WO2020090040A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2020090040A1 WO2020090040A1 PCT/JP2018/040528 JP2018040528W WO2020090040A1 WO 2020090040 A1 WO2020090040 A1 WO 2020090040A1 JP 2018040528 W JP2018040528 W JP 2018040528W WO 2020090040 A1 WO2020090040 A1 WO 2020090040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- refrigerant
- refrigeration cycle
- lubricating oil
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/24—Storage receiver heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/16—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
Definitions
- the present invention relates to a refrigeration cycle device in which lubricating oil for a compressor is circulated together with a refrigerant.
- Patent Document 1 WO 2013/099047
- Patent Document 1 includes an oil separator for separating refrigerating machine oil from a refrigerant discharged by a compressor, and an oil sump for storing refrigerating machine oil separated by the oil separator.
- An air conditioner is disclosed. According to the air conditioner, by storing excess refrigeration oil in the oil sump, it is possible to return a required amount of refrigeration oil to the compressor when needed.
- an oil separator is connected between the outdoor heat exchanger and the compressor.
- the oil separator can increase the pressure loss of the flow path that circulates in the order of the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger. As a result, the performance of the air conditioner may deteriorate.
- the present invention has been made to solve the above-mentioned problems, and an object thereof is to suppress deterioration in performance of the refrigeration cycle apparatus.
- a refrigerant circulates in the refrigeration cycle apparatus according to the present invention.
- the refrigeration cycle apparatus includes a compressor, a first heat exchanger, a first pressure reducing device, a second heat exchanger, a second pressure reducing device, a third heat exchanger, and a bypass section.
- Lubricating oil is stored in the compressor.
- the refrigerant and the lubricating oil circulate in the order of the compressor, the first heat exchanger, the third heat exchanger, the first pressure reducing device, and the second heat exchanger, and the compressor, the first heat exchanger, and the second pressure reducing device.
- the device, the third heat exchanger, and the bypass section are circulated in this order.
- the bypass unit includes a storage unit extending in the gravity direction.
- the refrigerant and the lubricating oil flow in the reservoir against the direction of gravity.
- the diameter of the storage section satisfies the relational expression that the speed of the refrigerant flowing through the storage section is slower than the limit speed.
- the relational expression satisfied, the amount of lubricating oil flowing into the reservoir is larger than the amount of lubricating oil flowing out from the reservoir.
- the critical velocity is determined from gravitational acceleration, reservoir diameter, lubricating oil density, and gaseous refrigerant density.
- the performance of the refrigeration cycle apparatus can be suppressed by satisfying the relational expression that the speed of the refrigerant flowing through the storage part is slower than the limit speed, by the diameter of the storage part.
- FIG. 3 is a functional block diagram showing the configuration of the refrigeration cycle device according to the first embodiment.
- FIG. 3 is a Ph diagram showing changes in the state of the refrigerant circulating in the refrigeration cycle device of FIG. 1. It is a figure which shows an example of the mode of the refrigerant
- FIG. 3 is a diagram showing the relationship between the operating time of the refrigeration cycle apparatus according to Comparative Example 1, Comparative Example 2, and Embodiment 1 and the amount of lubricating oil in the compressor.
- FIG. 3 is a diagram showing an example of a connection mode between an oil separator and a pipe in a bypass section of the refrigeration cycle device according to the first embodiment.
- FIG. 3 is a diagram showing an example of a case where a storage section and a pipe are integrally formed in the bypass section of the refrigeration cycle device according to the first embodiment.
- FIG. 4 is a functional block diagram showing a configuration of a refrigeration cycle device according to a modified example of the first embodiment.
- FIG. 10 is a Ph diagram showing changes in the state of the refrigerant circulating in the refrigeration cycle device of FIG. 9. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2.
- 12 is a flowchart showing the flow of processing performed by the control device of FIG. 11 to adjust the amount of lubricating oil returned from the oil receiver to the compressor.
- 6 is a flow chart when the condition that the amount of change in the drive frequency of the compressor per unit time is smaller than the reference amount of change is used as the specific condition in the process of adjusting the amount of lubricating oil that returns from the oil receiver to the compressor.
- FIG. 9 is a functional block diagram showing a configuration of a refrigeration cycle device according to a modified example of the second embodiment. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3.
- FIG. 18 is a flowchart showing a flow of processing performed by the control device of FIG. 17 for adjusting the amount of lubricating oil returned from the oil receiver to the compressor. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the modification of Embodiment 3.
- FIG. 18 is a flowchart showing a flow of processing performed by the control device of FIG. 17 for adjusting the amount of lubricating oil returned from the oil receiver to the compressor. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the modification of Embodiment 3.
- FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle device 100 according to the first embodiment.
- the refrigeration cycle device 100 includes a compressor 1 in which lubricating oil is stored, a condenser (first heat exchanger), an expansion valve 3 (first pressure reducing device), and an evaporator 4. (Second heat exchanger), expansion valve 5 (second pressure reducing device), internal heat exchanger 7 (third heat exchanger), bypass section 8 including oil receiver 81, and control device 10.
- the control device 10 controls the drive frequency fc of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time.
- the refrigerant circulates in the order of the compressor 1, the condenser 2, the internal heat exchanger 7, and the evaporator 4.
- the flow path for guiding the refrigerant in the order of the compressor 1, the condenser 2, the internal heat exchanger 7, and the evaporator 4 is called the main flow path.
- the refrigerant circulates in the order of the compressor 1, the condenser 2, the expansion valve 5, the internal heat exchanger 7, and the bypass section 8.
- a flow path that branches from between the condenser 2 and the internal heat exchanger 7 and joins the flow path between the evaporator 4 and the compressor 1 is referred to as a bypass flow path.
- the refrigerant from the evaporator 4 merges with the refrigerant from the oil receiver 81 at the node N6 and is sucked into the compressor 1.
- heat exchange is performed between the refrigerant from the condenser 2 and the refrigerant from the expansion valve 5. Specifically, the refrigerant from the condenser 2 is cooled by the refrigerant from the expansion valve 5.
- the node N1 is a node through which the refrigerant flowing between the compressor 1 and the condenser 2 passes.
- the node N2 is a node through which the refrigerant flowing out from the condenser 2 passes.
- the node N3 is a node through which the refrigerant flowing between the internal heat exchanger 7 and the expansion valve 3 passes.
- the node N4 is a node through which the refrigerant flowing between the internal heat exchanger 7 and the evaporator 4 passes.
- the node N5 is a node through which the refrigerant flowing between the evaporator 4 and the node N6 passes.
- the node N7 is a node through which the refrigerant flowing between the expansion valve 5 and the internal heat exchanger 7 passes.
- the node N8 is a node through which the refrigerant flowing between the internal heat exchanger 7 and the bypass section 8 passes.
- the node N9 is a node through which the refrigerant flowing between the oil receiver 81 and the node N6 passes.
- FIG. 2 is a Ph diagram showing changes in the state of the refrigerant circulating in the refrigeration cycle apparatus 100 of FIG.
- the states shown in FIG. 2 correspond to the states of the refrigerant in the nodes N1 to N9 in FIG.
- curves LC1 and GC1 represent a saturated liquid line and a saturated vapor line, respectively.
- the saturated liquid line LC1 and the saturated vapor line GC1 are connected at a critical point CP1. The same applies to FIG. 10 described later.
- the process from the state of the node N6 to the state of the node N1 represents an adiabatic compression process by the compressor 1.
- the process from the state of the node N1 to the state of the node N2 represents the condensation process by the condenser 2.
- the process from the state of the node N2 to the state of the node N3 represents the heat exchange process in the internal heat exchanger 7.
- the process from the state of the node N3 to the state of the node N4 represents the depressurizing process by the expansion valve 3.
- the process from the state of the node N4 to the state of the node N5 represents the evaporation process by the evaporator 4.
- the process from the state of the node N2 to the state of the node N7 represents the depressurization process by the expansion valve 5.
- the process from the state of the node N7 to the state of the node N8 is a heat exchange process in the internal heat exchanger 7.
- the state of the node N8 (the state of the refrigerant flowing into the oil receiver 81) and the state of the node N9 (the state of the refrigerant flowing out of the oil receiver 81) are almost the same.
- the refrigerant from the evaporator 4 and the refrigerant from the oil receiver 81 join at the node N6 and are sucked into the compressor 1.
- the lubricating oil for lubricating the compression mechanism of the compressor may be stored in the compressor.
- the lubricating oil is discharged from the compressor together with the refrigerant.
- an oil separator that separates the refrigerant discharged from the compressor and the lubricating oil and stores the lubricating oil may be installed so as to receive the refrigerant discharged from the compressor.
- the refrigerant stored in the oil separator is returned to the compressor via a pipe connecting the compressor and the oil separator.
- the pressure loss increases due to the flow resistance of the oil separator. Further, when the lubricating oil is returned from the oil separator to the compressor, the refrigerant is also returned together, so that the amount of refrigerant circulating in the refrigeration cycle device (circulation refrigerant amount) is reduced and the performance of the refrigeration cycle device is reduced.
- the lubricating oil in the compressor sharply decreases.
- a stable state an operating state in which the amount of change in the drive frequency of the compressor is smaller than the reference amount of change
- the lubricating oil is returned from the oil separator to the compressor in the transient state, so that the lubricating oil of the compressor can be prevented from being exhausted.
- the lubricating oil continues to be supplied from the oil separator even after the operation state of the refrigeration cycle apparatus becomes stable, the lubricating oil in the compressor becomes excessive and the performance of the compressor may deteriorate.
- the oil receiver 81 is arranged between the internal heat exchanger 7 and the compressor 1 in the bypass flow path. Since the oil receiver 81 is arranged in the bypass flow passage, it does not cause a pressure loss in the main flow passage of the refrigeration cycle apparatus 100.
- the oil receiver 81 is arranged so that the refrigerant and the lubricating oil flow in the oil receiver 81 against the direction of gravity, and the diameter of the oil receiver 81 satisfies Expression (3) described later.
- the lubricating oil is stored in the oil receiver 81 in the stable state of the refrigeration cycle apparatus 100, and the lubricating oil is returned from the oil receiver 81 to the compressor 1 during a transition of the operating state of the refrigeration cycle apparatus 100.
- the refrigeration cycle apparatus 100 it is possible to suppress the decrease of the circulating refrigerant amount in the stable state, the excess of the lubricating oil in the compressor in the stable state, and the depletion of the lubricating oil in the compressor in the transient state. As a result, the performance degradation of the refrigeration cycle apparatus 100 can be suppressed.
- FIGS. 3 and 4 are diagrams showing the states of the refrigerant and the lubricating oil flowing into the bypass section 8 in the stable state of the refrigeration cycle device 100 of FIG.
- the liquid refrigerant and the lubricating oil which are the liquids flowing into the oil receiver 81
- the dryness of the refrigerant flowing into the oil receiver 81 is about 1.
- the direction of gravity is the Z-axis direction. The same applies to FIGS. 5 and 6.
- the oil receiver 81 is connected between the pipes 811 and 812.
- the oil receiver 81 extends in the Z-axis direction and has a cylindrical shape with a diameter D1.
- the refrigerant and the lubricating oil flow into the oil receiver 81 from the pipe 811, and flow out from the pipe 812.
- the velocity Vg of the gas refrigerant Rg flowing through the oil receiver 81 is expressed by the following equation (1). It is represented by.
- ⁇ g is the density of the gas refrigerant (gas refrigerant) Rg.
- FIG. 5 is a diagram showing a state of the refrigerant and the lubricating oil flowing into the oil receiver 81 in the transient state of the refrigeration cycle device 100 of FIG.
- the transient state more liquid refrigerant Rq than in the stable state flows into the oil receiver.
- the region through which the gas refrigerant Rg can pass in the transient state is narrower than the region through which the gas refrigerant Rg can pass in the stable state.
- the speed of the gas refrigerant Rg increases and becomes faster than the critical speed Vgc, and the mixed liquid Ro flows out from the oil receiver 81.
- FIG. 6 is a diagram showing the relationships C11, C12, and C1 between the operating time of the refrigeration cycle apparatus 100 according to Comparative Example 1, Comparative Example 2, and Embodiment 1 and the amount of lubricating oil in the compressor, respectively.
- the refrigeration cycle apparatus according to Comparative Example 1 does not include an oil separator.
- the refrigeration cycle apparatus according to Comparative Example 2 includes an oil separator installed so as to receive the refrigerant discharged from the compressor.
- the amount of lubricating oil in the compressor is preferably q1 or more. Further, in order to ensure the performance of the compressor, it is desirable that the amount of lubricating oil in the compressor be q2 or less to suppress an excessive amount of lubricating oil. That is, the proper range of the amount of lubricating oil in the compressor is q1 or more and q2 or less.
- the operating time 0 to t1 is in the transient state, and the operating time t1 and thereafter is the stable state.
- the lubricating oil amounts q1 and q2 can be appropriately determined by an actual machine experiment or simulation.
- the pipe connected to the oil receiver may be connected anywhere as long as the refrigerant and the lubricating oil are connected so as to flow in the oil receiver against the direction of gravity.
- the pipe 811A may be connected to the bottom of the side surface of the oil receiver 81A
- the pipe 812A may be connected to the upper portion of the side surface of the oil receiver 81A.
- the refrigerant and the lubricating oil flow into the oil receiver 81A from the pipe 811A and flow out from the pipe 812A.
- the storage unit is an oil receiver that is separate from the pipe.
- the storage part may be formed integrally with the pipe.
- the storage section 81B and the pipes 811B and 812B may be integrally formed. That is, the storage portion 81B is a portion thicker than the portion other than the storage portion 81B in the pipe included in the bypass portion 8B.
- FIG. 9 is a functional block diagram showing a configuration of a refrigeration cycle device 100A according to a modified example of the first embodiment.
- the refrigeration cycle apparatus 100A has a configuration in which an expansion valve 3A (third pressure reducing apparatus) and a refrigerant container 11 are added to the refrigeration cycle apparatus 100 in FIG. 1, and the internal heat exchanger 7 in FIG. 1 is replaced with 7A. It is a composition. Other than these, the description is not repeated because it is the same.
- the refrigerant container 11 communicates with the expansion valve 5.
- the expansion valve 3A is connected between the refrigerant container 11 and the condenser 2.
- the internal heat exchanger 7A is arranged inside the refrigerant container 11.
- the nodes N1, N2, N4 to N6, N8, and N9 are the same as those in the first embodiment, and therefore the description will not be repeated.
- the node N10 is a node through which the refrigerant flowing between the expansion valve 3A and the refrigerant container 11 passes.
- the node N11 is a node through which the refrigerant flowing between the refrigerant container 11 and the expansion valve 3 passes.
- the node N12 is a node through which the refrigerant flowing between the refrigerant container 11 and the expansion valve 5 passes.
- the node N13 is a node through which the refrigerant flowing between the expansion valve 5 and the internal heat exchanger 7A passes.
- FIG. 10 is a Ph diagram showing changes in the state of the refrigerant circulating in the refrigeration cycle apparatus 100A of FIG.
- the respective states shown in FIG. 9 correspond to the respective states of the refrigerant in the nodes N1, N2, N4 to N6 and N8 to N13 in FIG.
- the process from the state of the node N6 to the state of the node N2 via the state of the node N1 is the same as that in the first embodiment.
- the process from the state of the node N2 to the state of the node N10 represents the depressurizing process by the expansion valve 3A.
- the states of the nodes N11 and N12 are the states of the saturated liquid flowing out from the refrigerant container 11, and are shown on the saturated liquid line LC1 in FIG.
- the process from the state of the node N11 to the state of the node N4 represents the depressurization process by the expansion valve 3.
- the process from the state of the node N4 to the state of the node N1 via the states of the nodes N5 and N6 is the same as that of the first embodiment.
- the process from the state of the node N12 to the state of the node N13 represents the depressurization process by the expansion valve 5.
- the process from the state of the node N13 to the state of the node N8 is a heat exchange process in the internal heat exchanger 7.
- Embodiment 2 the opening degree of the second pressure reducing device is adjusted by determining the specific condition indicating that the amount of lubricating oil in the compressor is larger than the reference amount (that the lubricating oil is not depleted). Then, a configuration for adjusting the amount of lubricating oil returning from the oil receiver to the compressor will be described.
- FIG. 11 is a functional block diagram showing the configuration of the refrigeration cycle device 200 according to the second embodiment.
- the refrigeration cycle apparatus 200 has a configuration in which the sensor unit 21 is added to the refrigeration cycle apparatus 100 in FIG. 1 and the control device 10 in FIG. 1 is replaced with 20. Other than these, the description is not repeated because it is the same.
- the control device 20 controls the drive frequency fc of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time.
- the control device 20 determines information necessary for determining a specific condition indicating that the lubricating oil in the compressor 1 is not exhausted (for example, the degree of superheat of the refrigerant passing through the compressor 1, the liquid level in the compressor 1). Or the density of the lubricating oil) is acquired from the sensor unit 21.
- the control device 20 uses the information from the sensor unit 21 to control the opening degree of the expansion valve 5 and adjust the amount of lubricating oil returned from the oil receiver 81 to the compressor 1.
- FIG. 12 is a flowchart showing a flow of processing performed by the control device 20 of FIG. 11 to adjust the amount of lubricating oil returned from the oil receiver to the compressor.
- the process shown in FIG. 12 is called by a main routine (not shown) that performs integrated control of the refrigeration cycle apparatus 200.
- the step is simply described as S.
- the control device 20 determines in S101 whether or not the condition (specific condition) that the degree of superheat of the refrigerant passing through the compressor 1 is larger than the reference value is satisfied.
- the degree of superheat of the refrigerant passing through the compressor 1 is larger than the reference value, the operation state of the refrigeration cycle apparatus 200 becomes stable, and a drastic decrease in the amount of lubricating oil in the compressor 1 that occurs in a transient state almost occurs. Not not. Therefore, when the degree of superheat of the refrigerant passing through the compressor 1 is larger than the reference value, it is determined that the lubricating oil in the compressor 1 is not exhausted.
- the refrigerant passing through the compressor 1 includes at least one of the refrigerant drawn into the compressor 1 and the refrigerant discharged from the compressor 1. Further, the reference value can be appropriately calculated by an actual machine experiment or simulation.
- control device 20 When the degree of superheat of the refrigerant passing through the compressor 1 is larger than the reference value (YES in S101), the control device 20 reduces the opening degree of the expansion valve 5 in S102 and returns the process to the main routine. When the degree of superheat of the refrigerant passing through the compressor is equal to or lower than the reference value (NO in S101), control device 20 increases the opening degree of expansion valve 5 in S103 and returns the process to the main routine. The controller 20 may fully open the opening degree of the expansion valve 5 in S103.
- the refrigeration cycle device 200 when the lubricating oil in the compressor 1 is not exhausted (when the specific condition is satisfied), the amount of refrigerant flowing into the oil receiver 81 per unit time is reduced. As a result, the velocity Vg of the refrigerant passing through the oil receiver 81 (see equation (1)) becomes equal to or lower than the critical velocity Vgc (see equation (2)), and the lubricating oil is stored in the oil receiver 81. On the other hand, when the lubricating oil in the compressor 1 is exhausted (when the specific condition is not satisfied), the amount of the refrigerant flowing into the oil receiver 81 per unit time is increased to return the lubricant from the oil receiver 81 to the compressor 1. Increase the amount of oil. According to the refrigeration cycle apparatus 200, the lubricating oil can be returned from the oil receiver 81 to the compressor 1 in a timely manner as compared with the first embodiment, so that the reliability and performance of the refrigeration cycle apparatus can be further improved.
- the case where the condition that the degree of superheat of the refrigerant passing through the compressor is larger than the reference value is used as the specific condition indicating that the amount of lubricating oil in the compressor is larger than the reference amount.
- the specific condition may be any condition as long as it indicates that the amount of lubricating oil in the compressor is larger than the reference amount. For example, the condition that the amount of change in the drive frequency of the compressor per unit time is smaller than the reference amount of change (S111 in FIG. 13) and the condition that the height of the liquid level in the compressor is larger than the reference height (S121 in FIG. 14). ) Or the condition that the concentration of the lubricating oil in the liquid in the compressor is higher than the reference concentration (S131 in FIG. 15), may be used as the specific condition.
- the reference amount, the reference change amount, the reference height, and the reference concentration can be appropriately calculated by an actual machine experiment or simulation.
- the mode of the internal heat exchanger provided in the refrigeration cycle apparatus according to Embodiment 2 is the same as that of the refrigeration cycle apparatus 200A according to the modification of Embodiment 2 shown in FIG.
- the same mode as that of the modified example may be adopted.
- FIG. 17 is a functional block diagram showing the configuration of the refrigeration cycle device 300 according to the third embodiment.
- the refrigeration cycle apparatus 300 has a configuration in which a bypass valve 82 is added to the bypass section 8 of the refrigeration cycle apparatus 200 in FIG. 11 and the control device 20 is replaced with 30. Other than these, the description is not repeated because it is the same.
- the bypass valve 82 is connected between the bottom of the oil receiver 81 and the suction port of the compressor 1.
- FIG. 18 is a flowchart showing a flow of processing performed by the control device 30 of FIG. 17 to adjust the amount of lubricating oil returned from the oil receiver 81 to the compressor 1.
- the process shown in FIG. 18 is called by a main routine (not shown) that performs integrated control of the refrigeration cycle apparatus 300.
- the control device 30 determines in S201 whether a specific condition is satisfied.
- a specific condition the condition shown in each of S101 of FIG. 12, S111 of FIG. 13, S121 of FIG. 14, or S131 of FIG. 15 can be used.
- control device 30 When the specific condition is satisfied (YES in S201), the control device 30 reduces the opening degree of the bypass valve 82 in S202 and returns the process to the main routine. When the specific condition is not satisfied (NO in S201), control device 30 increases the opening degree of bypass valve 82 in S303 and returns the process to the main routine. The control device 30 may close the bypass valve 82 in S302, or may fully open the bypass valve in S303.
- the refrigeration cycle apparatus 300 when the specific condition is not satisfied (when the lubricating oil in the compressor 1 is exhausted), the lubricating oil is returned to the compressor 1 also from the bottom of the oil receiver 81. According to the refrigeration cycle apparatus 300, when the lubricating oil in the compressor 1 is exhausted, the required amount of lubricating oil can be returned from the oil receiver 81 to the compressor 1 in a shorter time than in the second embodiment. Therefore, the reliability can be further improved.
- the mode of the internal heat exchanger included in the refrigeration cycle apparatus according to Embodiment 3 is the same as that of the refrigeration cycle apparatus 300A according to the modification of Embodiment 3 shown in FIG. The same mode as that of the modification of
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Compressor (AREA)
- Air Conditioning Control Device (AREA)
- Lubricants (AREA)
Abstract
冷媒および潤滑油は、圧縮機(1)、第1熱交換器(2)、第3熱交換器(7)、第1減圧装置(3)、および第2熱交換器(4)の順に循環するとともに、圧縮機(1)、第1熱交換器(2)、第2減圧装置(5)、第3熱交換器(7)、およびバイパス部(8)の順に循環する。バイパス部(8)は、重力方向に延在する貯留部(81)を含む。冷媒および潤滑油は、重力方向に逆らって貯留部(81)を流れる。バイパス部(8)を流れる単位時間当たりの冷媒量が基準流量である場合、貯留部(81)の直径は、貯留部(81)を流れる冷媒の速度が限界速度よりも遅いという関係式を満たす。当該関係式が満たされる場合、貯留部(81)に流入する潤滑油の量は、貯留部(81)から流出する潤滑油の量よりも多い。限界速度は、重力加速度、貯留部(81)の直径、潤滑油の密度、および気体の冷媒の密度から決定される。
Description
本発明は、冷媒とともに圧縮機の潤滑油が循環する冷凍サイクル装置に関する。
従来、冷媒とともに圧縮機の潤滑油が循環する冷凍サイクル装置が知られている。たとえば、国際公開2013/099047号(特許文献1)には、圧縮機によって吐出された冷媒から冷凍機油を分離する油分離器、および油分離器で分離された冷凍機油を貯留する油溜めを備える空気調和装置が開示されている。当該空気調和装置によれば、余剰の冷凍機油を油溜めに貯留しておくことにより、必要なときに必要な量の冷凍機油を圧縮機に戻すことができる。
特許文献1に開示されている空気調和装置においては、室外熱交換器と圧縮機との間に油分離機が接続されている。当該油分離機は、圧縮機、室外熱交換器、膨張弁、および室内熱交換器の順に循環する流路の圧力損失を増加させ得る。その結果、空気調和装置の性能が低下し得る。
本発明は、上述のような課題を解決するためになされたものであり、その目的は、冷凍サイクル装置の性能低下を抑制することである。
本発明に係る冷凍サイクル装置においては、冷媒が循環する。冷凍サイクル装置は、圧縮機と、第1熱交換器と、第1減圧装置と、第2熱交換器と、第2減圧装置と、第3熱交換器と、バイパス部とを備える。圧縮機には、潤滑油が貯留される。冷媒および潤滑油は、圧縮機、第1熱交換器、第3熱交換器、第1減圧装置、および第2熱交換器の順に循環するとともに、圧縮機、第1熱交換器、第2減圧装置、第3熱交換器、およびバイパス部の順に循環する。バイパス部は、重力方向に延在する貯留部を含む。冷媒および潤滑油は、重力方向に逆らって貯留部を流れる。バイパス部を流れる単位時間当たりの冷媒量が基準流量である場合、貯留部の直径は、貯留部を流れる冷媒の速度が限界速度よりも遅いという関係式を満たす。当該関係式が満たされる場合、貯留部に流入する潤滑油の量は、貯留部から流出する潤滑油の量よりも多い。限界速度は、重力加速度、貯留部の直径、潤滑油の密度、および気体の冷媒の密度から決定される。
本発明によれば、貯留部を流れる冷媒の速度が限界速度よりも遅いという関係式を貯留部の直径が満たすことにより、冷凍サイクル装置の性能低下を抑制することができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、潤滑油が貯留される圧縮機1と、凝縮器(第1熱交換器)と、膨張弁3(第1減圧装置)と、蒸発器4(第2熱交換器)と、膨張弁5(第2減圧装置)と、内部熱交換器7(第3熱交換器)、オイルレシーバ81を含むバイパス部8と、制御装置10とを備える。制御装置10は、圧縮機1の駆動周波数fcを制御して、圧縮機1が単位時間あたりに吐出する冷媒量を制御する。
図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、潤滑油が貯留される圧縮機1と、凝縮器(第1熱交換器)と、膨張弁3(第1減圧装置)と、蒸発器4(第2熱交換器)と、膨張弁5(第2減圧装置)と、内部熱交換器7(第3熱交換器)、オイルレシーバ81を含むバイパス部8と、制御装置10とを備える。制御装置10は、圧縮機1の駆動周波数fcを制御して、圧縮機1が単位時間あたりに吐出する冷媒量を制御する。
冷凍サイクル装置100においては、冷媒が、圧縮機1、凝縮器2、内部熱交換器7、および蒸発器4の順に循環する。以下では、圧縮機1、凝縮器2、内部熱交換器7、および蒸発器4の順に冷媒を導く流路を主流路と呼ぶ。また、冷媒は、圧縮機1、凝縮器2、膨張弁5、内部熱交換器7、およびバイパス部8の順に循環する。以下では、凝縮器2と内部熱交換器7との間から分岐して蒸発器4と圧縮機1との間の流路に合流する流路をバイパス流路と呼ぶ。
蒸発器4からの冷媒は、ノードN6においてオイルレシーバ81からの冷媒と合流し、圧縮機1に吸入される。内部熱交換器7においては、凝縮器2からの冷媒と膨張弁5からの冷媒との間で熱交換が行われる。具体的には、凝縮器2からの冷媒が膨張弁5からの冷媒によって冷却される。
ノードN1は、圧縮機1と凝縮器2との間を流れる冷媒が通過するノードである。ノードN2は、凝縮器2から流出する冷媒が通過するノードである。ノードN3は、内部熱交換器7と膨張弁3との間を流れる冷媒が通過するノードである。ノードN4は、内部熱交換器7と蒸発器4との間を流れる冷媒が通過するノードである。ノードN5は、蒸発器4とノードN6との間を流れる冷媒が通過するノードである。ノードN7は、膨張弁5と内部熱交換器7との間を流れる冷媒が通過するノードである。ノードN8は、内部熱交換器7とバイパス部8との間を流れる冷媒が通過するノードである。ノードN9は、オイルレシーバ81とノードN6との間を流れる冷媒が通過するノードである。
図2は、図1の冷凍サイクル装置100を循環する冷媒の状態の変化を示すP-h線図である。図2に示されている各状態は、図9のノードN1~N9における冷媒の各状態に対応する。図4において、曲線LC1,GC1は、それぞれ飽和液線、および飽和蒸気線を表す。飽和液線LC1および飽和蒸気線GC1は、臨界点CP1において接続されている。後に説明する図10においても同様である。
図1および図2を併せて参照しながら、ノードN6の状態からノードN1の状態への過程は、圧縮機1による断熱圧縮過程を表す。ノードN1の状態からノードN2の状態への過程は、凝縮器2による凝縮過程を表す。ノードN2の状態からノードN3の状態への過程は、内部熱交換器7における熱交換過程を表す。ノードN3の状態からノードN4の状態への過程は、膨張弁3による減圧過程を表す。ノードN4の状態からノードN5の状態への過程は、蒸発器4による蒸発過程を表す。
ノードN2の状態からノードN7の状態への過程は、膨張弁5による減圧過程を表す。ノードN7の状態からノードN8の状態への過程は、内部熱交換器7における熱交換過程である。ノードN8の状態(オイルレシーバ81に流入する冷媒の状態)と、ノードN9の状態(オイルレシーバ81から流出する冷媒の状態)とはほとんど同じである。蒸発器4からの冷媒とオイルレシーバ81からの冷媒とがノードN6において合流し、圧縮機1に吸入される。
冷凍サイクル装置100のように、圧縮機の圧縮機構を潤滑するための潤滑油が圧縮機に貯留される場合がある。圧縮機に潤滑油が貯留される場合、圧縮機からは冷媒とともに潤滑油が吐出される。当該潤滑油が配管および熱交換器に流入することによって、圧力損失が増加するとともに、熱交換器における熱交換効率が低下することが知られている。そのため、冷凍サイクル装置には圧縮機から吐出された冷媒と潤滑油とを分離して潤滑油を貯留するオイルセパレータが、圧縮機から吐出される冷媒を受けるように設置される場合がある。オイルセパレータに貯留された冷媒は、圧縮機とオイルセパレータとを接続する配管を介して圧縮機に戻される。
オイルセパレータを圧縮機から吐出される冷媒を受けるように設置する場合、オイルセパレータの流路抵抗によって圧力損失が増加する。また、オイルセパレータから圧縮機に潤滑油が戻される場合、冷媒も一緒に戻されるため、冷凍サイクル装置を循環する冷媒量(循環冷媒量)が減少し、冷凍サイクル装置の性能が低下する。
さらに、冷凍サイクル装置の起動時等、単位時間当たりの圧縮機の駆動周波数の変化量が一時的に基準変化量以上となる過渡状態において、圧縮機内の潤滑油が急激に減少する。冷凍サイクル装置の運転が安定状態(圧縮機の駆動周波数の変化量が基準変化量より小さい運転状態)となるまでの過渡状態において、圧縮機内の潤滑油が枯渇しないようにオイルセパレータに予め潤滑油を貯留しておく場合、過渡状態においてはオイルセパレータから潤滑油が圧縮機に戻されるため、圧縮機の潤滑油が枯渇することを防止することができる。しかし、冷凍サイクル装置の運転状態が安定状態となってからもオイルセパレータからの潤滑油の供給が継続するため、圧縮機内の潤滑油が過剰となり、圧縮機の性能が低下し得る。
そこで、冷凍サイクル装置100においては、バイパス流路において内部熱交換器7と圧縮機1との間にオイルレシーバ81を配置する。オイルレシーバ81は、バイパス流路に配置されていることにより、冷凍サイクル装置100の主流路においては圧力損失を生じさせない。
また、冷凍サイクル装置100においては、冷媒および潤滑油が重力方向に逆らってオイルレシーバ81を流れるようにオイルレシーバ81を配置するとともに、オイルレシーバ81の直径を、後に説明する式(3)を満たすように設定する。冷凍サイクル装置100の安定状態においてオイルレシーバ81に潤滑油が貯留されるとともに、冷凍サイクル装置100の運転状態の過渡時にオイルレシーバ81から圧縮機1に潤滑油が戻される。冷凍サイクル装置100によれば、安定状態における循環冷媒量の減少、安定状態における圧縮機内の潤滑油の過剰、および過渡状態における圧縮機内の潤滑油の枯渇を抑制することができる。その結果、冷凍サイクル装置100の性能低下を抑制することができる。
図3および図4は、図1の冷凍サイクル装置100の安定状態においてバイパス部8に流入する冷媒および潤滑油の様子を示す図である。以下では、オイルレシーバ81に流入する液体である液冷媒および潤滑油を混合液Roとする。安定状態において想定される、オイルレシーバ81に流入する冷媒の乾き度は、ほぼ1である。図3および図4において重力方向をZ軸方向としている。図5,図6においても同様である。
図3に示されるように、オイルレシーバ81は配管811と812との間に接続されている。オイルレシーバ81は、Z軸方向に延在し、直径D1の円筒形状を有する。冷媒および潤滑油は、配管811からオイルレシーバ81に流入し、配管812から流出する。冷凍サイクル装置100が安定状態である場合に想定される、オイルレシーバ81を単位時間当たりに通過する冷媒量をGrとすると、オイルレシーバ81を流れるガス冷媒Rgの速度Vgは以下の式(1)で表される。なお、式(1)において、ρgは気体の冷媒(ガス冷媒)Rgの密度である。
ガス冷媒Rgが以下の式(2)で表される臨界速度Vgc以下である場合、混合液Roのほとんどは、オイルレシーバ81から流出せず、重力によってオイルレシーバ81内に貯留される。なお、式(2)において、Gaは重力加速度を表し、ρbは、潤滑油の密度を表す。
Vg≦Vgcという関係から、直径D1の範囲は、以下のように導かれる。
直径D1が式(3)を満たすことにより、冷凍サイクル装置100の安定状態においては、図3および図4に示されるように、オイルレシーバ81内に潤滑油を含む混合液Roが貯留される。
図5は、図1の冷凍サイクル装置100の過渡状態においてオイルレシーバ81に流入する冷媒および潤滑油の様子を示す図である。過渡状態においては、安定状態よりも多くの液冷媒Rqがオイルレシーバに流入する。その結果、過渡状態においてガス冷媒Rgが通過可能な領域は、安定状態においてガス冷媒Rgが通過可能な領域よりも狭くなる。その結果、ガス冷媒Rgの速度が増加して臨界速度Vgcより速くなり、混合液Roがオイルレシーバ81から流出する。
図6は、比較例1、比較例2、および実施の形態1に係る冷凍サイクル装置100の運転時間と圧縮機内の潤滑油量との関係C11,C12,C1をそれぞれ示す図である。なお、比較例1に係る冷凍サイクル装置は、オイルセパレータを備えていない。比較例2に係る冷凍サイクル装置は、圧縮機から吐出される冷媒を受けるように設置されたオイルセパレータを備える。
図6を参照しながら、圧縮機の圧縮機構を十分に潤滑して圧縮機の信頼性を確保するためには、圧縮機内の潤滑油量は、q1以上であることが望ましい。また、圧縮機の性能を確保するためには、圧縮機内の潤滑油量をq2以下として潤滑油量が過剰となることを抑制することが望ましい。すなわち、圧縮機内の潤滑油量の適正範囲は、q1以上q2以下である。また、比較例1、比較例2、および実施の形態1のいずれにおいても、運転時間0~t1までが過渡状態であり、運転時間t1以降が安定状態である。潤滑油量q1,q2は、実機実験あるいはシミュレーションによって適宜決定することができる。
図6に示されるように、比較例1に係る冷凍サイクル装置に対応する曲線C11においては、過渡状態において潤滑油が枯渇している時間帯があるとともに、安定状態における潤滑油量は過剰な範囲で推移している。比較例2に係る冷凍サイクル装置に対応する曲線C12においては、過渡状態において潤滑油量は枯渇していないが、安定状態において潤滑油は比較例1よりもさらに過剰な範囲で推移している。一方、冷凍サイクル装置100においては、過渡状態において潤滑油が枯渇していないとともに、運転時間t1から或る程度の時間経過後、潤滑油量が適正範囲内で推移している。実施の形態1に係る冷凍サイクル装置によれば、過渡状態の潤滑油の枯渇および安定状態における潤滑油の過剰を抑制することができる。
実施の形態1においては、オイルレシーバの重力方向の両端部に2つの配管がそれぞれ接続されている場合について説明した。オイルレシーバに接続されている配管は、冷媒および潤滑油が重力方向に逆らってオイルレシーバを流れるように接続されれば、どこに接続されてもよい。たとえば、図7に示されるバイパス部8Aのように、オイルレシーバ81Aの側面の底部に配管811Aを接続し、オイルレシーバ81Aの側面の上部に配管812Aを接続してもよい。バイパス部8Aにおいては冷媒および潤滑油は、配管811Aからオイルレシーバ81Aに流入し、配管812Aから流出する。
また、実施の形態1においては、貯留部が配管とは別体であるオイルレシーバである場合について説明した。貯留部は、配管と一体的に形成されてもよい。たとえば、図8に示されるバイパス部8Bのように、貯留部81Bと配管811B,812Bとが一体的に形成されていてもよい。すなわち、貯留部81Bは、バイパス部8Bに含まれる配管において貯留部81B以外の部分よりも太い部分である。
実施の形態1の変形例.
実施の形態1の変形例においては、冷凍サイクル装置が、実施の形態1とは異なる態様の内部熱交換器を備える場合について説明する。
実施の形態1の変形例においては、冷凍サイクル装置が、実施の形態1とは異なる態様の内部熱交換器を備える場合について説明する。
図9は、実施の形態1の変形例に係る冷凍サイクル装置100Aの構成を示す機能ブロック図である。冷凍サイクル装置100Aの構成は、図1の冷凍サイクル装置100に膨張弁3A(第3減圧装置)および冷媒容器11が追加されているとともに、図1の内部熱交換器7が7Aに置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。
図9に示されるように、冷媒容器11は、膨張弁5と連通している。膨張弁3Aは、冷媒容器11と凝縮器2との間に接続されている。内部熱交換器7Aは、冷媒容器11の内部に配置されている。
ノードN1,N2,N4~N6,N8,N9については実施の形態1と同様であるため、説明を繰り返さない。ノードN10は、膨張弁3Aと冷媒容器11との間を流れる冷媒が通過するノードである。ノードN11は、冷媒容器11と膨張弁3との間を流れる冷媒が通過するノードである。ノードN12は、冷媒容器11と膨張弁5との間を流れる冷媒が通過するノードである。ノードN13は、膨張弁5と内部熱交換器7Aとの間を流れる冷媒が通過するノードである。
図10は、図9の冷凍サイクル装置100Aを循環する冷媒の状態の変化を示すP-h線図である。図9に示されている各状態は、図9のノードN1,N2,N4~N6,N8~N13における冷媒の各状態に対応する。
図9および図10を併せて参照しながら、ノードN6の状態からノードN1の状態を経由してノードN2に状態に至る過程は、実施の形態1と同様である。ノードN2の状態からノードN10の状態への過程は、膨張弁3Aによる減圧過程を表す。ノードN11,N12の各状態は、冷媒容器11から流出する飽和液の状態であり、図10において飽和液線LC1上に示されている。ノードN11の状態からノードN4の状態への過程は、膨張弁3による減圧過程を表す。ノードN4の状態からノードN5,N6の状態を経由してノードN1の状態に至る過程は実施の形態1と同様である。
ノードN12の状態からノードN13の状態への過程は、膨張弁5による減圧過程を表す。ノードN13の状態からノードN8の状態への過程は、内部熱交換器7における熱交換過程である。
以上、実施の形態1および変形例に係る冷凍サイクル装置によれば、性能低下を抑制することができる。
実施の形態2.
実施の形態2においては、圧縮機内の潤滑油量が基準量よりも多いこと(潤滑油が枯渇していないこと)を示す特定条件の判定を行なうことにより、第2減圧装置の開度を調節して、オイルレシーバから圧縮機へ戻る潤滑油の量を調節する構成について説明する。
実施の形態2においては、圧縮機内の潤滑油量が基準量よりも多いこと(潤滑油が枯渇していないこと)を示す特定条件の判定を行なうことにより、第2減圧装置の開度を調節して、オイルレシーバから圧縮機へ戻る潤滑油の量を調節する構成について説明する。
図11は、実施の形態2に係る冷凍サイクル装置200の構成を示す機能ブロック図である。冷凍サイクル装置200の構成は、図1の冷凍サイクル装置100にセンサ部21が追加されているとともに、図1の制御装置10が20に置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。
図11に示されるように、制御装置20は、圧縮機1の駆動周波数fcを制御して、圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置20は、圧縮機1内の潤滑油が枯渇していないことを示す特定条件の判定に必要な情報(たとえば、圧縮機1を通過する冷媒の過熱度、圧縮機1内の液面高さ、あるいは潤滑油の密度)をセンサ部21から取得する。制御装置20は、センサ部21からの情報を用いて、膨張弁5の開度を制御して、オイルレシーバ81から圧縮機1へ戻る潤滑油の量を調節する。
図12は、図11の制御装置20によって行われる、オイルレシーバから圧縮機へ戻る潤滑油の量を調節する処理の流れを示すフローチャートである。図12に示される処理は、冷凍サイクル装置200の統合的な制御を行なう不図示のメインルーチンによって呼び出される。以下ではステップを単にSと記載する。
図12に示されるように、制御装置20は、S101において、圧縮機1を通過する冷媒の過熱度が基準値より大きいという条件(特定条件)が成立するか否かを判定する。圧縮機1を通過する冷媒の過熱度が基準値より大きい場合、冷凍サイクル装置200の運転状態が安定状態となり、過渡状態で生じるような圧縮機1内の潤滑油量の急激な減少はほとんど生じていない。そのため、圧縮機1を通過する冷媒の過熱度が基準値より大きいという場合、圧縮機1内の潤滑油が枯渇していないと判定される。なお、圧縮機1を通過する冷媒には、圧縮機1に吸入される冷媒および圧縮機1から吐出される冷媒の少なくとも一方が含まれる。また、基準値は、実機実験あるいはシミュレーションによって適宜算出することができる。
圧縮機1を通過する冷媒の過熱度が基準値よりも大きい場合(S101においてYES)、制御装置20は、S102において膨張弁5の開度を減少させて、処理をメインルーチンに返す。圧縮機を通過する冷媒の過熱度が基準値以下である場合(S101においてNO)、制御装置20は、S103において膨張弁5の開度を増加させて、処理をメインルーチンに返す。制御装置20は、S103において膨張弁5の開度を全開としてもよい。
冷凍サイクル装置200においては、圧縮機1内の潤滑油が枯渇していない場合(特定条件が成立する場合)、単位時間当たりにオイルレシーバ81に流入する冷媒量を減少させる。その結果、オイルレシーバ81を通過する冷媒の速度Vg(式(1)参照)が臨界速度Vgc(式(2)参照)以下となり、潤滑油がオイルレシーバ81に貯留される。一方、圧縮機1内の潤滑油が枯渇している場合(特定条件が成立しない場合)、単位時間当たりにオイルレシーバ81に流入する冷媒量を増加させてオイルレシーバ81から圧縮機1に戻る潤滑油量を増加させる。冷凍サイクル装置200によれば、実施の形態1よりも適時にオイルレシーバ81から圧縮機1へ潤滑油を戻すことができるため、冷凍サイクル装置の信頼性および性能をさらに向上させることができる。
実施の形態2においては、圧縮機内の潤滑油量が基準量よりも多いことを示す特定条件として、圧縮機を通過する冷媒の過熱度が基準値よりも大きいという条件を用いる場合について説明した。特定条件は、圧縮機内の潤滑油量が基準量よりも多いことを示す条件であればどのような条件でもよい。たとえば圧縮機の駆動周波数の単位時間当たりの変化量が基準変化量よりも小さいという条件(図13のS111)、圧縮機内の液面の高さが基準高さよりも大きいという条件(図14のS121)、あるいは圧縮機内の液体における潤滑油の濃度が基準濃度よりも大きいという条件(図15のS131)のいずれかを特定条件として用いてもよい。基準量、基準変化量、基準高さ、および基準濃度は、実機実験あるいはシミュレーションによって適宜算出することができる。
実施の形態2に係る冷凍サイクル装置が備える内部熱交換器の態様は、図16に示される実施の形態2の変形例に係る冷凍サイクル装置200Aのように、図9に示される実施の形態1の変形例と同様の態様としてもよい。
以上、実施の形態2および変形例に係る冷凍サイクル装置によれば、性能低下を抑制することができる。
実施の形態3.
図17は、実施の形態3に係る冷凍サイクル装置300の構成を示す機能ブロック図である。冷凍サイクル装置300の構成は、図11の冷凍サイクル装置200のバイパス部8にバイパス弁82が追加されているとともに、制御装置20が30に置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。図17に示されるように、バイパス弁82は、オイルレシーバ81の底部と圧縮機1の吸入口との間に接続されている。
図17は、実施の形態3に係る冷凍サイクル装置300の構成を示す機能ブロック図である。冷凍サイクル装置300の構成は、図11の冷凍サイクル装置200のバイパス部8にバイパス弁82が追加されているとともに、制御装置20が30に置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。図17に示されるように、バイパス弁82は、オイルレシーバ81の底部と圧縮機1の吸入口との間に接続されている。
図18は、図17の制御装置30によって行われる、オイルレシーバ81から圧縮機1へ戻る潤滑油の量を調節する処理の流れを示すフローチャートである。図18に示される処理は、冷凍サイクル装置300の統合的な制御を行なう不図示のメインルーチンによって呼び出される。
図18に示されるように、制御装置30は、S201において、特定条件が成立するか否かを判定する。特定条件としては、図12のS101、図13のS111、図14のS121、あるいは図15のS131の各々に示される条件を用いることができる。
特定条件が成立する場合(S201においてYES)、制御装置30は、S202においてバイパス弁82の開度を減少させて、処理をメインルーチンに返す。特定条件が成立しない場合(S201においてNO)、制御装置30は、S303においてバイパス弁82の開度を増加させて、処理をメインルーチンに返す。制御装置30は、S302においてバイパス弁82を閉止してもよいし、S303においてバイパス弁を全開としてもよい。
冷凍サイクル装置300においては、特定条件が成立しない場合(圧縮機1内の潤滑油が枯渇している場合)に、オイルレシーバ81の底部からも圧縮機1に潤滑油を戻す。冷凍サイクル装置300によれば、圧縮機1内の潤滑油が枯渇している場合に、実施の形態2よりも短時間で必要な量の潤滑油をオイルレシーバ81から圧縮機1に戻すことができるため、信頼性をさらに向上させることができる。
実施の形態3に係る冷凍サイクル装置が備える内部熱交換器の態様は、図19に示される実施の形態3の変形例に係る冷凍サイクル装置300Aのように、図9に示される実施の形態1の変形例と同様の態様としてもよい。
以上、実施の形態3および変形例に係る冷凍サイクル装置によれば、性能低下を抑制することができる。
今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 圧縮機、2 凝縮器、3,3A,5 膨張弁、4 蒸発器、7,7A 内部熱交換器、8,8A,8B バイパス部、10,20,30 制御装置、11 冷媒容器、21 センサ部、81,81A オイルレシーバ、81B 貯留部、82 バイパス弁、100,100A,200,200A,300,300A 冷凍サイクル装置、811,811A,811B,812,812A,812B 配管。
Claims (10)
- 冷媒が循環する冷凍サイクル装置であって、
潤滑油が貯留される圧縮機と、
第1熱交換器と、
第1減圧装置と、
第2熱交換器と、
第2減圧装置と、
第3熱交換器と、
バイパス部とを備え、
前記冷媒および前記潤滑油は、前記圧縮機、前記第1熱交換器、前記第3熱交換器、前記第1減圧装置、および前記第2熱交換器の順に循環するとともに、前記圧縮機、前記第1熱交換器、前記第2減圧装置、前記第3熱交換器、および前記バイパス部の順に循環し、
前記バイパス部は、重力方向に延在する貯留部を含み、
前記冷媒および前記潤滑油は、前記重力方向に逆らって前記貯留部を流れ、
前記バイパス部を流れる単位時間当たりの冷媒量が基準流量である場合、前記貯留部の直径は、前記貯留部を流れる前記冷媒の速度が限界速度よりも遅いという関係式を満たし、
前記関係式が満たされる場合、前記貯留部に流入する前記潤滑油の量は、前記貯留部から流出する前記潤滑油の量よりも多く、
前記限界速度は、重力加速度、前記直径、前記潤滑油の密度、および気体の前記冷媒の密度から決定される、冷凍サイクル装置。 - 前記第2減圧装置と連通する冷媒容器と、
前記冷媒容器と前記第1熱交換器との間に接続された第3減圧装置とをさらに備え、
前記第3熱交換器は、前記冷媒容器の内部に配置されている、請求項1に記載の冷凍サイクル装置。 - 特定条件が満たされる場合の前記第2減圧装置の開度は、前記特定条件が満たされない場合の前記第2減圧装置の開度よりも小さく、
前記特定条件は、前記圧縮機内の前記潤滑油の量が基準量よりも多いことを示す条件である、請求項1または2に記載の冷凍サイクル装置。 - 前記バイパス部は、前記貯留部の底部と前記圧縮機の吸入口との間に接続されたバイパス弁をさらに含む、請求項1または2に記載の冷凍サイクル装置。
- 特定条件が満たされる場合の前記バイパス弁の開度は、前記特定条件が満たされない場合の前記バイパス弁の開度よりも小さく、
前記特定条件は、前記圧縮機内の前記潤滑油の量が基準量よりも多いことを示す条件である、請求項4に記載の冷凍サイクル装置。 - 前記特定条件は、前記圧縮機を通過する前記冷媒の過熱度が基準値よりも大きいという条件として判定される、請求項3または5に記載の冷凍サイクル装置。
- 前記特定条件は、前記圧縮機の駆動周波数の単位時間当たりの変化量が基準変化量よりも小さいという条件として判定される、請求項3または5に記載の冷凍サイクル装置。
- 前記特定条件は、前記圧縮機内の液面の高さが基準高さよりも大きいという条件として判定される、請求項3または5に記載の冷凍サイクル装置。
- 前記特定条件は、前記圧縮機内の液体における前記潤滑油の濃度が基準濃度よりも大きいという条件として判定される、請求項3または5に記載の冷凍サイクル装置。
- 前記貯留部は、前記バイパス部に含まれる配管と一体的に形成されている、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020554671A JP7150046B2 (ja) | 2018-10-31 | 2018-10-31 | 冷凍サイクル装置 |
PCT/JP2018/040528 WO2020090040A1 (ja) | 2018-10-31 | 2018-10-31 | 冷凍サイクル装置 |
CN201880098843.6A CN112888906B (zh) | 2018-10-31 | 2018-10-31 | 制冷循环装置 |
EP18938547.9A EP3875872A4 (en) | 2018-10-31 | 2018-10-31 | REFRIGERATION CYCLE UNIT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/040528 WO2020090040A1 (ja) | 2018-10-31 | 2018-10-31 | 冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090040A1 true WO2020090040A1 (ja) | 2020-05-07 |
Family
ID=70461820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040528 WO2020090040A1 (ja) | 2018-10-31 | 2018-10-31 | 冷凍サイクル装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3875872A4 (ja) |
JP (1) | JP7150046B2 (ja) |
CN (1) | CN112888906B (ja) |
WO (1) | WO2020090040A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS506453U (ja) * | 1973-05-14 | 1975-01-23 | ||
JP2008039233A (ja) * | 2006-08-03 | 2008-02-21 | Daikin Ind Ltd | 冷凍装置 |
JP2013083425A (ja) * | 2011-09-30 | 2013-05-09 | Fujitsu General Ltd | 空気調和装置 |
WO2013099047A1 (ja) | 2011-12-27 | 2013-07-04 | 三菱電機株式会社 | 空気調和装置 |
WO2015198475A1 (ja) * | 2014-06-27 | 2015-12-30 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2016157282A1 (ja) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2017009260A (ja) * | 2015-06-26 | 2017-01-12 | 株式会社富士通ゼネラル | 空気調和装置 |
WO2017085813A1 (ja) * | 2015-11-18 | 2017-05-26 | 三菱電機株式会社 | 空気調和装置 |
JP2017198376A (ja) * | 2016-04-26 | 2017-11-02 | 株式会社デンソー | 冷凍サイクル装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1387778A (en) * | 1973-07-31 | 1975-03-19 | Virginia Chemicals Inc | Liquid trapping suction accumulator for a refrigeration system |
JP3008765B2 (ja) * | 1993-09-30 | 2000-02-14 | 三菱電機株式会社 | 冷凍サイクル |
JP3339302B2 (ja) * | 1996-04-26 | 2002-10-28 | 三菱電機株式会社 | アキュムレータ |
JP4078786B2 (ja) * | 2000-03-29 | 2008-04-23 | 三菱電機株式会社 | 冷凍空調サイクル装置 |
WO2011052038A1 (ja) * | 2009-10-27 | 2011-05-05 | 三菱電機株式会社 | 空気調和装置 |
CN203671981U (zh) * | 2012-12-21 | 2014-06-25 | 三菱电机株式会社 | 制冷循环装置 |
JP6529601B2 (ja) * | 2015-11-20 | 2019-06-12 | 三菱電機株式会社 | 冷凍サイクル装置及び冷凍サイクル装置の制御方法 |
CN108431520B (zh) * | 2016-01-14 | 2020-08-14 | 三菱电机株式会社 | 制冷循环装置 |
JP6644160B2 (ja) * | 2016-10-18 | 2020-02-12 | 三菱電機株式会社 | 冷凍サイクル装置 |
-
2018
- 2018-10-31 EP EP18938547.9A patent/EP3875872A4/en not_active Withdrawn
- 2018-10-31 WO PCT/JP2018/040528 patent/WO2020090040A1/ja unknown
- 2018-10-31 CN CN201880098843.6A patent/CN112888906B/zh active Active
- 2018-10-31 JP JP2020554671A patent/JP7150046B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS506453U (ja) * | 1973-05-14 | 1975-01-23 | ||
JP2008039233A (ja) * | 2006-08-03 | 2008-02-21 | Daikin Ind Ltd | 冷凍装置 |
JP2013083425A (ja) * | 2011-09-30 | 2013-05-09 | Fujitsu General Ltd | 空気調和装置 |
WO2013099047A1 (ja) | 2011-12-27 | 2013-07-04 | 三菱電機株式会社 | 空気調和装置 |
WO2015198475A1 (ja) * | 2014-06-27 | 2015-12-30 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2016157282A1 (ja) * | 2015-03-27 | 2016-10-06 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2017009260A (ja) * | 2015-06-26 | 2017-01-12 | 株式会社富士通ゼネラル | 空気調和装置 |
WO2017085813A1 (ja) * | 2015-11-18 | 2017-05-26 | 三菱電機株式会社 | 空気調和装置 |
JP2017198376A (ja) * | 2016-04-26 | 2017-11-02 | 株式会社デンソー | 冷凍サイクル装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3875872A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7150046B2 (ja) | 2022-10-07 |
CN112888906B (zh) | 2023-03-03 |
EP3875872A4 (en) | 2022-01-05 |
JPWO2020090040A1 (ja) | 2021-09-02 |
CN112888906A (zh) | 2021-06-01 |
EP3875872A1 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9151522B2 (en) | Air conditioner and control method thereof | |
JP3988780B2 (ja) | 冷凍装置 | |
JP2010127531A (ja) | 冷凍空調装置 | |
KR20070046967A (ko) | 냉동장치 | |
JP2008057807A (ja) | 冷凍サイクル及びそれを用いた空気調和機、冷蔵庫 | |
CN110023694A (zh) | 制冷循环装置 | |
KR100984215B1 (ko) | 냉동장치 | |
EP2541164A1 (en) | Chiller | |
JP6451535B2 (ja) | 熱管理装置 | |
JP2008139001A (ja) | 冷凍装置 | |
CN103808070B (zh) | 空调机 | |
WO2020090040A1 (ja) | 冷凍サイクル装置 | |
CN203671981U (zh) | 制冷循环装置 | |
JP5921718B2 (ja) | 冷凍サイクル装置 | |
JP2018204805A (ja) | 冷凍ユニット、冷凍システム、および冷媒回路の制御方法 | |
JP6925528B2 (ja) | 冷凍サイクル装置 | |
JP5225895B2 (ja) | 空気調和装置 | |
JP5975706B2 (ja) | アキュムレータ及び冷凍サイクル装置 | |
JP2014025646A (ja) | 蒸発器およびその蒸発器を備えた車両用空調装置 | |
JP6615351B2 (ja) | 冷凍サイクル装置 | |
JP4690802B2 (ja) | 冷凍装置 | |
JP2008082652A (ja) | 冷凍サイクル装置、および、冷凍サイクル装置の製造方法。 | |
JPH0464879A (ja) | 凝縮器 | |
JP7235473B2 (ja) | 冷凍装置 | |
JP2008045777A (ja) | アキュームレータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18938547 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020554671 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018938547 Country of ref document: EP Effective date: 20210531 |