JP6925528B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6925528B2
JP6925528B2 JP2020525064A JP2020525064A JP6925528B2 JP 6925528 B2 JP6925528 B2 JP 6925528B2 JP 2020525064 A JP2020525064 A JP 2020525064A JP 2020525064 A JP2020525064 A JP 2020525064A JP 6925528 B2 JP6925528 B2 JP 6925528B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
refrigeration cycle
height
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020525064A
Other languages
English (en)
Other versions
JPWO2019239587A1 (ja
Inventor
宗希 石山
宗希 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019239587A1 publication Critical patent/JPWO2019239587A1/ja
Application granted granted Critical
Publication of JP6925528B2 publication Critical patent/JP6925528B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍サイクル装置に関する。
従来、冷媒容器に貯留された冷媒を圧縮機の吸入口にバイパスする冷凍サイクル装置が知られている。たとえば、特許第5865561号公報(特許文献1)には、冷媒容器の内部に貯留されている液冷媒の少なくとも一部を、膨張弁、冷媒熱交換器を介して圧縮機の吸入側に導くバイパス回路を有する冷凍サイクル装置が開示されている。冷媒容器に貯留されている冷媒の一部をバイパスすることにより、低圧側を流れる冷媒の流量が減り、低圧側の圧損を抑制することができ、冷凍サイクル装置の効率を向上させることができる。
特許第5865561号公報
特許文献1に開示されている冷凍サイクル装置において、冷媒容器内の冷媒量が減少して冷媒容器から気液二相状態の冷媒(湿り蒸気)が流出する場合、冷凍サイクル装置の低圧側の圧力の低下によって冷凍サイクル装置の効率が低下し得る。また、冷媒容器内の冷媒量が増加し、冷媒熱交換器周辺の冷媒の乾き度(冷媒中に占める気体の冷媒の割合)が下がると、冷媒熱交換器の伝熱性能(熱交換効率)が低下し、冷凍サイクル装置の効率が低下し得る。しかし、特許文献1に開示されている冷凍サイクル装置においては、冷媒容器内の冷媒量によっては冷凍サイクル装置の効率が低下することについて考慮されていない。
本発明は、上述のような課題を解決するためになされたものであり、その目的は、冷凍サイクル装置の効率の低下を抑制することである。
本発明の一局面に係る冷凍サイクル装置においては、冷媒が、圧縮機、第1熱交換器、第1膨張弁、冷媒容器、第2膨張弁、および第2熱交換器の順に循環する。冷凍サイクル装置は、第3膨張弁と、特定流路とを備える。特定流路は、第3膨張弁および冷媒容器を連通する。第3膨張弁は、冷媒容器を介して圧縮機の吸入口に連通する。特定条件が満たされている場合の特定流路を通過する単位時間当たりの冷媒量は、特定条件が満たされていない場合の特定流路を通過する単位時間当たりの冷媒量よりも多い。特定条件は、冷媒容器内の冷媒量が基準量よりも少ないという条件である。
本発明の他の局面に係る冷凍サイクル装置においては、冷媒が、圧縮機、第1熱交換器、第1膨張弁、冷媒容器、第2膨張弁、および第2熱交換器の順に循環する。冷凍サイクル装置は、第3膨張弁と、特定流路と、第3熱交換器とを備える。特定流路は、第3膨張弁および冷媒容器を連通する。第3熱交換器は、第3膨張弁および圧縮機の吸入口の間に接続されている。第3熱交換器は、冷媒容器内に配置されている。特定条件が満たされている場合、冷媒容器に流入する冷媒量は、冷媒容器から流出する冷媒量よりも少ない。特定条件は、冷媒容器内の冷媒量が基準量よりも多いという条件である。特定条件が満たされている場合の第3熱交換器の熱交換効率は、冷媒容器内の冷媒量が基準量である場合の熱交換効率よりも小さい。
本発明の一局面に係る冷凍サイクル装置によれば、特定条件は冷媒容器内の冷媒量が基準量よりも少ないという条件であり、当該特定条件が満たされている場合の特定流路を通過する単位時間当たりの冷媒量が、特定条件が満たされていない場合の特定流路を通過する単位時間当たりの冷媒量よりも多いことにより、冷凍サイクル装置の効率の低下を抑制することができる。
また、本発明の他の局面に係る冷凍サイクル装置によれば、特定条件は冷媒容器内の冷媒量が基準量よりも多いという条件であり、特定条件が満たされている場合の第3熱交換器の熱交換効率は、冷媒容器内の冷媒量が基準量である場合の熱交換効率よりも小さく、特定条件が満たされている場合、冷媒容器に流入する冷媒量は、冷媒容器から流出する冷媒量よりも少ないことにより、冷凍サイクル装置の効率の低下を抑制することができる。
実施の形態1に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図1の制御装置によって行なわれる膨張弁制御の処理の流れを示す図である。 図2の冷媒量調整処理の具体的な処理の流れを示すフローチャートである。 実施の形態2に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図4の制御装置によって行なわれる冷媒量調整処理の流れを示すフローチャートである。 図4の開閉部の構成の一例を示す図である。 図4の開閉部の構成の他の例を示す図である。 実施の形態3に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図8の制御装置によって行なわれる冷媒量調整処理の流れを示すフローチャートである。 実施の形態4に係る冷凍サイクル装置の構成を示す機能ブロック図である。 冷媒容器に貯留された液冷媒の液面の高さと内部熱交換器の熱交換効率との関係を示すグラフである。 図10の制御装置によって行なわれる冷媒量調整処理の流れを示すフローチャートである。 実施の形態5に係る冷凍サイクル装置の構成を示す機能ブロック図である。 図13の制御装置によって行なわれる冷媒量調整処理の流れを示すフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2(第1熱交換器)と、膨張弁3(第1膨張弁)と、冷媒容器4と、膨張弁5(第2膨張弁)と、蒸発器6(第2熱交換器)と、配管71(特定流路)と、膨張弁8(第3膨張弁)と、内部熱交換器9(第3熱交換器)と、制御装置10とを備える。冷凍サイクル装置100において、冷媒は、圧縮機1、凝縮器2、膨張弁3、冷媒容器4、膨張弁5、および蒸発器6の順に循環する。
冷媒容器4は、膨張弁3からの冷媒を受けて液冷媒を底部に貯留する。配管71は、膨張弁8と冷媒容器4とを連通する。内部熱交換器9は、膨張弁8と圧縮機1の吸入口との間に接続され、冷媒容器4内に配置されている。
制御装置10は、圧縮機1の駆動周波数を制御することにより、圧縮機1が単位時間当たりに吐出する冷媒量を制御する。制御装置10は、膨張弁3,5,8の開度を調節する。
図2は、図1の制御装置10によって行なわれる膨張弁制御の処理の流れを示す図である。図2に示される処理は、冷凍サイクル装置100の統合的な制御を行なう不図示のメインルーチンによって呼び出される。以下ではステップを単にSと記載する。
図2に示されるように、制御装置10は、S100において、膨張弁3,5,8に対して通常の制御を行なって、処理をS200に進める。通常の制御には、たとえば、蒸発器6から流出する冷媒の過熱度を一定の範囲内に維持する過熱度制御が含まれる。制御装置10は、S200において、冷媒容器4内の冷媒量を調整する冷媒量調整処理を行なった後、処理をメインルーチンに返す。
冷凍サイクル装置100において、冷媒容器4内の冷媒量が減少して冷媒容器4から湿り蒸気が流出する場合、低圧側(膨張弁5から圧縮機1の吸入口までの部分)の冷媒量が低下していることにより冷凍サイクル装置100の低圧側の圧力が低下する。そのため、冷凍サイクル装置100の高圧側(圧縮機1の吐出口から膨張弁3までの部分)の圧力と低圧側の圧力との差圧が大きくなり、冷凍サイクル装置100の効率が低下し得る。
冷凍サイクル装置100を循環する冷媒量(循環冷媒量)を増加させることによって低圧側の冷媒量を増加させるために膨張弁5の開度を増加させると、当該開度が全開となった以降は、膨張弁5の開度を制御することによっては冷媒容器4から膨張弁5へ流出する単位時間当たりの冷媒量を増加させることができない。このような場合、膨張弁5の開度を制御することによっては、冷凍サイクル装置100の効率の低下を抑制することはできない。また、膨張弁5の開度が全開である場合、冷媒容器4から流出する冷媒量を増加させることがほとんどできない状態であるため、冷媒容器4内の冷媒量の減少がほぼ止まっている。
そこで、冷凍サイクル装置100においては、冷媒容器4内の冷媒量が基準量よりも少ない場合、膨張弁8の開度を増加させて配管71を通過する単位時間当たりの冷媒量を増加させる。冷媒容器4から膨張弁8へ流出する冷媒量が増加するため、当該冷媒量が圧縮機1に吸入される冷媒量に加えられる。その結果、循環冷媒量が増加し、冷凍サイクル装置100の効率の低下を抑制することができる。冷凍サイクル装置100においては、冷媒容器4内の冷媒量が基準量よりも少ないという条件(特定条件)が満たされているか否かを、膨張弁5の開度が基準開度(たとえば全開)以上であるという条件が満たされているか否かによって判定する。
図3は、図2の冷媒量調整処理(S200)の具体的な処理の流れを示すフローチャートである。図3に示されるように、制御装置10は、S211において、膨張弁5の開度が基準開度以上であるか否かを判定する。膨張弁5の開度が基準開度以上である場合(S211においてYES)、制御装置10は、S212において、膨張弁8の開度を一定量増加させて処理をメインルーチンに返す。膨張弁5の開度が基準開度未満である場合(S211においてNO)、制御装置10は、処理をメインルーチンに返す。
以上、実施の形態1に係る冷凍サイクル装置によれば、冷凍サイクル装置の効率の低下を抑制することができる。
実施の形態2.
実施の形態1においては、第3膨張弁の開度を増加させて特定流路を通過する単位時間当たりの冷媒量を増加させる構成について説明した。実施の形態2においては、特定流路から圧縮機の吸入口へ冷媒をバイパスすることにより、特定流路を通過する単位時間当たりの冷媒量を増加させる構成について説明する。
図4は、実施の形態2に係る冷凍サイクル装置200の構成を示す機能ブロック図である。図4の冷凍サイクル装置200の構成は、図1の冷凍サイクル装置100の構成に開閉部80が追加されているとともに、制御装置10が制御装置20に置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。実施の形態2においては、実施の形態1の図1,図3が、図4,図5にそれぞれ置き換えられる。
図4に示されるように、開閉部80は、配管71と圧縮機1の吸入口との間に接続されている。制御装置20は、開閉部80の開放および閉止を切り替える。開閉部80が開放されている場合、配管71に流入した冷媒が開閉部80を経由して圧縮機1の吸入口にバイパスされる。
冷凍サイクル装置200においては、膨張弁8の口径を大きくして配管71を通過する単位時間当たりの冷媒量を増加させる必要がないため、膨張弁8を小型化することができる。膨張弁8の小型化により、比較的小さな分解能に従って膨張弁8の開度を制御することができるため、膨張弁8の制御性を向上させることができる。
図5は、図4の制御装置20によって行なわれる冷媒量調整処理の流れを示すフローチャートである。図5に示されるように、制御装置20は、S221において、膨張弁5の開度が基準開度以上であるか否かを判定する。膨張弁5の開度が基準開度以上である場合(S221においてYES)、制御装置20は、S222において、開閉部80を開放して処理をメインルーチンに返す。膨張弁5の開度が基準開度未満である場合(S221においてNO)、制御装置20は、S223において、開閉部80を閉止して処理をメインルーチンに返す。
図6は、図4の開閉部80の構成の一例を示す図である。図6に示されるように、開閉部80は、開閉弁81を含む。開閉弁81は、配管71と圧縮機1の吸入口との間に接続されている。開閉部80の構成が図6に示される構成である場合、制御装置20は、図5のS222において開閉弁81を開放し、S223において開閉弁81を閉止する。
図7は、図4の開閉部80の構成の他の例を示す図である。図7に示されるように、開閉部80は、三方弁82を含む。三方弁82は、互いに連通するポートP1〜P3を有する。ポートP1は、膨張弁8に連通している。ポートP2は、冷媒容器4に連通している。ポートP3は、圧縮機1の吸入口に連通している。ポートP1,P2は、開放されている。ポートP3は、開放および閉止が切り替えられる。開閉部80の構成が図7に示される構成である場合、制御装置20は、図5のS222においてポートP3を開放し、S223においてポートP3を閉止する。
以上、実施の形態2に係る冷凍サイクル装置によれば、冷凍サイクル装置の効率の低下を抑制することができる。また、第3膨張弁の制御性を向上させることができる。
実施の形態3.
実施の形態1,2においては、冷媒容器内の冷媒量が低下して冷媒容器から湿り蒸気が流出することによる冷凍サイクル装置の効率の低下を抑制する構成について説明した。実施の形態3においては、冷媒容器内の冷媒量が増加して第3熱交換器の熱交換効率が低下することによる冷凍サイクル装置の効率の低下を抑制する構成について説明する。
図8は、実施の形態3に係る冷凍サイクル装置300の構成を示す機能ブロック図である。冷凍サイクル装置300の構成は、図1の冷凍サイクル装置100に圧力センサ91が加えられているとともに、制御装置10が制御装置30に置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。実施の形態3においては、実施の形態1の図1,図3が、図8,図9にそれぞれ置き換えられる。
図8に示されるように、圧力センサ91は、凝縮器2内の冷媒の圧力(凝縮圧力)を検出し、制御装置30に凝縮圧力を表す検出信号を出力する。制御装置30は、圧力センサ91からの検出信号を用いて、膨張弁3の開度を制御して、冷媒容器4内の冷媒量を調整する。
冷媒容器4内の冷媒量の増加に伴って冷媒容器4に貯留された液冷媒の液面が高くなる。内部熱交換器9周辺の乾き度が低下すると、内部熱交換器9が液冷媒に浸かり、内部熱交換器9の熱交換効率が低下する。その結果、冷凍サイクル装置300の効率が低下し得る。内部熱交換器9の熱交換効率の低下を抑制するため、冷媒容器4内の冷媒量を調節する必要がある。
冷凍サイクル装置300内の冷媒量が一定である場合、凝縮器2内の冷媒量が少ないほど、冷凍サイクル装置300内の冷媒の分布は低圧側に偏るため、冷媒容器4内の冷媒量は多い。また、凝縮器2内の冷媒量が少ないほど、凝縮圧力は小さい。そのため、凝縮圧力が小さいほど、冷媒容器4内の冷媒量は多い。
そこで、冷凍サイクル装置300においては、冷媒容器4内の冷媒量が基準量よりも多く、液面が上昇して内部熱交換器9の熱交換効率が所望の水準から低下している場合に、膨張弁8の開度を一定量減少させる。膨張弁3から冷媒容器4に流入する単位時間当たりの冷媒量が減少して冷媒容器4に貯留された液冷媒の液面の高さが低下するため、内部熱交換器9の熱交換効率の低下を抑制することができる。その結果、冷凍サイクル装置300の効率の低下を抑制することができる。また、熱交換効率の低下が抑制されることにより内部熱交換器9を小型化することができるため、冷凍サイクル装置300を小型化することができる。冷凍サイクル装置300においては、冷媒容器4内の冷媒量が基準量よりも多いという条件(特定条件)が満たされているかを、凝縮圧力が基準圧力よりも小さいという条件が満たされているか否かによって判定する。
図9は、図8の制御装置30によって行なわれる冷媒量調整処理の流れを示すフローチャートである。図9に示されるように、制御装置30は、S231において、凝縮圧力が基準圧力より小さいか否かを判定する。凝縮圧力が基準圧力より小さい場合(S231いおいてYES)、制御装置30は、S232において、膨張弁3の開度を一定量減少させて、処理をメインルーチンに返す。凝縮圧力が基準圧力以上である場合(S231においてNO)、制御装置30は、S233において、膨張弁3の開度を一定量増加させて、処理をメインルーチンに返す。
以上、実施の形態3に係る冷凍サイクル装置によれば、冷媒容器内の冷媒量が増加して第3熱交換器の熱交換効率が所望な水準から低下している場合に、冷凍サイクル装置の効率の低下を抑制することができる。また、実施の形態3に係る冷凍サイクル装置によれば、冷凍サイクル装置を小型化することができる。
実施の形態4.
冷媒容器4内の冷媒量を示す指標として、実施の形態1,2においては第2膨張弁の開度を用いる場合について説明し、実施の形態3においては凝縮圧力を用いる場合について説明した。実施の形態4においては、冷媒容器4内の冷媒量を示す指標として冷媒容器4内の液冷媒の液面の高さを用いる場合について説明する。
図10は、実施の形態4に係る冷凍サイクル装置400の構成を示す機能ブロック図である。冷凍サイクル装置400の構成は、図1の冷凍サイクル装置100に液面センサ92が加えられているとともに、制御装置10が制御装置40に置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。実施の形態4においては、実施の形態1の図1,図3が、図10,図12にそれぞれ置き換えられる。
図10に示されるように、液面センサ92は、冷媒容器4内の液冷媒の液面の高さを検出し、制御装置40に液面高さを表す検出信号を出力する。制御装置30は、液面センサ92からの検出信号を用いて、膨張弁8の開度を制御して、冷媒容器4内の冷媒量を調整する。
図11は、冷媒容器4に貯留された液冷媒の液面の高さと内部熱交換器9の熱交換効率との関係を示すグラフである。図11において、液面高さH1は、高圧側圧力と低圧側圧力との差圧を適切な水準に維持可能な液面高さの最大値であり、たとえば凝縮圧力が基準圧力より大きくなる場合の液面高さである。液面高さH2は、液面高さH1よりも小さく、内部熱交換器9の熱交換効率が最大となる場合の液面高さである。
図11に示されるように、冷媒容器4に貯留された液面の高さが高くなるにつれて冷媒容器4内の配管71の端部が液面に接近し、配管71に流入する冷媒の乾き度が低下する。配管71に液冷媒が流入するようになり、配管71に湿り蒸気が流入していた場合よりも内部熱交換器9の熱交換効率が増加する。しかし、冷媒容器4内の液面の高さがさらに増加して、内部熱交換器9周辺の冷媒の乾き度がさらに低下すると、内部熱交換器9が液冷媒に浸かり、内部熱交換器9の熱交換効率が低下する。
そこで、冷凍サイクル装置400においては、冷媒容器4に貯留された液冷媒の液面の高さがH2〜H1の範囲から乖離するのを抑制するように膨張弁8の開度を制御することにより、内部熱交換器9の熱交換効率の低下を抑制する。その結果、冷凍サイクル装置400の効率の低下を抑制することができる。また、熱交換効率の低下が抑制されることにより内部熱交換器9を小型化することができるため、冷凍サイクル装置400を小型化することができる。さらに、冷媒容器4に貯留された液冷媒の液面の高さの変化が一定の範囲となるため、冷媒容器4内の液冷媒の振動が抑制され、冷凍サイクル装置400の騒音が抑制される。その結果、ユーザの快適性を向上することができる。
図12は、図10の制御装置40によって行なわれる冷媒量調整処理の流れを示すフローチャートである。図12に示されるように、制御装置40は、S241において、冷媒容器4内の液冷媒の液面の高さが基準高さH1(第1基準高さ)以上か否かを判定する。冷媒容器4内の液冷媒の液面の高さが基準高さH1以上である場合(S241においてYES)、制御装置40は、S242において、膨張弁8の開度を一定量増加させて処理をメインルーチンに返す。
冷媒容器4内の液冷媒の液面の高さが基準高さH1未満である場合(S241においてNO)、制御装置40は、S243において、冷媒容器4内の液冷媒の液面の高さが基準高さH2(第2基準高さ)以上であるか否かを判定する。冷媒容器4内の液冷媒の液面の高さが基準高さH2以上である場合(S243においてYES)、制御装置40は、S244において、膨張弁8の開度を一定量減少させて処理をメインルーチンに返す。冷媒容器4内の液冷媒の液面の高さが基準高さH2未満である場合(S243においてNO)、制御装置40は、S245において、膨張弁8の開度を一定量増加させて処理をメインルーチンに返す。
以上、実施の形態4に係る冷凍サイクル装置によれば、冷凍サイクル装置の効率の低下を抑制することができる。また、実施の形態4に係る冷凍サイクル装置によれば、冷凍サイクル装置を小型化することができるとともに、騒音を抑制してユーザの快適性を向上させることができる。
実施の形態5.
実施の形態4においては、第3膨張弁の開度を増加させて特定流路を通過する単位時間当たりの冷媒量を増加させる構成について説明した。実施の形態5においては、第3膨張弁の開度を増加させることに加えて、特定流路から圧縮機の吸入口へ冷媒をバイパスすることによって、特定流路を通過する単位時間当たりの冷媒量を増加させる構成について説明する。
図13は、実施の形態5に係る冷凍サイクル装置500の構成を示す機能ブロック図である。冷凍サイクル装置500の構成は、図10の冷凍サイクル装置400に開閉部80Aが加えられているとともに、制御装置40が制御装置50に置き換えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。実施の形態5においては、実施の形態4の図10,図12が、図13,図14にそれぞれ置き換えられる。
図13に示されるように、開閉部80Aは、配管71と圧縮機1の吸入口との間に接続されている。制御装置50は、開閉部80Aの開放および閉止を切り替える。開閉部80Aの具体的な構成は、図6または図7の開閉部80と同様である。
冷凍サイクル装置500においては、膨張弁8の口径を大きくして配管71を通過する単位時間当たりの冷媒量を増加させる必要がないため、膨張弁8を小型化することができる。膨張弁8の小型化により、比較的小さな分解能に従って膨張弁8の開度を制御することができるため、膨張弁8の制御性を向上させることができる。
図14は、図13の制御装置50によって行なわれる冷媒量調整処理の流れを示すフローチャートである。図14に示されるように、制御装置50は、S251において、冷媒容器4内の液冷媒の液面の高さが基準高さH1以上か否かを判定する。冷媒容器4内の液冷媒の液面の高さが基準高さH1以上である場合(S251においてYES)、制御装置50は、S252において、膨張弁8の開度を一定量増加させて処理をS253に進める。制御装置50は、S253において、開閉部80Aを閉止してメインルーチンに返す。
冷媒容器4内の液冷媒の液面の高さが基準高さH1未満である場合(S251においてNO)、制御装置50は、S254において、冷媒容器4内の液冷媒の液面の高さが基準高さH2以上であるか否かを判定する。冷媒容器4内の液冷媒の液面の高さが基準高さH2以上である場合(S254においてYES)、制御装置50は、S255において、膨張弁8の開度を一定量減少させて処理をS256に進める。制御装置50は、S256において、開閉部80Aを閉止して処理をメインルーチンに返す。冷媒容器4内の液冷媒の液面の高さが基準高さH2未満である場合(S254においてNO)、制御装置50は、S257において、開閉部80Aを開放して処理をメインルーチンに返す。
以上、実施の形態5に係る冷凍サイクル装置によれば、冷凍サイクル装置の効率の低下を抑制することができる。また、実施の形態5に係る冷凍サイクル装置によれば、騒音を抑制してユーザの快適性を向上させることができるとともに、第3膨張弁の制御性を向上させることができる。
今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 圧縮機、2 凝縮器、3,5,8 膨張弁、4 冷媒容器、6 蒸発器、10,20,30,40,50 制御装置、71 配管、80,80A 開閉部、81 開閉弁、82 三方弁、91 圧力センサ、92 液面センサ、100,200,300,400,500 冷凍サイクル装置、P1〜P3 ポート。

Claims (11)

  1. 冷媒が、圧縮機、第1熱交換器、第1膨張弁、冷媒容器、第2膨張弁、および第2熱交換器の順に循環する冷凍サイクル装置であって、
    第3膨張弁と、
    前記第3膨張弁および前記冷媒容器を連通する特定流路とを備え、
    前記第3膨張弁は、前記冷媒容器を介して前記圧縮機の吸入口に連通し、
    特定条件が満たされている場合の前記特定流路を通過する単位時間当たりの冷媒量は、前記特定条件が満たされていない場合の前記特定流路を通過する単位時間当たりの冷媒量よりも多く、
    前記特定条件は、前記冷媒容器内の冷媒量が基準量よりも少ないという条件である、冷凍サイクル装置。
  2. 前記特定条件は、前記第2膨張弁の開度が基準開度以上という条件を含む、請求項1に記載の冷凍サイクル装置。
  3. 前記特定条件は、前記冷媒容器に貯留された液体の前記冷媒の液面の高さが基準高さより低いという条件を含む、請求項1に記載の冷凍サイクル装置。
  4. 前記特定条件が満たされている場合の前記第3膨張弁の開度は、前記特定条件が満たされていない場合の前記第3膨張弁の開度よりも大きい、請求項1〜3のいずれか1項に記載の冷凍サイクル装置。
  5. 前記特定流路と前記吸入口との間に接続された開閉部をさらに備え、
    前記特定条件が満たされている場合、前記開閉部は開放され、前記特定条件が満たされていない場合、前記開閉部は閉止される、請求項1〜3のいずれか1項に記載の冷凍サイクル装置。
  6. 前記第3膨張弁と前記吸入口との間に接続され、前記冷媒容器内に配置された第3熱交換器をさらに備える、請求項1〜5のいずれか1項に記載の冷凍サイクル装置。
  7. 冷媒が、圧縮機、第1熱交換器、第1膨張弁、冷媒容器、第2膨張弁、および第2熱交換器の順に循環する冷凍サイクル装置であって、
    第3膨張弁と、
    前記第3膨張弁および前記冷媒容器を連通する特定流路と、
    前記第3膨張弁および前記圧縮機の吸入口の間に接続され、前記冷媒容器内に配置された第3熱交換器とを備え、
    特定条件が満たされている場合、前記冷媒容器に流入する冷媒量は、前記冷媒容器から流出する冷媒量よりも少なく、
    前記特定条件は、前記冷媒容器内の冷媒量が基準量よりも多いという条件であり、
    前記特定条件が満たされている場合の前記第3熱交換器の熱交換効率は、前記冷媒容器内の冷媒量が基準量である場合の前記熱交換効率よりも小さい、冷凍サイクル装置。
  8. 前記特定条件は、前記第1熱交換器の圧力が基準圧力よりも小さいという条件を含み、
    前記特定条件が成立している場合の前記第1膨張弁の開度は、前記特定条件が成立していない場合の前記第1膨張弁の開度よりも小さい、請求項7に記載の冷凍サイクル装置。
  9. 前記特定条件は、前記冷媒容器に貯留された液体の冷媒の液面の高さが第1基準高さよりも高いという条件を含み、
    前記特定条件が満たされている場合、または前記高さが第2基準高さよりも低い場合の前記特定流路を通過する単位時間当たりの冷媒量は、前記高さが前記第2基準高さよりも高く、かつ前記第1基準高さよりも低い場合の前記特定流路を通過する単位時間当たりの冷媒量よりも多く、
    前記第2基準高さは、前記第1基準高さよりも低い、請求項7に記載の冷凍サイクル装置。
  10. 前記高さが前記第1基準高さより高い場合、または前記高さが前記第2基準高さよりも低い場合の前記第3膨張弁の開度は、前記高さが前記第2基準高さよりも高く、かつ前記第1基準高さよりも低い場合の前記第3膨張弁の開度よりも大きい、請求項9に記載の冷凍サイクル装置。
  11. 前記特定流路と前記吸入口との間に接続された開閉部をさらに備え、
    前記高さが前記第1基準高さより高い場合の前記第3膨張弁の開度は、前記高さが前記第2基準高さよりも高く、かつ前記第1基準高さよりも低い場合の前記第3膨張弁の開度よりも大きく、
    前記高さが前記第2基準高さより低い場合、前記開閉部は開放され、
    前記高さが前記第2基準高さよりも高く、かつ前記第1基準高さよりも低い場合、前記開閉部は閉止される、請求項9に記載の冷凍サイクル装置。
JP2020525064A 2018-06-15 2018-06-15 冷凍サイクル装置 Active JP6925528B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022956 WO2019239587A1 (ja) 2018-06-15 2018-06-15 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2019239587A1 JPWO2019239587A1 (ja) 2021-03-11
JP6925528B2 true JP6925528B2 (ja) 2021-08-25

Family

ID=68841937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020525064A Active JP6925528B2 (ja) 2018-06-15 2018-06-15 冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3809064A4 (ja)
JP (1) JP6925528B2 (ja)
CN (1) CN112219074B9 (ja)
WO (1) WO2019239587A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245795A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷凍サイクル装置
