WO2020100733A1 - エキシマランプ光源装置 - Google Patents

エキシマランプ光源装置 Download PDF

Info

Publication number
WO2020100733A1
WO2020100733A1 PCT/JP2019/043845 JP2019043845W WO2020100733A1 WO 2020100733 A1 WO2020100733 A1 WO 2020100733A1 JP 2019043845 W JP2019043845 W JP 2019043845W WO 2020100733 A1 WO2020100733 A1 WO 2020100733A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
lamp
excimer lamp
excimer
lamp bulb
Prior art date
Application number
PCT/JP2019/043845
Other languages
English (en)
French (fr)
Inventor
小田 孝治
淳哉 朝山
昌士 岡本
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to KR1020217017991A priority Critical patent/KR102324022B1/ko
Priority to JP2019563636A priority patent/JP6729820B1/ja
Priority to EP19884173.6A priority patent/EP3882953A4/en
Priority to CN201980072309.2A priority patent/CN112997271B/zh
Priority to US17/290,875 priority patent/US11270879B2/en
Publication of WO2020100733A1 publication Critical patent/WO2020100733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps

Definitions

  • the present invention generates UV (ultraviolet) light that can be used in the fields of, for example, UV ozone cleaning, UV ozone deodorization, UV surface modification, UV curing, and UV sterilization.
  • the present invention relates to an excimer lamp light source device including an excimer lamp that is a light source suitable for forming a device that converts the wavelength of light into a wavelength and irradiating the excimer lamp, and an inverter that lights the excimer lamp.
  • a UV light source used for UV sterilization or UV deodorization in a general household is a relatively small-scale light source device, and therefore, high efficiency up to the limit is not required. Instead, it may be required to be realized at the lowest possible cost, and for such applications, the techniques described in the above-mentioned documents have not always been optimal.
  • the lamp that can be realized at the lowest cost is a simple cylindrical glass tube filled with a discharge medium, and then both tube ends are filled with gas.
  • a lamp bulb is hermetically sealed, and an external electrode made of a ring-shaped or cap-shaped conductor is provided in the vicinity of both sealed tube ends, and a discharge current is passed in the tube axis direction of the glass tube (hereinafter, "The form in which the discharge current flows in the tube axis direction" refers to this form.
  • the reason for the low cost of this type of lamp is the simple construction of the lamp bulb. Therefore, a large number of lamps of this type have been proposed more than before.
  • this type of lamp is a mercury lamp only, because when a discharge current is passed in the direction of the tube axis of the glass tube, the discharge path is longer than that in the direction perpendicular to the tube axis. Since it tends to occur, it becomes possible to make the current flow easily by including mercury vapor (Penning effect), so that the required applied voltage height can be kept within a practical range. However, it is not appropriate to use the light source containing harmful mercury in the above-mentioned household appliances such as foods, beverages and clothing.
  • the inventors of the present invention have an excimer lamp of a type in which a discharge current flows in the axial direction of a tube, which has a lamp bulb structure like the one described in JP-A-2005-267908 (however, JP-A-2005-2005).
  • the fluorescent substance film, the magnesium oxide film, and the mercury described in Japanese Patent No. 267908) were prepared as a preliminary test lamp. Its configuration is as shown in FIG. 14, which is a schematic diagram of a concept related to the technology of the excimer lamp light source device of the present invention.
  • the excimer lamp (Y ′) thus prepared is filled with xenon gas at an appropriate pressure in the discharge space (Yg ′) surrounded by the lamp bulb (Yt ′) and the hermetically sealed portions (Ys ′) at both ends thereof.
  • the external electrodes (Ye1 ′, Ye2 ′) formed by winding a strip metal plate are arranged.
  • Japanese Patent No. 3149780 by disposing a conductive material on a part of the inner surface of the lamp bulb, it is possible to reduce the applied voltage for starting discharge, A carbon paste film forming region as an easily dischargeable substance layer was provided on the inner surface of one end of the lamp bulb. Note that, in FIG. 14, the carbon paste film formation region is not shown in order to avoid overlapping of drawing elements and making it difficult to visually recognize.
  • the external electrodes (Ye1 ', Ye2') were connected to an inverter for generating a high-voltage AC, the preliminary test lamp was turned on, and the intensity of the generated UV light was measured. It was found that the UV emission efficiency against the electric power supplied to the lamp was extremely low.
  • a diffuse discharge (Gd ′), which is a discharge uniformly generated in the space surrounded by the electrodes and the entire volume located between them, was generated by a thin line as shown in (b) of FIG.
  • the shape of the discharge path of the narrowly defined contraction discharge is various, and there were cases where the discharge path had a meandering shape and a shape which was close to a straight line, but it was mainly recognized as one bright line. Even when a narrowly defined contraction discharge is generated, a diffusion discharge is generated in a partial space surrounded by the outer electrodes (Ye1 ′, Ye2 ′) in the inner region of the lamp bulb (Yt ′). Was there.
  • the boundary point of where is the discharge path of the narrow-sense contraction discharge (Gs ′) is not necessarily clear, but the end of the narrow-sense contraction discharge (Gs ′) is not limited to the external electrode (Ye1 ′, It seemed to be almost in contact with the inner surface of the lamp bulb (Yt ') facing the portion surrounded by Ye2').
  • the discharge path of the narrow contraction discharge (Gs ′) is in contact with the inner surface of the lamp bulb (Yt ′). In many cases, narrow contraction discharge (Gs') is not due to creeping discharge.
  • narrow sense contraction discharge means, In a lamp bulb whose both ends are hermetically sealed, an easily dischargeable material layer is formed on the surface in contact with the discharge space, and there is no internal electrode, and there is a pair of external electrodes. A discharge current flows in the axial direction of the tube.
  • the excimer lamp of mainly from the vicinity of the portion of the inner surface of the lamp bulb where one of the external electrodes faces or is in contact with the portion of the lamp bulb that is in contact with, It is defined as a discharge having a form of one linear discharge path reaching the vicinity of the inner surface portion.
  • a discharge having a form of a plurality of linear discharge paths is provided from one side to the other side of the vicinity of the inner surface of the lamp bulb facing the portion of the lamp bulb where the electrodes are close to or in contact with each other). Or the linear discharge path extends into the discharge space from two remote locations on one of the inner surfaces of the external electrodes facing each other, and the two linear discharge paths merge into one to form the whole.
  • a linear discharge path appears from one of the outer electrode facing inner surface portions to a point in the middle of the discharge space, and a diffusion discharge occurs from that point to the other outer electrode facing inner surface portion. This is because there are cases, etc.
  • a discharge having a linear discharge path of such a rare appearance is also referred to as a narrow definition contraction discharge.
  • WO 2005/057611, JP 2005-174632 A, JP 2006-351541 A, JP 2008-243521 A, and JP 2008-262805 A describe internal electrodes and internal electrodes.
  • Japanese Unexamined Patent Publication No. 2006-079830 describes a dielectric barrier discharge fluorescent lamp having an internal electrode and an external electrode, which uses a rare gas such as xenon as a discharge medium.
  • the electrode is divided into a plurality of parts. Therefore, a technique for suppressing the occurrence of contracted discharge has been proposed.
  • WO 2008/038527 describes a dielectric barrier discharge fluorescent lamp having an internal electrode and an external electrode, which uses a rare gas mainly containing xenon as a discharge medium. There is a description that when the value is increased, a contraction discharge state is generated in the vicinity of the internal electrode.
  • Japanese Patent Laid-Open No. 2005-327659 describes a dielectric barrier discharge fluorescent lamp having an internal electrode and an external electrode, which uses a rare gas mainly containing xenon as a discharge medium. There is a description that contraction discharge is more likely to occur as the current increases.
  • Japanese Patent Laid-Open No. 2006-338897 describes a dielectric barrier discharge fluorescent lamp having an internal electrode and an external electrode, which uses a rare gas mainly containing xenon as a discharge medium. It is described that when the applied voltage is increased, a transition to a contracted discharge state occurs near the internal electrodes, and that as the operating frequency of the inverter is lower, contracted discharge near the internal electrodes is less likely to occur.
  • Japanese Unexamined Patent Publication No. 2000-223079 has a pair of strip-shaped external electrodes extending in the longitudinal direction of a tubular lamp bulb, or a linear internal electrode and a strip-shaped external electrode located on the central axis of the tubular lamp bulb.
  • a dielectric barrier discharge fluorescent lamp of a type in which a discharge current is passed in a direction perpendicular to the tube axis instead of a type in which a discharge current is passed in the tube axis direction, in which a rare gas mainly containing xenon is used as a discharge medium.
  • this document describes that when the gas pressure of xenon gas is increased, a phenomenon in which the discharge contracts occurs, and the contraction causes countless whisker-shaped discharges.
  • Japanese Unexamined Patent Application Publication No. 2014-030763 has a pair of strip-shaped external electrodes extending in the longitudinal direction of a tubular lamp bulb, and does not flow a discharge current in the tube axis direction, but the current flows in a direction perpendicular to the tube axis.
  • a flow type excimer lamp using xenon and iodine as a discharge medium is described, but in this document, when the xenon partial pressure is increased with the iodine partial pressure kept constant, diffusion discharge occurs in a low pressure region lower than 12 kV. Although it occurs, there is a description that a plurality of filament discharges are generated when the temperature is higher than that.
  • discharge occurs innumerable and “plural filament discharges occur”, and does not correspond to narrowly defined contraction discharge (Gs ') in the excimer lamp (Y'), which mainly has only one discharge. Therefore, in the present invention, there is no information on contraction discharge corresponding to the narrow definition contraction discharge (Gs') in the excimer lamp of the type having only the external electrode and flowing the discharge current in the tube axis direction. Further, as described above, the information of the lamp having only the external electrode and flowing the discharge current in the tube axis direction includes only the information containing mercury.
  • the problem to be solved by the present invention is to realize a low cost by adopting a lamp bulb that does not have internal electrodes and has a simple structure in which a discharge current flows in the tube axis direction.
  • An object of the present invention is to provide an excimer lamp light source device that avoids the occurrence of discharge.
  • the excimer lamp light source device has a shape in which a discharge space (Yg) filled with a discharge gas for generating xenon excimer molecules is included, and both ends of a tubular body are hermetically sealed. , A discharge is induced in the discharge space (Yg) of the lamp bulb (Yt) in which an easily dischargeable material layer (Yo) that facilitates discharge is formed on at least a part of the surface in contact with the discharge space (Yg).
  • Excimer lamp having a pair of external electrodes (Ye1, Ye2) for flowing a discharge current in the tube axis direction of the lamp bulb (Yt), and generating UV light in the discharge space (Yg) by the discharge.
  • An excimer lamp light source device comprising: The inverter (Ui) is It is a narrowly defined contraction discharge, Mainly from the vicinity of the inner surface portion of the lamp bulb (Yt) facing the portion of the lamp bulb (Yt) with which one of the outer electrodes (Ye1, Ye2) is close to or in contact, the external electrodes (Ye1, Ye2) Rather than the electric power that causes the discharge having the form of one linear discharge path reaching the vicinity of the inner surface portion of the lamp bulb (Yt) that opposes the portion of the lamp bulb (Yt) that the other approaches or contacts.
  • the excimer lamp (Y) is turned on in a discharge state other than a narrowly defined contraction discharge.
  • An excimer lamp light source device is an electrode which is a minimum value of a distance between the pair of external electrodes (Ye1, Ye2) measured along the outer surface of the lamp bulb (Yt).
  • the value of the inter-electrode distance (Le) increases or decreases when the minimum value of the electric power that causes the narrow-sense contraction discharge determined according to the inter-electrode distance (Le) increases with the inter-electrode distance (Le). Is a value selected from the region of the inter-electrode distance (Le) at which is saturated.
  • the excimer lamp light source device is characterized in that the ratio of the power value that causes narrow-sense contraction discharge to the power value of the lamp input during normal operation is 105% to 120%.
  • An excimer lamp lighting method includes a discharge space (Yg) filled with a discharge gas that generates xenon excimer molecules, and has a shape in which both ends of a tubular body are hermetically sealed.
  • a discharge is induced in the discharge space (Yg) of the lamp bulb (Yt) in which an easily dischargeable material layer (Yo) that facilitates discharge is formed on at least a part of the surface in contact with the discharge space (Yg).
  • Excimer lamp having a pair of external electrodes (Ye1, Ye2) for flowing a discharge current in the tube axis direction of the lamp bulb (Yt), and generating UV light in the discharge space (Yg) by the discharge.
  • An excimer lamp lighting method in an excimer lamp light source device comprising: The inverter (Ui) is It is a narrowly defined contraction discharge, Mainly from the vicinity of the inner surface portion of the lamp bulb (Yt) facing the portion of the lamp bulb (Yt) with which one of the outer electrodes (Ye1, Ye2) is close to or in contact, the external electrodes (Ye1, Ye2) Rather than the electric power that causes the discharge having the form of one linear discharge path reaching the vicinity of the inner surface portion of the lamp bulb (Yt) that opposes the portion of the lamp bulb (Yt) that the other approaches or contacts.
  • the excimer lamp (Y) is turned on in a discharge state other than a
  • the excimer lamp lighting method according to the fifth aspect of the present invention is characterized in that the ratio of the power value that causes narrow-sense contraction discharge to the power value of the lamp input during normal operation is 105% to 120%.
  • An excimer lamp light source device that avoids the occurrence of narrow-sense contraction discharge while realizing low cost by adopting a lamp bulb that does not have internal electrodes and allows discharge current to flow in the tube axis direction and has a simple structure. Can be provided.
  • the schematic diagram which simplifies and shows a part of excimer lamp light source device of this invention is represented.
  • the schematic diagram which simplifies and shows a part of excimer lamp light source device of this invention is represented.
  • 7 shows experimental data related to the excimer lamp light source device of the present invention.
  • 1 is a schematic view of a concept related to the technology of an excimer lamp light source device according to the present invention.
  • the schematic diagram which simplifies and shows the excimer lamp light source device of this invention is represented.
  • the schematic diagram which simplifies and shows the excimer lamp light source device of this invention is represented.
  • the schematic diagram which simplifies and shows the excimer lamp light source device of this invention is represented.
  • the schematic diagram which simplifies and shows the excimer lamp light source device of this invention is represented.
  • the schematic diagram which simplifies and shows the excimer lamp light source device of this invention is represented.
  • 1 is a schematic view of a concept related to the technology of an excimer lamp light source device according to the present invention.
  • FIG. 1 is a schematic diagram schematically showing a part of the excimer lamp light source device of the present invention.
  • the excimer lamp (Y) in this figure is illustrated on the assumption that the lamp bulb (Yt) is made based on a cylindrical tube body.
  • (A) of the figure shows a cross section when the axis of the lamp bulb (Yt) is perpendicular to the paper surface, and
  • (b) of the figure shows the case where the axis of the lamp bulb (Yt) is included in the paper surface.
  • the present invention is not limited to the former sectional shape being circular.
  • the lamp bulb (Yt) of the excimer lamp (Y) is configured such that both ends of the tubular body are closed by airtight sealing parts (Ys) so as to include the discharge space (Yg), and the discharge space (Yg). Is filled with a discharge gas that generates xenon excimer molecules.
  • the airtight sealing portion (Ys) has a planar shape perpendicular to the axis as an example, the hermetically sealing portion (Ys) may have a hemispherical shape that bulges outward.
  • a pair of external electrodes are provided on the outer surface of the lamp bulb (Yt) so as to be separated from each other in the axial direction.
  • the external electrodes (Ye1, Ye2) are formed by winding a metal plate in a ring shape is illustrated, but the metal wire is wound once or more, or a metal paste such as a silver paste is applied and fired. It may be solidified or may be composed of a metal vapor deposition film.
  • the external electrodes (Ye1, Ye2) are not limited to a closed figure such as a circle in a cross section perpendicular to the axis as shown in (a) of this figure, and have, for example, a C shape. It doesn't matter. Further, one or both of the external electrodes (Ye1, Ye2) may cover part or all of the outer surface of the hermetically sealed portion (Ys).
  • the excimer lamp light source device of the present invention includes an inverter (Ui) for generating a high-voltage alternating current as shown in FIGS. 9, 10, 11, 12, and 13 described later.
  • the secondary winding (Ls) of the transformer (Tf) of the inverter (Ui) is connected to the external electrodes (Ye1, Ye2) to discharge the discharge space (Yg) of the lamp bulb (Yt). Is induced, a discharge current flows in the tube axis direction of the lamp bulb (Yt), and UV light can be generated in the discharge space (Yg).
  • electrical connection members such as lead wires, which may be provided on the external electrodes (Ye1, Ye2) for connecting the inverter (Ui), are not shown.
  • an easily dischargeable material layer (Yo) that facilitates discharge is formed on at least a part of the surface in contact with the discharge space (Yg).
  • the easily dischargeable substance or easily electron-emissive substance
  • a substance having a work function smaller than that of the tube forming the lamp bulb such as magnesium oxide (MgO) or lanthanum oxide.
  • a metal compound selected from the group consisting of (La2O3), cerium oxide (CeO2), yttrium oxide (Y2O3), zirconium oxide (ZrO2), and lanthanum boride (LaB6) can also be used.
  • the easy discharge material layer (Yo) is formed on a part of the inner surface of the lamp bulb (Yt) where the outer electrode (Ye1) is in contact with the outer surface.
  • FIG. 2 which is a schematic diagram showing a part of the excimer lamp light source device of the present invention
  • an inner surface of the lamp bulb (Yt) corresponding to 360 degrees around the axis is formed.
  • the easy-discharging material layer (Yo) may be formed.
  • the easy-discharging material layer extends to the inner surface of the portion of the lamp bulb (Yt) where the outer electrode (Ye1) is not in contact with the outer surface. (Yo) may be formed. Further, as shown in FIG.
  • the easily dischargeable material layer (Yo) may be formed even on the inner surface side of the hermetically sealed portion (Ys). 1 and 2, the easy discharge material layer (Yo) is formed on the side having the external electrode (Ye1), but the easy discharge material layer (Yo) is also formed on the side having the external electrode (Ye2). A discharge material layer (Yo) may be formed.
