WO2014208970A1 - 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도 - Google Patents

트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도 Download PDF

Info

Publication number
WO2014208970A1
WO2014208970A1 PCT/KR2014/005555 KR2014005555W WO2014208970A1 WO 2014208970 A1 WO2014208970 A1 WO 2014208970A1 KR 2014005555 W KR2014005555 W KR 2014005555W WO 2014208970 A1 WO2014208970 A1 WO 2014208970A1
Authority
WO
WIPO (PCT)
Prior art keywords
corynebacterium
gene
transketolase
tkt
promoter
Prior art date
Application number
PCT/KR2014/005555
Other languages
English (en)
French (fr)
Inventor
최종수
권영덕
김영호
전도연
이지영
이정이
Original Assignee
백광산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백광산업 주식회사 filed Critical 백광산업 주식회사
Publication of WO2014208970A1 publication Critical patent/WO2014208970A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)

Definitions

  • the present invention relates to a recombinant microorganism that can be used for the production of lysine and a carbon metabolism mechanism associated therewith.
  • a transketolase gene cluster involved in pentose metabolism in a microorganism of the genus Corynebacterium .
  • Coryneform microorganisms are traditionally the most widely used industrial microorganisms for the production of amino acids and nucleic acid-related substances, mainly L-lysine, L-threonine, L-arginine, L-threonine, And gram-positive bacteria that are used to produce chemicals having various uses in fields such as feed, pharmaceuticals, and foods including amino acids such as glutamic acid and various nucleic acids.
  • L-lysine is one of L-amino acids and is commercially used as an animal feed supplement due to its ability to increase the absorption of other amino acids to improve feed quality. It is used as a component and is also used in the pharmaceutical industry. Therefore, industrial production of lysine has become an economically important industrial process.
  • a method for improving the production efficiency of lysine a method of amplifying a gene on the lysine biosynthetic pathway or modifying a promoter of the gene to increase enzymatic activity on the biosynthetic pathway has been used.
  • Conventional corynebacterium strains with enhanced lysine biosynthesis related genes and L-lysine production methods using the same have been known.
  • US Pat. No. 6,746,855 discloses a culture of corynebacteria, in which a lysE gene (lysine excretion carrier gene) is enhanced and additionally a gene selected from the group consisting of dapA gene, lysC gene, pyc gene and dapB gene is introduced.
  • U.S. Pat.No. 6,221,636 also discloses a DNA sequence encoding aspartokinase and a diaminopimelate decarboxylase that is substantially insensitive to feedback inhibition by L-lysine and L-threonine.
  • Corynebacteria transformed with recombinant DNA comprising a DNA sequence are disclosed.
  • a promoter sequence of GDH gene, CS gene, ICDH gene, PDH gene, and ACO producing gene is modified to be similar to the consensus sequence, thereby enhancing L-amino acid using coryneform microorganisms having increased enzymatic activity.
  • a method of producing is disclosed.
  • the present inventors determined the transcriptional regulatory (active promoter) site of transketolase (transketolase, tkt) for activating the pentose metabolic pathway of sugars from the strain of C. Glutamicum ( Corynebacterium glutamicum ) ATCC13032, using a promoter variant
  • the present invention was completed by confirming that the expression of the transketolase gene and other genes forming clusters thereof can be increased.
  • the present invention relates to an improved tkt promoter variant and a use thereof in which a transketolase (tkt) gene transcriptional control (activator) site is mutated to activate gene clusters involved in the pentose metabolic pathway.
  • tkt transketolase
  • Another object of the present invention is to provide a vector comprising the tkt promoter variant and thus a recombinant microorganism.
  • Another object of the present invention to provide a lysine production method using the recombinant microorganism.
  • the present invention provides a transketolase gene promoter variant comprising a nucleotide sequence represented by SEQ ID NO: 5 or SEQ ID NO: 6.
  • the transketolase gene promoter variant comprises a mutation in any one or more of -35 region and -10 region of the wild-type promoter sequence represented by SEQ ID NO: 7.
  • SEQ ID NO: 1 and 2 primer sets or SEQ ID NO: 3 and 4 primer sets for preparing such transketolase gene promoter variants are also included in the present invention.
  • the transketolase gene promoter variant of the present invention is preferably derived from a microorganism of the genus Corynebacterium, for example, Corynebacterium glutamicum or Corynebacterium efficiens (Corynebacterium efficiens) The case is more preferable.
  • the transketolase (tkt) genes include transaldolase (talalasease), glucose-6-phosphate dehydrogenase (zwf), and 6-phosphoglucolactonease. It is characterized by forming a cluster (tkt-tal-zwf-opcA-devB) together with genes encoding [6-phosphogluconolactonase (devB). Therefore, the transketolase gene promoter variant of the present invention has an effect of inducing better transketolase activity than the conventional one, and consequently promoting the expression of the genes forming the cluster and the activity of the enzymes encoded thereby.
  • the present invention also provides a vector comprising the transketolase gene promoter variant and a recombinant microorganism transformed thereby.
  • the recombinant microorganism is characterized in that it comprises a gene cluster (tkt-tal-zwf-opcA-devB) coding for enzymes involved in the pentose sugar phosphorylation pathway, the microorganism of the genus Corynebacterium, and among them, Corynebacte More preferred is the case of Corynebacterium glutamicum or Corynebacterium efficiens .
  • the present invention also provides a method for producing lysine comprising culturing the recombinant microorganism in a medium containing a carbon substrate.
  • the carbon substrate may be one or more carbon substrates selected from the group consisting of glucose, sucrose, cellulose and glycerol, and the culture process may use a conventional method known in the art.
  • the present invention may provide promoter variants that control recombinant microorganisms and their associated carbon metabolism mechanisms that can be used to produce lysine and all uses thereof.
  • Corynebacterium glutamicum-derived promoter variants with improved promoter activity according to the present invention exhibit higher promoter activity compared to wild type to increase the activity of transketolase and related enzymes to increase the biosynthetic efficiency of lysine As such, it will be very useful for producing lysine useful for industry.
  • FIG. 1 shows a schematic of partial genomic organization in C. glutamicum.
  • Figure 2 is a graph comparing the growth curve and promoter activity of each growth stage of C. glutamicum wild strain, Gntm1 and Gntm2.
  • Nucleic acid is a term known in the art.
  • Nucleic acid refers to DNA, RNA or derivatives or analog molecules (strands) composed of nucleobases.
  • nucleobases include naturally occurring or derived purine or pyrimidine bases found in DNA (eg, adenine "A”, guanine “G”, thymine “T” or cytosine “C”) or RNA (eg, A , G, uracil "U” or C).
  • polypeptide is intended to include not only a single polypeptide, but also a plurality of polypeptides and includes a chain or chains of one or more amino acids joined to each other by peptide bonds. The term also includes polypeptides having post-translational modifications.
  • a "protein” is also intended to include fragments, analogs and derivatives of a protein that retain essentially the same biological activity or function as the reference protein.
  • nucleic acid sequence encodes a polypeptide sequence, wherein the polypeptide sequence is at least 3 to 5 amino acids, more preferably a polypeptide encoded by the nucleic acid sequence.
  • polypeptide sequence consisting of at least 8-10 amino acids, even more preferably at least 15-20 amino acids.
  • polypeptide sequences that can be immunologically identified using the polypeptide encoded by the sequence.
  • an antigen “polypeptide”, “protein” or “amino acid” sequence may have at least 70% similarity, preferably at least about 80% similarity, more preferably at least about 90-95% similarity to the polypeptide or amino acid sequence of the antigen, Most preferably, about 99% similarity.
  • a “gene” is a nucleotide sequence of a nucleic acid molecule (chromosome, plasmid, etc.) with which genetic functions are involved.
  • a gene is a genetic unit of an organism, including, for example, a polynucleotide sequence (eg, a DNA sequence of a mammal) that occupies a particular physical location ("gene locus") within the organism's genome.
  • the gene may encode an expression product, such as a polypeptide or polynucleotide.
  • genes include coding sequences such as polypeptide coding sequences and noncoding sequences such as promoter sequences, polyadenylation sequences, transcriptional regulatory sequences (eg, enhancer sequences). Many eukaryotic genes have "exons" (coding sequences) intervening "introns” (non-coding sequences).
  • An “primer” is an oligonucleotide sequence that hybridizes to complementary RNA or DNA target polynucleotides and functions as a starting point for the stepwise synthesis of polynucleotides from mononucleotides, for example by the action of nucleotidyltransferases that occur in polymerase chain reactions. Means.
  • Transformation or transfection refers to the process by which extracellular DNA enters a host cell in the presence or absence of an accompanying substance.
  • a “transfected cell” refers to a cell in which extracellular DNA is introduced into the cell and has extracellular DNA. DNA can be introduced into cells so that nucleic acids can be inserted into chromosomes or replicated into extrachromosomal material.
  • vector refers to any nucleic acid comprising a competent nucleotide sequence that is inserted into a host cell, recombined with and inserted into the host cell genome, or spontaneously replicates as an episome.
  • vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors and the like.
  • a “host cell” may be a receptor of any recombinant vector (s) or isolated polynucleotides of the invention, or includes individual cells or cell cultures that are receptors.
  • the host cell may be a progeny of a single host cell, and the progeny do not have to be completely identical (in terms of form or total DNA complement) due to natural, accidental or artificial mutations and / or changes.
  • Host cells include cells that have been transfected, transformed or infected with a recombinant vector or polynucleotide of the invention in vivo or in vitro.
  • the host cell comprising the recombinant vector of the present invention is a recombinant host cell, recombinant cell or recombinant microorganism.
  • Methodabolic engineering involves the rational pathway design and assembly of biosynthetic genes, genes associated with operons, and control elements of these polynucleotides for the production of desired metabolites in microorganisms.
  • “Metabolized” refers to transcription and translation using genetic engineering and appropriate culture conditions, including the reduction, destruction or hitting of competing metabolic pathways that compete with intermediates that induce the desired pathway. It may further include optimization of metabolic flux by regulation and optimization of protein stability and protein functionality.
  • Biosynthetic genes may be foreign to the host or may be heterologous to the host microorganism by being modified by mutagenesis, recombination and / or association with heterologous expression control sequences in endogenous host cells. In one aspect, if the polynucleotide is heterologous to the host organism, the polynucleotide may be codon optimized.
  • (bio) synthetic pathway also referred to as the “metabolism pathway” refers to a set of anabolic or catabolic biochemical actions for transmuting one species to another.
  • Gene products act on the same substrate in parallel or in series to produce the same product, or when they act on or produce metabolic intermediates (i.e. metabolites) between the same substrate and the metabolite end product, the same "metabolism pathway” Belongs to.
  • Substrate refers to any substance or compound that is or is intended to be converted to another compound by the action of an enzyme.
  • the term encompasses combinations of compounds and derivatives thereof such as single compounds as well as other materials including solvents, mixtures and at least one substrate.
  • substrate refers to a compound that provides a carbon source suitable for use as a starting material, such as biomass derived sugars, as well as intermediates and final metabolites used in pathways associated with metabolic engineered microorganisms described herein. Encompasses It encompasses suitable carbon substrates commonly used by microorganisms.
  • “Increased” or “increased” means that a larger amount of a given product or molecule (eg, general purpose chemicals, biofuels, or intermediates thereof) is compared to a control microorganism such as an unmodified microorganism or a differently modified microorganism. Refers to the ability of one or more recombinant microorganisms to produce.
  • a control microorganism such as an unmodified microorganism or a differently modified microorganism.
  • a sample such as a polynucleotide extract or polypeptide extract, isolated or derived from a particular source, typically a microorganism such as a microorganism. It may also mean a situation in which the polynucleotide or polypeptide sequence is isolated from or derived from a particular organism or microorganism.
