WO2015198475A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2015198475A1
WO2015198475A1 PCT/JP2014/067165 JP2014067165W WO2015198475A1 WO 2015198475 A1 WO2015198475 A1 WO 2015198475A1 JP 2014067165 W JP2014067165 W JP 2014067165W WO 2015198475 A1 WO2015198475 A1 WO 2015198475A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
refrigeration cycle
cycle apparatus
compressor
Prior art date
Application number
PCT/JP2014/067165
Other languages
English (en)
French (fr)
Inventor
加藤 央平
雅史 冨田
進一 内野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015529956A priority Critical patent/JP5865561B1/ja
Priority to US15/314,542 priority patent/US10401047B2/en
Priority to EP21174042.8A priority patent/EP3885670B1/en
Priority to EP14896239.2A priority patent/EP3163217B1/en
Priority to PCT/JP2014/067165 priority patent/WO2015198475A1/ja
Priority to CN201480079363.7A priority patent/CN106415153B/zh
Publication of WO2015198475A1 publication Critical patent/WO2015198475A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus provided with a refrigerant container.
  • a refrigeration cycle apparatus including a receiver
  • an expansion valve is arranged between the outdoor heat exchanger and the receiver, and a supercooler is interposed between the receiver and the indoor heat exchanger as a separate unit from the receiver.
  • a heat transfer tube there is disclosed a “heat pump configured to communicate with a bypass circuit extending from the lower part of the supercooler” (see, for example, Patent Document 1).
  • the indoor heat exchanger A first internal heat exchanger that provides an intermediate pressure receiver between the first pressure reducing device and heat exchange between the refrigerant in the intermediate pressure receiver and the refrigerant between the outdoor heat exchanger and the compressor
  • An injection circuit that partially bypasses the refrigerant between the indoor heat exchanger and the first pressure reducing device and injects the refrigerant into the compression chamber in the compressor, and the injection circuit includes a second pressure reducing device and the A second internal heat exchanger for exchanging heat between the refrigerant decompressed by the second decompression device and the refrigerant between the indoor heat exchanger and the first decompression device; and the second in the injection circuit.
  • JP 2006-112753 A see FIG. 1 and the like
  • the inflow position to the heat transfer pipe 60 is set lower than the end of the receiver inflow pipe 51. It is necessary to do this, and is subject to structural constraints.
  • the second internal heat exchanger can be used only during cooling or heating, and the usage conditions are limited. Further, since the second internal heat exchanger is arranged separately from the refrigerant container, there are also problems that the number of parts is increased and it is difficult to secure the installation space. Further, since the saturated liquid is cooled by the second internal heat exchanger, the dryness of the evaporator inlet is greatly reduced, and the amount of refrigerant in the evaporator is increased as compared with the case where there is no second internal heat exchanger.
  • the present invention has been made in order to solve the above-described problems, and includes a refrigeration cycle apparatus provided with a refrigerant container, which can improve cycle efficiency, reduce cost, and save space. It is intended to provide.
  • the refrigeration cycle apparatus includes a compressor, a refrigerant flow switching device, a first heat exchanger, a first decompression device, a refrigerant container, a second decompression device, and a refrigerant circuit in which the second heat exchanger is connected by piping. And a bypass circuit for guiding at least a part of the refrigerant stored in the refrigerant container to a suction side of the compressor via a refrigerant decompression device and a refrigerant heat exchanger, and the refrigerant heat exchange The vessel is provided inside the refrigerant container and configured to exchange heat between the refrigerant flowing through the bypass circuit and the refrigerant stored in the refrigerant container.
  • the refrigeration cycle apparatus by bypassing a part of the refrigerant stored in the refrigerant container, the flow rate of the refrigerant flowing on the low pressure side is reduced, the pressure loss on the low pressure side can be suppressed, and the cycle efficiency is improved. Further, according to the refrigeration cycle apparatus according to the present invention, since the refrigerant heat exchanger is arranged in the refrigerant container, a space for installing the double pipe is not required, and cost reduction and space saving can be achieved.
  • FIG. 3 is a ph diagram during cooling operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a schematic circuit diagram which shows another example of the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 6 is a ph diagram during cooling operation of a modification of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a schematic circuit diagram which shows an example of the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a schematic circuit diagram showing an example of a circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a ph diagram during the cooling operation of the refrigeration cycle apparatus 100. Based on FIG.1 and FIG.2, the structure and operation
  • the refrigeration cycle apparatus 100 is installed in, for example, a general house, building, or condominium, and is used for cooling or heating an air-conditioning target area such as an installed room by performing a vapor compression refrigeration cycle operation. Is.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a first heat exchanger 2, an expansion valve (decompression device) 3, a second heat exchanger 4, and a refrigerant container (receiver) 5.
  • a circuit (hereinafter referred to as main circuit 30) is formed.
  • a refrigerant flow switching device 6 may be provided on the discharge side of the compressor 1 so that the refrigerant flow can be switched.
  • the compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature / high pressure state.
  • the compressor 1 may be configured by a positive displacement compressor driven by a motor whose frequency is controlled by an inverter, for example.
  • the first heat exchanger 2 is provided on the discharge side of the compressor 1 and performs heat exchange between a high-temperature and high-pressure refrigerant supplied from the compressor 1 and a heat medium (for example, air or water).
  • the refrigerant is liquefied or vaporized.
  • the type of the first heat exchanger 2 is not particularly limited, but may be a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, for example.
  • At least two expansion valves 3 are provided before and after the refrigerant container 5.
  • the expansion valve (first decompression device) 3a is installed on the downstream side of the first heat exchanger 2 that functions as a condenser, and decompresses and expands the refrigerant.
  • the expansion valve 3a may be constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the expansion valve (second decompression device) 3b is installed on the upstream side of the second heat exchanger 4 functioning as an evaporator, and decompresses the refrigerant to expand it.
  • the expansion valve 3b may be constituted by a valve whose opening degree can be variably controlled, such as an electronic expansion valve.
  • the second heat exchanger 4 is provided on the suction side of the compressor 1 and exchanges heat between a low-temperature, low-pressure and high-pressure refrigerant supplied from the expansion valve 3 and a heat medium (for example, air or water). To evaporate or evaporate the refrigerant.
  • a heat medium for example, air or water.
  • the type of the second heat exchanger 4 is not particularly limited.
  • the second heat exchanger 4 may be a cross-fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins.
  • the refrigerant flow switching device 6 switches the direction of the refrigerant flow during the heating operation and the direction of the heat source side refrigerant flow during the cooling operation.
  • the refrigerant flow switching device 6 switches so that the discharge side of the compressor 1 and the gas side of the first heat exchanger 2 are connected as indicated by solid arrows, and the first heat exchanger 2 is switched.
  • the second heat exchanger 4 is caused to function as an evaporator while functioning as a condenser.
  • the refrigerant flow switching device 6 switches so as to connect the discharge side of the compressor 1 and the second heat exchanger 4 as indicated by the dotted arrows, and the first heat exchanger 2 is used as an evaporator.
  • the second heat exchanger 4 is caused to function as a condenser.
  • the refrigerant container 5 is installed between the expansion valve 3a and the expansion valve 3b and stores the refrigerant.
  • the refrigerant container 5 is provided with a pipe (first pipe) 51 and a pipe (second pipe) 52 in communication with each other.
  • the pipe 51 functions as an inflow pipe or an outflow pipe depending on the refrigerant flow.
  • the pipe 51 also functions as an outflow pipe or an inflow pipe depending on the refrigerant flow. As shown in FIG. 1, the end of the pipe 51 inside the refrigerant container 5 and the end of the pipe 52 inside the refrigerant container 5 are both below the refrigerant container 5 (lower than the center of the refrigerant container 5). ).
  • the refrigerant container 5 is provided so that one end side of the branch pipe 21 for taking out at least a part of the refrigerant stored in the refrigerant container 5 communicates with the refrigerant container 5.
  • the other end of the branch pipe 21 is provided so as to connect the refrigerant flowing out of the refrigerant heat exchanger 20 to the junction 25 between the second heat exchanger 4 and the compressor 1.
  • the branch pipe 21 is provided with an expansion valve (third decompression device) 3c for decompressing the refrigerant flowing out of the refrigerant container 5.
  • a refrigerant heat exchanger 20 that exchanges heat between the refrigerant decompressed by the expansion valve 3 c and the refrigerant in the refrigerant container 5 is provided inside the refrigerant container 5.
  • the refrigeration cycle apparatus 100 compresses at least part of the refrigerant stored inside the refrigerant container 5 with the second heat exchanger 4 via the branch pipe 21, the expansion valve 3c, and the refrigerant heat exchanger 20.
  • a bypass circuit 31 is provided for merging into the merging section 25 between the machine 1 and the machine 1.
  • a portion of the branch pipe 21 that connects the expansion valve 3 c and the refrigerant heat exchanger 20 is referred to as a branch pipe intermediate section 22, and the refrigerant heat exchanger 20 and the junction section 25 of the branch pipe 21 are connected to each other. This portion is referred to as a merging pipe 23.
  • the refrigeration cycle apparatus 100 includes a control device 50 that controls the operation of each device constituting the refrigeration cycle apparatus 100.
  • the control device 50 includes a microcomputer, a memory, and the like provided for controlling the refrigeration cycle apparatus 100.
  • the control device 50 can exchange control signals and the like with a remote controller (not shown) for individually operating the refrigeration cycle apparatus 100.
  • FIG. 1 An outline of the operation of the refrigeration cycle apparatus 100 will be described by taking a cooling operation as an example.
  • the flow of the refrigerant during the cooling operation is represented by solid line arrows.
  • a to I (including m, n, and o) shown in FIG. 2 correspond to the refrigerant states at the positions A to I (including m, n, and o) shown in FIG.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first heat exchanger 2 is cooled by the first heat exchanger 2, becomes a high-temperature and high-pressure liquid refrigerant (D), and flows into the expansion valve 3a.
  • the refrigerant that has been depressurized by the expansion valve 3a and has become an intermediate pressure flows into the refrigerant container 5 from the pipe 51 of the refrigerant container 5 (E).
  • the low-temperature refrigerant flowing through the refrigerant heat exchanger 20 and the medium temperature refrigerant inside the refrigerant container 5 exchange heat with the branch pipe 21, and become saturated liquid from the refrigerant container 5 via the pipe 52.
  • Outflow (F) The refrigerant flowing out of the refrigerant container 5 is further decompressed by the expansion valve 3b and flows into the second heat exchanger 4 (G).
