機株式会社 半導体発光素子の製造方法、半導体発光素子の製造システム
US10636943B2 (en) * 2015-08-07 2020-04-28 Lg Innotek Co., Ltd. Light emitting diode and light emitting diode package
JP6834257B2 (ja) * 2016-08-31 2021-02-24 日亜化学工業株式会社 発光素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126022A1 (en) * 2005-12-06 2007-06-07 Samsung Electro-Mechanics Co., Ltd. Vertical gallium-nitride based light emitting diode and manufacturing of the same
CN101523623A (zh) * 2006-10-02 2009-09-02 皇家飞利浦电子股份有限公司 包括由光子晶体限定的阵列发射体的发光设备
US20150028356A1 (en) * 2013-07-29 2015-01-29 Gwangju Institute Of Science And Technology Light emitting diode having multi-junction structure and method of fabricating the same
CN108281522A (zh) * 2017-12-28 2018-07-13 映瑞光电科技(上海)有限公司 一种垂直结构的发光二极管及其制备方法
CN109994578A (zh) * 2019-01-09 2019-07-09 南京邮电大学 垂直结构蓝光发光二极管及其制备方法

Also Published As

Publication number Publication date
US20210336097A1 (en) 2021-10-28
CN109994578A (zh) 2019-07-09
JP2022516669A (ja) 2022-03-01
CN109994578B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2020143274A1 (zh) 垂直结构蓝光发光二极管及其制备方法
US6649440B1 (en) Aluminum indium gallium nitride-based LED having thick epitaxial layer for improved light extraction
CN109841714B (zh) 垂直结构近紫外发光二极管及其制备方法
US8674375B2 (en) Roughened high refractive index layer/LED for high light extraction
JP4557542B2 (ja) 窒化物発光装置及び高発光効率窒化物発光装置
US20090140279A1 (en) Substrate-free light emitting diode chip
US20160013386A1 (en) Manufacturing method of a light-emitting device having a patterned substrate
WO2007119619A1 (ja) GaN系半導体発光素子およびランプ
JP2008244425A (ja) GaN系LED素子および発光装置
KR20110029085A (ko) 반도체 발광 장치 및 반도체 발광 장치의 제조 방법
JP2008218878A (ja) GaN系LED素子および発光装置
WO2015184774A1 (zh) 一种倒装发光二极管结构及其制作方法
JP2010098068A (ja) 発光ダイオード及びその製造方法、並びにランプ
JP4564234B2 (ja) 半導体発光素子
US20220367755A1 (en) Vertical deep-ultraviolet light-emitting diode and method for manufacturing same
CN211182232U (zh) 一种倒装紫外发光二极管芯片
US20100224897A1 (en) Semiconductor optoelectronic device and method for forming the same
WO2021035676A1 (zh) 一种超薄结构深紫外led及其制备方法
WO2018076901A1 (zh) 一种薄膜发光二极管芯片及其制作方法
CN215184030U (zh) 一种垂直结构深紫外发光二极管
JP2005005557A (ja) 半導体発光素子の製造方法
KR101091048B1 (ko) 반도체 발광 소자
CN113851566B (zh) 一种深紫外led倒装芯片及其制作方法
JP5109742B2 (ja) 半導体発光装置
KR101039970B1 (ko) 반도체층 형성방법 및 발광 소자 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909003

Country of ref document: EP

Kind code of ref document: A1