  • “About” means 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4 for reference quantities, levels, values, numbers, frequencies, percentages, dimensions, sizes, quantities, weights, or lengths. , Amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by about 3, 2 or 1%.
  • the present invention relates to a recombinant microorganism that can be used for amino acid production and a carbon metabolism mechanism associated therewith.
  • a transketolase gene cluster involved in pentose metabolism in microorganisms of the genus Corynebacterium . It relates to a method of regulating the expression of (tkt-tal-zwf-opcA-devB).
  • the present invention can be implemented by culturing a recombinant microorganism transformed by inserting a gene encoding a specific enzyme into a basic vector using standard cloning techniques and conventional methods known to those skilled in the art. Accordingly, the present invention encompasses all of the gene cloning methods, enzymes, recombinant microorganisms and microbial systems in this context.
  • the present invention is characterized by using Coryneform microorganisms, among them Corynebacterium Corynebacterium ).
  • Coryneform microorganisms are the most traditionally used industrial microorganisms for the production of amino acids and nucleic acid-related substances. Produces chemicals with various uses in the fields of feed, pharmaceuticals, and foods, including amino acids such as L-lysine, L-threonine, L-arginin and glutamic acid and various nucleic acids It is a gram-positive bacterium used to grow and requires biotin for growth. One of the advantages of this bacteria is its ability to bend at right angles during cell division, and its low degradation activity on the resulting metabolites.
  • Representative strains include the genus Corynebacterium, including Corynebacterium glutamicum, the genus Brivibacterium, including Brevibacterium flavum, the genus Athrobacter sp., And Microbacterium sp.
  • a microorganism belonging to the genus Corynebacterium more preferably Corynebacterium glutamicum (ex. ATCC13032), Corynebacterium ammonia genes (ex. ATCC 6872), Brevibac Tervium bacterium lactofermentum (e.g. ATCC13869), Brevibacterium flavum (e.g. ATCC14067), Corynebacterium thermoaminogenes (e.g. FERM-BP1539) , Corynebacterium efficiens (eg C.efficiens str. YS-314) and the like can be used, but is not necessarily limited thereto.
  • Corynebacterium glutamicum ex. ATCC13032
  • Corynebacterium ammonia genes ex. ATCC 6872
  • Brevibac Tervium bacterium lactofermentum e.g. ATCC13869
  • Brevibacterium flavum e.g. ATCC14067
  • the inventors of the present invention have been directed to the transketolase gene cluster (tkt-tal-zwf-opcA-devB), which is important for pentose metabolism as a strategy for inducing sugar influx into pentose metabolism in coryneform microorganisms. Mechanisms that regulate expression were used.
  • Transketolase (tkt; EC 2.2.1.1) is a key enzyme in the anaerobic pentose sugar phosphorylation pathway, and co-factors of Mg 2+ and thiamine pyrophosphate for enzymatic action. Require. Transketolase, along with transaldolase (EC 2.2.1.2), is an enzyme involved in the shuttle of glycolytic and pentose pathways and induces the overexpression of transketolase in C. glutamicum and L-tryptophan. The production rate of the same aromatic amino acids is increased. That is, the pentose sugar pathway plays an important role in amino acid fermentation.
  • tkt transketolase
  • Transketolase of C. glutamicum has one transketolase, unlike E. coli or S. cerevisiae, where at least two isoforms have been reported, and transketolase (tkt) ), Transaldolase tal, glucose-6-phosphate dehydrogenase (EC: 1.1.1.49), G6PDH or zwf; opcA protein is also involved), and 6-phosphogluconolactonase (6-phosphogluconolactonase (EC: 3.1.1.31), devB) genes are known to exist in gene clusters. In the present specification, such a gene cluster is described as "tkt-tal-zwf-opcA-devB". At this time, the opcA gene is a gene found downstream of the zwf gene encoding glucose-6-phosphate dehydrogenase, and forms an assembly with zwf.
  • the transketolase that can be used in the present invention can be used regardless of its origin as long as it is functionally equivalent, and more preferably, it may be derived from Corynebacterium glutamicum (C.glutamicum). Most preferably the C. glutamicum derived transketolase gene sequence is used. Representative wild-type C. glutamicum-derived transketolase gene sequence is shown by SEQ ID NO.
  • Suitable polynucleotides encoding such gene clusters and enzymes expressed thereby can be obtained from any biological source providing them, preferably coryneform microorganisms or artificially synthesized using known methods.
  • DNA sequences encoding such transketolases are mentioned to merely illustrate embodiments of the invention, and the invention refers to any sequence encoding the amino acid sequences of polypeptides and proteins of enzymes utilized in the methods of the invention. DNA compounds.
  • polypeptides can typically allow one or more amino acid substitutions, deletions, and insertions in an amino acid sequence without loss or significant loss of desired activity.
  • the present invention also encompasses modified or mutated polypeptides having amino acid sequences different from the reference polypeptide, provided they have enzymatic assimilation or catabolic activity of certain proteins described herein.
  • the present invention relates to a transcriptional regulatory region (active promoter region), a promoter variant thereof, and a use thereof of the tkt gene for increasing the activity of the gene cluster involved in the above-described pentose metabolic pathway.
  • a “promoter” means a non-translated nucleic acid sequence upstream of a coding region, i.e., a polymerase, that contains a binding site for a polymerase and has a transcription initiation activity to an mRNA of a promoter lower gene, thereby binding transcription of the gene. Refers to the DNA region to be initiated, it is located in the 5 'region of the mRNA transcription start site.
  • Corynebacterium glutamicum nucleic acid molecules having a promoter activity of the present invention are operably linked with genes encoding transketolase.
  • the gene encoding the transketolase is a tkt gene and has a function of promoting expression of the gene cluster (tkt-tal-zwf-opcA-devB) described above.
  • each enzyme transketolase, transaldolase, glucose-6-phosphate dehydrogenase (glucose-6-phosphate) according to expression of the gene cluster (tkt-tal-zwf-opcA-devB)
  • the activity of dehydrogenase (zwf-opcA) and 6-phosphogluconolactonase (6-phosphogluconolactonase, devB) is also promoted, thereby activating the pentose metabolic pathway of microorganisms of Corynebacterium, thus leading to amino acids on the biosynthetic pathway.
  • the production rate of lysine and the like can also be increased.
  • “Operably linked” refers to an arrangement of elements in which the mentioned components are configured to perform their general functions.
  • certain promoters operably linked to coding sequences may enable expression of coding sequences in the presence of regulatory proteins and appropriate enzymes.
  • certain regulatory elements need not be adjacent to coding sequences as long as they can function to direct the expression of the coding sequences.
  • the invention encompasses variations of specific transcriptional regulatory sites on the tkt gene promoter.
  • 5'-RACE Rapid Amplification of 5'cDNA Ends
  • 5'-RACE Rapid Amplification of 5'cDNA Ends
  • 5'-RACE is a method for cloning 5 'upstream unknown regions when a portion of mRNA is known.
  • ribosomal binding site of the tkt gene (RBS, consensus 5'-GAAAGGA-3 '); Mutation region and transcription initiation region (TTG) of the -35 region and -10 region adjacent region.
  • TTG transcription initiation region
  • a mutation substitution may be introduced into the -35 region and the -10 region adjacent to obtain a promoter variant of the present invention.
  • the variant comprises a sequence represented by SEQ ID NO: 5 or SEQ ID NO: 6, with the most preferred promoter variants comprising the sequence of SEQ ID NO: 6.
  • the nucleic acid sequence having a promoter activity of the present invention is a modification of the promoter of the tkt gene in Corynebacterium glutamicum, and is characterized by having a higher promoter activity than a wild type promoter.
  • Methods known in the art as methods for improving to have higher promoter activity can be used without limitation, and preferably delete, insert, non-conservative or conservative substitution of the promoter nucleic acid sequence of the Corynebacterium glutamicum tkt gene. Or combinations thereof can induce and improve variations in sequence.
  • Promoter nucleic acid molecules of the invention can be isolated or prepared using standard molecular biology techniques. For example, it can be separated by PCR using the appropriate primer sequence. It can also be prepared using standard synthesis techniques using automated DNA synthesizers.
  • the present inventors obtain a nucleotide sequence including a promoter region of the tkt gene (Gene ID: 3343601) (SEQ ID NO: 7), and synthesize two sets of primer sets (SEQ ID NOs: 1 to 4) based thereon.
  • the chromosomal DNA of Corynebacterium glutamicum ATCC13032 is used as a template, and PCR is performed using the primers, and the nucleic acid molecule according to the present invention comprises a promoter having a modified sequence in the main region (SEQ ID NO: 5 and 6)
  • the present invention includes the following specific primer sets involved in the synthesis of the tkt promoter variants.
  • Gntm1F Gctcccagacttaagccctagaacctgg (SEQ ID NO: 1)
  • Gntm1R Ggttcaaatgtggtggccaggttcta (SEQ ID NO: 2)
  • Gntm2F Gatccgattcgttccgttcgtgac (SEQ ID NO: 3)
  • Gntm2R Gatccggttcaaatttggcaaagg (SEQ ID NO: 4)
  • the present invention also encompasses functional equivalents of the tkt promoter variants and primer sets associated therewith.
  • the term "functional equivalent” refers to, for example, one or more substitutions, deletions or additions from a reference sequence, the actual effect of not producing various functional dissimilarities between the reference sequence and the subject sequence ( It refers to both the nucleotide and nucleic acid sequence of the changed mutant sequence, such as net effect).
  • substantially equivalent sequences comprise only about 35% (ie, the number of each residue substitutions, additions, and deletions in a substantially equivalent sequence is compared to the corresponding reference sequence and the remaining total number in the substantially equivalent sequence). Dividing into about 0.35 or less). Such sequences have 65% sequence identity with the sequences listed.
  • Substantial equivalents according to the invention for example mutations, amino acid sequences, preferably have at least 80% sequence identity, more preferably at least 90% sequence identity with the listed amino acid sequences.
  • Substantial equivalents of the nucleotide sequences of the present invention may have a lower percentage of sequence identity, for example when considering redundancy or degeneracy of the genetic code.
  • the nucleotide sequence should have at least about 65% identity, more preferably at least about 75% identity, and most preferably about 95% identity.
  • sequences having synthetic characteristics that are substantially equivalent to biological activity that are substantially equivalent are treated as substantially equivalent.
  • the present invention relates to metabolic engineered microorganisms (recombinant microorganisms) comprising a pentose biochemical pathway for the synthesis of lysine and the like from suitable substrates and recombinant vectors that can be used for transformation thereof.
  • recombinant vector herein is meant a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA of a tkt promoter variant of the invention in a suitable microorganism.
  • the regulatory sequence includes a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation.
  • the vector may be a plasmid, phage particles, or simply a potential genomic insert. Once transformed with the appropriate host microorganism, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Plasmids and vectors are sometimes used interchangeably in the present invention because plasmids are currently the most commonly used form of vectors.
  • Typical plasmid vectors include (a) an initiation of replication to efficiently replicate to include hundreds of plasmid vectors per host cell, (b) antibiotic resistance genes to allow selection of host cells transformed with plasmid vectors and ( c) has a structure comprising a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no suitable restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
  • the DNA sequence and the vector are cleaved with one or more restriction enzymes and the fragments ligated together to bind the DNA sequence to be finally expressed to the vector. Restriction enzyme digestion and ligation are well known to those skilled in the art.
  • the vector of the present invention can be introduced into a host cell such that the nucleic acid molecular sequence having promoter activity in the vector causes homologous recombination with the sequence of the promoter region of the endogeneous tkt gene on the host cell genome and can be inserted into the chromosome. have. Therefore, the vector of the present invention may further include a selection marker for confirming whether the chromosome is inserted, and the selection marker selects cells transformed with the vector, that is, confirms whether the target gene is inserted. For this purpose, markers may be used that confer a selectable phenotype such as drug resistance, nutritional requirements, resistance to cytotoxic agents or expression of surface proteins.
  • the present invention relates to a transformant transformed with said vector, i.e., a metabolic engineered microorganism (recombinant microorganism or recombinant strain).
  • Metabolic engineering microorganisms of the present invention include lysine production and the like pentose biochemical pathways, which microorganisms reduce, disrupt or knockout and / or heterologous poly (s) of genes found in wild-type organisms. Introduction of nucleotides.
  • Methods for transforming a vector of the present invention include any method for introducing nucleic acids into cells, and can be carried out by selecting appropriate standard techniques as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4) precipitation, calcium chloride (CaCl 2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and lithium acetate -DMSO method can be used.
  • electroporation calcium phosphate (CaPO 4) precipitation, calcium chloride (CaCl 2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and lithium acetate -DMSO method can be used.
  • the transformant transformed with the vector of the present invention replaces the promoter region of the tkt gene of Corynebacterium glutamicum with a mutated promoter sequence to enhance promoter activity through homologous recombination, thereby replacing the improved promoter. It may have a feature that the transketolase activity is increased than the wild type through.
  • the host cell it is preferable to use a host having high DNA introduction efficiency and a high expression efficiency of the introduced DNA.
  • Any microorganism including prokaryotic and eukaryotic may be used, and preferably, the activity of the promoter variant of the present invention is used. Suitable E. coli or coryneform microorganisms are preferred.
  • Corine-type microorganism is a concept that includes microorganisms of the genus Brevibacterium of the genus Corynebacterium, of the genus Arthrobacter sp. And of the genus Microbacterium sp.
  • microorganisms belonging to the genus Corynebacterium more preferably Corynebacterium glutamicum (eg ATCC13032), Corynebacterium ammonia genes (eg ATCC 6872), Bre Non-bacterium lactofermentum (e.g. ATCC13869), Brevibacterium flavum (e.g. ATCC14067), Corynebacterium thermoaminogenes (e.g. FERM-BP1539) ), Corynebacterium efficiens (e.g. C.efficiens str. YS-314) and the like, and most preferably Corynebacterium glutamicum or Corynebacterium epituses .
  • Corynebacterium glutamicum ATCC13032 was used.
  • the present invention relates to a lysine production method comprising culturing the recombinant microorganism in another aspect.
  • Cultivation of the transformant in the present invention can be carried out according to well-known methods, conditions such as culture temperature, incubation time and pH of the medium can be appropriately adjusted.
  • These known culture methods are described in Chmiel; Bioreatechnik 1. Einbowung in die Biovonstechnik (Gustav Fischer Verlag, Stuttgart, 1991), and Storhas; Bioreaktoren und periphere bamboo (Vieweg Verlag, Braunschweig / Wiesbaden, 1994).
  • the culture medium should include a suitable carbon substrate.
  • Suitable substrates may use a carbon source selected from the group consisting of monosaccharides, oligosaccharides, polysaccharides, and C1 substrates or mixtures thereof.
  • Monosaccharides such as glucose and fructose, oligosaccharides such as lactose or sucrose, polysaccharides such as starch or cellulose or mixtures thereof and unrefined mixtures from renewable feedstocks, It is not limited to this.
  • Preferred carbon substrates are glucose, sucrose, cellulose, glycerol and the like. Most preferably glucose can be used.
  • the fermentation medium may comprise suitable minerals, salts, cofactors, buffers and other components known to those skilled in the art, suitable for the promotion of the enzyme pathways necessary for the production of lysine and for the growth of the culture.
  • Suitable growth media in the present invention are generally commercially prepared media such as Luria Bertani (LB) liquid medium, Sabouraud Dextrose (SD) liquid medium or yeast medium (Yeast Medium, YM) liquid medium. Can be used.
  • LB Luria Bertani
  • SD Sabouraud Dextrose
  • YM yeast medium
  • Suitable pH ranges for fermentation are pH 5.0 to pH 9.0, wherein pH 6.0 to pH 8.0 are preferred for the initial conditions.
  • the pH of the culture medium can be adjusted by appropriate use of a basic compound (eg sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg phosphoric acid or sulfuric acid). Foaming can be controlled using foaming agents such as fatty acid polyglycol esters.
  • Fermentation can be carried out under aerobic or anaerobic conditions and can be maintained in aerobic conditions by introducing an oxygen or oxygen-containing gas mixture, such as air, into the culture medium.
  • an oxygen or oxygen-containing gas mixture such as air
  • L-amino acid Incubation is continued until the maximum amount of L-amino acid desired is produced. For this purpose it is usually achieved in 10 to 160 hours. L-lysine may be excreted in culture medium or contained in cells.
  • the culture method includes a batch culture, continuous culture and fed-batch culture, preferably a batch process or an injection batch or a repeated batch batch process (fed batch or Repeated fed batch process) may be cultured continuously, but is not limited thereto.
  • Lysine production method comprising the step of culturing the above-described transformant of the present invention may further comprise a method for recovering the lysine produced in the step of culturing.
  • the method for recovering L-lysine can separate L-lysine from cells or culture medium by methods well known in the art. Examples of L-lysine recovery methods include, but are not limited to, filtration, anion exchange chromatography, crystallization, and HPLC.
  • the tkt promoter variant according to the present invention is operably linked to the tkt gene to exhibit higher promoter activity than the wild type, thereby increasing transketolase and related enzymatic activity, thereby activating the pentose metabolic pathway to produce lysine Can increase.
  • C. glutamicum ATCC 13032 is a CM medium (pH 6.8) containing 10 g of glucose, 2.5 g of NaCl, 5.0 g of yeast extract, 2.0 g of urea, 10.0 g of polypeptone, and 5.0 g of beep extract in 1 L of distilled water. Incubated at 30 °C. E. coli was incubated at 37 ° C. on LB medium of 10.0 g of tryptone, 10.0 g of NaCl, and 5.0 g of yeast extract (in 1 L of distilled water). Restriction enzyme was analyzed by Invitrogene enzyme, antibiotics (Ampicillin, Kanamycin, Chloramphenicol) by Sigma, and DNA sequencing analysis by Macrogen Co., Ltd.
  • RNA isolation from C. glutamicum ATCC 13032 was used in this study by separating Trizol TM solution (Invitrogen) according to the reagent manufacturer's method.
  • each gene-specific primer (RI) to the isolated bacterial RNA first reacted 1st cDNA with reverse transcriptase for 1 hour at 37 °C, heat treatment at 75 °C for 5 minutes It was. The template RNA was then digested with RNase treatment. Using the primer set prepared as a template, the untranslated region of each gene was amplified by PCR, cloned, and finally confirmed the transcriptional start site of each gene by DNA sequence analysis.
  • NCBI complete genome sequence (NC 006958) of C. glutamicum ATCC 13032 was used in this experiment after securing the tkt promoter region of C. glutamicum ATCC 13032 through analysis using PRoBAB and PROMSCAN computer.
  • mutations were carried out using a site-directed mutagenesis kit (Agilent co. USA) for each promoter whose SOD promoter activity was found to be the strongest by CAT analysis and Kanamycin gradient plating method. Was introduced.
  • C. glutamicum competent cells were generated to transform each of the prepared pSK / tkt clones identified through sequence analysis to C. glutamicum. Inoculate 100 ml of BHIS medium with 10 ml of subcultured C. glutamicum and incubate at 30 ° C. overnight, and then inoculate 100 ml of CMBHIS-EPO medium with OD 600 of 0.3 at 120 rpm at 18 ° C. It was incubated for about 28 hours until OD 600 became 0.8.
  • the cells were recovered by centrifuging the culture solution at 4 ° C. at 6000 rpm for 10 minutes, suspended in 20 ml of 10% glycerol solution, and centrifuged three times. The recovered cells were again suspended in 10% glycerol solution and dispensed into 100 ⁇ l of E-tubes and stored until use in a -70 ° C deep freezer.
  • 1 ⁇ g of DNA was added to 100 ⁇ l of C. glutamicum competent cells and added to a cooled electroporation cuvette, followed by electroporation using a micropulser manufactured by Bio-Rad. Immediately after pulsing, 1 ml of pre-warmmed CM medium at 46 ° C. was added to recover the cells, reacted for 2 minutes in ice, and incubated at 180 rpm in an incubator at 30 ° C. In addition, 100 ⁇ l of BHIS agar plate to which kanamycin (50 ⁇ g / ml) was added was incubated in a 30 ° C. incubator.
  • Promoter variants of each tkt prepared above were cloned to operably link with a gene encoding tkt (transketolase).
  • Restriction enzyme treatment was performed with XbaI and EcoRI, and digested with restriction enzymes using the same XbaI and EcoRI in pCGI vectors (Kim et al., 2011., J. Microbiol.Methods), PCR purification kit (Qiagen, Hilden). , Germany), cloned using T4 DNA ligase, and transformed into E. coli DH5a.
  • Plasmid identification of the resulting colonies was extracted using a plasmid miniprep kit (Qiagen, Hilden, Germany) and treated with XbaI and EcoRI restriction enzymes used for cloning to identify fragments of genes and finally the genes. The base sequence of was confirmed.
  • C. glutamicum (KCTC12307BP) was used as a soluble cell to transform a clone whose promoter mutation was introduced into the pCGI vector (Kim et al., 2011., J. Microbiol.Methods) into C. glutamicum. cell).
  • CM-broth medium 10 ml CM-broth medium [10 g of glucose, 10 g of polypeptone, 5 g of yeast extract, 2.5 g of NaCl, 2 g of urea (based on 1 liter of distilled water), pH 7.0].
  • the pre-cultured cells were seeded in 100 ml of BHIS medium [BHI 37 g, 2M sorbitol 250 ml (based on 1 L of distilled water) so that the OD (600 nm) was 0.2-0.3, and the OD (600 nm) was 0.8-0.9 at 30 rpm at 180 rpm. Incubated for 6 hours until this.
  • the culture solution was placed in a prechilled tube and washed repeatedly with 10% glycerol 3-4 times at 5000 rpm at 4 ° C. to recover the cells.
  • the cells were suspended in 10% glycerol and divided into 100 ⁇ l. Used while storing at °C.
  • the constructs prepared using the water-soluble cells were transformed with BIO-RAD's pulser (2.5kv, 25 Hz, 200 Hz) using an electroporation 0.2 cm cuvette. After the addition of 1 ml of CM-broth medium, pre-warmming for 6 minutes at 46 ° C. and shaking culture at 200 rpm and 30 ° C. for 2 hours, followed by kanamycin (25 ⁇ g / ml) Plated on Brain Heart Infusion (BHIS) agar plates and allowed to stand at 30 ° C. for 32 hours.
  • BIO-RAD's pulser 2.5kv, 25 Hz, 200 Hz
  • the resulting colonies were incubated at 200 rpm overnight at 30 ° C. in 200 ⁇ l BHIS ° C. medium for use in secondary recombination, and the culture solution was diluted 1: 1000 to CM agar plates containing streptomycin (40 ⁇ g / ml). After colonizing and standing at 30 ° C. for 72 hours, the resulting colonies were again confirmed that they were not resistant to kanamycin, and then confirmed by PCR and finally confirmed by DNA sequencing.
  • tkt gene Gene ID: 3343601
  • mutations were introduced at the region adjacent to -35 region and -10 region based on the activity of the CAT reporter vector.
  • Gntm2 was stronger than Gntm1 by dot plating method, CAT enzyme activity and Western blot Also confirmed by the analysis results.
  • the pSK1-CAT introduced strains showed no change in CAT activity during growth, whereas Gntm1 and Gntm2 showed maximum enzymatic activity at 6 hours, 8 hours and 12 hours corresponding to the log phase. The activity was also slightly different.
  • CAT enzyme activity of Gntm2 strain was 4.2 times higher than that of Gntm1 strain, but the difference in activity was slightly reduced during the stable phase after 24 hours of culture. Still, the activity of Gntm2 strain was higher than that of Gntm1 strain, but both strains had higher activity than the control group.
  • Corynebacterium glutamicum (KCTC12307BP) strain was prepared as follows for the production of L- lysine of the modified strain transformed with the promoter variants prepared.
  • Corynebacterium glue the parent strain in a 100 ml flask containing 10 ml of CM medium [10 g of glucose, 10 g of polypeptone, 5 g of yeast extract, 2.5 g of NaCl, 2 g of Urea (based on 1 liter of distilled water), pH 7.0] Tamicum (KCTC12307BP), Corynebacterium glutamicum Gntm1 and Corynebacterium glutamicum Gntm2 were inoculated, respectively, and incubated at 30 ° C. for 16 hours at 180 rpm.
  • CM medium 10 g of glucose, 10 g of polypeptone, 5 g of yeast extract, 2.5 g of NaCl, 2 g of Urea (based on 1 liter of distilled water), pH 7.0
  • Tamicum KCTC12307BP
  • Corynebacterium glutamicum Gntm1 and Corynebacterium glutamicum Gntm2 were inoculated, respectively, and
  • Corynebacterium glutamicum-derived promoter variants with improved promoter activity according to the present invention exhibit higher promoter activity compared to wild type to increase the activity of transketolase and related enzymes to increase the biosynthetic efficiency of lysine As such, it will be very useful for producing lysine useful for industry.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 라이신 생성에 이용될 수 있는 재조합 미생물 및 이와 관련된 탄소 대사 메커니즘에 관한 것으로, 구체적으로는 코리네박테리움 속 미생물에서의 오탄당 대사에 관여하는 트랜스케톨라아제(transketolase) 유전자 클러스터(tkt-tal-zwf-opcA-devB)의 발현을 조절하는 개량된 프로모터 변이체 및 이의 용도에 관한 것이다.

Description

트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
본 발명은 라이신 생성에 이용될 수 있는 재조합 미생물 및 이와 관련된 탄소 대사 메커니즘에 관한 것으로, 구체적으로는 코리네박테리움(Corynebacterium) 속 미생물에서의 오탄당 대사에 관여하는 트랜스케톨라아제(transketolase) 유전자 클러스터(tkt-tal-zwf-opcA-devB)의 발현을 조절하는 개량된 프로모터 변이체 및 이의 용도에 관한 것이다.
코리네형 미생물은 전통적으로 아미노산과 핵산관련물질의 생산에 가장 널리 이용되는 산업용 미생물로서, 주로 L-라이신(lysine), L-트레오닌(threonine), L-아르기닌(arginine), L-쓰레오닌, 및 글루탐산 등의 아미노산 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는데 이용되는 그람양성세균이다.
특히, 이 중에서 L-라이신은 L-아미노산의 하나로서, 기타 아미노산의 흡수를 증가시켜 사료의 질을 향상시킬 수 있는 능력으로 인해 동물 사료 보충물로서 상업적으로 사용되고 있고, 의학에서는 주입용 용액제의 성분으로서 사용되며, 제약 산업에도 사용되고 있다. 그러므로, 라이신을 산업적으로 생산하는 것은 경제적으로 중요한 산업 공정이 되어 왔다.
라이신의 생산 효율을 개선시키기 위한 방법으로 라이신 생합성 경로 상의 유전자를 증폭시키거나 유전자의 프로모터를 변형시켜, 생합성 경로 상의 효소활성을 증대시키는 방법이 이용되어 왔다. 종래 라이신 생합성 관련 유전자가 강화된 코리네박테리움 균주 및 이를 이용한 L-라이신 생산방법이 알려져 있었다. 예를 들면, 미국특허 제6,746,855호에는 lysE 유전자 (라이신 배출 캐리어 유전자)가 강화되고, dapA 유전자, lysC 유전자, pyc 유전자 및 dapB 유전자로 구성되는 군으로부터 선택된 유전자가 추가적으로 도입된 코리네박테리아를 배양하여 L-라이신을 생산하는 방법이 개시되어 있다. 또한, 미국특허 제6,221,636호에는 L-라이신 및 L-쓰레오닌에 의하여 피드백 저해에 실질적으로 탈감작화된 (insensitive) 아스파토키나제를 코딩하는 DNA 서열 및 디아미노피멜레이트 디카르복실라제를 코딩하는 DNA 서열을 포함하는 재조합 DNA로 형질전환된 코리네박테리아가 개시되어 있다. 그리고 미국특허 공개번호 제20060003424에는 GDH 유전자, CS 유전자, ICDH 유전자, PDH 유전자, ACO 생산 유전자들의 프로모터 서열을 컨센서스(consensus) 서열과 유사하게 변형시켜 효소활성이 증가된 코리네형 미생물을 이용한 L-아미노산을 생산하는 방법이 개시되어 있다.
그러나, 현재까지 C. 글루타미쿰의 트랜스케톨라아제 (transketolase, tkt) 유전자의 발현에 대한 전사 조절 기구에 대한 연구는 전무하며, 이들 전사 조절 기구에 해당하는 프로모터에 대한 연구는 Ikeda 연구팀이 5‘-flanking region 염기서열만을 보고한 것이 유일하다.
이에 본 발명자들은 C. 글루타미쿰(Corynebacterium glutamicum) ATCC13032 균주로부터 당의 오탄당 대사 경로 활성화를 위하여 트랜스케톨라아제(transketolase, tkt)의 전사조절(활성 프로모터) 부위를 결정하고, 이를 이용한 프로모터 변이체를 이용하여 트랜스케톨라아제 유전자 및 이와 클러스터를 형성하고 있는 다른 유전자들의 발현과 활성을 증가시킬 수 있음을 확인하고 본 발명을 완성하였다.
본 발명은 오탄당 대사 경로에 관여하는 유전자 클러스터를 활성화시키는 트랜스케톨라아제(transketolase, tkt) 유전자 전사조절(활성 프로코터) 부위를 변이시킨, 개량된 tkt 프로모터 변이체 및 이의 용도에 관한 것으로,
본 발명의 주요한 목적은 개량된 프로모터 활성을 갖는 tkt 프로모터 변이체를 제공하는데 있다.
본 발명의 다른 목적은 상기 tkt 프로모터 변이체를 포함하는 벡터 및 이에 따른 재조합 미생물을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 재조합 미생물을 이용한 라이신 생산방법을 제공하는 데 있다.
상기 과제를 해결하기 위하여, 본 발명은 서열번호 5 또는 서열번호 6으로 표시되는 염기서열을 포함하는, 트랜스케톨라아제 유전자 프로모터 변이체를 제공한다.
특히, 상기 트랜스케톨라아제 유전자 프로모터 변이체는 서열번호 7로 표시되는 야생형 프로모터 서열 중 -35 영역 및 -10 영역 중 어느 하나 이상의 부위에서의 변이를 포함한다. 이와 관련하여, 이러한 트랜스케톨라아제 유전자 프로모터 변이체 제작용 서열번호 1 및 2 프라이머 세트 또는 서열번호 3 및 4 프라이머 세트 역시 본 발명에 포함된다.
본 발명의 트랜스케톨라아제 유전자 프로모터 변이체는 코리네박테리움 속 미생물 유래인 것이 바람직한데, 예를 들어, 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 또는 코리네박테리움 에피션스 (Corynebacterium efficiens)인 경우가 더욱 바람직하다.
상기 트랜스케톨라아제(transketolase, tkt) 유전자는 트랜스알도라아제(transaldolase tal), 글루코오스-6-포스페이트 디하이드로제나아제[glucose-6-phosphate dehydrogenase, zwf) 및 6-포스포글루코노락토나아제[6-phosphogluconolactonase, devB)를 코딩하는 유전자들과 함께 클러스터(tkt-tal-zwf-opcA-devB)를 형성하고 있는 것을 특징으로 한다. 따라서, 본 발명의 트랜스케톨라아제 유전자 프로모터 변이체는 종래보다 우수한 트랜스케톨라아제 활성을 유도하여 결과적으로는 상기 클러스터를 형성하는 유전자들 발현 및 이에 의해 코딩된 효소들의 활성을 촉진하는 효과를 가진다.
또한, 본 발명은 상기 트랜스케톨라아제 유전자 프로모터 변이체를 포함하는 벡터 및 이에 의해 형질전환된 재조합 미생물을 제공한다.
상기 재조합 미생물은 오탄당 인산화 경로에 관여하는 효소들을 코딩하는 유전자 클러스터(tkt-tal-zwf-opcA-devB)를 포함하는 것을 특징으로 하는데, 코리네박테리움 속 미생물이 바람직하고, 그 중에서도 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 또는 코리네박테리움 에피션스 (Corynebacterium efficiens)인 경우가 더욱 바람직하다.
또한, 본 발명은 재조합 미생물을 탄소 기질을 함유하는 배지에서 배양함을 포함하는 라이신 생성방법을 제공한다.
이 때, 탄소 기질은 글루코스, 수크로스, 셀룰로스 및 글리세롤로 구성된 군에서 선택되는 1종 이상의 탄소 기질을 사용할 수 있고, 배양 공정은 당업계에 공지된 통상의 방법을 사용할 수 있다.
이처럼, 본 발명은 라이신 생성에 이용될 수 있는 재조합 미생물 및 이와 관련된 탄소 대사 메커니즘을 조절하는 프로모터 변이체와 이에 관한 모든 용도를 제공할 수 있다.
본 발명에 따른 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래 프로모터 변이체는, 야생형에 비해 높은 프로모터 활성을 나타내어 트랜스케톨라아제 및 이와 관련된 효소들의 활성을 증가시켜 라이신의 생합성 효율을 증가시킬 수 있으므로, 산업에 유용한 라이신을 생산에 매우 유용할 것이다.
도 1은 C. 글루타미쿰에서의 부분적 게놈 조직의 모식도를 나타낸 것이다.
도 2는 C. 글루타미쿰 야생주, Gntm1과 Gntm2의 생육곡선과 생육단계별 프로모터 활성을 비교한 그래프이다.
본 발명에서 사용되는 용어에 대한 정의는 이하와 같다.
"핵산"은 당분야에 공지된 용어이다. 여기에서 "핵산"은 핵염기로 구성된 DNA, RNA 또는 이의 유도체 또는 유사체 분자(가닥)을 말한다. 예를 들면 핵염기에는 DNA에서 볼 수 있는 자연 생성 또는 유도된 퓨린 또는 피리미딘 염기(가령, 아데닌 "A", 구아닌 "G", 티민 "T" 또는 시토신 "C") 또는 RNA (가령, A, G, 우라실 "U" 또는C)를 포함한다.
"폴리펩티드"는 단일 폴리펩티드뿐 아니라 다수의 폴리펩티드들을 포함하는 것이며, 펩티드 결합에 의해 서로 결합된 하나 이상의 아미노산의 쇄 또는 쇄들을 포함한다. 상기 용어는 또한 해독후 변형을 가진 폴리펩티드를 포함한다.
"단백질"은 또한 기준 단백질과 본질적으로 동일한 생물 활성 또는 기능을 보유하는, 단백질의 단편, 유사체 및 유도체를 포함하는 것이다.
"∼에 의해 코딩되는" 또는 "∼를 코딩하는"이란 핵산 서열이 폴리펩티드 서열을 코딩하는 것을 말하며, 여기서 상기 폴리펩티드 서열은 상기 핵산 서열에 의해 코딩되는 폴리펩티드인 적어도 3∼5개 아미노산, 더 바람직하게는 적어도 8∼10개 아미노산, 더욱 더 바람직하게는 적어도 15∼20개 아미노산으로 이루어진 아미노산 서열을 포함한다. 상기 서열에 의해 코딩된 폴리펩티드를 사용하여 면역학적으로 확인할 수 있는 폴리펩티드 서열도 포함된다. 따라서, 항원 "폴리펩티드", "단백질" 또는 "아미노산" 서열은 항원의 폴리펩티드 또는 아미노산 서열에 대해 70% 이상의 유사성, 바람직하게는 약 80% 이상의 유사성, 더 바람직하게는 약 90∼95%의 유사성, 가장 바람직하게는 약 99%의 유사성을 가질 수 있다.
"유전자"는 유전적 기능이 관련되어 있는 핵산 분자(염색체, 플라스미드 등)의 뉴클레오티드 서열이다. 유전자는, 예를 들어, 유기체의 게놈 내의 특정 물리적 위치("유전자좌")를 차지하는 폴리뉴클레오티드 서열(예를 들어, 포유동물의 DNA 서열)을 포함하는, 유기체의 유전 단위이다. 유전자는 폴리펩티드 또는 폴리뉴클레오티드와 같은 발현 생성물을 코딩할 수 있다. 일반적으로, 유전자는 폴리펩티드 코딩 서열과 같은 코딩 서열 및 프로모터 서열, 폴리아데닐화 서열, 전사 조절 서열(예를 들어, 인핸서 서열)과 같은 비코딩 서열을 포함한다. 다수의 진핵생물 유전자가 "인트론"(비코딩 서열)이 개재되어 있는 "엑손"(코딩 서열)을 갖는다.
"프라이머"는 상보성 RNA 또는 DNA 표적 폴리뉴클레오티드에 혼성화하고 예를 들어 폴리머라제 연쇄 반응에서 발생하는 뉴클레오티딜트랜스퍼라제의 작용에 의해 모노뉴클레오티드로부터 폴리뉴클레오티드의 단계적 합성을 위한 출발점으로 기능하는 올리고뉴클레오티드 서열을 의미한다.
"형질전환 또는 트랜스펙션"은 세포외부 DNA가, 수반물질이 있고 없는 상태로 숙주 세포로 들어가는 과정을 말한다. "트랜스펙션된 세포"란 세포 외부 DNA가 세포 내로 도입되어 세포 외부 DNA를 가지고 있는 세포를 가리킨다. DNA는 세포로 도입되어 핵산이 염색체에 삽입되거나 혹은 염색체 외 물질로 복제될 수 있다.
"벡터"라는 용어는 숙주 세포에 삽입되어 숙주 세포 게놈과 재조합되고 이에 삽입되거나, 또는 에피좀으로서 자발적으로 복제하는 컴피턴트 뉴클레오티드 서열을 포함하는 임의의 핵산을 의미한다. 이러한 벡터로는 선형 핵산, 플라스미드, 파지미드, 코스미드, RNA 벡터, 바이러스 벡터 등이 있다.
"숙주 세포"는 본 발명의 임의의 재조합 벡터(들) 또는 단리된 폴리뉴클레오티드의 수용체일 수 있거나, 수용체인 개별 세포 또는 세포 배양물을 포함한다. 숙주 세포는 단일 숙주 세포의 자손일 수 있으며, 자손은 자연적, 우발적 또는 인공 돌연변이 및/또는 변화로 인해 원래의 모 세포와 완전히 동일하지 않아도 된다(형태 또는 총 DNA 상보면에서). 숙주 세포는 생체내 또는 시험관내에서 본 발명의 재조합 벡터 또는 폴리뉴클레오티드로 형질감염되거나, 형질전환되거나 또는 감염된 세포를 포함한다. 본 발명의 재조합 벡터를 포함하는 숙주 세포는 재조합 숙주 세포, 재조합 세포 또는 재조합 미생물이다.
"대사 조작(metabolic engineering)"은 미생물에서 원하는 대사산물의 생산을 위하여, 생합성 유전자, 오페론과 연관된 유전자, 그리고 이들 폴리뉴클레오티드의 제어 요소(control elements)의 합리적 경로 디자인과 어셈블리를 수반한다. "대사 조작된"은 원하는 경로를 유도하는 중간생성물과 경쟁하는 경쟁 대사 경로(competing metabolic pathway)의 감소, 파괴 또는 적중을 비롯한, 유전자 조작과 적절한 배양 조건을 이용한 전사(transcription), 전이(translation), 단백질 안정성(protein stability)과 단백질 기능성(protein functionality)의 조절과 최적화에 의한 대사 흐름(metabolic flux)의 최적화를 더욱 포함할 수 있다. 생합성 유전자는 호스트에 외래성이거나, 또는 돌연변이유발(mutagenesis), 재조합(recombination) 및/또는 내인성 숙주 세포에서 이종 발현 제어 서열과의 연관에 의해 변형됨으로써, 숙주 미생물에 이종성일 수 있다. 일 견지에서, 폴리뉴클레오티드가 숙주 생물체에 이종 발생성인 경우에, 폴리뉴클레오티드는 코돈(codon) 최적화될 수 있다.
"대사 경로"로도 지칭되는 용어 "(생)합성 경로"는 하나의 화학종을 다른 종으로 전환(transmuting)시키기 위한 동화(anabolic) 또는 이화(catabolic) 생화학 작용의 세트를 지시한다. 유전자 산물은 병렬로 또는 직렬로 동일 기질에 작용하여 동일 산물을 생산하거나, 또는 동일 기질과 대사 최종 산물 사이의 대사 중간생성물(즉, 대사 산물)에 작용하거나 또는 이를 생산하면, 동일한 "대사 경로"에 속한다.
"기질"은 효소의 작용에 의해 다른 화합물로 전환되거나 전환되게 되어있는 임의의 물질 또는 화합물을 지칭한다. 상기 용어는 단일 화합물뿐만 아니라 용제, 혼합물 및 최소한 하나의 기질을 포함하는 다른 재료와 같은 화합물의 조합 및 이들의 유도체를 포괄한다. 게다가, 용어 "기질"은 바이오매스(biomass) 유도된 설탕과 같은 출발 재료로서 사용하기 적합한 탄소 공급원을 제공하는 화합물뿐만 아니라 본 명세서에 기재된 대사 조작 미생물과 연관된 경로에서 사용되는 중간생성물과 최종 대사산물을 포괄한다. 미생물에 의해 통상적으로 사용되는 적합한 탄소 기질을 포괄한다.
"기능" 및 "기능성" 등은 생물학적 또는 효소적 기능을 의미한다.
"증가된" 또는 "증가"라는 것은 비변형 미생물 또는 상이하게 변형된 미생물과 같은 대조 미생물에 비해 주어진 산물 또는 분자(예를 들면, 범용 화학물질, 바이오연료 또는 이들의 중간체 산물)를 더 많은 양으로 생산할 수 있는 하나 이상의 재조합 미생물의 능력을 의미한다.
"~로부터 얻은" 또는 "~유래의" 이란 예를 들어, 소정 유기체, 전형적으로 미생물과 같은 특정 공급원으로부터 단리되거나, 이로부터 유도된 폴리뉴클레오티드 추출물 또는 폴리펩티드 추출물 등과 같은 샘플을 의미한다. 또한 폴리뉴클레오티드 또는 폴리펩티드 서열이 특정 유기체 또는 미생물로부터 단리되거나, 이로부터 유도된 상황도 의미할 수 있다
"약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 원소, 또는 단계 또는 원소들의 군을 포함하나, 임의의 다른 단계 또는 원소, 또는 단계 또는 원소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.
이하, 본 발명을 상세히 설명한다.
본 발명은 아미노산 생성에 이용될 수 있는 재조합 미생물 및 이와 관련된 탄소 대사 메커니즘에 관한 것으로, 구체적으로는 코리네박테리움(Corynebacterium) 속 미생물에서의 오탄당 대사에 관여하는 트랜스케톨라아제(transketolase) 유전자 클러스터(tkt-tal-zwf-opcA-devB)의 발현을 조절하는 방법에 관한 것이다.
특히, 트랜스케톨라아제(transketolase) 유전자 클러스터(tkt-tal-zwf-opcA-devB)의 활성화 효율을 향상시키는 프로모터 변이체 및 이의 용도를 제공한다. 이를 이용하여 코리네박테리움 속 미생물의 오탄당 대사 경로 활성화시킴으로써 라이신 등의 아미노산을 효과적으로 생산할 수 있다.
본 발명은 당해 분야에 통상의 기술을 가진 자에게 공지된 표준 클로닝 기술 및 통상적인 방법을 이용하여, 특정 효소를 코딩하는 유전자를 기본 벡터에 삽입하여 형질전환시킨 재조합미생물을 배양함으로써 구현할 수 있다. 따라서, 본 발명은 이와 관련되는 유전자 클로닝 방법, 효소, 재조합 미생물 및 미생물 시스템을 모두 포함한다.
코레니박테리움 미생물의 탄소 대사
본 발명은 코리네형 미생물, 그 중에서도 코리네박테리움Corynebacterium) 속 미생물을 이용하는 것을 특징으로 한다.
코리네형 미생물은 아미노산과 핵산관련 물질의 생산에 전통적으로 가장 널리 이용되는 산업용 미생물이다. 주로 L-라이신(lysine), L-쓰레오닌(threonine), L-아르기닌(arginin) 및 글루탐산 등의 아미노산 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는데 이용되는 그람양성 세균이며, 생육에 비오틴을 요구한다. 세포분열시 직각으로 굽어지는 특징(snapping)을 가지고 있으며, 생성된 대사물질에 대한 분해 활성이 낮은 것이 이 균이 가지는 장점 중 하나이다. 대표적인 균종으로는 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 포함한 코리네박테리움 속, 브레비박테리움 플라붐(Brevibacterium flavum)을 포함한 브리비박테리움 속, 아쓰로박터 속(Athrobacter sp.), 및 마이크로박테리움 속 (Microbacterium sp.) 등이 있다.
본 발명에서는 바람직하게는 코리네박테리움(Corynebacterium)속에 속하는 미생물, 더욱 바람직하게는 코리네박테리움 글루타미컴 (예. ATCC13032), 코리네박테리움 암모니아게네스 (예. ATCC 6872), 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum) (예. ATCC13869), 브레비박테리움 플라범 (Brevibacterium flavum) (예. ATCC14067), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes) (예. FERM-BP1539), 코리네박테리움 에피션스 (Corynebacterium efficiens) (예. C.efficiens str. YS-314) 등을 사용할 수 있지만, 반드시 이에 한정되는 것은 아니다.
특히, 본 발명자들은 코리네형 미생물에서의 오탄당 대사로의 당 유입을 유도하기 위한 전략으로 오탄당 대사에 중요하게 관여하는 트랜스케톨라아제(transketolase) 유전자 클러스터 (tkt-tal-zwf-opcA-devB)의 발현을 조절하는 메커니즘을 이용하였다.
트랜스케톨라아제(transketolase, tkt; EC 2.2.1.1)는 혐기적 오탄당 인산화 경로의 중요 효소(key enzyme)로서, 효소 작용에 Mg2+와 티아민 피로포스페이트(thiamine pyrophosphate)를 공동인자(cofactor)로 요구한다. 트랜스케톨라아제는 트란스알도라아제 (transaldolase; EC 2.2.1.2)와 함께 해당계와 오탄당 경로의 셔틀에 관여하는 효소로 C. 글루타미쿰에 트랜스케톨라아제의 과발현을 유도하면 엘-트립토판과 같은 방향족 아미노산의 생성율이 증가한다. 즉, 오탄당 경로가 아미노산 발효에 중요한 역할을 한다.
종래, Ikeda 연구팀의 C. 글루타미쿰 ATCC 31833의 트랜스케톨라아제 (tkt) 유전자에 대한 연구에 따르면 tkt는 700개 아미노산으로 구성된 75 kDa 크기의 단백질이며, 개시코돈은 TTG로 -8 ~ -5 위치에 RBS(ribosomal binding site, ABGGA) 모티브가, 그리고 -10과 -35 부위는 각각 -48 ~ -38(GAAAAC)와 -66 ~ -60(TAGATC)에 존재한다고 보고하였다.
C. 글루타미쿰 트랜스케톨라아제 유전자의 염기서열을 타 생물체의 트랜스케톨라아제 유전자와 비교해보면, 마이크로박테리움 튜버큐로시스(Mycobacterium tuberculosis)의 경우와 63% 상동성을 보이고, E. coli와는 45%, 인간 및 마우스의 S.세레비시아(S. cerevisiae), 로도박터 스페로이데스(Rhodobater sphaeroidae), 에 대하여 각각 42%와 43%의 상동성 및 26%와 26%의 상동성을 가진다.
C. 글루타미쿰의 트랜스케톨라아제는 적어도 2 개의 아이소폼(isoform)이 보고된 E. coli나 S. 세레비시아와는 달리 하나의 트랜스케톨라아제를 가지며 트랜스케톨라아제(transketolase, tkt), 트랜스알도라아제(transaldolase tal), 글루코오스-6-포스페이트 디하이드로제나아제[glucose-6-phosphate dehydrogenase(EC:1.1.1.49), G6PDH 또는 zwf; opcA 단밸질도 관여함), 및 6-포스포글루코노락토나아제[6-phosphogluconolactonase(EC:3.1.1.31), devB) 유전자들이 유전자 클러스터로 존재하는 것으로 알려져 있다. 본 발명 명세서에서는 이러한 유전자 클러스터를 "tkt-tal-zwf-opcA-devB"로 기재하고 있다. 이 때, opcA 유전자는 글루코오스-6-포스페이트 디하이드로제나아제를 코딩하는 zwf 유전자 다운스트림에서 발견되는 유전자로서, zwf와 어셈블리를 형성한다.
본 발명에서 사용될 수 있는 트랜스케톨라아제는 기능적으로 등가물이면 유래를 따지지 않고 사용할 수 있지만, 더욱 바람직하게는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum, C.glutamicum)으로부터 유래될 수 있다. 가장 바람직하게는 C. 글루타미쿰 유래 트랜스케톨라아제 유전자 서열을 사용한다. 대표적인 야생형의 C. 글루타미쿰 유래 트랜스케톨라아제 유전자 서열을 서열번호 7로 표시하였다.
본 발명의 상기 유전자 클러스터 및 이에 의해 발현되는 효소를 인코딩하는 적합한 폴리뉴클레오티드는 이를 제공하는 임의의 생물학적 공급원, 바람직하게는 코리네형 미생물로부터 수득하거나 공지의 방법을 이용하여 인위적으로 합성하여 수득할 수 있다
이러한 트랜스케톨라아제를 인코딩하는 고유 DNA서열은 본 발명의 구체예를 단순히 예시하기 위하여 언급되고, 본 발명은 본 발명의 방법에 활용되는 효소의 폴리펩티드 및 단백질의 아미노산 서열을 인코딩하는 임의의 서열의 DNA 화합물을 포함한다. 유사한 방식으로, 폴리펩티드는 전형적으로, 원하는 활성의 손실이나 중대한 손실 없이, 아미노산 서열에서 하나 이상의 아미노산 치환, 결실 및 삽입을 허용할 수 있다. 본 발명은 본 명세서에 기술된 특정 단백질의 효소적 동화 또는 이화 활성을 갖는다면, 상기 기준 폴리펩티드(reference polypeptide)와 상이한 아미노산 서열을 갖는 변형되거나 변이된 폴리펩티드 역시 포함한다.
프로모터 변이체
본 발명은 일 관점에서, 상기 설명한 오탄당 대사 경로에 관여하는 상기 유전자 클러스터의 활성을 증가시키기 위한 tkt 유전자의 전사조절 부위(활성 프로코터 부위), 이에 따른 프로모터 변이체 및 이의 용도에 관한 것이다.
"프로모터"란 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산서열, 즉, 폴리머라제가 결합하여 유전자의 전사를 개시하도록 하는 DNA 영역을 말하며, mRNA 전사 개시부위의 5' 부위에 위치한다.
본 발명의 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 핵산 분자는 트랜스케톨라아제(transketolase)를 코딩하는 유전자와 작동 가능하게 연결된다. 트랜스케톨라아제(transketolase)를 코딩하는 유전자는 tkt 유전자로서, 상기 설명한 유전자 클러스터(tkt-tal-zwf-opcA-devB)의 발현을 촉진시키는 기능을 가진다.
이에 의해 유전자 클러스터(tkt-tal-zwf-opcA-devB)의 발현에 따른 각각의 효소 트랜스케톨라아제, 트랜스알도라아제(transaldolase), 글루코오스-6-포스페이트 디하이드로제나아제(glucose-6-phosphate dehydrogenase, zwf-opcA)와 6-포스포글루코노락토나아제(6-phosphogluconolactonase, devB)의 활성 역시 촉진됨으로써, 코리네박테리움 속 미생물의 오탄당 대사 경로도 활성화되고, 이에 따라 생합성 경로 상의 주요한 아미노산, 예를 들어 라이신 등의 생성율도 높일 수 있게 되는 것이다.
"작동 가능하게 연결된"이란 언급된 구성요소들이 그 일반적 기능을 수행하도록 구성되어 있는 요소들의 배열을 말한다. 따라서, 코딩 서열(예를 들어, 관심있는 항원을 코딩하는 서열)에 작동 가능하게 연결된 특정 프로모터는 조절 단백질 및 적절한 효소가 존재할 경우 코딩 서열의 발현을 가능하게 할 수 있다. 일부 경우, 특정 조절요소가 이들이 코딩 서열의 발현을 지시하는 기능을 할 수 있는 한 코딩 서열에 인접할 필요는 없다.
특히, 본 발명은 tkt 유전자 프로모터 상에서의 특정 전사 조절 부위의 변이를 포함한다.
본 발명의 일 실시예에서는 tkt 유전자의 전사 조절 부위 동정을 위해 5'-RACE(Rapid Amplification of 5'cDNA Ends) 기법을 실시하였다. 5'-RACE는 mRNA의 일부를 알고 있을 때 5' 상위(upstream)의 미지영역을 클로닝하기 위한 방법이다. tkt 유전자의 리보좀 결합 부위(RBS, 컨센서스 5'-GAAAGGA-3'); -35 영역 및 -10 영역 인접 부위의 변이 부위 및 전사 개시 영역(TTG)을 포함한다. 이 때, 상기 -35 영역 및 -10 영역 인접 부위에 변이(치환)를 도입하여 본 발명의 프로모터 변이체를 수득할 수 있다.
본 발명의 바람직한 구체예로써, 변이체는 서열번호 5 또는 서열번호 6으로 표시되는 서열을 포함하는데, 가장 바람직한 프로모터 변이체는 서열번호 6의 서열을 포함한다.
서열번호 5(Gntm1):
GATTCGTTCCGTTCGTGACGCTTTGTGAGGTTTTTTGACGTTGCACCGTATTGCTTGCCGAACATTTTTCTTTTCCTTTCGGTTTTTCGAGAATTTTCACCTACAAAAGCCCACGTCACAGCTCCCAGACTTAAGCCCTAGAACCTGGCCACCACATTTGAACCACAGTTGGTTATAAAATGGGTTCAACATCACTATGGTTAGAGGTGTTGACGGGTCAGATTAAGCAAAGACTACTTTCGGGGTAGATCACCTTTGCCAAATTTGAACCAATTAACCTAAGTCGTAGATCTGATCATCGGATCTAACGAAAACGAACCAAAACTTTGGTCCCGGTTTAACC
서열번호 6(Gntm2):
GATTCGTTCCGTTCGTGACGCTTTGTGAGGTTTTTTGACGTTGCACCGTATTGCTTGCCGAACATTTTTCTTTTCCTTTCGGTTTTTCGAGAATTTTCACCTACAAAAGCCCACGTCACAGCTCCCAGACTTAAGCCCTGACTACAAATTTGACACATTTGAACCACAGTTGGTTATAAAATGGGTTCAACATCACTATGGTTAGAGGTGTTGACGGGTCAGATTAAGCAAAGACTACTTTCGGGGTAGATCACCTTTGCCAAATTTGAACCAATTAACCTAAGTCGTAGATCTGATCATCGGATCTAACGAAAACGAACCAAAACTTTGGTCCCGGTTTAACC
본 발명의 프로모터 활성을 갖는 핵산 서열은 코리네박테리움 글루타미쿰에서 tkt 유전자의 프로모터를 개량시킨 것으로서, 야생형(wild type) 프로모터보다 높은 프로모터 활성을 가지도록 한 것을 특징으로 한다. 더 높은 프로모터 활성을 가지도록 개량시키는 방법으로 당업계에 알려진 방법은 제한없이 사용할 수 있으며, 바람직하게는 코리네박테리움 글루타미쿰 tkt 유전자의 프로모터 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 개량시킬수 있다
본 발명의 프로모터 핵산 분자는 표준 분자 생물학 기술을 이용하여 분리 또는 제조할 수 있다. 예를 들어, 적절한 프라이머 서열을 이용하여 PCR을 통해 분리할 수 있다. 또한, 자동화된 DNA 합성기를 이용하는 표준 합성기술을 이용하여 제조할 수도 있다
구체적인 일 실시예에서 본 발명자는 tkt 유전자 (Gene ID: 3343601)의 프로모터 부위를 포함하는 염기서열을 확보하고(서열번호 7), 이에 근거하여 2쌍의 프라이머 세트(서열번호 1 내지 4)를 합성한 후, 코리네박테리움 글루타미쿰 ATCC13032의 염색체 DNA를 주형으로 하고, 상기 프라이머들을 이용하여 PCR을 수행하여, 주요부위에 변형된 서열을 가지는 프로모터를 포함하는 본 발명에 따른 핵산 분자(서열번호 5 및 6)를 확보하였다
그러므로, 본 발명은 상기 tkt 프로모터 변이체의 합성에 관여하는 하기의 특정 프라이머 세트를 포함한다.
Gntm1F :Gctcccagacttaagccctagaacctgg(서열번호 1)
Gntm1R :Ggttcaaatgtggtggccaggttcta(서열번호 2)
Gntm2F :Gatccgattcgttccgttcgtgac(서열번호 3)
Gntm2R :Gatccggttcaaatttggcaaagg(서열번호 4)
또한, 본 발명은 상기 tkt 프로모터 변이체 및 이와 관련된 프라이머 세트의 기능적 등가물을 포함한다.
"기능적 등가물"이라는 용어는 예를 들어, 기준(reference) 서열로부터 하나 또는 그 이상의 치환, 결실 또는 부가, 기준(reference) 서열과 실험(subject) 서열 사이의 다양한 기능적 비유사성을 낳지 않는 실제 효과(net effect) 등 변화된 돌연변이 서열의 뉴클레오티드와 핵산서열 모두를 의미한다. 통상적으로, 그런 실질적 등가물인 서열은 단지 약 35%(즉, 실질적으로 등가적인 서열에서의 각 잔기 치환, 부가 및 결실의 숫자는 상응하는 기준 서열과 비교하고 실질적으로 등가적인 서열에서의 나머지 전체 숫자로 나누었을 때 약 0.35 또는 그 이하이다) 정도로 본 명세서에 나열된 것에서부터 다양하다. 그런 서열은 나열된 서열과 65%의 서열 동일성을 갖는다. 본 발명에 따른 실질적 등가물인, 예를 들어 돌연변이, 아미노산 서열은 나열된 아미노산 서열과 바람직하게는 최소한 80%의 서열 동일성, 보다 바람직하게는 최소한 90%의 서열 동일성을 갖는다. 실질적 등가물인 본 발명의 뉴클레오티드 서열은 예를 들어, 유전자 암호의 중복(redundancy) 또는 축퇴(degeneracy)를 고려할 때, 더 낮은 백분율의 서열 동일성을 가질 수 있다. 바람직하게는, 뉴클레오티드 서열은 최소한 약 65%의 동일성, 보다 바람직하게는 최소한 약 75%의 동일성, 가장 바람직하게는 약 95%의 동일성을 가져야 한다. 본 발명의 목적을 위해서는, 실질적으로 등가적인 생물학적 활성과 실질적으로 등가적인 합성 특징을 가지는 서열들은 실질적 등가물로 취급된다
재조합 벡터 및 미생물
본 발명은 다른 관점에서, 적합한 기질로부터 라이신 등의 합성을 위한 오탄당 생화학 경로를 포함하는 대사 조작 미생물(재조합 미생물) 및 이의 형질전환에 사용될 수 있는 재조합 벡터에 관한 것이다.
재조합벡터
본 발명에서 재조합 벡터는 적합한 미생물 내에서 본 발명의 tkt 프로모터 변이체의 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다
벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주 미생물로 형질전환되면 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로 본 발명에서 플라스미드(plasmid)와 벡터(vector)는 때로 상호 교환적으로 사용된다. 
전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질 전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다.
통상적으로, 하나 이상의 제한 효소로 DNA 서열 및 벡터를 절단하고 단편들을 함께 결찰하여 최종적으로 발현될 DNA 서열을 벡터에 결합시킨다. 제한 효소 소화처리 및 결찰은 당업자들에게 익히 알려졌다.
구체적으로, 본 발명의 벡터는 숙주 세포 내로 도입시켜 벡터 내의 프로모터 활성을 갖는 핵산 분자 서열이 숙주 세포 게놈 상의 내생적(endogeneous) tkt 유전자의 프로모터 부위의 서열과 상동 재조합을 일으키며, 염색체 내로 삽입될 수 있다. 그러므로 본 발명의 벡터는 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있는데, 선별 마커는 벡터로 형질전환된 세포를 선별, 즉, 목적 유전자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다.
재조합 미생물
본 발명은 다른 태양으로, 상기한 벡터로 형질전환된 형질전환체, 즉 대사 조작 미생물(재조합 미생물 또는 재조합 균주)에 관한 것이다.
본 발명의 대사 조작 미생물은 라이신 생산 등을 오탄당 생화학 경로를 포함하는데, 이러한 미생물은 야생형 생물체에서 발견되는 유전자의 감소(reduction), 파괴(disruption) 또는 적중(knockout) 및/또는 이종(heterologous) 폴리뉴클레오티드의 도입(introduction)을 포함한다.
본 발명의 벡터를 형질전환시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등을 사용할 수 있다.
본 발명의 벡터로 형질전환된 형질전환체는 상동 재조합을 통해 코리네박테리움 글루타미쿰의 tkt 유전자의 프로모터 부위를 프로모터 활성이 증진되도록 변이된 프로모터 서열로 대체함으로써, tkt 유전자는 개량된 프로모터를 가지게 되며, 이를 통해 트랜스케톨라아제 활성이 야생형보다 증가되는 특징을 가질 수 있다.
상기 숙주 세포로는 DNA의 도입효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주를 사용하는 것이 좋은데, 원핵 및 진핵을 포함한 모든 미생물을 사용 가능하며, 바람직하게는 본 발명의 프로모터 변이체의 활성에 적합한 대장균 또는 코리네형 미생물이 좋다.
"코리네형 미생물"은 코리네박테리움(Corynebacterium) 속 브레비박테리움(Brevibacterium) 속, 아쓰로박터 속(Arthrobacter sp.) 및 마이크로박테리움 속(Microbacterium sp.)의 미생물을 포함하는 개념이다.
일 구체예서, 바람직하게는 코리네박테리움(Corynebacterium)속에 속하는 미생물, 더욱 바람직하게는 코리네박테리움 글루타미컴 (예. ATCC13032), 코리네박테리움 암모니아게네스 (예. ATCC 6872), 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum) (예. ATCC13869), 브레비박테리움 플라범 (Brevibacterium flavum) (예. ATCC14067), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes) (예. FERM-BP1539), 코리네박테리움 에피션스 (Corynebacterium efficiens) (예. C.efficiens str. YS-314) 등을 사용하고, 가장 바람직하게는 코리네박테리움 글루타미컴 또는 코리네박테리움 에피션스를 사용한다. 본 발명의 일 실시예에서는 코리네박테리움 글루타미쿰 ATCC13032를 사용하였다.
라이신 생산방법
본 발명은 또 다른 관점에서 상기 재조합 미생물을 배양하는 것을 포함하는라이신 생산 방법에 관한 것이다.
본 발명에서 형질전환체의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 이들 공지된 배양 방법은 문헌[Chmiel; Bioprozesstechnik 1.Einfuhrung in die Bioverfahrenstechnik(Gustav Fischer Verlag, Stuttgart, 1991), 및 Storhas; Bioreaktoren und periphere Einrichtungen(Vieweg Verlag, Braunschweig / Wiesbaden, 1994)]에 상세히 기술되어 있다.
배양 배지
본 발명에서 배양 배지는 적합한 탄소 기질을 포함하여야 한다. 적합한 기질은 단당류, 올리고당류, 다당류, 및 C1 기질 또는 그 혼합물로 이루어진 군으로부터 선택되는 탄소 공급원을 사용할 수 있다.
단당류, 예를 들어 글루코스 및 프룩토스, 올리고당류, 예를 들어 락토스 또는 수크로스, 다당류, 예를 들어 전분 또는 셀룰로오스 또는 그 혼합물과, 재생가능한 공급재료로부터의 비정제된 혼합물을 포함할 수 있지만, 이에 한정되지 않는다. 바람직한 탄소 기질은 글루코스, 수크로스, 셀룰로스, 글리세롤 등이다. 가장 바람직하게는 글루코스를 사용할 수 있다.
적절한 탄소 공급원 외에, 발효 배지는 적합한 미네랄, 염, 보조 인자, 완충액 및 라이신 생성에 필요한 효소 경로의 촉진 및 배양물의 성장에 적합한, 당업자에게 공지된 기타 성분을 포함할 수 있다.
배양 조건
전형적으로, 세포는 적절한 배지에서 약 25℃ 내지 약 40℃ 범위의 온도에서 성장시킨다. 본 발명에서 적합한 성장 배지는 루리아 베르타니(Luria Bertani, LB) 액체 배지, 사부로 덱스트로스(Sabouraud Dextrose, SD) 액체 배지 또는 효모 배지(Yeast Medium, YM) 액체 배지와 같이 일반적으로 상업적으로 제조된 배지를 사용할 수 있다.
발효에 적합한 pH 범위는 pH 5.0 내지 pH 9.0이며, 여기서 pH 6.0 내지 pH 8.0이 초기 조건에 바람직하다. 배양 배지의 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또 는 황산)을 적절히 사용하여 조절할 수 있다. 발포는 지방산 폴리글리콜 에스테르와 같은 거포제를 사용하여조절할 수 있다.
발효는 호기 조건 또는 혐기 조건 하에 실시될 수 있으며, 산소 또는 산소-함유 가스 혼합물, 예를 들어 공기를 배양배지 중으로 도입시켜 호기성 조건을 유지시킬 수 있다.
배양은 원하는 L-아미노산의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 160 시간에서 달성된다. L-라이신은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
또한, 배양 방법에는 회분식 배양(batch culture), 연속식 배양(continuous culture) 및 유가식 배양(fed-batch culture)이 포함되며, 바람직하게는 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
회수
본 발명의 상기한 형질전환체를 배양하는 단계를 포함하는 라이신의 생산 방법은 상기 배양하는 단계에서 생성되는 라이신을 회수하는 방법을 추가로 포함할 수 있다. L-라이신을 회수하는 방법은 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 L-라이신을 분리해낼 수 있다. L-라이신 회수 방법의 예로서, 여과,음이온 교환 크로마토그래피, 결정화 및 HPLC 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.
이와 같이, 본 발명에 따른 tkt 프로모터 변이체는 tkt 유전자와 작동가능하게 연결되어 야생형에 비해 높은 프로모터 활성을 나타내어 트랜스케톨라아제 및 이에 관련된 효소활성을 증가시킴으로써, 오탄당 대사 경로를 활성화시켜 라이신의 생산 효율을 높일 수 있다.
[실시예]
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
균주 및 시약
본 실험에 사용한 균주는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC 13032와 E. coli DH5α이다. C. 글루타미쿰 ATCC 13032 는, 증류수 1 L에 글루코오스 10 g, NaCl 2.5 g, 효모 추출물 5.0 g, 유레아 2.0 g, 폴리펩톤 10.0 g, 비프(beef) 추출물 5.0 g 조성의 CM 배지 (pH 6.8)에서 30 ℃ 하 배양 하였다. E. coli는 트립톤 10.0 g, NaCl 10.0 g과 효모 추출물 5.0 g (증류수 1 L에)조성의 LB 배지 상에서 37 ℃ 하 배양하였다. 제한 효소는 Invitrogene의 효소를, 항생제(Ampicillin, Kanamycin, Chloramphenicol)는 Sigma사의 제품을 그리고 DNA 시퀀싱 분석은 마크로젠(주)에 의뢰 분석하였다
실시예 1 : tkt 프로모터 분석
1-1 RNA extraction and 5’-RACE reaction
C. 글루타미쿰 ATCC 13032로부터 전체 RNA 분리는 Trizol™ 용액(Invitrogen)을 시약 제조사의 방법에 따라 분리하여 본 연구에 사용하였다.
다만 Trizol 처리시 글래스 비즈(≥100 μm)를 가해 4 ℃에서 3초 on/ 5초 off 조건으로 3회 비드 비터(bead beatter)로 처리하여 세포 용해를 유도하였다.
간략히 설명하면, 분리한 세균 RNA에 C. 글루타미쿰 각 유전자 특이적 프라이머(RI)을 이용하면 먼저 1st cDNA를 역전사효소(reverse transcriptase)로 37 ℃에서 1시간 반응시킨 후 75 ℃에서 5분간 열처리 하였다. 다음에 주형 RNA를 RNase 처리로 분해하였다. 이를 주형으로 하여 제작한 프라이머 세트로 각 유전자의 미번역 영역(untranslated region)을 PCR로 증폭한 다음 클로닝 한 후 DNA 시퀀스 분석을 통해 각 유전자 유전자의 전사 개시 부위(tanscriptional start site)를 최종 확인하였다.
실시예 2: tkt 프로모터 분리 및 개량
2-1 C. 글루타미쿰 ATCC 13032의 tkt 글루타미쿰의 분리
C. 글루타미쿰 ATCC 13032의 NCBI 컴플리트 게놈 시퀀스(NC 006958)을 PRoBAB과 PROMSCAN 컴퓨터 이용 분석을 통해 C.글루타미쿰 ATCC 13032의 tkt 프로모터 영역를 확보한 후, 본 실험에 사용하였다.
각각 PCR로 증폭한 다음 이들을 TA 클로닝 시스템으로 클로닝하고 변이 유무를 DNA 시퀀싱을 통해 확인하였다. 이들 각 DNA 프래그먼트를 다시 BamHI으로 절단, 정제한 후 CAT(chloramphenicol acetyltransferase) 리포터 벡터 pSK1-CAT 벡터내로 클로닝 하였다. DNA 클로닝시 오리엔테이션과 변이 발생 유무는 DNA 시퀀싱을 통해 확인하였고,이렇게 제작된 플라스미드는 pSK/tkt라고 명명하였다.
2-2 프로모터 개량: 위치 지정 변이 도입
즉, CAT 분석와 카나마이신 농도 플레이팅 방법(Kanamycin gradient plating method)로 SOD 프로모터 활성이 가장 강한 것으로 확인된 각 프로모터에 특정부위 돌연변이 유발 키트(site-directed mutagenesis kit)(Agilent co. USA)를 이용하여 변이를 도입하였다.
간략히 기술하면 상기제작된 pSK/tkt플라스미드 벡터 50 ng을 주형(template)로 하고 각각의 변이 시퀀스(mutation sequence)를 가지는, 상기 제작된 프라이머 Forward 와 Reverse 프라이머 (표 1)를 각각 10 pmol을 가한 다음, 94 ℃에서 2분간 변성(denaturation)시켰다. 이후 94 ℃ 하 30 sec, 72 ℃ 하 5 min 30 sec, 68 ℃ 하 1분의 공정을 1 싸이클로 하여 12 싸이클 수행에 의해 증폭을 유도한 후, DpnI 효소로 주형 벡터를 제거하였다. 그리고 이러한 벡터 용액을 E. coli XL1-Blue 수용체 세포(recipient cell)에 형질 도입 하였다. 박테리아 플라스미드 분리 방법에 의해 플라스미드 DNA를 추출 정제 한 후, DNA 시퀀싱을 통해 변이 도입 유무를 확인하고 이렇게 제작되어진 변이체들을 각각 pSK/Gntm1, pSK/Gntm2라고 명명하였으며, 최종적으로 코리네 박테리움 글루타미쿰 ATCC13032에 형질전환하여 프로모터 활성을 비교 검토하였다.
2-3. C.글루타미쿰으로의 pSK1-CAT 구조체의 형질도입
시퀀스 분석을 통해 확인된 각각의 상기 제작된pSK/tkt 클론들을 C.글루타미쿰에 형질도입(transformation)하기 위하여 C.글루타미쿰 컴피턴트 세포를 만들었다. 100 ml의 BHIS 배지에 10 ml의 서브 배양된 C.글루타미쿰을 접종하여 30℃에서 밤새 배양한 후, 다시 100ml의 CMBHIS-EPO 배지에 OD 600이 0.3이 되도록 접종하여 18℃에서 120 rpm으로 OD 600이 0.8이 될 때까지 약 28시간 배양하였다.
배양액을 4℃에서 6000rpm으로 10분간 원심분리하여 세포를 회수하고 20 ml의 10% 글리세롤 용액으로 현탁한 후 원심분리하는 과정을 3회 반복하였다. 회수된 세포는 다시 10% 글리세롤 용액으로 현탁하고 100 ㎕씩 E-튜브에 분주하여 -70℃ deep freezer에 사용하기 전까지 보관하였다.
C.글루타미쿰 컴피턴트 세포 100 ㎕에 DNA 1 ㎍을 첨가하고 냉각된 일렉트로포레이션 큐베트(electroporation cuvette)에 첨가하여 Bio-Rad 사의 마이크로펄서를 이용하여 일렉트로포레이션을 수행하였다. 펄스(Pulse)한 직후 46℃에서 예열(pre-warmming)한 CM 배지 1ml을 첨가하여 세포를 회수하고 아이스(ice)에서 2분간 반응시킨 다음 30℃ 하 인큐베이터에서 180 rpm으로 배양하였다. 그리고 카나마이신 (50 ㎍/ml)이 첨가된 BHIS 아가 플레이트에 100 ㎕ 도말한 후 30℃ 배양기에서 배양하였다.
2-4. CAT-분석(Chloramphenicol acetyltransferase assay)
C. 글루타미쿰 의 프로모터 영역을 연구하기 위해 각각 프로모터 부위의 결실(deletion)과 변이 유도체(mutation derivates)의 CAT(chloramphenicol acetyltransferase) 분석은 Shaw방법으로 (Shaw et al., 1991. Biochemistry. 30(44):10806) 측정하였다.
간략히 요약하면 C.글루타미쿰을 카나마이신(kanamycin)(50 ㎍/ml)이 첨가된 CM 배지에 배양하여 얻은 세포를 회수하여 단백질 용리물(protein lysate)를 확보하였다. 각각의 protein 5 ㎍과 0.1M Tris-HCl buffer (pH 7.8), 0.4 mg/ml의 5,5‘-dithiobis-2-nitrobenzoic acid (DTNB; Sigma D8130), 0.1 mM Acetyl CoA (Sigma A2056), 0.1 mM chloramphnicol을 첨가하여 RT에서 15분간 반응시킨 후, OD412nm에서 흡광도를 측정하였다
실시예 3 : 개량된 프로모터의 효능 확인
3-1 변이 프로모터 삽입을 위한 재조합 벡터의 제작
앞서 제작한 각 tkt의 프로모터 변이체는 tkt (트랜스케톨라아제)를 코딩하는 유전자와 작동 가능하게 연결하기 위하여 클로닝 작업을 수행하였다.
XbaI과 EcoRI으로 제한 효소처리를 하였고 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 동일한 XbaI과 EcoRI을 이용하여 제한효소로 소화시켜 PCR 정제 키트(퀴아젠 (Qiagen), Hilden, Germany)로 정제한 후 T4 DNA 리가제를 이용하여 클로닝하고, E. coli DH5a 에 형질전환시켰다.
플라스미드 함유 세포의 선택은 카나마이신 (50㎍/ml)이 포함되어진 LB (Luria-Bertani) 아가 플레이트에 도말하고, 37℃에서 16시간 정치하였다. 생성된 콜로니들의 플라스미드 확인은 플라스미드 미니프렙 키트(plasmid miniprep kit) (Qiagen, Hilden, Germany)를 이용하여 추출하였고, 클로닝에 사용되어진 XbaI 및 EcoRI 제한 효소로 처리하여 유전자의 단편을 확인하고 최종 그 유전자의 염기서열 을 확인하였다.
3-2 형질전환
상기 pCGI 벡터(Kim et al.,2011.,J. Microbiol. Methods)에 프로모터 변이 도입이 확인된 클론을 C. 글루타미쿰에 형질전환하기 위하여 C. 글루타미쿰 (KCTC12307BP) 을 수용성 세포(competent cell)로 제작하였다.
10ml CM-broth 배지[포도당 10 g, 폴리펩톤 10 g, 효모추출물 5 g, NaCl 2.5 g, 유레아 2 g (증류수 1리터 기준), pH 7.0]에서 30℃의 온도로 밤새 배양하였다. 상기 전배양된 세포는 100ml의 BHIS 배지[BHI 37 g, 2M 소르비톨 250ml (증류수 1L 기준)]에 OD(600nm)가 0.2-0.3이 되도록 접종하여 30℃에서 180rpm으로 OD(600nm)가 0.8-0.9이 될 때까지 6시간 동안 배양하였다.
배양액은 전처리된 튜브(prechilled tube)에 넣고 4℃에서 5000 rpm에 3-4번 10% 글리세롤로 반복적으로 세정하여 세포를 회수하고, 이 세포는 10% 글리세롤로 현탁시켜 100 ㎕씩 분주하여 -70℃에서 보관하면서 사용하였다.
상기 수용성 세포를 이용하여 제작된 구축물을 일렉트로포레이션 0.2cm 큐베트를 이용하여 BIO-RAD사의 펄서(2.5kv, 25 ㎌, 200Ω)로 형질전환시켰다. 그 후, CM-broth 배지 1ml을 첨가한 후에 바로 46℃에서 6분 동안 예열(pre-warmming)하고 200rpm , 30℃에서 2 시간 동안 진탕배양을 한 후, 카나마이신 (25㎍/ml)이 포함되어진 BHIS (Brain Heart Infusion) 아가 플레이트에 도말하고 30℃에서 32시간 동안 정치하였다.
상기 생성된 콜로니들은 2차 재조합에 이용하기 위해 200 ㎕ BHIS ℃배지에서 30℃에서 200rpm으로 밤새 배양하고, 그 배양액을 1:1000으로 희석하여 스트렙토마이신(40 ㎍/ml)이 포함된 CM 아가 플레이트에 도말하고 30℃에서 72시간 동안 정치한 후 생성된 콜로니를 다시 카나마이신의 내성이 없는지 확인한 후, PCR로 확인하고 DNA 시퀀싱으로 최종 확인하였다.
3-3. 프로모터 활성 비교
tkt 유전자 (Gene ID: 3343601) 프로모터 부위에는 CAT reporter vector의 활성에 근거하여 -35 region과 -10 region이 인접한 부위에 변이를 도입하였고, 사용한 프라이머는 다음과 같다.
표 1
Figure PCTKR2014005555-appb-T000001
tkt유전자의 프로모터에 변이를 도입한 구조체의 CAT활성을 모균주 (KCTC12307BP)와 비교한 결과, Gntm2가 Gntm1 보다 강함을 다트 플레이팅(dot plating) 방법으로 선별할 수 있었고, CAT 효소 활성과 웨스턴 블럿 분석 결과로도 확인하였다.
또한 이 변이체 프로모터들의 C. 글루타미쿰의 생육에 대한 영향을 조사하기 위하여 C. 글루타미쿰 야생주, Gntm1과 Gntm2의 생육곡선과 생육단계별 프로모터 활성을 비교 조사하여 도 5에 나타내었다.
모균주를 포함하여 변이체 돌연변이 균주들을 각각 접종 배양한 지 6시간이 지났을 때 초기 로그 페이즈(log phase) 단계에 진입하였고 8시간이 지났을 때 미드 로그 페이즈(mid log phase)의 성장곡선을 나타냈다. 12시간 이후부터는 안정 페이즈(stationary phase)에 진입하는 것으로 보이며 총 24시간이 지났을 때와 비슷한 수준으로 세포 성장이 유지되는 것으로 나타났다 (도 2).
그러나 CAT 효소활성은 크게 상이하였다.
대조군으로 사용한 pSK1-CAT이 도입된 균주는 생육 단계별 CAT활성의 변화가 없는데 반해, Gntm1와 Gntm2는 로그 페이즈에 해당하는 6시간, 8시간 12시간에 최대 효소 활성을 나타내었고, 이들 두 균주간의 효소 활성도 다소 차이가 나타났다.
배양 12시간의 경우, Gntm1균주보다 Gntm2균주의 CAT 효소 활성이 4.2배 높았지만, 배양 24시간이 지난 안정 페이즈 단계에서는 서로 간의 활성 차이가 다소 줄어들었다. 여전히 Gntm2균주의 활성이 Gntm1균주보다 높게 나타났지만, 두 균주 모두 대조군의 경우에 비해서는 활성이 높았다.
실시예 4: L-라이신 생산
코리네박테리움 글루타미쿰 (KCTC12307BP) 균주를 제조한 프로모터 변이체로 형질전환된 개량 균주의 L-라이신 생산을 위해 아래와 같이 배양하였다.
CM 배지[포도당 10 g, 폴리펩톤 10 g, 효모추출물 5 g, NaCl 2.5 g, Urea 2 g (증류수 1리터 기준), pH 7.0]를 10 ml 함유한 100ml 플라스크에 모균주인 코리네박테리움 글루타미쿰 (KCTC12307BP) 과 코리네박테리움 글루타미쿰 Gntm1, 코리네박테리움 글루타미쿰 Gntm2을 각각 접종하고 30℃에서 16시간, 180 rpm의 조건으로 진탕 배양하였다.
100 ml 플라스크에 하기의 L-라이신 배지를 10 ml 첨가하여 CM 배지에서 진탕 배양된 세포 1 ml을 접종하고, 30℃, 180 rpm, 96시간의 조건으로 진탕 배양하였다. 배양 종료 후 샘플 전액을 채취하여 4℃, 3000 rpm, 15분의 조건으로 원심 분리하여 세포를 침전시킨 후 HPLC로 L-라이신의 생산량을 측정한 결과를 표 2에 나타내었다.
[L-라이신 배지 조성 (pH 7. 0)]
당밀 125 g, 원당 65.66 g, (NH4)2SO4 50 g, KH2PO4 0.6 g, MgSO4ㆍH2O 0.4 g, MnSO4ㆍH2O 2 mg, FeSO4ㆍH2O 2 mg, ThiamineㆍHCl 0.3 mg, Biotin 1 mg, CaCO3 5% (증류수 1L 기준)
표 2
균주 L-라이신(g/l)
코리네박테리움 글루타미쿰 KCTC12307BP 30
코리네박테리움 글루타미쿰 Gntm1 31.5
코리네박테리움 글루타미쿰 Gntm2 33.3
이처럼, Gntm2의 L-라이신 생산량이 모균주보다 11% 증가된 것을 알 수 있었고, Gntm1 균주보다는 5.7% 증가된 것을 확인하였다. 즉, 본 발명의 균주들을 이용하여 라이신 생성효율을 높일 수 있었다.
본 발명에 따른 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래 프로모터 변이체는, 야생형에 비해 높은 프로모터 활성을 나타내어 트랜스케톨라아제 및 이와 관련된 효소들의 활성을 증가시켜 라이신의 생합성 효율을 증가시킬 수 있으므로, 산업에 유용한 라이신을 생산에 매우 유용할 것이다.

Claims (12)

  1. 서열번호 5 또는 서열번호 6으로 표시되는 염기서열을 포함하는, 트랜스케톨라아제 유전자 프로모터 변이체.
  2. 제1항에 있어서,
    상기 변이체는 서열번호 6으로 표시되는 염기서열을 포함하는 트랜스케톨라아제 유전자 프로모터 변이체.
  3. 제1항에 있어서,
    상기 변이체는 코리네박테리움 속 미생물 유래인 것을 특징으로 하는 트랜스케톨라아제 유전자 프로모터 변이체.
  4. 제3항에 있어서,
    상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 또는 코리네박테리움 에피션스 (Corynebacterium efficiens)인 것을 특징으로 하는, 트랜스케톨라아제 유전자 프로모터 변이체.
  5. 제1항에 있어서,
    상기 트랜스케톨라아제(transketolase, tkt) 유전자는 트랜스알도라아제(transaldolase tal), 글루코오스-6-포스페이트 디하이드로제나아제[glucose-6-phosphate dehydrogenase, zwf) 및 6-포스포글루코노락토나아제[6-phosphogluconolactonase, devB)를 코딩하는 유전자들과 함께 클러스터(tkt-tal-zwf-opcA-devB)를 형성하고 있는 것을 특징으로 하는 트랜스케톨라아제 유전자 프로모터 변이체.
  6. 제1항 내지 제5항 중 어느 한 항의 트랜스케톨라아제 유전자 프로모터 변이체를 포함하는 벡터.
  7. 제6항의 벡터로 형질전환된 재조합 미생물.
  8. 제7항에 있어서,
    상기 재조합 미생물은 코리네박테리움 속 미생물인 것을 특징으로 하는 재조합 미생물.
  9. 제8항에 있어서,
    상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 또는 코리네박테리움 에피션스 (Corynebacterium efficiens)인 것을 특징으로 하는 재조합 미생물.
  10. 제8항에 있어서,
    상기 재조합 미생물은 오탄당 인산화 경로에 관여하는 효소들을 코딩하는 유전자 클러스터(tkt-tal-zwf-opcA-devB)를 포함하는 것을 특징으로 하는 재조합 미생물.
  11. 제8항 내지 제10항 중 어느 한 항의 재조합 미생물을 탄소 기질을 함유하는 배지에서 배양함을 포함하는 것을 특징으로 하는 라이신 생성방법.
  12. 제1항의 트랜스케톨라아제 유전자 프로모터 변이체 제작용 서열번호 1 및 2로 표시되는 프라이머 세트 또는 서열번호 3 및 4로 표시되는 프라이머 세트.
PCT/KR2014/005555 2013-06-27 2014-06-24 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도 WO2014208970A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130074400A KR101504900B1 (ko) 2013-06-27 2013-06-27 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
KR10-2013-0074400 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208970A1 true WO2014208970A1 (ko) 2014-12-31

Family

ID=52142239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005555 WO2014208970A1 (ko) 2013-06-27 2014-06-24 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도

Country Status (2)

Country Link
KR (1) KR101504900B1 (ko)
WO (1) WO2014208970A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308426A (zh) * 2021-05-27 2021-08-27 齐鲁工业大学 一种改造tk基因5′端序列的重组棒状杆菌及其应用
CN113957073A (zh) * 2021-10-19 2022-01-21 山东寿光巨能金玉米开发有限公司 一种tkt基因启动子突变体及其在生产L-赖氨酸中的应用
CN115261294A (zh) * 2021-04-30 2022-11-01 大象株式会社 L-赖氨酸生产能力得到提高的谷氨酸棒状杆菌突变株及利用其的l-赖氨酸的生产方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656063B1 (ko) * 2015-05-22 2016-09-08 주식회사 삼양사 사이코스 에퍼머화 효소의 발현 시스템 및 이를 이용한 사이코스의 생산
JP6563013B2 (ja) 2014-10-30 2019-08-21 サムヤン コーポレイション プシコースエピメラーゼの発現システムおよびこれを用いたプシコースの生産
ES2907694T3 (es) * 2016-08-31 2022-04-26 Cj Cheiljedang Corp Nuevo promotor y uso del mismo
KR101916622B1 (ko) * 2018-01-04 2018-11-07 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2022265130A1 (ko) * 2021-06-15 2022-12-22 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
KR20230137154A (ko) 2022-03-21 2023-10-04 대상 주식회사 코리네박테리움 발현용 신규 프로모터 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605818A (en) * 1992-12-03 1997-02-25 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-tryptophan, L-tyrosine or L-phenylalanine
KR20030022771A (ko) * 2000-01-21 2003-03-17 다니스코 스위트너스 오와이 5탄당 및 당 알콜의 제조

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605818A (en) * 1992-12-03 1997-02-25 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-tryptophan, L-tyrosine or L-phenylalanine
KR20030022771A (ko) * 2000-01-21 2003-03-17 다니스코 스위트너스 오와이 5탄당 및 당 알콜의 제조

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI. GENBANK 20 February 1999 (1999-02-20), "Corynebacterium glutamicum tkt gene for transketolase, complete cds", accession no. B023377.1 *
IKEDA, M. ET AL.: "A transketolase mutant of Corynebacterium glutamicum", APPL MICROBIOL. BIOTECHNOL., vol. 50, September 1998 (1998-09-01), pages 375 - 378 *
IKEDA, M. ET AL.: "Cloning of the transkelolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium gluramicum", APPL. MICROBIOL. BIOTECHNOL., vol. 51, February 1999 (1999-02-01), pages 201 - 206 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261294A (zh) * 2021-04-30 2022-11-01 大象株式会社 L-赖氨酸生产能力得到提高的谷氨酸棒状杆菌突变株及利用其的l-赖氨酸的生产方法
CN115261294B (zh) * 2021-04-30 2024-03-29 大象株式会社 L-赖氨酸生产能力得到提高的谷氨酸棒状杆菌突变株及利用其的l-赖氨酸的生产方法
CN113308426A (zh) * 2021-05-27 2021-08-27 齐鲁工业大学 一种改造tk基因5′端序列的重组棒状杆菌及其应用
CN113957073A (zh) * 2021-10-19 2022-01-21 山东寿光巨能金玉米开发有限公司 一种tkt基因启动子突变体及其在生产L-赖氨酸中的应用
CN113957073B (zh) * 2021-10-19 2023-09-01 山东寿光巨能金玉米开发有限公司 一种tkt基因启动子突变体及其在生产L-赖氨酸中的应用

Also Published As

Publication number Publication date
KR101504900B1 (ko) 2015-03-23
KR20150001341A (ko) 2015-01-06

Similar Documents

Publication Publication Date Title
WO2014208970A1 (ko) 트랜스케톨라아제 유전자 프로모터 변이체 및 이의 용도
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2018043856A1 (ko) 신규 프로모터 및 이의 용도
WO2019004778A2 (ko) 신규한 아스파토키나제 변이체 및 이를 이용한 l-아미노산의 제조방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2019117671A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2022163934A1 (ko) 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2015009074A2 (ko) 신규 변이 오르니틴 디카복실레이즈 단백질 및 이의 용도
WO2022231368A1 (ko) 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022163917A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2018093033A1 (ko) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022163935A1 (ko) 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2018230978A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2022163940A1 (ko) 신규한 갈락토사이드 o-아세틸트랜스퍼라제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022163937A1 (ko) 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022163936A1 (ko) 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817451

Country of ref document: EP

Kind code of ref document: A1