  • the low-temperature refrigerant that has flowed into the second heat exchanger 4 is heated by the second heat exchanger 4 and flows out with a high dryness (H). Thereafter, the refrigerant flows into the suction portion (A) of the compressor 1 via the refrigerant pipe.
  • the refrigerant stored in the refrigerant container 5 is in a two-phase state of a liquid part and a gas part, that is, a saturated state. Since the liquid portion accumulates under the refrigerant container 5, the end portion serving as the outflow pipe of the pipe 51 or the pipe 52 is disposed below the refrigerant container 5.
  • coolant container 5 when using the refrigerant
  • the refrigerant heat exchanger 20 includes a heat transfer tube through which the refrigerant flows.
  • the heat transfer tube used in the refrigerant heat exchanger 20 may be a general circular tube or a tube whose surface is processed with protrusions or the like to improve the heat transfer area or heat transfer rate. Further, a flat heat transfer tube having a large surface area may be used.
  • the heat transfer tubes may be arranged in the circumferential direction of the refrigerant container 5 or in the vertical direction.
  • the refrigeration cycle apparatus 100 can bypass a part of the refrigerant to the suction side of the compressor 1 by providing the bypass circuit 31. Therefore, according to the refrigeration cycle apparatus 100, the flow rate of the refrigerant flowing on the low pressure side (from the expansion valve 3 to the compressor 1) can be reduced, the low pressure side pressure loss can be suppressed, and the cycle efficiency can be improved.
  • the refrigeration cycle apparatus 100 since the refrigerant heat exchanger 20 is arranged inside the refrigerant container 5, a space for installing a double pipe is not required, and cost reduction and space saving can be achieved. Furthermore, according to the refrigeration cycle apparatus 100, the same effect can be obtained in both cooling and heating. Furthermore, according to the refrigeration cycle apparatus 100, since the degree of dryness of the expansion valve inlet on the downstream side of the refrigerant container 5 becomes a saturated liquid, the amount of refrigerant in the evaporator is reduced as compared with the prior art, resulting in the amount of enclosed refrigerant being Less is enough.
  • FIG. 3 is a schematic circuit diagram illustrating another example of the circuit configuration of the refrigeration cycle apparatus 100.
  • FIG. 4 is a ph diagram during the cooling operation of the modified example of the refrigeration cycle apparatus 100. Based on FIG.3 and FIG.4, the modification of the refrigerating-cycle apparatus 100 is demonstrated.
  • the flow of the refrigerant at the time of the cooling operation is represented by solid line arrows.
  • a to I (including A ′, X, m, n, and o) shown in FIG. 4 are refrigerant states at positions A to I (including A ′, X, m, n, and o) shown in FIG. It corresponds to.
  • the compressor 1 is a multistage configuration or an injection compressor, and the merging pipe 23 is connected between the low-stage compressor 1a and the high-stage compressor 1b. Or, it is connected to the injection port of the compressor 1. That is, when the compressor 1 has a multi-stage configuration, the merge pipe 23 of the bypass circuit 31 merges with the discharge side of the low-stage compressor 1a and is sucked into the high-stage compressor 1b. .
  • the merging pipe 23 of the bypass circuit 31 is connected to the injection port of the compressor 1 and is sucked into the intermediate pressure portion of the compressor 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first heat exchanger 2 is cooled by the first heat exchanger 2, becomes a high-temperature and high-pressure liquid refrigerant (D), and flows into the expansion valve 3a.
  • the refrigerant that has been depressurized by the expansion valve 3a and has become an intermediate pressure flows into the refrigerant container 5 from the pipe 51 of the refrigerant container 5 (E).
  • the low-temperature refrigerant flowing through the refrigerant heat exchanger 20 and the medium temperature refrigerant inside the refrigerant container 5 exchange heat with the branch pipe 21, and become saturated liquid from the refrigerant container 5 via the pipe 52.
  • Outflow (F) The refrigerant flowing out of the refrigerant container 5 is further decompressed by the expansion valve 3b and flows into the second heat exchanger 4 (G).
  • the low-temperature refrigerant that has flowed into the second heat exchanger 4 is heated by the second heat exchanger 4 and flows out with a high dryness (H). Thereafter, the refrigerant flows into the suction portion (A) of the low-stage compressor 1a via the refrigerant pipe.
  • FIG. FIG. 5 is a schematic circuit diagram showing an example of a circuit configuration of the refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention.
  • 6 and 7 are diagrams showing the relationship of the ph diagram during the cooling operation of the refrigeration cycle apparatus 200.
  • FIG. The refrigeration cycle apparatus 200 will be described with reference to FIGS.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. Further, the modification applied to the same components as those in the first embodiment is similarly applied to the second embodiment.
  • the refrigeration cycle apparatus 200 is installed in, for example, a building or a condominium, and performs a vapor compression refrigeration cycle operation, thereby cooling the air-conditioning target area to be installed. It is used for heating. Further, the refrigeration cycle apparatus 200 adjusts the internal pressure of the refrigerant container 5 using the expansion valve 3.
  • the basic configuration of refrigeration cycle apparatus 200 is the same as the configuration of refrigeration cycle apparatus 100 according to Embodiment 1.
  • the refrigeration cycle apparatus 200 includes a first pressure sensor (high pressure detection means) 55, a second pressure sensor (low pressure detection means) 56, and a third pressure sensor (intermediate pressure detection means) 57. Yes.
  • the first pressure sensor 55 is provided between the discharge port of the compressor 1 and the inlet of the expansion valve 3 a on the upstream side of the refrigerant container 5, and detects the pressure (high pressure) of the refrigerant discharged from the compressor 1. It's a thing.
  • the second pressure sensor 56 is provided between the outlet of the expansion valve 3b on the downstream side of the refrigerant container 5 and the suction of the compressor 1, and detects the pressure (low pressure) of the refrigerant sucked into the compressor 1. is there.
  • the third pressure sensor 57 is provided between the outlet of the expansion valve 3a on the upstream side of the refrigerant container 5 and the inlet of the expansion valve 3b on the downstream side of the refrigerant container 5, and the pressure of the refrigerant flowing between them (medium pressure) Is detected. Note that the two-phase temperature of the pipe may be detected, and the detected temperature may be converted into pressure for use.
  • Pressure information detected by the first pressure sensor 55, the second pressure sensor 56, and the third pressure sensor 57 is sent to the control device 50.
  • the control device 50 changes the current opening degree of the expansion valve 3c in order to increase the differential pressure before and after the expansion valve 3. To control.
  • ⁇ Operation of refrigeration cycle apparatus 200> (Relationship between expansion valve 3 opening and differential pressure) The relationship between the flow rate of the fluid and the differential pressure before and after the expansion valve 3 is expressed as a formula (1) by a dimensionless number called Cv value.
  • M is a flow rate [gal / min]
  • G is a specific gravity
  • ⁇ P is a differential pressure [psi] before and after the expansion valve 3.
  • the Cv value is “at a specific opening of a valve (expansion valve), when the pressure difference is 1 lb / in 2 [6.895 kPa], water flowing through the valve at a temperature of 60 ° F. (about 15.5 ° C.)
  • a valve expansion valve
  • a Cv value is obtained from a fluid specification, and a valve type and a bore diameter are determined by comparing with a Cv value indicated by a valve manufacturer. That is, the Cv value comparison is one of the simple methods used when selecting a valve. If the fluid flow rate M, the specific gravity G, and the differential pressure ⁇ P are obtained from the equation (1), the Cv value can be obtained.
  • the differential pressure ⁇ P decreases, the Cv value for flowing the same flow rate, that is, the opening degree of the expansion valve increases.
  • there is an upper limit for the opening degree of the expansion valve and if it exceeds the upper limit, the expansion valve cannot be properly controlled.
  • the differential pressure ⁇ P becomes too large, the Cv value for flowing the same flow rate becomes small.
  • a lower limit is set for the opening of the expansion valve, and if the value is lower than the lower limit, the expansion valve cannot be properly controlled.
  • the differential pressure of the expansion valve 3a on the upstream side of the refrigerant container 5 increases, and the differential pressure of the expansion valve 3b on the downstream side of the refrigerant container 5 decreases.
  • the intermediate pressure that is, the pressure inside the refrigerant container 5 changes depending on the degree of subcooling at the outlet of the first heat exchanger 2, which affects the differential pressure of the expansion valve 3.
  • FIG. 8 is a flowchart showing a flow of control processing of the expansion valve 3 executed by the refrigeration cycle apparatus 200.
  • FIG. 9 is a diagram showing the relationship of the ph diagram during the cooling operation of the refrigeration cycle apparatus 200. Based on FIG.8 and FIG.9, the flow of the control processing of the expansion valve 3 which the refrigeration cycle apparatus 200 performs is demonstrated.
  • the control device 50 determines the opening degree of the expansion valve 3 (step S101). That is, the control device 50 starts determining the upper limit and the lower limit of the opening degree of the expansion valve 3 when the opening degree is determined by the normal control of the expansion valve 3.
  • the control device 50 determines whether or not the opening degree of the expansion valve 3a is greater than or equal to the upper limit value of the opening degree of the expansion valve 3a (step S102). If it determines with the opening degree of the expansion valve 3a being more than the upper limit of the opening degree of the expansion valve 3a (step 102; YES), the control apparatus 50 will make the opening degree of the expansion valve 3c larger than the present opening degree ( Step S103). As a result, as shown in FIG. 9, the differential pressure across the expansion valve 3 a can be made larger than the current differential pressure, and the exchange heat amount of the refrigerant heat exchanger 20 inside the refrigerant container 5 can be adjusted.
  • the control apparatus 50 will make the opening degree of the expansion valve 3b the minimum of the opening degree of the expansion valve 3b. It is determined whether the value is equal to or less than the value (step S104). If it determines with the opening degree of the expansion valve 3b being below the lower limit of the opening degree of the expansion valve 3b (step 104; YES), the control apparatus 50 makes the opening degree of the expansion valve 3c smaller than the present opening degree ( Step S105). As a result, as shown in FIG.
  • the differential pressure across the expansion valve 3 b can be made larger than the current differential pressure, and the exchange heat quantity of the refrigerant heat exchanger 20 inside the refrigerant container 5 can be adjusted.
  • the control device 50 normally controls the opening degree of the expansion valve 3 (step S106).
  • the refrigeration cycle apparatus 200 can adjust the exchange heat amount of the refrigerant heat exchanger 20 inside the refrigerant container 5 by the expansion valve 3c. Therefore, according to the refrigeration cycle apparatus 200, not only has the same effect as the refrigeration cycle apparatus 100 according to Embodiment 1, but also the differential pressure across the expansion valve 3a and the expansion valve 3b can be brought into an appropriate state. The controllability of the valve 3 is improved and the product quality is also improved.
  • FIG. 10 is a schematic circuit diagram illustrating another example of the circuit configuration of the refrigeration cycle apparatus 200.
  • FIG. 11 is a ph diagram during a cooling operation of a modified example of the refrigeration cycle apparatus 200. Based on FIG.10 and FIG.11, the modification of the refrigerating-cycle apparatus 200 is demonstrated.
  • the flow of the refrigerant at the time of heating operation is represented by a solid line arrow.
  • a to I (including A ′, X, m, n, and o) shown in FIG. 11 are refrigerant states at positions A to I (including A ′, X, m, n, and o) shown in FIG. It corresponds to.
  • the compressor 1 is a multistage configuration or an injection compressor. Then, the junction pipe 23 is connected to the suction side of the low stage compressor 1a. Further, an internal heat exchanger 7 is provided on the outlet side of the refrigerant container 5 (in the case of FIG. 10, the pipe 51 side), the pipe 51 is branched between the refrigerant container 5 and the internal heat exchanger 7, and the expansion valve 3d. And it is connected between the low stage side compressor 1a and the high stage side compressor 1b through the internal heat exchanger 7.
  • a modification of the refrigeration cycle apparatus 200 is that at least a part of the refrigerant stored in the refrigerant container 5 via the pipe 51, the expansion valve (fourth decompression device) 3d, and the internal heat exchanger 7. Is provided between the low-stage compressor 1a and the high-stage compressor 1b.
  • the refrigerant flowing through the bypass circuit 32 is decompressed by the expansion valve 3d, heated by the internal heat exchanger 7, and merged with the discharge side of the low-stage compressor 1a.
  • the opening degree of the expansion valve 3d is controlled so that the pressure inside the refrigerant container 5 is increased so that the amount of heat exchanged by the internal heat exchanger 7 can be increased.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the second heat exchanger 4 is cooled by the second heat exchanger 4, becomes a high-temperature and high-pressure liquid refrigerant (G), and flows into the expansion valve 3b.
  • the refrigerant that has been depressurized by the expansion valve 3b and has become an intermediate pressure flows into the refrigerant container 5 from the pipe 52 of the refrigerant container 5 (F).
  • the pressure inside the refrigerant container 5 is changed to the expansion valve 3d. Raise by adjusting.
  • the temperature difference between the liquid side (E) and the gas side (p) of the internal heat exchanger 7 increases, and the heat exchange amount also increases.
  • the refrigerant bypass amount increases at the same discharge superheat degree (B), and the heating capacity is improved as compared with the case where the refrigerant heat exchanger 20 is not provided.
  • FIG. 12 shows an example of a circuit configuration of the refrigeration cycle apparatus 300 according to Embodiment 3 of the present invention, and is a schematic circuit diagram showing a refrigerant flow during heating operation.
  • FIG. 13 shows an example of the circuit configuration of the refrigeration cycle apparatus 300, and is a schematic circuit diagram showing the refrigerant flow during the heating defrosting operation. Based on FIG.12 and FIG.13, the refrigerating-cycle apparatus 300 is demonstrated.
  • differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted. Further, the modification applied to the same components as those in the first and second embodiments is similarly applied to the third embodiment.
  • the refrigeration cycle apparatus 300 is installed in, for example, a building or a condominium, and performs a vapor compression refrigeration cycle operation. It is used for heating.
  • the refrigeration cycle apparatus 300 includes a refrigerant circuit capable of continuous heating operation.
  • the basic configuration of refrigeration cycle apparatus 300 is the same as the configuration of refrigeration cycle apparatus 100 according to Embodiment 1.
  • the refrigeration cycle apparatus 300 is provided with an on-off valve (first on-off valve) 8a between the discharge side of the compressor 1 and the second heat exchanger 4, and the refrigerant flow switching device 6 and the second heat exchange are provided.
  • An open / close valve (second open / close valve) 8 b is provided between the container 4 and the container 4.
  • the on-off valve 8a and the on-off valve 8b are controlled to open / close, and may or may not conduct the refrigerant.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the second heat exchanger 4 is cooled by the second heat exchanger 4, becomes a high-temperature and high-pressure liquid refrigerant (G), and flows into the expansion valve 3b.
  • the refrigerant that has been depressurized by the expansion valve 3b and has become an intermediate pressure flows into the refrigerant container 5 from the pipe 52 of the refrigerant container 5 (F).
  • the low-temperature refrigerant flowing through the refrigerant heat exchanger 20 and the intermediate temperature refrigerant inside the refrigerant container 5 exchange heat through the branch pipe 21, and become a saturated liquid from the refrigerant container 5 via the pipe 51.
  • Outflow (E) The refrigerant that has flowed out of the refrigerant container 5 is further decompressed by the expansion valve 3a and flows into the first heat exchanger 2 (D).
  • the low-temperature refrigerant that has flowed into the first heat exchanger 2 is heated by the first heat exchanger 2 and flows out with a high degree of dryness (C). Thereafter, the refrigerant flows into the suction portion (A) of the compressor 1 via the refrigerant pipe.
  • the high-temperature and high-pressure gas refrigerant that has been compressed by the compressor 1 and discharged as discharge gas (B) reaches the inlet (C) of the first heat exchanger 2 through the refrigerant pipe.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first heat exchanger 2 is cooled by the first heat exchanger 2, becomes a high-temperature and high-pressure liquid refrigerant (D), and flows into the expansion valve 3a.
  • the refrigerant that has been depressurized by the expansion valve 3a and has become an intermediate pressure flows into the refrigerant container 5 from the pipe 51 of the refrigerant container 5 (E).
  • the low-temperature refrigerant flowing through the refrigerant heat exchanger 20 and the medium temperature refrigerant inside the refrigerant container 5 exchange heat with the branch pipe 21, and become saturated liquid from the refrigerant container 5 via the pipe 52.
  • Outflow (F) The refrigerant flowing out of the refrigerant container 5 is further decompressed by the expansion valve 3b and flows into the second heat exchanger 4 (G).
  • the low-temperature refrigerant that has flowed into the second heat exchanger 4 is heated by the second heat exchanger 4 and flows out with a high dryness (H). Thereafter, the refrigerant flows into the suction portion (A) of the compressor 1 via the refrigerant pipe.
  • the refrigerant flow in the bypass circuit 31 is as described in the first embodiment.
  • frost may adhere (frost) to the fin surface constituting the first heat exchanger 2 that exchanges heat with the outside air.
  • frost formation occurs, the gap between the fins is blocked. As the gap between the fins becomes closed, the air volume gradually decreases. When the air volume is reduced, the heating capacity is greatly reduced. Therefore, an operation (defrosting operation) for melting frost is required.
  • the on-off valve 8a is opened and the on-off valve 8b is closed.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 and discharged as the discharge gas (B) flows through the refrigerant pipe, flows into the on-off valve 8a, and flows into the first heat exchanger 2. It branches to.
  • the refrigerant flowing into the on-off valve 8a radiates heat in the second heat exchanger 4 and is used as a heating heat source.
  • the refrigerant that has flowed into the first heat exchanger 2 is used as a heat source for melting frost adhering to the first heat exchanger 2.
  • the refrigerant that has flowed out of each heat exchanger flows into the refrigerant container 5 and merges. This refrigerant passes through the branch pipe 21, is depressurized by the expansion valve 3 c, is heated by the refrigerant heat exchanger 20, and is joined to the suction side of the compressor 1.
  • FIG. 14 is a schematic configuration diagram showing an example of the configuration of the refrigerant container 5.
  • the refrigerant container 5 may be configured as shown in FIG. Specifically, a gas return pipe 24 communicating with the inside of the refrigerant container 5 is provided in the refrigerant container 5, an open / close valve (third open / close valve) 8c is provided in the gas return pipe 24, and one end of the gas return pipe 24 is connected to the compressor. Connect the pipe to the suction side of 1.
  • the gas return pipe 24 may have the same configuration as, for example, a U-shaped pipe provided in a general accumulator.
  • the refrigeration cycle apparatus 300 can perform the defrosting operation while continuing the heating operation by providing the on-off valve 8a and the on-off valve 8b. Therefore, according to the refrigeration cycle apparatus 300, it is not necessary to stop the heating operation when performing the defrosting operation, so that the comfort is improved. Moreover, since the refrigerant is stored in the refrigerant container 5, the refrigeration cycle apparatus 300 can suppress the liquid back to the compressor 1. Therefore, according to the refrigeration cycle apparatus 300, a decrease in reliability can be suppressed.
  • the refrigerant used in the refrigeration cycle apparatus is not particularly limited, in addition to the exemplified refrigerant, for example, natural refrigerant (carbon dioxide (CO 2 ), hydrocarbon, Helium or the like), an alternative refrigerant that does not contain chlorine (HFC410A, HFC407C, HFC404A, etc.), or a refrigerant of a fluorocarbon refrigerant (R22, R134a, etc.) used in existing products can also be used.
  • natural refrigerant carbon dioxide (CO 2 ), hydrocarbon, Helium or the like
  • an alternative refrigerant that does not contain chlorine HFC410A, HFC407C, HFC404A, etc.
