WO2020111890A1 - 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법 - Google Patents

바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법 Download PDF

Info

Publication number
WO2020111890A1
WO2020111890A1 PCT/KR2019/016783 KR2019016783W WO2020111890A1 WO 2020111890 A1 WO2020111890 A1 WO 2020111890A1 KR 2019016783 W KR2019016783 W KR 2019016783W WO 2020111890 A1 WO2020111890 A1 WO 2020111890A1
Authority
WO
WIPO (PCT)
Prior art keywords
retinol
microorganism
gene
synthase
carotene
Prior art date
Application number
PCT/KR2019/016783
Other languages
English (en)
French (fr)
Inventor
유병조
장인승
장지연
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to EP19889198.8A priority Critical patent/EP3907290A4/en
Priority to US17/298,307 priority patent/US20220017878A1/en
Priority to CN201980090783.8A priority patent/CN113490744A/zh
Priority to JP2021531515A priority patent/JP7460179B2/ja
Publication of WO2020111890A1 publication Critical patent/WO2020111890A1/ko
Priority to JP2023200005A priority patent/JP2024026179A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01105Retinol dehydrogenase (1.1.1.105)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99031Phytoene desaturase (lycopene-forming) (1.3.99.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11063Beta-carotene 15,15'-dioxygenase (1.13.11.63)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
    • C12Y114/19001Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0103215-Cis-phytoene synthase (2.5.1.32)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/07Diphosphoric monoester hydrolases (3.1.7)
    • C12Y301/07011Geranyl diphosphate diphosphatase (3.1.7.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)

Definitions

  • the present invention is a microorganism producing beta-carotene and retinol biosynthetic genes introduced bioretinol; And it relates to a bioretinol production method comprising the step of culturing it.
  • Retinol is a high value-added material with anti-wrinkle and antioxidant effects. Specifically, retinol and its derivatives are ingredients to help improve wrinkles on the skin, and three of the four ingredients announced as functional cosmetic ingredients by the Ministry of Food and Drug Safety It is a raw material that gives an excellent effect on wrinkle improvement. Therefore, retinol having the above-described functions can be used as a cosmetic composition having a wrinkle improvement effect.
  • the present inventors developed a microorganism capable of producing retinol more stably and with high efficiency as a result of diligent efforts to increase the production of retinol, and completed the present invention by confirming that the production of retinol is increased by culturing the microorganism under various conditions. .
  • retinol is produced by the yeast fermentation process of the present invention, it is not only high in safety because it uses an eco-friendly safety yeast strain, but also high-efficiency production is possible by using BMCO expression using a multi-copy plasmid. It is expected to be able to improve the price competitiveness compared to its production technology.
  • One object of the present invention is the geranyl geranyl diphosphate synthase (GGPP synthase, crtE), phytoin synthase (crtYB), desaturase (crtI), beta-carotene 15,15' monooxy
  • GGPP synthase, crtE phytoin synthase
  • crtYB phytoin synthase
  • crtI desaturase
  • beta-carotene 15,15' monooxy To provide a retinol-producing microorganism with enhanced protein activity of a kinase ( ⁇ -carotene 15,15' monooxygenase, BCMO), and retinol dehydrogenase (ybbO) protein activity.
  • Another object of the present invention is to provide a method for producing retinol, comprising culturing the microorganism in a culture medium.
  • the microorganism of the present invention has improved retinol production capacity, and can be efficiently used to produce retinol, and can improve retinol production efficiency based on a retinol production method comprising culturing the microorganism.
  • 1 is a diagram showing the design of the biosynthetic metabolic pathway of retinol.
  • FIG. 3 is a diagram confirming the insertion of the BCMO-SR or BCMO-blh gene through PCR results.
  • FIG. 4 is a view confirming colony formation (A) and master colony formation (B) confirming BCMO-SR or BCMO-blh gene insertion.
  • FIG. 5 is a diagram confirming the insertion of BCMO-SR(A) or BCMO-blh(B) gene through SDS-PAGE.
  • FIG. 6 is a diagram confirming yybO gene insertion through PCR results.
  • FIG. 7 is a HPLC/UV chromatography analysis chart measuring the retinal (A) and retinol (B) production of the transformant strain of the present invention.
  • FIG. 9 is a HPLC graph of retinol production in each case of introducing a BMCO gene using a single-copy plasmid and a multi-copy plasmid.
  • FIG. 10 is a graph showing a quantitative comparison result of retinol production when a single-copy plasmid or a multi-copy plasmid is used.
  • geranyl geranyl diphosphate synthase (GGPP synthase, crtE), phytoin synthase (Phytoene synthase, crtYB), desaturase (desaturase, crtI), beta- Carotene 15,15' monooxygenase ( ⁇ -carotene 15,15' monooxygenase, BCMO), and retinol dehydrogenase (ybbO) provide a microorganism that produces retinol with enhanced protein activity.
  • the present invention the geranyl geranyl diphosphate synthase (GGPP synthase, crtE), phytoin synthase (Phytoene synthase, crtYB), desaturase (desaturase, crtI), beta-carotene 15,15' monooxygenase ( ⁇ -carotene 15,15' monooxygenase, BCMO), and a retinol dehydrogenase (ybbO) protein activity enhanced microorganisms for enhanced retinol production use.
  • GGPP synthase, crtE phytoin synthase
  • desaturase desaturase
  • crtI beta-carotene 15,15' monooxygenase
  • ⁇ -carotene 15,15' monooxygenase BCMO
  • ybbO retinol dehydrogenase
  • retinol retinol
  • the epidermal cells of the skin plays an important role in maintaining the original function.
  • the chemical name of vitamin A1 exists in the intestinal mucosal cells of animals, and is abundantly contained in rust-producing plants. It is also transformed into retinoic acid, the active form, and it promotes cell differentiation by allowing RNA to express RNA among the cell nuclei present in skin cells and collagen and elasticity, a light protein that exists as a fibrous solid between animal cells. It is effective in reducing wrinkles and promoting skin elasticity by promoting biosynthesis such as elastin composed of fibers.
  • retinol has been used as a raw material for cosmetics.
  • the final product is produced by chemical reaction, producing retinol and its derivatives.
  • This method of chemical production has a high probability of mixing with other impurities, so the purity is low and the production is low.
  • the retinol produced by the high-efficiency fermentation production technology of the present invention can be used as a cosmetic composition having an effect of preventing skin aging, improving skin elasticity and wrinkles.
  • GGPP synthase crtE
  • the term “desaturase (desaturase, crtI)” refers to an enzyme that catalyzes the reversible reaction of the following reaction scheme, and specifically, may mean an enzyme that synthesizes lycopene (Lycopene), but is not limited thereto. In addition, it can be used with phytoin desaturase.
  • beta-carotene 15,15' monooxygenase ( ⁇ -carotene 15,15' monooxygenase, BCMO)
  • ⁇ -carotene 15,15' monooxygenase BCMO
  • beta-carotene 15,15' monooxygenase BCMO
  • retinol dehydrogenase (retinol dehydrogenase, ybbO) means an enzyme that catalyzes the reversible reaction of the following reaction scheme, and the substrate of the enzyme may be all-trans- or -cis-retinol
  • three products (retinal, NADH, H + ) can be produced using two substrates (retinol and NAD + ).
  • it can be used in combination with microsomal retinol dehydrogenase, all-trans retinol dehydrogenase, retinal reductase, and retinne reductase.
  • the genetic information of the geranyl geranyl diphosphate synthase, phytoin synthase, desaturase, beta-carotene 15,15' monooxygenase and retinol dehydrogenase can be obtained from known databases. Examples include, but are not limited to, GenBank from the National Center for Biotechnology Information (NCBI).
  • the geranyl geranyl diphosphate synthase, phytoin synthase, and desaturase may be derived from Xanthophyllomyces dendrorhous , and the beta-carotene 15,15' monooxygenase and retinol dihydro agent or agents are halo tumefaciens in NRC-1 (Halobacterium sp. NRC -1), Marine bacteria 66A03 (marine bacterium 66A03) or S.
  • the retinol dehydrogenase may be derived from the microorganism of the genus Escherichia, specifically E. coli , but is not limited thereto.
  • the geranyl geranyl diphosphate synthase may be a protein comprising the amino acid sequence of SEQ ID NO: 7
  • the phytoin synthase may be a protein comprising the amino acid sequence of SEQ ID NO: 8
  • the unsaturated enzyme May be a protein comprising the amino acid sequence of SEQ ID NO: 9
  • the beta-carotene 15,15' monooxygenase BCMO-SR is the amino acid sequence of SEQ ID NO: 10
  • BCMO-blh is the amino acid sequence of SEQ ID NO: 11
  • the expression "protein comprising amino acid sequence” or "protein consisting of amino acid sequence” may be used interchangeably.
  • the enzymes have the same or corresponding biological activity as each enzyme, as well as the sequence number described, 80% or more, 85% or more, 90% or more, 91% or more, 92% of the amino acid sequence and Or higher, 93% or higher, 94% or higher, 95% or higher, 96% or higher, 97% or higher, 98% or higher, or 99% or higher homology.
  • amino acid sequence having a biological activity that is the same as or corresponding to the enzyme protein of SEQ ID NO: substantially described as a sequence having homology to the sequence, some sequences have deletion, modification, substitution, or added amino acid sequences. It is obvious that it is included in the scope of the application.
  • homology refers to the degree to which a given amino acid sequence or nucleotide sequence is consistent and may be expressed as a percentage.
  • a homology sequence thereof having the same or similar activity to a given amino acid sequence or nucleotide sequence is indicated as "% homology”.
  • standard software that calculates parameters such as score, identity and similarity, specifically hybridization using BLAST 2.0 or under defined stringent conditions
  • Appropriate hybridization conditions which can be confirmed by comparing sequences by experiment, are defined and are well within the scope of the art, and are well known to those skilled in the art (e.g. J.
  • stringent conditions refers to conditions that enable specific hybridization between polynucleotides. For example, these conditions are specifically described in J. Sambrook et al., supra.
  • Geranyl geranyl diphosphate synthase, phytoin synthase, desaturase, beta-carotene 15,15' monooxygenase and retinol dehydrogenase of the present invention have the same or corresponding biological activities as the respective enzymes.
  • the branch has the amino acid sequence of the sequence number described or 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97 % Or more, 98% or more, and may include a polynucleotide encoding a protein having 99% or more homology, and specifically, a gene encoding geranyl geranyl diphosphate synthase (GGPP synthase, crtE) is SEQ ID NO: 1 It contains the nucleotide sequence of;
  • the gene encoding phytoene synthase (crtYB) comprises the nucleotide sequence of SEQ ID NO: 2;
  • the gene encoding desaturase (crtI) contains the nucleotide sequence of SEQ ID NO: 3;
  • the gene encoding beta-carotene 15,15' monooxygenase (BCMO) contains the nucleotide sequence of
  • the polynucleotide encoding the enzymes is within a range that does not change the amino acid sequence of the protein expressed from the coding region, taking into account the preferred codon in the organism to express the protein due to the degeneracy of the codon. In the coding area, various modifications can be made. Therefore, the polynucleotide may be included without limitation as long as it is a polynucleotide sequence encoding each enzyme protein.
  • probes that can be prepared from known gene sequences, for example, hybridized under strict conditions with complementary sequences for all or part of the polynucleotide sequence, and thus the geranyl geranyl diphosphate synthase, phytoin synthase If the sequence encoding the protein having the activity of the enzyme, desaturase, beta-carotene 15,15' monooxygenase and retinol dehydrogenase enzyme protein may be included without limitation.
  • the "strict conditions” refer to conditions that enable specific hybridization between polynucleotides. These conditions are specifically described in J. Sambrook et al., supra. For example, genes having high homology, 40% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, particularly specifically 99% or more homology Hybridization between the hybridizations, and the conditions for not hybridizing genes with lower homology, or washing conditions for normal Southern hybridization, 60°C, 1XSSC, 0.1% SDS, specifically 60°C, 0.1XSSC, 0.1% SDS, More specifically, conditions for washing once, specifically 2 to 3 times, at a salt concentration and temperature corresponding to 68°C, 0.1XSSC, and 0.1% SDS can be enumerated.
  • Hybridization requires that two polynucleotides have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • the term “complementary” is used to describe the relationship between nucleotide bases that are hybridizable to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application can also include isolated polynucleotide fragments complementary to the entire sequence, as well as substantially similar polynucleotide sequences.
  • a polynucleotide having homology can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60°C, 63°C or 65°C, but is not limited thereto, and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • the appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and variables are well known in the art (see Sambrook et al., supra, 9.50-9.51, 11.7-11.8).
  • the term, "enhancement of activity” means that the activity of the enzyme protein is introduced, or the activity is improved compared to the intrinsic activity or the activity before modification possessed by the microorganism.
  • the "introduction" of the activity means that the activity of a specific protein that the microorganism did not originally have appears naturally or artificially.
  • a microorganism having enhanced activity of an enzyme protein refers to a microorganism having improved enzyme protein activity compared to a natural wild-type microorganism or an unmodified microorganism.
  • the activity enhancement is enhanced, for example, by introducing foreign geranylgeranyl diphosphate synthase, phytoin synthase, unsaturated enzyme, beta-carotene 15,15' monooxygenase and/or retinol dehydrogenase.
  • foreign geranylgeranyl diphosphate synthase phytoin synthase, unsaturated enzyme, beta-carotene 15,15' monooxygenase and/or retinol dehydrogenase.
  • intrinsic geranylgeranyl diphosphate synthase, phytoin synthase, desaturase, beta-carotene 15,15' monooxygenase and/or enhancing retinol dehydrogenase activity Specifically, the method of enhancing activity in the present invention,
  • the 1) increase in the number of copies of the polynucleotide is not particularly limited, but may be performed in a form operably linked to a vector, or by being inserted into a chromosome in a host cell.
  • it may be performed by introducing a foreign polynucleotide or codon-optimized variant polynucleotide of the polynucleotide into the host cell, which shows the activity of the enzyme.
  • the foreign polynucleotide may be used without limitation in its origin or sequence as long as it exhibits the same/similar activity as the enzyme.
  • the introduction may be performed by a person skilled in the art appropriately selecting a known transformation method, and the enzyme may be produced by increasing the activity by expressing the introduced polynucleotide in a host cell.
  • the modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but deletion, insertion, non-conservative or conservative substitution of nucleic acid sequences to further enhance the activity of the expression control sequence or these It can be performed by inducing a variation in sequence by combining, or by replacing with a nucleic acid sequence having a stronger activity.
  • the expression control sequence may include, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, a sequence that controls termination of transcription and translation, and the like.
  • a strong heterologous promoter may be linked to the top of the polynucleotide expression unit instead of the original promoter.
  • the strong promoter include the CJ7 promoter, lysCP1 promoter, EF-Tu promoter, groEL promoter, aceA or aceB promoter. More specifically, it is operably linked to the hxpr2 promoter or UAS1B promoter to improve the expression rate of the polynucleotide encoding the enzyme, but is not limited thereto.
  • the modification of the polynucleotide sequence on the chromosome is not particularly limited, but the expression control sequence by deletion, insertion, non-conservative or conservative substitution or a combination thereof, to further enhance the activity of the polynucleotide sequence It can be performed by inducing a mutation of a phase, or by replacing it with an improved polynucleotide sequence to have stronger activity.
  • polynucleotide may be described as a gene in the case of a polynucleotide aggregate capable of functioning.
  • polynucleotides and genes can be used interchangeably, and polynucleotide sequences and nucleotide sequences can be used interchangeably.
  • vector used in the present invention means a DNA preparation containing a nucleotide sequence of a polynucleotide encoding the target protein operably linked to a suitable regulatory sequence so that the target protein can be expressed in a suitable host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
  • the vector used in the present invention is not particularly limited as long as it is replicable in the host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophage.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR-based, pUC-based, and pBluescriptII-based plasmid vectors.
  • pGEM system pTZ system, pCL system and pET system.
  • pDZ pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, pSKH, pRS-413, pRS-414, pRS-415 vector, pBCA vector, pYLI vector, etc. may be used, but are not limited thereto. Does not.
  • the vector usable in the present invention is not particularly limited, and known expression vectors can be used.
  • a polynucleotide encoding a target protein may be inserted into a chromosome through a vector for intracellular chromosomal insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for confirming whether the chromosome is inserted may be additionally included, or a gene related thereto may be removed.
  • the selection marker is used to select cells transformed with a vector, that is, to confirm whether a target nucleic acid molecule is inserted, and to give selectable phenotypes such as drug resistance, nutritional demand, resistance to cytotoxic agents, or expression of surface proteins. Markers can be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or exhibit different expression traits, so that the transformed cells can be selected.
  • transformation used in the present invention means that a vector containing a polynucleotide encoding a target protein is introduced into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed.
  • the transformed polynucleotide can include both of them, whether they can be inserted into the host cell chromosome or located outside the chromosome, as long as it can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein. The polynucleotide may be introduced into a host cell and expressed as long as it can be expressed in any form.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal, which are operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • the transformation method includes any method of introducing a nucleic acid into a cell, and can be performed by selecting a suitable standard technique as known in the art according to the host cell. For example, electroporation, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, polyethylene glycol (PEG), EAE-dextran method, cationic liposome method, and lithium acetate -There is a DMSO method, but is not limited thereto.
  • operably linked means that the polynucleotide sequence is functionally linked with a promoter sequence that initiates and mediates the transcription of the polynucleotide encoding the protein of interest of the present application. Operable linkages can be made using known genetic recombination techniques in the art, and site-specific DNA cleavage and linkage can be made using artisan cleavage and linkage enzymes, but are not limited thereto.
  • the microorganism of the present invention may further be inactivated Ku70 or Ku80 protein activity or inactivated URA3 gene.
  • Ku70 or “Ku80” is a Ku protein, and Ku70 and Ku80 form a Ku heterodimer to bind to the end of a truncated DNA double strand and non-homologous end joining (NHEJ) pathway.
  • NHEJ non-homologous end joining
  • a microorganism in which one of the Ku70/Ku80 genes having a function of inhibiting random insertion is deleted is used.
  • URA3 gene is a gene encoding Orotidine-5''-phosphate decarboxylase (ODCase) in the yeast pyrimidine synthesis pathway.
  • ODCase Orotidine-5''-phosphate decarboxylase
  • URA3+ yeast can proliferate in a medium to which uracil or uridine is not added, but it is characterized in that it does not proliferate in a medium containing 5-fluoroorotic acid (5-FOA), a pyrimidine analog.
  • 5-FOA 5-fluoroorotic acid
  • the URA3 gene can be used as a positive or negative marker using the above characteristics.
  • a yeast having a URA3 gene is produced, and when introducing the retinol biosynthesis gene, the retinol biosynthesis gene is introduced using a method of simultaneously introducing the URA3 gene.
  • the strain was selected in a medium to which no uracil or uridine was added (Example 1-1).
  • the term "inactivation" of the present invention is when the activity is weakened compared to the intrinsic activity or pre-modification activity of the enzyme protein possessed by the original microorganism; The protein is not expressed at all; Or it means that there is no activity even when expressed.
  • the inactivation is due to a variation in the polynucleotide encoding the enzyme, the activity of the enzyme itself is weakened or eliminated compared to the activity of the enzyme originally possessed by the microorganism; When the level of the total enzyme activity in the cell is lower or lower than that of the natural microorganism due to inhibition of expression or translation inhibition of the gene encoding the enzyme; When part or all of the gene encoding the enzyme is deleted; And combinations thereof, but are not limited thereto. That is, the microorganism in which the activity of the enzyme protein is inactivated means a microorganism having a low or removed activity of the enzyme protein compared to a natural wild-type microorganism or an unmodified microorganism.
  • Inactivation of the enzyme activity can be achieved by application of various methods well known in the art.
  • Examples of the method include: 1) a method of deleting all or part of a gene on a chromosome encoding the enzyme; 2) modification of the expression control sequence so that the expression of the gene on the chromosome encoding the protein decreases, 3) modification of the gene sequence on the chromosome encoding the protein such that the activity of the protein is eliminated or weakened, 4) encoding the protein Introduction of antisense oligonucleotides (eg, antisense RNA) that complementarily bind to the transcript of the gene on the chromosome; 5) Adding a sequence complementary to the sine-Dalgarno sequence to the front of the sine-Dalgarno sequence of the gene on the chromosome encoding the protein forms a secondary structure, making it impossible to attach the ribosome how to make; 6) There is a method of adding a promoter that is transcribed in the opposite direction to the 3
  • a polynucleotide encoding an intrinsic target protein in the chromosome is replaced with a polynucleotide or marker gene in which some nucleotide sequences are deleted through a vector for inserting a chromosome in a microorganism.
  • a method of deleting polynucleotides by homologous recombination may be used, but is not limited thereto.
  • the method of modifying the expression control sequence is performed by inducing a variation in the expression control sequence by deleting, inserting, non-conservative or conservative substitution, or a combination of nucleic acid sequences to further weaken the activity of the expression control sequence, or weaker. It can be carried out by replacing with a nucleic acid sequence having activity.
  • the expression control sequence includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence that controls termination of transcription and translation.
  • the method of modifying the gene sequence on the chromosome is performed by inducing a sequence variation by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further weaken the activity of the enzyme, or to have a weaker activity. It can be performed by replacing the modified gene sequence so that there is no improved gene sequence or activity, but is not limited thereto.
  • “some” is different depending on the type of polynucleotide, but may be specifically 1 to 300, more specifically 1 to 100, and more specifically 1 to 50, but is not particularly limited thereto. no.
  • the microorganisms producing the retinol are geranyl geranyl diphosphate synthase (GGPP synthase, crtE), phytoin synthase (crtYB) and desaturase (crtI) protein activity enhanced microorganisms, beta-carotene It can be produced, and by further enhancing beta-carotene 15,15' monooxygenase and retinol dehydrogenase protein activity, it can be a microorganism that further increases retinol production capacity.
  • GGPP synthase, crtE phytoin synthase
  • crtI desaturase
  • the microorganism of the present invention is not limited as long as it is a microorganism capable of producing retinol, but specifically, it may be Yarrowia lipolytica or Saccharomyces cerevisiae .
  • Another aspect of the present invention provides a method for producing retinol, comprising culturing the microorganism of the present invention in a culture medium.
  • microorganism and "retinol” are as described above.
  • “Cultivation” in the present invention means that the microorganisms are grown under appropriately controlled environmental conditions.
  • the culture process of the present invention can be made according to suitable media and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected microorganism.
  • the step of culturing the microorganism is not particularly limited thereto, and may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, or the like.
  • the medium and other culture conditions used for the cultivation of the microorganisms of the present application can be used without any particular limitation as long as the medium used for the cultivation of the ordinary microorganisms.
  • the microorganisms of the present application are suitable carbon sources, nitrogen sources, personnel, inorganic compounds, It can be cultured in a normal medium containing amino acids and/or vitamins, etc. under aerobic conditions while controlling temperature, pH, and the like.
  • the pH may be adjusted using a basic compound (eg sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg phosphoric acid or sulfuric acid), specifically 5.5 to 7.5, 5.5 to 7.0, 6.0 to 7.5, It may be 6.0 to 7.0, 6.5 to 7.5 or 6.5 to 7.0, and more specifically, the pH in the culturing step may be 6.9, but is not limited thereto.
  • a basic compound eg sodium hydroxide, potassium hydroxide or ammonia
  • an acidic compound eg phosphoric acid or sulfuric acid
  • oxygen or an oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen, or carbon dioxide gas may be injected without injecting the gas or to maintain the anaerobic and aerobic state.
  • the culture temperature may be maintained at 20 to 45°C or 25 to 40°C, specifically 27 to 31°C, 28 to 31°C, 29 to 31°C or 30 to 31°C, and more specifically 30.2°C It can be maintained, but is not limited thereto.
  • the operating rpm of the incubator in the culturing step may be 50 to 300 rpm, 50 to 250 rpm, 100 to 300 rpm, 100 to 250 rpm, 150 to 300 rpm, 150 to 250 rpm, 200 to 300 rpm or 200 to 250 rpm, more specifically 249.9 rpm, but is not limited thereto.
  • the term "medium” in the present invention means a culture medium to culture the microorganisms of the present invention and/or a product obtained after culturing.
  • the medium is a concept that includes both a form containing microorganisms and a form in which microorganisms are removed by centrifugation, filtration, etc., from a culture medium containing the microorganisms.
  • the culture medium used to cultivate the retinol-producing microorganism of the present invention includes sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose) as carbon sources, Oils and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) It may be used individually or in combination, but is not limited thereto.
  • Nitrogen sources include nitrogen-containing organic compounds (e.g.
  • peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds e.g. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • inorganic compounds e.g. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and corresponding sodium-containing salts may be used individually or in combination, but are not limited thereto.
  • the medium may contain other metal salts (eg, magnesium sulfate or iron sulfate), essential growth-promoting substances such as amino acids and vitamins.
  • the culture medium used for the culture of the microorganism producing the retinol of the present invention includes one or more nutrients selected from the group consisting of yeast extract, peptone, soy bean and glucose. It may be.
  • the yeast extract may be included in an appropriate amount in the culture medium of the microorganism producing retinol of the present invention, specifically 1 to 4 parts by weight, 1.5 to 4 parts by weight, 2 to 4 parts by weight, based on 100 parts by weight of the whole culture medium, It may be included as 2.5 to 4 parts by weight, 1 to 3.5 parts by weight, 1.5 to 3.5 parts by weight, 2 to 3.5 parts by weight or 2.5 to 3.5 parts by weight, and more specifically 3 parts by weight, but is not limited thereto.
  • the peptone may be included in an appropriate amount in the culture medium of the microorganism producing the retinol of the present invention, specifically, 0.5 to 4 parts by weight, 1 to 4 parts by weight, 1.5 to 4 parts by weight based on 100 parts by weight of the entire culture medium , 2 to 4 parts by weight, 2.5 to 4 parts by weight, 0.5 to 4 parts by weight, 1 to 3.5 parts by weight, 1.5 to 3.5 parts by weight, 2 to 3.5 parts by weight or 2.5 to 3.5 parts by weight may be included, more specifically 3 It may include parts by weight, but is not limited thereto.
  • the soybean may be included in an appropriate amount in the culture medium of the microorganism producing the retinol of the present invention, specifically, 0.5 to 4 parts by weight, 1 to 4 parts by weight, 1.5 to 4 parts by weight based on 100 parts by weight of the entire culture medium , 2 to 4 parts by weight, 2.5 to 4 parts by weight, 0.5 to 4 parts by weight, 1 to 3.5 parts by weight, 1.5 to 3.5 parts by weight, 2 to 3.5 parts by weight or 2.5 to 3.5 parts by weight may be included, more specifically 3 It may include parts by weight, but is not limited thereto.
  • the glycos may be included in an appropriate amount in the culture medium of the microorganism producing the retinol of the present invention, specifically 1 to 3 parts by weight, 1 to 2.5 parts by weight, 1.5 to 3 parts by weight based on 100 parts by weight of the entire culture medium Parts or 1.5 to 2.5 parts by weight, and more specifically, 2 parts by weight may be included, but is not limited thereto.
  • Retinol produced by the culture may be secreted into the medium or remain in the cells.
  • the retinol production method of the present invention may be to use a multi-copy (multi-copy) plasmid of the microorganism. Specifically, in one embodiment, it was confirmed that the retinol production increased by about 3 times when the strain transformed using multi-copy was cultured, rather than the strain transformed using single-copy (Example 3-2). ).
  • the retinol production method of the present invention may further include a step of recovering retinol from the cultured microorganism or medium.
  • the desired retinol can be collected from microorganisms producing retinol and a culture medium thereof using a suitable method known in the art according to the culture method. For example, lyophilization, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired retinol can be recovered from the cultured microorganism or medium using suitable methods known in the art.
  • the step of recovering the retinol may further include a separation process and/or purification step.
  • Example 1 Gene synthesis through selection of retinol production strain and optimization of codon
  • Example 1-1 Saccharomyces cerevisiae platform strain production for retinol production
  • Saccharomyces cerevisiae a yeast strain that is widely used for recombinant protein production, was selected as a strain for retinol production.
  • Example 1-2 Saccharomyces cerevisiae high efficiency retinol production metabolic pathway design and gene synthesis
  • beta-carotene biosynthetic gene derived from Xanthophyllomyces dendrorhous , geranyl geranyl diphosphate synthase (GGPP synthase), phytoin synthase (Phytoene synthase) and desaturase (desaturase) coding nucleotide sequence (each crtE, crtI and crtYB) after the codon optimized for in my process to the celebrity busy saccharide were synthesized for each gene; Beta-carotene 15,15'-monooxygenase ( ⁇ -Carotene 15,15), a retinal biosynthetic gene derived from Halobacterium sp.NRC-1 (HRC) or marine bacterium 66A03 Each gene was synthesized after codon optimization of the nucleotide sequence encoding'-Monooxygenase (BMCO-blh or BMCO-SR, respectively) for Saccharomyces cerevisiae
  • the base sequences encoding crtE , crtYB , crtI , BMCO-blh, BMCO-SR , and ybbO were described in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, respectively.
  • Example 2-1 Preparation of S. cerevisiae expression vector for retinol production
  • the crtE , crtI , crtYB , BMCO-blh, BMCO-SR , and ybbO gene sequences synthesized in Example 1-2 were expressed with the GPD promoter to stably express in the Saccharomyces cerevisiae platform strain for retinol production.
  • EcR I and Xho I restriction enzymes located at the multiple cloning site were inserted into expression vectors, respectively, and pBCA_crtE, pBCA_crtI, pBCA_crtYB, pRET_BMCO-blh, pRET_BMCO-SR and pRET_ybbO vectors each gene sequence was inserted into. It was produced.
  • Example 2-2 Biosynthetic gene insertion of retinol precursor
  • FPP farnesyl pyrophosphate
  • Example 2A After transforming the pBCA_crtE vector prepared in Example 2-1 into the Saccharomyces cerevisiae platform strain for retinol production prepared in Example 1-1, through colony PCR It was confirmed that the crtE gene was inserted at the correct position in the strain (FIG. 2A ). When the crtE gene is inserted in the correct position, bands appear at 4,000 bp as shown in lanes 1, 5, 8 and 10 of FIG. 3A. After the insertion was confirmed, the ura marker was removed through ura pop out, and then used for subsequent crtI gene insertion.
  • the crtI gene and the crtYB gene were sequentially inserted, and it was confirmed that the gene was inserted (FIGS. 2B and C).
  • a strain in which the crtE, crtI, and crtYB genes, which are beta-carotene biosynthetic genes, which are precursors of retinol, were prepared. From the following experiment, the strain ( S.
  • BCMO was dissolved in the pBCA-BCMO vector and the pUC-3Myc URA3-P GPD vector using EcoRI/XhoI restriction enzyme, and electrophoresis was performed on a 1% agarose gel to purify the dissolved BCMO.
  • Conjugation of BCMO and pUC-3Myc URA3-P GPD vector using EcoRI/XhoI restriction enzyme to pUC-3Myc URA3-P GPD -BCMO Vectors were constructed.
  • BCMO was lysed again using EcoRI/XhoI restriction enzyme.
  • the BCMO gene was inserted into the YPRC ⁇ 3 gene site using primers for an insertion cassette consisting of the nucleotide sequences shown in Table 1 below.
  • a vector for inserting pUC57-3Myc URA3-P GPD -ybbO was produced in the same manner as the BCMO gene introduction method. Thereafter, the ybbO gene was inserted into the YPRCdelta15 gene site using primers for an insertion cassette consisting of the nucleotide sequences shown in Table 2.
  • the following concentration program was applied at a constant flow rate (1 mL/min) and a constant column concentration (22° C.): 0-4.5 min 100% A; 4.5-6.5 min 100% B; 6.5-12 minutes 60% B, 40% C; 12-15 minutes 60% B, 40% C; 15-20 minutes 100% B; 20-26 minutes 100% A.
  • the retinal production peak and the retinol production peak of the colonies formed by culturing the retinol production strain were observed.
  • the retinal production peak was observed at 10.47 minutes (FIG. 6A )
  • the retinol production peak was observed at 10.97 minutes.
  • the retinol production strain of the present invention observed a retinol production peak at 303.2318 m/z (FIG. 7B ).
  • the retinol producing strain prepared in Example 2 can produce retinol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 레티놀 생합성 유전자가 도입된 레티놀을 생산하는 미생물; 및 이를 배양하는 단계를 포함하는 레티놀 생산방법에 관한 것이다. 본 발명의 미생물은 레티놀 생산능이 향상되어, 레티놀을 생산하는 데 효율적으로 사용될 수 있으며, 상기 미생물을 배양하는 단계를 포함하는 레티놀 생산방법을 토대로 레티놀 생산 효율을 향상시킬 수 있다.

Description

바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법
본 발명은 베타-카로틴 및 레티놀 생합성 유전자가 도입된 바이오레티놀을 생산하는 미생물; 및 이를 배양하는 단계를 포함하는 바이오레티놀 생산방법에 관한 것이다.
레티놀은 주름 개선 및 항산화 효과를 갖는 고부가가치 원료로서, 구체적으로는 레티놀 및 이의 유도체는 피부의 주름개선에 도움을 주는 성분으로 식품의약품안전처에 기능성화장품 원료로 고시된 4가지 성분 중 3가지를 차지할 정도로 주름개선에 탁월한 효능을 주는 원료이다. 따라서, 상기와 같은 기능을 갖는 레티놀을 주름개선 효능을 가진 화장료 조성물로서 이용할 수 있다.
다만, 레티놀의 이와 같은 유용성에도 불구하고, 레티놀의 대량 생산은 용이하지 못한 실정이다. 레티놀의 기존의 대표적인 생산 방법은 천연자원에서 전구물질을 추출한 후, 펜타디엔(pentadiene)→레티날(retinal)→레티놀로 이어지는 화학 반응에 의해 최종 산물인 레티놀 및 이의 유도체를 생산하고 있다. 그러나, 이러한 화학적 공정에 의한 방법은 생산가가 1kg 당 3,500 내지 4,000 미국 달러로서, 레티놀 함유 제품의 생산 단가를 높이는 문제점이 있다. 이에, 보다 안정적인 생산과 높은 수율을 달성하기 위해, 바이오 공정을 통한 고효율 레티놀 생산 기술이 요구되고 있다.
본 발명자들은 레티놀의 생산을 증가시키기 위해 예의 노력한 결과, 레티놀을 보다 안정적이고 고효율로 생산할 수 있는 미생물을 개발하였고, 상기 미생물을 다양한 조건에서 배양하여 레티놀의 생산량이 증가됨을 확인함으로써 본 발명을 완성하였다. 본 발명의 효모 발효 공정에 의해 레티놀을 생산하는 경우, 친환경 안전성 효모 균주를 이용하므로 안전성이 높을 뿐만 아니라, 다중-카피(multi-copy) 플라스미드를 사용한 BMCO 발현을 이용하여 고효율 생산이 가능하므로, 기존의 생산 기술에 비해 가격 경쟁력을 향상시킬 수 있을 것으로 기대된다.
본 발명의 하나의 목적은 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE), 파이토인 신타제(Phytoene synthase, crtYB), 불포화효소(desaturase, crtI), 베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO), 및 레티놀 디하이드로제나제(retinol dehydrogenase, ybbO) 단백질 활성이 강화된, 레티놀을 생산하는 미생물을 제공하는 것이다.
본 발명의 다른 목적은 상기 미생물을 배양배지에서 배양하는 단계를 포함하는, 레티놀 생산방법을 제공하는 것이다.
본 발명의 미생물은 레티놀 생산능이 향상되어, 레티놀을 생산하는 데 효율적으로 사용될 수 있으며, 상기 미생물을 배양하는 단계를 포함하는 레티놀 생산방법을 토대로 레티놀 생산 효율을 향상시킬 수 있다.
도 1은 레티놀의 생합성 대사 경로의 설계를 나타낸 도면이다.
도 2는 SDS-PAGE를 통한 crtE(A), crtI(B) 및 crtYB(C) 유전자 삽입을 확인한 도면이다.
도 3은 PCR 결과를 통한 BCMO-SR 또는 BCMO-blh 유전자 삽입을 확인한 도면이다.
도 4는 BCMO-SR 또는 BCMO-blh 유전자 삽입을 확인한 콜로니 형성(A) 및 마스터 콜로니 형성(B)을 확인한 도면이다.
도 5는 SDS-PAGE를 통한 BCMO-SR(A) 또는 BCMO-blh(B) 유전자 삽입을 확인한 도면이다.
도 6은 PCR 결과를 통한 yybO 유전자 삽입을 확인한 도면이다.
도 7은 본 발명의 형질전화 균주의 레티날(A) 및 레티놀(B) 생산량을 측정한 HPLC/UV 크로마토그래피 분석 도표이다.
도 8은 야생형 균주(A) 및 본 발명의 형질전환 균주(B)의 레티놀 생산량을 측정한 ESI-Mass 스펙트럼 그래프이다.
도 9는 싱글-카피 플라스미드 및 멀티-카피 플라스미드를 이용하여 BMCO 유전자를 도입한 각각의 경우의 레티놀 생산량을 측정한 HPLC 그래프이다.
도 10은 싱글-카피 플라스미드 또는 멀티-카피 플라스미드를 이용한 경우의 레티놀 생산량의 정량적 비교 결과를 나타낸 그래프이다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE), 파이토인 신타제(Phytoene synthase, crtYB), 불포화효소(desaturase, crtI), 베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO), 및 레티놀 디하이드로제나제(retinol dehydrogenase, ybbO) 단백질 활성이 강화된, 레티놀을 생산하는 미생물을 제공한다.
또한, 본 발명은 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE), 파이토인 신타제(Phytoene synthase, crtYB), 불포화효소(desaturase, crtI), 베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO), 및 레티놀 디하이드로제나제(retinol dehydrogenase, ybbO) 단백질 활성이 강화된 미생물의 레티놀 생산 용도를 제공한다.
본 발명에서 용어, "레티놀(retinol)"은 비타민 A의 한 종류로서, 피부의 표피세포가 원래의 기능을 유지하는 데에 중요한 역할을 한다. 구체적으로는, 비타민 A1의 화학명으로, 동물의 장 점막세포에 존재하며, 녹확생 식물에 다량 함유되어 있는 걸로 알려져 있다. 활성 형태인 레티노인산(retinoic acid)으로 변형되기도 하며, 피부세포에 존재하는 세포 핵 가운데 DNA로 하여금 RNA를 발현시켜 세포분화를 촉진하고, 동물의 세포 사이에 섬유상 고체로 존재하는 경단백질인 콜라겐과 탄성 섬유로 구성된 엘라스틴 등의 생합성을 촉진해 주름을 감소시키고 피부 탄력을 증진시키는 효능이 있다. 이처럼 레티놀은 화장품 원료로 이용되어 왔다. 다만, 주로 천연 식물자원에서 전구물질을 추출한 후 화학반응에 의해 최종산물인 레티놀 및 이의 유도체를 생산하며, 이와 같은 화학적 생산 방법은 다른 불순물이 섞여 있을 확률이 높아 순도가 낮고, 그 생산량이 낮아 생산 단가를 높이는 단점이 있었다. 이에, 본 발명의 고효율 발효생산 기술에 의해 제조된 레티놀은 피부 노화 방지, 피부 탄력 증진 주름 개선 등의 효과를 가진 화장료 조성물로 이용될 수 있다.
본원에서 용어, "제라닐제라닐 이인산염 신타제(GGPP synthase, crtE)"는 하기 반응식의 가역 반응을 촉매하는 효소를 의미한다.
[반응식]
farnesyl diphosphate + isopentenyl diphosphate ⇔ Geranylgeranyl pyrophosphate
본 발명에서 용어, "파이토인 신타제(Phytoene synthase, crtYB)"는 카로티노이드 생합성에 관련된 효소 중 하나로서, 하기 반응식의 가역 반응을 촉매하는 효소를 의미하며, 구체적으로, 파이토인(Phytoene)을 합성하는 효소를 의미할 수 있으나, 이에 제한되지 않는다.
[반응식]
2 geranylgeranyl diphosphate ⇔ 15-cis-phytoene + 2 diphosphate
본 발명에서 용어, "불포화효소(desaturase, crtI)"는 하기 반응식의 가역 반응을 촉매하는 효소를 의미하며, 구체적으로, 라이코펜(Lycopene)을 합성하는 효소를 의미할 수 있으나, 이에 제한되지 않는다. 또한, 파이토인 불포화효소(Phytoene desaturase)와 혼용될 수 있다.
[반응식]
15-cis-phytoene + 4 acceptor ⇔ all-trans-lycopene + 4 reduced acceptor(전체 반응식)
(1a) 15-cis-phytoene + acceptor ⇔ all-trans-phytofluene + reduced acceptor
(1b) all-trans-phytofluene + acceptor ⇔ all-trans-zeta-carotene + reduced acceptor
(1c) all-trans-zeta-carotene + acceptor ⇔ all-trans-neurosporene + reduced acceptor
(1d) all-trans-neurosporene + acceptor ⇔ all-trans-lycopene + reduced acceptor
본 발명의 용어, "베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO)"는 하기 반응식의 반응을 촉매하는 효소를 의미하며, 구체적으로, 산소 분자를 이용하여 베타-카로틴을 분해하여, 레티날 2분자를 생성하는 효소를 의미할 수 있다. 또한, 베타-크립토산틴, 아포카로테날, 4'-아포-베타-카로테날, 알파-카로틴 및 감마-카로틴을 분해할 수 있다. 또한, 베타-카로틴 15,15' 디옥시제나제(β-carotene 15,15' dioxygenase)와 혼용될 수 있다.
[반응식]
Beta-carotene + O2 → 2 all-trans-retinal
본 발명의 용어, "레티놀 디하이드로제나제(retinol dehydrogenase, ybbO)"는 하기 반응식의 가역 반응을 촉매하는 효소를 의미하며, 상기 효소의 기질로는 all-trans- 또는 -cis-레티놀이 될 수 있으며, 두 개의 기질(레티놀 및 NAD+)을 이용하여 세 개의 산물(레티날, NADH, H+)을 생성할 수 있다. 또한, 마이크로조말 레티놀 디하이드로제나제(microsomal retinol dehydrogenase), all-trans 레티놀 디하이드로제나제, 레티날 리덕타제(retinal reductase) 및 레티넨 리덕타제(retinene reductase)와 혼용될 수 있다.
[반응식]
Retinol + NAD+ ⇔ Retinal + NADH + H+
상기 제라닐제라닐 이인산염 신타제, 파이토인 신타제, 불포화효소, 베타-카로틴 15,15' 모노옥시제나제 및 레티놀 디하이드로제나제의 유전적 정보는 공지의 데이터 베이스에서 얻을 수 있으며, 그 예로 미국 국립생물정보센터 (National Center for Biotechnology Information; NCBI)의 GenBank 등이 있으나, 이에 제한되지 않는다.
상기 제라닐제라닐 이인산염 신타제, 파이토인 신타제 및 불포화효소는 크산토필로마이세스 덴드로하우스(Xanthophyllomyces dendrorhous)로부터 유래된 것일 수 있고, 상기 베타-카로틴 15,15' 모노옥시제나제 및 레티놀 디하이드로제나제는 할로박테리움 속 NRC-1(Halobacterium sp. NRC-1), 해양 세균 66A03(marine bacterium 66A03) 또는 에스케리키아 속 미생물로부터 유래된 것일 수 있으나, 미생물의 종 또는 미생물에 따라 활성을 나타내는 단백질의 아미노산 서열에 차이가 존재하는 경우가 있기 때문에, 그 유래나 서열에 한정되지 않는다. 특히, 상기 레티놀 디하이드로제나제는 에스케리키아 속 미생물, 구체적으로는 E.coli에서 유래될 수 있으나, 이에 한정된 것은 아니다.
구체적으로, 상기 제라닐제라닐 이인산염 신타제는 서열번호 7의 아미노산 서열을 포함하는 단백질일 수 있고, 상기 파이토인 신타제는 서열번호 8의 아미노산 서열을 포함하는 단백질일 수 있고, 상기 불포화효소는 서열번호 9의 아미노산 서열을 포함하는 단백질일 수 있고, 상기 베타-카로틴 15,15' 모노옥시제나제는 BCMO-SR은 서열번호 10의 아미노산 서열을, BCMO-blh는 서열번호 11의 아미노산 서열을 포함하는 단백질일 수 있고, 레티놀 디하이드로제나제는 서열번호 12의 아미노산 서열을 포함하는 단백질일 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서 "아미노산 서열을 포함하는 단백질" 또는 "아미노산 서열로 구성되는 단백질"이라는 표현과 혼용되어 사용될 수 있다.
또한, 본 발명에서 상기 효소들은 각각의 효소와 동일하거나 상응하는 생물학적 활성을 가지는 한, 기재된 서열번호뿐만 아니라, 상기 아미노산 서열과 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상의 상동성을 나타내는 단백질을 포함할 수 있다.
또한 상기 서열과 상동성을 가지는 서열로서 실질적으로 기재된 서열번호의 효소 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지는 경우도 역시 본 출원의 범주에 포함됨은 자명하다.
본원에 사용된 용어 "상동성"은 주어진 아미노산 서열 또는 뉴클레오티드 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 뉴클레오티드 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건(stringent condition)하에서 썼던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor,New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다. 상기에서 용어 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 예를 들어, 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다.
본 발명의 제라닐제라닐 이인산염 신타제, 파이토인 신타제, 불포화효소, 베타-카로틴 15,15' 모노옥시제나제 및 레티놀 디하이드로제나제는 상기 각각의 효소와 동일하거나 상응하는 생물학적 활성을 가지는 한, 기재된 서열번호의 아미노산 서열 또는 상기 서열과 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상의 상동성을 나타내는 단백질을 코딩하는 폴리뉴클레오티드를 포함할 수 있으며, 구체적으로 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE)를 암호화하는 유전자는 서열번호 1의 염기서열을 포함하고; 파이토인 신타제(Phytoene synthase, crtYB)를 암호화하는 유전자는 서열번호 2의 염기서열을 포함하고; 불포화효소(desaturase, crtI)를 암호화하는 유전자는 서열번호 3의 염기서열을 포함하고; 베타-카로틴 15,15' 모노옥시제나제(BCMO)를 암호화하는 유전자는 BCMO-SR 유전자는 서열번호 4의 염기서열을, BCMO-blh 유전자는 서열번호 5의 염기서열을 포함하고; 레티놀 디하이드로제나제를 암호화하는 유전자는 서열번호 6의 염기서열을 포함할 수 있다.
또한, 상기 효소들을 코딩하는 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있다. 따라서, 상기 폴리뉴클레오티드는 각 효소 단백질을 코딩하는 폴리뉴클레오티드 서열이면 제한 없이 포함될 수 있다.
또한, 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화하여, 상기 제라닐제라닐 이인산염 신타제, 파이토인 신타제, 불포화효소, 베타-카로틴 15,15' 모노옥시제나제 및 레티놀 디하이드로제나제 효소 단백질의 활성을 가지는 단백질을 암호화하는 서열이라면 제한 없이 포함될 수 있다.
상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성이 높은 유전자끼리, 40% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1XSSC, 0.1% SDS, 구체적으로는 60℃, 0.1XSSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1XSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 폴리뉴클레오티드가 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 폴리뉴클레오티드 서열뿐만 아니라 전체 서열에 상보적인 단리된 폴리뉴클레오티드 단편을 포함할 수 있다.
구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 발명에서 용어, "활성의 강화"는 효소 단백질의 활성이 도입되거나, 미생물이 가진 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 활성의 "도입"은, 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성이 자연적 혹은 인위적으로 나타나게 되는 것을 의미한다. 구체적으로 효소 단백질의 활성이 강화된 미생물은, 천연의 야생형 미생물 또는 비변형 미생물에 비해서 효소단백질의 활성이 향상된 미생물을 의미한다. 상기 활성 강화는 예를 들어, 외래의 제라닐제라닐 이인산염 신타제, 파이토인 신타제, 불포화효소, 베타-카로틴 15,15' 모노옥시제나제 및/또는 레티놀 디하이드로제나제를 도입하여 강화하는 것; 또는 내재적 제라닐제라닐 이인산염 신타제, 파이토인 신타제, 불포화효소, 베타-카로틴 15,15' 모노옥시제나제 및/또는 레티놀 디하이드로제나제의 활성을 강화하는 것을 모두 포함할 수 있으며, 구체적으로, 본 발명에서 활성 강화의 방법으로는,
1) 상기 효소들을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 효소들의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 형, 또는
4) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 또한 카피수 증가의 한 양태로, 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 효소와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 효소가 생성되어 그 활성이 증가될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
구체적으로, 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터, lysCP1 프로모터, EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있다. 더욱 구체적으로는 hxpr2 프로모터 또는 UAS1B 프로모터와 작동 가능하게 연결되어, 상기 효소를 코딩하는 폴리뉴클레오티드의 발현율을 향상시킬 수 있으나, 이에 한정되지 않는다.
아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
마지막으로, 4) 상기 1) 내지 3)의 조합에 의해 강화되도록 변형하는 방법은, 상기 효소를 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 1 이상의 방법을 함께 적용하여 수행될 수 있다.
상기 폴리뉴클레오티드는 기능을 할 수 있는 폴리뉴클레오티드 집합체인 경우 유전자로 기재될 수 있다. 본원에서 폴리뉴클레오티드와 유전자는 혼용될 수 있으며, 폴리뉴클레오티드 서열과 뉴클레오티드 서열은 혼용될 수 있다.
본 발명에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질 전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 발명에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, pSKH, pRS-413, pRS-414, pRS-415 벡터, pBCA 벡터, pYLI 벡터 등을 사용할 수 있으나, 이에 제한되지 않는다.
본 발명에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한, 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 삽입시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함하거나, 이와 관련된 유전자를 제거할 수 있다. 선별 마커는 벡터로 형질 전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질 전환된 세포를 선별할 수 있다.
본 발명에서 사용된 용어 "형질 전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질 전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다. 상기 형질전환 하는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, EAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.
본 발명의 미생물은 추가로 Ku70 또는 Ku80 단백질 활성이 불활성화되거나 또는 URA3 유전자의 활성이 불활성화된 것일 수 있다.
본 발명에서 용어, "Ku70" 또는 "Ku80"는 Ku 단백질로서, Ku70과 Ku80은 Ku 이형이량체(heterodimer)를 형성하여 절단된 DNA 이중가닥의 말단에 결합하여 비상동 말달 연결(non-homologous end joining, NHEJ) 경로를 통해 DNA 수리에 관여한다. 본 발명에서는 레티놀 생합성 유전자의 상동 재조합의 효율을 높이기 위해서는 무작위 삽입(random insertion)을 억제하는 기능을 갖는 Ku70/Ku80 유전자 중 하나가 결손된 미생물을 이용하였다.
본 발명에서 용어, "URA3 유전자"는 효모의 피리미딘 합성경로에서 오로티딘-5' '-인산탈카르복시화효소(Orotidine 5'-phosphate decarboxylase, ODCase)를 암호화하는 유전자이다. 또한, URA3+ 효모는 우라실 또는 우리딘이 첨가되지 않은 배지에서 증식할 수 있으나, 피리미딘유사체인 5-플루오로오로토산(5-fluoroorotic acid, 5-FOA)을 포함하는 배지에서는 증식하지 못하는 특징이 있는 바, URA3 유전자는 상기 특징을 이용하여 포지티브 또는 네거티브 마커로 이용될 수 있다.
본 발명의 일 실시예에 따르면, 레티놀 생합성 유전자의 도입 여부를 확인하기 위해 URA3 유전자가 결손된 효모를 제작하였고, 레티놀 생합성 유전자 도입 시 URA3 유전자를 동시에 도입시키는 방법을 이용하여 레티놀 생합성 유전자가 도입된 균주를 우라실 또는 우리딘이 첨가되지 않은 배지에서 선별하였다(실시예 1-1).
본 발명의 용어 "불활성화"는 본래 미생물이 가진 효소 단백질의 내재적 활성 또는 변형 전 활성에 비하여 그 활성이 약화되는 경우; 단백질이 전혀 발현이 되지 않는 경우; 또는 발현이 되더라도 그 활성이 없는 경우를 의미한다. 상기 불활성화는 효소를 코딩하는 폴리뉴클레오티드의 변이 등으로 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 약화하거나 제거된 경우; 효소를 코딩하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 미생물에 비하여 낮거나 제거된 경우; 효소를 코딩하는 유전자의 일부 또는 전체가 결실된 경우; 및 이들의 조합 역시 포함하는 개념으로, 이에 한정되지는 않는다. 즉 효소 단백질의 활성이 불활성화된 미생물은, 천연의 야생형 미생물 또는 비변형 미생물에 비해서 효소 단백질의 활성이 낮거나 또는 제거된 미생물을 의미한다.
상기 효소 활성의 불활성화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 효소를 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 2) 상기 단백질을 코딩하는 염색체상의 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 제거 또는 약화되도록 단백질을 코딩하는 염색체 상의 유전자 서열의 변형, 4) 상기 단백질을 코딩하는 염색체상의 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 5) 상기 단백질을 코딩하는 염색체상의 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 6) 상기 단백질을 코딩하는 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에, 특별히 제한되는 것은 아니다.
상기 효소를 코딩하는 염색체상의 유전자의 일부 또는 전체를 결실하는 방법은, 미생물 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 코딩하는 폴리뉴클레오티드를 일부 뉴클레오티드 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 이러한 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법의 일례로 상동 재조합에 의하여 폴리뉴클레오티드를 결실시키는 방법을 사용할 수 있으나, 이에 한정되지는 않는다.
상기 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.
상기 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성을 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있으나, 이에 한정되는 것은 아니다.
상기에서 "일부"란, 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 더욱 구체적으로는 1 내지 100개, 보다 더욱 구체적으로는 1 내지 50개일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기 레티놀을 생산하는 미생물은 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE), 파이토인 신타제(Phytoene synthase, crtYB) 및 불포화효소(desaturase, crtI) 단백질 활성이 강화된 미생물로서, 베타카로틴을 생산할 수 있고, 추가적으로 베타-카로틴 15,15' 모노옥시제나제 및 레티놀 디하이드로제나제 단백질 활성을 강화시킴으로써, 레티놀 생산능을 더욱 증가시킨 미생물일 수 있다.
본 발명의 미생물은 레티놀 생산능이 있는 미생물인 한 제한이 없으나, 구체적으로, 야로위아 리포리티카(Yarrowia lipolytica) 또는 사카로마이시스 세레비지에(Saccharomyces cerevisiae)일 수 있다.
본 발명의 다른 하나의 양태는 본 발명의 미생물을 배양배지에서 배양하는 단계를 포함하는, 레티놀 생산방법을 제공한다.
상기 "미생물"및 "레티놀"은 전술한 바와 같다.
본 발명에서 "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 발명의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 미생물에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 본원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 구체적으로는 본원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
배양하는 단계에서 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 사용하여 조절할 수 있으며, 구체적으로 5.5 내지 7.5, 5.5 내지 7.0, 6.0 내지 7.5, 6.0 내지 7.0, 6.5 내지 7.5 또는 6.5 내지 7.0일 수 있고, 보다 구체적으로 배양하는 단계에서의 pH는 6.9일 수 있으나, 이에 제한되는 것은 아니다.
또한, 배양물의 호기상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나, 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 배양하는 단계에서의 폭기량은 0.2 내지 1.5 vvm, 0.2 내지 1.3 vvm, 0.2 내지 1.1 vvm, 0.5 내지 1.5 vvm, 0.5 내지 1.3 vvm, 0.5 내지 1.1 vvm, 0.8 내지 1.5 vvm, 0.8 내지 1.3 vvm, 0.8 내지 1.1 vvm일 수 있으며, 보다 구체적으로 배양 단계에서의 폭기량은 0.9 vvm일 수 있으나, 이에 제한되는 것은 아니다.
또한, 배양온도는 20 내지 45℃ 또는 25 내지 40℃를 유지할 수 있고, 구체적으로 27 내지 31℃, 28 내지 31℃, 29 내지 31℃ 또는 30 내지 31℃를 유지할 수 있으며, 보다 구체적으로 30.2℃를 유지할 수 있으나, 이에 제한되는 것은 아니다.
또한, 배양하는 단계에서 배양기의 운전 rpm은 50 내지 300rpm, 50 내지 250rpm, 100 내지 300rpm, 100 내지 250rpm, 150 내지 300rpm, 150 내지 250rpm, 200 내지 300rpm 또는 200 내지 250rpm일 수 있으며, 보다 구체적으로 249.9 rpm일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 용어, "배지"는 본 발명의 미생물을 배양할 배양배지 및/또는 배양한 다음 수득한 산물을 의미한다. 상기 배지는 미생물을 포함하는 형태 및 상기 미생물을 포함하는 배양액에서 원심분리, 여과 등으로 미생물을 제거한 형태도 모두 포함하는 개념이다.
본 발명의 레티놀을 생산하는 미생물을 배양하는 데에 사용되는 배양 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 발명의 레티놀을 생산하는 미생물의 배양에 사용하는 배양배지는 효모 추출물(Yeast extract), 펩톤(Peptone), 대두(Soy bean) 및 글루코스(Glucose)로 구성된 군으로부터 선택되는 하나 이상의 영양성분을 포함하는 것일 수 있다.
상기 효모 추출물은 본 발명의 레티놀을 생산하는 미생물의 배양배지에 적절량 포함될 수 있으며, 구체적으로 배양배지 전체 100 중량부 기준으로 1 내지 4 중량부, 1.5 내지 4 중량부, 2 내지 4 중량부, 2.5 내지 4 중량부, 1 내지 3.5 중량부, 1.5 내지 3.5 중량부, 2 내지 3.5 중량부 또는 2.5 내지 3.5 중량부로 포함될 수 있으며, 보다 구체적으로 3 중량부 포함될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 펩톤은 본 발명의 레티놀을 생산하는 미생물의 배양배지에 적절량 포함될 수 있으며, 구체적으로 배양배지 전체 100 중량부 기준으로 0.5 내지 4 중량부, 1 내지 4 중량부, 1.5 내지 4 중량부, 2 내지 4 중량부, 2.5 내지 4 중량부, 0.5 내지 4 중량부, 1 내지 3.5 중량부, 1.5 내지 3.5 중량부, 2 내지 3.5 중량부 또는 2.5 내지 3.5 중량부로 포함될 수 있으며, 보다 구체적으로 3 중량부 포함될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 대두는 본 발명의 레티놀을 생산하는 미생물의 배양배지에 적절량 포함될 수 있으며, 구체적으로 배양배지 전체 100 중량부 기준으로 0.5 내지 4 중량부, 1 내지 4 중량부, 1.5 내지 4 중량부, 2 내지 4 중량부, 2.5 내지 4 중량부, 0.5 내지 4 중량부, 1 내지 3.5 중량부, 1.5 내지 3.5 중량부, 2 내지 3.5 중량부 또는 2.5 내지 3.5 중량부로 포함될 수 있으며, 보다 구체적으로 3 중량부 포함될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 글로코스는 본 발명의 레티놀을 생산하는 미생물의 배양배지에 적절량 포함될 수 있으며, 구체적으로 배양배지 전체 100 중량부 기준으로 1 내지 3 중량부, 1 내지 2.5 중량부, 1.5 내지 3 중량부 또는 1.5 내지 2.5 중량부로 포함될 수 있으며, 보다 구체적으로 2 중량부 포함될 수 있으나, 이에 제한되는 것은 아니다.
상기 배양에 의하여 생산된 레티놀은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
또한, 본 발명의 레티놀 생산방법은 상기 미생물의 멀티-카피(multi-copy) 플라스미드를 사용하는 것일 수 있다. 구체적으로, 일 실시예에서는 싱글-카피를 이용하여 형질전환된 균주 보다, 멀티-카피를 이용하여 형질전환된 균주를 배양하는 경우에 약 3배로 레티놀 생산량이 증가됨을 확인하였다(실시예 3-2).
또한, 본 발명의 레티놀 생산방법은 추가로 상기 배양된 미생물 또는 배지로부터 레티놀을 회수하는 단계를 포함하는 것일 수 있다. 본 발명의 상기 배양 단계에서 생산된 레티놀을 회수하는 단계는 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 레티놀을 생산하는 미생물 및 이의 배양액으로부터 목적하는 레티놀을 수집할 수 있다. 예를 들어, 동결건조, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배양된 미생물 또는 배지로부터 목적하는 레티놀을 회수할 수 있다. 상기 레티놀을 회수하는 단계는 분리 공정 및/또는 정제 단계를 추가적으로 포함할 수 있다.
이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 레티놀 생산용 균주 선정 및 코돈 최적화를 통한 유전자 합성
실시예 1-1: 레티놀 생산용 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 플랫폼 균주 제작
재조합 단백질 생산에 널리 활용되는 효모 균주인 사카로마이세스 세레비지에(Saccharomyces cerevisiae)를 레티놀 생산용 균주로 선정하였다.
다음으로, 레티놀 생산용 균주를 제작하기 위해서는 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 균주의 유전체 내 고효율 유전자 조작이 필요하고, 이를 위해서는 유전체 내 반복적으로 특정 유전자군을 삽입하거나 제거할 수 있는 고효율 유전자 조작 시스템 및 삽입된 유전자가 유전체 내에서 상동 재조합(homologous recombination)이 고효율로 수행될 수 있는 시스템이 구축되어야 한다. 따라서, 상기 시스템이 구축된 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 플랫폼 균주를 제작하였다.
구체적으로, 상동 재조합의 효율을 높이기 위해서는 무작위 삽입(random insertion)을 억제하는 기능을 갖는 Ku70/Ku80 유전자 중 하나를 제거하여야 하고, 외래 유전자 삽입을 확인하기 위한 영양요구성 선별 마커(auxotrophic selection marker)로서 URA3를 사용하기 위해서는 유전체 내 URA3 유전자를 제거하여야 한다. 따라서, URA3 및 Ku70가 제거된 레티놀 생산용 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 플랫폼 균주를 제작하였다. 하기의 실험부터는 상기 균주를 이용하였다.
실시예 1-2: 사카로마이세스 세레비지에 맞춤 고효율 레티놀 생산 대사경로 설계 및 유전자 합성
도 1에서 확인할 수 있는 바와 같이, GGPP의 생산으로부터 레티놀의 생산까지의 대사경로(GGPP → Phytoene → Neurosporene → Lycopene → β-carotene → Retinal → Retinol)를 설계하였다.
구체적으로, 크산토필로마이세스 덴드로하우스(Xanthophyllomyces dendrorhous) 유래의 베타카로틴 생합성 유전자인 제라닐제라닐 이인산염 신타제(GGPP synthase), 파이토인 신타제(Phytoene synthase) 및 불포화효소(desaturase)를 코딩하는 염기서열(각각 crtE, crtIcrtYB)을 사카로마이세스 세레비지에에 적합하도록 코돈 최적화한 후 각각의 유전자를 합성하였고; 할로박테리움 속 NRC-1(Halobacterium sp. NRC-1) 또는 해양 세균 66A03(marine bacterium 66A03) 유래의 레티날 생합성 유전자인 베타-카로틴 15,15'-모노옥시제나제(β-Carotene 15,15'-Monooxygenase)을 코딩하는 염기서열(각각 BMCO-blh 또는 BMCO-SR)을 사카로마이세스 세레비지에에 적합하도록 코돈 최적화한 후 각각의 유전자를 합성하였고; 레티놀 생합성 유전자인 레티놀 디하이드로제나제(retinol dehydrogenase)를 코딩하는 염기서열(ybbO)을 사카로마이세스 세레비지에에 적합하도록 코돈 최적화한 후 유전자를 합성하였다.
crtE, crtYB, crtI, BMCO-blh, BMCO-SR, 및 ybbO를 코딩하는 염기서열은 각각 서열번호 1, 서열번호 2, 서열번호 3, 서열번호 4, 서열번호 5 및 서열번호 6으로 기재하였다.
실시예 2: 레티놀 생산용 균주 제작
실시예 2-1: 레티놀 생산용 S. cerevisiae 발현 벡터 제조
상기 실시예 1-2에서 합성한 crtE, crtI, crtYB, BMCO-blh, BMCO-SR, 및 ybbO 유전자 염기서열을 레티놀 생산용 사카로마이세스 세레비지에 플랫폼 균주에서 안정적으로 발현시키기 위해 GPD 프로모터와 CYC1 터미네이터(terminator)이 포함되고, 벡터 시스템의 반복사용이 가능한 ura 마커 시스템을 적용한 발현 벡터를 제작하였다.
구체적으로, 먼저 GPD 프로모터, CYC1 터미네이터 및 URA Blaster cassette가 도입된 발현 벡터에 실시예 1-2에서 합성한 crtE, crtI, crtYB, BMCO-blh, BMCO-SR, 및 ybbO 유전자를 코딩하는 염기서열을 다중 클로닝 부위(Multi Cloning Site)에 있는 EcR I, Xho I 제한효소를 이용하여 각각 발현 벡터에 삽입하였고, 각 유전자 서열이 삽입된 pBCA_crtE, pBCA_crtI, pBCA_crtYB, pRET_BMCO-blh, pRET_BMCO-SR 및 pRET_ybbO 벡터를 제작하였다.
실시예 2-2: 레티놀 전구체의 생합성 유전자 삽입
S. cerevisiae 게놈 내에 삽입 부위로는 레티놀의 전구체 공급을 증가시키기 위해, 제거시 레티놀의 전구체인 메발론산(mevalonate) 생산을 증가시키는 것으로 알려진 유전자 YPL062w, 및 파르네실파이로포스페이트(farnesyl pyrophosphate: FPP) 소모에 관여하는 파네솔(farnesol) 생산 유전자 LPP1, DPP1을 선정하였다.
구체적으로, 상기 실시예 2-1에서 제작한 pBCA_crtE 벡터를 상기 실시예 1-1에서 제작한 레티놀 생산용 사카로마이세스 세레비지에(Saccharomyces cerevisiae) 플랫폼 균주에 형질전환시킨 후, colony PCR을 통하여 균주 내의 정확한 위치에 crtE 유전자가 삽입되었는지를 확인하였다(도 2A). crtE 유전자가 정확한 자리에 삽입된 경우 도 3A의 1, 5, 8 및 10레인과 같이 4,000 bp에서 밴드가 나타난다. 삽입이 확인된 균주는 ura pop out을 통하여 ura 마커를 제거한 후, 이후의 crtI 유전자 삽입에 이용하였다.
상기와 같은 방법을 이용하여, crtI 유전자 및 crtYB 유전자를 차례로 삽입하였고, 상기 유전자가 삽입된 것을 확인하였다(도 2B 및 C). crtI 유전자가 정확한 자리에 삽입된 경우 도 2B의 11 및 12 레인과 같이 4,000 bp 부근에서 밴드가 나타나고, crtYB 유전자가 정확한 자리에 삽입된 경우 도 2C의 1, 2, 5, 9 및 10레인과 같이 6,000 bp 부근에서 밴드가 나타난다. 이와 같이 레티놀의 전구체인 베타카로틴 생합성 유전자인 crtE, crtI 및 crtYB 유전자가 삽입된 균주를 제작하였다. 하기의 실험부터는 상기 균주(S. cerevisiae CEN.PK2-1D △leu2::P TEF1 -ERG20 his3::P CCW12 -tHMG1lpp1::P GPD -crtE △dpp1::P GPD -crtI △ypl062w::P GPD -crtYB)를 기본 균주로 하여 레티놀 생산용 균주를 제작하였다.
실시예 2-3: 레티놀 생합성 유전자 삽입
상기 2-1에서 제작한 pBCA-BCMO 벡터를 상시 실시예 2-2에서 제작한 레티놀 전구체 생합성 유전자가 삽입된 사카로마이세스 세레비지에 균주에 형질전환시킨 후, PCR 및 콜로니 형성 관찰을 통하여 균주 내의 정확한 위치에 BMCO-blh 또는 BMCO-SR 각각의 유전자가 삽입되었는지를 확인하였다(도 3-4).
구체적으로, pBCA-BCMO 벡터 및 pUC-3Myc URA3-PGPD 벡터에 EcoRI/XhoI 제한효소를 이용하여 BCMO를 용해시키고, 1% 아가로스 겔에서 전기영동하여 상기 용해시킨 BCMO를 정제하였고, 상기 정제된 BCMO와 pUC-3Myc URA3-PGPD 벡터를 EcoRI/XhoI 제한효소를 이용하여 접합시켜 pUC-3Myc URA3-PGPD-BCMO 벡터를 제작하였다. 다시 EcoRI/XhoI 제한효소를 이용하여, BCMO를 용해시켰다. 이후, BCMO 유전자는 하기 표 1에 기재된 염기서열로 이루어진 삽입 카세트용 프라이머를 이용하여, YPRCτ3 유전자 부위에 삽입하였다.
BCMO 유전자 삽입 카세트용 프라이머 서열
Forward ATC GTC CTT GTA TGG AAG TAT CAA AGG GGA CGT TCT TCA CCT CCT TGG AAC CAG TCA CGA CGT TGT AAA A (서열번호 13)
Reverse AAT GAT TTA CAA TCT AGT CGC AAA AAC AAG TAC AGT GCT GAC GTC CCA TCA GGT TTC CCG ACT GGA AAG C (서열번호 14)
그 결과, 도 3에서 확인할 수 있는 바와 같이, PCR 결과를 통해, 상기 BCMO-SR 또는 BCMO-blh 유전자가 삽입된, PGPD-BCMO URA3 삽입용 벡터가 제작됨을 확인하였다.
이후, 도 4A 및 B에서 확인할 수 있는 바와 같이, 콜로니 형성 확인 및 마스터 콜로니(master colony) 획득을 통해, 상기 제작된 삽입용 카세트를 이용하여 BMCO-blh 또는 BMCO-SR 유전자가 사카로마이세스 세레비지에 YPRCτ3 유전자 부위에 성공적으로 형질전환되었음을 확인하였다. 이후, 도 4C 및 D에서 확인할 수 있는 바와 같이, 상기 BCMO 삽입 마스터 콜로니의 PCR을 수행한 결과, BCMO-SR 유전자가 도입된 경우, 21 레인과 같이 5,124 bp 부근에서 밴드가 나타나고, BCMO-blh 유전자가 도입된 경우 역시 마찬가지로 11 및 14 레인과 같이 5,124 bp 부근에서 밴드가 나타남을 확인하였다. 이와 같이, BCMO 유전자가 삽입된 균주를 제작하였다.
최종적으로, 레티놀 생산용 균주를 제작하기 위해, 상기 제작된 균주에 레티놀 디하이드로제나제를 코딩하는 유전자 ybbO가 삽입된 레티놀 생산용 균주를 제작하였다.
구체적으로, BCMO 유전자 도입 방법과 동일한 방법으로, pUC57-3Myc URA3-PGPD-ybbO 삽입용 벡터를 제작하였다. 이후, ybbO 유전자는 하기 표 2에 기재된 염기서열로 이루어진 삽입 카세트용 프라이머를 이용하여, YPRCdelta15 유전자 부위에 삽입하였다.
ybbO 유전자 삽입 카세트용 프라이머 서열
Forward AAATCCGAACAACAGAGCATAGGGTTTCGCAAACAAACTTAAATATATGCaggtttcccgactggaaag (서열번호 15)
Reverse GTATAATCTGTATACATAATATTATAGGCTTTACCAACAATGGAATTTCGccagtcacgacgttgtaaaa (서열번호 16)
그 결과, 도 5에서 확인할 수 있는 바와 같이, ybbO 삽입 마스터 콜로니의 PCR을 수행한 결과, ybbO 유전자가 도입된 경우, 11 레인과 같이 3,600 bp 부근에서 밴드가 나타남을 확인하였다. 이와 같이, 최종적으로 crtE, crtYB, crtI, BMCO-blh, BMCO-SR, 및 ybbO 유전자가 삽입된, 레티놀 생산용 균주를 제작하였다.
실시예 3: 레티놀 생산용 균주의 레티놀 생산 확인
실시예 3-1: 레티놀 생산용 균주의 레티놀 생산 여부 확인
상기 레티놀 생산용 균주의 레티놀 생산을 확인하기 위해 HPLC/UV 크로마토그램 및 ESI-질량 스펙트럼을 수행하였다. 구체적으로, 크로마토그래피 분석방법은 분석용 스케일(analytical scale; 면적 300 mm x 4 mm)을 사용하여 수행하였다. ODS C18 보호 컬럼(guard column; 4 mm x 3 mm)은 러닝 컬럼(running column)으로 선행되었다. 크로마토그래피 조건은 다음과 같았다: 이동상 A: 아세토나이트릴/H2O/빙초산=90/10/2; 이동상 B: 아세토나이트릴/메탄올=90/10; 이동상 C: 100% THF. 모든 이동상은 사용 전에, 0.45 μm 포어 사이즈를 가진 나일론 멤브레인 필터로 필터링 되었다. 전체 러닝 타임 중 26분 동안, 일정한 유속(1 mL/분) 및 일겅한 컬럼 농도(22 ℃)에서 다음과 같은 농도 프로그램이 적용되었다: 0-4.5분 100% A; 4.5-6.5분 100% B; 6.5-12분 60% B, 40% C; 12-15분 60% B, 40% C; 15-20분 100% B; 20-26분 100% A.
그 결과, 도 6에서 확인할 수 있는 바와 같이, 상기 레티놀 생산용 균주를 배양하여 형성된 콜로니의 레티날 생산 피크 및 레티놀 생산 피크가 관측되었다. 구체적으로, HPLC/UV 크로마토그램(325 nm)의 측정 결과, 레티날 생산 피크는 10.47 분에 관측되었으며(도 6A), 레티놀 생산 피크는 10.97 분에 관측되었다. 또한, 도 7에서 확인할 수 있는 바와 같이, CEN.PK 야생형 균주와 달리(도 7A), 본 발명의 레티놀 생산용 균주는 303.2318 m/z에서 레티놀 생산 피크가 관측되었다(도 7B).
이로부터 상기 실시예 2에서 제작한 레티놀 생산용 균주가 레티놀을 생산할 수 있음을 알 수 있다.
실시예 3-2: Multi copy 플라스미드를 이용한 레티놀 생산량 증가 효과 확인
멀티-카피(multi-copy) 플라스미드를 이용하여 형질전환 균주를 배양하는 경우, 상기 레티놀 생산용 균주의 레티놀 생산량 증가 효과를 확인하였다.
구체적으로, 도 8에서 확인할 수 있는 바와 같이, pUC57 벡터를 이용하여 싱글-카피로 BCMO-SR 유전자를 도입하여 배양한 경우, 레티놀 169.16 ㎍/L를 생산하였다. 이와 달리, p426 벡터를 이용하여 멀티-카피로 BCMO-SR 유전자를 도입하여 배양한 경우, 레티놀 491.09 ㎍/L를 생산하였다. 즉, 싱글-카피를 이용하여 형질전환된 균주 보다, 멀티-카피를 이용하여 형질전환된 균주를 배양하는 경우에 약 3배로 레티놀 생산량을 증가시킴을 확인하였다. 이를 통해, 멀티-카피(multi-copy) 플라스미드를 사용하여 형질전환된 미생물을 배양하는 경우에, 레티놀 생산량을 현저히 증가시킬 수 있음을 확인하였다.
본 명세서는 본 발명의 기술 분야에서 통상의 지식을 가진 자이면 충분히 인식하고 유추할 수 있는 내용은 그 상세한 기재를 생략하였으며, 본 명세서에 기재된 구체적인 예시들 이외에 본 발명의 기술적 사상이나 필수적 구성을 변경하지 않는 범위 내에서 보다 다양한 변형이 가능하다. 따라서 본 발명은 본 명세서에서 구체적으로 설명하고 예시한 것과 다른 방식으로 실시될 수 있으며, 이는 본 발명의 기술 분야에 통상의 지식을 가진 자이면 이해할 수 있는 사항이다.

Claims (8)

  1. 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE), 파이토인 신타제(Phytoene synthase, crtYB), 불포화효소(desaturase, crtI), 베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO), 및 레티놀 디하이드로제나제(retinol dehydrogenase, ybbO) 단백질 활성이 강화된, 레티놀을 생산하는 미생물.
  2. 제1항에 있어서, 상기 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE), 파이토인 신타제(Phytoene synthase, crtYB) 및 불포화효소(desaturase, crtI)는 크산토필로마이세스 덴드로하우스(Xanthophyllomyces dendrorhous)에서 유래된 것인, 레티놀을 생산하는 미생물.
  3. 제1항에 있어서, 상기 베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO), 및 레티놀 디하이드로제나제(retinol dehydrogenase, ybbO)는 할로박테리움 속 NRC-1(Halobacterium sp. NRC-1), 해양 세균 66A03(marine bacterium 66A03) 또는 에스케리키아 속 미생물에서 유래된 것인, 레티놀을 생산하는 미생물.
  4. 제1항에 있어서, 상기 제라닐제라닐 이인산염 신타제(GGPP synthase, crtE) 유전자는 서열번호 1의 염기서열을 포함하고; 상기 파이토인 신타제(Phytoene synthase, crtYB) 유전자는 서열번호 2의 염기서열을 포함하고; 상기 불포화효소(desaturase, crtI) 유전자는 서열번호 3의 염기서열을 포함하고; 상기 베타-카로틴 15,15' 모노옥시제나제(β-carotene 15,15' monooxygenase, BCMO) 유전자는 서열번호 4 또는 서열번호 5의 염기서열을 포함하고; 레티놀 디하이드로제나제(retinol dehydrogenase, ybbO) 유전자는 서열번호 6의 염기서열을 포함하는 것인, 레티놀을 생산하는 미생물.
  5. 제1항에 있어서, 상기 미생물은 야로위아 리포리티카(Yarrowia lipolytica) 또는 사카로마이시스 세레비지에(Saccharomyces cerevisiae)인, 레티놀을 생산하는 미생물.
  6. 제1항 내지 제5항 중 어느 한 항의 미생물을 배양배지에서 배양하는 단계를 포함하는, 레티놀 생산방법.
  7. 제6항에 있어서, 상기 배양배지는 효모 추출물(Yeast extract), 펩톤(Peptone), 대두(Soy bean) 및 글루코스(Glucose)로 구성된 군으로부터 선택되는 하나 이상의 영양성분을 포함하는, 레티놀 생산방법.
  8. 제6항에 있어서, 상기 레티놀 생산방법은 추가로 상기 배양된 미생물 또는 배지로부터 레티놀을 회수하는 단계를 포함하는 것인, 레티놀 생산방법.
PCT/KR2019/016783 2018-11-30 2019-11-29 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법 WO2020111890A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19889198.8A EP3907290A4 (en) 2018-11-30 2019-11-29 BIORETINOL-PRODUCING MICROORGANISM AND METHOD FOR PRODUCING BIORETINOL USING THE SAME
US17/298,307 US20220017878A1 (en) 2018-11-30 2019-11-29 Microorganism for producing bioretinol and method of producing bioretinol using the same
CN201980090783.8A CN113490744A (zh) 2018-11-30 2019-11-29 用于产生生物视黄醇的微生物和使用其产生生物视黄醇的方法
JP2021531515A JP7460179B2 (ja) 2018-11-30 2019-11-29 バイオレチノールを生産する微生物及びそれを用いたバイオレチノールの生産方法
JP2023200005A JP2024026179A (ja) 2018-11-30 2023-11-27 バイオレチノールを生産する微生物及びそれを用いたバイオレチノールの生産方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180152617A KR102202606B1 (ko) 2018-11-30 2018-11-30 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법
KR10-2018-0152617 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111890A1 true WO2020111890A1 (ko) 2020-06-04

Family

ID=70854094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016783 WO2020111890A1 (ko) 2018-11-30 2019-11-29 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법

Country Status (6)

Country Link
US (1) US20220017878A1 (ko)
EP (1) EP3907290A4 (ko)
JP (2) JP7460179B2 (ko)
KR (1) KR102202606B1 (ko)
CN (1) CN113490744A (ko)
WO (1) WO2020111890A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265344A (zh) * 2021-05-19 2021-08-17 浙江大学 一种选择性生产视黄醇的基因工程菌及其构建方法和应用
WO2023044937A1 (en) * 2021-09-27 2023-03-30 Chifeng Pharmaceutical Co., Ltd. Genetically modified yeast of the genus yarrowia capable of producing vitamin a

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4308717A1 (en) 2021-03-19 2024-01-24 Givaudan SA Process
KR102611977B1 (ko) * 2021-07-15 2023-12-08 씨제이제일제당 주식회사 신규한 베타-카로틴 15,15 -옥시게네이즈 변이체 및 이를 이용한 레티노이드 생산방법
KR102518841B1 (ko) 2021-11-09 2023-04-10 경상국립대학교산학협력단 레티노이드 제조용 조성물 및 이를 이용한 레티노이드의 제조 방법
CN114480153B (zh) * 2021-12-27 2024-05-03 江南大学 一种生产维生素a的酿酒酵母菌及其构建方法
KR20230138334A (ko) * 2022-03-23 2023-10-05 씨제이제일제당 (주) 계면활성제를 포함하는 레티놀 생산용 미생물 배지 조성물 및 이의 용도
KR20230138333A (ko) * 2022-03-23 2023-10-05 씨제이제일제당 (주) 헤마토코쿠스 플루비알리스 유래의 제라닐제라닐 피로포스페이트 신타아제를 포함하는 카로티노이드 또는 이를 전구체로 하는 물질 생산 미생물 및 이를 이용한 카로티노이드 또는 레티노이드 생산방법
WO2023182581A1 (ko) * 2022-03-23 2023-09-28 씨제이제일제당 (주) 항산화제를 포함한 레티놀 생산용 미생물 배지 조성물 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014673A (ko) * 2011-07-29 2013-02-08 경상대학교산학협력단 YbbO 유전자가 결실 또는 증폭된 에세리키아 속 미생물 및 그를 이용한 레티노이드의 생산 방법
KR20140147982A (ko) * 2013-06-20 2014-12-31 경상대학교산학협력단 레티노이드 생산에 관여하는 효소를 코딩하는 유전자를 포함하는 미생물 및 이를 이용한 레티노이드의 생산 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078092A2 (en) * 2006-09-28 2009-07-15 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
WO2013019051A2 (ko) * 2011-07-29 2013-02-07 경상대학교산학협력단 미생물로부터 레티노이드를 생산하는 방법
WO2018208116A1 (ko) * 2017-05-11 2018-11-15 경상대학교산학협력단 형질전환 생물체 선별용 마커 조성물, 형질전환 생물체 및 형질전환 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014673A (ko) * 2011-07-29 2013-02-08 경상대학교산학협력단 YbbO 유전자가 결실 또는 증폭된 에세리키아 속 미생물 및 그를 이용한 레티노이드의 생산 방법
KR20140147982A (ko) * 2013-06-20 2014-12-31 경상대학교산학협력단 레티노이드 생산에 관여하는 효소를 코딩하는 유전자를 포함하는 미생물 및 이를 이용한 레티노이드의 생산 방법

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CASTELBLANCO-MATIZ, L. M.: "Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomycesdendrorhous mutant strain", ARCHIVES OF MICROBIOLOGY, vol. 197, no. 10, 2015, pages 1129 - 1139, XP035574818 *
F.M. AUSUBEL ET AL.: "Current Protocols in Molecular Biology", JOHN WILEY & SONS
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
JANG, H.-J. ET AL: "Selective retinol production by modulating the composition of retinoids from metabolically engineered E. coli", BIOTECHNOLOGY AND BIOENGINEERING, August 2015 (2015-08-01), pages 16 04 - 1612, XP055480463 *
JANG, I.-S. ET AL: "Improving the efficiency of homologous recombination by chemical and biological approaches in Yarrowia lipolytica", PLOS ONE, vol. 13, no. 3, 22 March 2018 (2018-03-22), pages e0194954, XP055713156 *
See also references of EP3907290A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265344A (zh) * 2021-05-19 2021-08-17 浙江大学 一种选择性生产视黄醇的基因工程菌及其构建方法和应用
WO2023044937A1 (en) * 2021-09-27 2023-03-30 Chifeng Pharmaceutical Co., Ltd. Genetically modified yeast of the genus yarrowia capable of producing vitamin a

Also Published As

Publication number Publication date
US20220017878A1 (en) 2022-01-20
JP2022515018A (ja) 2022-02-17
JP7460179B2 (ja) 2024-04-02
CN113490744A (zh) 2021-10-08
EP3907290A4 (en) 2022-09-28
KR102202606B1 (ko) 2021-01-15
KR20200066752A (ko) 2020-06-11
JP2024026179A (ja) 2024-02-28
EP3907290A1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2020111890A1 (ko) 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2016200207A1 (ko) 젖산을 생산하는 미생물 및 이를 이용한 젖산 제조 방법
WO2019004778A2 (ko) 신규한 아스파토키나제 변이체 및 이를 이용한 l-아미노산의 제조방법
WO2019117671A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2014208970A1 (ko) 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
WO2020022547A1 (ko) 신규 5'-이노신산 디하이드로게나아제 및 이를 이용한 5'-이노신산 제조방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2020196993A1 (ko) 변이형 포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015156583A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2018093033A1 (ko) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2019235680A1 (ko) 5'-크산틸산을 생산하는 미생물 및 이를 이용한 5'-크산틸산의 제조방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
Kang et al. Cloning and analysis of the nuclear gene for YmL33, a protein of the large subunit of the mitochondrial ribosome in Saccharomyces cerevisiae
WO2021002630A1 (ko) 파에오닥틸룸 트리코르누툼의 신규 프로모터 hasp1와 이의 신호 펩타이드 및 이의 용도
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2011162447A1 (ko) 폐글리세롤 환경 하에서 생장 및 유용물질의 생산이 가능한 미생물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019889198

Country of ref document: EP

Effective date: 20210630