CN112611121B (zh) * 2020-12-23 2023-09-05 青岛海信日立空调系统有限公司 一种制冷系统和两级节流阀的控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544178U (ja) * 1978-09-18 1980-03-22
CN100590372C (zh) * 2005-02-18 2010-02-17 卡里尔公司 具有改进的液体/蒸汽接收器的制冷回路
EP2551613B1 (en) * 2010-03-25 2017-10-11 Mitsubishi Electric Corporation Refrigeration cycle apparatus and method for operating same
CN103380334B (zh) * 2011-02-22 2016-03-16 日立空调·家用电器株式会社 冷冻循环装置
DK177329B1 (en) * 2011-06-16 2013-01-14 Advansor As Refrigeration system
ES2748573T3 (es) * 2011-11-29 2020-03-17 Mitsubishi Electric Corp Dispositivo de refrigeración/acondicionamiento de aire
JP6091399B2 (ja) * 2013-10-17 2017-03-08 三菱電機株式会社 空気調和装置
KR102242777B1 (ko) * 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기
EP3885670B1 (en) 2014-06-27 2023-09-06 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
EP3809064A1 (en) 2021-04-21
WO2019239587A1 (ja) 2019-12-19
CN112219074B (zh) 2022-12-06
CN112219074B9 (zh) 2023-01-20
CN112219074A (zh) 2021-01-12
EP3809064A4 (en) 2021-09-22
JPWO2019239587A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
EP1059495B1 (en) Supercritical vapor compression cycle
US9010135B2 (en) Refrigeration apparatus with a refrigerant collection operation between a plurality of outdoor units
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
JPH11193967A (ja) 冷凍サイクル
US20130098072A1 (en) Air conditioner and control method thereof
JP7150148B2 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
JP6925528B2 (ja) 冷凍サイクル装置
JP2008051425A (ja) 空気調和装置
JP2006275435A (ja) 気液分離装置および空気調和装置
JP4599190B2 (ja) 流量調整装置及び空気調和装置
JPH11142001A (ja) 空気調和機
JP2002228282A (ja) 冷凍装置
JP2006234207A (ja) 冷凍サイクル用減圧装置
WO2017098655A1 (ja) 冷凍サイクル装置
JP2010014386A (ja) 冷凍装置
KR100696712B1 (ko) 멀티 에어컨의 압축기 보호 시스템 및 방법
JPH0212339B2 (ja)
WO2018163422A1 (ja) 冷凍サイクル装置
JP2015152270A (ja) 冷凍サイクル装置
WO2022097201A1 (ja) 冷凍サイクル装置
JP2006038400A (ja) エジェクタ式ヒートポンプサイクル
JP2010014387A (ja) 冷凍装置
JP2001116405A (ja) アキュムレータ
JP2004324936A (ja) 冷凍サイクル装置および絞り弁
JP2008064327A (ja) 蒸気圧縮式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6925528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150