  • a refrigerant of a fluorocarbon refrigerant R22, R134a, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷凍サイクル装置100は、冷媒熱交換器20が冷媒容器5の内部に設けられ、冷媒熱交換器20によって、バイパス回路31を流れる冷媒と、冷媒容器5の内部に貯留されている冷媒と、が熱交換させるように構成されている。

Description

冷凍サイクル装置
 本発明は、冷媒容器を備えた冷凍サイクル装置に関するものである。
 レシーバを備えた冷凍サイクル装置が従来から知られている。
 そのようなものとして、「室外熱交換器とレシーバ間に膨張弁を配するとともに、該レシーバと室内熱交換器の間に過冷却器をレシーバとは別ユニットとして介装し、該過冷却器の伝熱管には過冷却器の下部から延設したバイパス回路を連通する構成としたヒートポンプ」が開示されている(たとえば、特許文献1参照)。
 また、「圧縮機、四方弁、室内熱交換器、第1の減圧装置、室外熱交換器を環状に接続し、前記室内熱交換器から温熱を供給する冷凍空調装置において、前記室内熱交換器と第1の減圧装置との間に中圧レシーバを設け、前記中圧レシーバ内の冷媒と前記室外熱交換器と前記圧縮機との間の冷媒とを熱交換する第1の内部熱交換器を備え、前記室内熱交換器と前記第1の減圧装置との間の冷媒を一部バイパスし、前記圧縮機内の圧縮室にインジェクションするインジェクション回路と、該インジェクション回路に第2の減圧装置および該第2の減圧装置で減圧された冷媒と前記室内熱交換器と前記第1の減圧装置との間の冷媒とを熱交換する第2の内部熱交換器と、前記インジェクション回路中の前記第2の内部熱交換器と前記圧縮機との間に冷媒加熱用熱源を備えた冷凍空調装置」が開示されている(たとえば、特許文献2参照)。
特開2000―283583号公報(段落[0015]~[0021]等参照) 特開2006―112753号公報(図1等参照)
 特許文献1に記載されているような技術においては、レシーバと過冷却器を別ユニットとして構成するようになっている。そのため、設置スペースが大きくなり、コストも増加してしまう。
 特許文献1の図1~図8には、膨張弁45からレシーバへ流入する流入管端部がレシーバ上部に配置される一方、流出管端部はレシーバ下端に配置されていることが記載されている。そのため、冷暖の切り替えにより冷媒の流れ方向が逆になりレシーバ上部にある流入管64端部が冷媒の流出部になると、レシーバ内に過剰な冷媒が溜まり、冷媒不足が発生することになる。
また、レシーバ内に流入し流出する冷媒と伝熱管60を通過する冷媒とが対向流となるような構成としているため、伝熱管60への流入位置はレシーバ流入管51の端部よりも低く設置する必要があり、構造上の制約を受けてしまう。
 特許文献2に記載されているような技術においては、冷房もしくは暖房時にのみ第2内部熱交換器が利用可能であり、利用条件が限られている。
また、第2内部熱交換器は冷媒容器とは別に配置されるため、部品点数増加、設置スペース確保が困難といった問題点もある。
さらに、飽和液を第2内部熱交換器で冷却するため、蒸発器入口乾き度が大きく低下し、第2内部熱交換器が無い場合に比べて蒸発器内の冷媒量が増加してしまう。
 本発明は、上記の問題を解決するためになされたもので、冷媒容器を備えたものであって、サイクル効率を向上するとともに、低コスト化、省スペース化を図れるようにした冷凍サイクル装置を提供することを目的としている。
 本発明に係る冷凍サイクル装置は、圧縮機、冷媒流路切換装置、第1熱交換器、第1減圧装置、冷媒容器、第2減圧装置、第2熱交換器が配管接続された冷媒回路と、前記冷媒容器の内部に貯留されている冷媒の少なくとも一部を、第3減圧装置、冷媒熱交換器を介して前記圧縮機の吸入側に導くバイパス回路と、を有し、前記冷媒熱交換器は、前記冷媒容器の内部に設けられ、前記バイパス回路を流れる冷媒と、前記冷媒容器の内部に貯留されている冷媒と、を熱交換させるように構成されているものである。
 本発明に係る冷凍サイクル装置によれば、冷媒容器に貯留されている冷媒の一部をバイパスすることで低圧側を流れる冷媒の流量が減り、低圧側の圧損を抑制でき、サイクル効率が向上する。また、本発明に係る冷凍サイクル装置によれば、冷媒熱交換器を冷媒容器内に配置するため、二重管を設置するためのスペースが不要となり、低コスト化、省スペース化が図れる。
本発明の実施の形態1に係る冷凍サイクル装置の回路構成の一例を示す概略回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の冷房運転時のp-h線図である。 本発明の実施の形態1に係る冷凍サイクル装置の回路構成の他の一例を示す概略回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の変形例の冷房運転時のp-h線図である。 本発明の実施の形態2に係る冷凍サイクル装置の回路構成の一例を示す概略回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷房運転時のp-h線図の関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷房運転時のp-h線図の関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置が実行する膨張弁3の制御処理の流れを示すフローチャートである。 本発明の実施の形態2に係る冷凍サイクル装置の冷房運転時のp-h線図の関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の回路構成の他の一例を示す概略回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の変形例の冷房運転時のp-h線図である。 本発明の実施の形態3に係る冷凍サイクル装置の回路構成の一例を示しており、暖房運転時の冷媒の流れを示す概略回路図である。 本発明の実施の形態3に係る冷凍サイクル装置の回路構成の一例を示しており、暖房除霜運転時の冷媒の流れを示す概略回路図である。 冷媒容器の構成の一例を示す概略構成図である。
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100の回路構成の一例を示す概略回路図である。図2は、冷凍サイクル装置100の冷房運転時のp-h線図である。図1及び図2に基づいて、冷凍サイクル装置100の構成及び動作について説明する。この冷凍サイクル装置100は、例えば一般的な家屋やビル、マンション等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、設置される室内等の空調対象域の冷房や暖房に使用されるものである。
<冷凍サイクル装置100の構成>
 冷凍サイクル装置100は、圧縮機1、第1熱交換器2、膨張弁(減圧装置)3、第2熱交換器4、冷媒容器(レシーバ)5、を有し、これらが配管接続されて冷媒回路(以下、主回路30と称する)が形成される。なお、図1に示すように、圧縮機1の吐出側に冷媒流路切換装置6を設け、冷媒の流れを切り換え可能に構成してもよい。
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出するものである。圧縮機1は、例えばインバーターにより周波数が制御されるモーターによって駆動される容積式圧縮機等で構成するとよい。
 第1熱交換器2は、圧縮機1の吐出側に設けられており、圧縮機1から供給される高温高圧の冷媒と熱媒体(たとえば、空気や水など)との間で熱交換を行い、冷媒を凝縮液化または蒸発ガス化するものである。第1熱交換器2は、その形式を特に限定するものではないが、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。
 膨張弁3は、冷媒容器5の前後に少なくとも2つ設けられている。
 膨張弁(第1減圧装置)3aは、凝縮器として機能する第1熱交換器2の下流側に設置され、冷媒を減圧して膨張させるものである。この膨張弁3aは、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。
 膨張弁(第2減圧装置)3bは、蒸発器として機能する第2熱交換器4の上流側に設置され、冷媒を減圧して膨張させるものである。この膨張弁3bは、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成するとよい。
 第2熱交換器4は、圧縮機1の吸入側に設けられており、膨張弁3にから供給される低温低圧高圧の冷媒と熱媒体(たとえば、空気や水など)との間で熱交換を行い、冷媒を蒸発ガス化又は凝縮液化するものである。第2熱交換器4は、その形式を特に限定するものではないが、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。
 冷媒流路切換装置6は、暖房運転時における冷媒の流れの方向と冷房運転時における熱源側冷媒の流れの方向とを切り換えるものである。冷房運転時には、冷媒流路切換装置6は、実線矢印で示されるように圧縮機1の吐出側と第1熱交換器2のガス側とを接続するように切り換え、第1熱交換器2を凝縮器として機能させ、第2熱交換器4を蒸発器として機能させる。暖房運転時には、冷媒流路切換装置6は、点線矢印で示されるように圧縮機1の吐出側と第2熱交換器4とを接続するように切り換え、第1熱交換器2を蒸発器として機能させ、第2熱交換器4を凝縮器として機能させる。
 冷媒容器5は、膨張弁3aと膨張弁3bとの間に設置され、冷媒を貯留するものである。冷媒容器5には、配管(第1配管)51と配管(第2配管)52が連通して設けられている。配管51は、冷媒の流れに応じて流入配管又は流出配管として機能する。配管51も、冷媒の流れに応じて流出配管又は流入配管として機能する。図1に示すように、配管51の冷媒容器5の内部における端部、及び、配管52の冷媒容器5の内部における端部は、ともに冷媒容器5の下方(冷媒容器5の中心よりも下側)に配置される。
 また、冷媒容器5には、冷媒容器5の内部に貯留されている冷媒の少なくとも一部を取り出す分岐管21の一端側が連通するように設けられている。分岐管21の他端は、冷媒熱交換器20から流出した冷媒を第2熱交換器4と圧縮機1との間の合流部25に接続するように設けられている。
 分岐管21には、冷媒容器5から流出した冷媒を減圧する膨張弁(第3減圧装置)3cが設けられている。
 さらに、冷媒容器5の内部には、膨張弁3cによって減圧した冷媒と冷媒容器5の内部における冷媒とを熱交換する冷媒熱交換器20が設けられている。
 冷凍サイクル装置100は、分岐管21、膨張弁3c、及び、冷媒熱交換器20を介して、冷媒容器5の内部に貯留されている冷媒の少なくとも一部を、第2熱交換器4と圧縮機1との間の合流部25に合流させるバイパス回路31を備える。なお、分岐管21のうち膨張弁3cと冷媒熱交換器20とを接続している部分を分岐管中間部22と称し、分岐管21のうち冷媒熱交換器20と合流部25とを接続している部分を合流配管23と称するものとする。
 また、冷凍サイクル装置100は、冷凍サイクル装置100を構成する各機器の動作を制御する制御装置50を有している。そして、制御装置50は、冷凍サイクル装置100の制御を行うために設けられたマイクロコンピューターやメモリー等を有している。制御装置50は、冷凍サイクル装置100を個別に操作するためのリモコン(図示せず)との間で制御信号等のやりとりを行なうことができるようになっている。
<冷凍サイクル装置100の動作>
 冷凍サイクル装置100の動作の概要について冷房運転を例に説明する。図1では、冷房運転時の冷媒の流れを実線矢印で表している。図2に示すA~I(m、n、oを含む)は、図1に示すA~I(m、n、oを含む)の位置における冷媒の状態に対応している。
(主回路30の冷媒の流れ)
 圧縮機1によって圧縮され吐出ガス(B)となって流出した高温高圧のガス冷媒は、冷媒配管を通じて第1熱交換器2の入口(C)へ至る。第1熱交換器2に流入した高温高圧のガス冷媒は、第1熱交換器2で冷却され、高温高圧の液冷媒(D)となり、膨張弁3aへ流入する。膨張弁3aで減圧され中圧となった冷媒は、冷媒容器5の配管51より冷媒容器5の内部へ流入する(E)。
 冷媒容器5の内部では、分岐管21によって冷媒熱交換器20を流れる低温冷媒と冷媒容器5の内部の中温冷媒とが熱交換し、飽和液となって配管52を経由して冷媒容器5から流出する(F)。冷媒容器5から流出した冷媒は、膨張弁3bでさらに減圧され、第2熱交換器4へ流入する(G)。第2熱交換器4に流入した低温冷媒は、第2熱交換器4で加熱され、乾き度が高い状態で流出する(H)。その後、冷媒配管を経由して圧縮機1の吸入部(A)へ流入する。
(バイパス回路31の冷媒の流れ)
 冷媒容器5の内部の冷媒の一部は、分岐管21を介して冷媒容器5より流出させる(m)。この冷媒は、膨張弁3cによって減圧され、低温冷媒となる(n)。その後、冷媒容器5の内部に設けた冷媒熱交換器20に流入し、冷媒容器5の内部の中温冷媒との温度差によって熱交換が行われて加熱される(o)。そして、この冷媒は、合流配管23を経由して、主回路30の冷媒(I)と合流する。
 ここで、冷媒容器5について詳細に説明する。
 冷媒容器5の内部に貯留されている冷媒は、液部とガス部との二相の状態、つまり飽和状態となる。液部は冷媒容器5の下に溜まることから、配管51又は配管52のうち流出管となる端部を冷媒容器5の下方に配置している。
 なお、冷媒容器5を冷房及び暖房の双方で使う場合は、配管51と配管52の端部を、冷媒容器5の下方に配置し、かつ高さを一致させる構成とするとよい。これにより、冷暖の必要冷媒量差が不明でも、冷媒容器5の内部に貯留されている冷媒の量が溜まりこむことなく、正常な運転が可能となり、設計も容易となる。
 ここで、冷媒熱交換器20について詳細に説明する。
 冷媒熱交換器20は、内部に冷媒が流れる伝熱管を備えている。冷媒熱交換器20に用いられる伝熱管には、一般的な円管や、円管表面に突起等の加工を施し、伝熱面積や熱伝達率を向上させたものを用いてもよい。また、表面積が大きい扁平形状の伝熱管を用いてもよい。
 なお、伝熱管の配置は、冷媒容器5の円周方向に積層させてもよいし、垂直方向に積層させてもよい。
 以上のように、冷凍サイクル装置100は、バイパス回路31を設けたことにより、冷媒の一部を圧縮機1の吸入側にバイパスすることができる。そのため、冷凍サイクル装置100によれば、低圧側(膨張弁3から圧縮機1に至るまでの間)を流れる冷媒の流量が減り、低圧側圧損を抑制でき、サイクル効率が向上することになる。
 また、冷凍サイクル装置100によれば、冷媒熱交換器20を冷媒容器5の内部に配置するため、二重管を設置するためのスペースが不要となり、低コスト化、省スペース化が図れる。
 さらに、冷凍サイクル装置100によれば、冷房及び暖房の両方で同様の効果が得られる。
 またさらに、冷凍サイクル装置100によれば、冷媒容器5の下流側の膨張弁入口乾き度が飽和液となるため、従来技術に比べて蒸発器内の冷媒量が減少し、結果封入冷媒量が少なくて済む。
 なお、冷凍サイクル100の運転中に吐出温度が高くなる場合でも、液状態の冷媒を圧縮機1の吸入側へバイパスすることで、吐出温度上昇を抑制することが可能となる。
 また、圧縮機1に高圧シェルを採用した場合、吐出温度が低いと冷凍機油に冷媒が溜まりこみ、冷凍機油の粘度が低下して、潤滑不良を引き起こす。それに対して、冷凍サイクル装置100では、冷媒熱交換器20によって過熱ガスとなった冷媒が圧縮機1の吸入側に吸引されるため、吐出温度低下を抑制できる。結果、R1234yfやプロパンのように吐出温度が低い冷媒の場合を冷凍サイクル装置100に用いても、信頼性低下を防止できる。
[冷凍サイクル装置100の変形例]
 図3は、冷凍サイクル装置100の回路構成の他の一例を示す概略回路図である。図4は、冷凍サイクル装置100の変形例の冷房運転時のp-h線図である。図3及び図4に基づいて、冷凍サイクル装置100の変形例について説明する。図3では、冷房運転時の冷媒の流れを実線矢印で表している。図4に示すA~I(A’、X、m、n、oを含む)は、図3に示すA~I(A’、X、m、n、oを含む)の位置における冷媒の状態に対応している。
<冷凍サイクル装置100の変形例の構成>
 図3に示すように、冷凍サイクル装置100の変形例では、圧縮機1を多段構成又はインジェクション圧縮機とし、合流配管23を低段側圧縮機1aと高段側圧縮機1bとの間に接続、又は、圧縮機1のインジェクションポートに接続する。つまり、圧縮機1を多段構成とした場合には、バイパス回路31の合流配管23が低段側圧縮機1aの吐出側と合流し、高段側圧縮機1bへ吸入されるようになっている。また、圧縮機1をインジェクション圧縮機とした場合には、バイパス回路31の合流配管23が圧縮機1のインジェクションポートと接続し、圧縮機1の中間圧部へ吸入されるようになっている。
<冷凍サイクル装置100の変形例の動作>
(主回路30の冷媒の流れ)
 低段側圧縮機1aから吐出した冷媒(A’)と、冷媒容器5の内部で加熱され流出した冷媒(o)が合流し(X)、高段側圧縮機1bへ吸引され、圧縮される。高段側圧縮機1bによって圧縮され吐出ガス(B)となって流出した高温高圧のガス冷媒は、冷媒配管を通じて第1熱交換器2の入口(C)へ至る。第1熱交換器2に流入した高温高圧のガス冷媒は、第1熱交換器2で冷却され、高温高圧の液冷媒(D)となり、膨張弁3aへ流入する。膨張弁3aで減圧され中圧となった冷媒は、冷媒容器5の配管51より冷媒容器5の内部へ流入する(E)。
 冷媒容器5の内部では、分岐管21によって冷媒熱交換器20を流れる低温冷媒と冷媒容器5の内部の中温冷媒とが熱交換し、飽和液となって配管52を経由して冷媒容器5から流出する(F)。冷媒容器5から流出した冷媒は、膨張弁3bでさらに減圧され、第2熱交換器4へ流入する(G)。第2熱交換器4に流入した低温冷媒は、第2熱交換器4で加熱され、乾き度が高い状態で流出する(H)。その後、冷媒配管を経由して低段側圧縮機1aの吸入部(A)へ流入する。
(バイパス回路31の冷媒の流れ)
 冷媒容器5の内部の冷媒の一部は、分岐管21を介して冷媒容器5より流出させる(m)。この冷媒は、膨張弁3cによって減圧され、低温冷媒となる(n)。その後、冷媒容器5の内部に設けた冷媒熱交換器20に流入し、冷媒容器5の内部の中温冷媒との温度差によって熱交換が行われて加熱される(o)。そして、この冷媒は、合流配管23を経由して、主回路30の冷媒(A’)と合流する。
 このような構成としても、図1及び図2で説明した冷凍サイクル装置100と同様の効果を奏することができる。
実施の形態2.
 図5は、本発明の実施の形態2に係る冷凍サイクル装置200の回路構成の一例を示す概略回路図である。図6及び図7は、冷凍サイクル装置200の冷房運転時のp-h線図の関係を示す図である。図5~図7に基づいて、冷凍サイクル装置200について説明する。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。
 冷凍サイクル装置200は、実施の形態1に係る冷凍サイクル装置100と同様に、例えばビルやマンション等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、設置される空調対象域の冷房や暖房に使用されるものである。また、冷凍サイクル装置200は、冷媒容器5の内部圧力を、膨張弁3を使用して調整するものである。
<冷凍サイクル装置200の構成>
 冷凍サイクル装置200の基本的な構成は、実施の形態1に係る冷凍サイクル装置100の構成と同様である。
 それに加えて、冷凍サイクル装置200は、第1圧力センサ(高圧圧力検出手段)55、第2圧力センサ(低圧圧力検出手段)56、第3圧力センサ(中圧圧力検出手段)57を有している。
 第1圧力センサ55は、圧縮機1の吐出口から冷媒容器5の上流側の膨張弁3aの入口までの間に設けられ、圧縮機1から吐出された冷媒の圧力(高圧圧力)を検出するものでる。
 第2圧力センサ56は、冷媒容器5の下流側の膨張弁3bの出口から圧縮機1の吸入までの間に設けられ、圧縮機1に吸入する冷媒の圧力(低圧圧力)を検出するものである。
 第3圧力センサ57は、冷媒容器5の上流側の膨張弁3aの出口から冷媒容器5の下流側の膨張弁3bの入口までの間に設けられ、この間を流れる冷媒の圧力(中圧圧力)を検出するものである。
 なお、配管の二相部温度を検出し、検出した温度を圧力へ変換して利用するようにしてもよい。
 第1圧力センサ55、第2圧力センサ56、及び、第3圧力センサ57で検出された圧力情報は、制御装置50に送られる。
 制御装置50は、冷媒容器5の上流側の膨張弁3aの開度が所定値を上回った場合に、膨張弁3の前後の差圧を大きくするため、膨張弁3cの現在の開度を変化させる制御を行う。
<冷凍サイクル装置200の動作>
(膨張弁3の開度と差圧の関係)
 流体の流量と膨張弁3の前後の差圧の関係をCv値という無次元数によって式(1)のように表す。
Figure JPOXMLDOC01-appb-M000001
 ここで、Mは流量[gal/min]、Gは比重、ΔPは膨張弁3の前後の差圧[psi]である。
 Cv値とは、「バルブ(膨張弁)の特定な開度において、圧力差が1lb/in[6.895kPa]のときバルブを流れる60゜F(約15.5℃)の温度の水の流量が、USgal/min(1USgal=3.785L)で表される数値(無次元)」と定義される。
 一般的に、バルブ(膨張弁)の選定を行う時に、流体仕様からCv値を求め、弁メーカが示すCv値と対比させることで弁種、口径を定める。つまり、Cv値の対比は、バルブの選定を行うときに用いられる簡便な方法のひとつである。
 式(1)より、流体の流量M、比重G、前後差圧ΔPが求まれば、Cv値が求まる。
 つまり、差圧ΔPが小さくなると、同一流量を流すためのCv値、つまり膨張弁の開度が大きくなる。しかし、膨張弁の開度には上限が設けられており、上限以上になると膨張弁が適正に制御できなくなる。
 逆に、差圧ΔPが大きくなり過ぎると、同一流量を流すためのCv値が小さくなる。しかし、膨張弁の開度には下限が設けられており、下限値以下になるとやはり膨張弁が適正に制御できなくなる。
(膨張弁3の差圧と第1熱交換器2の出口過冷却度(サブクール))
 図6に示すように、冷媒容器5の内部に冷媒熱交換器20を設置していない場合において、第1熱交換器2の出口過冷却度が小さいと、冷媒容器5が飽和状態とすると、冷媒容器5の上流側の膨張弁3aの差圧は小さくなり、冷媒容器5の下流側の膨張弁3bの差圧は大きくなる。
 一方、図7に示すように、冷媒容器5の内部に冷媒熱交換器20を設置していない場合において、第1熱交換器2の出口過冷却度が大きいと、冷媒容器5が飽和状態とすると、冷媒容器5の上流側の膨張弁3aの差圧は大きくなり、冷媒容器5の下流側の膨張弁3bの差圧は小さくなる。
 このように、第1熱交換器2の出口過冷却度によって中圧、つまり冷媒容器5の内部の圧力が変化するため、膨張弁3の差圧へ影響を及ぼす。
(冷凍サイクル装置200による膨張弁3の差圧確保)
 第1熱交換器2の出口過冷却度が小さくても、冷媒熱交換器20の交換熱量を調整することで、中圧を下げることが可能となる。具体的には、冷媒熱交換器20の交換熱量を大きくすれば、中間圧力は低下し、交換熱量が小さければ中間圧力は上昇する。そこで、冷凍サイクル装置200では、膨張弁3cの開度を制御することによって、冷媒容器5の内部の冷媒熱交換器20の交換熱量を調整するようになっている。
<膨張弁3の制御処理の流れ>
 図8は、冷凍サイクル装置200が実行する膨張弁3の制御処理の流れを示すフローチャートである。図9は、冷凍サイクル装置200の冷房運転時のp-h線図の関係を示す図である。図8及び図9に基づいて、冷凍サイクル装置200が実行する膨張弁3の制御処理の流れについて説明する。
 制御装置50は、膨張弁3の開度を判定する(ステップS101)。つまり、制御装置50は、通常の膨張弁3の制御で開度が決まった時に、膨張弁3の開度の上限及び下限の判定を始める。
 制御装置50は、膨張弁3aの開度が膨張弁3aの開度の上限値以上であるかどうかを判定する(ステップS102)。
 膨張弁3aの開度が膨張弁3aの開度の上限値以上であると判定すると(ステップ102;YES)、制御装置50は、膨張弁3cの開度を現在の開度よりも大きくする(ステップS103)。これにより、図9に示すように、膨張弁3aの前後差圧を現在の差圧よりも大きくでき、冷媒容器5の内部の冷媒熱交換器20の交換熱量を調整できる。
 一方、膨張弁3aの開度が膨張弁3aの開度の上限値以上でないと判定すると(ステップ102;NO)、制御装置50は、膨張弁3bの開度が膨張弁3bの開度の下限値以下であるかどうかを判定する(ステップS104)。
 膨張弁3bの開度が膨張弁3bの開度の下限値以下であると判定すると(ステップ104;YES)、制御装置50は、膨張弁3cの開度を現在の開度よりも小さくする(ステップS105)。これにより、図9に示すように、膨張弁3bの前後差圧を現在の差圧よりも大きくでき、冷媒容器5の内部の冷媒熱交換器20の交換熱量を調整できる。
 また、膨張弁3bの開度が膨張弁3bの開度の下限値以下でないと判定すると(ステップ104;NO)、制御装置50は、膨張弁3の開度を通常制御する(ステップS106)。
 以上のように、冷凍サイクル装置200は、膨張弁3cによって、冷媒容器5の内部の冷媒熱交換器20の交換熱量を調整することができる。そのため、冷凍サイクル装置200によれば、実施の形態1に係る冷凍サイクル装置100と同様の効果を奏するだけでなく、膨張弁3a、膨張弁3bの前後差圧を適正な状態にできるので、膨張弁3の制御性が向上し、製品の品質も向上する。
<冷凍サイクル装置200の変形例の構成>
 図10は、冷凍サイクル装置200の回路構成の他の一例を示す概略回路図である。図11は、冷凍サイクル装置200の変形例の冷房運転時のp-h線図である。図10及び図11に基づいて、冷凍サイクル装置200の変形例について説明する。図10では、暖房運転時の冷媒の流れを実線矢印で表している。図11に示すA~I(A’、X、m、n、oを含む)は、図10に示すA~I(A’、X、m、n、oを含む)の位置における冷媒の状態に対応している。
<冷凍サイクル装置200の変形例の構成>
 図10に示すように、冷凍サイクル装置200の変形例では、圧縮機1を多段構成又はインジェクション圧縮機としている。そして、合流配管23を低段側圧縮機1aの吸入側に接続する。また、冷媒容器5の出口側(図10の場合は配管51側)に、内部熱交換器7を設け、冷媒容器5と内部熱交換器7との間で配管51を分岐し、膨張弁3d及び内部熱交換器7を経由させて、低段側圧縮機1aと高段側圧縮機1bとの間に接続している。つまり、冷凍サイクル装置200の変形例は、配管51、膨張弁(第4減圧装置)3d、及び、内部熱交換器7を介して、冷媒容器5の内部に貯留されている冷媒の少なくとも一部を、低段側圧縮機1aと高段側圧縮機1bとの間に合流させるバイパス回路32を備える。
 バイパス回路32を流れる冷媒は、膨張弁3dで減圧され、内部熱交換器7で加熱され、低段側圧縮機1aの吐出側と合流する。
 膨張弁3dは、内部熱交換器7の交換熱量が大きく取れるように、冷媒容器5の内部の圧力が高くなるように開度が制御される。
<冷凍サイクル装置200の変形例の動作>
 低段側圧縮機1aから吐出した冷媒(A’)と、内部熱交換器7で加熱された冷媒(q)が合流し(X)、高段側圧縮機1bへ吸引され、圧縮される。高段側圧縮機1bによって圧縮され吐出ガス(B)となって流出した高温高圧のガス冷媒は、冷媒配管を通じて第2熱交換器4の入口(H)へ至る。第2熱交換器4に流入した高温高圧のガス冷媒は、第2熱交換器4で冷却され、高温高圧の液冷媒(G)となり、膨張弁3bへ流入する。膨張弁3bで減圧され中圧となった冷媒は、冷媒容器5の配管52より冷媒容器5の内部へ流入する(F)。
 冷媒容器5の内部では、分岐管21によって冷媒熱交換器20を流れる低温冷媒と冷媒容器5の内部の中温冷媒とが熱交換し、飽和液となって配管51を経由して冷媒容器5から流出する(E)。冷媒容器5から流出した冷媒(E)は、バイパス回路32と、主回路30と、に分岐される。バイパス回路32に流れた液冷媒は、膨張弁3dによって減圧され、内部熱交換器7で加熱される(q)。そして、低段側圧縮機1aの吐出側(A’)と合流し(X)、高段側圧縮機1bへ吸引される。インジェクション圧縮機の場合は、内部熱交換器で加熱された冷媒(q)はインジェクションポートへ流入する。
 以上のように、冷凍サイクル装置200の変形例は、上流側の膨張弁(図10では膨張弁3b)の開度が上限に達しない間、冷媒容器5の内部の圧力を、膨張弁3dを調整することで、上昇させる。こうすることにより、冷凍サイクル装置200の変形例では、内部熱交換器7の液側(E)とガス側(p)との温度差が拡大し、熱交換量も増加することになる。その結果、冷凍サイクル装置200の変形例によれば、同一吐出過熱度(B)において、冷媒のバイパス量が増え、冷媒熱交換器20が無い場合に比べて暖房能力が向上することになる。
実施の形態3.
 図12は、本発明の実施の形態3に係る冷凍サイクル装置300の回路構成の一例を示しており、暖房運転時の冷媒の流れを示す概略回路図である。図13は、冷凍サイクル装置300の回路構成の一例を示しており、暖房除霜運転時の冷媒の流れを示す概略回路図である。図12及び図13に基づいて、冷凍サイクル装置300について説明する。なお、実施の形態3では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付して説明を省略するものとする。また、実施の形態1、2と同様の構成部分について適用される変形例は、本実施の形態3についても同様に適用される。
 冷凍サイクル装置300は、実施の形態1に係る冷凍サイクル装置100と同様に、例えばビルやマンション等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、設置される空調対象域の冷房や暖房に使用されるものである。また、冷凍サイクル装置300は、連続暖房運転が可能な冷媒回路を備えている。
<冷凍サイクル装置300の構成>
 冷凍サイクル装置300の基本的な構成は、実施の形態1に係る冷凍サイクル装置100の構成と同様である。
 それに加えて、冷凍サイクル装置300は、圧縮機1の吐出側と第2熱交換器4との間に開閉弁(第1開閉弁)8aを設け、冷媒流路切換装置6と第2熱交換器4との間に開閉弁(第2開閉弁)8bを設けている。
 開閉弁8a、開閉弁8bは、開閉が制御されることで、冷媒を導通したりしなかったりするものである。
<冷凍サイクル装置300の動作>
(通常の暖房運転時の冷媒の流れ)
 冷凍サイクル装置300の通常の暖房運転時においては、開閉弁8aを閉じ、開閉弁8bを開く。これにより、圧縮機1によって圧縮され吐出ガス(B)となって流出した高温高圧のガス冷媒は、冷媒配管を流れ、冷媒流路切換装置6及び開閉弁8bを通過して第2熱交換器4の入口(H)へ至る。第2熱交換器4に流入した高温高圧のガス冷媒は、第2熱交換器4で冷却され、高温高圧の液冷媒(G)となり、膨張弁3bへ流入する。膨張弁3bで減圧され中圧となった冷媒は、冷媒容器5の配管52より冷媒容器5の内部へ流入する(F)。
 冷媒容器5の内部では、分岐管21によって冷媒熱交換器20を流れる低温冷媒と冷媒容器5の内部の中温冷媒とが熱交換し、飽和液となって配管51を経由して冷媒容器5から流出する(E)。冷媒容器5から流出した冷媒は、膨張弁3aでさらに減圧され、第1熱交換器2へ流入する(D)。第1熱交換器2に流入した低温冷媒は、第1熱交換器2で加熱され、乾き度が高い状態で流出する(C)。その後、冷媒配管を経由して圧縮機1の吸入部(A)へ流入する。
 圧縮機1によって圧縮され吐出ガス(B)となって流出した高温高圧のガス冷媒は、冷媒配管を通じて第1熱交換器2の入口(C)へ至る。第1熱交換器2に流入した高温高圧のガス冷媒は、第1熱交換器2で冷却され、高温高圧の液冷媒(D)となり、膨張弁3aへ流入する。膨張弁3aで減圧され中圧となった冷媒は、冷媒容器5の配管51より冷媒容器5の内部へ流入する(E)。
 冷媒容器5の内部では、分岐管21によって冷媒熱交換器20を流れる低温冷媒と冷媒容器5の内部の中温冷媒とが熱交換し、飽和液となって配管52を経由して冷媒容器5から流出する(F)。冷媒容器5から流出した冷媒は、膨張弁3bでさらに減圧され、第2熱交換器4へ流入する(G)。第2熱交換器4に流入した低温冷媒は、第2熱交換器4で加熱され、乾き度が高い状態で流出する(H)。その後、冷媒配管を経由して圧縮機1の吸入部(A)へ流入する。なお、バイパス回路31の冷媒の流れは、実施の形態1で説明した通りである。
(暖房除霜運転時の冷媒の流れ)
 外気温度が低い条件で暖房運転を行うと、外気と熱交換を行う第1熱交換器2を構成しているフィン表面に霜が付着(着霜)することがある。着霜が発生することにより、フィン間が閉塞してくる。フィン間が閉塞してくるに伴い、次第に風量も低下してしまう。風量が低下すると、暖房能力が大きく低下することになる。そのため、霜を溶かす運転(除霜運転)が必要となる。
 冷凍サイクル装置300の暖房除霜運転時においては、開閉弁8aを開き、開閉弁8bを閉じる。これにより、圧縮機1によって圧縮され吐出ガス(B)となって流出した高温高圧のガス冷媒は、冷媒配管を流れ、開閉弁8aへ流入する冷媒と、第1熱交換器2へ流入する冷媒とに分岐される。
 開閉弁8aへ流入した冷媒は、第2熱交換器4で放熱して暖房熱源として使われる。
 一方、第1熱交換器2へ流入した冷媒は、第1熱交換器2に付着した霜を溶かすための熱源として使われる。
 各熱交換器を流出した冷媒は、冷媒容器5に流入し、合流する。この冷媒は、分岐管21を通過し、膨張弁3cで減圧後に、冷媒熱交換器20で加熱され、圧縮機1の吸入側へ合流する。
 図14は、冷媒容器5の構成の一例を示す概略構成図である。冷媒容器5を図14に示すような構成としてもよい。具体的には、冷媒容器5の内部に連通するガス戻し配管24を冷媒容器5に設け、ガス戻し配管24に開閉弁(第3開閉弁)8cを設け、ガス戻し配管24の一端を圧縮機1の吸入側に配管接続する。なお、ガス戻し配管24は、例えば一般的なアキュームレータ内に設けられているU字管と同様の構成とするとよい。
 以上のように、冷凍サイクル装置300は、開閉弁8a、開閉弁8bを設けたことにより、暖房運転を継続しながら、除霜運転することが可能となっている。そのため、冷凍サイクル装置300によれば、除霜運転する際に、暖房運転を停止しなくて済むので、快適性が向上する。また、冷凍サイクル装置300は、冷媒容器5に冷媒が貯留されるため、圧縮機1への液バックが抑制できる。そのため、冷凍サイクル装置300によれば、信頼性の低下を抑制できる。
 また、冷媒容器5を図14に示す構成とすることにより、ガスもしくは乾き度の高い冷媒を圧縮機1へ吸入させることができることになる。そのため、図14に示す構成の冷媒容器5を備えた冷凍サイクル装置300によれば、圧縮機1への過度な液バックを更に効率よく抑制することができる。
 以上、本発明の特徴を実施の形態に分けて説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。また、各実施の形態の特徴事項を用途や目的に応じて適宜組み合わせるようにしてもよい。さらに、各実施の形態に係る冷凍サイクル装置に使用する冷媒を特に限定するものではないことは上述したが、例示した冷媒の他にも、例えば自然冷媒(二酸化炭素(CO2 )、炭化水素、ヘリウムなど)、塩素を含まない代替冷媒(HFC410A、HFC407C、HFC404Aなど)、もしくは既存の製品に使用されているフロン系冷媒(R22、R134aなど)の冷媒も使用可能である。
 1 圧縮機、1a 低段側圧縮機、1b 高段側圧縮機、2 第1熱交換器、3 膨張弁、3a 膨張弁、3b 膨張弁、3c 膨張弁、3d 膨張弁、4 第2熱交換器、5 冷媒容器、6 冷媒流路切換装置、7 内部熱交換器、8a 開閉弁、8b 開閉弁、20 冷媒熱交換器、21 分岐管、22 分岐管中間部、23 合流配管、24 ガス戻し配管、25 合流部、30 主回路、31 バイパス回路、32 バイパス回路、50 制御装置、51 配管、52 配管、55 第1圧力センサ、56 第2圧力センサ、57 第3圧力センサ、100 冷凍サイクル装置、200 冷凍サイクル装置、300 冷凍サイクル装置。

Claims (12)

  1.  圧縮機、冷媒流路切換装置、第1熱交換器、第1減圧装置、冷媒容器、第2減圧装置、第2熱交換器が配管接続された冷媒回路と、
     前記冷媒容器の内部に貯留されている冷媒の少なくとも一部を、第3減圧装置、冷媒熱交換器を介して前記圧縮機の吸入側に導くバイパス回路と、を有し、
     前記冷媒熱交換器は、
     前記冷媒容器の内部に設けられ、
     前記バイパス回路を流れる冷媒と、前記冷媒容器の内部に貯留されている冷媒と、を熱交換させるように構成されている
     冷凍サイクル装置。
  2.  前記第1減圧装置及び前記第2減圧装置により、前記冷媒容器に貯留される冷媒の圧力を中間圧力とする
     請求項1に記載の冷凍サイクル装置。
  3.  前記第3減圧装置によって前記冷媒熱交換器での交換熱量を調整する
     請求項1又は2に記載の冷凍サイクル装置。
  4.  前記第1熱交換器を凝縮器、前記第2熱交換器を蒸発器として機能させている場合において、
     前記第1減圧装置の開度が上限値以上であるとき、前記第3減圧装置の開度を現在の開度よりも大きくし、前記第1減圧装置の前後差圧を現在の差圧よりも大きくする
     請求項3に記載の冷凍サイクル装置。
  5.  前記第1減圧装置の開度が上限値以上ではなく、前記第2減圧装置の開度が下限値以下であるとき、前記第3減圧装置の開度を現在の開度よりも小さくし、前記第2減圧装置の前後差圧を現在の差圧よりも大きくする
     請求項4に記載の冷凍サイクル装置。
  6.  前記圧縮機の吐出側と前記第2熱交換器との間に第1開閉弁を設け、
     前記冷媒流路切換装置と前記第2熱交換器との間に第2開閉弁を設け、
     前記第1熱交換器を蒸発器、前記第2熱交換器を凝縮器として機能させている場合において、
     前記第1開閉弁を開き、前記第2開閉弁を閉じ、
     前記圧縮機から吐出された冷媒を、前記第1熱交換器及び前記第2熱交換器の双方に流し、前記第1熱交換器の除霜運転を実行し、前記冷媒容器で合流させてから前記圧縮機の吸入側へ流す
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記冷媒容器の内部に連通するガス戻し配管を設け、前記ガス戻し配管に第3開閉弁を設け、前記ガス戻し配管の一端を前記圧縮機の吸入側に接続する
     請求項6に記載の冷凍サイクル装置。
  8.  前記圧縮機は、
     低段側圧縮機と高段側圧縮機とで構成されている
     請求項1~7のいずれか一項に記載の冷凍サイクル装置。
  9.  前記圧縮機は、
     インジェクション圧縮機で構成されている
     請求項1~7のいずれか一項に記載の冷凍サイクル装置。
  10.  前記冷媒容器と前記第1減圧装置との間に内部熱交換器を設け、
     前記冷媒容器と前記内部熱交換器との間で第1配管を分岐し、第4減圧装置及び前記内部熱交換器を経由させて、前記段側圧縮機と前記高段側圧縮機との間に接続している
     請求項8に記載の冷凍サイクル装置。
  11.  前記第1減圧装置と前記冷媒容器とを接続する第1配管の前記冷媒容器の内部における端部、及び、前記第2減圧装置と前記冷媒容器とを接続する第2配管の前記冷媒容器の内部における端部を、ともに前記冷媒容器の中心よりも下側に配置する
     請求項1~10のいずれか一項に記載の冷凍サイクル装置。
  12.  前記第1配管と前記第2配管の前記冷媒容器の内部における端部の高さを、一致させている
     請求項11に記載の冷凍サイクル装置。
PCT/JP2014/067165 2014-06-27 2014-06-27 冷凍サイクル装置 WO2015198475A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015529956A JP5865561B1 (ja) 2014-06-27 2014-06-27 冷凍サイクル装置
US15/314,542 US10401047B2 (en) 2014-06-27 2014-06-27 Refrigeration cycle apparatus
EP21174042.8A EP3885670B1 (en) 2014-06-27 2014-06-27 Refrigeration cycle apparatus
EP14896239.2A EP3163217B1 (en) 2014-06-27 2014-06-27 Refrigeration cycle device
PCT/JP2014/067165 WO2015198475A1 (ja) 2014-06-27 2014-06-27 冷凍サイクル装置
CN201480079363.7A CN106415153B (zh) 2014-06-27 2014-06-27 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067165 WO2015198475A1 (ja) 2014-06-27 2014-06-27 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2015198475A1 true WO2015198475A1 (ja) 2015-12-30

Family

ID=54937598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067165 WO2015198475A1 (ja) 2014-06-27 2014-06-27 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10401047B2 (ja)
EP (2) EP3885670B1 (ja)
JP (1) JP5865561B1 (ja)
CN (1) CN106415153B (ja)
WO (1) WO2015198475A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405372A (zh) * 2018-10-31 2019-03-01 上海爱斯达克汽车空调系统有限公司 节流多口热力膨胀阀组件及交通工具
WO2019239587A1 (ja) * 2018-06-15 2019-12-19 三菱電機株式会社 冷凍サイクル装置
WO2020090040A1 (ja) * 2018-10-31 2020-05-07 三菱電機株式会社 冷凍サイクル装置
WO2020208736A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 冷凍サイクル装置
WO2023095325A1 (ja) * 2021-11-29 2023-06-01 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102404082B1 (ko) * 2015-06-08 2022-05-31 삼성전자주식회사 공기 조화기 및 그 제어 방법
WO2017145826A1 (ja) * 2016-02-24 2017-08-31 旭硝子株式会社 冷凍サイクル装置
US10767906B2 (en) * 2017-03-02 2020-09-08 Heatcraft Refrigeration Products Llc Hot gas defrost in a cooling system
US10845106B2 (en) * 2017-12-12 2020-11-24 Rheem Manufacturing Company Accumulator and oil separator
US10895411B2 (en) * 2018-10-24 2021-01-19 Heatcraft Refrigeration Products Llc Cooling system
KR20200137837A (ko) * 2019-05-31 2020-12-09 현대자동차주식회사 차량용 기액 분리장치
KR102612458B1 (ko) * 2020-02-28 2023-12-12 한온시스템 주식회사 베이퍼 인젝션 모듈 및 이를 이용하는 히트펌프 시스템
EP3901538B1 (en) * 2020-04-24 2024-04-10 Copeland Europe GmbH Flash tank-based control of refrigerant injection into a compressor
WO2021245795A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷凍サイクル装置
EP4361531A1 (en) * 2022-10-26 2024-05-01 Ariston S.P.A. Heat pump with expanded modulation of the expansion device
DE102023106299A1 (de) * 2023-03-14 2024-09-19 Schaeffler Technologies AG & Co. KG Kältemittelkreislauf mit Separator zur Umschaltung zwischen Betriebsmodi

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269773U (ja) * 1985-10-19 1987-05-01
JPH024162A (ja) * 1988-06-21 1990-01-09 Daikin Ind Ltd 空気調和装置
JP2000274859A (ja) * 1999-03-18 2000-10-06 Daikin Ind Ltd 冷凍装置
JP2001056159A (ja) * 1999-06-11 2001-02-27 Daikin Ind Ltd 空気調和装置
JP2002318039A (ja) * 2001-04-20 2002-10-31 Hitachi Ltd 空気調和機
JP2005315558A (ja) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2006138525A (ja) * 2004-11-11 2006-06-01 Hitachi Home & Life Solutions Inc 冷凍装置及び空気調和機
JP2009192164A (ja) * 2008-02-15 2009-08-27 Mitsubishi Electric Corp 冷凍装置
US20130145791A1 (en) * 2011-06-16 2013-06-13 Hill Phoenix, Inc. Refrigeration system

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262A (ja) * 1983-06-17 1985-01-05 株式会社日立製作所 冷凍サイクル
JPS60261A (ja) * 1983-06-17 1985-01-05 株式会社日立製作所 冷凍サイクル
US5136855A (en) * 1991-03-05 1992-08-11 Ontario Hydro Heat pump having an accumulator with refrigerant level sensor
US5628200A (en) * 1995-01-12 1997-05-13 Wallace Heating & Air Conditioning, Inc. Heat pump system with selective space cooling
JPH10141798A (ja) * 1996-11-08 1998-05-29 Denso Corp ヒ−トポンプ装置
JPH1130445A (ja) * 1997-07-10 1999-02-02 Denso Corp 冷凍サイクル装置
JP3327197B2 (ja) 1997-08-19 2002-09-24 三菱電機株式会社 冷凍空調装置
US5996360A (en) * 1997-11-27 1999-12-07 Denso Corporation Refrigerant cycle system
JP2000283583A (ja) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd ヒートポンプ
JP2000304374A (ja) 1999-04-22 2000-11-02 Yanmar Diesel Engine Co Ltd エンジンヒートポンプ
US7017353B2 (en) * 2000-09-15 2006-03-28 Scotsman Ice Systems Integrated ice and beverage dispenser
JP2006071257A (ja) * 2004-08-06 2006-03-16 Daikin Ind Ltd 冷凍サイクル装置
JP4459776B2 (ja) 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
MX2007010002A (es) * 2005-02-18 2008-03-19 Carrier Corp Circuito de refrigeracion con receptor de liquido/vapor mejorado.
JP4726600B2 (ja) * 2005-10-06 2011-07-20 三菱電機株式会社 冷凍空調装置
JP5003440B2 (ja) * 2007-11-30 2012-08-15 ダイキン工業株式会社 冷凍装置
JP5200593B2 (ja) * 2008-03-13 2013-06-05 アイシン精機株式会社 空気調和装置
GB2469616B (en) * 2009-02-11 2013-08-28 Star Refrigeration A refrigeration system operable under transcritical conditions
DE102011014943A1 (de) * 2011-03-24 2012-09-27 Airbus Operations Gmbh Multifunktionaler Kälteträgermediumbehälter und Verfahren zum Betreiben eines derartigen Kälteträgermediumbehälters
CA2834803A1 (en) * 2011-05-05 2012-11-08 Douglas Lloyd Lockhart Apparatus and method for controlling refrigerant temperature in a heat pump or refrigeration apparatus
KR101288681B1 (ko) * 2011-09-06 2013-07-22 엘지전자 주식회사 공기조화기
ES2748573T3 (es) * 2011-11-29 2020-03-17 Mitsubishi Electric Corp Dispositivo de refrigeración/acondicionamiento de aire
EP2631566B1 (en) * 2012-02-24 2018-11-21 Airbus Operations GmbH Accumulator arrangement with an integrated sub-cooler
JP5842733B2 (ja) * 2012-05-23 2016-01-13 ダイキン工業株式会社 冷凍装置
EP2906833B1 (en) * 2012-10-12 2018-12-05 Thermo King Corporation Combined accumulator and receiver tank
CN104813123B (zh) * 2012-11-29 2017-09-12 三菱电机株式会社 空气调节装置
JP5776746B2 (ja) * 2013-01-29 2015-09-09 ダイキン工業株式会社 空気調和装置
JP6091399B2 (ja) * 2013-10-17 2017-03-08 三菱電機株式会社 空気調和装置
JP6017058B2 (ja) * 2013-10-24 2016-10-26 三菱電機株式会社 空気調和装置
JP6184314B2 (ja) * 2013-12-19 2017-08-23 三菱電機株式会社 アキュームレータ、及び空気調和装置
WO2015140879A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
KR102242777B1 (ko) * 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기
JP6323489B2 (ja) * 2015-08-04 2018-05-16 株式会社デンソー ヒートポンプシステム
CN105371548B (zh) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269773U (ja) * 1985-10-19 1987-05-01
JPH024162A (ja) * 1988-06-21 1990-01-09 Daikin Ind Ltd 空気調和装置
JP2000274859A (ja) * 1999-03-18 2000-10-06 Daikin Ind Ltd 冷凍装置
JP2001056159A (ja) * 1999-06-11 2001-02-27 Daikin Ind Ltd 空気調和装置
JP2002318039A (ja) * 2001-04-20 2002-10-31 Hitachi Ltd 空気調和機
JP2005315558A (ja) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2006138525A (ja) * 2004-11-11 2006-06-01 Hitachi Home & Life Solutions Inc 冷凍装置及び空気調和機
JP2009192164A (ja) * 2008-02-15 2009-08-27 Mitsubishi Electric Corp 冷凍装置
US20130145791A1 (en) * 2011-06-16 2013-06-13 Hill Phoenix, Inc. Refrigeration system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219074B9 (zh) * 2018-06-15 2023-01-20 三菱电机株式会社 冷冻循环装置
JPWO2019239587A1 (ja) * 2018-06-15 2021-03-11 三菱電機株式会社 冷凍サイクル装置
CN112219074B (zh) * 2018-06-15 2022-12-06 三菱电机株式会社 冷冻循环装置
CN112219074A (zh) * 2018-06-15 2021-01-12 三菱电机株式会社 冷冻循环装置
WO2019239587A1 (ja) * 2018-06-15 2019-12-19 三菱電機株式会社 冷凍サイクル装置
JP7150046B2 (ja) 2018-10-31 2022-10-07 三菱電機株式会社 冷凍サイクル装置
CN112888906A (zh) * 2018-10-31 2021-06-01 三菱电机株式会社 制冷循环装置
EP3875872A4 (en) * 2018-10-31 2022-01-05 Mitsubishi Electric Corporation REFRIGERATION CYCLE UNIT
JPWO2020090040A1 (ja) * 2018-10-31 2021-09-02 三菱電機株式会社 冷凍サイクル装置
WO2020090040A1 (ja) * 2018-10-31 2020-05-07 三菱電機株式会社 冷凍サイクル装置
CN109405372A (zh) * 2018-10-31 2019-03-01 上海爱斯达克汽车空调系统有限公司 节流多口热力膨胀阀组件及交通工具
CN112888906B (zh) * 2018-10-31 2023-03-03 三菱电机株式会社 制冷循环装置
CN109405372B (zh) * 2018-10-31 2023-12-19 上海爱斯达克汽车空调系统有限公司 节流多口热力膨胀阀组件及交通工具
JPWO2020208736A1 (ja) * 2019-04-10 2021-10-21 三菱電機株式会社 冷凍サイクル装置
WO2020208736A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 冷凍サイクル装置
WO2023095325A1 (ja) * 2021-11-29 2023-06-01 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3885670B1 (en) 2023-09-06
EP3163217A4 (en) 2020-12-02
EP3885670A1 (en) 2021-09-29
JPWO2015198475A1 (ja) 2017-04-20
JP5865561B1 (ja) 2016-02-17
EP3163217B1 (en) 2022-08-17
CN106415153B (zh) 2019-04-23
CN106415153A (zh) 2017-02-15
US10401047B2 (en) 2019-09-03
US20170167762A1 (en) 2017-06-15
EP3163217A1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5865561B1 (ja) 冷凍サイクル装置
US10415861B2 (en) Refrigeration cycle apparatus
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
US10036562B2 (en) Air-conditioning apparatus
JP5871959B2 (ja) 空気調和装置
EP2375188B1 (en) Air conditioner
JP5411643B2 (ja) 冷凍サイクル装置および温水暖房装置
WO2013145006A1 (ja) 空気調和装置
JP6223469B2 (ja) 空気調和装置
WO2014091909A1 (ja) ヒートポンプ式加熱装置
WO2015125743A1 (ja) 空気調和装置
US10928105B2 (en) Air conditioner
EP3093586B1 (en) Air conditioning device
WO2017138108A1 (ja) 空気調和装置
WO2015125219A1 (ja) 空気調和装置
JP6643630B2 (ja) 空気調和装置
JP2005226950A (ja) 冷凍空調装置
US9903625B2 (en) Air-conditioning apparatus
JP7450745B2 (ja) ヒートポンプシステムおよびヒートポンプシステムを制御するための方法
JP6198945B2 (ja) 空気調和装置
JP5005011B2 (ja) 空気調和装置
WO2017094172A1 (ja) 空気調和装置
WO2024166276A1 (ja) 空気調和装置
US20150219373A1 (en) Air-conditioning apparatus
JPWO2013145006A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015529956

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896239

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014896239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15314542

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE