WO2019117671A1 - 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법 - Google Patents

5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법 Download PDF

Info

Publication number
WO2019117671A1
WO2019117671A1 PCT/KR2018/015935 KR2018015935W WO2019117671A1 WO 2019117671 A1 WO2019117671 A1 WO 2019117671A1 KR 2018015935 W KR2018015935 W KR 2018015935W WO 2019117671 A1 WO2019117671 A1 WO 2019117671A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
microorganism
imp
impe1
corynebacterium
Prior art date
Application number
PCT/KR2018/015935
Other languages
English (en)
French (fr)
Inventor
백민지
이백석
이지혜
권나라
김주정
조진만
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN201880003824.0A priority Critical patent/CN110249054B/zh
Priority to RU2019113238A priority patent/RU2723038C1/ru
Priority to BR112019013003-9A priority patent/BR112019013003B1/pt
Priority to EP18889922.3A priority patent/EP3608410A4/en
Priority to MX2019008018A priority patent/MX2019008018A/es
Priority to AU2018378011A priority patent/AU2018378011B2/en
Priority to JP2019535338A priority patent/JP6652687B2/ja
Priority to US16/346,418 priority patent/US11155849B2/en
Priority to ZA2019/03518A priority patent/ZA201903518B/en
Publication of WO2019117671A1 publication Critical patent/WO2019117671A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a microorganism belonging to the genus Corynebacterium, which produces 5'-inosinic acid, in which the activity of an IMP export protein is enhanced, a method for producing 5'-inosine acid using the same, a composition for producing 5'- ≪ / RTI >
  • 5'-inosine monophosphate one of the nucleic acid materials, is an intermediate of the nucleic acid metabolic pathway and is used in various fields such as foods, medicines and various medical uses.
  • 5'-guanine monophosphate GMP
  • GMP 5'-guanine monophosphate
  • IMP is known to taste beef itself, it is known to enhance the flavor of monosodium glutamic acid (MSG) and is attracting attention as a flavor-based nucleic acid-based seasoning.
  • Examples of methods for producing IMP include a method of enzymatically degrading ribonucleic acid extracted from yeast cells (Japanese Patent Publication No. 1614/1957), a method of chemically phosphorylating inosine produced by fermentation (Agri. Biol. Chem ., 36, 1511, etc.), and a method of culturing a microorganism directly producing IMP and recovering the IMP in the culture medium.
  • the most widely used method is a method using microorganisms capable of directly producing IMP.
  • One object of the present application is to provide a microorganism of the genus Corynebacterium which produces 5 ' -inosynic acid, wherein the activity of the IMP export protein is enhanced.
  • Another object of the present invention is to provide a method for producing 5'-inosine acid, which comprises culturing the microorganism of the genus Corynebacterium of the present application in a medium.
  • Another object of the present invention is to provide a composition for producing 5 ' -inosynic acid comprising a protein whose activity of IMP export protein of the present application is enhanced.
  • Another object of the present application is to provide a method for increasing the emission of 5'-inosinic acid, comprising the step of enhancing IMP export protein of the present application in a microorganism of the genus Corynebacterium.
  • 5'-inosinic acid can be prepared using a microorganism belonging to the genus Corynebacterium, which produces 5'-inosinic acid, in which the activity of the IMP export protein is enhanced.
  • One aspect of the present application for achieving the above object is to provide a microorganism of the genus Corynebacterium which produces 5'-inosinic acid enhanced in the activity of the IMP export protein.
  • 5'-inosine acid excretion protein in the present application means a protein involved in the excretion of 5'-inosine monophosphate (IMP) into the cell.
  • IMP 5'-inosine monophosphate
  • the term can be used in combination with a protein having an IMP releasing ability, a protein having 5'-inosinic acid excretion ability, a 5'-inosinic acid excretion protein and the like, and specifically can be represented by ImpE, ImpE1, ImpE2, but is not limited thereto.
  • the protein may be derived from Corynebacterium sp., Specifically, Corynebacterium stainensis, but is not limited thereto.
  • a protein derived from Corynebacterium stasis and having a 5'-inosinic acid-excretion ability and having a corresponding activity can be used as the protein of the present application.
  • the protein may be composed of, for example, an amino acid sequence as shown in SEQ ID NO: 1 or SEQ ID NO: 2, but includes sequences having the same activity as that of the protein, and those skilled in the art will understand the sequence information in GenBank of NCBI Can be obtained.
  • the protein also includes an amino acid sequence having at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with the amino acid sequence of SEQ ID NO: Lt; / RTI > Also, it is obvious that a protein having an amino acid sequence having a deletion, modification, substitution or addition of a part of the sequence may also be used as the protein of the present application, provided that it has such homology or identity and exhibits an effect corresponding to the protein.
  • a protein having an amino acid sequence of a specific sequence number or "a protein consisting of an amino acid sequence of a specific sequence number", the same or a corresponding activity
  • a protein having an amino acid sequence in which some of the sequences are deleted, modified, substituted, conservatively substituted or added can also be used in the present application.
  • the mutant protein has the same or corresponding activity as the above-mentioned mutant protein, a sequence that does not change the function of the protein before or after the amino acid sequence, a naturally occurring mutation, a silent mutation or conservation thereof
  • the present invention encompasses not only excluding the substitution, but also the addition or mutation of such a sequence.
  • Sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms and default gap penalties established by the program used can be used together. Substantially homologous or identical sequences have at least about 50%, 60%, 70%, 80% or more of the entire sequence or total length in medium or high stringent conditions, Or 90% or more. Hybridization also contemplates polynucleotides that contain degenerate codons in place of codons in the polynucleotide.
  • BLAST Altschul, [S.] : 403 (1990); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994; and CARILLO ETA /. (1988) SIAM J Applied Math 48: 1073)
  • BLAST or ClustalW, of the National Center for Biotechnology Information Database can be used to determine homology, similarity, or identity.
  • the homology, similarity or identity of polynucleotides or polypeptides is described, for example, in Smith and Waterman, Adv. Appl. Math (1981) 2: 482, for example, in Needleman et al. (1970), J Mol Biol. 48: 443, by comparing the sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similar aligned symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a linear comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp.
  • enhanced activity in the present application means that the activity of the protein is introduced, or the activity is enhanced as compared with the intrinsic activity or the pre-modification activity of the microorganism.
  • “Introduction” of the activity means that the activity of the specific protein, which is not naturally or artificially inherent to the microorganism, appears.
  • “Intrinsic activity” refers to the activity of a specific protein originally present in the parental strain before transformation when a microorganism is transformed by genetic variation caused by natural or anthropogenic factors.
  • the active enhancement can include both enhancing or enhancing the exogenous IMP release protein into the host cell, or enhancing the activity of the endogenous IMP release protein.
  • the copy number increase of the 1) polynucleotide can be carried out in a form that is not particularly limited but is operably linked to a vector or inserted into a chromosome in a host cell. Also, in one embodiment of increasing the number of copies, it can be carried out by introducing into a host cell an exogenous polynucleotide that exhibits the activity of the protein or a codon-optimized mutant polynucleotide of the polynucleotide.
  • the foreign polynucleotide can be used without limitation in its sequence or sequence as long as it exhibits the same / similar activity as the protein.
  • Such introduction can be carried out by appropriately selecting a person skilled in the art by a known transformation method, and by expressing the introduced polynucleotide in a host cell, a protein can be produced and its activity can be increased.
  • the increase in the number of copies may be that the polynucleotides are consecutively in tandem form, in which case the polynucleotide sequences encoding different IMP export proteins may be present in an alternating, sequential, repeating sequence, , There is a possibility that overlapping portions may occur between each other, but the present invention is not limited thereto.
  • the present application may be one in which the number of copies of the polynucleotide sequence described in SEQ ID NO: 3, SEQ ID NO: 4 or SEQ ID NO: 5 is increased.
  • the expression regulatory sequence may include, but is not limited to, promoters, operator sequences, sequences encoding ribosomal binding sites, sequences regulating the termination of transcription and translation, and the like.
  • a strong heterologous promoter may be connected to the upper part of the polynucleotide expression unit instead of the original promoter.
  • the strong promoter examples include CJ7 promoter, lysCP1 promoter, EF-Tu promoter, groEL promoter, aceA or aceB promoter.
  • the promoter and the polynucleotide may be operatively linked to improve the expression of the polynucleotide encoding the protein, but the present invention is not limited thereto.
  • modification of the polynucleotide sequence on the chromosome is not particularly limited. However, modification of the nucleotide sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof may be used to further enhance the activity of the polynucleotide sequence. , Or by replacing the polynucleotide sequence with an improved polynucleotide sequence so as to have stronger activity.
  • a method of modifying to enhance by the combination of 1) to 3) above comprises: increasing the number of copies of the polynucleotide encoding the protein, modifying the expression control sequence so that its expression is increased, modifying the polynucleotide A modification of the sequence and an exogenous polynucleotide representing the activity of the protein or a modification of the codon optimized mutated polynucleotide thereof.
  • probes which can be prepared from known gene sequences, for example, hydrolized under stringent conditions with complementary sequences to all or part of the above base sequences, to obtain the activity of a protein consisting of the amino acid sequence of SEQ ID NO: 1 or 2
  • stringent conditions means conditions that allow specific hybridization between polynucleotides. These conditions are specifically described in the literature (e.g., J. Sambrook et al., Sangdong).
  • Hybridization requires that two nucleic acids have a complementary sequence, although mismatches between bases are possible, depending on the severity of hybridization.
  • complementary is used to describe the relationship between nucleotide bases capable of hybridizing with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the entire sequence.
  • polynucleotides having homology can be detected using hybridization conditions including the hybridization step at a Tm value of 55 ° C and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C, or 65 ° C, but is not limited thereto and may be suitably adjusted by those skilled in the art according to the purpose.
  • Suitable stringency to hybridize polynucleotides depends on the length and complementarity of the polynucleotide and the variables are well known in the art (see Sambrook et al., Supra, 9.50-9.51, 11.7-11.8).
  • the term "vector” means a DNA construct containing a nucleotide sequence of a polynucleotide encoding the desired protein operably linked to a suitable regulatory sequence so as to be capable of expressing the protein of interest in the appropriate host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence controlling the termination of transcription and translation.
  • the vector may be transcribed into an appropriate host cell and then cloned or functioned independently of the host genome and integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it can be expressed in a host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in their natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A and Charon21A can be used as the phage vector or cosmid vector
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used but are not limited thereto.
  • the vector usable in the present application is not particularly limited, and known expression vectors can be used.
  • a polynucleotide encoding a target protein can be inserted into a chromosome through a vector for intracellular chromosome insertion.
  • the insertion of the polynucleotide into the chromosome can be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. And may further include a selection marker for confirming whether or not the chromosome is inserted.
  • Selection markers are used to select cells that are transfected with a vector, that is, to confirm the insertion of a target nucleic acid molecule, and are provided with selectable phenotypes such as drug resistance, resistance to nutritional requirement, tolerance to cytotoxic agents, May be used. In the environment treated with the selective agent, only the cells expressing the selectable marker survive or express different phenotypes, so that the transformed cells can be selected.
  • transformed means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • Transformed polynucleotides may include all of these, whether inserted into the chromosome of the host cell or located outside the chromosome, provided that the polynucleotide can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein.
  • the polynucleotide may be introduced in any form as far as it is capable of being introduced into a host cell and expressed.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all the elements necessary for its expression.
  • the expression cassette can typically include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into the host cell in its own form and operatively linked to the sequence necessary for expression in the host cell, but is not limited thereto.
  • Such a transformation method includes any method of introducing a nucleic acid into a cell, and may be carried out by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, A lithium acetate-DMSO method, and the like, but are not limited thereto.
  • operably linked means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the protein of interest of the present application. Operable linkages can be made using known recombinant techniques in the art, and site-specific DNA cleavage and linkage can be made using, but not limited to, cutting and linking enzymes in the art.
  • the genus Corynebacterium microorganism producing 5'-inosinic acid in the present application means a microorganism belonging to the genus Corynebacterium having the ability to produce 5'-inosine acid through its native form or mutation .
  • the microorganism of the genus Corynebacterium having the 5'-inosinic acid producing ability in the present application is a microorganism belonging to the genus Corynebacterium, which is inserted into the natural type strain itself or a gene related to an external 5'-inosinic acid production mechanism, 5'-inosine acid-producing microorganism having Corynebacterium genus. More specifically, it may be a microorganism having enhanced 5'-inosinic acid production ability before parent strain or unmodified microorganism.
  • the "microorganism of the genus Corynebacterium” in the present application specifically includes Corynebacterium glutamicum , Corynebacterium ammoniagenes , Brevibacterium lactofermentum , , or the like Brevibacterium Plastic pan (Brevibacterium flavu m), Corynebacterium thermo amino to Ness (Corynebacterium thermoaminogenes), Corynebacterium epi syeonseu (Corynebacterium efficiens), Corynebacterium stay Baltimore varnish (Corynebacterium stationis) , But is not limited thereto.
  • the microorganism of the genus Corynebacterium in the present application may be Corynebacterium stationis .
  • Corynebacterium stationis Corynebacterium stationis
  • 5'-inosinic acid production ability by enhancing the activity of a protein having a function of discharging 5'-inosinic acid out of the cells.
  • a method for producing 5'-inosine acid which comprises culturing a microorganism of the genus Corynebacterium having enhanced activity of the IMP export protein in a medium.
  • the method of the present application may further comprise the step of recovering the 5 ' -inosinic acid in the microorganism or the medium.
  • the step of culturing the microorganism is not particularly limited, but may be carried out by a known batch culture method, a continuous culture method, a fed-batch culture method and the like.
  • the culturing conditions are not particularly limited, but may be carried out at a suitable pH (for example, a pH of 5 to 9, specifically, a pH of 5 to 10, and a pH of 5 to 10) using a basic compound such as sodium hydroxide, potassium hydroxide or ammonia or an acidic compound such as phosphoric acid or sulfuric acid.
  • PH 6 to 8, most specifically pH 6.8 oxygen or an oxygen-containing gas mixture can be introduced into the culture to maintain aerobic conditions.
  • the incubation temperature can be maintained at 20 to 45 ⁇ , specifically at 25 to 40 ⁇ , and can be cultured for about 10 to 160 hours, but is not limited thereto.
  • the 5'-inosinic acid produced by the culture may be secreted into the medium or may remain in the cells.
  • the culture medium used may be a carbon source such as sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower seeds Alcohols such as glycerol and ethanol, and organic acids such as acetic acid may be used individually or in combination with each other, , But is not limited thereto.
  • a carbon source such as sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower seeds Alcohols such as glycerol and ethanol, and organic acids such as acetic acid may be used individually or in combination with each other, , But is not limited thereto.
  • nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, juice, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, Ammonium nitrate), and the like may be used individually or in combination, but the present invention is not limited thereto.
  • the phosphorus source potassium dihydrogenphosphate, dipotassium hydrogenphosphate, and the corresponding sodium-containing salt may be used individually or in combination, but the present invention is not limited thereto.
  • the medium may include essential growth-promoting substances such as other metal salts (e.g., magnesium sulfate or ferrous sulfate), amino acids and vitamins.
  • the method for recovering the 5'-inosinic acid produced in the culturing step of the present application can collect the desired 5'-inosinic acid from the culture using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired 5'-inosinic acid can be recovered from the medium or microorganism using a suitable method known in the art.
  • the recovering step may include a purification step, and may be performed using a suitable method known in the art. Therefore, the recovered 5'-inosinic acid may be a microorganism fermentation broth containing purified form or 5'-inosinic acid.
  • the present application provides, as yet another embodiment, a composition for producing 5'-inosine acid comprising a protein consisting of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 of the present application or a polynucleotide encoding the same.
  • composition of the present application may further include, without limitation, a configuration capable of operating the polynucleotide.
  • the polynucleotide may be in a form contained in a vector so as to express a gene operably linked to the introduced host cell.
  • composition may further comprise any suitable excipient commonly used in compositions for the production of 5'-inosine acid.
  • excipients can be, for example, but are not limited to, preservatives, wetting agents, dispersing agents, suspending agents, buffers, stabilizing agents or isotonic agents.
  • the present application provides a use of a protein consisting of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 for increasing 5'-inosinic acid production of a Corynebacterium sp. Microorganism.
  • the present application provides, in yet another aspect, a method for increasing the release of 5'-inosinic acid, comprising the step of enhancing a protein consisting of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 in a microorganism of the genus Corynebacterium.
  • the present application provides a use of a protein consisting of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 for increasing the 5'-inosinate output of a microorganism of the genus Corynebacterium.
  • protein consisting of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2
  • enhancer and "microorganism of the genus Corynebacterium” are as described above.
  • Genomic DNA library of Corynebacterium stationis ATCC6872 was prepared to identify the membrane protein of Corynebacterium which is involved in the release of IMP.
  • Example 1-1 Selection of IMP-producing strain CJI0323 strain
  • ATCC6872 was suspended at 10 7 to 10 8 cells / ml in phosphate buffer (pH 7.0) or citrate buffer (pH 5.5) to make an IMP producer strain derived from ATCC6782.
  • the mutation was induced by UV treatment. Washed twice with 0.85% saline, and plated on a medium containing an appropriate concentration of a substance to be resistant to a minimal medium containing 1.7% agar, and smeared to obtain colonies. Each colony was cultured in nutrient medium and cultured in seed medium for 24 hours. As a result of culturing for 3 ⁇ 4 days in the fermentation medium, colonies having the best IMP production accumulated in the culture broth were selected.
  • Min medium glucose 2%, sodium sulfate 0.3%, potassium phosphate 0.1%, potassium secondary phosphate 0.3%, magnesium sulfate 0.3%, calcium chloride 10mg / l, iron sulfate 10mg / l, zinc sulfate 1mg / L of cystine, 10 mg / l of calcium pantothenate, 5 mg / l of thiamine hydrochloride, 30 ug / l of biotin, 20 mg / l of adenine, 20 mg / l of guanine,
  • Nutrient medium 1% peptone, 1% juice, 0.25% sodium chloride, 1% yeast extract, 2% agar, pH 7.2
  • - seed medium 1% glucose, 1% peptone, 1% juice, 1% yeast extract, 0.25% sodium chloride, 100 mg / l adenine, 100 mg / l guanine, pH 7.5
  • Fermentation medium 0.1% sodium glutamate, 1% ammonium chloride, 1.2% magnesium sulfate, 0.01% calcium chloride, 20 mg / l iron sulfate, 20 mg / l manganese sulfate, 20 mg / l zinc sulfate, 5 mg / l copper sulfate, l, alanine 24 mg / l, nicotinic acid 8 mg / l, biotin 45 g / l, thiamine hydrochloric acid 5 mg / l, adenine 30 mg / l, phosphoric acid 85% 1.9% glucose 2.55% fructose 1.45% .
  • the seed medium (2 ml) was dispensed into a 18 mm diameter test tube, autoclaved, and inoculated with ATCC6872 and CJI0323, respectively, and shake cultured at 30 ° C for 24 hours. 29 ml of the fermentation medium was dispensed into 250 ml Erlenmeyer flasks and autoclaved at 121 ° C for 15 minutes. Then, 2 ml of the seed culture was inoculated and cultured for 3 days. The culture conditions were set at a revolution of 170 rpm, a temperature of 30 ° C, and a pH of 7.5.
  • Corynebacterium membrane protein was identified by the amino acid sequence of SEQ ID NO: 2 and the nucleotide sequence of SEQ ID NO: 5 (NCBI GenBank: NZ_CP014279, WP_066795121, MFS transporter).
  • the membrane protein is known as an MFS transporter, but its specific function has not been confirmed yet, and the function of IMP release is unknown. In the present application this was named ImpE2 (WT).
  • ImpE2 In order to examine the function of the membrane protein ImpE2, the gene structure of SEQ ID NO: 5 was confirmed in NCBI (NCBI GenBank: NZ_CP014279, WP_066795121, MFS transporter). Sequence No. 5 ( impE2 ) confirmed that the 7 bp region of the ORF overlapped with the gene located at the upstream of impE2 (NCBI GenBank: NZ_CP014279, WP_066795119, transcriptional regulator). Proteins encoded by the corresponding genes and genes located upstream of impE2 have not yet been confirmed to function, and in the present application, they are named ImpE1 (WT) (the amino acid sequence of SEQ ID NO: 1 and the nucleotide sequence of SEQ ID NO: 4).
  • WT the amino acid sequence of SEQ ID NO: 1 and the nucleotide sequence of SEQ ID NO: 4
  • the gene fragment for constructing the vector was obtained by PCR using ATCC6872 genomic DNA as a template.
  • PCR for the impE1 was performed using SEQ ID NOS: 6, 7 of the primers and SEQ ID NO: 8 and a primer of 9, PCR for impE2 is of SEQ ID NO: 10 and 11 primers and SEQ ID NO: 12 and 13 primers ( Table 3).
  • the primers used were based on information on the nucleotide sequence of Corynebacterium stationis (ATCC6872) (NCBI Genbank: NZ_CP014279) registered at the National Institutes of Health, NIH GenBank.
  • the PCR conditions were denaturation at 94 ° C. for 5 minutes, denaturation at 94 ° C. for 30 seconds, annealing at 52 ° C. for 3 minutes, and polymerization at 72 ° C. for 1 minute, and the polymerization reaction was carried out at 72 ° C. for 5 minutes.
  • a primer of SEQ ID NOs: 6 and 7 and a primer of SEQ ID NOs: 8 and 9 were used to amplify two fragments of the impE1 gene as a template to obtain a polynucleotide template of 1.8 kbp.
  • a fragment of the obtained gene was digested with restriction enzyme XbaI.
  • PDZ-DELTA impE1 was prepared from the pDZ (Korean Patent Registration No.
  • Example 2-3 impE1, impE2 Integrated defect vector generation
  • the impE1 and impE2 PCR used the primers of SEQ ID NOs: 6 and 14 and the primers of SEQ ID NOs: 15 and 13, respectively.
  • the primers used were based on information on the nucleotide sequence of Corynebacterium stasis (ATCC6872) gene (NCBI Genbank: NZ_CP014279) registered at the National Institute of Health's NIH GenBank and the surrounding base sequence.
  • the impE1 gene fragment amplified using the primers of SEQ ID NOs: 6 and 14 and the two fragments of the impE2 gene amplified using the primers of SEQ ID NOs: 15 and 13 were subjected to a superposition polymerase chain reaction with a template to obtain a 2.0 kbp polynucleotide template I could.
  • the fragments of the obtained gene were digested with XbaI and speI, respectively.
  • the gene fragment was cloned into a linear pDZ vector digested with XbaI restriction enzyme using T4 ligase to prepare pDZ-? ImpE1E2.
  • Example 2 Two plasmids prepared in Example 2-2 and one plasmid prepared in Example 2-3 were transformed into CJI0323 by electroporation (Appl. Microbiol. Biotechnol. (1999) 52: 541- 545), and the strain on which the vector was inserted on the chromosome by recombination of the homologous sequence was selected on a medium containing kanamycin (25 mg / L). The selected primary strains were again subjected to a second-order cross-over. The genetic defect of the final transformed strain was confirmed by performing PCR using the primer pairs of SEQ ID NOs: 6 and 9, SEQ ID NOs: 10 and 13, and SEQ ID NOs: 6 and 13.
  • the selected strains were named CJI0323_ ⁇ impE1, CJI0323_ ⁇ impE2, CJI0323_ ⁇ impE1E2, and the production ability of IMP of the above strains was evaluated.
  • CJI0323, CJI0323_ ⁇ impE1, CJI0323_ ⁇ impE2, and CJI0323_ ⁇ impE1E2 were inoculated with 2 ml of the seed medium, and the cells were shake cultured at 30 ° C. for 24 hours and used as a seed culture. 29 ml of the fermentation medium was dispensed into 250 ml Erlenmeyer flasks and autoclaved at 121 ° C for 15 minutes. Then, 2 ml of the seed culture was inoculated and cultured for 3 days. The culture conditions were set at a revolution of 170 rpm, a temperature of 30 ° C, and a pH of 7.5.
  • ImpE protein is deleted in the CJI0323 strain having IMP production ability and then the wild type ImpE protein is introduced And further enhanced the activity of ImpE protein, thereby confirming the increase of IMP releasing ability by the enhancement of wild type ImpE protein.
  • One of the methods of enhancing the activity of the protein was a method of increasing the number of copies and a method of enhancing the promoter.
  • Example 3-1 Preparation of wild type impE1, impE2 Integrated introduction vector production
  • a gene fragment for constructing a vector was obtained by PCR using ATCC6872 genomic DNA as a template.
  • the primers of SEQ ID NOS: 6 and 13 were used for the PCR of wild type impE1 and impE2 .
  • the entire fragment of the wild - type impE1-impE2 gene amplified using the primers of SEQ ID NOS: 6 and 13 was treated with restriction enzymes XbaI and SpeI and pDZ-impE1E2 (WT) was prepared by cloning into the XbaI restriction enzyme site in the pDZ vector.
  • Example 3-2 impE1 Enhanced Vector Production
  • ImpE1 enhancing vector a gene fragment for constructing the vector was obtained by PCR using ATCC6872 genomic DNA as a template. To amplify impE1, amplification was carried out using the primers of SEQ ID NOS: 16 and 17, including about 370 bp of impE1 upstream which is considered to be a promoter region. The amplified impE1 gene fragment was treated with XbaI restriction enzyme and the pDZ vector was cloned into the XbaI restriction enzyme site to construct pDZ-impE1 (WT) 2-1. Then, for the 2copy vector production, impE1 was subjected to PCR using a pair of primers of SEQ ID NOS: 18 and 19.
  • Each DNA fragment thus obtained was digested with NotI, which is a DNA restriction enzyme, and cloned into pDZ-impE1 (WT) 2-1 which was digested with the same DNA restriction enzyme.
  • the prepared vector was named pDZ-impE1 (WT) 2X.
  • Example 3-3 impE1, impE2 Integration Enhanced Vector Production
  • the integration of the wild-type gene and impE1 impE2 was amplified by PCR using primers of SEQ ID NOS: 16 and 20.
  • the amplified gene fragment was treated with restriction enzymes of XbaI, and pDZ-impE1E2 (WT) 2-1 was prepared by cloning the pDZ vector into the site of XbaI restriction enzyme.
  • WT pDZ-impE1E2
  • Each of the obtained DNA fragments was digested with NotI, which is a DNA restriction enzyme, and cloned into pDZ-impE1E2 (WT) 2-1 digested with the same DNA restriction enzyme.
  • the prepared vector was named pDZ-impE1E2 (WT) 2X.
  • Example 3-4 impE1, impE2 Introduction / Strain Assessment
  • the pDZ-impE1E2 (WT) prepared in Example 3-1 was transformed into the CJI0323_ ⁇ impE1E2 strain prepared in Example 2 by electroporation (Appl. Microbiol. Biotechnol. (1999) 52: 541-545 ), And the strain in which the vector was inserted on the chromosome by recombination of the homologous sequence was selected on a medium containing kanamycin (25 mg / L). The selected primary strains were again subjected to a second-order cross-over. The gene transfection of the final transformed strains was confirmed by performing PCR using the primer pairs of SEQ ID NOS: 6 and 13. Then, the produced strain CJI0323_ ⁇ primE1E2_impE1E2 (WT) was evaluated to determine IMP production ability when wild type of impE1 and impE2 were introduced into CJI0323 strain.
  • the vector was inserted into the chromosome by recombination of the homologous sequence by transforming pDZ-impE1 (WT) 2X and pDZ-impE1E2 (WT) 2X vectors into the CJI0323_ ⁇ primE1E2_impE1E2 (WT) strain by electrowetting
  • the strains were selected on a medium containing 25 mg / L of kanamycin.
  • the selected primary strains were again subjected to a second-order cross-over.
  • the gene amplification of the final transformed strain was confirmed by carrying out PCR using the primer pairs of SEQ ID NOs: 16 and 19 and SEQ ID NOs: 16 and 21.
  • CJI0323_ DELTA impE1E2_impE1E2 (WT), CJI0323_ ⁇ impE1E2_impE1E2 (WT) _impE1 (WT) 2X and CJI0323_ ⁇ primE1E2_impE1E2 (WT) _impE1E2 (WT) 2X were cultured in the same manner as in Example 2-4 to obtain a strain, The productivity of IMP was evaluated. After the incubation, the amount of IMP produced was measured by HPLC. The results of the culture are shown in Table 6 below.
  • CJI0323 and CJI0323_ ⁇ primE1E2_impE1E2 (WT) _ impE1E2 (WT) 2X were named Corynebacterium stearicius CN01-0323 and Corynebacterium stearensis CN01-2236, respectively, Deposited on Nov. 7, 2017 and deposited with KCCM12151P on October 25, 2017, respectively, and deposited with KCCM12137P in the Korean Culture Center of Microorganisms (KCCM).
  • Example 3-5 impE1 or impE2 Promoter-enhanced vector
  • a gene fragment for constructing a vector for replacing the promoter of each gene with an enhanced promoter was obtained by PCR using ATCC6872 genomic DNA as a template.
  • the enhanced promoter used was Pcj7 (Korean Patent Publication No. 10-0620092) promoter reported to be strongly expressed in Corynebacterium stasis.
  • the PCR for impE1 was carried out using the primers of SEQ ID NOS: 22 and 13 and the primers of 24 and 25, respectively.
  • the gene fragments were treated with XbaI and NdeI restriction enzymes and cloned into the pDZ vector into the XbaI restriction enzyme site.
  • a fragment obtained by performing PCR with the primers of SEQ ID NOs: 30 and 31 using ATCC6872 genomic DNA as a template was treated with NdeI, and the prepared vector was treated with NdeI to obtain pDZ-Pcj7_impE1 (WT) vector Respectively.
  • the PCR for impE2 was carried out by using the primers of SEQ ID NOs: 26 and 27 and the primers of 28 and 29, respectively.
  • the gene fragments were treated with XbaI and NdeI restriction enzymes and cloned into the pDZ vector in place of XbaI restriction enzyme.
  • Pdz-Pcj7_impE2 (WT) vector was constructed by treating the thus-obtained Pcj7 gene fragment and the prepared vector with NdeI.
  • Example 4-1 The two kinds of plasmids prepared in Example 4-1 were transformed into the CJI0323_ ⁇ primE1E2_impE1E2 (WT) strain prepared in Example 3-3 by the electroporation method (Appl. Microbiol. Biotechnol. (1999) 52 : 541-545), and strains in which the vector was inserted on the chromosome by recombination of homologous sequences were selected on a medium containing kanamycin (25 mg / L). The selected primary strains were again subjected to a second-order cross-over. The gene amplification of the final transformed strain was confirmed by carrying out PCR using the primer pairs of SEQ ID NOS: 22 and 25 and SEQ ID NOS: 26 and 27, respectively.
  • the two strains thus produced were named as CJI0323_ ⁇ primE1E2_impE1E2 (WT) _Pcj7 / impE1 (WT), CJI0323_ ⁇ primE1E2_impE1E2 (WT) _Pcj7 / impE2 (WT).
  • the strain in which the vector was inserted on the chromosome by recombination of the homologous sequence after transforming pDZ-Pcj7_impE2 (WT) based on the prepared CJI0323_ ⁇ primE1E2_impE1E2 (WT) _Pcj7 / impE1 (WT) strain was kanamycin and kanamycin (25 mg / L).
  • the selected primary strains were again subjected to a second-order cross-over.
  • the gene amplification of the final transformed strain was confirmed by carrying out PCR using the primer pairs of SEQ ID NOs: 26 and 29.
  • the prepared strain was named CJI0323_ ⁇ primE1E2_impE1E2 (WT) _Pcj7 / impE1 (WT) _Pcj7 / impE2 (WT). ImpE2 (WT) _Pcj7 / impE1 (WT) _Pcj7 / impE1 (WT), CJI0323_ ⁇ spE1E2_impE1E2 (WT) _Pcj7 / impE2 (WT) and CJI0323_ ⁇ pEjE2_impE1E2 ) Were respectively cultured in the same manner as in Example 2-4 to evaluate the IMP production ability.
  • strain CJI0323_ ⁇ prE1E2_impE1E2 (WT) _Pcj7 / impE1 (WT) and CJI0323_ ⁇ primE1E2_impE1E2 (WT) _Pcj7 / impE2 (WT) were isolated from the Korean Culture Center of Microorganisms (KCCM) under the Budapest Treaty And deposited on Nov. 2, 2018, respectively, and were assigned deposit numbers KCCM12357P and KCCM12358P, respectively.
  • Example 4-1 IMP Production Basis impE1, impE2 Strengthening strain production
  • ATCC6872 showed that the activities of adenylosuccinate synthetase and IMP dehydrogenase, which correspond to the degradation pathway of IMP, .
  • the initiation codon was changed by changing the first base from a to t in each of the nucleotide sequences of the genes purA and guaB encoding the two enzymes.
  • the strain in which expression of the two genes was weakened in ATCC6872 was named CJI9088.
  • the pDZ-impE1 (WT) 2X and pDZ-impE1E2 (WT) 2X vectors prepared in Example 3-3 were transformed into the prepared CJI9088 strain by electroporation method and the vector Were selected on a medium containing 25 mg / l of kanamycin. The selected primary strains were again subjected to a second crossing. The gene transfection of the final transformed strains was confirmed by performing PCR using the primer pairs of SEQ ID NOS: 6 and 13.
  • the IMP production ability of the parent strain CJI9088 increased up to 67%. From this, it was confirmed that the IMP production amount can be increased by enhancing the activity of the protein (ImpE) that exports the 5'-inosinic acid of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 IMP 배출 단백질의 활성이 강화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물, 이를 이용한 5'-이노신산 제조방법, 5'-이노신산 생산용 조성물 및 5'-이노신산의 배출 증가 방법에 관한 것이다.

Description

5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
본 출원은 IMP 배출 단백질의 활성이 강화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물, 이를 이용한 5'-이노신산 제조방법, 5'-이노신산 생산용 조성물 및 5'-이노신산의 배출 증가 방법에 관한 것이다.
핵산계 물질 중 하나인 5'-이노신산(5'-inosine monophosphate; 이하 IMP)은 핵산 대사 경로의 중간물질로서, 식품, 의약품 및 각종 의료적 이용 등 다방면에 이용되고 있다. 특히, 5'-구아닐산(5'-guanine monophosphate; 이하 GMP)과 더불어 식품 조미 첨가제 또는 식품용으로 널리 이용되고 있는 물질이다. IMP는 자체로 소고기 맛을 내는 것으로 알려져 있으나, 모노소디움 글루탐산(MSG)의 풍미를 강화하는 것으로 알려져 정미성 핵산계 조미료로 각광을 받고 있다.
IMP를 제조하는 방법으로는, 효모 세포로부터 추출한 리보핵산을 효소적으로 분해하는 방법(일본 특허공고 제1614/1957호), 발효에 의해 생산된 이노신을 화학적으로 인산화하는 방법(Agri. Biol. Chem., 36, 1511 등) 및 IMP를 직접적으로 생산하는 미생물을 배양하고 배양액 내의 IMP를 회수하는 방법 등이 있다. 이러한 방법 중에서 현재 가장 많이 사용되고 있는 방법은 IMP를 직접 생산 가능한 미생물을 이용한 방법이다.
미생물 발효를 통하여 직접 IMP을 생산하는 방법으로 고수율의 IMP을 생산하기 위해서는 IMP의 배출이 원활하게 이루어져야 한다. 본 목적을 달성하기 위해 발명자들은 광범위한 연구를 수행하였고, IMP 배출능에 관여하는 배출 단백질에 대한 연구를 진행하여 배출에 관여하는 단백질인 ImpE1, ImpE2를 규명하였다. IMP 배출에 관여하는 단백질 ImpE1, ImpE2의 활성을 강화시켜 주었을 경우, IMP 농도가 상승하는 것을 확인함으로써 본 출원을 완성하였다.
본 출원의 하나의 목적은 IMP 배출 단백질의 활성이 강화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 본 출원의 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는 5'-이노신산 제조방법을 제공하는 것이다.
본 출원의 또 다른 목적은 본 출원의 IMP 배출 단백질의 활성이 강화된 단백질을 포함하는 5'-이노신산 생산용 조성물을 제공하는 것이다.
본 출원의 또 다른 목적은 본 출원의 IMP 배출 단백질을 코리네박테리움 속 미생물에서 강화하는 단계를 포함하는, 5'-이노신산의 배출 증가 방법을 제공하는 것이다.
본 출원에서 IMP 배출 단백질의 활성이 강화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물을 이용하여 5'-이노신산을 제조할 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, IMP 배출 단백질의 활성이 강화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물을 제공하는 것이다.
본 출원에서 용어, "5'-이노신산 배출 단백질"은 5'-이노신산 (5'-inosine monophosphate, 이하 IMP) 를 세포외로 배출하는데 관여하는 단백질을 의미한다. 본 출원의 목적상 상기 용어는 IMP 배출능을 가지는 단백질, 5'-이노신산 배출능을 가지는 단백질, 5'-이노신산 배출 단백질 등과 혼용되어 사용될 수 있으며, 구체적으로 ImpE로 나타낼 수 있으며, 더욱 구체적으로는 ImpE1, ImpE2로 나타낼 수 있으나, 이에 제한되는 것은 아니다. 또한 상기 단백질은 코리네박테리움 속 유래일 수 있으며, 구체적으로는 코리네박테리움 스테이셔니스 유래인 것 일 수 있으나, 이에 제한되지 않는다. 예를들어, 코리네박테리움 스테이셔니스 유래이고, 5'-이노신산 배출능을 가지는 단백질로서 상응하는 활성을 가지는 단백질은 본 출원의 단백질로 사용될 수 있다.
상기 단백질은 예를 들어 서열번호 1 또는 서열번호 2로 기재된 아미노산 서열로 구성된 것일 수 있으나, 상기 단백질과 동일한 활성을 갖는 서열은 제한 없이 포함하며, 당업자는 공지의 데이터베이스인 NCBI의 GenBank 등에서 서열 정보를 얻을 수 있다. 또한, 상기 단백질은, 서열번호 1 또는 서열번호 2의 아미노산 서열 또는 이와 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 상동성 또는 동일성을 가지는 아미노산 서열을 포함하는 단백질일 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 단백질로 사용될 수 있음은 자명하다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질' 또는 '특정 서열번호의 아미노산 서열로 이루어진 단백질'이라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 변이형 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면 상기 아미노산 서열 앞뒤에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본원의 범위 내에 속하는 것이 자명하다.
본 출원에서 용어, '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 서로 관련된 정도를 의미하며 백분율로 표시될 수 있다.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90% 이상으로 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48: 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
본 출원에서 용어, "활성의 강화"는 단백질의 활성이 도입되거나, 미생물이 가진 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 활성의 "도입"은, 자연적 혹은 인위적으로 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성이 나타나게 되는 것을 의미한다. "내재적 활성"은, 자연적 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 말한다.
예를 들어, 상기 활성 강화는 외래의 IMP 배출 단백질을 숙주세포에 도입하거나 도입하여 강화하는 것, 또는 내재적 IMP 배출 단백질의 활성을 증가시키는 것을 모두 포함할 수 있다.
구체적으로, 본 출원에서 활성 증가는,
1) 상기 단백질을 코딩(즉, 암호화)하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형, 또는
4) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 또한 카피수 증가의 한 양태로, 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다. 상기 카피수 증가는 폴리뉴클레오티드가 tandem 형태로 연속적으로 존재할 수 있으며, 이 경우 서로 다른 IMP 배출 단백질을 코딩하는 폴리뉴클레오티드 서열이 교차적으로, 순차적으로, 동일한 서열이 반복적으로, 존재할 수 있으며, tandem 형태로 연속적으로 존재할 경우, 서로 간에 중첩 부분이 생길 수 있으나, 이에 제한되지 않는다. 구체적으로, 본 출원은 서열번호 3, 서열번호 4 또는 서열번호 5로 기재된 폴리뉴클레오티드 서열의 카피수가 증가된 것일 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 구체적으로, 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터, lysCP1 프로모터, EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있다. 상기 프로모터와 폴리뉴클레오티드가 작동 가능하게 연결되어 상기 단백질을 코딩하는 폴리뉴클레오티드의 발현율을 향상시킬 수 있으나, 이에 한정되지 않는다.
아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
마지막으로, 4) 상기 1) 내지 3)의 조합에 의해 강화되도록 변형하는 방법은, 상기 단백질을 코딩하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 1 이상의 방법을 함께 적용하여 수행될 수 있다.
또한, 본 출원의 서열번호 1, 또는 서열번호 2의 아미노산 서열로 이루어진 단백질을 코딩하는 폴리뉴클레오티드는 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 1 또는 2 아미노산 서열로 이루어진 단백질 또는 이와 상동성을 가지는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. 예를 들어 서열번호 3, 서열번호 4 또는 서열번호 5로 기재된 폴리뉴클레오티드 서열로 구성된 것일 수 있다. 또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1 또는 2의 아미노산 서열로 이루어진 단백질의 활성을 가지는 단백질을 코딩하는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성이 높은 유전자끼리, 40% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1XSSC, 0.1% SDS, 구체적으로는 60℃, 0.1XSSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1XSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra,9.50-9.51, 11.7-11.8 참조).
본 출원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 숙주세포 내에서 발현 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있으나, 이에 제한되지 않는다.
본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한, 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 삽입시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다. 상기 형질전환 하는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "5'-이노신산을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물"이란, 천연형 또는 변이를 통하여 5'-이노신산 생산능을 가지고 있는 코리네박테리움 속 미생물을 의미한다. 구체적으로, 본 출원에서 5'-이노신산 생산능을 가지는 코리네박테리움 속 미생물이란 천연형 균주 자체 또는 외부 5'-이노신산 생산 기작과 관련된 유전자가 삽입되거나 내재적 유전자의 활성을 강화시키거나 약화시켜 향상된 5'-이노신산 생산능을 가지게 된 코리네박테리움 속 미생물일 수 있다. 보다 구체적으로 형질 변화 전 모균주 또는 비변형 미생물보다 5'-이노신산 생산능이 향상된 미생물일 수 있다.
본 출원에서 "코리네박테리움 속 미생물"은 구체적으로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum), 브레비박테리움 플라범 (Brevibacterium flavum), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 코리네박테리움 에피션스 (Corynebacterium efficiens), 코리네박테리움 스테이셔니스(Corynebacterium stationis) 등이나, 반드시 이에 한정되는 것은 아니다. 더욱 구체적으로는, 본 출원에서 코리네박테리움 속 미생물은 코리네박테리움 스테이셔니스(Corynebacterium stationis)일 수 있다. 구체적인예를 들어, 5'-이노신산을 세포 밖으로 배출하는 기능을 갖는 단백질의 활성을 강화하여 5'-이노신산 생산능이 향상된 코리네박테리움 스테이셔니스(Corynebacterium stationis) 일 수 있으나, 이에 제한되지 않는다.
본 출원의 또 하나의 양태로서, 상기 IMP 배출 단백질의 활성이 강화된 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는 5'-이노신산 제조방법을 제공한다.
구체적으로, 본 출원의 방법은 상기 미생물 또는 배지에서 5'-이노신산을 회수하는 단계를 추가로 포함할 수 있다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 5'-이노신산은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 출원의 상기 배양 단계에서 생산된 5'-이노신산을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 5'-이노신산을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 5'-이노신산을 회수 할 수 있다.
또한, 상기 회수 단계는 정제 공정을 포함할 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 수행될 수 있다. 따라서, 상기의 회수되는 5'-이노신산은 정제된 형태 또는 5'-이노신산을 함유한 미생물 발효액일 수 있다.
본 출원은 또 다른 하나의 양태로서, 본 출원의 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질 또는 이를 코딩하는 폴리뉴클레오티드를 포함하는 5'-이노신산 생산용 조성물을 제공한다.
본 출원의 조성물은, 추가로 상기 폴리뉴클레오티드를 작동시킬 수 있는 구성을 제한없이 포함할 수 있다. 또한, 본 출원의 조성물에서, 상기 폴리뉴클레오티드는 도입된 숙주 세포에서 작동가능하게 연결된 유전자를 발현시킬 수 있게 벡터 내에 포함된 형태일 수 있다.
또한, 상기 조성물은 5'-이노신산 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있다. 이러한 부형제로는, 예를 들어, 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원은 또 다른 하나의 양태로서, 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질의, 코리네박테리움 속 미생물의 5'-이노신산 생산 증가를 위한 용도를 제공한다.
본 출원은 또 다른 하나의 양태로서, 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질을 코리네박테리움 속 미생물에서 강화하는 단계를 포함하는, 5'-이노신산의 배출 증가 방법을 제공한다.
본 출원은 또 다른 하나의 양태로서, 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질의, 코리네박테리움 속 미생물의 5'-이노신산 배출 증가를 위한 용도를 제공한다.
상기 용어, "서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질", "강화" 및 “코리네박테리움 속 미생물”은 전술한 바와 같다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
실시예 1: 게노믹 DNA 라이브러리 제작
IMP의 배출에 관여하는 코리네박테리움의 막 단백질을 동정하기 위해 코리네박테리움 스테이셔니스(Corynebacterium stationis) ATCC6872의 게노믹 DNA 라이브러리를 제작하였다.
이후 코리네박테리움속 야생형의 균주는 IMP를 생산하지 못하거나, IMP를 생산하더라도 아주 극미량이 생산될 뿐이므로, IMP 생산능을 확인하기 위하여, IMP 생산능을 갖는 ATCC6872 유래의 CJI0323 균주를 제작하였다. 제작된 CJI0323 균주에 상기 ATCC6872의 게노믹 DNA 라이브러리를 형질전환하여 IMP 배출에 관여하는 야생형의 막 단백질 스크리닝을 진행하였다. 구체적인 실험은 다음과 같다.
실시예1-1: IMP 생산주 CJI0323 균주 선별
ATCC6782 유래의 IMP 생산주를 제작하기 위해 ATCC6872를 인산염 완충액(pH 7.0) 또는 시트레이트 완충액(pH5.5)에 107 ~ 108 세포/ml로 현탁시켰다. 여기에 UV 처리하여 돌연변이를 유발시켰다. 2회에 걸쳐 0.85% 식염수로 세척하고, 1.7% 한천을 함유한 최소배지에 내성을 부여하고자 하는 물질을 적정 농도로 함유한 배지에 희석하여 도말한 후 콜로니를 얻었다. 각각의 콜로니를 영양배지에서 배양하고 종배지에서 24시간 배양하였다. 발효배지에서 3~4일간 배양한 결과, 배양액에 축적된 IMP 생산량이 가장 우수한 콜로니를 선별하였다. 고농도 IMP 생산주를 제작하기 위해 아데닌 요구성, 구아닌 누출형, 라이소자임 감수성, 3,4-디하이드로프롤린 내성, 스트렙토마이신 내성, 아제티딘 카복실산 내성, 티아프롤린 내성, 아자세린 내성, 설파구아니딘 내성, 노르발린 내성, 트리메토프림 내성을 부여하기 위해 상기 과정을 각각의 물질에 대해 순차적으로 수행하였으며, 상기 물질들에 대한 내성이 부여되고 IMP 생산능이 우수한 CJI0323을 최종 선별하였다. 표 1에 ATCC6872 대비 CJI0323의 내성정도를 비교하여 나타냈다.
특성 ATCC6872 CJI0323
아데닌 요구성 비요구성 요구성
구아닌 누출형 비요구성 누출형
라이소자임 감수성 80 ug/ml 8 ug/ml
3,4-디하이드로프롤린 내성 1000 ug/ml 3500 ug/ml
스트렙토마이신 내성 500 ug/ml 2000 ug/ml
아제티딘 카복실산 내성 5 mg/ml 30 mg/ml
티아프롤린 내성 10 ug/ml 100 ug/ml
아자세린 내성 25 ug/ml 100 ug/ml
설파구아니딘 내성 50 ug/ml 200 ug/ml
노르발린 내성 0.2 mg/ml 2 mg/ml
트리메조프림 내성 20 ug/ml 100 ug/ml
- 최소배지: 포도당 2%, 황산나트륨 0.3%, 인산제1칼륨 0.1%, 인산제2칼륨 0.3%, 황산마그네슘 0.3%, 염화칼슘 10mg/l, 황산철 10mg/l, 황산아연 1mg/l, 염화망간 3.6mg/l, L-시스테인 20mg/l, 칼슘 판토테네이트 10mg/l, 티아민 염산염 5mg/l, 바이오틴 30ug/l, 아데닌 20mg/l, 구아닌 20mg/l, pH7.3
- 영양배지: 펩톤 1%, 육즙 1%, 염화나트륨 0.25%, 효모 엑기스 1%, 한천 2%, pH 7.2
- 종배지: 포도당 1%, 펩톤 1%, 육즙 1%, 효모엑기스 1%, 염화나트륨 0.25%, 아데닌 100mg/l, 구아닌 100mg/l, pH 7.5
- 발효배지: 글루타민산 나트륨 0.1%, 암모늄클로라이드 1%, 황산마그네슘 1.2%, 염화칼슘 0.01%, 황산철 20mg/l, 황산망간 20mg/l, 황산아연 20mg/l, 황산구리 5mg/l, L-시스테인 23mg/l, 알라닌 24mg/l, 니코틴산 8mg/l, 비오틴 45㎍/l, 티아민염산 5mg/l, 아데닌 30mg/l, 인산(85%) 1.9%, 포도당 2.55%, 과당 1.45% 되게 첨가하여 사용하였다.
실시예 1-2: CJI0323의 발효역가 실험
종배지 2ml를 지름18mm 시험관에 분주하고 가압 살균한 후, ATCC6872 및 CJI0323를 각각 접종하고 30℃ 온도에서 24시간 진탕 배양하여 종배양액으로 사용하였다. 발효배지 29ml를 250ml 진탕용 삼각플라스크에 분주하고 121℃ 온도에서 15분간 가압 살균한 후, 종배양액 2ml을 접종하여 3일간 배양하였다. 배양 조건은 회전 수 170rpm, 온도30℃, pH 7.5로 조절하였다.
배양 종료 후 HPLC (SHIMAZDU LC20A)를 이용한 방법에 의해 IMP의 생산량을 측정하였으며, 배양 결과는 아래 표 2와 같다.
균주명 IMP (g/L)
ATCC6872 0
CJI0323 9.52
실시예 1-3: 배출 단백질 발굴
1.7%의 한천을 첨가한 최소 배지내에 추가적으로 IMP를 첨가하여 CJI0323 균주의 생육 저하(growth inhibition)를 보이는 스크리닝 조건을 수립하였다. ATCC6872 게노믹 라이브러리 플라스미드를 CJI0323 균주에 전기천공법으로 형질전환시키고(van der Rest et al. 1999), 과량의 IMP가 첨가된 배지 조건에서 생육 저하가 해제되는 콜로니들을 선별하였다. 선별된 콜로니로부터 플라스미드를 획득하여 시퀀싱 기법을 통해 염기서열을 분석하였다. 이로부터 과량의 IMP 첨가 조건에서 생육 저하를 해제시키는데 관여하는 막 단백질 1종을 동정하였다.
상기의 1종의 코리네박테리움 막 단백질은 서열번호 2의 아미노산 서열, 및 서열번호 5의 염기서열 (NCBI GenBank: NZ_CP014279, WP_066795121, MFS transporter) 로 확인되었다. 상기 막 단백질은 MFS transporter로 알려져 있으나 명확한 기능이 확인되지 않았으며, 더욱이 IMP 배출에 관한 기능은 알려져 있지 않다. 본 출원에서는 이를 ImpE2(WT)로 명명하였다.
실시예 2: ImpE1, ImpE2 동정
실시예 2-1: impE1, impE2 확인
상기 막 단백질 ImpE2의 기능을 알아보기 위해 NCBI에서 서열번호 5의 유전자 구조를 확인하였다 (NCBI GenBank: NZ_CP014279, WP_066795121, MFS transporter). 서열번호 5(impE2)는 ORF 시작 부분 7bp가 impE2 upstream에 위치한 유전자 (NCBI GenBank: NZ_CP014279, WP_066795119, transcriptional regulator)와 중첩되는 것을 확인하였다. impE2 upstream에 위치한 해당 유전자 및 유전자로부터 코딩되는 단백질은 아직 기능이 확인되지 않았으며 본 출원에서 이를 ImpE1(WT)으로 명명하였다 (서열번호 1의 아미노산 서열 및 서열번호 4의 염기서열).
실시예 2-2: impE1 또는 impE2 결손 벡터 제작
실시예 1과 2-1을 통하여 동정한 IMP에 의한 생육 저하를 해제시키는 데 관여하는 ImpE1 또는 ImpE2를 IMP 생산 균주에서 결손 시켰을 경우, IMP 배출능이 줄어드는지 확인하기 위하여 각 유전자의 결손 벡터를 제작하고자 하였다.
벡터를 제작하기 위한 유전자 단편은 ATCC6872 게노믹 DNA를 주형으로 PCR을 통하여 획득하였다.
구체적으로, 상기 impE1에 대한 PCR은 서열번호 6, 7의 프라이머 및 서열번호 8, 9의 프라이머를, impE2에 대한 PCR은 서열번호 10, 11의 프라이머 및 서열번호 12, 13의 프라이머를 이용하였다(표 3).
서열번호 프라이머 서열(5'-3')
6 impE1 kop-1 GCTCTAGACGAGAAAGCTAAAGCCGGTGA
7 impE1 kop-2 GTTTTTAGCTACCATTGTTACACCCCGTGCAAGTTT
8 impE1 kop-3 GCACGGGGTGTAACAATGGTAGCTAAAAACTCCACC
9 impE1 kop-4 GCTCTAGAAATAGTTGGGGAAGTCCACTC
10 impE2 kop-1 GCTCTAGACTTGGATGACCTGGTGGAAAA
11 impE2 kop-2 CTTGGAGAAAATTTCCTACCATTCCAGTCCTTTCGT
12 impE2 kop-3 GGACTGGAATGGTAGGAAATTTTCTCCAAGGGAAAT
13 impE2 kop-4 GGACTAGTGGATTGTGTTGACGCACGATG
14 impE1E2 kop-2 CTTGGAGAAAATTTCTGTTACACCCCGTGCAAGTTT
15 impE1E2 kop-3 GCACGGGGTGTAACAGAAATTTTCTCCAAGGGAAAT
이때 이용한 프라이머는 미국 국립보건원 진뱅크(NIH GenBank)에 등록되어 있는 Corynebacterium stationis (ATCC6872) 유전자(NCBI Genbank: NZ_CP014279) 및 주변 염기서열에 대한 정보를 바탕으로 제작하였다.
PCR 조건은 94℃에서 5분간 변성 후, 94℃ 30초 변성, 52℃ 3분 어닐링, 72℃ 1분 중합을 25회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 서열번호 6과와 7의 프라이머, 서열번호 8과 9의 프라이머를 이용해 증폭된 impE1 유전자 두 단편을 주형으로 중첩 중합효소 연쇄 반응을 실시하여 1.8 kbp의 폴리뉴클레오티드 주형을 얻을 수 있었다. 얻어진 유전자의 단편을 제한효소 XbaI 으로 절단하였다. T4 리가아제를 이용하여 상기 유전자 단편으로 XbaI 제한효소로 절단시킨 선상의 pDZ (대한민국 등록특허 제10-0924065호 및 국제 공개특허 제2008-033001호) 벡터에 하여 pDZ-△impE1를 제작하였다. 또한 서열번호 10과 11의 프라이머를 이용해 증폭된 impE2 유전자 단편과 서열번호 12와 13의 프라이머를 이용해 증폭된 impE2 유전자 두 단편을 주형으로 중첩 중합효소 연쇄 반응을 실시하여 1.7kbp의 폴리뉴클레오티드 주형을 얻을 수 있었다. 얻어진 유전자의 단편을 제한효소 XbaI, speI 으로 절단하였다. T4 리가아제를 이용하여 상기 유전자 단편으로 XbaI 제한효소로 절단시킨 선상의 pDZ 벡터에 클로닝하여, pDZ-△impE2를 제작하였다.
실시예 2-3: impE1, impE2 통합 결손 벡터 제작
상기 IMP에 의한 생육 저하를 해제시키는데 관여하는 단백질을 코딩하는 유전자 impE1impE2는 중첩되어 있으므로 두 유전자는 동시에 조절되어야 할 필요성이 있다. 따라서 impE1impE2가 모두 결손된 벡터를 제작하고자 하였다.
impE1impE2 PCR은 서열번호 6 와 14의 프라이머 및 서열번호 15와 13의 프라이머를 이용하였다. 이때 이용한 프라이머는 미국 국립보건원 진뱅크(NIH GenBank)에 등록되어 있는 코리네박테리움 스테이셔니스 (ATCC6872) 유전자(NCBI Genbank: NZ_CP014279) 및 주변 염기서열에 대한 정보를 바탕으로 제작하였다. 서열번호 6과와 14의 프라이머를 이용해 증폭된 impE1 유전자 단편과 서열번호 15와 13의 프라이머를 이용해 증폭된 impE2 유전자 두 단편을 주형으로 중첩 중합효소 연쇄 반응을 실시하여 2.0kbp의 폴리뉴클레오티드 주형을 얻을 수 있었다. 얻어진 유전자의 단편을 각각 XbaI, speI 으로 절단하였다. T4 리가아제를 이용하여 상기 유전자 단편으로 XbaI 제한효소로 절단시킨 선상의 pDZ 벡터에 클로닝하여, pDZ-△impE1E2를 제작하였다.
실시예 2-4: impE1, impE2 결손 균주 제작
실시예 2-2에서 제작된 2종과 실시예 2-3에서 제작된 1종의 플라스미드를 각각 CJI0323에 일렉트로포레이션법으로 형질전환한 후 (Appl. Microbiol.Biotechnol. (1999) 52:541-545에 의한 형질 전환법 이용), 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신 (kanamycin) 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 수행하였다. 최종 형질전환된 균주의 유전자 결손 여부는 서열번호 6, 9 및 서열번호 10, 13 및 서열번호 6, 13의 프라이머 쌍을 이용하여 PCR을 수행함으로써 확인하였다.
선별된 균주는 CJI0323_△impE1, CJI0323_△impE2, CJI0323_△impE1E2로 명명하고, 상기 균주들의 IMP의 생산능을 평가하였다.
종배지 2ml를 지름18mm 시험관에 분주하고 가압 살균한 후, CJI0323, CJI0323_△impE1, CJI0323_△impE2, CJI0323_△impE1E2를 접종하고 30℃ 온도에서 24시간 진탕 배양하여 종배양액으로 사용하였다. 발효배지 29ml를 250ml 진탕용 삼각플라스크에 분주하고 121℃ 온도에서 15분간 가압 살균한 후, 종배양액 2ml을 접종하여 3일간 배양하였다. 배양 조건은 회전 수 170rpm, 온도30℃, pH 7.5로 조절하였다.
배양 종료 후 HPLC를 이용한 방법에 의해 IMP의 생산량을 측정하였으며, 배양 결과는 아래 표 4와 같다.
균주명 IMP (g/L)
CJI0323 9.52
CJI0323_△impE1 1.92
CJI0323_△impE2 1.88
CJI0323_△impE1E2 1.80
이때, 모균주인 코리네박테리움 스테이셔니스 CJI0323과 배지 내 IMP 축적량을 비교한 결과, 상기의 표 4에 나타난 바와 같이 CJI0323_△impE1, CJI0323_△impE2, CJI0323_△impE1E2 균주가 동일한 조건하에서 모균주 대비 IMP의 농도가 대략 8g/L 감소함을 확인하여 ImpE1, ImpE2가 IMP 배출에 관여하는 단백질임을 확인하였다.
실시예 3: 야생형 impE1, impE2 강화
코리네박테리움속 야생형의 균주는 IMP를 생산하지 못하거나, IMP를 생산하더라도 아주 극미량이 생산될 뿐이므로, IMP 생산능을 갖는 CJI0323 균주에서 ImpE 단백질을 결손한 후, 야생형의 ImpE 단백질을 도입함으로써 복원하고, 또한 ImpE 단백질의 활성을 강화함으로써 야생형 ImpE 단백질 강화에 의한 IMP 배출능 증가를 확인하였다. 상기 단백질의 활성 강화는 강화의 방법 중 하나인 '카피수 증가' 방법 및 프로모터 강화 방법을 이용하였다.
실시예 3-1: 야생형의 impE1, impE2 통합 도입 벡터 제작
ImpE가 야생형으로 도입된 균주를 제작하고자 먼저, 벡터를 제작하기 위한 유전자 단편을 ATCC6872 게노믹 DNA를 주형으로 PCR을 통하여 획득하였다. 야생형 impE1impE2의 PCR은 서열번호 6과 13의 프라이머를 이용하였다. 서열번호 6과 13의 프라이머를 이용해 증폭된 야생형 impE1-impE2 유전자 전체 단편은 XbaI, SpeI 의 제한 효소로 처리하였으며, pDZ 벡터에 XbaI 제한 효소 자리에 클로닝하여, pDZ-impE1E2(WT) 를 제작하였다.
실시예 3-2: 야생형의 impE1 강화 벡터 제작
ImpE1강화 벡터를 제작하고자 먼저, 벡터를 제작하기 위한 유전자 단편을 ATCC6872 게노믹 DNA를 주형으로 PCR을 통하여 획득하였다. impE1를 강화하기 위해서 프로모터 부위로 생각되는 impE1 upstream약 370bp를 포함한 서열번호 16과 17의 프라이머를 이용해 증폭하였다. 증폭된 impE1 유전자 단편을 XbaI의 제한 효소로 처리하였으며, pDZ 벡터에 XbaI 제한 효소 자리에 클로닝하여, pDZ-impE1(WT)2-1를 제작하였다. 이후 2copy 벡터 제작을 위해 impE1은 서열번호 18과 19의 프라이머 한쌍으로 PCR을 수행하였다. 확보된 각각의 DNA 단편은 DNA 제한효소인 NotI으로 절단하고, 동일한 DNA 제한효소로 절단한 pDZ-impE1(WT)2-1에 클로닝 하였다. 제조된 벡터는 pDZ-impE1(WT) 2X으로 명명하였다.
실시예 3-3: 야생형 impE1, impE2 통합 강화 벡터 제작
impE1 impE2가 통합 강화된 균주를 제작하고자, 야생형 impE1 impE2의 통합 유전자를 서열번호 16과 20의 프라이머를 이용해 PCR을 통하여 증폭하였다. 증폭된 유전자 단편을 XbaI의 제한 효소로 처리하였으며, pDZ 벡터에 XbaI 제한 효소 자리에 클로닝하여, pDZ-impE1E2(WT)2-1를 제작하였다. 이후 2copy 벡터 제작을 위해 impE1E2은 서열번호 18과 21의 프라이머 한쌍으로 PCR을 수행하였다. 확보된 각각의 DNA 단편은 DNA 제한효소인 NotI으로 절단하고, 동일한 DNA 제한효소로 절단한 pDZ-impE1E2(WT)2-1에 클로닝하였다. 제조된 벡터는 pDZ-impE1E2(WT) 2X로 명명하였다.
서열번호 프라이머 서열(5'-3')
16 impE1 2-1 GCTCTAGAGAACGGAGTCATCTCCTTTGC
17 impE1 2-2 GGGTCTAGAGAAGCGGCCGCCTACCATTCCAGTCCTTTCGT
18 impE1 2-3 AAGGAAAAAAGCGGCCGCGAACGGAGTCATCTCCTTTGC
19 impE1 2-4 AAGGAAAAAAGCGGCCGCCTACCATTCCAGTCCTTTCGT
20 impE1E2 2-2 GGGTCTAGAGAAGCGGCCGCCCAAACGCTCTGCAAGAAACTG
21 impE1E2 2-4 ATAAGAATGCGGCCGC CCAAACGCTCTGCAAGAAACTG
실시예 3-4: 야생형 impE1, impE2 도입/강화 균주 평가
실시예 3-1에서 제작된 pDZ-impE1E2(WT)를 실시예 2에서 제작된 CJI0323_△impE1E2 균주에 일렉트로포레이션법으로 형질 전환 한 후 (Appl. Microbiol.Biotechnol. (1999) 52:541-545에 의한 형질 전환법 이용), 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신 (kanamycin) 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 수행하였다. 최종 형질전환된 균주의 유전자 도입 여부는 서열번호 6, 13의 프라이머 쌍을 이용하여 PCR을 수행함으로써 확인하였다. 이후 제작된 균주 CJI0323_△impE1E2_impE1E2(WT)을 평가하여 CJI0323 균주에 impE1 및 impE2의 야생형이 도입된 경우 IMP 생산능을 확인하였다.
또한, CJI0323_△impE1E2_impE1E2(WT) 균주에 일렉트로 일렉트로포레이션법으로 pDZ-impE1(WT) 2X, pDZ-impE1E2(WT) 2X 벡터를 형질전환하여 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 수행하였다. 최종 형질전환된 균주의 유전자 강화 여부는 서열번호 16, 19 및 서열번호 16, 21의 프라이머 쌍을 이용하여 PCR을 수행함으로써 확인하였다. CJI0323_△impE1E2_impE1E2(WT), CJI0323_△impE1E2_impE1E2(WT)_impE1(WT) 2X 및 CJI0323_△impE1E2_impE1E2(WT)_impE1E2(WT) 2X를 실시예 2-4와 동일한 방법으로 배양하여, 균주를 획득하고 상기 균주의 IMP의 생산능을 평가하였다. 배양 종료 후 HPLC를 이용한 방법에 의해 IMP의 생산량을 측정하였으며, 배양 결과는 아래 표 6와 같다.
균주명 IMP (g/L)
CJI0323_△impE1E2 1.80
CJI0323_△impE1E2_impE1E2(WT) 2.32
CJI0323_△impE1E2_impE1E2(WT)_impE1(WT) 2X, 2.52
CJI0323_△impE1E2_impE1E2(WT)_impE1E2(WT) 2X 2.97
이때, 배지 내 IMP 축적량을 모균주인 코리네박테리움 스테이셔니스 CJI0323_△impE1E2_impE1E2(WT)과 비교한 결과, 상기의 표 6에 나타난 바와 같이 동일한 조건하에서 ImpE1 또는 ImpE1과 ImpE2 활성이 동시에 강화된 균주는 모균주 대비 IMP의 농도가 최대 28% 증가함을 확인하였다. IMP를 생산하지 않거나 생산하더라도 극미량만을 생산하는 코리네박테리움속 미생물에 있어서, ImpE 단백질의 활성의 증가로 인한 IMP 생산량 증가는 매우 의미 있는 것으로 해석할 수 있다.
상기 제작된 CJI0323 및 CJI0323_△impE1E2_impE1E2(WT)_ impE1E2(WT) 2X(CJI2236)는 각각 코리네박테리움 스테이셔니스 CN01-0323 및 코리네박테리움 스테이셔니스 CN01-2236으로 명명하여 부다페스트 조약 하의 국제기탁기관인 한국미생물보존센터(Korean CultureCenter of Microorganisms, KCCM)에 각각 2017년 11월 7일자로 기탁하여 기탁번호 KCCM12151P를, 2017년 10월 25일자로 기탁하여 기탁번호 KCCM12137P를 부여 받았다.
실시예 3-5: 야생형 impE1 또는 impE2 의 프로모터 강화 벡터 제작
각 유전자의 프로모터를 강화된 프로모터로 교체하는 벡터를 제작하기 위한 유전자 단편은 ATCC6872 게노믹 DNA를 주형으로 PCR을 통하여 획득하였다.
상기 강화된 프로모터는 코리네박테리움 스테이셔니스에서 강하게 발현된다고 보고되어있는 Pcj7(대한민국 공개특허 제10-0620092호) 프로모터를 사용하였다.
impE1에 대한 PCR은 서열번호 22 와 13의 프라이머, 24 와 25의 프라이머를 이용하여 증폭한 각각의 유전자 단편을 XbaI, NdeI 의 제한 효소로 처리하였으며, pDZ 벡터에 XbaI 제한 효소 자리에 클로닝하였다. Pcj7 유전자 단편을 증폭하기 위해 ATCC6872 게노믹 DNA를 주형으로 하여 서열번호 30과 31의 프라이머로 PCR을 진행하여 얻은 단편을 NdeI으로 처리하고 상기 제작한 벡터를 NdeI으로 처리하여 pDZ-Pcj7_impE1(WT) 벡터를 제작하였다.
impE2에 대한 PCR은 서열번호 26과 27의 프라이머, 28과 29의 프라이머를 이용하여 증폭한 각각의 유전자 단편을 XbaI, NdeI의 제한 효소로 처리하였으며, pDZ 벡터에 XbaI 제한효소 자리에 클로닝하였다. 상기 얻어진 Pcj7 유전자 단편과 만들어진 벡터를 NdeI으로 처리하여 pDZ-Pcj7_impE2(WT) 벡터를 제작하였다.
서열번호 프라이머 서열(5'-3')
22 impE1 Pcj7-1 GCTCTAGAGGTGAGCGCGAAGGGGACGCG
23 impE1 Pcj7-2 GGAATTCCATATGTGTTACACCCCGTGCAAGTTT
24 impE1 Pcj7-3 GGAATTCCATATGCATGCTGTGCAAGAAGTT
25 impE1 Pcj7-4 GCTCTAGATTCAGCATTGGCCACTGGGAA
26 impE2 Pcj7-1 GCTCTAGATTGCATGCTGTGCAAGAAGTT
27 impE2 Pcj7-2 GGAATTCCATATGCTACCATTCCAGTCCTTTCGT
28 impE2 Pcj7-3 GGAATTCCATATGGTAGCTAAAAACTCCACC
29 impE2 Pcj7-4 GCTCTAGAAATAGTTGGGGAAGTCCACTC
30 Pcj7 F GGAATTCCATATGTCCCAGCGCTACTAATAGG
31 Pcj7 R GGAATTCCATATGGAGTGTTTCCTTTCGTTGGG
실시예 3-6: 야생형 impE1, impE2 프로모터 교체 균주 평가
실시예 4-1에서 제작된 2종의 플라스미드를 각각 실시예 3-3에서 제작된 CJI0323_△impE1E2_impE1E2(WT) 균주에 일렉트로포레이션법으로 형질 전환 한 후 (Appl. Microbiol.Biotechnol. (1999) 52:541-545에 의한 형질 전환법 이용), 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신 (kanamycin) 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 수행하였다. 최종 형질전환된 균주의 유전자 강화 여부는 서열번호 22, 25 및 서열번호 26, 27의 프라이머 쌍을 이용하여 PCR을 수행함으로써 확인하였다. 상기 제작된 2종의 균주는 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT), CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE2(WT)로 명명하였다. 또한, 제작된 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT) 균주를 기반으로 하여 pDZ-Pcj7_impE2(WT) 를 형질전환 한 후, 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 수행하였다. 최종 형질전환된 균주의 유전자 강화 여부는 서열번호 26, 29의 프라이머 쌍을 이용하여 PCR을 수행함으로써 확인하였다. 상기 제작된 균주는 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT)_Pcj7/impE2(WT)로 명명하였다. 이후, 상기 제작된 균주 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT), CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE2(WT), 및 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT)_Pcj7/impE2(WT)를 실시예 2-4와 동일한 방법으로 각각 배양하여, IMP 생산능을 평가하였다.
배양 종료 후 HPLC를 이용한 방법에 의해 IMP의 생산량을 측정하였으며, 배양 결과는 아래 표 8과 같다.
균주명 IMP (g/L)
CJI0323_△impE1E2_impE1E2(WT) 2.32
CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT) 2.47
CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE2(WT) 2.81
CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT)_Pcj7/impE2(WT) 2.97
이때, 배지 내 IMP 축적량을 모균주인 코리네박테리움 스테이셔니스 CJI0323_△impE1E2_impE1E2(WT) 와 비교한 결과, 상기의 표 8에 나타난 바와 같이 동일한 조건하에서 ImpE1 및/또는 ImpE2 활성이 강화된 균주는 모균주 대비 IMP의 농도가 최대 28% 증가함을 확인하였다.
상기 제작된 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE1(WT) 및 CJI0323_△impE1E2_impE1E2(WT)_Pcj7/impE2(WT) 균주는 부다페스트 조약 하의 국제기탁기관인 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2018년 11월 2일자로 기탁하여 각각 기탁번호 KCCM12357P 및 KCCM12358P를 부여 받았다.
실시예 4: IMP 생산주 기반 impE1, impE2 강화
실시예 4-1: IMP 생산주 기반 impE1, impE2 강화 균주 제작
IMP 생산균주에서 impE1, impE2의 강화 효과를 확인하기 위해 ATCC6872에서 IMP의 분해경로에 해당하는 아데닐로석시네이트 신타아제(adenylosuccinate synthetase) 및 IMP 디하이드로게나아제(IMP dehydrogenase)의 활성이 약화된 균주를 제작하였다. 상기 두 효소를 코딩하는 유전자 purA 및 guaB의 각 염기서열에서 1번째 염기를 a에서 t로 변경하여 개시코돈을 변경하였다. ATCC6872에서 상기 두 유전자의 발현이 약화된 균주는 CJI9088으로 명명하였다. 제조된 CJI9088균주에 상기 실시예 3-3에서 제작된 pDZ-impE1(WT) 2X 및 pDZ-impE1E2(WT)2X 벡터를 일렉트로포레이션 방법으로 형질전환하여 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신 25mg/l를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차를 수행하였다. 최종 형질전환된 균주의 유전자 도입 여부는 서열번호 6, 13의 프라이머 쌍을 이용하여 PCR을 수행함으로써 확인하였다.
제작된 CJI9088 및 CJI9088_impE1(WT)2X, CJI9088_impE1E2(WT)2X 균주의 IMP 생산능을 평가하였다. 배양 종료 후 HPLC를 이용한 방법에 의해 IMP의 생산량을 측정하였으며, 배양 결과는 아래 표 9와 같다.
균주명 IMP (g/L)
CJI9088 0.52
CJI9088_impE1(WT) 2X 0.68
CJI9088_impE1E2(WT) 2X 0.87
배지 내 축적된 IMP를 확인한 결과, 모균주인 CJI9088대비 IMP 생산능이최대 67% 증가하는 것을 확인하였다. 이로부터 본 출원의 5'-이노신산을 배출하는 단백질(ImpE)의 활성을 강화함으로써, IMP 생산량이 증가시킬 수 있음을 확인하였다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2018015935-appb-I000001
Figure PCTKR2018015935-appb-I000002
Figure PCTKR2018015935-appb-I000003
Figure PCTKR2018015935-appb-I000004

Claims (11)

  1. 서열번호 1, 또는 서열번호 2의 아미노산 서열로 이루어진 단백질의 활성이 강화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물.
  2. 제1항에 있어서, 상기 5'-이노신산을 생산하는 코리네박테리움 속 미생물은 코리네박테리움 스테이셔니스(Corynebacterium stationis)인, 5'-이노신산을 생산하는 코리네박테리움 속 미생물.
  3. 제1항에 있어서, 상기 강화는 1) 상기 아미노산 서열을 코딩하는 폴리뉴클레오티드의 카피수 증가, 2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형, 또는 4) 이의 조합인, 5'-이노신산을 생산하는 코리네박테리움 속 미생물.
  4. 제1항에 있어서, 상기 미생물은 아데닐로석시네이트 신타아제(adenylosuccinate synthetase) 또는 IMP 디하이드로게나아제(IMP dehydrogenase)의 활성이 추가로 약화된, 5'-이노신산을 생산하는 코리네박테리움 속 미생물.
  5. 제1항의 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는 5'-이노신산 제조방법.
  6. 제5항에 있어서, 상기 방법은 상기 미생물 또는 배지에서 5'-이노신산을 회수하는 단계를 추가로 포함하는 5'-이노신산 제조방법.
  7. 제5항에 있어서, 상기 5'-이노신산을 생산하는 코리네박테리움 속 미생물은 코리네박테리움 스테이셔니스(Corynebacterium stationis)인, 5'-이노신산 제조방법.
  8. 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질을 포함하는 5'-이노신산 생산용 조성물.
  9. 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질의, 코리네박테리움 속 미생물의 5'-이노신산 생산 증가를 위한 용도.
  10. 서열번호 1, 또는 서열번호 2의 아미노산 서열로 이루어진 단백질을 코리네박테리움 속 미생물에서 강화하는 단계를 포함하는, 5'-이노신산의 배출 증가 방법.
  11. 서열번호 1 또는 서열번호 2의 아미노산 서열로 이루어진 단백질의, 코리네박테리움 속 미생물의 5'-이노신산 배출 증가를 위한 용도.
PCT/KR2018/015935 2017-12-15 2018-12-14 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법 WO2019117671A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201880003824.0A CN110249054B (zh) 2017-12-15 2018-12-14 产生imp的微生物和使用其产生imp的方法
RU2019113238A RU2723038C1 (ru) 2017-12-15 2018-12-14 Продуцирующий IMP микроорганизм и способ получения IMP с его использованием
BR112019013003-9A BR112019013003B1 (pt) 2017-12-15 2018-12-14 Micro-organismo modificado corynebacterium stationis e método para preparar monofosfato de 5-inosina
EP18889922.3A EP3608410A4 (en) 2017-12-15 2018-12-14 5'-INOSINE MONOPHOSPHATE PRODUCING MICROORGANISM AND 5'-INOSINE MONOPHOSPHATE PRODUCTION METHOD THEREFOR
MX2019008018A MX2019008018A (es) 2017-12-15 2018-12-14 Microorganismo productor de imp y procedimiento de produccion de imp mediante el uso del mismo.
AU2018378011A AU2018378011B2 (en) 2017-12-15 2018-12-14 IMP-producing microorganism and method of producing IMP using the same
JP2019535338A JP6652687B2 (ja) 2017-12-15 2018-12-14 5’−イノシン酸を生産する微生物及びこれを用いた5’−イノシン酸の生産方法
US16/346,418 US11155849B2 (en) 2017-12-15 2018-12-14 IMP-producing microorganism and method of producing IMP using the same
ZA2019/03518A ZA201903518B (en) 2017-12-15 2019-05-31 Imp-producing microorganism and method of producing imp using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0173504 2017-12-15
KR1020170173504A KR101904675B1 (ko) 2017-12-15 2017-12-15 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법

Publications (1)

Publication Number Publication Date
WO2019117671A1 true WO2019117671A1 (ko) 2019-06-20

Family

ID=63863134

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2018/002207 WO2019117398A1 (ko) 2017-12-15 2018-02-22 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
PCT/KR2018/015935 WO2019117671A1 (ko) 2017-12-15 2018-12-14 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002207 WO2019117398A1 (ko) 2017-12-15 2018-02-22 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법

Country Status (11)

Country Link
US (1) US11155849B2 (ko)
EP (1) EP3608410A4 (ko)
JP (1) JP6652687B2 (ko)
KR (1) KR101904675B1 (ko)
CN (2) CN109929787A (ko)
AU (1) AU2018378011B2 (ko)
BR (1) BR112019013003B1 (ko)
MX (1) MX2019008018A (ko)
RU (1) RU2723038C1 (ko)
WO (2) WO2019117398A1 (ko)
ZA (1) ZA201903518B (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916611B1 (ko) * 2017-12-15 2018-11-07 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
US11180754B2 (en) 2017-12-15 2021-11-23 Cj Cheiljedang Corporation Polypeptide and method of producing IMP using the same
KR101904675B1 (ko) 2017-12-15 2018-10-04 씨제이제일제당 (주) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
KR101916622B1 (ko) * 2018-01-04 2018-11-07 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
KR102013873B1 (ko) 2018-01-25 2019-08-23 씨제이제일제당 주식회사 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
KR102006976B1 (ko) 2019-02-26 2019-08-06 씨제이제일제당 주식회사 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법
KR102006977B1 (ko) 2019-03-28 2019-08-05 씨제이제일제당 주식회사 변이형 포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 이를 이용한 퓨린 뉴클레오티드 제조방법
KR102185850B1 (ko) * 2020-02-21 2020-12-02 씨제이제일제당 주식회사 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
KR102254631B1 (ko) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 신규한 펩타이드 메티오닌 설폭사이드 환원효소 변이체 및 이를 이용한 imp 생산 방법
CN115433289B (zh) * 2022-08-22 2024-02-27 广东省农业科学院蚕业与农产品加工研究所 一种益生元、提取方法及在富集肠道益生菌中的应用
KR102614733B1 (ko) * 2023-04-06 2023-12-19 대상 주식회사 포스포에놀피루베이트 카르복실라아제 신규 변이체 및 이를 이용한 5’-이노신산 생산 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR20100109732A (ko) * 2009-04-01 2010-10-11 씨제이제일제당 (주) 5'-이노신산 생산성이 향상된 코리네박테리움 속 미생물 및 이를 이용한 핵산의 생산방법
US9506094B2 (en) * 2013-05-13 2016-11-29 Ajinomoto Co., Inc. Method for producing L-amino acid using microorganism having increased phosphate transporter activity
KR101744958B1 (ko) * 2014-12-24 2017-06-12 대상 주식회사 5’-이노신산의 고생성능 코리네박테리움 암모니아게네스 변이 균주 및 이를 이용한 5’-이노신산의 제조 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8818560D0 (en) 1988-08-04 1988-09-07 Ici Plc Novel compounds
US6509354B1 (en) 1998-04-27 2003-01-21 Kumiai Chemical Industry Co., Ltd. 3-arylphenyl sulfide derivative and insecticide and miticide
KR100446113B1 (ko) 2001-11-26 2004-08-30 씨제이 주식회사 5-이노신산을 생산하는 미생물 및 그를 이용한5-이노신산의 생산방법
KR20070060207A (ko) 2005-12-08 2007-06-13 씨제이 주식회사 증가된 리포아미드 디히드로게나제 유전자 발현량을 갖는5'-이노신산 생산성이 우수한 코리네박테리움 속 미생물 및그를 이용하여 5'-이노신산을 생산하는 방법
KR20070060208A (ko) 2005-12-08 2007-06-13 씨제이 주식회사 증가된 푸마레이즈 유전자 발현량을 갖는 5'-이노신산생산성이 우수한 코리네박테리움 속 미생물 및 그를이용하여 5'-이노신산을 생산하는 방법
KR100882418B1 (ko) * 2007-01-15 2009-02-05 씨제이제일제당 (주) 이노신을 생산하는 미생물 및 그를 이용한 이노신 제조방법
KR100954052B1 (ko) * 2007-12-26 2010-04-20 씨제이제일제당 (주) Abc-트랜스포터를 코딩하는 유전자가 불활성화된코리네박테리움 속 미생물 및 이를 이용한 5'-이노신산의제조방법
KR100959662B1 (ko) * 2008-01-04 2010-05-26 씨제이제일제당 (주) 이노신 생산능을 갖는 코리네박테리움속 미생물 및 이를이용한 이노신의 생산 방법
KR100964078B1 (ko) * 2008-03-05 2010-06-16 씨제이제일제당 (주) 5'-이노신산 생산능이 향상된 코리네박테리움암모니아게네스 및 그를 이용한 5'-이노신산 생산 방법
UY32471A (es) 2009-03-04 2010-08-31 Basf Se Compuestos de 3-arilquinazolin-4-ona para combatir plagas de invertebrados
CN104379567A (zh) 2012-06-18 2015-02-25 住友化学株式会社 稠合杂环化合物
TW201542532A (zh) 2013-07-08 2015-11-16 Bayer Cropscience Ag 作為殺蟲劑的六員c-n-鍵結之芳基硫化物及芳基亞碸衍生物
EP3083570B1 (de) 2013-12-16 2018-10-24 Bayer CropScience Aktiengesellschaft Sechsgliedrige c-n-verknüpfte arylsulfid- und arylsulfoxid- derivate als schädlingsbekämpfungsmittel
CN104845923B (zh) * 2014-02-14 2018-03-23 中国科学院微生物研究所 生产l‑组氨酸的方法及其专用重组菌
EP3202761B1 (en) 2014-10-03 2022-03-16 Sumitomo Chemical Company, Limited Pyridazine compound
JP6540708B2 (ja) 2014-10-03 2019-07-10 住友化学株式会社 ピリミジノン化合物
KR101919655B1 (ko) * 2016-06-23 2019-02-11 주식회사 이노웨이브 현금자동입출금기 관리 모듈
KR101904675B1 (ko) * 2017-12-15 2018-10-04 씨제이제일제당 (주) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR20100109732A (ko) * 2009-04-01 2010-10-11 씨제이제일제당 (주) 5'-이노신산 생산성이 향상된 코리네박테리움 속 미생물 및 이를 이용한 핵산의 생산방법
US9506094B2 (en) * 2013-05-13 2016-11-29 Ajinomoto Co., Inc. Method for producing L-amino acid using microorganism having increased phosphate transporter activity
KR101744958B1 (ko) * 2014-12-24 2017-06-12 대상 주식회사 5’-이노신산의 고생성능 코리네박테리움 암모니아게네스 변이 균주 및 이를 이용한 5’-이노신산의 제조 방법

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Guide to Huge Computers", 1994, ACADEMIC PRESS
"National Biomedical Research Foundation", 1979, article "Atlas of Protein Sequence and Structure", pages: 353 - 358
APPL. MICROBIOL. BIOTECHNOL., vol. 52, 1999, pages 541 - 545
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PARK, SEOK HYUN ET AL.: "Metabolic Engineering of Corynebacterium Glutamicum for L-arginine Production", NATURE COMMUNICATIONS, vol. 5, 2014, XP055197630 *
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
PEIFER, SUSANNE ET AL.: "Metabolic Engineering of the Purine Biosynthetic Pathway in Corynebacterium Glutamicum Results in Increased Intracellular Pool Sizes of IMP and Hypoxanthine", MICROBIAL CELL FACTORIES, vol. 11, no. 138, 2012, pages 1 - 14, XP021136133, DOI: 10.1186/1475-2859-11-138 *
RICE ET AL., THE EUROPEAN MOLECULAR BIOLOGY OPEN SOFTWARE SUITE, 2000
See also references of EP3608410A4
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
TRENDS GENET., vol. 16, pages 276 - 277

Also Published As

Publication number Publication date
CN109929787A (zh) 2019-06-25
CN110249054A (zh) 2019-09-17
JP2020505005A (ja) 2020-02-20
MX2019008018A (es) 2019-08-29
US20200377917A1 (en) 2020-12-03
KR101904675B1 (ko) 2018-10-04
EP3608410A4 (en) 2020-04-22
BR112019013003B1 (pt) 2023-05-09
US11155849B2 (en) 2021-10-26
JP6652687B2 (ja) 2020-02-26
AU2018378011A1 (en) 2019-07-04
CN110249054B (zh) 2020-10-13
BR112019013003A2 (pt) 2020-07-21
RU2723038C1 (ru) 2020-06-08
WO2019117398A1 (ko) 2019-06-20
AU2018378011B2 (en) 2019-09-26
ZA201903518B (en) 2020-02-26
EP3608410A1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2019117671A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2020175735A1 (ko) 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2019117673A2 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2019147078A1 (ko) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2019135639A1 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2020218736A1 (ko) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2022163934A1 (ko) 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2020196993A1 (ko) 변이형 포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2022231368A1 (ko) 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022154181A1 (ko) 신규한 1,4-알파-글루칸-분지 효소 변이체 및 이를 이용한 imp 생산 방법
WO2022163935A1 (ko) 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2019235680A1 (ko) 5'-크산틸산을 생산하는 미생물 및 이를 이용한 5'-크산틸산의 제조방법
WO2022154178A1 (ko) 신규한 혐기성 코프로포르피리노겐 iii 옥시다제 변이체 및 이를 이용한 imp 생산 방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2022231370A1 (ko) 신규한 2중기능성 포스포리보실아미노이미다졸카르복사미드 포밀트랜스퍼라아제/imp 사이클로하이드롤라아제 변이체 및 이를 이용한 imp 생산 방법
WO2021125867A1 (ko) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
WO2018230978A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2022163937A1 (ko) 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 122022025573

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019535338

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013003

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018378011

Country of ref document: AU

Date of ref document: 20181214

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018889922

Country of ref document: EP

Effective date: 20191108

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019013003

Country of ref document: BR

Free format text: COM BASE NA RESOLUCAO 187 DE 27/04/2017, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO 870190057675 DE 21/06/2019 NAO CORRESPONDE AO PEDIDO EM QUESTAO. O TITULO APRESENTADO NAO CONFERE COM O TITULO DO PEDIDO NA FASE NACIONAL, NEM NA FASE INTERNACIONAL.

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019013003

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190621