  • the PP lamp voltage described in the above conditions refers to the peak-to-peak value of the lamp applied voltage, and this abbreviation will be used hereinafter.
  • the inverter (Ui) for lighting the lamp uses the above-mentioned method described later, and the operating frequency of the inverter is maintained while the waveform of the pulse related to discharge in the voltage applied to the lamp, that is, the PP lamp voltage is kept unchanged. That is, by changing the pulse generation frequency, a trial experiment of starting the lamp lighting is performed while changing the input power P to the lamp, and the probability ⁇ (p) of diffused discharge occurring in one lighting start is measured. Was carried out for the above three types of PP lamp voltages.
  • the inverter (Ui) has a simple structure that does not particularly perform so-called soft-start control such that the PP lamp voltage is gradually increased in the initial stage of lighting, and therefore, the inverter can be used for a short period of time in the initial stage of lighting.
  • the desired PP lamp voltage has been achieved.
  • keeping the PP lamp voltage invariant means keeping the energy applied to the lamp invariable by one pulse waveform, but the one cycle energy described in the above conditions is the above three types of PP lamps.
  • One pulse waveform corresponding to each voltage represents energy input to the lamp.
  • One cycle energy under the above-mentioned experimental conditions is the VQ Lissajous method (Ozonizer Handbook Corona Co., Ltd. (Showa 35) P.232), or the Institute of Electrical Engineers of Japan Technical Report No. 830, (2001) p.71). Then, the lamp input power can be calculated by multiplying the value of the one cycle energy by the value of the actual frequency at the time of lighting.
  • FIG. 3 shows the experimental data relating to the excimer lamp light source device of the present invention, in which the horizontal axis represents the lamp input power P and the vertical axis represents the probability of occurrence of diffusion discharge ⁇ (p). From the figure, it can be pointed out immediately that the higher the electric power supplied to the lamp, the lower the probability of occurrence of diffusion discharge.
  • the lamp input power P on the horizontal axis is expressed by a value obtained by multiplying the above-mentioned value of one cycle energy at the time of diffusion discharge at the specified frequency of 30 kHz by the value of the actual frequency at the time of lighting. It is a thing. Therefore, the power applied to the lamp obtained by this calculation is equal to the power actually applied to the lamp when diffusion discharge occurs under the lighting condition, but when narrow-sense contraction discharge occurs, It is not necessarily equal to the electric power actually supplied to the lamp.
  • the diffusion discharge recovery frequency is significantly lower than the narrow contraction discharge transition frequency. won. That is, it was found that the transition between the diffused discharge and the narrowly defined contracted discharge was accompanied by hysteresis.
  • FIG. 3 represents the lamp input power during diffusion discharge in a broad sense including the power just before contraction discharge occurrence in the narrow sense described above, the power in the steady discharge state is It can be said that FIG. 3 is a correct graph including the case of falling into a small narrow-sense contraction discharge.
  • the observation can be performed by displaying the phase difference information of the lamp voltage waveform and the lamp current waveform as a waveform in the same manner, but this is not done.
  • the lamp input power is the difference between the highest voltage and the lowest voltage in the voltage waveform of one cycle, That is, it depends on the PP lamp voltage and the frequency almost independently and in a positive correlation.
  • the frequency the power supplied to the lamp is proportional to the frequency.
  • FIG. 3 as described above, attention is paid to a certain PP lamp voltage, and while keeping it unchanged, the frequency is changed to generate the diffusion discharge probability ⁇ (when the lamp input power P is changed. This is a graph of the effect on p).
  • the influence on the diffusion discharge occurrence probability ⁇ (p) when the lamp input power P is changed is , I don't know from this figure.
  • FIG. 4 represents experimental data related to the excimer lamp light source device of the present invention.
  • 3 and 4 have the same original data used for creation, but in the creation of FIG. 4, the probability of occurrence of diffusion discharge is 100% or 0% irrespective of lamp input power. Data of a certain frequency is excluded. It can be pointed out from FIG. 4 that the higher the electric power supplied to the lamp, the lower the probability of occurrence of diffusion discharge.
  • ⁇ (p) of occurrence of diffusion discharge decreases to the right with an increase in the power P supplied to the lamp.
  • Lamp bulb Synthetic quartz tube, outer diameter 10mm, thickness 0.5mm, carbon coating distance between electrodes (Le): 20mm
  • Gas pressure 8.0, 11, 12, 13 kPa (total pressure)
  • Frequency 20 to 45 kHz PP lamp voltage: 3.9 kV
  • Inverter An inverter (Ui) for lighting the flyback type lamp uses the same type as described above as described above, and outputs the waveform of the pulse related to discharge in the voltage applied to the lamp, that is, the PP lamp voltage.
  • FIG. 5 shows the experimental data related to the excimer lamp light source device of the present invention.
  • the lamp input power P on the horizontal axis is expressed by a value obtained by multiplying the value of one cycle energy at the time of diffusion discharge at a certain specified frequency by the value of the actual frequency at the time of lighting.
  • Lamp bulb Synthetic quartz tube, outer diameter 10 mm, thickness 0.5 mm, carbon coating distance between electrodes (Le): 20 mm Discharge gas, pressure: Xe100%, 3.3, 6.7 kPa Frequency: 16 to 53 kHz PP lamp voltage: 3.3, 3.9, 4.5 kV
  • Inverter An inverter (Ui) for lighting the flyback type lamp uses the same type as described above as described above, and outputs the waveform of the pulse related to discharge in the voltage applied to the lamp, that is, the PP lamp voltage.
  • the waveform of the pulse related to the discharge in the voltage applied to the lamp That is, while the PP lamp voltage is kept unchanged, the operating frequency of the inverter, that is, the pulse generation frequency is changed to change the input power P to the lamp, and a trial experiment for starting the lamp lighting is performed to perform one lighting operation.
  • the measurement of the probability ⁇ (p) at which the diffusion discharge occurs at the start-up was carried out for the above two kinds of gas pressures. The results of the experiment showed the same tendency as in FIG. 5 that the higher the power supplied to the lamp, the lower the probability of occurrence of diffusion discharge (however, not shown).
  • the easily dischargeable material layer (Yo) is formed on the surface of the lamp bulb (Yt) whose both ends are hermetically sealed and which is in contact with the discharge space (Yg).
  • the excimer lamp (Y) of the type having no pair of external electrodes (Ye1, Ye2) and flowing a discharge current in the tube axis direction the higher the power supplied to the lamp, the lower the probability of occurrence of diffusion discharge, It was found that there is a tendency that the above-mentioned narrowly defined contraction discharge is likely to occur.
  • the inter-electrode distance (Le) was all 20 mm.
  • the experiment which changed the distance (Le) between electrodes under several discharge gas conditions is described.
  • the specifications and experimental conditions of the excimer lamp (Y) used in the experiment are as follows.
  • the inverter (Ui) for lighting the lamp uses the above-mentioned method described later, and the operating frequency of the inverter is maintained while the waveform of the pulse related to discharge in the voltage applied to the lamp, that is, the PP lamp voltage is kept unchanged. That is, gradually increasing the pulse generation frequency from a low condition is repeated until the narrow-sense contraction discharge is generated, and the power value at that time, that is, the narrow-sense contraction discharge generation threshold power value Pt is measured.
  • Various kinds of discharge gas conditions (1), (2), (3), (4), and (5) were used.
  • FIG. 6 shows the experimental data related to the excimer lamp light source device of the present invention.
  • Dpt the narrow-sense contraction discharge occurrence threshold power density value
  • FIG. 7 shows experimental data related to the excimer lamp light source device of the present invention.
  • the volume of the discharge space is the sum of the electrode distance (Le), the width of the external electrode (Ye1) and the width of the external electrode (Ye2), and the axis of the internal space of the lamp bulb (Yt). A value obtained by multiplying the cross-sectional area of a vertical cross section.
  • a region of the inter-electrode distance equal to or less than the value of the inter-electrode distance (Le) that gives the maximum value when the inter-electrode distance (Le) is changed that is, In the area where the graph is horizontal or rising to the right, from the desire to input as much electric power as possible under the specified conditions of the cross-sectional area of the lamp bulb (Yt), the gas composition, and the gas pressure, It can be said to be a particularly advantageous area.
  • the inter-electrode distance that is equal to or less than the value of the inter-electrode distance (Le) that gives the maximum value when the inter-electrode distance (Le) is changed with respect to the minimum value of the electric power that causes the narrow-sense contraction discharge described above.
  • the minimum value of the electric power that causes the narrow-sense contraction discharge increases when the inter-electrode distance (Le) increases.
  • FIG. 8 is a schematic diagram of a concept related to the technology of the excimer lamp light source device of the present invention.
  • This figure conceptually expresses the relationship between the inter-electrode distance (Le) and the narrowly defined contraction discharge generation threshold power value Pt for one discharge gas condition in FIG. 6 as a continuous curve.
  • the amount of shaft is the same as in FIG.
  • the narrow-sense contraction discharge occurrence threshold power value expected at the time of design is like the threshold power curve (F0) drawn by the solid line, and the maximum position at that time is the central maximum position (P0).
  • the maximum position moves to the one with a larger inter-electrode distance due to some factor and moves to the maximum position (P1) on the right side.
  • the allowable amount for the slenderness of the discharge space is increased, and as a result, the volume of the discharge space at the maximum position (P1) is increased, so that the narrow-definition contraction discharge occurrence threshold power value Pt is also increased.
  • It increases and becomes like a threshold power curve (F1) drawn with a broken line.
  • the state of the threshold power curve (F1) in the region of the electrode distance on the left side of the maximum position (P0) of the original threshold power curve (F0) is the same as the state of the threshold power curve (F0).
  • the safety distance selection guideline It can be seen that it is preferable to select a region near 20 mm or less, (25) near 25 mm or less, and (4) near 30 mm or less.
  • the maximum position may be outside the range of the distance between the electrodes for which the experiment was conducted, but a region of at least 40 mm or less can be selected.
  • the position of the maximum value may not be specified.
  • the moving average process may be performed on the measured narrow-sense contraction discharge generation threshold power value Pt, the unevenness of the graph may be leveled, and the position of the maximum value may be specified.
  • the difference between the measured narrow-sense contraction discharge occurrence threshold power value Pt and the maximum value is, for example, 5% or less, or the diffusion discharge occurrence probability ⁇ (p) in FIGS. 3 and 5 changes from 100% to 0%.
  • the measured value of 10% or less which is a representative value of the variation width of the lamp input power P for the purpose of performing the above, may be treated as being the same as the maximum value (included in the horizontal region).
  • the above-mentioned narrowly defined contraction discharge generation threshold power value Pt changes depending on the one cycle energy and gas pressure which are parameters at the time of the experiment. Of course, it also changes depending on parameters such as the shape of the lamp, the type of buffer gas, and the mixing ratio with xenon.
  • the lamp input power that achieves the desired UV light intensity that is, the lamp input power value during normal operation, that is, the operation input power value Pw
  • the contraction in a narrow sense The relationship with the discharge occurrence threshold power value Pt is such that the narrow sense contraction discharge occurrence threshold power value Pt is slightly larger than the operating power input value Pw, for example, the narrow definition contraction discharge occurrence threshold power value Pt is the operating input power value Pw. It can be 105%, 110%, or 120%.
  • FIGS. 9, 10, 11, 12, and 13 are schematic diagrams showing the excimer lamp light source device of the present invention in a simplified manner.
  • Various types of inverters (Ui) that can be used for example will be described.
  • the inverter (Ui) of the present invention needs to be able to set electric power lower than the electric power generated in the narrow-sense contraction discharge in the excimer lamp (Y) to the lamp, that is, to set the electric power supplied to the lamp.
  • the power supplied to the lamp is almost equal to the difference between the highest voltage and the lowest voltage in the voltage waveform of one cycle, that is, the PP lamp voltage and the frequency.
  • the power supplied to the lamp is proportional to the frequency, so that the setting of the output voltage of the DC power supply (Mx) and the primary of the transformer (Tf) described below are performed. This can be achieved by setting the turn ratio of the secondary winding and adjusting the operating frequency of the inverter (Ui) by adjusting the parameters of the gate signal generation circuit (Uf).
  • the one that can set the lamp input power and can cause the desired discharge in the discharge space of the excimer lamp is the excimer of the present invention. It can be used as an inverter for a lamp light source device.
  • the inverter (Ui) depicted in FIG. 9 is a type called a half bridge system, and the primary side winding (Lp) of the transformer (Tf) is composed of two switching elements (Qu, Qv) such as FETs. It is driven alternately.
  • the secondary winding (Ls) of the transformer (Tf) has an appropriate turn ratio with respect to the primary winding (Lp), and the external electrodes () of the excimer lamp (Y) are provided at both ends thereof. Ye1 and Ye2) are connected.
  • the switching elements (Qu, Qv) are connected in series, the capacitors (Cu, Cv) are also connected in series, and the voltage of the DC power supply (Mx) is applied to both ends of these two series connection objects connected in parallel. To be done.
  • Both ends of the primary winding (Lp) are connected to a connection node of the two switch elements (Qu, Qv) and a connection node of the two capacitors (Cu, Cv), respectively.
  • the switch elements (Qu, Qv) are controlled via the gate drive circuits (Gu, Gv) by the alternately activated gate signals (Shu, Shv) generated by the gate signal generation circuit (Uf). ..
  • the gate signal generation circuit (Uf) generates the gate signal (Shu, Shv) so that each of the switch elements (Qu, Qv) alternately repeats an on state and an off state. However, when the ON state is switched, a period called a dead time during which both of the switching elements (Qu, Qv) are in the OFF state is inserted.
  • the inverter (Ui) illustrated in FIG. 10 is a type called a full bridge system, and the primary side winding (Lp) of the transformer (Tf) has four switching elements (Qu, Qv, Qu ′, Qv). '), And these switching elements are driven by a gate signal (Shu, Shv) from a gate signal generation circuit (Uf) that operates in the same manner as the half bridge described above.
  • the switch element (Qu, Qv ′) when the switch element (Qu, Qv ′) is in the on state, the switch element (Qv, Qu ′) is in the off state, and the switch element (Qv, Qv, When Qu ') is in the on state, the switching element (Qv, Qu') operates so as to be in the off state. Due to the configuration and operation of the inverter (Ui) shown in the figure, a high voltage AC is applied to the external electrodes (Ye1, Ye2) of the excimer lamp (Y), and a discharge is generated in the discharge space (Yg). To do.
  • the inverter (Ui) depicted in FIG. 11 is of a type called a push-pull type, and the two primary side windings (Lpu, Lpv) of the transformer (Tf) are the same as those of the half bridge described above. Alternately by two switch elements (Qu, Qv) which are controlled via the gate drive circuits (Gu, Gv) by the gate signals (Shu, Shv) from the gate signal generation circuit (Uf) operating in the same manner. It is driven. Due to the configuration and operation of the inverter (Ui) shown in the figure, a high voltage AC is applied to the external electrodes (Ye1, Ye2) of the excimer lamp (Y), and a discharge is generated in the discharge space (Yg). To do.
  • the voltage waveform applied to the external electrodes (Ye1 ′, Ye2 ′) by the inverter (Ui) in FIGS. 9, 10, and 11 described above is the polarity inversion with respect to the waveform based on the rectangular wave.
  • the waveform has a disturbance from a rectangular wave as an ideal concept such as an overshoot immediately after, a ringing after the overshoot, a voltage relaxation in a dead time period before the next polarity reversal, and the like.
  • the inverter (Ui) depicted in FIG. 12 uses one of the primary windings (Lp) of the transformer (Tf) and the gate signal from the gate signal generation circuit (Uf) in a format called a flyback system. (Shu) is driven by repeating the ON state and the OFF state of one switch element (Qu) controlled by the gate drive circuit (Gu). While the switch element (Qu) is in the ON state, magnetic energy based on the exciting current flowing through the primary winding (Lp) is accumulated in the core of the transformer (Tf), and the switch element (Qu) is turned off.
  • the state becomes a state the accumulated magnetic energy is released as electric energy in the secondary winding (Ls), so that high voltage AC is applied to the external electrodes (Ye1, Ye2) of the excimer lamp (Y).
  • a discharge is generated in the discharge space (Yg).
  • the waveform of the high-voltage AC in this case is a single-pulse waveform in which the absolute value of the voltage rises and reaches a peak immediately after the switching element (Qu) is turned off.
  • ringing that follows the monopulse waveform may appear.
  • the inverter (Ui) depicted in FIG. 13 is a collector resonance type (commonly known as the Royer type), and is a transformer (Tf) having two primary-side windings (Lpu, Lpv) connected in series. Are alternately driven by two switching elements (Qu, Qv) of bipolar transistors (or FETs, etc.).
  • a resonance circuit is formed by connecting both ends of a resonance capacitor (Crp) to both ends of a series connection of the primary windings (Lpu, Lpv), and the primary windings (Lpu, Lpv).
  • the output voltage from the positive terminal of the DC power supply (Mx) is supplied to the series connection node via a choke coil for stabilizing the supply current, and the DC power supply (Mx) stabilizes the power supply voltage.
  • a smoothing capacitor (Cx) is connected for this purpose.
  • a current supply path from the positive terminal of the DC power source (Mx) is formed in the base of each of the switch elements (Qu, Qv) via the base resistors (Ru, Rv), and the transformer (Tf) is formed. Both ends of the feedback winding (Lxy) provided in the above are connected to the bases of the switch elements (Qu, Qv).
  • the switching elements (Qu, Qv) alternately repeat the ON state and the OFF state alternately, and the currents flowing in the primary side windings (Lpu, Lpv) are alternated.
  • a high voltage AC is applied to the external electrodes (Ye1, Ye2) of the excimer lamp (Y), and a discharge is generated in the discharge space (Yg).
  • the resonance circuit is configured as described above, the high-voltage AC waveform in this case has a characteristic of a sine wave.
  • the present invention generates UV light that can be used in the fields of UV ozone cleaning, UV ozone deodorization, UV surface modification, UV curing, UV sterilization, or converts the generated UV light into another wavelength. It can be used in the industry of designing and manufacturing an excimer lamp light source device including an excimer lamp that is a suitable light source when constructing a device that irradiates the light and an inverter that lights the excimer lamp.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)

Abstract

管軸方向に放電電流を流す形式の、構造が単純なランプバルブを採用することにより、低コストを実現した上で、線状の放電の発生を回避したエキシマランプ光源装置を提供する。 エキシマ分子を生成する放電用ガスが充填された放電空間を内包し、管体の両端が気密封止された形状を有し、放電空間に接する面の少なくとも一部に、放電を生じ易くする易放電物質層が形成されているランプバルブの、放電空間に放電を誘起せしめ、ランプバルブの管軸方向に放電電流を流すための一対の外部電極を有し、放電によって放電空間においてUV光を発生するエキシマランプと、エキシマランプに高電圧交流を印加するために、外部電極が接続される2次側巻線を備えたトランスを有するインバータと、を具備するエキシマランプ光源装置であって、インバータは、線状の放電を生じる電力よりも低い電力をエキシマランプに供給する。

Description

エキシマランプ光源装置
 本発明は、例えば、UVオゾン洗浄、UVオゾン脱臭、UV表面改質、UV硬化、UV殺菌などの分野において利用可能なUV(紫外域の)光を発生して、もしくは発生したUV光を他の波長に変換して、それを照射する装置を構成する際に好適な光源であるエキシマランプと、それを点灯するインバータからなるエキシマランプ光源装置に関する。
 エキシマランプ光源装置に関しては、例えば、本発明の出願人による特許第2854250号や特許第3296284号、特許第3353684号、特許第3355976号、特許第3521731号の公報などに記載されているように、エキシマランプを強力に駆動して、極限までの高効率のUV発光を得るための技術開発が行われて来たが、その動機は、主として工場などで使用できる業務用の装置での応用を念頭に置いていた。
因みに、管状のエキシマランプの場合、特許第3355976号の図1の(a)や(c)に記載のように、管軸に直角の方向(つまり管の直径方向や半径方向)に電流を流すものが主流である。
 一方、これらとは対照的に、一般家庭などにおいて、例えばUV殺菌やUV脱臭などに用いるUV光源は、比較的小規模な光源装置であって、そのため極限までの高効率は求められないが、代わりに可及的低コストで実現することが要求される場合があり、このような用途に対しては、先に挙げた文献に記載のような技術は、必ずしも最適とは言えなかった。
 エキシマランプのような外部電極を用いるランプの場合、最も低コストでの実現が可能なランプは、単なる円筒状のガラスの管体に対し、放電媒質を充填した上で、両方の管端を気密封止してランプバルブとし、封止した両方の管端部付近にリング状、またはキャップ状の導体からなる外部電極を設け、ガラス管の管軸方向に放電電流を流す形式のもの(以降、「管軸方向に放電電流を流す形式」とは、この形式を指す)である。
この形式のランプが低コストである理由は、ランプバルブの構造が単純だからである。そのため、この形式のランプが、以前より極めて多数提案されている。
一例を挙げれば、特開2003-100482号、特開2004-022209号、特開2004-079270号、特開2004-146351号、特開2004-179059号、特開2005-011710号、特開2005-267908号、特開2006-019100号、特開2006-085983号、特開2007-053117号等々の各公報に記載の技術があるが、この形式のものは、ほとんど全て、放電媒質として実質的に水銀を含むものばかりである(水銀を含まないものを排除していないものもあるが、実施例には水銀を含むものばかりが掲載されている)。
 この形式のランプが水銀ランプばかりである事には理由があり、それは、ガラス管の管軸方向に放電電流を流すものの場合は、管軸に直角の方向に流すものよりも、放電経路が長くなりがちであるため、水銀蒸気を含ませることにより電流を流れ易くすることができる(ペニング効果)からこそ、必要な印加電圧の高さを実用範囲に収められるからである。
しかし、有害な水銀を含む光源を、前記したような家庭用の、例えば食品や飲料、衣料などを扱う機器に使用することは適当ではない。
 一方、エキシマランプにおいては、放電用ガスとして、希ガス、あるいは希ガスとハロゲンの混合ガスが用いられ、水銀を含まないようにすることができるため、用途に見合うランプバルブとしての必要な長さを有して、印加電圧を実用的な範囲に抑えながら、前記した管軸方向に放電電流を流す形式のランプを実現しようとするならば、充填するガス圧を非常に低くする必要があり、そうするとUV発光の効率が低下してしまう問題がある。
しかし、前記したように、極限までの高効率を求めない家庭用などの比較的小型の、すなわちランプバルブの長さが比較的短くできる機器での使用を前提とすれば、管軸方向に放電電流を流す形式のエキシマランプにも実用性を見出すことができる。
 そこで、本発明の発明者らは、前記した特開2005-267908号公報に記載のもののようなランプバルブ構造を有する、管軸方向に放電電流を流す形式のエキシマランプ(ただし、特開2005-267908号公報に記載の蛍光体膜や酸化マグネシウム膜、水銀は含まず)を、予備試験用ランプとして作成した。
その構成は、本発明のエキシマランプ光源装置の技術に関連する概念の概略図である図14のようである。
作成したエキシマランプ(Y’)は、ランプバルブ(Yt’)と、その両端の気密封止部(Ys’)によって囲まれた放電空間(Yg’)に、適当な圧力でキセノンガスを充填し、帯状金属板を巻くことによって形成した外部電極(Ye1’,Ye2’)を配置して構成した。
ただし、特許第3149780号公報に記載のように、ランプバルブの内面の一部に導電性物質を配設することにより、放電を開始させるための印加電圧を下げることが可能との知見に基づき、ランプバルブの一方の端部の内面に、易放電物質層としてのカーボンペースト膜形成領域を設けた。
なお、図14においては、描画要素が重なって視認し難くなることを避けるため、カーボンペースト膜形成領域の図示は省略してある。
 そして、前記外部電極(Ye1’,Ye2’)に高電圧交流を発生するインバータを接続して前記予備試験用ランプを点灯し、発生するUV光の強度を測定したところ、期待した実用強度に遥かに及ばず、ランプへの投入電力に対するUV発光効率が著しく低いことが判明した。
その原因を探るべく、前記予備試験用ランプの放電状態を観察すると、当初の予想では、図14の(a)に記載したような、ランプバルブ内の放電空間における、リング状の2箇所の外部電極で囲まれる空間と、その間に位置する体積全体で均一的に生じる放電である拡散放電(Gd’)が生じると考えていたものが、図14の(b)に記載したような、細い線状の放電である狭義収縮放電(Gs’)が生じていた。ただし、この用語「狭義収縮放電」については後述する。
このランプは、UV応用を目的としたものであり、一般照明の用途のものではないため、線状の狭義収縮放電(Gs’)が生じること自体には問題は無い。
しかし、この狭義収縮放電(Gs’)と、UV発光効率が著しく低いことに因果関係があるなら、狭義収縮放電(Gs’)の発生を回避して、拡散放電(Gd’)を確実に発生させ得るようにしなければならない。
 因みに、前記狭義収縮放電(Gs’)の放電路の形状は様々で、曲がりくねった形状の場合もあれば、直線に近い形状の場合もあったが、主として1本の輝線として視認された。
なお、狭義収縮放電が生じているときでも、前記ランプバルブ(Yt’)の内側領域のうち、前記外部電極(Ye1’,Ye2’)によって外側が取り巻かれている部分空間には拡散放電が生じていた。
また、どこからどこまでが狭義収縮放電(Gs’)の放電路であるかの境界点が必ずしも明確な訳ではないが、前記狭義収縮放電(Gs’)の端部は、前記外部電極(Ye1’,Ye2’)によって外側が取り巻かれている部分に対向する前記ランプバルブ(Yt’)の内面に、ほぼ接しているように見えた。
このとき、両極の前記外部電極(Ye1’,Ye2’)の間における前記放電空間(Yg’)では、狭義収縮放電(Gs’)の放電路は、前記ランプバルブ(Yt’)の内面に接していないことが多く、よって狭義収縮放電(Gs’)は沿面放電によるものではない。
 ここで、用語「狭義収縮放電」について説明する。
後述する先行技術文献の多くにおいても、「収縮放電」という表現が現れるが、ここで述べている細い線状の放電とは特徴が相違する。
そのため、混乱を避ける目的で、ここで述べている細い線状の放電を、それらと区別して、狭義収縮放電と呼ぶことにした。
本明細書においては、「狭義収縮放電」とは、すなわち、
管体の両端が気密封止されたランプバルブにおける、放電空間に接する面に易放電物質層が形成され、内部電極を有さず、一対の外部電極を有する管軸方向に放電電流を流す形式のエキシマランプにおいて、主として、外部電極の一方が近接または接するランプバルブの部分に対向するランプバルブの内面の部分の近傍から、外部電極の他方が近接または接するランプバルブの部分に対向するランプバルブの内面の部分の近傍に至る、1本の線状の放電路からなる形態を有する放電
を指すものと定義する。
 ここで、「主として」と表記した理由は、いま述べた1本の線状の放電路からなる形態を有する放電以外にも、非常に稀ではあるが、外部電極対向内面部(前記した、外部電極が近接または接するランプバルブの部分に対向するランプバルブの内面の部分の近傍、を以降このように略記する)の一方から他方に、複数本の線状の放電路からなる形態を有する放電となる場合、あるいは、外部電極対向内面部の一方のうちの離れた2箇所から線状の放電路が放電空間に延び、途中から2本の線状の放電路が1本に合流して、全体としてY字状となる場合、さらには、外部電極対向内面部の一方から放電空間の途中の箇所まで線状の放電路が現れ、その箇所から他方の外部電極対向内面部までは拡散放電となる場合、などがあるからである。
本発明では、このような稀に現れる形態の線状の放電路を有するものをも含めて狭義収縮放電と称する。
 エキシマランプにおける収縮放電に言及した文献として、WO2005/057611号、特開2005-174632号、特開2006-351541号、特開2008-243521号、特開2008-262805号公報には、内部電極と外部電極を有する誘電体バリア放電蛍光ランプで、キセノンなどの希ガスを放電媒質とするものが記載されているが、内部電極の近傍で収縮放電が発生することを容認した上で、その位置が時間的に変化することに起因して生ずる、(照明用蛍光ランプとして有害な)ランプの明るさのチラツキを防止するために、収縮放電を固定する技術の提案がなされている。
 特開2006-079830号公報には、内部電極と外部電極を有する誘電体バリア放電蛍光ランプで、キセノンなどの希ガスを放電媒質とするものが記載されているが、電極を複数個の分割することにより、収縮放電の発生を抑制する技術の提案がなされている。
 WO2008/038527号公報には、内部電極と外部電極を有する誘電体バリア放電蛍光ランプで、キセノンを主体とした希ガスを放電媒質とするものが記載されているが、この文献には、印加電圧を高くすると、内部電極の近傍で収縮放電状態となる旨の記述がある。
 特開2005-327659号公報には、内部電極と外部電極を有する誘電体バリア放電蛍光ランプで、キセノンを主体とした希ガスを放電媒質とするものが記載されているが、この文献には、電流が多いほど収縮放電は発生しやすくなる旨の記述がある。
 特開2006-338897号公報には、内部電極と外部電極を有する誘電体バリア放電蛍光ランプで、キセノンを主体とした希ガスを放電媒質とするものが記載されているが、この文献には、印加電圧を高くすると内部電極付近で収縮放電状態へと遷移する旨、およびインバータの動作周波数は低いほど内部電極近傍での収縮放電が発生しにくくなる旨の記述がある。
 特開2000-223079号公報には、管状のランプバルブの長手方向に延びる一対の帯状の外部電極を有する、または、管状のランプバルブの中心軸に位置する線状の内部電極と帯状の外部電極を有する、管軸方向に放電電流を流す形式ではなく、電流を管軸に直角の方向に流す形式の誘電体バリア放電蛍光ランプで、キセノンを主体とした希ガスを放電媒質とするものが記載されているが、この文献には、キセノンガスのガス圧を高くすると放電が収縮する現象が生じ、この収縮によってひげ状の放電が無数に発生する旨の記述がある。
 特開2014-030763号公報には、管状のランプバルブの長手方向に延びる一対の帯状の外部電極を有し、管軸方向に放電電流を流す形式ではなく、電流を管軸に直角の方向に流す形式の、キセノンとヨウ素を放電媒質とするエキシマランプが記載されているが、この文献では、ヨウ素分圧を一定としてキセノン分圧を上げてゆくとき、12kVよりも低い低圧領域では拡散放電が生じたが、それよりも高くすると複数のフィラメント放電が発生する旨の記述がある。
 以上において挙げたエキシマランプにおける収縮放電に言及した文献は、内部電極と外部電極を有する形式のランプに対するものが大部分であり、収縮放電の発生位置について記載のあるものは、全て内部電極付近で発生するとされており、また、収縮放電の本数に関する情報は無く、したがって、内部電極を有さない前記エキシマランプ(Y’)における、本数が主として1本のみである狭義収縮放電(Gs’)には該当しない。
 内部電極を有さない、外部電極のみのランプに関する情報は、管軸方向に放電電流を流す形式ではなく、電流を管軸に直角の方向に流す形式のランプに対するもののみで、しかも、「ひげ状の放電が無数に発生」、「複数のフィラメント放電が発生」、とあり、前記エキシマランプ(Y’)における、本数が主として1本のみである狭義収縮放電(Gs’)には該当しない。
 したがって、本発明において関心のある、外部電極のみを有し、管軸方向に放電電流を流す形式のエキシマランプにおける、前記狭義収縮放電(Gs’)に該当する収縮放電に関する情報は皆無である。
 また、先述のように、外部電極のみを有し、管軸方向に放電電流を流す形式のランプの情報は、水銀を含むものばかりである。
特許第2854250号公報 特許第3296284号公報 特許第3353684号公報 特許第3355976号公報 特許第3521731号公報 特開2003-100482号公報 特開2004-022209号公報 特開2004-079270号公報 特開2004-146351号公報 特開2004-179059号公報 特開2005-011710号公報 特開2005-267908号公報 特開2006-019100号公報 特開2006-085983号公報 特開2007-053117号公報 特許第3149780号公報 WO2005/057611号公報 特開2005-174632号公報 特開2006-351541号公報 特開2008-243521号公報 特開2008-262805号公報 特開2006-079830号公報 WO2008/038527号公報 特開2005-327659号公報 特開2006-338897号公報 特開2000-223079号公報 特開2014-030763号公報 特開平09-180685号公報 特開平11-354079号公報
 本発明が解決しようとする課題は、内部電極を有さず、管軸方向に放電電流を流す形式の、構造が単純なランプバルブを採用することにより、低コストを実現した上で、狭義収縮放電の発生を回避したエキシマランプ光源装置を提供することにある。
 本発明における第1の発明のエキシマランプ光源装置は、キセノンエキシマ分子を生成する放電用ガスが充填された放電空間(Yg)を内包し、管体の両端が気密封止された形状を有し、前記放電空間(Yg)に接する面の少なくとも一部に、放電を生じ易くする易放電物質層(Yo)が形成されているランプバルブ(Yt)の、前記放電空間(Yg)に放電を誘起せしめ、前記ランプバルブ(Yt)の管軸方向に放電電流を流すための一対の外部電極(Ye1,Ye2)を有し、前記した放電によって前記放電空間(Yg)においてUV光を発生するエキシマランプ(Y)と、
 前記エキシマランプ(Y)に高電圧交流を印加するために、前記外部電極(Ye1,Ye2)が接続される2次側巻線(Ls)を備えたトランス(Tf)を有するインバータ(Ui)と、を具備するエキシマランプ光源装置であって、
 前記インバータ(Ui)は、
  狭義収縮放電である、
  主として、前記外部電極(Ye1,Ye2)の一方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍から、前記外部電極(Ye1,Ye2)の他方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍に至る、1本の線状の放電路からなる形態を有する放電
  を生じる電力よりも小さい電力を前記エキシマランプ(Y)に供給することにより、狭義収縮放電ではない放電状態で前記エキシマランプ(Y)を点灯させることを特徴とするものである。
 本発明における第2の発明のエキシマランプ光源装置は、前記ランプバルブ(Yt)の外面に沿って測った、前記した一対の外部電極(Ye1,Ye2)それぞれの間の距離の最小値である電極間距離(Le)の値は、前記電極間距離(Le)に応じて決まる前記狭義収縮放電を生ずる電力の最小値が、前記電極間距離(Le)を増加させたときに増加する、または増加が飽和する、前記電極間距離(Le)の領域の中から選ばれた値であることを特徴とするものである。
 本発明における第3の発明のエキシマランプ光源装置は、通常稼働時のランプ投入電力値に対する狭義収縮放電を生じる電力値の比が、105%から120%であることを特徴とするものである。
 本発明における第4の発明のエキシマランプ点灯方法は、キセノンエキシマ分子を生成する放電用ガスが充填された放電空間(Yg)を内包し、管体の両端が気密封止された形状を有し、前記放電空間(Yg)に接する面の少なくとも一部に、放電を生じ易くする易放電物質層(Yo)が形成されているランプバルブ(Yt)の、前記放電空間(Yg)に放電を誘起せしめ、前記ランプバルブ(Yt)の管軸方向に放電電流を流すための一対の外部電極(Ye1,Ye2)を有し、前記した放電によって前記放電空間(Yg)においてUV光を発生するエキシマランプ(Y)と、
 前記エキシマランプ(Y)に高電圧交流を印加するために、前記外部電極(Ye1,Ye2)が接続される2次側巻線(Ls)を備えたトランス(Tf)を有するインバータ(Ui)と、
 を具備するエキシマランプ光源装置におけるエキシマランプ点灯方法であって、
 前記インバータ(Ui)は、
  狭義収縮放電である、
  主として、前記外部電極(Ye1,Ye2)の一方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍から、前記外部電極(Ye1,Ye2)の他方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍に至る、1本の線状の放電路からなる形態を有する放電
  を生じる電力よりも小さい電力を前記エキシマランプ(Y)に供給することにより、狭義収縮放電ではない放電状態で前記エキシマランプ(Y)を点灯させることを特徴とするものである。
 本発明における第5の発明のエキシマランプ点灯方法は、通常稼働時のランプ投入電力値に対する狭義収縮放電を生じる電力値の比が、105%から120%であることを特徴とするものである。
 内部電極を有さず、管軸方向に放電電流を流す形式の、構造が単純なランプバルブを採用することにより、低コストを実現した上で、狭義収縮放電の発生を回避したエキシマランプ光源装置を提供することができる。
本発明のエキシマランプ光源装置の一部を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置の一部を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置に関連する実験データを表す。 本発明のエキシマランプ光源装置に関連する実験データを表す。 本発明のエキシマランプ光源装置に関連する実験データを表す。 本発明のエキシマランプ光源装置に関連する実験データを表す。 本発明のエキシマランプ光源装置に関連する実験データを表す。 本発明のエキシマランプ光源装置の技術に関連する概念の概略図を表す。 本発明のエキシマランプ光源装置を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置を簡略化して示す模式図を表す。 本発明のエキシマランプ光源装置の技術に関連する概念の概略図を表す。
 本発明のエキシマランプ光源装置の一部を簡略化して示す模式図を表す図1を参照して、そのエキシマランプ(Y)の構成について説明する。
本図のエキシマランプ(Y)は、ランプバルブ(Yt)が、円筒形の管体を基本として作成される場合を想定して例示している。
同図の(a)は、前記ランプバルブ(Yt)の軸が紙面に垂直である場合の断面を表し、同図の(b)は、前記ランプバルブ(Yt)の軸が紙面に含まれる場合の断面を表す。
ただし、本発明は、前者の断面形状が円形のものに限定されない。
前記エキシマランプ(Y)の前記ランプバルブ(Yt)は、放電空間(Yg)を内包するよう、管体の両端が気密封止部(Ys)によって閉じられて構成され、前記放電空間(Yg)には、キセノンエキシマ分子を生成する放電用ガスが充填される。
なお、前記気密封止部(Ys)は、軸に垂直な平面形状を呈するものを例示したが、例えば半球状に、外側に向かって膨れた形状を呈するようにしても構わない。
 前記ランプバルブ(Yt)の外面には、軸方向に離間して、一対の外部電極(Ye1,Ye2)が設けられる。
本図では、金属板を輪状に巻いて前記外部電極(Ye1,Ye2)を構成する場合を例示したが、金属線を1回以上巻回したり、銀ペーストなどの金属ペーストを塗布し焼成して固体化したり、金属蒸着膜によって構成してもよい。
また、前記外部電極(Ye1,Ye2)は、本図の(a)のような、軸に垂直な断面において、円形などの閉じた図形になるものに限定されず、例えば、C字状を呈するものでも構わない。
さらに、前記外部電極(Ye1,Ye2)の一方または両方が、前記気密封止部(Ys)の外面の一部や全部を覆うようにしてもよい。
 また、本発明のエキシマランプ光源装置は、後述する図9,図10,図11,図12,図13に記載のような、高電圧交流を発生するインバータ(Ui)を具備しており、該インバータ(Ui)のトランス(Tf)の2次側巻線(Ls)が、前記外部電極(Ye1,Ye2)に接続されることにより、前記ランプバルブ(Yt)の前記放電空間(Yg)に放電が誘起され、前記ランプバルブ(Yt)の管軸方向に放電電流が流れ、前記放電空間(Yg)においてUV光を発生することができる。
なお、図1には、前記インバータ(Ui)を接続するために前記外部電極(Ye1,Ye2)に設けられる場合がある、リード線等の電気的接続部材は、図示を省略してある。
 また、前記放電空間(Yg)に接する面の少なくとも一部には、放電を生じ易くする易放電物質層(Yo)が形成されている。
ここで、易放電物質(または易電子放出物質)としては、特許第3149780号公報に記載のように、前記したカーボンや金属、酸化錫、酸化インジウム等の導電性物質を利用可能である。
さらに、特開平09-180685号や特開平11-354079号公報に記載のように、前記ランプバルブを構成する管体の仕事関数より小さい仕事関数を有する物質、例えば酸化マグネシウム(MgO)や酸化ランタン(La2O3)、酸化セリウム(CeO2)、酸化イットリウム(Y2O3)、酸化ジルコニウム(ZrO2)、ホウ化ランタン(LaB6)よりなる群から選ばれた金属化合物なども利用可能である。
 図1では、外面に前記外部電極(Ye1)が接している前記ランプバルブ(Yt)の部分の内面の一部分に前記易放電物質層(Yo)が形成されるものを描いてある。
同様に、本発明のエキシマランプ光源装置の一部を簡略化して示す模式図を表す図2の(a)に示すように、軸回りの360度に対応する前記ランプバルブ(Yt)の内面に前記易放電物質層(Yo)が形成されるようにしてもよく、この場合、外面に前記外部電極(Ye1)が接していない前記ランプバルブ(Yt)の部分の内面にまで前記易放電物質層(Yo)が形成されるようにしてもよい。
また、図2の(b)に示すように、前記気密封止部(Ys)の内面側にまで前記易放電物質層(Yo)が形成されるようにしてもよい。
さらに、図1,図2では、前記外部電極(Ye1)のある側に前記易放電物質層(Yo)が形成されるものを例示したが、前記外部電極(Ye2)のある側にも前記易放電物質層(Yo)が形成されるようにしてもよい。
 先に、図14を参照して、予備試験用ランプに関する点灯実験について述べたが、以下において、さらなる点灯実験を行った結果について述べる。
実験に供した前記エキシマランプ(Y)の緒元および実験条件は以下の通り。
[実験条件1]
  ランプバルブ:合成石英管,外径10mm,厚さ0.5mm,カーボン塗布
  電極間距離(Le):20mm
  放電ガス,圧力:Ne/Xe=70%/30%, 12kPa(全圧)
  周波数:16 ~ 45kHz
  PPランプ電圧:3.3, 3.9, 4.5kV
  1周期エネルギー:12, 15, 18μJ
  インバータ:フライバック方式
なお、ここに記載した「カーボン塗布」とは、図1に示したような形状を有する前記易放電物質層(Yo)として、カーボンペースト膜形成領域を設けたことを示す。
ただし、上記条件に記載のPPランプ電圧とは、ランプ印加電圧のピーク・ピーク値を指し、以降この略称を用いる。
ランプ点灯のためのインバータ(Ui)は、後述する上記方式のものを使用し、ランプ印加電圧における、放電に関わる部分のパルスの波形、すなわちPPランプ電圧を不変に保ったまま、インバータの動作周波数、すなわちパルス発生頻度を変化させることにより、ランプへの投入電力 P を変化させながら、ランプ点灯始動の試行実験を行い、1回の点灯始動で拡散放電が生じる確率 Ψ(p) を測定することを、上記3種類のPPランプ電圧に対して実施した。
ただし、前記インバータ(Ui)は、点灯初期においてPPランプ電圧を徐々に上昇させるような、所謂ソフトスタート的な制御を特に行わない、単純な構造のものであり、したがって、点灯初期の短時間のうちに所期のPPランプ電圧が実現されている。
 なお、PPランプ電圧を不変に保つとは、1個のパルス波形によってランプに投入されるエネルギーを不変に保つことを意味するが、上記条件に記載の1周期エネルギーは、上記3種類のPPランプ電圧それぞれに対応する1個のパルス波形によってランプに投入されるエネルギーを表す。
前記した実験条件における1周期エネルギーは、前記した放電ガス,圧力に対する前記したPPランプ電圧の全てにおいて拡散放電が生じる周波数である規定周波数30kHzの下で、VQリサージュ法(オゾナイザハンドブック コロナ社 (昭和35年)p.232 あるいは、電気学会技術報告 第830号、(2001年)p.71 を参照)によって測定した。
そして、この1周期エネルギーの値に、点灯時の実際の周波数の値を乗じた値により、ランプ投入電力を算出することができる。
 実験の結果を、横軸にランプ投入電力 P 、縦軸に拡散放電の発生確率 Ψ(p) をとって、本発明のエキシマランプ光源装置に関連する実験データを表す図3に示す。
図からは、直ちに、ランプ投入電力が高いほど拡散放電の発生確率が低下することが指摘できる。
 ここで注意すべき点は、横軸のランプ投入電力 P は、前記した、規定周波数30kHzにおける拡散放電時の1周期エネルギーの値に、点灯時の実際の周波数の値を乗じた値によって表記した事である。
そのため、この計算によって求めたランプ投入電力は、その点灯条件で拡散放電が生じている場合には、実際にランプに投入されている電力に等しいが、狭義収縮放電が生じている場合には、実際にランプに投入されている電力に等しいとは限らない。
実際、前記した実験条件1のなかの、次の一つの条件
  周波数:33kHz
  PPランプ電圧:3.9kV
においては、拡散放電または狭義収縮放電の何れかが確率的に生じるが、VQリサージュ法による、拡散放電時および狭義収縮放電時それぞれにおけるランプ投入電力の測定結果は次のようになった。
  ランプ投入電力:拡散放電時 0.47W, 狭義収縮放電時 0.34W
すなわち、インバータが全く同じ動作を行っていても、狭義収縮放電が生じた場合は、拡散放電が生じている状態よりも、実際のランプ投入電力が小さくなるのである。
因みに、狭義収縮放電の状態では、発生するUV光の強度が期待した実用強度に遥かに及ばない旨を先に述べたが、その主要因は、ランプ投入電力の低下にあるのではなく、ランプへの投入電力に対するUV発光効率の著しい低下にある。
 また、拡散放電と狭義収縮放電の関係の理解を深めるため、次のような実験を行った。
PPランプ電圧を一定に保ちながら、拡散放電が生じている状態から、周波数を徐々に上げることにより電力を徐々に増して行くと、ある周波数以上では狭義収縮放電となるが、拡散放電から狭義収縮放電に遷移した周波数、すなわち狭義収縮放電遷移周波数を記録しておき、次に、狭義収縮放電が生じている状態から、周波数を徐々に下げることにより電力を徐々に減じて行くと、ある周波数以下では拡散放電となるが、狭義収縮放電から拡散放電に遷移した周波数、すなわち拡散放電回復周波数を記録して比較すると、拡散放電回復周波数の方が狭義収縮放電遷移周波数よりも有意に低いことが判かった。
すなわち、拡散放電と狭義収縮放電との間の移行には、ヒステリシスが伴うことが判明した。
 つまり、図3を得た実験において、点灯初期から狭義収縮放電が生じたように見える場合でも、放電開始直後の短時間は、拡散放電が生じており、その期間にランプに投入される電力、すなわち狭義収縮放電発生直前電力が、狭義収縮放電を生じる電力値、詳しく言うと、拡散放電から狭義収縮放電への遷移を生じせしめる電力値、すなわち狭義収縮放電発生閾電力値 Pt に達し、その結果、狭義収縮放電が生じたものと理解できる。
したがって、図3の横軸のランプ投入電力 P は、いま述べた狭義収縮放電発生直前電力を含む、広義の拡散放電時のランプ投入電力を表す、と解釈することにより、定常放電状態の電力が小さい狭義収縮放電に陥る場合も含めて図3は正しいグラフである、と言うことができる。
 なお、先に、狭義収縮放電となる場合も、放電開始直後の短時間は、拡散放電が生じており、その後、ランプ投入電力が小さい狭義収縮放電が生じた旨を述べたが、本当に放電開始直後の短時間は、拡散放電が生じているなら、ランプ電圧とランプ電流の波形をオシロスコープで観察すれば、それが判るはず、と考えるかも知れないが、実際それを試行したところ、それを確認することはできなかった。
理由は、同じ点灯条件で拡散放電または狭義収縮放電の何れかが確率的に生じる場合の観測で、拡散放電時と狭義収縮放電時とでは、ランプ電圧とランプ電流のピーク・ピーク値には差異がほとんど見られないため、ランプ電圧とランプ電流の包絡線波形が見える条件の観測では、拡散放電と狭義収縮放電との波形的区別ができないからである。
ランプ電圧波形とランプ電流波形の位相差情報を、同様に波形として表示させる観測を実施すれば、それを確認できると考えられるが、未実施である。
 また、図からは、直ちに、1周期エネルギー、すなわちPPランプ電圧を高くするほど、拡散放電の発生確率を高くし易いことが指摘できる。
前記したように、先行技術文献のWO2008/038527号公報および特開2006-338897号公報に、印加電圧を高くすると内部電極の近傍で収縮放電状態となる旨の記述があるが、本実験結果は、それとは逆の傾向を示しており、そもそも本実験のランプは内部電極を有さないため、この文献に記載されている収縮放電と、いまの関心事である狭義収縮放電とは、物理現象が相違するものであることが判る。
 ここで、この図に関して補足しておく。
一つの1周期エネルギーに注目すると、ランプ投入電力の低い条件から高い条件に変化するに従って、拡散放電の発生確率が100%であったものが、0%へ、直線的に変化しているように描いてあるが、これは、正確な変化の様子が、実際に直線的であることを意味するものではなく、実験的に拡散放電の発生確率が100%となるランプ投入電力の上限値が存在し、それよりもランプ投入電力を高くして行くと、拡散放電の発生確率が低下して行き、やがて0%になるものと理解されたい。
実際、この実験では、拡散放電の発生確率が、100%となるランプ投入電力値、および0%となるランプ投入電力値の確定に注力した。
それらの値の中間のランプ投入電力値では、5回程度の点灯の試行を行ったが、同じ値でランプ点灯始動の試行を行っても、拡散放電が生じるか否かは、全く確率的であった。
なお、100%から0%への変化の様子を正確に測定しなかった理由は、正確な測定のためには、非常に多数回のランプ点灯始動の試行が必要であるが、仮に、それを正確に測定できたとしても、実用上の利益が無いからである。
 ところで、本発明のエキシマランプ光源装置の前記エキシマランプ(Y)のような外部電極型放電ランプの場合、ランプ投入電力は、1周期の電圧波形のうちの、最高電圧と最低電圧との差、すなわちPPランプ電圧と、周波数とに、ほぼ独立に、正相関的に依存し、特に周波数に関して言えば、ランプ投入電力は、周波数に比例する。
図3は、前記したように、あるPPランプ電圧に注目して、それを不変に保ったまま、周波数を変化させることにより、ランプ投入電力 P を変化させた時の拡散放電の発生確率 Ψ(p) への影響をグラフ化したものである。
逆に、ある周波数に注目して、それを不変に保ったまま、PPランプ電圧を変化させることにより、ランプ投入電力 P を変化させた時の拡散放電の発生確率 Ψ(p) への影響は、この図からは判らない。
 そのため、実際にそれをグラフ化したものを、本発明のエキシマランプ光源装置に関連する実験データを表す図4に示す。
図3と図4とは、作成に用いた元データは同じであるが、図4の作成に際しては、ランプ投入電力によらず、拡散放電の発生確率が、全て100%、または全て0%である周波数のデータは除外してある。
図4からもランプ投入電力が高いほど拡散放電の発生確率が低下することが指摘できる。
なお、先述のように、100%から0%への変化の様子の正確な測定のためには、非常に多数回のランプ点灯始動の試行が必要であるが、実際には少数回の試行しか行っていないため、本図からは、ランプ投入電力 P の増加に対し、拡散放電の発生確率 Ψ(p) が右下がりになる事が確認できた、と理解するに止めておくべきである。
 以下において、さらなる点灯実験を行った結果について述べる。
実験に供した前記エキシマランプ(Y)の緒元および実験条件は以下の通り。
[実験条件2]
  ランプバルブ:合成石英管,外径10mm,厚さ0.5mm,カーボン塗布
  電極間距離(Le):20mm
  放電ガス:Ne/Xe=70%/30%
  ガス圧力:8.0, 11, 12, 13kPa(全圧)
  周波数:20 ~ 45kHz
  PPランプ電圧:3.9kV
  インバータ:フライバック方式
ランプ点灯のためのインバータ(Ui)は、先と同様に、後述する上記方式のものを使用し、ランプ印加電圧における、放電に関わる部分のパルスの波形、すなわちPPランプ電圧を不変に保ったまま、インバータの動作周波数、すなわちパルス発生頻度を変化させることにより、ランプへの投入電力 P を変化させながら、ランプ点灯始動の試行実験を行い、1回の点灯始動で拡散放電が生じる確率 Ψ(p) を測定することを、上記4種類のガス圧力に対して実施した。
 実験の結果を、本発明のエキシマランプ光源装置に関連する実験データを表す図5に示す。
先と同様に、本図においても、横軸のランプ投入電力 P は、ある規定周波数における拡散放電時の1周期エネルギーの値に、点灯時の実際の周波数の値を乗じた値によって表記している。
図からは、直ちに、ランプ投入電力が高いほど拡散放電の発生確率が低下することが指摘できる点は先と同様であるが、さらに、ガス圧力を高くするほど、拡散放電の発生確率を高くし易いことが指摘できる。
前記したように、先行技術文献の特開2000-223079号公報に、キセノンガスのガス圧を高くすると放電が収縮する旨の記述があるが、本実験結果は、それとは逆の傾向を示しており、この文献に記載されている収縮放電と、いまの関心事である狭義収縮放電とは、物理現象が相違するものであることが判る。
 以下において、さらなる点灯実験を行った結果について述べる。
実験に供した前記エキシマランプ(Y)の緒元および実験条件は以下の通り。
[実験条件3]
  ランプバルブ:合成石英管,外径10mm,厚さ0.5mm,カーボン塗布
  電極間距離(Le):20mm
  放電ガス,圧力:Xe100%, 3.3, 6.7kPa
  周波数:16 ~ 53kHz
  PPランプ電圧:3.3, 3.9, 4.5kV
  インバータ:フライバック方式
ランプ点灯のためのインバータ(Ui)は、先と同様に、後述する上記方式のものを使用し、ランプ印加電圧における、放電に関わる部分のパルスの波形、すなわちPPランプ電圧を不変に保ったまま、インバータの動作周波数、すなわちパルス発生頻度を変化させることにより、ランプへの投入電力 P を変化させながら、ランプ点灯始動の試行実験を行い、1回の点灯始動で拡散放電が生じる確率 Ψ(p) を測定することを、上記3種類のPPランプ電圧と2種類のガス圧力に対して実施した。
これまでに述べた実験では、放電ガスとして、バッファーガスとしてのネオンをキセノンに加えた混合ガスを用いていたが、この実験では、キセノンのみを放電ガスとして用いたランプについて調べた。
実験の結果は、図3や図5のものと同様の、ランプ投入電力が高いほど拡散放電の発生確率が低下する傾向を示した(ただし、図示を省略)。
 以下において、さらなる点灯実験を行った結果について述べる。
実験に供した前記エキシマランプ(Y)の緒元および実験条件は以下の通り。
[実験条件4]
  ランプバルブ:合成石英管,外径10mm,厚さ0.5mm,カーボン塗布
  電極間距離(Le):20mm
  放電ガス:Ne/Xe=70%/30%
  ガス圧力:8.0, 12kPa(全圧)
  周波数:10 ~ 65kHz
  PPランプ電圧:3.9kV
  インバータ:プッシュプル方式
ランプ点灯のためのインバータ(Ui)は、これまでに述べた実験と相違する、後述する上記方式のものを使用し、ランプ印加電圧における、放電に関わる部分のパルスの波形、すなわちPPランプ電圧を不変に保ったまま、インバータの動作周波数、すなわちパルス発生頻度を変化させることにより、ランプへの投入電力 P を変化させながら、ランプ点灯始動の試行実験を行い、1回の点灯始動で拡散放電が生じる確率 Ψ(p) を測定することを、上記2種類のガス圧力に対して実施した。
実験の結果は、図5のものと同様の、ランプ投入電力が高いほど拡散放電の発生確率が低下する傾向を示した(ただし、図示を省略)。
 以上で述べた実験結果より、管体の両端が気密封止された前記ランプバルブ(Yt)における、前記放電空間(Yg)に接する面に前記易放電物質層(Yo)が形成され、内部電極を有さず、一対の外部電極(Ye1,Ye2)を有する管軸方向に放電電流を流す形式の前記エキシマランプ(Y)においては、ランプ投入電力が高いほど拡散放電の発生確率が低下し、前記した狭義収縮放電が発生し易い傾向が存在することが判明した。
そして実験条件である、PPランプ電圧、インバータ周波数、ガス圧力、ガス組成(主放電ガスであるキセノンとバッファーガスの混合比)、インバータ回路形式(駆動波形)、の各パラメータの変化も、ランプ投入電力と拡散放電の発生確率との関連性に多少の影響を及ぼすが、拡散放電の発生確率に対する支配的制御要因は、ランプ投入電力に相違ないことが確認できた。
前記したように、狭義収縮放電が発生している状態では、ランプへの投入電力に対するUV発光効率が著しく低いため、狭義収縮放電が発生する電力よりも低い電力がランプに供給されるようにすることにより、狭義収縮放電の発生を回避して、UV発光効率の低い放電状態に陥らないようにすることができる。
 これまでに述べた種々の点灯実験は、電極間距離(Le)が全て20mmであった。
以下においては、複数の放電ガス条件で電極間距離(Le)を変化させた実験について述べる。
実験に供した前記エキシマランプ(Y)の緒元および実験条件は以下の通り。
[実験条件5]
  ランプバルブ:合成石英管,外径10mm,厚さ0.5mm,白金ペースト
  電極間距離(Le):10,15,20,25,30,35,40mm
  放電ガス:(1) Ne/Xe=70%/30%  全圧:9.1kPa
    〃 (2)   〃   70%/30%   〃  12kPa
    〃 (3)   〃   70%/30%   〃  16kPa
    〃 (4)   〃   95%/5%    〃  40kPa
    〃 (5)   〃   95%/5%    〃  53kPa
  PPランプ電圧:3.9kV
  インバータ:フライバック方式
本実験の前記ランプバルブ(Yt)は、先述の実験条件1~実験条件4と同様の、図1の形態のものであるが、白金ペーストを塗布して形成した前記易放電物質層(Yo)の側の前記外部電極(Ye1)を固定し、反対側の前記外部電極(Ye2)を前記ランプバルブ(Yt)の円筒面に沿って摺動することにより、前記電極間距離(Le)を変化させた。
ランプ点灯のためのインバータ(Ui)は、後述する上記方式のものを使用し、ランプ印加電圧における、放電に関わる部分のパルスの波形、すなわちPPランプ電圧を不変に保ったまま、インバータの動作周波数、すなわちパルス発生頻度が低い条件から徐々に高くして行くことを、狭義収縮放電の発生に至るまで繰り返し、その時の電力値、すなわち狭義収縮放電発生閾電力値 Pt を測定することを、上記5種類の放電ガス条件 (1),(2),(3),(4),(5)に対して実施した。
 実験の結果を、本発明のエキシマランプ光源装置に関連する実験データを表す図6に示す。
また、この実験結果のグラフ縦軸の狭義収縮放電発生閾電力値 Pt を、放電空間の体積で除算して、単位体積あたりの電力値である狭義収縮放電発生閾電力密度値Dptに変換した結果を、本発明のエキシマランプ光源装置に関連する実験データを表す図7に示す。
なお、放電空間の体積とは、前記電極間距離(Le)と前記外部電極(Ye1)の幅と前記外部電極(Ye2)の幅の和に、前記ランプバルブ(Yt)の内部空間の軸に垂直な断面の断面積を乗じた値を指す。
 図7を先に考察すると、各放電ガス条件のグラフの左端の箇所に、平坦的な部分が見られるが、このような平坦的部分については、単位体積あたりの電力値が同じであれば放電現象は変わらないであろう、とする普通の考え方からすれば理解できる。
しかし、狭義収縮放電発生閾電力密度値Dptは、電極間距離を増すに従い、急激に低下している。
これは、管軸方向に放電電流を流す形式のエキシマランプの場合、放電電流方向(管軸方向)を長さ方向に見た、「放電空間の細長さ」の程度が、ある限界値を超えると、前記した、単位体積あたりの電力値が同じであれば放電現象は変わらないとする考え方が破綻して、狭義収縮放電状態に極めて陥り易くなることによると推測される。
 一方、図6においては、電極間距離の最短箇所から長い方へ見て行くと、多くの放電ガス条件において、狭義収縮放電発生閾電力値 Pt は、右上がりで大きくなり、やがて極大を迎え、それを過ぎると右下がりになっている。
なお、実測した範囲の関係で、極大を迎えていない放電ガス条件もあるが、図7より、さらに電極間距離を増せば右下がりになることは明らかである。
ただし、ランプバルブの形状寸法や放電ガス条件をどのように設定すると、極大が電極間距離の如何なる箇所に現れるか、を定量的に予測することは、現時点ではできていない。
 したがって、前記狭義収縮放電を生ずる電力の最小値についての、前記電極間距離(Le)を変化させたときの極大値を与える前記電極間距離(Le)の値以下の電極間距離の領域、すなわち、グラフが水平または右上がりの領域は、前記ランプバルブ(Yt)の断面積、ガス組成、ガス圧力についての規定の条件の下で、可及的多くの電力を投入したい、という要望からは、特別に有利な領域と言える。
なお、いま述べた、前記狭義収縮放電を生ずる電力の最小値についての、前記電極間距離(Le)を変化させたときの極大値を与える前記電極間距離(Le)の値以下の電極間距離の領域とは、極大を観察していない場合も含めて、より一般的に言い換えれば、前記狭義収縮放電を生ずる電力の最小値が、前記電極間距離(Le)を増加させたときに増加する、または増加が飽和する、前記電極間距離(Le)の領域、と言うことができる。
ここで、グラフの極大付近の水平領域だけでなく、その左側の右上がりの領域をも含めるのは、前記したように、極大が電極間距離の如何なる箇所に現れるかが未解明であり、よって、その位置の厳密なコントロールができないため、ランプの製造バラツキや製造後のランプの特性の変化、環境条件の変化などにより、極大位置が右や左へ多少移動することが予想され、そのような移動が生じたした場合でも、狭義収縮放電状態に陥る危険性に対して安全な領域として選択可能範囲に含めるべきだからである。
 右上がりの領域が安全である理由について、本発明のエキシマランプ光源装置の技術に関連する概念の概略図を表す図8を参照して説明する。
本図は、図6のなかの一つの放電ガス条件に対する電極間距離(Le)と狭義収縮放電発生閾電力値 Pt との関係を、連続曲線として概念的に表現したもので、横軸および縦軸の量は図6と同じである。
先ず、設計時に期待した狭義収縮放電発生閾電力値は、実線で描いた閾電力曲線(F0)のようであり、そのときの極大の位置は、中央の極大位置(P0)であったとする。
 ここで、何らかの要因により、極大の位置が電極間距離の大きい方へ移動して、右側の極大位置(P1)に移ったとする。
このような事が起きるのは、放電空間の細長さに対する許容量が増加したためであり、その結果、極大位置(P1)における放電空間の体積が増加するため、狭義収縮放電発生閾電力値 Pt も増加して、破線で描いた閾電力曲線(F1)のようになる。
このとき、元の前記閾電力曲線(F0)の前記極大位置(P0)より左側の電極間距離の領域における、前記閾電力曲線(F1)の様子は、前記閾電力曲線(F0)の様子とほとんど変化は無い。
何となれば、この電極間距離の領域は、変化の前後とも、放電空間の細長さに対する許容範囲内にあるからである。
 次に、何らかの要因により、極大の位置が電極間距離の小さい方へ移動して、左側の極大位置(P2)に移ったとする。
このような事が起きるのは、放電空間の細長さに対する許容量が減少したためであり、その結果、極大位置(P2)における放電空間の体積が減少するため、狭義収縮放電発生閾電力値 Pt も減少して、破線で描いた閾電力曲線(F2)のようになる。
このとき、移動した前記閾電力曲線(F2)の前記極大位置(P2)近傍を除いた、それより左側の電極間距離の領域における、前記閾電力曲線(F2)の様子は、元の前記閾電力曲線(F0)の様子とほとんど変化は無い。
何となれば、この電極間距離の領域は、変化の前後とも、放電空間の細長さに対する許容範囲内にあるからである。
 したがって、設定電極間距離を、元の前記閾電力曲線(F0)における右下がりの領域から選んだ場合は、極大位置が右へ移動する分には問題無いが、極大位置が左へ移動した場合は、狭義収縮放電発生閾電力値 Pt が減少するため、狭義収縮放電状態に陥る危険性がある。
一方、設定電極間距離を、元の前記閾電力曲線(F0)における右上がりの領域から選んだ場合は、極大位置が右へ移動しても左へ移動しても、狭義収縮放電発生閾電力値 Pt が減少しないため、狭義収縮放電状態に陥る危険性に対して安全であることが判る。
 いま述べた安全な領域の選択指針に従うならば、前記した実験条件5に記載の放電ガス条件のランプを製品として製造するとした場合、電極間距離は、放電ガス条件(3),(5)ならば20mm近傍またはそれ以下、(2)ならば25mm近傍またはそれ以下、(4)ならば30mm近傍またはそれ以下の領域を選択するのがよいことが判る。
(1)の場合は、極大の位置は、実験を行った電極間距離の範囲の外かも知れないが、少なくとも40mm以下の領域は選択可能である。
 なお、図3~図5ではグラフの縦軸を拡散放電の発生確率 Ψ(p) で表したように、拡散放電と狭義収縮放電の発生条件の境界近傍では、拡散放電または狭義収縮放電の何れかが確率的に生じる。
図6を得るための測定実験では、測定作業量に関する制約から、前記したように、パルス発生頻度が低い条件から徐々に高くして行くことを、狭義収縮放電の発生に至るまで繰り返し、その時の電力値、すなわち狭義収縮放電発生閾電力値 Pt を測定する仕方としたため、確率的要素は見えていないが、実際には測定バラツキが存在する。
よって、狭義収縮放電発生閾電力値 Pt の極大を与える前記電極間距離(Le)の値に不確定性が伴うことは不可避であるため、極大値の位置を特定できない事も起こり得る。
この問題を避けるため、実測された狭義収縮放電発生閾電力値 Pt に対し、移動平均処理を施し、グラフの凹凸を均した上で極大値の位置を特定すればよい。
あるいは、実測された狭義収縮放電発生閾電力値 Pt の極大値との差異が、例えば5%以下、あるいは図3と図5において拡散放電の発生確率 Ψ(p) が100%から0%に変化するためのランプ投入電力 P の変化幅の代表値である、10%以下である測定値は、極大値と同じと見なす(水平領域に含める)ように処理してもよい。
 先述の点灯実験に関して述べたように、前記した狭義収縮放電発生閾電力値 Pt は、実験時のパラメータである1周期エネルギーやガス圧力によって変化する。
また当然、ランプの形状寸法やバッファーガスの種類、キセノンとの混合比などのパラメータによっても変化する。
したがって、これらのパラメータを適当に設定することにより、所期のUV光強度が実現されるランプ投入電力であって、通常稼働時のランプ投入電力値、すなわち稼働時投入電力値 Pw と、狭義収縮放電発生閾電力値 Pt との関係が、狭義収縮放電発生閾電力値 Pt が稼働時投入電力値 Pw より少し大きい程度、例えば、狭義収縮放電発生閾電力値 Pt が、稼働時投入電力値 Pw の105%、あるいは110%や120%となるようにすることができる。
本エキシマランプ光源装置をこのように構成することにより、前記インバータ(Ui)の調整が、ランプ投入電力の過剰を生ずる方向に外れた場合には、放電形態が狭義収縮放電となり、その結果、前記エキシマランプ(Y)から放射されるUV光強度が低下するため、エキシマランプ光源装置としての機能は果せなくなるが、特に人体に対する過剰なUV光被曝やオゾンの過剰発生が未然回避され、安全性が確保される利点がある。
 ここで、本発明のエキシマランプ光源装置を簡略化して示す模式図である、図9,図10,図11,図12,図13を参照して、本発明のエキシマランプ光源装置を構成するために利用可能な、一例としての、各種の形式のインバータ(Ui)について説明する。
本発明のインバータ(Ui)は、前記エキシマランプ(Y)において狭義収縮放電が発生する電力よりも低い電力がランプに供給されるようにする、すなわち、ランプ投入電力を設定することができる必要があるが、前記したように、外部電極型放電ランプの場合、ランプ投入電力は、1周期の電圧波形のうちの、最高電圧と最低電圧との差、すなわちPPランプ電圧と、周波数とに、ほぼ独立に、正相関的に依存し、特に周波数に関して言えば、ランプ投入電力は、周波数に比例するため、以降において説明するDC電源(Mx)の出力電圧の設定や、トランス(Tf)の1次2次巻線の巻数比の設定、ゲート信号生成回路(Uf)のパラメータ調整などによるインバータ(Ui)動作周波数の設定により実現可能である。
当然ながら、ここで挙げなかった形式のインバータであっても、ランプ投入電力を設定することができ、エキシマランプの放電空間に所期の放電を生じせしめることが可能なものは、本発明のエキシマランプ光源装置のインバータとして利用できる。
 図9に描かれているインバータ(Ui)は、ハーフブリッジ方式と呼ばれる形式で、トランス(Tf)の1次側巻線(Lp)を、FETなどの2個のスイッチ素子(Qu,Qv)で交互に駆動するものである。
前記トランス(Tf)の2次側巻線(Ls)は、前記1次側巻線(Lp)に対する適当な巻数比を有しており、その両端に前記エキシマランプ(Y)の前記外部電極(Ye1,Ye2)が接続される。
前記スイッチ素子(Qu,Qv)は直列接続され、またコンデンサ(Cu,Cv)も直列接続され、これら2個の直列接続物が並列接続されたものの両端に、DC電源(Mx)の電圧が印加される。
前記1次側巻線(Lp)の両端は、2個の前記スイッチ素子(Qu,Qv)の接続ノードと、2個の前記コンデンサ(Cu,Cv)の接続ノードとにそれぞれ接続される。
前記スイッチ素子(Qu,Qv)は、ゲート信号生成回路(Uf)によって生成された、交互にアクティブになるゲート信号(Shu,Shv)によって、ゲート駆動回路(Gu,Gv)を介して制御される。
前記ゲート信号生成回路(Uf)は、前記スイッチ素子(Qu,Qv)のそれぞれが交互にオン状態とオフ状態とを繰り返すように前記ゲート信号(Shu,Shv)を生成する。ただし、オン状態の切り替わり時には、デッドタイムと呼ばれる、前記スイッチ素子(Qu,Qv)の両方がオフ状態となる期間が挿入される。
いま述べた本図のインバータ(Ui)の構成と動作により、前記エキシマランプ(Y)の前記外部電極(Ye1,Ye2)には高電圧交流が印加され、前記放電空間(Yg)に放電が発生する。
 図10に描かれているインバータ(Ui)は、フルブリッジ方式と呼ばれる形式で、トランス(Tf)の1次側巻線(Lp)を、4個のスイッチ素子(Qu,Qv,Qu’,Qv’)で駆動するもので、これらのスイッチ素子は、先に述べたハーフブリッジのものと同様に動作するゲート信号生成回路(Uf)からのゲート信号(Shu,Shv)によって、ゲート駆動回路(Gu,Gv,Gu’,Gv’)を介して制御され、前記スイッチ素子(Qu,Qv’)がオン状態のときは前記スイッチ素子(Qv,Qu’)はオフ状態となり、前記スイッチ素子(Qv,Qu’)がオン状態のときは前記スイッチ素子(Qv,Qu’)はオフ状態となるように動作する。
いま述べた本図のインバータ(Ui)の構成と動作により、前記エキシマランプ(Y)の前記外部電極(Ye1,Ye2)には高電圧交流が印加され、前記放電空間(Yg)に放電が発生する。
 図11に描かれているインバータ(Ui)は、プッシュプル方式と呼ばれる形式で、トランス(Tf)の2個の1次側巻線(Lpu,Lpv)を、先に述べたハーフブリッジのものと同様に動作するゲート信号生成回路(Uf)からのゲート信号(Shu,Shv)によって、ゲート駆動回路(Gu,Gv)を介して制御される、2個のスイッチ素子(Qu,Qv)で交互に駆動するものである。
いま述べた本図のインバータ(Ui)の構成と動作により、前記エキシマランプ(Y)の前記外部電極(Ye1,Ye2)には高電圧交流が印加され、前記放電空間(Yg)に放電が発生する。
 以上で述べた図9,図10,図11の前記インバータ(Ui)によって前記外部電極(Ye1’,Ye2’)に印加される電圧波形は、矩形波を基本とする波形に対し、極性反転の直後のオーバーシュートや、オーバーシュート後のリンギング、次の極性反転の前のデッドタイム期間での電圧の緩和、等々の、理想概念としての矩形波からの擾乱を含む波形となる。
 図12に描かれているインバータ(Ui)は、フライバック方式と呼ばれる形式で、トランス(Tf)の1個の1次側巻線(Lp)を、ゲート信号生成回路(Uf)からのゲート信号(Shu)によって、ゲート駆動回路(Gu)を介して制御される、1個のスイッチ素子(Qu)のオン状態とオフ状態の繰り返しによって駆動するものである。
該スイッチ素子(Qu)がオン状態の期間において、前記1次側巻線(Lp)に流れる励磁電流に基づく磁気エネルギーを前記トランス(Tf)のコアに蓄積し、前記スイッチ素子(Qu)がオフ状態になったときに、蓄積した磁気エネルギーを2次側巻線(Ls)において電気エネルギーとして解放することにより、前記エキシマランプ(Y)の前記外部電極(Ye1,Ye2)には高電圧交流が印加され、前記放電空間(Yg)に放電が発生する。
ただし、この場合の高電圧交流の波形は、前記スイッチ素子(Qu)のオフ直後に、電圧の絶対値が上昇してピークを迎え下降する、単パルス的波形となる。
前記スイッチ素子(Qu)のオン状態期間のデューティサイクル比によっては、前記した単パルス的波形に後続するリンギングが現れる場合がある。
 図13に描かれているインバータ(Ui)は、コレクタ共振方式(俗称でロイヤー方式)と呼ばれる形式で、トランス(Tf)の、直列接続された2個の1次側巻線(Lpu,Lpv)を、バイポーラトランジスタ(あるいはFETなど)の2個のスイッチ素子(Qu,Qv)で交互に駆動するものである。
前記1次側巻線(Lpu,Lpv)の直列接続物の両端には共振コンデンサ(Crp)の両端を接続して共振回路を構成し、また、前記1次側巻線(Lpu,Lpv)の直列接続ノードにはDC電源(Mx)のプラス端子からの出力電圧を、供給電流を安定化させるためのチョークコイルを介して供給し、前記DC電源(Mx)には、電源電圧を安定化させるための平滑コンデンサ(Cx)を接続してある。
前記スイッチ素子(Qu,Qv)それぞれのベースには、ベース抵抗(Ru,Rv)を介して前記したDC電源(Mx)のプラス端子からの電流供給経路を形成しておき、前記トランス(Tf)に設けた帰還巻線(Lxy)の両端を前記スイッチ素子(Qu,Qv)それぞれのベースに接続してある。
このように回路を構成したことにより前記スイッチ素子(Qu,Qv)がオン状態とオフ状態とを交互に相補的に繰り返して、前記1次側巻線(Lpu,Lpv)に流れる電流を交互に反転させる自励発振を行うため、前記エキシマランプ(Y)の前記外部電極(Ye1,Ye2)には高電圧交流が印加され、前記放電空間(Yg)に放電が発生する。
ただし、前記したように共振回路が構成されているため、この場合の高電圧交流の波形は、正弦波的な特徴を持つものとなる。
 本発明は、UVオゾン洗浄、UVオゾン脱臭、UV表面改質、UV硬化、UV殺菌などの分野において利用可能なUV光を発生して、もしくは発生したUV光を他の波長に変換して、それを照射する装置を構成する際に好適な光源であるエキシマランプと、それを点灯するインバータからなるエキシマランプ光源装置を設計・製造する産業において利用可能である。
Crp  共振コンデンサ
Cu   コンデンサ
Cv   コンデンサ
Cx   平滑コンデンサ
F0   閾電力曲線
F1   閾電力曲線
F2   閾電力曲線
Gd’  拡散放電
Gs’  狭義収縮放電
Gu   ゲート駆動回路
Gu’  ゲート駆動回路
Gv   ゲート駆動回路
Gv’  ゲート駆動回路
Le   電極間距離
Lp   1次側巻線
Lpu  1次側巻線
Lpv  1次側巻線
Ls   2次側巻線
Lxy  帰還巻線
Mx   DC電源
P0   極大位置
P1   極大位置
P2   極大位置
Qu   スイッチ素子
Qu’  スイッチ素子
Qv   スイッチ素子
Qv’  スイッチ素子
Ru   ベース抵抗
Rv   ベース抵抗
Shu  ゲート信号
Shv  ゲート信号
Tf   トランス
Uf   ゲート信号生成回路
Ui   インバータ
Y    エキシマランプ
Y’   エキシマランプ
Ye1  外部電極
Ye1’ 外部電極
Ye2  外部電極
Ye2’ 外部電極
Yg   放電空間
Yg’  放電空間
Yo   易放電物質層
Ys   気密封止部
Ys’  気密封止部
Yt   ランプバルブ
Yt’  ランプバルブ

Claims (5)

  1.  キセノンエキシマ分子を生成する放電用ガスが充填された放電空間(Yg)を内包し、管体の両端が気密封止された形状を有し、前記放電空間(Yg)に接する面の少なくとも一部に、放電を生じ易くする易放電物質層(Yo)が形成されているランプバルブ(Yt)の、前記放電空間(Yg)に放電を誘起せしめ、前記ランプバルブ(Yt)の管軸方向に放電電流を流すための一対の外部電極(Ye1,Ye2)を有し、前記した放電によって前記放電空間(Yg)においてUV光を発生するエキシマランプ(Y)と、
     前記エキシマランプ(Y)に高電圧交流を印加するために、前記外部電極(Ye1,Ye2)が接続される2次側巻線(Ls)を備えたトランス(Tf)を有するインバータ(Ui)と、
     を具備するエキシマランプ光源装置であって、
     前記インバータ(Ui)は、
      狭義収縮放電である、
      主として、
      前記外部電極(Ye1,Ye2)の一方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍から、前記外部電極(Ye1,Ye2)の他方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍に至る、1本の線状の放電路からなる形態を有する放電
      を生じる電力よりも小さい電力を前記エキシマランプ(Y)に供給することにより、狭義収縮放電ではない放電状態で前記エキシマランプ(Y)を点灯させることを特徴とするエキシマランプ光源装置。
  2.  前記ランプバルブ(Yt)の外面に沿って測った、前記した一対の外部電極(Ye1,Ye2)それぞれの間の距離の最小値である電極間距離(Le)の値は、前記電極間距離(Le)に応じて決まる前記狭義収縮放電を生ずる電力の最小値が、前記電極間距離(Le)を増加させたときに増加する、または増加が飽和する、前記電極間距離(Le)の領域の中から選ばれた値であることを特徴とする請求項1に記載のエキシマランプ光源装置。
  3.  通常稼働時のランプ投入電力値に対する狭義収縮放電を生じる電力値の比が、105%から120%であることを特徴とする請求項1に記載のエキシマランプ光源装置。
  4.  キセノンエキシマ分子を生成する放電用ガスが充填された放電空間(Yg)を内包し、管体の両端が気密封止された形状を有し、前記放電空間(Yg)に接する面の少なくとも一部に、放電を生じ易くする易放電物質層(Yo)が形成されているランプバルブ(Yt)の、前記放電空間(Yg)に放電を誘起せしめ、前記ランプバルブ(Yt)の管軸方向に放電電流を流すための一対の外部電極(Ye1,Ye2)を有し、前記した放電によって前記放電空間(Yg)においてUV光を発生するエキシマランプ(Y)と、
     前記エキシマランプ(Y)に高電圧交流を印加するために、前記外部電極(Ye1,Ye2)が接続される2次側巻線(Ls)を備えたトランス(Tf)を有するインバータ(Ui)と、
     を具備するエキシマランプ光源装置におけるエキシマランプ点灯方法であって、
     前記インバータ(Ui)は、
      狭義収縮放電である、
      主として、
      前記外部電極(Ye1,Ye2)の一方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍から、前記外部電極(Ye1,Ye2)の他方が近接または接する前記ランプバルブ(Yt)の部分に対向する前記ランプバルブ(Yt)の内面の部分の近傍に至る、1本の線状の放電路からなる形態を有する放電
      を生じる電力よりも小さい電力を前記エキシマランプ(Y)に供給することにより、狭義収縮放電ではない放電状態で前記エキシマランプ(Y)を点灯させることを特徴とするエキシマランプ点灯方法。
  5.  通常稼働時のランプ投入電力値に対する狭義収縮放電を生じる電力値の比が、105%から120%であることを特徴とする請求項4に記載のエキシマランプ点灯方法。
PCT/JP2019/043845 2018-11-13 2019-11-08 エキシマランプ光源装置 WO2020100733A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217017991A KR102324022B1 (ko) 2018-11-13 2019-11-08 엑시머 램프 광원 장치
JP2019563636A JP6729820B1 (ja) 2018-11-13 2019-11-08 エキシマランプ光源装置
EP19884173.6A EP3882953A4 (en) 2018-11-13 2019-11-08 LIGHT SOURCE DEVICE FOR EXCIMER LAMPS
CN201980072309.2A CN112997271B (zh) 2018-11-13 2019-11-08 准分子灯光源装置及准分子灯点亮方法
US17/290,875 US11270879B2 (en) 2018-11-13 2019-11-08 Excimer lamp light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212627 2018-11-13
JP2018-212627 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100733A1 true WO2020100733A1 (ja) 2020-05-22

Family

ID=70730818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043845 WO2020100733A1 (ja) 2018-11-13 2019-11-08 エキシマランプ光源装置

Country Status (6)

Country Link
US (1) US11270879B2 (ja)
EP (1) EP3882953A4 (ja)
JP (1) JP6729820B1 (ja)
KR (1) KR102324022B1 (ja)
CN (1) CN112997271B (ja)
WO (1) WO2020100733A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825353B (zh) 2019-10-07 2023-12-11 日商牛尾電機股份有限公司 紫外線照射裝置

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521731B2 (ja) 1973-04-22 1977-01-18
JPH04280059A (ja) * 1991-03-08 1992-10-06 Toshiba Lighting & Technol Corp 低圧放電灯
JPH09180685A (ja) 1995-12-22 1997-07-11 Ushio Inc 誘電体バリア放電ランプ
JP2854250B2 (ja) 1994-09-20 1999-02-03 ウシオ電機株式会社 誘電体バリア放電ランプ装置
JPH11354079A (ja) 1998-06-10 1999-12-24 Ushio Inc 放電ランプ
JP2000223079A (ja) 1999-01-28 2000-08-11 Toshiba Lighting & Technology Corp 蛍光ランプおよび照明装置
JP2003100482A (ja) 2001-07-16 2003-04-04 Harison Toshiba Lighting Corp 誘電体バリア放電ランプ点灯装置
JP2004022209A (ja) 2002-06-12 2004-01-22 Harison Toshiba Lighting Corp 低圧放電ランプ
JP2004079270A (ja) 2002-08-13 2004-03-11 Stanley Electric Co Ltd 外部電極型蛍光ランプ
JP2004127540A (ja) * 2002-09-30 2004-04-22 Harison Toshiba Lighting Corp 蛍光ランプの点灯方法、及び蛍光ランプ点灯装置
JP2004146351A (ja) 2002-06-17 2004-05-20 Harison Toshiba Lighting Corp 低圧放電ランプ及びその製造方法
JP2004179059A (ja) 2002-11-28 2004-06-24 Nec Lighting Ltd 放電ランプ
JP2005011710A (ja) 2003-06-19 2005-01-13 Harison Toshiba Lighting Corp 低圧放電ランプ
WO2005057611A1 (ja) 2003-12-09 2005-06-23 Matsushita Electric Industrial Co., Ltd. 光源装置、照明装置、及び液晶表示装置
JP2005174632A (ja) 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 光源装置及びこれを用いた液晶ディスプレイ
JP2005267908A (ja) 2004-03-16 2005-09-29 Nec Lighting Ltd 外部電極方式放電ランプ及びその製造方法
JP2005327659A (ja) 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd 放電灯点灯装置、放電灯点灯回路及び放電灯点灯方法
JP2006019100A (ja) 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd 蛍光ランプ及びバックライトユニット
JP2006079830A (ja) 2002-09-27 2006-03-23 Matsushita Electric Ind Co Ltd 放電灯点灯装置
JP2006085983A (ja) 2004-09-15 2006-03-30 Nec Lighting Ltd 外部電極型放電ランプ及びその製造方法
JP2006338897A (ja) 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd 誘電体バリア放電ランプの点灯装置及び点灯方法
JP2006351541A (ja) 2003-12-09 2006-12-28 Matsushita Electric Ind Co Ltd 光源装置、照明装置、及び液晶表示装置
JP2007035462A (ja) * 2005-07-27 2007-02-08 Sony Corp 平面型光源装置及びこれを用いた表示装置
JP2007053117A (ja) 2001-11-30 2007-03-01 Harison Toshiba Lighting Corp 外部電極放電ランプ
WO2008038527A1 (fr) 2006-09-27 2008-04-03 Panasonic Corporation Lampe fluorescente à gaz noble, dispositif d'allumage de lampe et dispositif d'affichage à cristaux liquides
JP2008243521A (ja) 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd 誘電体バリア型放電ランプ
JP2008262805A (ja) 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 誘電体バリア放電ランプ
JP2014030763A (ja) 2013-10-25 2014-02-20 Ehime Univ 殺菌装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225744A (ja) * 1990-01-30 1991-10-04 Ushio Inc 小型低圧放電灯
JP3149780B2 (ja) 1995-03-31 2001-03-26 ウシオ電機株式会社 外部電極式蛍光放電管
JP3355976B2 (ja) 1997-02-05 2002-12-09 ウシオ電機株式会社 放電ランプ点灯装置
JP3353684B2 (ja) 1998-01-09 2002-12-03 ウシオ電機株式会社 誘電体バリア放電ランプ光源装置
JP3521731B2 (ja) 1998-02-13 2004-04-19 ウシオ電機株式会社 誘電体バリア放電ランプ光源装置
JP3296284B2 (ja) * 1998-03-12 2002-06-24 ウシオ電機株式会社 誘電体バリア放電ランプ光源装置およびその給電装置
US7271546B2 (en) 2001-07-16 2007-09-18 Harison Toshiba Lighting Corporation Lighting device for dielectric barrier discharge lamp
JP3637301B2 (ja) * 2001-10-22 2005-04-13 株式会社東芝 バリア型冷陰極放電灯
US20060055326A1 (en) 2002-06-17 2006-03-16 Yuji Takeda Low- Voltage discharge lamp and its manufacturing method
JP3935414B2 (ja) * 2002-09-26 2007-06-20 株式会社東芝 放電灯
KR100705095B1 (ko) 2004-03-05 2007-04-06 닛본 덴끼 가부시끼가이샤 외부 전극형 방전 램프와 그 제조 방법
JP4826446B2 (ja) * 2006-11-27 2011-11-30 ウシオ電機株式会社 光源装置
JP4569636B2 (ja) * 2008-01-22 2010-10-27 ウシオ電機株式会社 エキシマ放電ランプ
JP5083240B2 (ja) * 2009-02-05 2012-11-28 ウシオ電機株式会社 光照射ユニット
JP5316079B2 (ja) * 2009-02-26 2013-10-16 ウシオ電機株式会社 エキシマ放電ランプ
JP5376410B2 (ja) * 2011-03-11 2013-12-25 ウシオ電機株式会社 エキシマランプ
JP2016081695A (ja) * 2014-10-16 2016-05-16 ウシオ電機株式会社 エキシマ放電ランプ

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521731B2 (ja) 1973-04-22 1977-01-18
JPH04280059A (ja) * 1991-03-08 1992-10-06 Toshiba Lighting & Technol Corp 低圧放電灯
JP2854250B2 (ja) 1994-09-20 1999-02-03 ウシオ電機株式会社 誘電体バリア放電ランプ装置
JPH09180685A (ja) 1995-12-22 1997-07-11 Ushio Inc 誘電体バリア放電ランプ
JPH11354079A (ja) 1998-06-10 1999-12-24 Ushio Inc 放電ランプ
JP2000223079A (ja) 1999-01-28 2000-08-11 Toshiba Lighting & Technology Corp 蛍光ランプおよび照明装置
JP2003100482A (ja) 2001-07-16 2003-04-04 Harison Toshiba Lighting Corp 誘電体バリア放電ランプ点灯装置
JP2007053117A (ja) 2001-11-30 2007-03-01 Harison Toshiba Lighting Corp 外部電極放電ランプ
JP2004022209A (ja) 2002-06-12 2004-01-22 Harison Toshiba Lighting Corp 低圧放電ランプ
JP2004146351A (ja) 2002-06-17 2004-05-20 Harison Toshiba Lighting Corp 低圧放電ランプ及びその製造方法
JP2004079270A (ja) 2002-08-13 2004-03-11 Stanley Electric Co Ltd 外部電極型蛍光ランプ
JP2006079830A (ja) 2002-09-27 2006-03-23 Matsushita Electric Ind Co Ltd 放電灯点灯装置
JP2004127540A (ja) * 2002-09-30 2004-04-22 Harison Toshiba Lighting Corp 蛍光ランプの点灯方法、及び蛍光ランプ点灯装置
JP2004179059A (ja) 2002-11-28 2004-06-24 Nec Lighting Ltd 放電ランプ
JP2005011710A (ja) 2003-06-19 2005-01-13 Harison Toshiba Lighting Corp 低圧放電ランプ
JP2005174632A (ja) 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd 光源装置及びこれを用いた液晶ディスプレイ
JP2006351541A (ja) 2003-12-09 2006-12-28 Matsushita Electric Ind Co Ltd 光源装置、照明装置、及び液晶表示装置
WO2005057611A1 (ja) 2003-12-09 2005-06-23 Matsushita Electric Industrial Co., Ltd. 光源装置、照明装置、及び液晶表示装置
JP2005267908A (ja) 2004-03-16 2005-09-29 Nec Lighting Ltd 外部電極方式放電ランプ及びその製造方法
JP2005327659A (ja) 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd 放電灯点灯装置、放電灯点灯回路及び放電灯点灯方法
JP2006019100A (ja) 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd 蛍光ランプ及びバックライトユニット
JP2006085983A (ja) 2004-09-15 2006-03-30 Nec Lighting Ltd 外部電極型放電ランプ及びその製造方法
JP2006338897A (ja) 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd 誘電体バリア放電ランプの点灯装置及び点灯方法
JP2007035462A (ja) * 2005-07-27 2007-02-08 Sony Corp 平面型光源装置及びこれを用いた表示装置
WO2008038527A1 (fr) 2006-09-27 2008-04-03 Panasonic Corporation Lampe fluorescente à gaz noble, dispositif d'allumage de lampe et dispositif d'affichage à cristaux liquides
JP2008243521A (ja) 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd 誘電体バリア型放電ランプ
JP2008262805A (ja) 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 誘電体バリア放電ランプ
JP2014030763A (ja) 2013-10-25 2014-02-20 Ehime Univ 殺菌装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ozonizer Handbook", 1960, CORONA PUBLISHING CO., LTD., pages: 232
See also references of EP3882953A4
TECHNICAL REPORT OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, no. 830, 2001, pages 71

Also Published As

Publication number Publication date
JP6729820B1 (ja) 2020-07-22
EP3882953A4 (en) 2022-10-19
JPWO2020100733A1 (ja) 2021-02-15
CN112997271A (zh) 2021-06-18
US20210313165A1 (en) 2021-10-07
US11270879B2 (en) 2022-03-08
KR102324022B1 (ko) 2021-11-09
CN112997271B (zh) 2022-04-26
KR20210077784A (ko) 2021-06-25
EP3882953A1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
KR100324800B1 (ko) 방전램프용 점등제어장치 및 이에 사용할 수 있는 h브리지 회로
JP2658506B2 (ja) 希ガス放電蛍光ランプ装置
US5977722A (en) Device for applying particular voltage waveform for operating a discharge lamp
JP6729820B1 (ja) エキシマランプ光源装置
JP2010198785A (ja) 高圧放電灯点灯装置、照明器具、及び照明システム
JP4023413B2 (ja) 高圧放電灯点灯装置
JP4118941B2 (ja) 誘電体バリア放電ランプ点灯装置および誘電体バリア放電ランプの点灯本数検知方法
JP2002526893A (ja) 誘電妨害型放電のための調光可能な放電ランプ
JP2003059684A (ja) 高圧放電灯点灯装置
KR100574812B1 (ko) 유전체 배리어 방전 램프 점등장치
CN104838728B (zh) 放电灯点灯装置
JP2008153142A (ja) 高圧放電灯点灯装置及び高圧放電灯の点灯方法
US20050093478A1 (en) Lighting device for a dielectric barrier discharge lamp
JP6501196B2 (ja) エキシマランプ光源装置
JP4636450B2 (ja) 高圧放電灯点灯装置
JP3513590B2 (ja) 外部電極式蛍光放電灯の点灯方式
KR100740511B1 (ko) 다중전극 이중관 형광 램프
JP5035002B2 (ja) 希ガス蛍光ランプ点灯装置
JP2005071828A (ja) 無電極放電灯点灯装置、照明装置
JP2005327659A (ja) 放電灯点灯装置、放電灯点灯回路及び放電灯点灯方法
KR100741020B1 (ko) 플라즈마 채널링이 방지되는 이중관 형광램프 구동 장치 및구동 방법
JP4209937B2 (ja) 誘電体バリア放電ランプの点灯装置及び点灯方法
JP2021096922A (ja) エキシマランプ光源装置
WO2007105374A1 (ja) 誘電体バリア放電ランプ点灯装置
JP2011028912A (ja) 無電極放電灯点灯装置及び照明器具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563636

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217017991

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019884173

Country of ref document: EP

Effective date: 20210614