CN109994578A - 垂直结构蓝光发光二极管及其制备方法 - Google Patents

垂直结构蓝光发光二极管及其制备方法 Download PDF

Info

Publication number
CN109994578A
CN109994578A CN201910018312.8A CN201910018312A CN109994578A CN 109994578 A CN109994578 A CN 109994578A CN 201910018312 A CN201910018312 A CN 201910018312A CN 109994578 A CN109994578 A CN 109994578A
Authority
CN
China
Prior art keywords
layer
blue light
emitting diode
nitride epitaxial
vertical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910018312.8A
Other languages
English (en)
Other versions
CN109994578B (zh
Inventor
王永进
倪曙煜
袁佳磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910018312.8A priority Critical patent/CN109994578B/zh
Publication of CN109994578A publication Critical patent/CN109994578A/zh
Priority to PCT/CN2019/112933 priority patent/WO2020143274A1/zh
Priority to JP2021539872A priority patent/JP2022516669A/ja
Application granted granted Critical
Publication of CN109994578B publication Critical patent/CN109994578B/zh
Priority to US17/372,316 priority patent/US20210336097A1/en
Priority to US18/426,288 priority patent/US20240170618A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及照明、显示和光通信领域,尤其涉及一种垂直结构蓝光发光二极管及其制备方法。所述垂直结构蓝光发光二极管,包括:导电衬底,所述导电衬底具有第一表面以及与所述第一表面相对的第二表面;金属反射层,位于所述第一表面;氮化物外延层,位于所述金属反射层表面,包括沿垂直于所述导电衬底的方向依次叠置的P型GaN层、量子阱层、准备层和N型GaN层,所述氮化物外延层的厚度小于蓝光波长;N型电极,位于所述N型GaN层表面;P型电极,位于所述第二表面。本发明降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高。

Description

垂直结构蓝光发光二极管及其制备方法
技术领域
本发明涉及照明、显示和光通信领域,尤其涉及一种垂直结构蓝光发光二极管及其制备方法。
背景技术
发光二极管(Light Emitting Diode,LED)具有体积小、效率高、寿命长等优点,在照明、显示和光通信领域具有广泛的应用前景。传统的发光二极管以蓝宝石为生长衬底。然而,由于蓝宝石衬底不导电,所以传统的发光二极管通常是采用电极在同一侧的横向结构。这种横向结构至少存在以下两个方面的缺点:一方面,电流在N型层中横向流动不等距,存在电流拥堵现象,导致发光二极管器件局部发热量较高,影响器件性能;另一方面,蓝宝石衬底的导热性较差,限制了发光二极管器件的散热,影响发光二极管器件的使用寿命。为了克服横向发光二极管器件的缺陷,现有技术中出现了垂直结构发光二极管。
然而,在现有的垂直结构发光二极管中,由于厚膜的限制,存在许多光学约束模式(Confined Mode)。当电子注入、垂直结构发光二极管发光时,大部分出射光会被限制在发光二极管外延层的厚膜中,造成膜内传输、吸收,极大的降低了发光二极管的出光效率。
因此,如何避免发光二极管器件的厚度对出射光线的约束,以提高发光二极管的出光效率,是目前亟待解决的技术问题。
发明内容
本发明提供一种垂直结构蓝光发光二极管及其制备方法,用于解决现有的蓝光发光二极管出光效率较低的问题。
为了解决上述问题,本发明提供了一种垂直结构蓝光发光二极管,包括:
导电衬底,所述导电衬底具有第一表面以及与所述第一表面相对的第二表面;
金属反射层,位于所述第一表面;
氮化物外延层,位于所述金属反射层表面,包括沿垂直于所述导电衬底的方向依次叠置的P型GaN层、量子阱层、准备层和N型GaN层,所述氮化物外延层的厚度小于蓝光波长;
N型电极,位于所述N型GaN层表面;
P型电极,位于所述第二表面。
优选的,所述氮化物外延层的厚度在350nm以下。
优选的,还包括位于所述导电衬底与所述金属反射层之间的NiSn键合层。
优选的,所述垂直结构蓝光发光二极管呈台阶状结构;所述台阶状结构包括下台阶以及由所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
优选的,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
为了解决上述问题,本发明还提供了一种垂直结构蓝光发光二极管的制备方法,包括如下步骤:
键合一生长衬底和一导电衬底,所述生长衬底表面具有氮化物外延层和金属反射层,所述氮化物外延层包括沿垂直于所述生长衬底的方向依次叠置的缓冲层、未掺杂的GaN层、N型GaN层、准备层、量子阱层、P型GaN层,所述金属反射层位于所述P型GaN层表面;所述导电衬底包括第一表面以及与所述第一表面相对的第二表面,所述第二表面具有P型电极;
剥离所述生长衬底;
刻蚀所述氮化物外延层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
形成N型电极于残留的所述N型GaN层表面。
优选的,残留的所述氮化物外延层的厚度在350nm以下。
优选的,键合一生长衬底和一导电衬底的具体步骤包括:
于所述金属反射层表面形成第一NiSn键合层;
于所述导电衬底的所述第一表面形成第二NiSn键合层;
键合所述第一NiSn键合层与所述第二NiSn键合层。
优选的,刻蚀所述氮化物外延层的具体步骤包括:
刻蚀所述氮化物外延层至所述N型GaN层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
于残留的所述氮化物外延层中定义器件区域;
刻蚀所述器件区域外围的残留的所述氮化物外延层至所述金属反射层,形成台阶状结构;所述台阶状结构包括下台阶以及由器件区域内的残留的所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
优选的,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
本发明提供的垂直结构蓝光发光二极管及其制备方法,由于器件采用垂直结构,提高了电注入效率;同时将氮化物外延层的厚度设置为小于蓝光波长,使得所述垂直结构蓝光发光二极管不受约束模式的限制,减少甚至是消除了发光二极管出射光线在氮化物外延层内部的传输,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高;同时,金属反射层的设置进一步增强了发光二极管的出光效率。
附图说明
附图1是本发明具体实施方式中垂直结构蓝光发光二极管的结构示意图;
附图2是本发明具体实施方式中垂直结构蓝光发光二极管的制备方法流程图;
附图3A-3G是本发明具体实施方式中在制备垂直结构蓝光发光二极管的过程中主要的工艺截面示意图。
具体实施方式
下面结合附图对本发明提供的垂直结构蓝光发光二极管及其制备方法的具体实施方式做详细说明。
本具体实施方式提供了一种垂直结构蓝光发光二极管,附图1是本发明具体实施方式中垂直结构蓝光发光二极管的结构示意图。如图1所示,本具体实施方式提供的垂直结构蓝光发光二极管包括:
导电衬底10,所述导电衬底10具有第一表面以及与所述第一表面相对的第二表面;
金属反射层11,位于所述第一表面;
氮化物外延层,位于所述金属反射层11表面,包括沿垂直于所述导电衬底10的方向依次叠置的P型GaN层12、量子阱层13、准备层18和N型GaN层14,所述氮化物外延层的厚度小于蓝光波长;
N型电极15,位于所述N型GaN层14表面;
P型电极16,位于所述第二表面。
具体来说,所述垂直结构蓝光发光二极管发出的蓝光的波长范围优选为450nm~470nm。本具体实施方式中所述的量子阱层13可以为InGaN/GaN量子阱层。所述导电衬底10可以为金属衬底,也可以为硅衬底。所述导电衬底10优选为Si(100)衬底。所述准备层18的材料可以为GaN,也可以为InGaN。所述N型电极15与所述P型电极16的材料可以为铬、铂或者金。所述金属反射层11的材料可以为银、镍或者银镍合金。所述金属反射层11与所述P型GaN层12之间形成欧姆接触。
本具体实施方式中,所述N型电极15与所述P型电极16位于所述导电衬底10的相对两侧,电流几乎全部垂直流过所述氮化物外延层,几乎没有横向流动的电流,提高了电注入效率。同时将氮化物外延层的厚度设置为小于蓝光波长,使得所述垂直结构蓝光发光二极管不受约束模式的限制,减少甚至是消除了发光二极管出射光线在氮化物外延层内部的传输,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高。另外,所述金属反射层11的设置减少了光线损失,从而,进一步增强了发光二极管的出光效率。
为了进一步提高所述垂直结构蓝光发光二极管的出光效率,优选的,所述氮化物外延层的厚度在350nm以下。
优选的,所述垂直结构蓝光发光二极管还包括位于所述导电衬底10与所述金属反射层11之间的NiSn键合层17。
所述垂直结构蓝光发光二极管由导电衬底10与生长衬底键合得到,所述键合层17由位于所述导电衬底10的所述第一表面上的第一NiSn键合层与位于所述生长衬底键合面上的第二NiSn键合层键合形成。
优选的,所述垂直结构蓝光发光二极管呈台阶状结构;所述台阶状结构包括下台阶以及由所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极16、所述导电衬底10与所述金属反射层11,且所述下台阶沿平行于所述导电衬底10的方向突出于所述上台阶。
具体来说,所述金属反射层11与所述氮化物外延层沿Y轴方向依次叠置于所述导电衬底10的第一表面,所述上台阶沿Y轴方向叠置于所述下台阶表面,所述下台阶沿X轴方向突出于所述上台阶。通过形成所述台阶状结构,便于后续在所述氮化物外延层表面形成钝化层,以对所述氮化物外延层进行保护。
优选的,所述P型GaN层12的厚度为115nm~135nm,所述量子阱层13的厚度为40nm~60nm,所述准备层18的厚度为60nm~80nm。
举例来说,所述P型GaN层12的厚度为125nm,所述量子阱层13的厚度为50nm,所述准备层18的厚度为70nm。
不仅如此,本具体实施方式还提供了一种垂直结构蓝光发光二极管的制备方法,附图2是本发明具体实施方式中垂直结构蓝光发光二极管的制备方法流程图,附图3A-3G是本发明具体实施方式中在制备垂直结构蓝光发光二极管的过程中主要的工艺截面示意图,本具体实施方式制备的垂直结构蓝光发光二极管的具体结构可参见图1。如图1-图2、图3A-图3G所示,本具体实施方式提供的垂直结构蓝光发光二极管的制备方法,包括如下步骤:
步骤S21,键合一生长衬底20和一导电衬底10,得到如图3C所示的结构,所述生长衬底20表面具有氮化物外延层和金属反射层11,所述氮化物外延层包括沿垂直于所述生长衬底20的方向依次叠置的缓冲层22、未掺杂的GaN(u-GaN)层21、N型GaN层14、准备层18、量子阱层13、P型GaN层12,所述金属反射层11位于所述P型GaN层12表面,如图3A所示;所述导电衬底10包括第一表面以及与所述第一表面相对的第二表面,所述第二表面具有P型电极16,如图3B所示。
所述生长衬底20可以为Ⅲ-Ⅴ族材料衬底、蓝宝石衬底或者硅衬底。优选的,所述生长衬底20为Si(111)衬底。形成所述生长衬底20的具体步骤包括:
依次沉积缓冲层22、未掺杂的GaN(u-GaN)层21、N型GaN层14、准备层18、量子阱层13、P型GaN层12于所述生长衬底20表面;
形成金属反射层11于所述P型GaN层12表面。
其中,形成金属反射层11于所述P型GaN层12表面的具体方法,本领域技术人员可以根据实际需要进行选择,例如可以采用电子束蒸发工艺。
本具体实施方式中所述的量子阱层13可以为InGaN/GaN量子阱层。所述导电衬底10可以为金属衬底,也可以为硅衬底。所述导电衬底10优选为Si(100)衬底。所述准备层18的材料可以为GaN,也可以为InGaN。所述金属反射层11的材料可以为银、镍或者银镍合金。所述金属反射层11与所述P型GaN层12之间形成欧姆接触。所述缓冲层22的材料可以为AlN/AlGaN,用于降低所述生长衬底20与氮化物外延层之间的应力。
在所述生长衬底20中初始形成的所述氮化物外延层中各层的厚度如下:所述缓冲层22为0.6μm~0.8μm、所述未掺杂的GaN(u-GaN)层21为0.7μm~0.9μm、所述N型GaN层14为2.7μm~2.9μm、所述准备层18为60nm~80nm、所述量子阱层13为40nm~60nm、所述P型GaN层12为115nm~135nm。举例来说,AlN/AlGaN材料的所述缓冲层22的厚度为0.7μm、所述未掺杂的GaN(u-GaN)层21的厚度为0.8μm、所述N型GaN层14的厚度为2.8μm、GaN材料的所述准备层18的厚度为70nm、InGaN/GaN量子阱层的厚度为50nm、所述P型GaN层12的厚度为125nm。
在键合过程中,以所述金属反射层11朝向所述导电衬底10的所述第一表面的方式,沿Y轴方向键合所述导电衬底10与所述生长衬底20。
具体来说,键合一生长衬底20和一导电衬底10的具体步骤包括:
于所述金属反射层11表面形成第一NiSn键合层171;
于所述导电衬底20的所述第一表面形成第二NiSn键合层172;
键合所述第一NiSn键合层171与所述第二NiSn键合层172。
步骤S22,剥离所述生长衬底20,如图3D所示。
步骤S23,刻蚀所述氮化物外延层,去除所述缓冲层22和所述未掺杂的GaN层21,并减薄所述N型GaN层14,使得残留的所述氮化物外延层的厚度小于蓝光波长,如图3F所示。本具体实施方式中所述垂直结构蓝光发光二极管发出的蓝光的波长范围优选为460nm~470nm。
为了进一步提高所述垂直结构蓝光发光二极管的出光效率,优选的,残留的所述氮化物外延层的厚度在350nm以下。本具体实施方式中所述的残留的所述氮化物外延层的厚度是指经过步骤23的刻蚀工艺,残留的所述N型GaN层14、所述准备层18、所述量子阱层13与所述P型GaN层12的总的厚度。
优选的,刻蚀所述氮化物外延层的具体步骤包括:
刻蚀所述氮化物外延层至所述N型GaN层14,去除所述缓冲层22和所述未掺杂的GaN层21,并减薄所述N型GaN层14,使得残留的所述氮化物外延层的厚度小于蓝光波长,如图3E所示;
于残留的所述氮化物外延层中定义器件区域;
刻蚀所述器件区域外围的残留的所述氮化物外延层至所述金属反射层11,形成台阶状结构;所述台阶状结构包括下台阶以及由器件区域内的残留的所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极16、所述导电衬底10与所述金属反射层11,且所述下台阶沿平行于所述导电衬底10的方向突出于所述上台阶,如图3F所示。
具体来说,所述器件区域外围的所述氮化物外延层被去除。所述金属反射层11与所述氮化物外延层沿Y轴方向依次叠置于所述导电衬底10的第一表面,所述上台阶沿Y轴方向叠置于所述下台阶表面,所述下台阶沿X轴方向突出于所述上台阶。通过形成所述台阶状结构,便于后续在所述氮化物外延层表面形成钝化层,以对所述氮化物外延层进行保护。
步骤S24,形成N型电极15于残留的所述N型GaN层14表面,如图3G所示。
具体来说,可以采用蒸镀金属电极的方式形成所述N型电极15。所述N型电极15与所述P型电极16的材料可以均为铬、铂或者金。
本具体实施方式提供的垂直结构蓝光发光二极管及其制备方法,由于器件采用垂直结构,提高了电注入效率;同时将氮化物外延层的厚度设置为小于蓝光波长,使得所述垂直结构蓝光发光二极管不受约束模式的限制,减少甚至是消除了发光二极管出射光线在氮化物外延层内部的传输,降低了内部吸收损耗,使得发光二极管的出光效率大幅度提高;同时,金属反射层的设置进一步增强了发光二极管的出光效率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种垂直结构蓝光发光二极管,其特征在于,包括:
导电衬底,所述导电衬底具有第一表面以及与所述第一表面相对的第二表面;
金属反射层,位于所述第一表面;
氮化物外延层,位于所述金属反射层表面,包括沿垂直于所述导电衬底的方向依次叠置的P型GaN层、量子阱层、准备层和N型GaN层,所述氮化物外延层的厚度小于蓝光波长;
N型电极,位于所述N型GaN层表面;
P型电极,位于所述第二表面。
2.根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,所述氮化物外延层的厚度在350nm以下。
3.根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,还包括位于所述导电衬底与所述金属反射层之间的NiSn键合层。
4.根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,所述垂直结构蓝光发光二极管呈台阶状结构;所述台阶状结构包括下台阶以及由所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
5.根据权利要求1所述的垂直结构蓝光发光二极管,其特征在于,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
6.一种垂直结构蓝光发光二极管的制备方法,其特征在于,包括如下步骤:
键合一生长衬底和一导电衬底,所述生长衬底表面具有氮化物外延层和金属反射层,所述氮化物外延层包括沿垂直于所述生长衬底的方向依次叠置的缓冲层、未掺杂的GaN层、N型GaN层、准备层、量子阱层、P型GaN层,所述金属反射层位于所述P型GaN层表面;所述导电衬底包括第一表面以及与所述第一表面相对的第二表面,所述第二表面具有P型电极;
剥离所述生长衬底;
刻蚀所述氮化物外延层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
形成N型电极于残留的所述N型GaN层表面。
7.根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,残留的所述氮化物外延层的厚度在350nm以下。
8.根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,键合一生长衬底和一导电衬底的具体步骤包括:
于所述金属反射层表面形成第一NiSn键合层;
于所述导电衬底的所述第一表面形成第二NiSn键合层;
键合所述第一NiSn键合层与所述第二NiSn键合层。
9.根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,刻蚀所述氮化物外延层的具体步骤包括:
刻蚀所述氮化物外延层至所述N型GaN层,去除所述缓冲层和所述未掺杂的GaN层,并减薄所述N型GaN层,使得残留的所述氮化物外延层的厚度小于蓝光波长;
于残留的所述氮化物外延层中定义器件区域;
刻蚀所述器件区域外围的残留的所述氮化物外延层至所述金属反射层,形成台阶状结构;所述台阶状结构包括下台阶以及由器件区域内的残留的所述氮化物外延层构成的上台阶;所述下台阶包括所述P型电极、所述导电衬底与所述金属反射层,且所述下台阶沿平行于所述导电衬底的方向突出于所述上台阶。
10.根据权利要求6所述的垂直结构蓝光发光二极管的制备方法,其特征在于,所述P型GaN层的厚度为115nm~135nm,所述量子阱层的厚度为40nm~60nm,所述准备层的厚度为60nm~80nm。
CN201910018312.8A 2019-01-09 2019-01-09 垂直结构蓝光发光二极管及其制备方法 Active CN109994578B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910018312.8A CN109994578B (zh) 2019-01-09 2019-01-09 垂直结构蓝光发光二极管及其制备方法
PCT/CN2019/112933 WO2020143274A1 (zh) 2019-01-09 2019-10-24 垂直结构蓝光发光二极管及其制备方法
JP2021539872A JP2022516669A (ja) 2019-01-09 2019-10-24 垂直構造の青光発光ダイオード及びその製造方法
US17/372,316 US20210336097A1 (en) 2019-01-09 2021-07-09 Vertical blue light emitting diode and method for manufacturing same
US18/426,288 US20240170618A1 (en) 2019-01-09 2024-01-29 Vertical blue light emitting diode and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910018312.8A CN109994578B (zh) 2019-01-09 2019-01-09 垂直结构蓝光发光二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN109994578A true CN109994578A (zh) 2019-07-09
CN109994578B CN109994578B (zh) 2020-12-11

Family

ID=67129940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910018312.8A Active CN109994578B (zh) 2019-01-09 2019-01-09 垂直结构蓝光发光二极管及其制备方法

Country Status (4)

Country Link
US (2) US20210336097A1 (zh)
JP (1) JP2022516669A (zh)
CN (1) CN109994578B (zh)
WO (1) WO2020143274A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556460A (zh) * 2019-08-28 2019-12-10 南京南邮信息产业技术研究院有限公司 一种超薄垂直结构黄光led及其制备方法
CN110783439A (zh) * 2019-10-31 2020-02-11 南京亮芯信息科技有限公司 集成dbr的垂直结构led及其形成方法
WO2020143274A1 (zh) * 2019-01-09 2020-07-16 南京邮电大学 垂直结构蓝光发光二极管及其制备方法
CN114597231A (zh) * 2022-05-10 2022-06-07 上海南麟电子股份有限公司 基于纳米线mosfet的压控led及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523623A (zh) * 2006-10-02 2009-09-02 皇家飞利浦电子股份有限公司 包括由光子晶体限定的阵列发射体的发光设备
CN104576872A (zh) * 2013-10-12 2015-04-29 山东浪潮华光光电子股份有限公司 一种半导体发光二极管芯片及其制作方法
CN108281522A (zh) * 2017-12-28 2018-07-13 映瑞光电科技(上海)有限公司 一种垂直结构的发光二极管及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247437B2 (ja) * 1992-03-10 2002-01-15 旭化成株式会社 窒化物系半導体素子およびその製造方法
JP2005277372A (ja) * 2004-02-25 2005-10-06 Sanken Electric Co Ltd 半導体発光素子及びその製造方法
KR100730072B1 (ko) * 2005-12-06 2007-06-20 삼성전기주식회사 수직구조 질화갈륨계 발광 다이오드 소자 및 그 제조방법
JP2008159954A (ja) * 2006-12-26 2008-07-10 Showa Denko Kk Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2011124311A (ja) * 2009-12-09 2011-06-23 Toshiba Corp 半導体発光素子の製造方法および積層構造体
WO2013010389A1 (zh) * 2011-07-15 2013-01-24 中国科学院半导体研究所 发光二极管封装结构及其制造方法
KR101490174B1 (ko) * 2013-07-29 2015-02-05 광주과학기술원 다중 접합 구조를 가지는 발광 다이오드 및 이의 형성방법
JP2016139700A (ja) * 2015-01-27 2016-08-04 ウシオ電機株式会社 半導体発光素子の製造方法、半導体発光素子の製造システム
CN107851688B (zh) * 2015-08-07 2021-04-23 Lg伊诺特有限公司 发光二极管及发光二极管封装
JP6834257B2 (ja) * 2016-08-31 2021-02-24 日亜化学工業株式会社 発光素子の製造方法
CN109994578B (zh) * 2019-01-09 2020-12-11 南京邮电大学 垂直结构蓝光发光二极管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523623A (zh) * 2006-10-02 2009-09-02 皇家飞利浦电子股份有限公司 包括由光子晶体限定的阵列发射体的发光设备
CN104576872A (zh) * 2013-10-12 2015-04-29 山东浪潮华光光电子股份有限公司 一种半导体发光二极管芯片及其制作方法
CN108281522A (zh) * 2017-12-28 2018-07-13 映瑞光电科技(上海)有限公司 一种垂直结构的发光二极管及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143274A1 (zh) * 2019-01-09 2020-07-16 南京邮电大学 垂直结构蓝光发光二极管及其制备方法
CN110556460A (zh) * 2019-08-28 2019-12-10 南京南邮信息产业技术研究院有限公司 一种超薄垂直结构黄光led及其制备方法
WO2021036291A1 (zh) * 2019-08-28 2021-03-04 南京南邮信息产业技术研究院有限公司 一种超薄垂直结构黄光led及其制备方法
CN110783439A (zh) * 2019-10-31 2020-02-11 南京亮芯信息科技有限公司 集成dbr的垂直结构led及其形成方法
CN114597231A (zh) * 2022-05-10 2022-06-07 上海南麟电子股份有限公司 基于纳米线mosfet的压控led及其制备方法

Also Published As

Publication number Publication date
CN109994578B (zh) 2020-12-11
US20210336097A1 (en) 2021-10-28
JP2022516669A (ja) 2022-03-01
US20240170618A1 (en) 2024-05-23
WO2020143274A1 (zh) 2020-07-16

Similar Documents

Publication Publication Date Title
US9029888B2 (en) High efficiency light emitting diode and method of fabricating the same
KR101081135B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US8093611B2 (en) Semiconductor light emitting device and method of manufacturing the same
CN109841714B (zh) 垂直结构近紫外发光二极管及其制备方法
KR101327106B1 (ko) 반도체 발광소자
CN109994578A (zh) 垂直结构蓝光发光二极管及其制备方法
US20110297914A1 (en) Gallium nitride-based flip-chip light-emitting diode with double reflective layers on its side and fabrication method thereof
US9172002B2 (en) Light-emitting device having a patterned substrate
TWI300277B (en) Method for manufacturing gallium nitride light emitting diode devices
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
KR101047720B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20070041411A (ko) 반도체 발광 소자
JP2012074665A (ja) 発光ダイオード
KR101633164B1 (ko) 액세스가능한 전극을 구비하는 고체 상태 조명 디바이스 및 제조 방법
JP5377725B1 (ja) 半導体発光素子
JP2012054422A (ja) 発光ダイオード
KR20090112308A (ko) 반도체 발광소자 및 그 제조방법
US20110220945A1 (en) Light emitting device and light emitting device package having the same
CN101226973B (zh) 高效率发光二极管及其制造方法
CN111106212A (zh) 垂直结构深紫外发光二极管及其制备方法
KR20120039811A (ko) 고효율 발광 다이오드 및 그것을 제조하는 방법
JP5865870B2 (ja) 半導体発光素子
JP2012054423A (ja) 発光ダイオード
US9231160B1 (en) Semiconductor light emitting element
US20100276724A1 (en) Light-emitting device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant