WO2020066734A1 - 二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池 - Google Patents

二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池 Download PDF

Info

Publication number
WO2020066734A1
WO2020066734A1 PCT/JP2019/036304 JP2019036304W WO2020066734A1 WO 2020066734 A1 WO2020066734 A1 WO 2020066734A1 JP 2019036304 W JP2019036304 W JP 2019036304W WO 2020066734 A1 WO2020066734 A1 WO 2020066734A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
monomer
weight
battery negative
Prior art date
Application number
PCT/JP2019/036304
Other languages
English (en)
French (fr)
Inventor
貴之 青木
中村 佳介
浩史 小田
鈴木 剛司
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69949869&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020066734(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to CN201980063405.0A priority Critical patent/CN112840481A/zh
Priority to JP2020504036A priority patent/JP6783412B2/ja
Publication of WO2020066734A1 publication Critical patent/WO2020066734A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery negative electrode slurry composition, a secondary battery negative electrode slurry dispersant composition, a secondary battery negative electrode, and a secondary battery.
  • secondary batteries such as lithium ion secondary batteries, nickel hydrogen secondary batteries, nickel cadmium secondary batteries, and the like, which can be repeatedly used by charging, have been used in electronic devices. Secondary batteries are being rapidly developed as batteries for use in portable electronic devices, hybrid vehicles, electric vehicles, and the like. In particular, various studies have been made on lithium ion secondary batteries in order to improve the characteristics.
  • a lithium ion secondary battery is composed mainly of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution.
  • the positive electrode is manufactured by applying a positive electrode slurry containing a positive electrode active material and a solvent to a current collector and drying.
  • the negative electrode is manufactured by applying a negative electrode slurry containing a negative electrode active material and a solvent to a current collector and drying.
  • the separator is a material capable of separating the positive electrode from the negative electrode and improving the safety of the battery. For example, a porous polyolefin membrane has excellent characteristics.
  • the non-aqueous electrolyte solution is an aprotic polar solvent in which a lithium salt is dissolved, and has ionic conductivity.
  • Patent Document 1 exemplifies polyimide as a binder suitable for Si and a Si compound.
  • Patent Document 2 exemplifies a styrene-butadiene copolymer latex and an acrylic polymer latex.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, a secondary battery that includes a polymer component which is a polymer of a polymerizable component including a specific monomer and satisfies specific conditions
  • a dispersant composition for a negative electrode slurry has excellent binding properties to a negative electrode active material, and have reached the present invention.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention comprises a polymer component A which is a polymer of a polymerizable component a containing a monomer (I) having one radical-reactive carbon-carbon double bond.
  • the solubility parameter (SP) of the monomer (I) is 10 to 17 (cal / cm 3 ) 1/2
  • Condition 1 The tensile elastic modulus of the molded film composed of the nonvolatile component of the dispersant composition for a secondary battery negative electrode slurry is 500 MPa or more.
  • the monomer (I) contains a monomer (i) and / or a monomer (ii), and the monomer (i) has a group that is a carboxyl group and / or a salt thereof. It is preferable that the monomer (ii) is a monomer having a group that reacts with a carboxyl group and / or a group that is a salt thereof.
  • the monomer (I) preferably contains the monomer (i), and the weight ratio of the monomer (i) to the polymerizable component a is preferably 20 to 90% by weight.
  • the monomer (I) preferably contains the monomer (ii), and the weight ratio of the monomer (ii) to the polymerizable component a is 3 to 40% by weight. It is preferable that the monomer (I) further includes a nitrile monomer (iii).
  • the weight ratio of the monomer (iii) in the polymerizable component a is preferably from 5 to 45% by weight.
  • Condition 2 The non-volatile content of the dispersant composition for a secondary battery negative electrode slurry is immersed in a mixture of ethylene carbonate / diethyl carbonate at a volume ratio of 50/50, and left standing at 60 ° C. for one week.
  • the weight swelling ratio of nonvolatile components of the dispersant composition for a battery negative electrode slurry is 120% by weight or less.
  • condition 3 The light transmittance at a wavelength of 670 nm of the aqueous dispersion of a nonvolatile content of 2.5% by weight of the dispersant composition for a secondary battery negative electrode slurry is 60% or more.
  • the secondary battery negative electrode slurry composition of the present invention is a secondary battery negative electrode slurry composition comprising a secondary battery negative electrode slurry dispersant composition and a negative electrode active material, wherein the secondary battery negative electrode slurry Dispersant composition contains a polymer of the polymerizable component a containing the monomer (I) having one radical-reactive carbon-carbon double bond and / or a polymer component A which is a neutralized product thereof.
  • the secondary battery negative electrode slurry composition wherein the monomer (I) has a solubility parameter (SP) of 10 to 17 (cal / cm 3 ) 1/2 and satisfies the following condition 1:
  • Condition 1 The tensile elastic modulus of the molded film composed of the nonvolatile component of the dispersant composition for a secondary battery negative electrode slurry is 500 MPa or more.
  • the negative electrode active material contains Si and / or a Si compound.
  • the monomer (I) contains a monomer (i) and / or a monomer (ii), and the monomer (i) has a group that is a carboxyl group and / or a salt thereof. It is preferable that the monomer (ii) is a monomer having a group that reacts with a carboxyl group and / or a group that is a salt thereof.
  • the monomer (I) preferably contains the monomer (i), and the weight ratio of the monomer (i) to the polymerizable component a is preferably 20 to 90% by weight.
  • the monomer (I) preferably contains the monomer (ii), and the weight ratio of the monomer (ii) to the polymerizable component a is 3 to 40% by weight. It is preferable that the monomer (I) further includes a nitrile monomer (iii). The weight ratio of the monomer (iii) in the polymerizable component a is preferably from 5 to 45% by weight.
  • Condition 2 The non-volatile content of the secondary battery negative electrode slurry dispersant composition is immersed in a mixture of ethylene carbonate / diethyl carbonate having a volume ratio of 50/50 and left at 60 ° C. for 1 week, The weight swelling ratio of the nonvolatile components of the dispersant composition for a secondary battery negative electrode slurry is 120% by weight or less. Further, it is preferable that the following condition 3 is satisfied. Condition 3: The light transmittance at a wavelength of 670 nm of the aqueous dispersion having a nonvolatile content of 2.5% by weight of the dispersant composition for a secondary battery negative electrode slurry is 60% or more.
  • the secondary battery negative electrode of the present invention is a negative electrode for a secondary battery having a coating on a current collector, wherein the coating contains a nonvolatile component of the slurry composition for a secondary battery negative electrode, for a secondary battery. It is a negative electrode.
  • the secondary battery of the present invention is a secondary battery including the above-described negative electrode for a secondary battery.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention has excellent binding properties to a negative electrode active material.
  • the slurry composition for a secondary battery negative electrode of the present invention is excellent in dispersion stability and applicability. Since the negative electrode for a secondary battery of the present invention contains the dispersant composition for a secondary battery negative electrode slurry, it has excellent binding properties.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention contains the polymer component A. First, components constituting the dispersant composition for a secondary battery negative electrode slurry will be described in detail.
  • the polymer component A (hereinafter sometimes referred to as component A) is a polymer obtained by polymerizing the polymerizable component a and / or a neutralized product thereof.
  • the polymerizable component a is a component that includes a monomer having one radical-reactive carbon-carbon double bond and may include a crosslinking agent having two or more radical-reactive carbon-carbon double bonds. Both the monomer and the crosslinking agent are components capable of performing an addition reaction, and the crosslinking agent is a component capable of introducing a bridge structure into the polymer.
  • the polymerizable component a has a solubility parameter (SP) of 10 to 17 (cal / cm 3 ) 1/2 and a monomer (I) having one radical-reactive carbon-carbon double bond (hereinafter referred to simply as “monomers”). (Sometimes referred to as monomer (I)).
  • SP solubility parameter
  • monomer (I) having one radical-reactive carbon-carbon double bond
  • the solubility parameter (SP) of the monomer (I) is 10 to 17 (cal / cm 3 ) 1/2 .
  • the upper limit of the solubility parameter (SP) of the monomer (I) is preferably 16 (cal / cm 3 ) 1/2 , more preferably 15 (cal / cm 3 ) 1/2 , and still more preferably 14 (cal / cm 3 ). 3 ) 1/2 .
  • the lower limit of the solubility parameter (SP) of the monomer (I) is preferably 10.5 (cal / cm 3 ) 1/2 , more preferably 11 (cal / cm 3 ) 1/2 , and still more preferably. Is 11.5 (cal / cm 3 ) 1/2 .
  • the solubility parameter (SP) referred to in the present application is a value calculated by the molecular attraction constant method.
  • the weight ratio of the monomer (I) in the polymer component a is not particularly limited, but is preferably from 60 to 100% by weight from the viewpoint of achieving the effects of the present invention. If the weight ratio of the monomer (I) is less than 60% by weight, the rigidity and elasticity of the polymer component A and the dispersibility of the negative electrode active material may decrease.
  • the weight ratio of the monomer (I) is (1) 70 to 100% by weight, (2) 80 to 100% by weight, (3) 85 to 100% by weight, (4) 90 to 100% by weight, (5) It is preferable in the order of 95 to 100% by weight (preferably as the number in parenthesis increases).
  • the monomer (I) has an oxygen atom and / or a nitrogen atom and has one radical-reactive carbon-carbon double bond (hereinafter, simply referred to as monomer (I-1). Is preferable from the viewpoint of achieving the effects of the present invention.
  • the monomer (I-1) has an oxygen atom
  • the ratio of the total atomic weight of all the oxygen atoms of the monomer (I-1) to the molecular weight of the monomer (I-1) is particularly preferable. Although not limited, it is preferably 0.1 to 0.6. If the total ratio of the atomic weights of all the oxygen atoms of the monomer (I-1) is less than 0.1, the rigidity of the polymer component A and the dispersibility of the negative electrode active material may decrease.
  • the rigidity and elasticity of the polymer component A may decrease.
  • the upper limit of the ratio of the total atomic weight of all oxygen atoms of the monomer (I-1) to the molecular weight of the monomer (I-1) is more preferably 0.5, more preferably 0.45, Particularly preferably 0.4 and most preferably 0.35.
  • the lower limit of the ratio of the total atomic weight of all the oxygen atoms of the monomer (I-1) to the molecular weight of the monomer (I) is more preferably 0.15, further preferably 0.2, Particularly preferably, it is 0.25, most preferably 0.3.
  • the ratio of the total atomic weight of all the nitrogen atoms of the monomer (I-1) to the molecular weight of the monomer (I-1) is particularly preferable. Although not limited, it is preferably 0.05 to 0.5. If the total ratio of the atomic weights of all the nitrogen atoms of the monomer (I-1) is less than 0.05, the elasticity of the polymer component A and the dispersibility of the negative electrode active material may be reduced. On the other hand, when the total ratio of the atomic weights of all the nitrogen atoms of the monomer (I-1) is more than 0.5, the rigidity and elasticity of the polymer component A may be reduced.
  • the upper limit of the ratio of the total atomic weight of all the nitrogen atoms of the monomer (I-1) to the molecular weight of the monomer (I-1) is more preferably 0.5, further preferably 0.45, Particularly preferably, it is 0.35, most preferably 0.3.
  • the lower limit of the total ratio of the atomic weights of all the nitrogen atoms of the monomer (I-1) to the molecular weight of the monomer (I-1) is more preferably 0.1, and still more preferably 0.1. 15, particularly preferably 0.2, most preferably 0.25.
  • the atomic weight of all the oxygen atoms of the monomer (I-1) occupies the molecular weight of the monomer (I-1). Is preferably in the above range, and the total ratio of the atomic weight of all the nitrogen atoms of the monomer (I-1) to the molecular weight of the monomer (I-1) is in the above range. preferable.
  • the monomer (I) is a monomer containing the monomer (i) and / or the monomer (ii), wherein the monomer (i) has a group that is a carboxyl group and / or a salt thereof.
  • the monomer (ii) is a monomer having a group that reacts with a carboxyl group and / or a salt thereof, the elasticity of the polymer component A and the dispersibility of the negative electrode active material can be improved. Therefore, it is preferable.
  • the monomer having a carboxyl group as the monomer (i) is not particularly limited as long as it has one or more free carboxyl groups per molecule.
  • Examples of the monomer having a group that is a salt of a carboxyl group include salts of unsaturated carboxylic acids such as the above-mentioned unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, and unsaturated dicarboxylic acid monoesters.
  • Examples of the salt of an unsaturated carboxylic acid include alkali metal salts of unsaturated carboxylic acids such as unsaturated sodium carboxylate and potassium potassium carboxylate; alkaline earth metal salts of unsaturated carboxylic acids such as unsaturated calcium carboxylate; Examples thereof include saturated ammonium carboxylate.
  • the monomer containing a group that is a salt of a carboxyl group may be a monomer having a carboxyl group that has been neutralized in advance with a basic composition, and the basic composition may have a pH adjustment described below. Agents may be used. These monomers (i) may be used alone or in combination of two or more. Among the above monomers (i), from the viewpoint of dispersibility of the negative electrode active material, unsaturated monocarboxylic acids and unsaturated dicarboxylic acids are preferable, and acrylic acid, methacrylic acid, and itaconic acid are more preferable. In the monomer having a carboxyl group, a part or all of the carboxyl group may be neutralized during or after polymerization.
  • the weight ratio of the monomer (i) to the polymerizable component a is not particularly limited, but is preferably 20 to 90% by weight. If the weight ratio of the monomer (i) is less than 20% by weight, the dispersibility of the negative electrode active material may decrease. On the other hand, if the weight ratio of the monomer (i) is more than 90% by weight, the elasticity may decrease.
  • the upper limit of the weight ratio of the monomer (i) is more preferably 85% by weight, further preferably 75% by weight, particularly preferably 65% by weight, and most preferably 60% by weight.
  • the lower limit of the weight ratio of the monomer (i) is more preferably 30% by weight, further preferably 40% by weight, particularly preferably 50% by weight, and most preferably 55% by weight.
  • the monomer (ii) is not particularly limited, but includes a hydroxyl group, an amino group, an epoxy group, an isocyanate group, an aldehyde group, an azo group, a nitro group, a nitroso group, a thiol group, a sulfonic acid group, a phosphoric acid group and the like. Can be mentioned.
  • Examples of the monomer (ii) include N-methylol (meth) acrylamide, (meth) acrylamide, hydroxymethylacrylamide, hydroxyethylacrylamide, acetone acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (Meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, 2-acetamidoacryl (Meth) acrylamide monomers such as acid, N-phenyl (meth) acrylamide, N-nitrophenyl (meth) acrylamide and diacetone acrylamide; aldehyde monomers such as acrolein; vinyls Sulfonic acid monomers such as fonic acid and Nt-butylacrylamide sulfonic
  • the notation of (meth) acryl means acryl or methacryl. Further, in the present application, the notation of (meth) acrylate means acrylate or methacrylate.
  • These monomers (ii) may be used alone or in combination of two or more.
  • the monomers (ii) from the viewpoint of achieving the effects of the present invention, N-methylol (meth) acrylamide, (meth) acrylamide, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl ( (Meth) acrylate is preferred, and N-methylol (meth) acrylamide and (meth) acrylamide are more preferred.
  • the weight ratio of the monomer (ii) to the polymerizable component a is not particularly limited, but is preferably 3 to 40% by weight. If the weight ratio of the monomer (ii) is less than 3% by weight, the rigidity may decrease. On the other hand, when the weight ratio of the monomer (ii) is more than 40% by weight, the elasticity may decrease.
  • the upper limit of the weight ratio of the monomer (ii) is more preferably 35% by weight, further preferably 30% by weight, particularly preferably 20% by weight, and most preferably 17% by weight.
  • the lower limit of the weight ratio of the monomer (ii) is more preferably 5% by weight, further preferably 10% by weight, particularly preferably 12% by weight, and most preferably 15% by weight.
  • the monomer (I) contains the monomer (i) and the monomer (ii) from the viewpoint of achieving the effects of the present invention.
  • the weight ratio of the monomer (i) to the polymerizable component a and the monomer to the polymerizable component a is not particularly limited, but is preferably 1 to 8.
  • the ratio of the weight ratio of the monomer (i) to the monomer (ii) is 1 or more, the dispersibility of the negative electrode active material tends to be improved.
  • the weight ratio of the monomer (i) to the monomer (ii) is 8 or less, the elasticity of the polymer component A tends to be improved.
  • the upper limit of the ratio of the weight ratio of the monomer (i) to the monomer (ii) is more preferably 7, further preferably 6, particularly preferably 5, and most preferably 4.5.
  • the lower limit of the weight ratio of the monomer (i) to the monomer (ii) is more preferably 2, further preferably 2.5, particularly preferably 3, and most preferably 3.5.
  • the rigidity and elasticity of the polymer component A can be improved. Therefore, it is preferable.
  • Examples of the monomer (iii) include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile and the like. These monomers (iii) may be used alone or in combination of two or more. Among the above monomers (iii), acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is more preferred, from the viewpoint of achieving the effects of the present invention.
  • the weight ratio of the monomer (iii) to the polymerizable component a is not particularly limited, but is preferably 5 to 45% by weight. If the weight ratio of the monomer (iii) is less than 5% by weight, the elasticity may decrease. On the other hand, if the weight ratio of the monomer (iii) is more than 45% by weight, the rigidity may decrease.
  • the upper limit of the weight ratio of the monomer (iii) is more preferably 40% by weight, further preferably 35% by weight, particularly preferably 30% by weight, and most preferably 27% by weight.
  • the lower limit of the weight ratio of the monomer (iii) is more preferably 10% by weight, further preferably 15% by weight, particularly preferably 20% by weight, and most preferably 23% by weight.
  • the weight ratio of the monomer (i) to the polymerizable component a and the monomer is not particularly limited, but is preferably 1 to 8.
  • the weight ratio of iii) (hereinafter sometimes referred to as monomer (i) / monomer (iii)) is not particularly limited, but is preferably 1 to 8.
  • the ratio of the weight ratio of the monomer (i) to the monomer (ii) is 1 or more, the dispersibility of the negative electrode active material tends to be improved.
  • the weight ratio of the monomer (i) to the monomer (iii) is 8 or less, the elasticity of the polymer component A tends to be improved.
  • the upper limit of the ratio of the weight ratio of the monomer (i) to the monomer (iii) is more preferably 7, further preferably 6, particularly preferably 5, and most preferably 4.5.
  • the lower limit of the weight ratio of the monomer (i) to the monomer (ii) is more preferably 2, further preferably 2.5, particularly preferably 3, and most preferably 3.5.
  • the weight ratio of the monomer (i) to the polymerizable component a and the monomer is not particularly limited, but is preferably 1 to 8.
  • the ratio of the weight ratio of the monomer (i) to the monomer (ii) is 1 or more, the dispersibility of the negative electrode active material tends to be improved.
  • the weight ratio of the monomer (ii) to the monomer (iii) is 8 or less, the elasticity of the polymer component A tends to be improved.
  • the upper limit of the ratio of the weight ratio of the monomer (ii) to the monomer (iii) is more preferably 7, further preferably 6, particularly preferably 5, and most preferably 4.5.
  • the lower limit of the weight ratio of the monomer (i) to the monomer (ii) is more preferably 2, further preferably 2.5, particularly preferably 3, and most preferably 3.5.
  • the monomer (I) may include the monomer (i), the monomer (ii), and the monomer (iv) other than the monomer (iii).
  • Examples of the monomer (iv) include vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; and morpholine monomers such as 4-acryloylmorpholine. Can be. These monomers (iv) may be used alone or in combination of two or more.
  • the weight ratio of the monomer (iv) to the polymerizable component a is not particularly limited, but is preferably 20% by weight or less.
  • the amount of the monomer (iv) in the polymerizable component a is 20% by weight or less, the bending resistance tends to be improved.
  • the upper limit of the weight ratio of the monomer (iv) is preferably 10% by weight, more preferably 5% by weight, particularly preferably 3% by weight, and most preferably 2% by weight.
  • the lower limit of the monomer (iv) is preferably 0% by weight.
  • the polymerizable component a may include a monomer (II) other than the monomer (I).
  • the monomer (II) is not limited as long as it is a monomer copolymerizable with the monomer (I), but is not limited to methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth).
  • These monomers (II) may be used alone or in combination of two or more.
  • monomers (II) styrene, ethyl acrylate, n-butyl acrylate and 2-ethylhexyl acrylate are preferred.
  • the weight ratio of the monomer (II) to the polymerizable component a is not particularly limited, but is preferably 40% by weight or less.
  • the upper limit of the weight ratio of the monomer (II) is more preferably 30% by weight, further preferably 20% by weight, particularly preferably 10% by weight, and most preferably 5% by weight.
  • the lower limit of the weight ratio of the monomer (II) is preferably 0% by weight.
  • the polymerizable component a may include a crosslinking agent.
  • the crosslinking agent is not particularly limited, and examples thereof include aromatic divinyl compounds such as divinylbenzene; ethylene glycol di (meth) acrylate, PEG # 200 di (meth) acrylate, and pentaerythritol tri (meth) acrylate. Examples thereof include polyfunctional (meth) acrylate compounds. These crosslinking agents may be used alone or in combination of two or more.
  • the crosslinking agent may be omitted, but the content thereof is not particularly limited, and is preferably 20 parts by weight or less based on 100 parts by weight of the polymerizable component a.
  • the upper limit of the content of the crosslinking agent is more preferably 10 parts by weight, further preferably 5 parts by weight, particularly preferably 2 parts by weight, and most preferably 1 part by weight.
  • the lower limit of the content of the crosslinking agent is preferably 0 parts by weight.
  • the method for producing the polymer component A is not particularly limited, and the polymer component A can be produced by a general method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method.
  • the initiator used in the production of the polymer component A is not particularly limited, and a common initiator used in polymerizing a polymer can be used.
  • the neutralized product of the polymer of the polymerizable component a is adjusted to have a pH of 5 in the dispersion containing the polymer of the polymerizable component a. This is obtained when the value is set to 1313.
  • a pH adjuster described later can be used.
  • the pH of the dispersion containing the polymer of the polymerizable component a was measured at 25 ° C. using a pH meter (F-51, manufactured by Horiba, Ltd.).
  • the neutralized product of the polymer of the polymerizable component a may be a partially neutralized product or a completely neutralized product. From the viewpoint of achieving the effects of the present invention, it is preferable that the neutralized product of the polymer of the polymerizable component a is a partially neutralized product.
  • the degree of neutralization of the polymer of the polymerizable component a is preferably 5 mol% or more and less than 100 mol%. When the degree of neutralization is within the above range, the dispersibility of the slurry tends to be improved.
  • the lower limit of the degree of neutralization of the polymer of the polymerizable component a is more preferably 50 mol%.
  • the upper limit of the degree of neutralization of the polymer of the polymerizable component a is more preferably 99 mol%, further preferably 90 mol%.
  • the degree of neutralization of the polymer of the polymerizable component a is 100 mol%.
  • the degree of neutralization of the polymer of the polymerizable component a in the neutralized product is calculated from the charged amount of the monomer having an acidic group such as a carboxyl group, a sulfonic acid group and a phosphoric acid group and the amount of the neutralizing agent used for the neutralization. Obtained by the following method.
  • Examples of the method for producing a neutralized product of the polymer of the polymerizable component a include the following methods 1) to 4). 1) A method in which a pH adjuster described below is added to a dispersion in which the polymer of the polymerizable component a is dispersed to adjust and neutralize the pH to obtain a neutralized product of the polymer of the polymerizable component a. 2) A method in which a dispersion in which the polymer of the polymerizable component a is dispersed is added to a pH adjuster described below to adjust and neutralize the pH to obtain a neutralized product of the polymer of the polymerizable component a.
  • the adjusted pH at 20 ° C. is preferably 5 to 13. When the pH is within this range, the dispersibility of the slurry tends to be improved.
  • the lower limit of the pH after the adjustment is more preferably 6.
  • the upper limit of the pH after the adjustment is more preferably 10.
  • the pH at 25 ° C. after the adjustment was measured using a pH meter (F-51, manufactured by Horiba, Ltd.).
  • the polymer component A is preferably a polymer of the polymerizable component a or a neutralized product thereof, and particularly preferably a neutralized product of the polymer of the polymerizable component a. .
  • the glass transition point (Tg) of the polymer component A is not particularly limited, but is preferably 50 ° C or higher from the viewpoint of rigidity and elasticity. When the glass transition point of the polymer component A is lower than 50 ° C., rigidity and elasticity may be reduced.
  • the lower limit of the glass transition point of the polymer component A is more preferably 70 ° C, further preferably 100 ° C, particularly preferably 120 ° C, and most preferably 140 ° C.
  • the upper limit of the glass transition point of the polymer component A is preferably 300 ° C, more preferably 250 ° C, and still more preferably 200 ° C.
  • the method for measuring the glass transition point (Tg) of the polymer component A is based on the method measured in the examples.
  • the polymer component A may be either water-soluble or water-insoluble, but is preferably water-soluble from the viewpoint of dispersibility of the negative electrode active material.
  • the solubility of the polymer component A at 25 ° C. is preferably 3 g or more per 100 mL of water.
  • the lower limit of the solubility of the polymer component A is more preferably 5 g, further preferably 50 g, particularly preferably 100 g, and most preferably 200 g.
  • the solubility of the polymer component A may have no upper limit, but is preferably 10,000 g, more preferably 5000 g, further preferably 1000 g, particularly preferably 500 g, and most preferably 300 g.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention may contain the polymer component B as long as the effects of the present invention are not impaired.
  • the polymer component B may be a polymer of the polymerizable component b containing the monomer (II) used in the polymer component A, and may be an isobutylene-based polymer such as polyisobutylene; polybutadiene, polyisoprene, Diene polymers such as styrene-butadiene copolymer (SBR); fluorine polymers such as vinylidene fluoride polymer (PVDF) and fluoroethylene-propylene copolymer; acrylic polymers; dimethylpolysiloxane Polysiloxane-based polymers; vinyl polymers such as polyvinyl acetate and polyvinyl stearate; styrene-based polymers such as styrene-vinyl chloride copolymer and
  • the weight ratio of the monomer (II) contained in the polymerizable component b is not particularly limited, but is preferably 50 to 79% by weight.
  • the upper limit of the weight ratio of the monomer (II) in the polymerizable component b is more preferably 75% by weight.
  • the lower limit of the weight ratio of the monomer (II) in the polymerizable component b is more preferably 60% by weight.
  • the weight ratio of the monomer (i) to the polymerizable component b is not particularly limited, but is preferably 21 to 35% by weight.
  • the upper limit of the weight ratio of the monomer (i) in the polymerizable component b is more preferably 30% by weight.
  • the lower limit of the weight ratio of the monomer (i) in the polymerizable component b is more preferably 23% by weight.
  • the weight ratio of the monomer (ii) to the polymerizable component b is not particularly limited, but is preferably 0 to 5% by weight. More preferably, it is 0 to 3% by weight.
  • the weight ratio of the monomer (iii) in the polymerizable component b is not particularly limited, but is preferably 0 to 10% by weight. More preferably, it is 0 to 5% by weight.
  • the weight ratio of the monomer (iv) to the polymerizable component b is not particularly limited, but is preferably 0 to 5% by weight. More preferably, it is 0 to 3% by weight.
  • the content of the crosslinking agent with respect to 100 parts by weight of the polymerizable component b is not particularly limited, but is preferably 0 to 1 part by weight, more preferably 0 to 0 part by weight. 0.5 parts by weight.
  • the property of the polymer component B is not particularly limited, and may be either water-soluble or non-water-soluble such as a granular material.
  • the average particle diameter of the polymer component B is not particularly limited, but is preferably 0.001 to 100 ⁇ m.
  • the upper limit of the average particle diameter of the polymer component B is more preferably 10 ⁇ m, further preferably 1 ⁇ m, and particularly preferably 0.8 ⁇ m.
  • the lower limit of the average particle diameter of the polymer component B is more preferably 0.01 ⁇ m, further preferably 0.05 ⁇ m, and particularly preferably 0.1 ⁇ m.
  • the measuring method of the average particle diameter of the high molecular component B is based on the method measured in an Example.
  • the polymer component B may be in the form of an emulsion of particulate matter dispersed in water.
  • the non-volatile concentration of the emulsion as an aqueous dispersion of the polymer component B is not particularly limited, but is preferably 1 to 80% by weight.
  • the upper limit of the nonvolatile concentration of the emulsion which is the aqueous dispersion of the polymer component B is more preferably 70% by weight, further preferably 60% by weight, particularly preferably 50% by weight, and most preferably 40% by weight.
  • the lower limit of the nonvolatile concentration of the emulsion which is an aqueous dispersion of the polymer component B is more preferably 10% by weight, further preferably 15% by weight, particularly preferably 20% by weight, and most preferably 30% by weight.
  • the “non-volatile content of the emulsion that is an aqueous dispersion of the polymer component B” refers to a residue obtained by heating the emulsion that is an aqueous dispersion of the polymer component B at 110 ° C. and having a constant weight. is there.
  • the content of the polymer component B is not particularly limited with respect to 100 parts by weight of the polymer component A, but is preferably 0 to 90 parts by weight. Parts, more preferably 0 to 50 parts by weight, further preferably 0 to 20 parts by weight, particularly preferably 0 to 10 parts by weight, and most preferably 0 to 5 parts by weight.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention may contain other components other than the above components as long as the effects of the present invention are not impaired.
  • the other components are not particularly limited, and include, for example, a surfactant, an antifoaming agent, a pH adjuster, a viscosity adjuster, a tackifier, a polymer crosslinking agent, a preservative, and an antioxidant.
  • the surfactant is not particularly limited, and nonionic surfactants such as polyoxyalkylene alkyl ether, polyoxyalkylene styrenated phenyl ether, and polyoxyalkylene alkylamine; anionic surfactant; cationic surfactant Activator; an amphoteric surfactant; and one or more kinds may be used in combination.
  • the content of the surfactant is not particularly limited with respect to 100 parts by weight of the polymer component A, but is preferably 0.1 to 10 parts by weight. Parts, more preferably 0.5 to 5 parts by weight, even more preferably 1 to 3 parts by weight.
  • antifoaming agent examples include a polysiloxane-based antifoaming agent, a mineral oil-based antifoaming agent, and a silica fine powder-based antifoaming agent, and one or more of them may be used in combination.
  • Examples of the pH adjuster include an organic acid; an inorganic acid; a hydroxide of an alkali (earth) metal such as sodium hydroxide and potassium hydroxide; ammonia; a carbonate; an amine compound. One or two or more of them may be used in combination.
  • viscosity modifier for example, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyacrylic acid, polyethylene glycol, polyethylene oxide, polyoxyethylene / polypropylene block polymer, polyalkylene glycol-based derivative, polyvinyl alcohol, ethylene-modified polyvinyl alcohol, polyvinyl pyrrolidone , Arabic gum, guar gum, xanthan gum, gelatin, corn starch, polyacrylamide, polyethyleneimine, polynaphthalene sulfonate, polycarboxylic acid-based copolymer, vinyl alcohol-based copolymer, vinylpyrrolidone-based copolymer, and the like, One type or two or more types may be used in combination.
  • tackifier examples include rosin resins such as rosin esters; terpene resins such as aromatic modified terpene resins; coumarone indene resins; polybutene resins; polyisoprene resins; Rubber-based latex; petroleum-based resin and the like, and one or more kinds may be used in combination.
  • crosslinking agent for polymers examples include carbodiimide resins such as polycarbodiimide resins; epoxy resins such as glycerol polyglycidyl ether; zirconium compounds such as zirconium carbonate; urea resins; isocyanate compounds; oxazoline compounds; Metal compound: a metal chelate compound such as an aluminum chelate compound and a titanium chelate compound, and one or more of them may be used in combination.
  • antioxidants examples include a phenolic antioxidant such as octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, and the like. You may.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention essentially contains the polymer component A and satisfies the following condition 1. By satisfying these conditions, the rigidity and elasticity of the polymer component A and the dispersibility of the negative electrode active material can be maintained, and the balance of the respective properties allows the polymer component A to have excellent binding properties to the negative electrode active material. It becomes a dispersant composition for a secondary battery negative electrode slurry.
  • the tensile elastic modulus of the molded film composed of the nonvolatile component of the dispersant composition for a secondary battery negative electrode slurry is 500 MPa or more.
  • the lower limit of the tensile modulus of the molded film composed of nonvolatile components of the dispersant composition for a secondary battery negative electrode slurry is preferably 750 MPa, more preferably 1000 MPa, further preferably 1500 MPa, particularly preferably 2000 MPa, and most preferably 2500 MPa.
  • the upper limit of the tensile modulus of the molded film composed of the nonvolatile component of the secondary battery negative electrode slurry dispersant composition is preferably 10,000 MPa, more preferably 8,000 MPa, further preferably 5000 MPa, particularly preferably 4000 MPa, and most preferably 3000 MPa. is there.
  • the measuring method of a tensile elastic modulus is based on the method measured in an Example.
  • the “non-volatile content of the secondary battery negative electrode slurry dispersant composition” in the present invention refers to the residual when the secondary battery negative electrode slurry dispersant composition is heated at 110 ° C. and the weight becomes constant. Things.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention is not particularly limited, but preferably satisfies the following condition 2 from the viewpoint of achieving the effects of the present application.
  • the non-volatile content of the dispersant composition for a secondary battery negative electrode slurry is immersed in a mixture of ethylene carbonate / diethyl carbonate at a volume ratio of 50/50, and left standing at 60 ° C. for one week.
  • the weight swelling ratio of nonvolatile components of the dispersant composition for a battery negative electrode slurry is 120% by weight or less.
  • the weight swelling ratio of the nonvolatile component of the secondary battery negative electrode slurry dispersant composition exceeds 120% by weight, the elasticity of the polymer component A decreases, and the binding property to the negative electrode active material decreases. May be.
  • the upper limit of the weight swelling ratio of the nonvolatile components of the secondary battery negative electrode slurry dispersant composition is more preferably 115% by weight, and further preferably 110% by weight.
  • the lower limit of the weight swelling ratio of the nonvolatile components of the secondary battery negative electrode slurry dispersant composition is preferably 100% by weight.
  • the evaluation method of the weight swelling ratio is based on the method evaluated in Examples.
  • the dispersant composition for a secondary battery negative electrode slurry of the present invention is not particularly limited, but from the viewpoint of achieving the effects of the present application, it is preferable that the following condition 3 is further satisfied.
  • the light transmittance at a wavelength of 670 nm of the aqueous dispersion having a nonvolatile content of 2.5% by weight of the dispersant composition for a secondary battery negative electrode slurry is 60% or more.
  • the transmittance when the transmittance is less than 60%, the rigidity of the polymer component A is reduced, and the binding property to the negative electrode active material may be reduced.
  • the upper limit of the light transmittance is preferably 100%.
  • the lower limit of the light transmittance is more preferably 65%, and still more preferably 70%.
  • the method for measuring the light transmittance at a wavelength of 670 nm of an aqueous dispersion having a nonvolatile content of 2.5% by weight of the dispersant composition for a secondary battery negative electrode slurry is based on the method measured in Examples.
  • the concentration of non-volatile components in the dispersant composition for a secondary battery negative electrode slurry in the secondary battery negative electrode slurry dispersant composition is not particularly limited, but is preferably 0.1 to 50% by weight. If the concentration of the non-volatile components is outside the above range, the required quantity increases and the handleability may decrease.
  • the upper limit of the nonvolatile content is more preferably 25% by weight, further preferably 20% by weight, particularly preferably 15% by weight, and most preferably 12.5% by weight.
  • the lower limit of the nonvolatile content is more preferably 1% by weight, further preferably 2.5% by weight, particularly preferably 5% by weight, and most preferably 8% by weight.
  • the viscosity at 25 ° C. of the aqueous dispersion having a nonvolatile content of 20% by weight of the dispersant composition for a secondary battery negative electrode slurry is not particularly limited, but is preferably from 1,000 to 20,000 mPa ⁇ s. If the viscosity of the aqueous dispersion having a nonvolatile content of 20% by weight at 25 ° C. is outside the above range, the dispersibility of the slurry for the secondary battery negative electrode may be reduced. The upper limit of the viscosity at 25 ° C.
  • aqueous dispersion having a nonvolatile concentration of 20% by weight is more preferably 10,000 mPa ⁇ s, further preferably 6,000 mPa ⁇ s, particularly preferably 5000 mPa ⁇ s, and most preferably 4000 mPa ⁇ s.
  • the method for measuring the viscosity of the aqueous dispersion having a nonvolatile content of 20% by weight of the dispersant composition for a secondary battery negative electrode slurry is based on the method measured in Examples.
  • the pH of the aqueous dispersion having a nonvolatile content of 20% by weight of the dispersant composition for a secondary battery negative electrode slurry is not particularly limited, but is preferably 6.0 to 8.5 from the viewpoint of achieving the effects of the present invention.
  • the upper limit of the pH of the aqueous dispersion having a nonvolatile content of 20% by weight is more preferably 8.0.
  • the lower limit of the pH of the aqueous dispersion having a nonvolatile content of 20% by weight is more preferably 6.5.
  • the pH of the aqueous dispersion having a nonvolatile content of 20% by weight of the dispersant composition for a secondary battery negative electrode slurry is measured by the method measured in the examples.
  • the Knoop hardness HK (0.01) (hereinafter sometimes simply referred to as Knoop hardness) when the non-volatile content of the dispersant composition for a secondary battery negative electrode slurry is pushed for 10 seconds at a load of 100 mN at 20 ° C. is a negative electrode active material. Is not particularly limited from the viewpoint of the follow-up property at the time of containing, but is preferably 100 or more. When the Knoop hardness is less than 100, the rigidity of the polymer component A is low, and the followability when the negative electrode active material is included may be reduced.
  • the Knoop hardness is more preferably 110 or more, further preferably 120 or more, and particularly preferably 130 or more.
  • the upper limit of the Knoop hardness is preferably 500.
  • the method for measuring the Knoop hardness of the non-volatile content of the dispersant composition for a secondary battery negative electrode slurry is based on the method measured in Examples.
  • the bending resistance in a mandrel test according to JIS K5600-5-1 of the nonvolatile content of the secondary battery negative electrode slurry dispersant composition is preferably 2 to 10 mm from the viewpoint of achieving the effects of the present invention.
  • the bending resistance of the nonvolatile component of the dispersant composition for a secondary battery negative electrode slurry is more preferably 2 to 8 mm, further preferably 2 to 6 mm, particularly preferably 2 to 5 mm, and most preferably 2 to 4 mm.
  • the method for measuring the bending resistance in the mandrel test according to JIS K5600-5-1 for the nonvolatile content of the dispersant composition for a secondary battery negative electrode slurry is based on the method measured in Examples.
  • the weight ratio of the polymer component A to the nonvolatile components of the dispersant composition for a secondary battery negative electrode slurry is preferably 50 to 100% by weight from the viewpoint of achieving the effects of the present invention. When the weight ratio of the polymer component A is less than 50% by weight, the binding property to the negative electrode active material may be poor.
  • the upper limit of the weight ratio of the polymer component A to the nonvolatile components of the dispersant composition for a secondary battery negative electrode slurry is more preferably 99.9% by weight, and further preferably 95% by weight.
  • the lower limit of the weight ratio of the polymer component A to the non-volatile content of the dispersant composition for a secondary battery negative electrode slurry is more preferably 70% by weight, further preferably 80% by weight, and particularly preferably 90% by weight. .
  • the production method is not particularly limited, and includes, for example, a method of mixing the polymer component A with the polymer component B and other components as appropriate.
  • the mixing is not particularly limited, and can be performed using an apparatus having a very simple mechanism such as a container and a stirring blade.
  • the slurry composition for a secondary battery negative electrode of the present invention is a composition essentially containing the above-mentioned secondary battery negative electrode slurry dispersant composition and a negative electrode active material.
  • a slurry obtained by applying the slurry composition for a secondary battery negative electrode to a current collector and drying it can be used as a negative electrode for a secondary battery and has excellent binding properties.
  • the negative electrode active material is an electrode active material for a negative electrode.
  • the negative electrode active material is not particularly limited.
  • carbon materials such as natural graphite, artificial graphite, expanded graphite, activated carbon, carbon fiber, coke, soft carbon, and hard carbon; silicon-based; Si; SiC, Si 3 N 4 , Si compounds such as Si 2 N 2 O and SiO x (0.5 ⁇ x ⁇ 1.5); metal oxides such as SnO, SnO 2 , CuO, and Li 4 Ti 5 O 12 ; Si—Al; Alloys such as Al-Zn, Si-Mg, Al-Ge, Si-Ge, Si-Ag, Zn-Sn, Ge-Ag, Ge-Sn, Ge-Sb, Ag-Sn, Ag-Ge, Sn-Sb A tin phosphate glass or the like, and one or more of these may be used in combination.
  • the content of the polymer component A in the slurry composition for a secondary battery negative electrode is not particularly limited, but is preferably 1 to 40 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the upper limit of the content of the polymer component A is more preferably 20 parts by weight, further preferably 10 parts by weight, particularly preferably 8 parts by weight, and most preferably 6 parts by weight.
  • the lower limit of the content of the polymer component A is more preferably 2 parts by weight, further preferably 3 parts by weight, particularly preferably 4 parts by weight, and most preferably 5 parts by weight.
  • the negative electrode active material contains Si and / or a Si compound among the above-mentioned negative electrode active materials from the viewpoint of the volume energy density of the secondary battery. Further, it is preferable that the negative electrode active material contains Si and / or a Si compound, because the dispersion stability of the slurry and the binding property of the negative electrode active material can be improved. Further, it is preferable that the Si compound contains SiO x (0.5 ⁇ x ⁇ 1.5) (hereinafter, sometimes referred to as SiO x ) from the viewpoint of the cycle characteristics of the secondary battery. Incidentally, SiO x is in the SiO 2 matrix of amorphous, in which Si is dispersed.
  • the above oxygen atom ratio x is determined by combining the amorphous SiO 2 and the Si dispersed therein, and it suffices that 0.5 ⁇ x ⁇ 1.5 is satisfied.
  • x 1, so the structural formula is represented by SiO.
  • the weight ratio of Si to the negative electrode active material is not particularly limited, but is preferably 3 to 100% by weight, more preferably 5 to 100% by weight, and further preferably 10 to 100% by weight. %, Particularly preferably 20 to 100% by weight, most preferably 30 to 100% by weight.
  • the weight ratio of the Si compound in the negative electrode active material is not particularly limited, but is (1) 3 to 100% by weight, (2) 5 to 100% by weight, (3) 10% by weight.
  • the negative electrode active material preferably contains Si and / or a Si compound, more preferably contains Si or a Si compound, and particularly preferably contains a Si compound.
  • the average particle diameter of the Si and / or Si compound particulate is not particularly limited, but is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably, from the viewpoint of cycle characteristics. It is 0.5 ⁇ m to 50 ⁇ m, more preferably 0.5 ⁇ m to 20 ⁇ m.
  • the Si and / or Si compound may be a coating of carbon.
  • the carbon coated with Si and / or the Si compound is not particularly limited, but carbon black such as furnace black, acetylene black, and Ketjen black; graphene; carbon nanofiber, single-walled carbon nanotube, multi-walled carbon nanotube, and the like.
  • the slurry composition for a secondary battery negative electrode of the present invention preferably contains a conductive additive from the viewpoint of cycle characteristics and output characteristics of the secondary battery.
  • the conductive auxiliary agent include, but are not particularly limited to, carbon black such as furnace black, acetylene black, and Ketjen black; graphene; carbon nanotubes such as carbon nanofibers, single-walled carbon nanotubes, and multi-walled carbon nanotubes; Metal fine particles such as tin, zinc, zinc oxide, nickel and manganese; composite metal fine particles such as indium tin oxide; and the like, or one or more of them may be used in combination.
  • the content of the conductive additive in the slurry composition for a secondary battery negative electrode is not particularly limited, but is preferably 1 to 15 parts by weight based on 100 parts by weight of the negative electrode active material. If the content of the conductive additive is less than 2 parts by weight, the output characteristics of the secondary battery may be low. On the other hand, if the content of the conductive additive is more than 15 parts by weight, the volume energy density of the secondary battery may decrease.
  • the upper limit of the content of the conductive additive is more preferably 10 parts by weight. On the other hand, the lower limit of the content of the conductive additive is preferably 3 parts by weight.
  • the secondary battery negative electrode slurry composition of the present invention preferably contains water from the viewpoint of dispersibility.
  • water include tap water, ion-exchanged water, distilled water, and the like.
  • the content of water is not particularly limited, but is preferably 50 to 300 parts by weight based on 100 parts by weight of the negative electrode active material. If the content of water is more than 300 parts by weight, the viscosity of the slurry composition for a secondary battery negative electrode may be insufficient. On the other hand, when the water content is less than 50 parts by weight, the coatability of the slurry composition for a secondary battery negative electrode may decrease.
  • the upper limit of the water content is more preferably 200 parts by weight.
  • the lower limit of the water content is more preferably 70 parts by weight.
  • the slurry composition for a secondary battery negative electrode may contain an organic solvent miscible with water such as alcohol.
  • the alcohol is not particularly limited, and includes, for example, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, glycerin, and the like. Isopropanol is preferred from the viewpoint of versatility.
  • the slurry composition for a secondary battery negative electrode of the present invention in addition to the components described above, a hydrotrope agent, a protective colloid agent, an antibacterial agent, a fungicide, a coloring agent, an antioxidant, a deodorant, a crosslinking agent, It may further contain a catalyst, an emulsion stabilizer, a chelating agent and the like.
  • the slurry composition for a secondary battery negative electrode of the present invention contains the above-described secondary battery negative electrode slurry dispersant composition, the dispersion stability of the negative electrode active material is excellent, and when producing a secondary battery negative electrode, Excellent coatability to current collector. Further, the obtained negative electrode for a secondary battery has excellent binding properties.
  • the nonvolatile component concentration of the slurry composition for a secondary battery negative electrode in the secondary battery negative electrode slurry composition is not particularly limited, but is preferably 30 to 70% by weight. If the non-volatile component concentration is out of the above range, handling properties may be reduced.
  • the upper limit of the nonvolatile content is more preferably 60% by weight.
  • the lower limit of the nonvolatile content is more preferably 40% by weight.
  • the “non-volatile content of the slurry composition for a secondary battery negative electrode” in the present invention is a residue when the slurry composition for a secondary battery negative electrode is heated at 110 ° C. to a constant weight.
  • the pH of the aqueous dispersion having a nonvolatile content of 40% by weight of the slurry composition for a secondary battery negative electrode is not particularly limited, but is preferably from 4.0 to 12.0 from the viewpoint of achieving the effects of the present invention. If the pH of the aqueous dispersion having a nonvolatile content of 40% by weight of the slurry composition for a secondary battery negative electrode is less than 4.0, corrosion may occur in the current collector. On the other hand, when the pH of the slurry composition for a secondary battery negative electrode is more than 12.0, the handling properties may be reduced.
  • the upper limit of the pH of the aqueous dispersion having a nonvolatile content of 40% by weight of the slurry composition for a secondary battery negative electrode is more preferably 10.0, further preferably 9.0, particularly preferably 8.0, and most preferably 7.0. 5
  • the lower limit of the pH of the aqueous dispersion having a nonvolatile content of 40% by weight of the secondary battery negative electrode slurry composition is more preferably 4.5, still more preferably 5.0, particularly preferably 5.5, and most preferably. 6.0.
  • the method of measuring the pH of the aqueous dispersion of the nonvolatile component concentration of 40% by weight of the slurry composition for a secondary battery negative electrode is based on the method measured in Examples.
  • the density of the nonvolatile components of the slurry composition for a secondary battery negative electrode is not particularly limited, but is preferably 0.1 to 3.0 g / cm 3 . If the density of the nonvolatile component of the slurry composition for a secondary battery negative electrode is more than 3.0 g / cm 3 , the output characteristics of the secondary battery may be reduced. On the other hand, when the density of the nonvolatile components of the slurry composition for a secondary battery negative electrode is less than 0.1 g / cm 3 , the volume energy density of the secondary battery may be low.
  • the upper limit of the density of the nonvolatile components of the slurry composition for a secondary battery negative electrode is more preferably 2.5 g / cm 3 , and still more preferably 2.0 g / cm 3 .
  • the lower limit of the nonvolatile content density of the slurry composition for a secondary battery negative electrode is more preferably 0.3 g / cm 3 , and further preferably 0.5 g / cm 3 .
  • the zeta potential of the aqueous dispersion having a nonvolatile content of 5% by weight of the slurry composition for a secondary battery negative electrode at the measurement temperature of 25 ° C. is not particularly limited, but is preferably ⁇ 10 to ⁇ 100 mV, and more preferably ⁇ 10 to ⁇ . 90 mV, more preferably -20 to -80 mV, particularly preferably -20 to -70 mV. If the zeta potential of the aqueous dispersion of the slurry composition for a secondary battery negative electrode having a nonvolatile content of 5% by weight is less than -100 mV, the handling property may be reduced.
  • the zeta potential of the aqueous dispersion having a nonvolatile content of 5% by weight of the slurry composition for a secondary battery negative electrode is more than ⁇ 10 mV, the dispersibility may not be sufficient.
  • the method for measuring the zeta potential of an aqueous dispersion of a 5% by weight nonvolatile content of the slurry composition for a secondary battery negative electrode is based on the method measured in Examples.
  • the method for producing the same is not particularly limited, and the respective components such as the secondary battery slurry dispersant composition, the negative electrode active material, the conductive auxiliary, and water are used.
  • a method of mixing is used. The mixing is not particularly limited, and can be performed using an apparatus having a very simple mechanism such as a container and a stirring blade.
  • the production method the components constituting the secondary battery negative electrode slurry dispersant composition separately water or water miscible organic solvent.
  • a step of dispersing may be included.
  • the amount of each component when separately dispersed in water or an organic solvent miscible with water depends on the content of each component of the slurry composition for a secondary battery negative electrode described above.
  • the negative electrode for a secondary battery of the present invention has a coating on a current collector, and the coating contains a nonvolatile component of the slurry composition for a secondary battery negative electrode.
  • the current collector is a material having electron conductivity and capable of supplying electricity to the negative electrode material.
  • the current collector is not particularly limited.
  • conductive materials such as Cu, Ni, C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, and Al
  • An alloy for example, stainless steel
  • Cu, C, Al, and stainless steel are preferable as the current collector from the viewpoint of high electric conductivity and good stability and oxidation resistance in the electrolytic solution, and further from the viewpoint of material cost.
  • Cu is preferred.
  • the shape of the current collector is not particularly limited, and for example, a foil-like substrate, a three-dimensional substrate, or the like can be used, and specifically, a rolled copper foil, an electrolytic copper foil, or the like is preferable.
  • the negative electrode for a secondary battery of the present invention has a coating on the current collector, the coating contains a nonvolatile component of the slurry composition for a secondary battery negative electrode including the dispersant composition for a secondary battery negative electrode slurry. Excellent in binding.
  • the coating on the current collector of the negative electrode for a secondary battery may be on one side or both sides of the current collector. Further, the coating on the current collector may include a primer layer, and the primer layer may include a conductive aid such as carbon black. In the case where the coating includes a primer layer, it is preferable that the primer layer be in contact with the current collector, and that the nonvolatile component of the slurry composition for a secondary battery negative electrode be in contact with the primer layer.
  • the thickness of the coating on the current collector in the negative electrode for a secondary battery is not particularly limited, but is preferably 1 to 500 ⁇ m. If the thickness of the film on the current collector is less than 1 ⁇ m, the battery performance may be deteriorated, which is not preferable. On the other hand, when the thickness of the coating on the current collector is more than 500 ⁇ m, handling properties may be reduced.
  • the upper limit of the thickness of the coating on the current collector is more preferably 200 ⁇ m, further preferably 100 ⁇ m, particularly preferably 75 ⁇ m, and most preferably 50 ⁇ m.
  • the lower limit of the thickness of the coating on the current collector is more preferably 10 ⁇ m, and further preferably 20 ⁇ m.
  • the method for producing the negative electrode for a secondary battery of the present invention is not particularly limited, and examples thereof include a method in which the slurry composition for a negative electrode for a secondary battery is coated on the current collector and dried.
  • the method for applying the secondary battery negative electrode slurry on the current collector is not particularly limited, and may be any method that can uniformly wet coat.
  • the method for drying the negative electrode for a secondary battery is not particularly limited, and examples thereof include methods such as hot-air drying, hot-air drying, vacuum drying, (far) infrared irradiation drying, and electron beam irradiation drying.
  • the drying temperature of the negative electrode for a secondary battery is not particularly limited, but is preferably from 10 to 300 ° C. If the drying temperature is higher than 300 ° C., the function of the negative electrode may decrease.
  • the upper limit of the drying temperature of the negative electrode for a secondary battery is more preferably 190 ° C, further preferably 180 ° C, particularly preferably 170 ° C, and most preferably 160 ° C.
  • the lower limit of the drying temperature of the negative electrode for a secondary battery is more preferably 30 ° C, further preferably 50 ° C, particularly preferably 80 ° C, and most preferably 90 ° C.
  • the secondary battery of the present invention is a secondary battery including the negative electrode for a secondary battery and the positive electrode for a secondary battery. First, each component constituting the secondary battery will be described in detail.
  • the positive electrode for a secondary battery has a coating on a current collector for the positive electrode of a secondary battery (hereinafter, sometimes referred to as a current collector for the positive electrode), and the coating is formed by the non-volatile content of the slurry composition for the positive electrode of the secondary battery. It is formed.
  • the slurry composition for a secondary battery positive electrode comprises a positive electrode active material, a conductive auxiliary for a secondary battery positive electrode (hereinafter sometimes referred to as a positive electrode conductive auxiliary), a polymer material such as PVDF, and water or an organic solvent. And a slurry.
  • the active material for the positive electrode is not particularly limited.
  • the conductive auxiliary agent for the positive electrode is not particularly limited, but the conductive auxiliary agent that can be used as a component of the slurry composition for a secondary battery negative electrode may be mentioned, and one or more of them may be used in combination.
  • the positive electrode current collector is not particularly limited as long as it is a material having electron conductivity and capable of conducting electricity to the positive electrode material, and is not particularly limited.
  • C, Ti, Cr, Mo, Ru, Rh, Ta, W, Conductive substances such as Os, Ir, Pt, Au, Al, and Ni, and alloys containing two or more of these conductive substances (for example, stainless steel) may be used.
  • the positive electrode current collector is preferably C, Al, Ni, stainless steel, or the like, and more preferably Al or the like from the viewpoint of material cost. .
  • the shape of the positive electrode current collector is not particularly limited, and for example, a foil-like base material, a three-dimensional base material, or the like can be used.
  • a primer layer may be previously formed on the surface of the current collector for the positive electrode, and the primer layer may include a conductive aid for the positive electrode such as carbon black, an organic resin such as an acrylic resin or a surfactant for assisting the formation of the primer layer. It may contain components and inorganic salts such as phosphates and silicates.
  • the method for producing the positive electrode for a secondary battery is not particularly limited, and examples thereof include a method in which a slurry composition for a positive electrode for a secondary battery is coated on a current collector for a positive electrode, and dried.
  • the method for applying the slurry composition for a secondary battery positive electrode to the current collector of the positive electrode is not particularly limited, and may be any method capable of uniformly wet coating.
  • the method for drying the positive electrode for a secondary battery is not particularly limited, and includes the same method as the method for drying the negative electrode for a secondary battery described above.
  • the drying temperature of the positive electrode for a secondary battery is not particularly limited, but is preferably from 10 to 300 ° C. When the drying temperature is higher than 300 ° C., the function of the positive electrode may decrease.
  • the upper limit of the drying temperature of the secondary battery positive electrode is more preferably 190 ° C, further preferably 180 ° C, particularly preferably 170 ° C, and most preferably 160 ° C.
  • the lower limit of the drying temperature of the positive electrode for a secondary battery is more preferably 30 ° C, further preferably 50 ° C, and particularly preferably 80 ° C.
  • the positive electrode film formed by applying and drying the secondary battery positive electrode slurry composition on the surface of the current collector may be formed on one side or both sides of the current collector.
  • the thickness of the positive electrode coating on one side formed by applying and drying the slurry composition for a secondary battery positive electrode on the surface of the current collector is not particularly limited, but is, for example, usually 1 to 500 ⁇ m, preferably 10 to 500 ⁇ m. It is 400 ⁇ m, more preferably 20 to 300 ⁇ m, particularly preferably 20 to 200 ⁇ m, and most preferably 20 to 150 ⁇ m. If the thickness of the positive electrode coating on one side is less than 1 ⁇ m, the battery performance may be deteriorated, which is not preferable. If the thickness of the positive electrode coating on one side exceeds 500 ⁇ m, the handling properties may be reduced.
  • the secondary battery of the present invention may include a separator as needed.
  • the separator is used in a secondary battery to prevent a short circuit between the positive electrode and the negative electrode.
  • the separator is not particularly limited, and examples thereof include a microporous membrane film-like separator and a nonwoven fabric-like separator. Further, one or both surfaces of the separator may be coated with an inorganic oxide containing an inorganic oxide filler having an insulating property, a polyvinylidene fluoride resin, a polyaramid resin, or the like.
  • the resin constituting the composition of the separator is not particularly limited.
  • polyolefin resins such as polyethylene, polypropylene, and polybutylene
  • polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • Polyamide resins such as nylon; polyamide imide resins; polyacetal resins; polystyrene resins; methacrylic resins; polyvinyl chloride resins; polycarbonate resins; polyphenylene sulfide resins, cellulose resins, and the like.
  • the secondary battery of the present invention may contain an electrolytic solution as needed.
  • the electrolyte is obtained by mixing an electrolyte and a solvent, and dissolving the electrolyte in the solvent.
  • the electrolyte is not particularly limited, for example, LiPF 6, LiAsF 6, LiBF 4, LiSbF 6, LiAlCl 4, LiClO 4, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 SOOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2) 2 NLi, and the like (C 2 F 5 SO 2) NLi.
  • the solvent used for the electrolyte is not particularly limited as long as it can dissolve the electrolyte, and examples thereof include water and an organic solvent.
  • the organic solvent include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); ⁇ -butyrolactone; Esters such as methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur compounds such as sulfolane and dimethyl sulfoxide; and a mixture of these solvents may be used.
  • carbonates are preferable because they have a high dielectric constant and are chemically stable in a wide potential flow region.
  • the secondary battery of the present invention includes the above-described negative electrode for a secondary battery and the positive electrode for a secondary battery, and further includes a separator and an electrolyte as needed.
  • the shape of the secondary battery is not particularly limited, and examples thereof include a coin type, a cylindrical type, a square type, and a sheet type.
  • the exterior material of the secondary battery is not particularly limited, and examples thereof include a metal case, a mold resin, and an aluminum laminated film.
  • the type of the secondary battery is not particularly limited, and is a lithium ion secondary battery such as a lithium ion battery, a lithium ion all-solid battery, and a lithium ion polymer battery; a sodium ion battery, a sodium ion all solid battery, a sodium ion polymer battery, and the like.
  • the secondary battery of the present invention can be used as a power source for various electric devices (including vehicles that use electricity).
  • electrical devices include notebook personal computers, tablets, smartphones, personal computer keyboards, personal computer displays, desktop personal computers, CRT monitors, personal computer racks, printers, personal computer communication peripheral devices such as integrated personal computers, mice, and hard disks; Machine, TV, refrigerator, freezer, air conditioner, iron, clothes dryer, window fan, transceiver, blower, ventilation fan, music recorder, music player, oven, range, toilet seat with washing function, hot air heater, car component, car navigation, pocketbook Lights, humidifiers, portable karaoke machines, ventilation fans, dryers, batteries, air purifiers, mobile phones, emergency lights, game machines, sphygmomanometers, coffee mills, coffee makers, kotatsu, copiers, disc changers, radios, sheds Bar, juicer, shredder, water purifier, lighting equipment, dehumidifier, dish dryer, rice cooker, stereo, stove, speaker, trouser press, vacuum cleaner,
  • the glass transition point of the polymer component A was measured using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, product number Q800). Regarding the polymer component A, the aqueous dispersion of the polymer component A was heated at 110 ° C. until the weight became constant, and the obtained residue was used as the polymer component A.
  • the particle size was measured using a zeta potential measurement system (ELSZ-1000, manufactured by Otsuka Electronics Co., Ltd.).
  • the dispersant composition for a secondary battery negative electrode slurry is applied on the surface of a polypropylene flat plate and heated in an oven at 110 ° C. until the weight becomes a constant weight. Got a minute.
  • the obtained non-volatile component was formed into a size of 70 mm in length, 10 mm in width, and 150 ⁇ m in film thickness to prepare a molded film composed of the non-volatile component of the composition for a secondary battery negative electrode slurry.
  • the tensile modulus of the formed molded film was measured using a tensile compression tester (TG-2kN, manufactured by Minebea) at a tensile speed of 100 mm / min.
  • the manufactured structure was subjected to a mandrel test in accordance with the procedure in accordance with JIS K5600-5-1, and the flex resistance in the mandrel test in accordance with JIS K5600-5-1 of the nonvolatile content of the dispersant composition for the secondary battery negative electrode slurry. was measured.
  • Defoaming agent The defoamers used in Examples and Comparative Examples are shown below.
  • Polysiloxane-based antifoaming agent dimethylpolysiloxane, viscosity 100 mPa ⁇ s
  • Silica fine powder type antifoaming agent Silica fine powder mineral oil type antifoaming agent hydrophobized with trimethylethoxysilane: Paraffinic mineral oil
  • the viscosity of the obtained aqueous dispersion of the polymer component A-1 was 15,000 mPa ⁇ s, the nonvolatile content of the aqueous dispersion of the polymer component A-1 was 25.6% by weight, and the polymer component A-1 was soluble in water.
  • the weight average molecular weight was 690,000 and the glass transition point was 122 ° C.
  • Production Example A-2 to Production Example A-15 In Production Examples A-2 to A-15, polymer components A were obtained in the same manner as in Production Example A-1, except that the raw materials were changed as shown in Tables 1 and 2 in Production Example A-1. The physical properties and the like were evaluated in the same manner as in Production Example A-1. The results are shown in Tables 1 and 2.
  • the viscosity of the obtained aqueous dispersion of the polymer component A-16 was 12000 mPa ⁇ s, the nonvolatile content of the aqueous dispersion of the polymer component A-16 was 21.3% by weight, and the polymer component A-16 was water-soluble. And the weight average molecular weight was 550,000 and the glass transition point was 122 ° C.
  • Production Examples A-17 and A-18 In Production Examples A-17 and A-18, polymer components A were obtained in the same manner as in Production Example A-16, except that the raw materials were changed as shown in Table 2 in Production Example A-16. Physical properties and the like were evaluated in the same manner as in Production Example A-16. Table 2 shows the results.
  • Polymer component B Specific production methods for the polymer component B and the polymer component B-1 used in the examples and comparative examples are shown below.
  • the emulsion as an aqueous dispersion of the obtained polymer particles B-1 had a viscosity of 72 mPa ⁇ s, a zeta potential of ⁇ 34 mV, a non-volatile content of the emulsion of 40.4% by weight, and a polymer component B-1.
  • Polymer components B-2 and B-3 Polymer components B-2 and B-3: Polymer component B-2: polyvinylidene fluoride, non-volatile content: 30.0% by weight, average particle size: 258 nm
  • Polymer component B-3 styrene butadiene emulsion, nonvolatile concentration of emulsion: 40.0% by weight, average particle size: 245 nm
  • the obtained dispersant composition for a secondary battery negative electrode slurry had a nonvolatile content of 20.0% by weight, a pH of 6.9, a viscosity of 5200 mPa ⁇ s, and a Knoop hardness HK of a nonvolatile content of the secondary battery negative electrode slurry dispersant composition.
  • the bending resistance is 6 mm
  • the tensile modulus of the molded film made of the nonvolatile component of the dispersant composition for a secondary battery negative electrode slurry is 820 MPa
  • the weight swelling factor is 102 wt%
  • the nonvolatile component concentration is 2.5 wt%.
  • the light transmittance of the aqueous dispersion at a wavelength of 670 nm was 99.8%.
  • the total ratio of the atomic weights of all oxygen atoms to the molecular weights of pyromellitic anhydride and 1,4-phenylenediamine is 0.44 and 0, respectively, and the molecular weights of pyromellitic anhydride and 1,4-phenylenediamine Were 0 and 0.26, respectively, of the total atomic weight of all the nitrogen atoms.
  • the resulting dispersant composition for a secondary battery negative electrode slurry had a nonvolatile content of 30.0% by weight, a viscosity of 17000 mPa ⁇ s, and a Knoop hardness HK of 310 for the nonvolatile content of the secondary battery negative electrode slurry dispersant composition.
  • the flexibility is 25 mm
  • the tensile elasticity of the molded film made of the nonvolatile component of the secondary battery negative electrode slurry dispersant composition is 2900 MPa
  • the weight swelling ratio is 122 wt%
  • the concentration of the nonvolatile component is 2.5 wt%.
  • the light transmittance at a wavelength of 670 nm was 65.4%.
  • the prepared secondary battery negative electrode slurry composition was allowed to stand in a 100 ml centrifuge tube at room temperature for 24 hours, and the weight of the sediment was measured.
  • the sediment based on the nonvolatile content of the secondary battery negative electrode slurry composition was 100% by weight.
  • Evaluation of the dispersibility stability was performed based on the calculated weight ratio of the sediment according to the following evaluation criteria.
  • the weight ratio of the sediment is 10% by weight or more and less than 20% by weight, and the dispersion stability is slightly excellent.
  • The weight ratio of the sediment is 20% by weight or more and less than 30% by weight, and the dispersion stability is slightly inferior.
  • X The weight ratio of the sediment is 30% by weight or more, and the dispersion stability is poor.
  • the slurry composition for a secondary battery negative electrode is applied to the surface of a current collector at 10 mg / cm 2 , and heated in an oven at 110 ° C. until the weight becomes a constant weight. A current collector covered with the film was obtained. The coating area of the coating on the obtained current collector surface was measured, and the applicability of the slurry composition for a secondary battery negative electrode was evaluated according to the following criteria. :: The coating area is 95% or more, the coating is not cracked, and the coating property is excellent. ⁇ : The coating area is less than 95%, the coating cracks, and the coating property is poor.
  • the slurry composition for a secondary battery negative electrode was applied to the surface of the current collector, heated in an oven at 110 ° C. until the weight became constant, and coated with a coating containing nonvolatile components of the slurry composition for a secondary battery negative electrode.
  • a current collector was obtained.
  • a scotch tape having a size of 4 cm ⁇ 3 cm is attached to the surface of the coating of the obtained current collector, and a load of 100 g / cm 2 is applied for 1 hour. Thereafter, a 180 ° peel test was performed at a speed of 10 cm / min (converted width: 1 mm), and the peel strength was measured.
  • the peel strength indices of the respective Examples and Comparative Examples were calculated. Further, from the calculated peel strength index, the binding evaluation was performed according to the following evaluation criteria.
  • the peel strength index is more than 100 and less than 150, and the binding property is slightly excellent.
  • Example 1 75 g of graphite and 25 g of SiO as a negative electrode active material, 5 g of acetylene black as a conductive auxiliary, 20 g of a dispersant composition 1 for a secondary battery negative electrode slurry as a dispersant, and 120 g of ion-exchanged water are uniformly mixed.
  • a slurry composition for a secondary battery negative electrode was obtained.
  • the obtained slurry composition for a secondary battery negative electrode had a nonvolatile content of 45.2% by weight, a viscosity of 3200 mPa ⁇ s, an average particle diameter of 16.8 ⁇ m, a pH of 7.1, and a zeta potential of ⁇ 30 mV.
  • the weight ratio of the sediment was 10% by weight or more and less than 20% by weight. Slightly better.
  • the slurry composition for a secondary battery negative electrode obtained above was applied to the surface of a copper foil having a thickness of 18 ⁇ m as a current collector and heated at 110 ° C. until the weight became constant in an oven.
  • a current collector covered with a film containing nonvolatile components of the slurry composition for use was obtained.
  • the coating area of the film on the surface of the obtained current collector was 95% or more, and the surface was free of cracks and excellent in applicability.
  • the peel strength index of the coating film was 130, and the binding property was slightly excellent.
  • the thickness of the film on the current collector surface was 34 ⁇ m.
  • Example 2 to 18 Comparative Examples 1 to 8
  • secondary battery negative electrode slurry compositions were obtained in the same manner as in Example 1 except that the raw materials were changed as shown in Tables 6 to 8, respectively. Was evaluated in the same manner as in Example 1. The results are shown in Tables 6 to 8.
  • the obtained slurry composition for a secondary battery negative electrode had a nonvolatile content of 45.4% by weight, a viscosity of 3800 mPa ⁇ s, an average particle diameter of 17.1 ⁇ m, a pH of 7.0, and a zeta potential of ⁇ 12 mV.
  • the sediment weight ratio was 20% by weight or more and less than 30% by weight. It was somewhat inferior.
  • the slurry composition for a secondary battery negative electrode obtained above was applied to the surface of a copper foil having a thickness of 18 ⁇ m as a current collector, and heated at 110 ° C. until the weight became constant in an oven.
  • the coating area of the film on the surface of the obtained current collector was 95% or more, and the surface was free of cracks and excellent in applicability.
  • the peel strength index of the coating film was 70, and the binding property was slightly inferior.
  • the thickness of the film on the current collector surface was 35 ⁇ m.
  • Table 9 shows the details of the raw materials used.
  • the dispersant compositions for the secondary battery negative electrode slurries of Examples 1 to 18 had a solubility parameter (SP) of 10 to 17 (cal / cm 3 ) 1/2 of monomer (I). ), And the polymer component A which is a neutralized product thereof and / or the polymer component A was satisfied, so that it was confirmed that the negative electrode active material had excellent binding properties because the above condition 1 was satisfied.
  • SP solubility parameter
  • the secondary battery negative electrode slurry composition including the secondary battery negative electrode slurry dispersant composition that satisfies the above condition 1 has excellent dispersion stability, excellent applicability, and excellent binding property. It has been confirmed that it can be manufactured.
  • Table 8 and Comparative Example 9 when the secondary battery negative electrode slurry dispersant composition does not satisfy the above condition 1 (Comparative Examples 1 to 8), it does not contain the polymer component A (Comparative Example 1). Example 9), the problem of the present application could not be solved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

負極活物質に対して結着性に優れる二次電池負極スラリー用分散剤組成物及びその用途を提供する。 ラジカル反応性炭素-炭素二重結合を1つ有する単量体(I)を含む重合性成分aの重合体である高分子成分Aを含み、前記単量体(I)の溶解度パラメーター(SP)が10~17(cal/cm1/2であり、下記条件1を満たす、二次電池負極スラリー用分散剤組成物。 条件1:二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa以上である。

Description

二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池
 本発明は、二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極及び、二次電池に関する。
 近年、電子機器において、充電により繰り返し使用が可能である、リチウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池等の二次電池が用いられている。二次電池は、携帯用電子機器やハイブリッド自動車、電気自動車などに用いるための電池として、急速に開発が進められている。特に、リチウムイオン二次電池は、特性の向上の為に様々な検討がなされている。
 リチウムイオン二次電池は、正極、負極、セパレーター及び非水電解質溶液を主な材料として、構成されている。正極は、正極活物質、溶媒を含有する正極用スラリーを集電体に塗布、乾燥して製造される。負極は、負極活物質、溶媒を含有する負極用スラリーを集電体に塗布、乾燥して製造される。セパレーターは、正極と負極を隔絶し電池の安全性を向上させることができる材料であり、例えば、ポリオレフィンの多孔質膜が優れた特性を有する。非水電解質溶液は、リチウム塩が溶解した非プロトン性極性溶媒であり、イオン伝導性を有する。
 二次電池材料においては、負極活物質として、炭素系材料やSi、Si化合物が挙げられ、近年ではリチウムイオンの収蔵量が多いSi及びSi化合物の開発が進められている。しかしながら、Si及びSi化合物は、リチウムイオンの吸蔵及び放出の際の体積変化が炭素系材料に比べ大きく、Si及びSi化合物が負極より剥落しやすい問題がある。
 Si及びSi化合物に適したバインダーとして、特許文献1には、ポリイミドが例示されている。また、特許文献2には、スチレン-ブタジエン共重合体ラテックスやアクリル重合体ラテックスが例示されている。
日本国特開2002-260637号公報 国際公開第2014/002883号
 しかし、特許文献1に記載のポリイミドや、特許文献2に記載のスチレン-ブタジエン共重合体ラテックスやアクリル重合体ラテックスでは、負極活物質に対しての結着性が不十分であることが確認された。
 本発明の目的は、負極活物質に対して結着性に優れる二次電池負極スラリー用分散剤組成物及びその用途を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の単量体を含む重合性成分の重合体である高分子成分を含み、かつ特定の条件を満たす二次電池負極スラリー用分散剤組成物であれば、負極活物質に対して結着性に優れることを見出し、本発明に到達した。
 すなわち本発明の二次電池負極スラリー用分散剤組成物は、ラジカル反応性炭素-炭素二重結合を1つ有する単量体(I)を含む重合性成分aの重合体である高分子成分Aを含み、前記単量体(I)の溶解度パラメーター(SP)が10~17(cal/cm1/2であり、下記条件1を満たす二次電池負極スラリー用分散剤組成物である。
条件1:二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa以上である。
 前記単量体(I)が、単量体(i)及び/又は単量体(ii)を含み、前記単量体(i)がカルボキシル基及び/又はその塩である基を有する単量体であり、前記単量体(ii)がカルボキシル基及び/又はその塩である基と反応する基を有する単量体であると好ましい。
 前記単量体(I)が、前記単量体(i)を含み、前記重合性成分aに占める前記単量体(i)の重量割合が20~90重量%であると好ましい。
 前記単量体(I)が、前記単量体(ii)を含み、前記重合性成分aに占める前記単量体(ii)の重量割合が3~40重量%であると好ましい。
 前記単量体(I)が、ニトリル系単量体(iii)をさらに含むと好ましい。
 前記重合性成分aに占める前記単量体(iii)の重量割合が5~45重量%であると好ましい。
 さらに下記条件2を満たすと好ましい。
条件2:二次電池負極スラリー用分散剤組成物の不揮発分を、体積比率が50/50のエチレンカーボネート/ジエチルカーボネートの混合物に浸漬し、60℃にて1週間静置した後の、二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率が120重量%以下である。
 さらに下記条件3を満たすと好ましい。
条件3:二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5重量%水分散液の、670nm波長の光透過率が、60%以上である。
 本発明の二次電池負極用スラリー組成物は、二次電池負極スラリー用分散剤組成物と、負極活物質とを含む、二次電池負極用スラリー組成物であって、前記二次電池負極スラリー用分散剤組成物が、ラジカル反応性炭素-炭素二重結合を1つ有する単量体(I)を含む重合性成分aの重合体及び/又はその中和物である高分子成分Aを含み、前記単量体(I)の溶解度パラメーター(SP)が10~17(cal/cm1/2であり、下記条件1を満たす、二次電池負極用スラリー組成物である。
条件1:前記二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa以上である。
 前記負極活物質が、Si及び/又はSi化合物を含むと好ましい。
 前記単量体(I)が、単量体(i)及び/又は単量体(ii)を含み、前記単量体(i)がカルボキシル基及び/又はその塩である基を有する単量体であり、前記単量体(ii)がカルボキシル基及び/又はその塩である基と反応する基を有する単量体であると好ましい。
 前記単量体(I)が、前記単量体(i)を含み、前記重合性成分aに占める前記単量体(i)の重量割合が20~90重量%であると好ましい。
 前記単量体(I)が、前記単量体(ii)を含み、前記重合性成分aに占める前記単量体(ii)の重量割合が3~40重量%であると好ましい。
 前記単量体(I)が、ニトリル系単量体(iii)をさらに含むと好ましい。
 前記重合性成分aに占める前記単量体(iii)の重量割合が5~45重量%であると好ましい。
 さらに下記条件2を満たすと好ましい。
条件2:前記二次電池負極スラリー用分散剤組成物の不揮発分を、体積比率が50/50のエチレンカーボネート/ジエチルカーボネートの混合物に浸漬し、60℃にて1週間静置した後の、前記二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率が120重量%以下である。
 さらに下記条件3を満たすと好ましい。
条件3:前記二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5重量%水分散液の、670nm波長の光透過率が、60%以上である。
 本発明の二次電池負極は、集電体上に被膜を有する二次電池用負極であって、前記被膜が、上記の二次電池負極用スラリー組成物の不揮発分を含む、二次電池用負極である。
 本発明の二次電池は、上記の二次電池用負極を含む、二次電池である。
 本発明の二次電池負極スラリー用分散剤組成物は、負極活物質に対して結着性に優れる。
 本発明の二次電池負極用スラリー組成物は、分散安定性及び塗布性に優れる。
 本発明の二次電池用負極は、上記二次電池負極スラリー用分散剤組成物を含んでいるので、結着性に優れる。
 本発明の二次電池負極スラリー用分散剤組成物は、高分子成分Aを含む。まず、二次電池負極スラリー用分散剤組成物を構成する成分について詳しく説明する。
〔高分子成分A〕
 高分子成分A(以下、成分Aということがある)は、重合性成分aを重合して得られる重合体及び/又はその中和物である。重合性成分aは、ラジカル反応性炭素-炭素二重結合を1つ有する単量体を含み、ラジカル反応性炭素-炭素二重結合を2つ以上有する架橋剤を含むことがある成分である。単量体、架橋剤は共に付加反応が可能な成分であり、架橋剤は重合体に橋架け構造を導入することができる成分である。
 重合性成分aは、溶解度パラメーター(SP)が10~17(cal/cm1/2であり、ラジカル反応性炭素-炭素二重結合を1つ有する単量体(I)(以下、単量体(I)ということがある)を必須に含むものである。このような重合性成分aの重合体及び/又はその中和物である高分子成分Aは、構成する重合体の分子構造から、剛性、弾性、負極活物質の分散性を持つ事ができる。
 単量体(I)の溶解度パラメーター(SP)は、10~17(cal/cm1/2である。単量体(I)の溶解度パラメーター(SP)が上記範囲外であると、高分子成分Aの剛性、弾性、負極活物質の分散性が低下する。単量体(I)の溶解度パラメーター(SP)の上限は好ましくは16(cal/cm1/2、より好ましくは15(cal/cm1/2、さらに好ましくは14(cal/cm1/2である。一方、単量体(I)の溶解度パラメーター(SP)の下限は好ましくは10.5(cal/cm1/2、より好ましくは11(cal/cm1/2、さらにこのましくは11.5(cal/cm1/2である。
 なお、本願でいう溶解度パラメーター(SP)は、分子引力定数法により算出される値である。
 重合体成分aに占める単量体(I)の重量割合は、特に限定はないが、本願効果を奏する観点から、60~100重量%であると好ましい。単量体(I)の重量割合が60重量%未満であると、高分子成分Aの剛性、弾性、負極活物質の分散性が低下することがある。単量体(I)の重量割合は、(1)70~100重量%、(2)80~100重量%、(3)85~100重量%、(4)90~100重量%、(5)95~100重量%の順で好ましい(括弧内の数字が大きくなるにつれ好ましい)。
 単量体(I)は、酸素原子及び/又は窒素原子を有し、ラジカル反応性炭素-炭素二重結合を1つ有する単量体(以下、単に単量体(I-1)ということがある)を含むと、本願効果を奏する観点から好ましい。
 単量体(I-1)が酸素原子を有する場合、単量体(I-1)の分子量に占める単量体(I-1)の有する全ての酸素原子の原子量の合計の割合は、特に限定はないが、好ましくは0.1~0.6である。単量体(I-1)の有する全ての酸素原子の原子量の合計の割合が0.1未満であると、高分子成分Aの剛性、負極活物質の分散性が低下することがある。一方、単量体(I-1)の有する全ての酸素原子の原子量の合計の割合が0.6超であると、高分子成分Aの剛性、弾性が低下することがある。単量体(I-1)の分子量に占める単量体(I-1)の有する全ての酸素原子の原子量の合計の割合の上限は、より好ましくは0.5、さらに好ましくは0.45、特に好ましくは0.4、最も好ましく0.35はである。一方、単量体(I)の分子量に占める単量体(I-1)の有する全ての酸素原子の原子量の合計の割合の下限は、より好ましくは0.15、さらに好ましくは0.2、特に好ましくは0.25、最も好ましくは0.3である。
 単量体(I-1)が窒素原子を有する場合、単量体(I-1)の分子量に占める単量体(I-1)の有する全ての窒素原子の原子量の合計の割合は、特に限定はないが、好ましくは0.05~0.5である。単量体(I-1)の有する全ての窒素原子の原子量の合計の割合が0.05未満であると、高分子成分Aの弾性、負極活物質の分散性が低下することがある。一方、単量体(I-1)の有する全ての窒素原子の原子量の合計の割合が0.5超であると、高分子成分Aの剛性、弾性が低下することがある。単量体(I-1)の分子量に占める単量体(I-1)の有する全ての窒素原子の原子量の合計の割合の上限は、より好ましくは0.5、さらに好ましくは0.45、特に好ましくは0.35、最も好ましく0.3はである。一方、単量体(I-1)の分子量に占める単量体(I-1)の有する全ての窒素原子の原子量の合計の割合の下限は、より好ましくは0.1、さらに好ましくは0.15、特に好ましくは0.2、最も好ましくは0.25である。
 また、単量体(I-1)が酸素原子及び/又は窒素原子を有する場合、単量体(I-1)の分子量に占める単量体(I-1)の有する全ての酸素原子の原子量の合計の割合は上記範囲であると好ましく、単量体(I-1)の分子量に占める単量体(I-1)の有する全ての窒素原子の原子量の合計の割合は上記範囲であると好ましい。
 単量体(I)は、単量体(i)及び/又は単量体(ii)を含み、単量体(i)がカルボキシル基及び/又はその塩である基を有する単量体であり、単量体(ii)がカルボキシル基及び/又はその塩である基と反応する基を有する単量体であると、高分子成分Aの弾性、負極活物質の分散性を向上させることができるため、好ましい。
 単量体(i)として、カルボキシル基を有する単量体としては、遊離カルボキシル基を1分子当たり1個以上有するものであれば特に限定はないが、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸;マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等の不飽和ジカルボン酸;不飽和ジカルボン酸の無水物;マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等の不飽和ジカルボン酸モノエステル等を挙げることができる。カルボキシル基の塩である基を有する単量体としては、上記不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸モノエステル等の不飽和カルボン酸の塩等を挙げることができる。不飽和カルボン酸の塩としては、例えば、不飽和カルボン酸ナトリウム、不飽和カルボン酸カリウム等の不飽和カルボン酸アルカリ金属塩;不飽和カルボン酸カルシウム等の不飽和カルボン酸アルカリ土類金属塩;不飽和カルボン酸アンモニウム等を挙げることができる。カルボキシル基の塩である基を含有する単量体は、カルボキシル基を有する単量体があらかじめ塩基性組成物で中和されたものであってもよく、塩基性組成物としては後述するpH調整剤を使用してもよい。これらの単量体(i)は、1種又は2種以上を併用してもよい。
 上記単量体(i)の中でも、負極活物質の分散性の観点から、不飽和モノカルボン酸、不飽和ジカルボン酸が好ましく、アクリル酸、メタクリル酸、イタコン酸がより好ましい。カルボキシル基を有する単量体は、一部又は全部のカルボキシル基が重合時や重合後に中和されていてもよい。
 単量体(I)が単量体(i)を含む場合、重合性成分aに占める単量体(i)の重量割合は、特に限定はないが、好ましくは20~90重量%である。単量体(i)の重量割合が20重量%未満であると、負極活物質の分散性が低下することがある。一方、単量体(i)の重量割合が90重量%超であると、弾性が低下することがある。単量体(i)の重量割合の上限は、より好ましくは85重量%、さらに好ましくは75重量%、特に好ましくは65重量%、最も好ましくは60重量%である。一方、単量体(i)の重量割合の下限は、より好ましくは30重量%、さらに好ましくは40重量%、特に好ましくは50重量%、最も好ましくは55重量%である。
 単量体(ii)としては、特に限定はないが、水酸基、アミノ基、エポキシ基、イソシアネート基、アルデヒド基、アゾ基、ニトロ基、ニトロソ基、チオール基、スルホン酸基、リン酸基等を有する単量体を挙げることができる。
 単量体(ii)としては、例えば、N-メチロール(メタ)アクリルアミド、(メタ)アクリルアミド、ヒドロキシメチルアクリルアミド、ヒドロキシエチルアクリルアミド、アセトンアクリルアミド、N、N-ジメチル(メタ)アクリルアミド、N、N-ジエチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、2-アセトアミドアクリル酸、N-フェニル(メタ)アクリルアミド、N-ニトロフェニル(メタ)アクリルアミド、ダイアセトンアクリルアミド等の(メタ)アクリルアミド系単量体;アクロレイン等のアルデヒド系単量体;ビニルスルホン酸、N-t-ブチルアクリルアミドスルホン酸等のスルホン酸系単量体;ビニルホスホン酸等のリン酸系単量体;N,N-ジメチルアミノエチル(メタ)アクリレート;N,N-ジメチルアミノプロピル(メタ)アクリレート;ビニルグリシジルエーテル;プロペニルグリシジルエーテル;グリシジル(メタ)アクリレート;グリセリンモノ(メタ)アクリレート;4-ヒドロキシブチルアクリレートグリシジルエーテル;2-ヒドロキシエチル(メタ)アクリレート;2-ヒドロキシプロピル(メタ)アクリレート;2-ヒドロキシブチル(メタ)アクリレート;4-ヒドロキシブチル(メタ)アクリレート;2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート;p-ヒドロキシスチレン等を挙げることができる。なお、本願において(メタ)アクリルの表記は、アクリル又はメタクリルを意味する。また、本願において(メタ)アクリレートの表記は、アクリレート又はメタクリレートを意味する。これらの単量体(ii)は、1種又は2種以上を併用してもよい。
 上記単量体(ii)の中でも、本願効果を奏する観点から、N-メチロール(メタ)アクリルアミド、(メタ)アクリルアミド、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートが好ましく、N-メチロール(メタ)アクリルアミド、(メタ)アクリルアミドがより好ましい。
 単量体(I)が単量体(ii)を含む場合、重合性成分aに占める単量体(ii)の重量割合は、特に限定はないが、好ましくは3~40重量%である。単量体(ii)の重量割合が3重量%未満であると、剛性が低下することがある。一方、単量体(ii)の重量割合が40重量%超であると、弾性が低下することがある。単量体(ii)の重量割合の上限は、より好ましくは35重量%、さらに好ましくは30重量%、特に好ましくは20重量%、最も好ましくは17重量%である。一方、単量体(ii)の重量割合の下限は、より好ましくは5重量%、さらに好ましくは10重量%、特に好ましくは12重量%、最も好ましくは15重量%である。
 単量体(I)が、単量体(i)及び単量体(ii)を含むと、本願効果を奏する観点から、好ましい。
 単量体(I)が、単量体(i)及び単量体(ii)を含む場合、重合性成分aに占める単量体(i)の重量割合と重合性成分aに占める単量体(ii)の重量割合の比(単量体(i)/単量体(ii))は、特に限定はないが、好ましくは1~8である。単量体(i)と単量体(ii)の重量割合の比が1以上であると、負極活物質の分散性が向上する傾向がある。一方、単量体(i)と単量体(ii)の重量割合の比が8以下であると、高分子成分Aの弾性が向上する傾向がある。単量体(i)と単量体(ii)の重量割合の比の上限は、より好ましくは7、さらに好ましくは6、特に好ましくは5、最も好ましくは4.5である。一方、単量体(i)と単量体(ii)の重量割合の比の下限は、より好ましくは2、さらに好ましくは2.5、特に好ましくは3、最も好ましくは3.5である。
 単量体(I)が、さらにニトリル系単量体(iii)(以下、単に単量体(iii)ということがある)を含むと、高分子成分Aの剛性、弾性を向上させることができるため、好ましい。
 単量体(iii)としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリル等を挙げることができる。これらの単量体(iii)は、1種又は2種以上を併用してもよい。
 上記単量体(iii)の中でも、本願効果を奏する観点から、アクリロニトリル、メタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
 単量体(I)が単量体(iii)を含む場合、重合性成分aに占める単量体(iii)の重量割合は、特に限定はないが、好ましくは5~45重量%である。単量体(iii)の重量割合が5重量%未満であると、弾性が低下することがある。一方、単量体(iii)の重量割合が45重量%超であると、剛性が低下することがある。単量体(iii)の重量割合の上限は、より好ましくは40重量%、さらに好ましくは35重量%、特に好ましくは30重量%、最も好ましくは27重量%である。一方、単量体(iii)の重量割合の下限は、より好ましくは10重量%、さらに好ましくは15重量%、特に好ましくは20重量%、最も好ましくは23重量%である。
 単量体(I)が単量体(i)及び単量体(iii)を含む場合、重合性成分aに占める単量体(i)の重量割合と重合性成分aに占める単量体(iii)の重量割合の比(以下、単量体(i)/単量体(iii)ということがある)は、特に限定はないが、好ましくは1~8である。単量体(i)と単量体(ii)の重量割合の比が1以上であると、負極活物質の分散性が向上する傾向がある。一方、単量体(i)と単量体(iii)の重量割合の比が8以下であると、高分子成分Aの弾性が向上する傾向がある。単量体(i)と単量体(iii)の重量割合の比の上限は、より好ましくは7、さらに好ましくは6、特に好ましくは5、最も好ましくは4.5である。一方、単量体(i)と単量体(ii)の重量割合の比の下限は、より好ましくは2、さらに好ましくは2.5、特に好ましくは3、最も好ましくは3.5である。
 単量体(I)が単量体(ii)及び単量体(iii)を含む場合、重合性成分aに占める単量体(i)の重量割合と重合性成分aに占める単量体(iii)の重量割合の比(以下、単量体(ii)/単量体(iii)ということがある)は、特に限定はないが、好ましくは1~8である。単量体(i)と単量体(ii)の重量割合の比が1以上であると、負極活物質の分散性が向上する傾向がある。一方、単量体(ii)と単量体(iii)の重量割合の比が8以下であると、高分子成分Aの弾性が向上する傾向がある。単量体(ii)と単量体(iii)の重量割合の比の上限は、より好ましくは7、さらに好ましくは6、特に好ましくは5、最も好ましくは4.5である。一方、単量体(i)と単量体(ii)の重量割合の比の下限は、より好ましくは2、さらに好ましくは2.5、特に好ましくは3、最も好ましくは3.5である。
 また、単量体(I)が単量体(i)、単量体(ii)及び単量体(iii)を含む場合、単量体(i)/単量体(iii)が上記範囲であると好ましく、単量体(ii)/単量体(iii)が上記範囲であると好ましい。
 単量体(I)は単量体(i)、単量体(ii)、及び単量体(iii)以外の単量体(iv)を含んでもよい。単量体(iv)としては、例えば、塩化ビニル等のハロゲン化ビニル系単量体;塩化ビニリデン等のハロゲン化ビニリデン系単量体;4-アクリロイルモルホリン等のモルホリン系単量体等を挙げることができる。これら単量体(iv)は1種又は2種以上を併用してもよい。
 単量体(I)が単量体(iv)を含む場合、重合性成分aに占める単量体(iv)の重量割合は、特に限定はないが、好ましくは20重量%以下である。重合性成分aに占める単量体(iv)が20重量%以下であると、耐屈曲性が向上する傾向がある。単量体(iv)の重量割合の上限は、好ましくは10重量%、さらに好ましくは5重量%、特に好ましくは3重量%、最も好ましくは2重量%である。一方、単量体(iv)の下限は、好ましくは0重量%である。
 重合性成分aは、単量体(I)以外の単量体(II)を含んでも良い。単量体(II)は、前記単量体(I)と共重合可能な単量体であれば、限定はないが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アセチルアクリル酸メチル、2-アセチル-3-エトキシアクリル酸エチル、ベンジル(メタ)アクリレート、ジメチルアミノエチルアクリレート等の(メタ)アクリル酸エステル系単量体;スチレン、α-メチルスチレン、ビニルトルエン、t-ブチルスチレン、p-ニトロスチレン、クロロメチルスチレン等のスチレン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体;エチレン、プロピレン、イソブチレン等のエチレン不飽和モノオレフイン系単量体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系単量体;ビニルメチルケトン等のビニルケトン系単量体;N-ビニルカルバゾール、N-ビニルピロリドン等のN-ビニル系単量体;ビニルナフタリン塩等を挙げることができる。これら単量体(II)は、1種または2種以上併用してもよい。
 上記単量体(II)の中でも、スチレン、エチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。
 重合性成分aが単量体(II)を含む場合、重合性成分aに占める単量体(II)の重量割合は、特に限定はないが、好ましくは40重量%以下である。単量体(II)の重量割合の上限は、より好ましくは30重量%、さらに好ましくは20重量%、特に好ましくは10重量%、最も好ましくは5重量%である。単量体(II)の重量割合の下限は、好ましくは0重量%である。
 重合性成分aは、上述のとおり、架橋剤を含んでいてもよい。架橋剤としては、特に限定はないが、例えば、ジビニルベンゼン等の芳香族ジビニル化合物;エチレングリコールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート等の多官能(メタ)アクリレート化合物等を挙げることができる。これらの架橋剤は、1種又は2種以上を併用してもよい。
 架橋剤はなくてもよいが、その含有量については特に限定はなく、重合性成分a100重量部に対して、20重量部以下であると好ましい。架橋剤の含有量の上限は、より好ましくは10重量部、さらに好ましくは5重量部、特に好ましくは2重量部、最も好ましくは1重量部である。一方、架橋剤の含有量の下限は、好ましくは0重量部である。
 高分子成分Aの製造方法としては、特に限定はなく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法等の一般的な方法で製造することができる。また、高分子成分Aの製造時に使用する開始剤としては特に限定はなく、重合体の重合の際に用いられる一般的な開始剤を用いる事ができる。
 高分子成分Aが、重合性成分aの重合体の中和物を含む場合、重合性成分aの重合体の中和物は、重合性成分aの重合体が含まれる分散液のpHを5~13とした際に得られるものである。pHを5~13とする際は、後述するpH調整剤を使用することができる。なお、重合性成分aの重合体が含まれる分散液のpHは、25℃においてpHメータ(堀場製作所社製、F-51)を用いて測定した。
 重合性成分aの重合体の中和物は、部分中和物でもよく、完全中和物であってもよい。本願効果を奏する点で、重合性成分aの重合体の中和物が部分中和物であると好ましい。
 重合性成分aの重合体の中和物が部分中和物である場合、重合性成分aの重合体の中和度は、5モル%以上100モル%未満であると好ましい。中和度が上記範囲内であると、スラリーの分散性が向上する傾向がある。重合性成分aの重合体の中和度の下限は、より好ましくは50モル%である。一方、重合性成分aの重合体の中和度の上限は、より好ましくは99モル%、さらに好ましくは90モル%である。
 重合性成分aの重合体の中和物が完全中和物である場合、重合性成分aの重合体の中和度は、100モル%である。なお、重合性成分aの重合体の中和物における中和度はカルボキシル基、スルホン酸基、リン酸基等の酸性基を有する単量体および中和に用いる中和剤の仕込み量から計算により算出する方法で得た。
 重合性成分aの重合体の中和物の製造方法としては、例えば、以下の1)~4)の方法を挙げることができる。
1)重合性成分aの重合体が分散した分散液に後述するpH調整剤を添加してpHを調整、中和して、重合性成分aの重合体の中和物を得る方法。
2)重合性成分aの重合体が分散した分散液を後述するpH調整剤に添加してpHを調整、中和して、重合性成分aの重合体の中和物を得る方法。
3)重合性成分aの重合体に後述するpH調整剤の溶液を添加してpHを調整、中和して、重合性成分aの重合体の中和物を得る方法。
4)重合性成分aの重合体を後述するpH調整剤の溶液に添加してpHを調整、中和して、重合性成分aの重合体の中和物を得る方法。
 重合性成分aの重合体の中和物の上記の製造方法において、調整後の20℃におけるpHは、好ましくは5~13である。pHがこの範囲であると、スラリーの分散性が向上する傾向がある。調整後のpHの下限としては、より好ましくは6である。一方、調整後のpHの上限としては、より好ましくは10である。なお、調整後の25℃におけるpHの測定は、pHメータ(堀場製作所社製、F-51)を用いて測定した。
 高分子成分Aとしては負極活物質の分散性との観点から、重合性成分aの重合体又はその中和物であると好ましく、重合性成分aの重合体の中和物であると特に好ましい。
 高分子成分Aのガラス転移点(Tg)は、特に限定はないが、剛性、弾性の観点から、好ましくは50℃以上である。高分子成分Aのガラス転移点が50℃未満であると、剛性、弾性が低下することがある。高分子成分Aのガラス転移点の下限は、より好ましくは70℃、さらに好ましくは100℃、特に好ましくは120℃、最も好ましくは140℃である。一方、高分子成分Aのガラス転移点の上限は、好ましくは300℃、より好ましくは250℃、さらに好ましくは200℃である。なお、高分子成分Aのガラス転移点(Tg)の測定方法は、実施例で測定される方法によるものである。
 高分子成分Aは、水溶性、又は非水溶性のいずれであってもよいが、負極活物質の分散性の観点から、水溶性であると好ましい。高分子成分Aが水溶性の場合、特に限定はないが、高分子成分Aの25℃における溶解度が水100mLに対して3g以上であると好ましい。高分子成分Aの溶解度が3g未満であると、剛性、弾性が低下することがある。高分子成分Aの溶解度の下限は、より好ましくは5g、さらに好ましくは50g、特に好ましくは100g、最も好ましくは200gである。一方、高分子成分Aの溶解度の上限はなくとも構わないが、好ましくは10000g、より好ましくは5000g、さらに好ましくは1000g、特に好ましくは500g、最も好ましくは300gである。
〔高分子成分B〕
 本発明の二次電池負極スラリー用分散剤組成物は、本願効果を阻害しない範囲で、高分子成分Bを含んでも良い。高分子成分Bは、高分子成分Aで用いられる上記単量体(II)を含む、重合性成分bの重合体であってもよく、ポリイソブチレン等のイソブチレン系高分子;ポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体(SBR)等のジエン系高分子;フッ化ビニリデン系高分子(PVDF)、フッ化エチレン-プロピレン共重合体等のフッ素系高分子;アクリル系高分子;ジメチルポリシロキサン等のポリシロキサン系高分子;ポリ酢酸ビニル、ポリステアリン酸ビニル等のビニル系高分子;スチレン-塩化ビニル共重合体、スチレン-酢酸ビニル共重合体等のスチレン系高分子;ウレタン系高分子;フェノール系高分子;ポリエチレン、ポリプロピレン、ポリ-1-ブテン等のオレフィン系高分子;ケトン系高分子;アミド系高分子;ポリフェニレンオキサイド系高分子;エポキシ系高分子;天然ゴム;セルロース系高分子;ポリペプチド;蛋白質等でもよい。
 また、重合性成分bは、上記単量体(i)、単量体(ii)、単量体(iii)、及び単量体(iv)より選ばれる少なくとも1つを含んでもよく、重合性成分bは、上記架橋剤を含んでもよい。
 重合性成分bに含まれる単量体(II)の重量割合は、特に限定はないが、好ましくは50~79重量%である。重合性成分bに占める単量体(II)の重量割合の上限は、より好ましくは75重量%である。一方、重合性成分bに占める単量体(II)の重量割合の下限は、より好ましくは60重量%である。
 重合性成分bが、単量体(i)をさらに含む場合、重合性成分bに占める単量体(i)の重量割合は、特に限定はないが、好ましくは21~35重量%である。重合性成分bに占める単量体(i)の重量割合の上限は、より好ましくは30重量%である。一方、重合性成分bに占める単量体(i)の重量割合の下限は、より好ましくは23重量%である。
 重合性成分bが、単量体(ii)をさらに含む場合、重合性成分bに占める単量体(ii)の重量割合は、特に限定はないが、好ましくは0~5重量%であり、より好ましくは0~3重量%である。
 重合性成分bが、単量体(iii)をさらに含む場合、重合性成分bに占める単量体(iii)の重量割合は、特に限定はないが、好ましくは0~10重量%であり、より好ましくは0~5重量%である。
 重合性成分bが、単量体(iv)をさらに含む場合、重合性成分bに占める単量体(iv)の重量割合は、特に限定はないが、好ましくは0~5重量%であり、より好ましくは0~3重量%である。
 重合性成分bが、上記架橋剤をさらに含む場合、重合性成分b100重量部に対する架橋剤の含有量は、特に限定は無いが、好ましくは0~1重量部であり、より好ましくは0~0.5重量部である。
 高分子成分Bの性状は、特に限定はなく、水溶性、又は粒状物状等の非水溶性のいずれであってもよい。
 高分子成分Bが粒状物である場合、高分子成分Bの平均粒子径は、特に限定はないが、好ましくは0.001~100μmである。高分子成分Bの平均粒子径の上限は、より好ましくは10μm、さらに好ましくは1μm、特に好ましくは0.8μmである。一方、高分子成分Bの平均粒子径の下限は、より好ましくは0.01μm、さらに好ましくは0.05μm、特に好ましくは0.1μmである。なお、高分子成分Bの平均粒子径の測定方法は、実施例で測定される方法によるものである。
 高分子成分Bは、水に分散した粒状物のエマルションの状態であってもよい。粒状物のエマルションの状態の場合の、高分子成分Bの水分散液であるエマルションの不揮発分濃度は、特に限定はないが、好ましくは1~80重量%である。高分子成分Bの水分散液であるエマルションの不揮発分濃度の上限は、より好ましくは70重量%、さらに好ましくは60重量%、特に好ましくは50重量%、最も好ましくは40重量%である。一方、高分子成分Bの水分散液であるエマルションの不揮発分濃度の下限は、より好ましくは10重量%、さらに好ましくは15重量%、特に好ましくは20重量%、最も好ましくは30重量%である。なお、「高分子成分Bの水分散液であるエマルションの不揮発分」は、高分子成分Bの水分散液であるエマルションを110℃で加熱し、重量が恒量となった時の、残留物である。
 二次電池負極スラリー用分散剤組成物が高分子成分Bを含む場合、高分子成分Bの含有量は、高分子成分A100重量部に対して、特に限定はないが、好ましくは0~90重量部、より好ましくは0~50重量部、さらに好ましくは0~20重量部、特に好ましくは0~10重量部、最も好ましくは0~5重量部である。
〔その他成分〕
 本発明の二次電池負極スラリー用分散剤組成物は、本願効果を阻害しない範囲で、上記成分以外のその他成分を含んでもよい。その他成分としては、特に限定はないが、例えば、界面活性剤、消泡剤、pH調整剤、粘度調整剤、粘着付与剤、高分子用架橋剤、防腐剤、老化防止剤等が挙げられる。
 界面活性剤としては、特に限定はなく、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンスチレン化フェニルエーテル、ポリオキシアルキレンアルキルアミン等の非イオン性界面活性剤;陰イオン性界面活性剤;陽イオン性界面活性剤;両性界面活性剤が挙げられ、1種または2種以上を併用してもよい。
 二次電池負極スラリー用分散剤組成物が界面活性剤を含む場合、界面活性剤の含有量は、高分子成分A100重量部に対して、特に限定はないが、好ましくは0.1~10重量部、より好ましくは0.5~5重量部、さらに好ましくは1~3重量部である。
 消泡剤としては、例えば、ポリシロキサン系消泡剤、鉱物油系消泡剤、シリカ微粉末系消泡剤等が挙げられ、1種または2種以上を併用してもよい。
 pH調整剤としては、例えば、有機酸;無機酸;水酸化ナトリウム、水酸化カリウム等のアルカリ(土類)金属の水酸化物;アンモニア;炭酸塩;アミン化合物等が挙げられ、必要に応じて、1種または2種以上を併用してもよい。
 粘度調整剤としては、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリアクリル酸、ポリエチレングリコール、ポリエチレンオキシド、ポリオキシエチレン・ポリプロピレンブロックポリマー、ポリアルキレングリコール系誘導体、ポリビニルアルコール、エチレン変性ポリビニルアルコール、ポリビニルピロリドン、アラビアガム、グアーガム、キサンタンガム、ゼラチン、コーンスターチ、ポリアクリルアミド、ポリエチレンイミン、ポリナフタレンスルホン酸塩、ポリカルボン酸系共重合体、ビニルアルコール系共重合体、ビニルピロリドン系共重合体等が挙げられ、1種または2種以上を併用してもよい。
 粘着付与剤としては、例えば、ロジンエステル等のロジン系樹脂;芳香族変性テルペン樹脂等のテルペン系樹脂;クマロンインデン系樹脂;ポリブテン系樹脂;ポリイソプレン系樹脂;MMAグラフト天然ゴムラテックス等の天然ゴム系ラテックス;石油系樹脂等が挙げられ、1種または2種以上を併用してもよい。
 高分子用架橋剤としては、例えば、ポリカルボジイミド樹脂等のカルボジイミド系樹脂;グリセロールポリグリシジルエーテル等のエポキシ系樹脂;炭酸ジルコニウム等のジルコニウム系化合物;ウレア系樹脂;イソシアネート系化合物;オキサゾリン系化合物;アジリジン系化合物;アルミニウムキレート系化合物、チタンキレート系化合物等の金属キレート系化合物等が挙げられ、1種または2種以上を併用してもよい。
 老化防止剤としては、例えば、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のフェノール系酸化防止剤等が挙げられ、1種または2種以上を併用してもよい。
〔二次電池負極スラリー用分散剤組成物、その製造方法〕
 本発明の二次電池負極スラリー用分散剤組成物は、上記の高分子成分Aを必須に含み、下記条件1を満たすものである。これらの条件を満たすことで、高分子成分Aの剛性、弾性、負極活物質の分散性を保持することができ、かつ、各性能のバランスにより、負極活物質に対して結着性に優れた二次電池負極スラリー用分散剤組成物となる。
条件1:二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa以上である。
 条件1において、二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa未満であると、高分子成分Aの弾性が低く、さらに剛性も低く不十分となり、負極活物質に対して結着性に劣る。二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率の下限は、好ましくは750MPa、より好ましくは1000MPa、さらに好ましくは1500MPa、特に好ましくは2000MPa、最も好ましくは2500MPaである。一方、二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率の上限は、好ましくは10000MPa、より好ましくは8000MPa、さらに好ましくは5000MPa、特に好ましくは4000MPa、最も好ましくは3000MPaである。なお、引張弾性率の測定方法は、実施例で測定される方法によるものである。
 また、本発明における「二次電池負極スラリー用分散剤組成物の不揮発分」とは、二次電池負極スラリー用分散剤組成物を110℃で加熱し、重量が恒量となったときの、残留物である。
 本発明の二次電池負極スラリー用分散剤組成物は、特に限定はないが、本願効果を奏する観点から、さらに下記条件2を満たすと好ましい。
条件2:二次電池負極スラリー用分散剤組成物の不揮発分を、体積比率が50/50のエチレンカーボネート/ジエチルカーボネートの混合物に浸漬し、60℃にて1週間静置した後の、二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率が120重量%以下である。
 条件2において、二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率が120重量%超となると、高分子成分Aの弾性が低下し、負極活物質に対して結着性が低下することがある。二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率の上限は、より好ましくは115重量%、さらに好ましくは110重量%である。一方、二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率の下限は、好ましくは100重量%である。なお、重量膨潤率の評価方法は、実施例で評価される方法によるものである。
 本発明の二次電池負極スラリー用分散剤組成物は、特に限定はないが、本願効果を奏する観点から、さらに下記条件3を満たすと好ましい。
条件3:前記二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5重量%水分散液の、670nm波長の光透過率が、60%以上である。
 条件3において、透過率が60%未満であると、高分子成分Aの剛性が低下し、負極活物質に対して結着性が低下することがある。光透過率の上限は、好ましくは100%である。一方、光透過率の下限は、より好ましくは65%、さらに好ましくは70%である。なお、二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5重量%水分散液の、670nm波長の光透過率の測定方法は、実施例で測定される方法によるものである。
 二次電池負極スラリー用分散剤組成物における二次電池負極スラリー用分散剤組成物の不揮発分濃度は、特に限定はないが、好ましくは0.1~50重量%である。不揮発分濃度が上記範囲外であると、必要とされる数量が増えハンドリング性が低下することがある。不揮発分濃度の上限は、より好ましくは25重量%、さらに好ましくは20重量%、特に好ましくは15重量%、最も好ましくは12.5重量%である。一方、不揮発分濃度の下限は、より好ましくは1重量%、さらに好ましくは2.5重量%、特に好ましくは5重量%、最も好ましくは8重量%である。
 二次電池負極スラリー用分散剤組成物の不揮発分濃度20重量%水分散液の25℃における粘度は、特に限定はないが、好ましくは1000~20000mPa・sである。不揮発分濃度20重量%水分散液の25℃における粘度が上記範囲外であると、二次電池負極用スラリーの分散性が低下することがある。不揮発分濃度20重量%水分散液の25℃における粘度の上限は、より好ましくは10000mPa・s、さらに好ましくは6000mPa・s、特に好ましくは5000mPa・s、最も好ましくは4000mPa・sである。なお、二次電池負極スラリー用分散剤組成物の不揮発分濃度20重量%水分散液の粘度の測定方法は、実施例で測定される方法によるものである。
 二次電池負極スラリー用分散剤組成物の不揮発分濃度20重量%水分散液のpHは、特に限定はないが、本願効果を奏する観点から、好ましくは6.0~8.5である。不揮発分濃度20重量%水分散液のpHの上限は、より好ましくは8.0である。一方、不揮発分濃度20重量%水分散液のpHの下限は、より好ましくは6.5である。なお、二次電池負極スラリー用分散剤組成物の不揮発分濃度20重量%水分散液のpHの測定は、実施例で測定される方法によるものである。
 二次電池負極スラリー用分散剤組成物の不揮発分の20℃、100mNの荷重で10秒間押し込み時のヌープ硬度HK(0.01)(以下、単にヌープ硬度ということがある)は、負極活物質を含んだ際の追従性の観点から、特に限定はないが、好ましくは100以上である。ヌープ硬度が100未満であると、高分子成分Aの剛性が低く、負極活物質を含んだ際に追従性が低下することがある。ヌープ硬度は、より好ましくは110以上、さらに好ましくは120以上、特に好ましくは130以上である。また、ヌープ硬度の上限は、好ましくは500である。なお、二次電池負極スラリー用分散剤組成物の不揮発分のヌープ硬度の測定方法は、実施例で測定される方法によるものである。
 二次電池負極スラリー用分散剤組成物の不揮発分のJIS K5600-5-1に準じたマンドレル試験における耐屈曲性は、本願効果を奏する観点から、好ましくは2~10mmであると好ましい。二次電池負極スラリー用分散剤組成物の不揮発分の耐屈曲性が上記範囲であると、二次電池の出力特性が向上する傾向がある。二次電池負極スラリー用分散剤組成物の不揮発分の耐屈曲性は、より好ましくは2~8mm、さらに好ましくは2~6mm、特に好ましくは2~5mm、最も好ましくは2~4mmである。
 二次電池負極スラリー用分散剤組成物の不揮発分のJIS K5600-5-1に準じたマンドレル試験における耐屈曲性の測定方法は、実施例で測定される方法によるものである。
 二次電池負極スラリー用分散剤組成物の不揮発分に占める高分子成分Aの重量割合は、本願効果を奏する点で、好ましくは50~100重量%である。高分子成分Aの重量割合が50重量%未満である場合、負極活物質に対して結着性に劣ることがある。二次電池負極スラリー用分散剤組成物の不揮発分に占める高分子成分Aの重量割合の上限は、より好ましくは99.9重量%、さらに好ましくは95重量%である。また、二次電池負極スラリー用分散剤組成物の不揮発分に占める高分子成分Aの重量割合の下限は、より好ましくは70重量%、さらに好ましくは80重量%、特に好ましくは90重量%である。
 本発明の二次電池負極スラリー用分散剤組成物において、その製造方法は、特に限定はなく、上記の高分子成分Aと、適宜、高分子成分B、その他成分を混合する方法等を挙げることができる。混合については、特に限定はなく、容器と攪拌翼といった極めて簡単な機構を備えた装置を用いて行うことができる。
 本発明の二次電池負極用スラリー組成物は、上記二次電池負極スラリー用分散剤組成物と、負極活物質を必須に含む組成物である。二次電池負極用スラリー組成物を集電体に塗布、乾燥したものは、二次電池用負極として使用でき、結着性に優れる。まず、二次電池負極用スラリー組成物に含まれる各成分を詳細に説明する。
〔負極活物質〕
 負極活物質は、負極用の電極活物質である。負極活物質としては、特に限定はないが、例えば、天然黒鉛、人造黒鉛、膨張黒鉛、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン等の炭素材料;シリコン系;Si;SiC、Si、SiO、SiO(0.5≦x≦1.5)等のSi化合物;SnO、SnO、CuO、LiTi12等の金属酸化物系;Si-Al、Al-Zn、Si-Mg、Al-Ge、Si-Ge、Si-Ag、Zn-Sn、Ge-Ag、Ge-Sn、Ge-Sb、Ag-Sn、Ag-Ge、Sn-Sb等の合金;リン酸スズガラス系等が挙げられ、1種または2種以上併用してもよい。
 二次電池負極用スラリー組成物における高分子成分Aの含有量は、特に限定はないが、負極活物質100重量部に対して、好ましくは1~40重量部である。高分子成分Aの含有量が、1重量部未満であると、負極活物質に対して結着性が不足することがある。一方、高分子成分Aの含有量が、40重量部超であると、二次電池の体積エネルギー密度が不足することがある。高分子成分Aの含有量の上限は、より好ましくは20重量部、さらに好ましくは10重量部、特に好ましくは8重量部、最も好ましくは6重量部である。一方、高分子成分Aの含有量の下限は、より好ましくは2重量部、さらに好ましくは3重量部、特に好ましくは4重量部、最も好ましくは5重量部である。
 負極活物質は、上記負極活物質の中でも、Si及び/又はSi化合物を含むと、二次電池の体積エネルギー密度の観点から、好ましい。さらに、負極活物質がSi及び/又はSi化合物を含むと、スラリーの分散安定性、及び負極活物質の結着性を向上させることができるため好ましい。また、Si化合物が、SiO(0.5≦x≦1.5)(以下、SiOということがある)を含むと、二次電池のサイクル特性の観点から、好ましい。
 なお、SiOは、非晶質のSiOマトリックス中に、Siが分散したものである。この非晶質のSiOと、その中に分散しているSiを合わせて、前記の酸素原子比xが決定され、0.5≦x≦1.5を満たせばよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の物質の場合、x=1であるので、構造式としてはSiOで表記される。
 負極活物質がSiを含む場合、負極活物質に占めるSiの重量割合は、特に限定はないが、好ましくは3~100重量%、より好ましくは5~100重量%、さらに好ましくは10~100重量%、特に好ましくは20~100重量%、最も好ましくは30~100重量%である。
 負極活物質がSi化合物を含む場合、負極活物質に占めるSi化合物の重量割合は、特に限定はないが、(1)3~100重量%、(2)5~100重量%、(3)10~100重量%、(4)25~100重量%、(5)40~100重量%、(6)50~100重量%、(7)60~100重量%、(8)70~100重量%の順で好ましい(括弧内の数字が大きくなるにつれ好ましい)。
 負極活物質としては、Si及び/又はSi化合物を含むと好ましく、Si又はSi化合物を含むとより好ましく、Si化合物を含むと特に好ましい。
 Si及び/又はSi化合物が粒状物である場合、Si及び/又はSi化合物の粒状物の平均粒子径は、特に限定されないが、サイクル特性の観点から、好ましくは0.5μm~100μm、より好ましくは0.5μm~50μm、さらに好ましくは0.5μm~20μmである。
 負極活物質が、Si及び/又はSi化合物を含む場合、Si及び/又はSi化合物が炭素による被覆物であってもよい。
 Si及び/又はSi化合物を被覆している炭素としては、特に限定はないが、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック;グラフェン;カーボンナノ繊維、単層カーボンナノチューブ、多層カーボンナノチューブ等のカーボンナノチューブ;天然黒鉛、人造黒鉛、膨張黒鉛、ソフトカーボン、ハードカーボン等の黒鉛が挙げられ、1種又は2種以上併用してもよい。
〔導電助剤〕
 本発明の二次電池負極用スラリー組成物は、二次電池のサイクル特性、出力特性の点から、導電助剤を含むと好ましい。導電助剤としては、特に限定はないが、例えば、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック;グラフェン;カーボンナノ繊維、単層カーボンナノチューブ、多層カーボンナノチューブ等のカーボンナノチューブ;銀、銅、錫、亜鉛、酸化亜鉛、ニッケル、マンガン等の金属微粒子;酸化インジウムスズなどの複合金属微粒子等が挙げられ、1種または2種以上併用してもよい。
 二次電池負極用スラリー組成物における導電助剤の含有量は、特に限定はないが、負極活物質100重量部に対して、好ましくは1~15重量部である。導電助剤の含有量が、2重量部未満であると、二次電池の出力特性が低いことがある。一方、導電助剤の含有量が、15重量部超であると、二次電池の体積エネルギー密度が低くなることがある。導電助剤の含有量の上限は、より好ましくは10重量部である。一方、導電助剤の含有量の下限は、好ましくは3重量部である。
〔水〕
 本発明の二次電池負極用スラリー組成物は、分散性の観点から、水を含有すると好ましい。水としては、水道水、イオン交換水、蒸留水等が挙げられる。
 水の含有量は、特に限定はないが、負極活物質を100重量部に対して、好ましくは50~300重量部である。水の含有量が300重量部超であると、二次電池負極用スラリー組成物の粘度が不足することがある。一方、水の含有量が50重量部未満であると、二次電池負極用スラリー組成物の塗工性が低下することがある。水の含有量の上限は、より好ましくは200重量部である。一方、水の含有量の下限は、より好ましくは70重量部である。
 また、二次電池負極用スラリー組成物は、アルコール等の水と混和可能な有機溶媒を含んでもよい。アルコールとしては、特に限定はないが、例えば、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、グリセンリン等があるが、汎用性の観点から、イソプロパノールが好ましい。
 本発明の二次電池負極用スラリー組成物は、上記で説明した成分以外に、ハイドロトロープ剤、保護コロイド剤、抗菌剤、防黴剤、着色剤、酸化防止剤、消臭剤、架橋剤、触媒、乳化安定剤、キレート剤等をさらに含有していてもよい。
〔二次電池負極用スラリー組成物、その製造方法〕
 本発明の二次電池負極用スラリー組成物は、上述した二次電池負極スラリー用分散剤組成物を含むため、負極活物質の分散安定性に優れ、二次電池用負極を作製する際に、集電体への塗工性に優れる。さらに、得られる二次電池用負極は結着性に優れる。
 二次電池負極用スラリー組成物における二次電池負極用スラリー組成物の不揮発分濃度は、特に限定はないが、好ましくは30~70重量%である。不揮発分濃度が上記範囲外であると、ハンドリング性が低下することがある。不揮発分濃度の上限は、より好ましくは60重量%である。一方、不揮発分濃度の下限は、より好ましくは40重量%である。
 なお、本発明における「二次電池負極用スラリー組成物の不揮発分」とは、二次電池負極用スラリー組成物を110℃で加熱し、重量が恒量となった時の、残留物である。
 二次電池負極用スラリー組成物の不揮発分濃度40重量%水分散液のpHは、特に限定はないが、本願効果を奏する観点から、好ましくは4.0~12.0である。二次電池負極用スラリー組成物の不揮発分濃度40重量%水分散液のpHが4.0未満であると、集電体に腐食が発生することがある。一方、二次電池負極用スラリー組成物のpHが12.0超であると、ハンドリング性が低下することがある。二次電池負極用スラリー組成物の不揮発分濃度40重量%水分散液のpHの上限は、より好ましくは10.0、さらに好ましくは9.0、特に好ましくは8.0、最も好ましくは7.5である。一方、二次電池負極用スラリー組成物の不揮発分濃度40重量%水分散液のpHの下限は、より好ましくは4.5、さらに好ましくは5.0、特に好ましくは5.5、最も好ましくは6.0である。二次電池負極用スラリー組成物の不揮発分濃度40重量%水分散液のpHの測定方法は、実施例で測定される方法によるものである。
 二次電池負極用スラリー組成物の不揮発分の密度は、特に限定はないが、好ましくは0.1~3.0g/cmである。二次電池負極用スラリー組成物の不揮発分の密度が3.0g/cm超であると、二次電池の出力特性が低くなることがある。一方、二次電池負極用スラリー組成物の不揮発分の密度が0.1g/cm未満であると、二次電池の体積エネルギー密度が低くなることがある。二次電池負極用スラリー組成物の不揮発分の密度の上限は、より好ましくは2.5g/cm、さらに好ましくは2.0g/cmである。一方、二次電池負極用スラリー組成物の不揮発分の密度の下限は、より好ましくは0.3g/cm、さらに好ましくは0.5g/cmである。
 測定温度25℃における、二次電池負極用スラリー組成物の不揮発分濃度5重量%水分散液のゼータ電位は、特に限定はないが、好ましくは-10~-100mV、より好ましくは-10~-90mV、さらに好ましくは-20~-80mV、特に好ましくは-20~-70mVである。二次電池負極用スラリー組成物の不揮発分濃度5重量%水分散液のゼータ電位が-100mV未満であると、ハンドリング性が低下することがある。一方、二次電池負極用スラリー組成物の不揮発分濃度5重量%水分散液のゼータ電位が-10mV超であると、分散性が十分ではないことがある。二次電池負極用スラリー組成物の不揮発分濃度5重量%水分散液のゼータ電位の測定方法は、実施例で測定される方法によるものである。
 本発明の二次電池負極用スラリー組成物において、その製造方法としては、特に限定はないが、上記二次電池スラリー用分散剤組成物、負極活物質、導電助剤、水等の各成分を混合する方法が挙げられる。
 混合については、特に限定はなく、容器と攪拌翼といった極めて簡単な機構を備えた装置を用いて行うことができる。
 また、本発明の二次電池負極用スラリー組成物におけて、その製造方法は、二次電池負極スラリー用分散剤組成物を構成する各成分を別々に水や水と混和可能な有機溶媒に分散させる工程を含んでも構わない。なお、別々に水や水と混和可能な有機溶媒に分散させる際の各成分の量は、前記した二次電池負極用スラリー組成物の各成分の含有量に従う。
 本発明の二次電池用負極は、集電体上に被膜を有し、被膜が上記二次電池負極用スラリー組成物の不揮発分を含むものである。まず、二次電池用負極を構成する各成分について詳しく説明する。
〔集電体〕
 集電体は、電子伝導性を有し負極材料に通電し得る材料である。集電体としては、特に限定はないが、例えば、Cu、Ni、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)等が挙げられる。
 上記集電体の中でも、電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、集電体としてはCu、C、Al、ステンレス鋼が好ましく、さらに材料コストの観点からCuが好ましい。集電体の形状には、特に限定はなく、例えば、箔状基材、三次元基材などを用いることができ、具体的には圧延銅箔、電解銅箔等が好ましい。
〔二次電池用負極、その製造方法〕
 本発明の二次電池用負極は、集電体上に被膜を有し、被膜が上記二次電池負極スラリー用分散剤組成物を含む二次電池負極用スラリー組成物の不揮発分を含むものであるから、結着性に優れる。
 二次電池用負極における集電体上の被膜は、集電体のどちらか片面にあってもよく、両面にあってもよい。また、集電体上の被膜は、プライマー層を含んでいてもよく、プライマー層はカーボンブラック等の導電助剤を含んでいてもよい。被膜がプライマー層を含む場合、プライマー層が集電体と接触し、プライマー層の上に二次電池負極用スラリー組成物の不揮発分が接触する構成となる被膜であると、好ましい。
 二次電池用負極における集電体上の被膜の厚みは、特に限定はないが、好ましくは1~500μmである。集電体上の被膜の厚みが、1μm未満の場合電池性能が悪くなり好ましくないことがある。一方、集電体上の被膜の厚みが500μm超の場合、ハンドリング性が低下することがある。集電体上の被膜の厚みの上限は、より好ましくは200μm、さらに好ましくは100μm、特に好ましくは75μm、最も好ましくは50μmである。一方、集電体上の被膜の厚みの下限は、より好ましくは10μm、さらに好ましくは20μmである。
 本発明の二次電池用負極において、その製造方法は、特に限定はないが、上記集電体上に、上記二次電池負極用スラリー組成物を塗工し、乾燥させる方法が挙げられる。
 集電体上に、二次電池負極用スラリーを塗工する方法としては、特に限定はなく、均一にウェットコーティングできる方法であればよい。
 二次電池用負極を乾燥させる方法については、特に限定はないが、例えば温風乾燥、熱風乾燥、真空乾燥、(遠)赤外線照射乾燥、電子線照射乾燥等の方法が挙げられる。
 二次電池用負極の乾燥温度は、特に限定はないが、好ましくは10~300℃である。乾燥温度が300℃超の場合、負極の機能が低下することがある。二次電池用負極の乾燥温度の上限は、より好ましくは190℃、さらに好ましくは180℃、特に好ましくは170℃、最も好ましくは160℃である。一方、二次電池用負極の乾燥温度の下限は、より好ましくは30℃、さらに好ましくは50℃、特に好ましくは80℃、最も好ましくは90℃である。
 本発明の二次電池は、上記二次電池用負極と、二次電池用正極とを含む二次電池である。まず、二次電池を構成する各成分について詳しく説明する。
〔二次電池用正極〕
 二次電池用正極は、二次電池正極用の集電体(以下、正極用集電体いうことがある)上に被膜を有し、被膜が二次電池正極用スラリー組成物の不揮発分により成形されてなるものである。二次電池正極用スラリー組成物は、正極用活物質、二次電池正極用の導電助剤(以下、正極用導電助剤ということがある)、PVDF等の高分子材料を、水や有機溶媒と混合し、スラリー状にしたものである。
 正極用活物質としては、特に限定はないが、例えば、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、リン酸コバルトリチウム(LiCoPO)、ピロリン酸鉄(LiFeP)、コバルト酸リチウム複合酸化物(LiCoO)、スピネル型マンガン酸リチウムコバルト酸リチウム複合酸化物(LiMn)、マンガン酸リチウム複合酸化物(LiMnO)、ニッケル酸リチウム複合酸化物(LiNiO)、ニオブ酸リチウム複合酸化物(LiNbO)、鉄酸リチウム複合酸化物(LiFeO)、マグネシウム酸リチウム複合酸化物(LiMgO)、カルシウム酸リチウム複合酸化物(LiCaO)、銅酸リチウム複合酸化物(LiCuO)、亜鉛酸リチウム複合酸化物(LiZnO)、モリブテン酸リチウム複合酸化物(LiMoO)、タンタル酸リチウム複合酸化物(LiTaO)、タングステン酸リチウム複合酸化物(LiWO)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi0.33Co0.33Mn0.33、LiNi0.8Co0.1Mn0.1)、酸化マンガンニッケル(LiNi0.5Mn1.5)、酸化マンガン(MnO)、リチウム過剰系ニッケル-コバルト-マンガン複合酸化物、水酸化ニッケル(Ni(OH))、バナジウム系酸化物、硫黄系酸化物、シリケート系酸化物等が挙げられ、1種または2種以上併用してもよい。
 正極用導電助剤は、特に限定はないが、二次電池負極用スラリー組成物の成分として用いることができる上記導電助剤が挙げられ、1種または2種以上併用してもよい。
 正極用集電体としては、電子伝導性を有し正極材料に通電し得る材料であればよく、特に限定はないが、例えば、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al、Ni等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、正極用集電体としてはC、Al、Ni、ステンレス鋼等が好ましく、さらに材料コストの観点からAl等が好ましい。正極用集電体の形状には、特に限定はなく、例えば、箔状基材、三次元基材などを用いることができる。正極用集電体表面上にはあらかじめプライマー層が形成されていてもよく、プライマー層に、カーボンブラック等の正極用導電助剤、プライマー層形成補助のためのアクリル樹脂や界面活性剤等の有機成分及びリン酸塩やケイ酸塩等の無機塩、を含んでいてもよい。
 二次電池用正極の製造方法は、特に限定はないが、正極用集電体上に、二次電池正極用スラリー組成物を塗工し、乾燥させる方法が挙げられる。
 二次電池正極用スラリー組成物を正極の集電体に塗工する方法としては、特に限定はなく、均一にウェットコーティングできる方法であればよい。
 二次電池用正極を乾燥させる方法については、特に限定はなく、上記で記した二次電池用負極の乾燥方法と同じ方法が挙げられる。
 二次電池用正極の乾燥温度は、特に限定はないが、好ましくは10~300℃である。乾燥温度が300℃超の場合、正極の機能が低下することがある。二次電池用正極の乾燥温度の上限は、より好ましくは190℃、さらに好ましくは180℃、特に好ましくは170℃、最も好ましくは160℃である。一方、二次電池用正極の乾燥温度の下限は、より好ましくは30℃、さらに好ましくは50℃、特に好ましくは80℃である。
 集電体表面に二次電池正極用スラリー組成物を塗布、乾燥して形成する正極被膜は、集電体のどちらか片面に形成させてよく、両面に形成させてもよい。
 集電体表面に二次電池正極用スラリー組成物を塗布、乾燥して形成された片面分の正極被膜の膜厚としては、特に限定はないが、例えば、通常1~500μm、好ましくは10~400μm、さらに好ましくは20~300μm、特に好ましくは20~200μm、最も好ましくは20~150μmである。片面分の正極被膜の膜厚が1μm未満の場合電池性能が悪くなり好ましくない場合がある。片面分の正極被膜の膜厚が500μm超の場合、ハンドリング性が低下することがある。
〔セパレーター〕
 本発明の二次電池は、必要に応じてセパレーターを含んでもよい。セパレーターは、二次電池において、正極と負極の間の短絡を防ぐために用いられるものである。
 セパレーターとしては、特に限定はないが、例えば、微多孔膜フィルム状のセパレーターや、不織布状のセパレーター等が挙げられる。また、セパレーターの片面もしくは両面が、絶縁性を有する無機酸化物フィラーを含む無機酸化物、ポリフッ化ビニリデン樹脂やポリアラミド樹脂等でコーティングされたものでもよい。
 セパレーターの組成を構成する樹脂としては、特に限定はないが、例えば、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ナイロン等のポリアミド系樹脂;ポリアミドイミド系樹脂;ポリアセタール系樹脂;ポリスチレン系樹脂;メタクリル系樹脂;ポリ塩化ビニル系樹脂;ポリカーボネート系樹脂;ポリフェニレンサルファイド系樹脂、セルロース系樹脂等が挙げられる。
〔電解液〕
 本発明の二次電池は、必要に応じて電解液を含んでもよい。電解液は電解質と溶媒とを混合し、溶媒に電解質を溶解させたものである。
 電解質としては、特に制限はないが、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFSOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。
 電解液に使用する溶媒としては、電解質を溶解できるものであれば特に限定はないが、水、有機溶媒が挙げられる。有機溶媒としては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ―ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの硫黄化合物類;が用いられ、またこれら溶媒の混合液を用いてもよい。中でも、誘電率が高く、広い電位流域で化学的安定であるのでカーボネート類が好ましい。
〔二次電池〕
 本発明の二次電池は、上記二次電池用負極と、二次電池用正極とを含むものであり、必要に応じて、さらにセパレーターと、電解液を含む。
 二次電池の形状は、特に限定はないが、例えば、コイン型、円筒型、角型、シート型等が挙げられる。
 二次電池の外装材料は、特に限定はないが、例えば、金属ケース、モールド樹脂、アルミラミネートフィルム等が挙げられる。
 二次電池の種類としては、特に限定はなく、リチウムイオン電池、リチウムイオン全固体電池、リチウムイオンポリマー電池等のリチウムイオン二次電池;ナトリウムイオン電池、ナトリウムイオン全固体電池、ナトリウムイオンポリマー電池等のナトリウムイオン二次電池;カリウムイオン電池、カリウムイオン全固体電池、カリウムイオンポリマー電池等のカリウムイオン二次電池;ニッケル水素電池、ニッケルカドミウム電池等のアルカリ二次電池;ナトリウム硫黄電池;レドックスフロー電池;空気電池等が挙げられる。
 本発明の二次電池は、様々な電気機器(電気を使用する乗り物を含む)の電源として利用することができる。
 電気機器としては、例えば、ノートパソコン、タブレット、スマートフォン、パソコンキーボード、パソコン用ディスプレイ、デスクトップ型パソコン、CRTモニター、パソコンラック、プリンター、一体型パソコン、マウス、ハードディスク等のパソコン通信周辺機器;エアコン、洗濯機、テレビ、冷蔵庫、冷凍庫、冷房機器、アイロン、衣類乾燥機、ウインドウファン、トランシーバー、送風機、換気扇、音楽レコーダー、音楽プレーヤー、オーブン、レンジ、洗浄機能付便座、温風ヒーター、カーコンポ、カーナビ、懐中電灯、加湿器、携帯カラオケ機、換気扇、乾燥機、乾電池、空気清浄器、携帯電話、非常用電灯、ゲーム機、血圧計、コーヒーミル、コーヒーメーカー、こたつ、コピー機、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、照明器具、除湿器、食器乾燥機、炊飯器、ステレオ、ストーブ、スピーカー、ズボンプレッサー、掃除機、体脂肪計、体重計、ヘルスメーター、ムービープレーヤー、電気カーペット、電気釜、炊飯器、電気かみそり、電気スタンド、電気ポット、電子ゲーム機、携帯ゲーム機、電子辞書、電子手帳、電子レンジ、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、散髪器具、電話機、時計、インターホン、エアサーキュレーター、電撃殺虫器、複写機、ホットプレート、トースター、ドライヤー、電動ドリル、給湯器、パネルヒーター、粉砕機、はんだごて、ビデオカメラ、ビデオデッキ、ファクシミリ、ファンヒーター、フードプロセッサー、布団乾燥機、ヘッドホン、電気ポット、ホットカーペット、マイク、マッサージ機、豆電球、ミキサー、ミシン、もちつき機、床暖房パネル、ランタン、リモコン、冷温庫、冷水器、冷凍ストッカー、冷風器、ワープロ、泡だて器、電子楽器、オートバイ、おもちゃ類、芝刈り機、うき等の家電機器;自転車、自動車、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、鉄道、船、飛行機、ドローン等の移動輸送機器;住宅用蓄電池、風力発電用蓄電池、水力発電用蓄電池、非常用蓄電池等の定置用蓄電機器;ボイラ、原動機、農作業機器、建設機器等の産業用機器等が挙げられる。
 以下に、本発明の実施例を、その比較例とともに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
〔ガラス転移点の測定〕
 高分子成分Aのガラス転移点を、動的粘弾性測定装置(ティ-・エイ・インスツルメント社製、品番Q800)を用いて測定した。高分子成分Aについては、高分子成分Aの水分散液を110℃で重量が恒量となるまで加熱し、得られた残留物を高分子成分Aとした。
〔重量平均分子量〕
 上記方法にて得られた高分子成分Aの濃度が0.2重量%濃度となるように、テトラヒドロフランと混合し、溶解させた後、GPC装置(東ソー社製、HLC-8220)を用いて、ゲルパーミエーションクロマトグラフィー(GPC)法にて、高分子成分Aの重量平均分子量を算出した。
〔粘度の測定〕
 二次電池負極スラリー用分散剤組成物の不揮発分濃度20重量%の水分散液、二次電池負極用スラリー組成物の不揮発分濃度40重量%の水分散液、高分子成分Aの水分散液、及び高分子成分Bの水分散液を各々作製し、作製した各水分散液の25℃における粘度を、B型粘度計(東京計器社製、BL型)を用いて測定した。
〔pHの測定〕
 二次電池負極スラリー用分散剤組成物の不揮発分濃度20重量%の水分散液及び二次電池負極用スラリー組成物の不揮発分濃度40重量%の水分散液の25℃におけるpHを、pHメータ(堀場製作所社製、F-51)を用いて測定した。
〔平均粒子径、ゼータ電位の測定〕
 粒径・ゼータ電位測定システム(大塚電子社製、ELSZ-1000)を用いて測定した。
〔引張弾性率の測定〕
 二次電池負極スラリー用分散剤組成物をポリプロピレン製平板の表面上に塗布し、オーブン中で重量が恒量となるまで110℃で加熱し、残留物である二次電池負極スラリー用組成物の不揮発分を得た。得られた不揮発分を縦70mm、横10mm、膜厚150μmのサイズに成形し、二次電池負極スラリー用組成物の不揮発分からなる成形膜を作製した。
 作製した成形膜の引張弾性率を、引張圧縮試験機(ミネベア社製、TG-2kN)を使用し、100mm/分の引張速度で測定した。
〔重量膨潤率の測定〕
 二次電池負極スラリー用分散剤組成物の不揮発分1gを精秤し、体積比率が50/50のエチレンカーボネート/ジエチルカーボネートの混合物に浸漬し、60℃にて1週間静置した。その後、不揮発分を引き上げ、表面の残液をキムワイプで拭いた後、重量を測定した。浸漬前の不揮発分の重量をG、浸漬後の不揮発分の重量をGとして、以下の計算式を用いて重量膨潤率を算出した。
重量膨潤率(重量%)=(G/G)×100
〔光透過率の測定〕
 紫外可視分光光度計(島津製作所製、UV-1800)を用いて、二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5%水分散液の670nmの波長の光透過率を測定した。
〔ヌープ硬度HK(0.01)の測定〕
 二次電池負極スラリー用分散剤組成物をオーブン中で重量が恒量となるまで110℃で加熱し、厚さ1mmの二次電池負極スラリー用分散剤組成物の不揮発分の薄膜を得た。得られた薄膜を、マイクロビッカース硬度計(島津製作所製HMV-1)に設置し、20℃、100mNの荷重で10秒間押し込み時のヌープ硬度HK(0.01)を、JIS Z2251に準拠した手順で、6箇所測定し、その平均値を算出した。
〔耐屈曲性の測定〕
 二次電池負極スラリー用分散剤組成物を20gと、SiO(一次粒子径4.9μm)を100gと、アセチレンブラックを5gと、イオン交換水120gを均一に混合して、混合物を得た。得られた混合物を膜厚18μmの銅箔に塗布し、オーブン中で重量が恒量となるまで110℃で加熱し、二次電池負極スラリー用分散剤組成物の不揮発分を含む、厚み40μmとなる被膜を有する構造物を作製した。作製した構造物をJIS K5600-5-1に準拠した手順でマンドレル試験を行い、二次電池負極スラリー用分散剤組成物の不揮発分のJIS K5600-5-1に準じたマンドレル試験における耐屈曲性の測定を行った。
〔消泡剤〕
 実施例および比較例で用いた消泡剤を以下に示す。
ポリシロキサン系消泡剤:ジメチルポリシロキサン、粘度100mPa・s
シリカ微粉末系消泡剤:トリメチルエトキシシランにより疎水化処理されたシリカ微粉末
鉱物油系消泡剤:パラフィン系鉱物油
〔負極活物質、導電助剤〕
 実施例および比較例で用いた負極活物質、及び導電助剤を以下に示す。
グラファイト:一次粒子径11.1μm
Si:一次粒子径5.1μm
SiO:一次粒子径4.9μm
アセチレンブラック:平均粒子径70.1nm
〔高分子成分A〕
 実施例および比較例で用いた高分子成分Aについて、それらの具体的な製造方法および物性を以下の表1、2の製造例A-1~A-15に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
〔製造例A-1〕
 まず、重合性成分aとして、65gのアクリル酸、5gのグリシジルメタクリレート、30gのアクリルアミドを準備した。上記で準備した重合性成分aと、250gのイオン交換水をホモジナイザーで混合撹拌し均一溶解させ、1000mlのセパラブルフラスコ中で、窒素気流下、80℃で3時間反応し、反応後にアンモニア25gを加えpHを6.8に調整、中和して、高分子成分A-1の水分散液を得た。
 得られた高分子成分A-1の水分散液の粘度は15000mPa・s、高分子成分A-1の水分散液の不揮発分濃度は25.6重量%、高分子成分A-1は水溶性であって、重量平均分子量が69万、ガラス転移点122℃であった。
〔製造例A-2~製造例A-15〕
 製造例A-2~A-15では、製造例A-1において、表1、2に示すように原料をそれぞれ変更する以外は、製造例A-1と同様に高分子成分Aをそれぞれ得て、物性等も製造例A-1と同様に評価した。その結果を表1、2に示す。
〔製造例A-16〕
 まず、重合性成分aとして、60gのアクリル酸ナトリウム、15gのアクリルアミド、25gのアクリロニトリルを準備した。上記で準備した重合性成分aと、250gのイオン交換水をホモジナイザーで混合撹拌し均一溶解させ、1000mlのセパラブルフラスコ中で、窒素気流下、80℃で3時間反応し、高分子成分A-16の水分散液を得た。
 得られた高分子成分A-16の水分散液の粘度は12000mPa・s、高分子成分A-16の水分散液の不揮発分濃度は21.3重量%、高分子成分A-16は水溶性であって、重量平均分子量が55万、ガラス転移点122℃であった。
〔製造例A-17、A-18〕
 製造例A-17、及びA-18では、製造例A-16において、表2に示すように原料をそれぞれ変更する以外は、製造例A-16と同様に高分子成分Aをそれぞれ得て、物性等も製造例A-16と同様に評価した。その結果を表2に示す。
〔高分子成分B〕
 実施例および比較例で用いた高分子成分Bの及び高分子成分B-1についての具体的な製造方法を以下に示す。
〔製造例B-1〕
 まず、重合性成分bとして、23gのアクリル酸および77gのn-ブチルアクリレート、乳化剤として、1.0gのラウリルベンゼンスルホン酸ソーダ塩、及び2gのPOE(30)ラウリルエーテルを準備した。
 上記で準備した重合性単量体bおよび乳化剤と、150gのイオン交換水とをホモジナイザーで混合攪拌し、500mlのセパラブルフラスコ中で窒素気流下、80℃で3時間反応してアクリル系高分子粒子B-1の水分散液であるエマルションを得た。
 得られた高分子粒子B-1の水分散液であるエマルションの粘度は72mPa・s、ゼータ電位-34mV、エマルションの不揮発分濃度は40.4重量%であり、また、高分子成分B-1は非水溶性であり、平均粒子径224nm、ガラス転移点-3℃であった。
〔高分子成分B-2、B-3〕
高分子成分B-2:ポリフッ化ビニリデン、不揮発分濃度30.0重量%、平均粒子径258nm
高分子成分B-3:スチレンブタジエンエマルション、エマルションの不揮発分濃度40.0重量%、平均粒子径245nm
〔二次電池負極スラリー用分散剤組成物〕
 実施例および比較例で用いた二次電池負極スラリー用分散剤組成物について、それらの具体的な製造方法および物性を以下の表3~5の製造例、製造比較例に示す。
〔製造例1〕
 高分子成分Aである高分子成分A-1を100g含むA-1の水分散液375gと、POE(12)ラウリルエーテル0.5gと、POE(3)ラウリルエーテル0.5g、ポリシロキサン系消泡剤0.01g、イオン交換水125gを均一に混合して、二次電池負極スラリー用分散剤組成物を得た。イオン交換水の量は、A-1の水分散液に含まれるイオン交換水と合わせて400gであった。
 得られた二次電池負極スラリー用分散剤組成物は、不揮発分濃度20.0重量%、pH6.9、粘度5200mPa・s、二次電池負極スラリー用分散剤組成物の不揮発分のヌープ硬度HKは202、耐屈曲性は6mm、二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率は820MPa、重量膨重率は102重量%、不揮発分濃度2.5重量%の水分散液の670nm波長の光透過率は99.8%であった。
〔製造例2~18、製造比較例1~8〕
 製造例2~18、及び製造比較例1~8は、表3~5に示すように原料をそれぞれ変更する以外は、製造例1と同様に二次電池負極スラリー用分散剤組成物をそれぞれ得て、物性等も製造例1と同様に評価した。その結果を表3~5に示す。
〔製造比較例9〕
 ピロメリット酸無水物を100gと、1,4-フェニレンジアミンを50gと、N-メチルピロリドン350gを均一に混合して、二次電池負極スラリー用分散剤組成物を得た。ピロメリット酸無水物、1,4-フェニレンジアミンの溶解度パラメーター(SP)は各々20.9(cal/cm1/2、19.6(cal/cm1/2であった。ピロメリット酸無水物、1,4-フェニレンジアミンの分子量に占める全ての酸素原子の原子量の合計の割合は各々0.44、0であり、ピロメリット酸無水物、1,4-フェニレンジアミンの分子量に占める全ての窒素原子の原子量の合計の割合は各々0、0.26であった。
 得られた二次電池負極スラリー用分散剤組成物は、不揮発分濃度30.0重量%、粘度17000mPa・s、二次電池負極スラリー用分散剤組成物の不揮発分のヌープ硬度HKは310、耐屈曲性は25mm、二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率は2900MPa、重量膨重率は122重量%、不揮発分濃度2.5重量%の水分散液の670nm波長の光透過率65.4%であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
〔分散安定性の評価〕
 作製した二次電池負極用スラリー組成物を100mlの遠沈管にとって室温で24時間静置した後の沈降物の重量を測定し、二次電池負極用スラリー組成物の不揮発分100重量%に対する沈降物の重量比(重量%)を算出した。分散性安定性の評価は、算出した沈降物の重量比の値より、以下の評価基準により行った。
 ◎:沈降物の重量比が10重量%未満で、分散安定性に優れる。
 ○:沈降物の重量比が10重量%以上20重量%未満で、分散安定性にやや優れる。
 △:沈降物の重量比が20重量%以上30重量%未満で、分散安定性にやや劣る。
 ×:沈降物の重量比が30重量%以上で、分散安定性に劣る。
〔塗布性の評価〕
 二次電池負極用スラリー組成物を集電体表面に10mg/cm塗布して、オーブン中で重量が恒量となるまで110℃で加熱し、二次電池負極用スラリー組成物の不揮発分を含む被膜で被覆された集電体を得た。得られた集電体表面における被膜の被覆面積を測定し、二次電池負極用スラリー組成物の塗布性の評価を以下の基準により行った。
 ○:被覆面積が95%以上であり、被膜のひび割れなく、塗布性に優れる。
 ×:被覆面積が95%未満であり、被膜にひび割れが発生し、塗布性に劣る。
〔結着性の評価〕
 二次電池負極用スラリー組成物を集電体表面に塗布し、オーブン中で重量が恒量となるまで110℃で加熱し、二次電池負極用スラリー組成物の不揮発分を含む被膜で被覆された集電体を得た。得られた集電体の被膜表面に4cm×3cmの大きさのスコッチテープを貼り付け、100g/cmの荷重を1時間負荷する。その後、10cm/分(換算巾1mm)の速度で180°剥離試験を行い、剥離強度を測定した。測定して得られた剥離強度の値のうち、比較例1の剥離強度を100として、各実施例、及び比較例の剥離強度指数を算出した。また、算出した剥離強度指数から、以下の評価基準により、結着性評価を行った。
 ◎:剥離強度指数が150以上で、結着性に優れる。
 ○:剥離強度指数が100超150未満で、結着性にやや優れる。
 △:剥離強度指数が70以上100以下で、結着性にやや劣る。
 ×:剥離強度指数が70未満で、結着性に劣る。
〔実施例1〕
 負極活物質としてグラファイトを75g及びSiOを25gと、導電助剤としてアセチレンブラックを5gと、分散剤である二次電池負極スラリー用分散剤組成物1を20gと、イオン交換水120gを均一に混合して、二次電池負極用スラリー組成物を得た。得られた二次電池負極用スラリー組成物は、不揮発分濃度45.2重量%、粘度3200mPa・s、平均粒子径16.8μm、pH7.1、ゼータ電位-30mVであった。
 この二次電池負極用スラリー組成物を用いて、二次電池負極用スラリー組成物の分散安定性を評価したところ、沈降物の重量比が10重量%以上20重量%未満であり、分散安定性にやや優れていた。
 上記で得られた二次電池負極用スラリー組成物を、集電体である膜厚18μmの銅箔表面に塗布し、オーブン中で重量が恒量となるまで110℃で加熱し、二次電池負極用スラリー組成物の不揮発分を含む被膜で被覆された集電体を得た。
 得られた集電体表面の被膜の被覆面積は95%以上であり、表面にひび割れがなく塗布性に優れていた。被膜の剥離強度指数は130で、結着性にやや優れていた。集電体表面の被膜の膜厚は34μmであった。
〔実施例2~18、比較例1~8〕
 実施例2~18及び比較例1~8では、表6~8に示すように原料をそれぞれ変更する以外は、実施例1と同様に二次電池負極用スラリー組成物をそれぞれ得て、物性等も実施例1と同様に評価した。その結果を表6~8に示す。
〔比較例9〕
 負極活物質としてグラファイトを75g及びSiOを25gと、導電助剤としてアセチレンブラックを5gと、分散剤として製造比較例9で得られた二次電池負極スラリー用分散剤組成物を13.4gと、N-メチルピロリドン120gを均一に混合して、二次電池負極用スラリー組成物を得た。得られた二次電池負極用スラリー組成物は、不揮発分濃度45.4重量%、粘度3800mPa・s、平均粒子径17.1μm、pH7.0、ゼータ電位-12mVであった。
 この二次電池負極用スラリー組成物を用いて、二次電池負極用スラリー組成物の分散安定性を評価したところ、沈降物の重量比が20重量%以上30重量%未満で、分散安定性にやや劣っていた。
 上記で得られた二次電池負極用スラリー組成物を、集電体である膜厚18μmの銅箔表面に塗布し、オーブン中で重量が恒量となるまで110℃で加熱し、その後、350℃で2時間さらに加熱して、二次電池負極用スラリー組成物の不揮発分を含む被膜で被覆された集電体を得た。
 得られた集電体表面の被膜の被覆面積は95%以上であり、表面にひび割れがなく塗布性に優れていた。被膜の剥離強度指数は70で、結着性にやや劣っていた。集電体表面の被膜の膜厚は35μmであった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 使用した原料の詳細を、表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表5から分かるように、実施例1~18の二次電池負極スラリー用分散剤組成物は、溶解度パラメーター(SP)が10~17(cal/cm1/2である単量体(I)を含む重合性成分aの重合体及び/又はその中和物である高分子成分Aを含み、上記条件1を満たすため、負極活物質の結着性に優れることを確認した。また、溶解度パラメーター(SP)が10~17(cal/cm1/2である単量体(I)を含む重合性成分aの重合体及び/又はその中和物である高分子成分Aを含み、上記条件1を満たす二次電池負極スラリー用分散剤組成物を含む二次電池負極用スラリー組成物は、分散安定性、塗布性に優れ、結着性に優れた二次電池負極が製造できることを確認した。
 一方、表8及び比較例9から分かるように、二次電池負極スラリー用分散剤組成物が、上記条件1を満たさない場合(比較例1~8)、高分子成分Aを含まない場合(比較例9)、本願課題を解決できていない。

 

Claims (19)

  1.  二次電池負極スラリー用分散剤組成物と、負極活物質とを含む、二次電池負極用スラリー組成物であって、
     前記二次電池負極スラリー用分散剤組成物が、ラジカル反応性炭素-炭素二重結合を1つ有する単量体(I)を含む重合性成分aの重合体及び/又はその中和物である高分子成分Aを含み、
     前記単量体(I)の溶解度パラメーター(SP)が10~17(cal/cm1/2であり、
     下記条件1を満たす、二次電池負極用スラリー組成物。
    条件1:前記二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa以上である。
  2.  前記負極活物質が、Si及び/又はSi化合物を含む、請求項1に記載の二次電池負極用スラリー組成物。
  3.  前記単量体(I)が、単量体(i)及び/又は単量体(ii)を含み、前記単量体(i)がカルボキシル基及び/又はその塩である基を有する単量体であり、前記単量体(ii)がカルボキシル基及び/又はその塩である基と反応する基を有する単量体である、請求項1又は2に記載の二次電池負極用スラリー組成物。
  4.  前記単量体(I)が、前記単量体(i)を含み、前記重合性成分aに占める前記単量体(i)の重量割合が20~90重量%である、請求項3に記載の二次電池負極用スラリー組成物。
  5.  前記単量体(I)が、前記単量体(ii)を含み、前記重合性成分aに占める前記単量体(ii)の重量割合が3~40重量%である、請求項3又は4に記載の二次電池負極用スラリー組成物。
  6.  前記単量体(I)が、ニトリル系単量体(iii)をさらに含む、請求項3~5のいずれかに記載の二次電池負極用スラリー組成物。
  7.  前記重合性成分aに占める前記単量体(iii)の重量割合が5~45重量%である、請求項6に記載の二次電池負極用スラリー組成物。
  8.  さらに下記条件2を満たす、請求項1~7のいずれかに記載の二次電池負極用スラリー組成物。
    条件2:前記二次電池負極スラリー用分散剤組成物の不揮発分を、体積比率が50/50のエチレンカーボネート/ジエチルカーボネートの混合物に浸漬し、60℃にて1週間静置した後の、前記二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率が120重量%以下である。
  9.  さらに下記条件3を満たす、請求項1~8のいずれかに記載の二次電池負極用スラリー組成物。
    条件3:前記二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5重量%水分散液の、670nm波長の光透過率が、60%以上である。
  10.  ラジカル反応性炭素-炭素二重結合を1つ有する単量体(I)を含む重合性成分aの重合体及び/又はその中和物である高分子成分Aを含み、
     前記単量体(I)の溶解度パラメーター(SP)が10~17(cal/cm1/2であり、
     下記条件1を満たす、二次電池負極スラリー用分散剤組成物。
    条件1:二次電池負極スラリー用分散剤組成物の不揮発分からなる成形膜の引張弾性率が、500MPa以上である。
  11.  前記単量体(I)が、単量体(i)及び/又は単量体(ii)を含み、前記単量体(i)がカルボキシル基及び/又はその塩である基を有する単量体であり、前記単量体(ii)がカルボキシル基及び/又はその塩である基と反応する基を有する単量体である、請求項10に記載の二次電池負極スラリー用分散剤組成物。
  12.  前記単量体(I)が、前記単量体(i)を含み、前記重合性成分aに占める前記単量体(i)の重量割合が20~90重量%である、請求項11に記載の二次電池負極スラリー用分散剤組成物。
  13.  前記単量体(I)が、前記単量体(ii)を含み、前記重合性成分aに占める前記単量体(ii)の重量割合が3~40重量%である、請求項11又は12に記載の二次電池負極スラリー用分散剤組成物。
  14.  前記単量体(I)が、ニトリル系単量体(iii)をさらに含む、請求項11~13のいずれかに記載の二次電池負極スラリー用分散剤組成物。
  15.  前記重合性成分aに占める前記単量体(iii)の重量割合が5~45重量%である、請求項14に記載の二次電池負極スラリー用分散剤組成物。
  16.  さらに下記条件2を満たす、請求項10~15のいずれかに記載の二次電池負極スラリー用分散剤組成物。
    条件2:二次電池負極スラリー用分散剤組成物の不揮発分を、体積比率が50/50のエチレンカーボネート/ジエチルカーボネートの混合物に浸漬し、60℃にて1週間静置した後の、二次電池負極スラリー用分散剤組成物の不揮発分の重量膨潤率が120重量%以下である。
  17.  さらに下記条件3を満たす、請求項10~16のいずれかに記載の二次電池負極スラリー用分散剤組成物。
    条件3:二次電池負極スラリー用分散剤組成物の不揮発分濃度2.5重量%水分散液の、670nm波長の光透過率が、60%以上である。
  18.  集電体上に被膜を有する二次電池用負極であって、前記被膜が、請求項1~9のいずれかに記載の二次電池負極用スラリー組成物の不揮発分を含む、二次電池用負極。
  19.  請求項18に記載の二次電池用負極を含む、二次電池。

     
PCT/JP2019/036304 2018-09-28 2019-09-17 二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池 WO2020066734A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980063405.0A CN112840481A (zh) 2018-09-28 2019-09-17 二次电池负极用浆料组合物、二次电池负极浆料用分散剂组合物、二次电池用负极及二次电池
JP2020504036A JP6783412B2 (ja) 2018-09-28 2019-09-17 二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-183582 2018-09-28
JP2018183582 2018-09-28
JP2019-031157 2019-02-25
JP2019031157 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020066734A1 true WO2020066734A1 (ja) 2020-04-02

Family

ID=69949869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036304 WO2020066734A1 (ja) 2018-09-28 2019-09-17 二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池

Country Status (3)

Country Link
JP (1) JP6783412B2 (ja)
CN (1) CN112840481A (ja)
WO (1) WO2020066734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581243A (zh) * 2023-07-12 2023-08-11 宁德时代新能源科技股份有限公司 电极极片、其制备方法、二次电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513911A (ja) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド ポリアクリロニトリル−アクリル酸共重合体バインダーを含む負極材料組成物、その製造方法およびその負極材料組成物を含むリチウム二次電池
JP2014531123A (ja) * 2011-10-26 2014-11-20 ネグゼオン・リミテッドNexeon Ltd 二次電池セルの電極組成物
JP2015525437A (ja) * 2012-05-25 2015-09-03 ネグゼオン・リミテッドNexeon Ltd 複合粒子
WO2015163302A1 (ja) * 2014-04-21 2015-10-29 和光純薬工業株式会社 リチウム電池用結着剤
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2016219370A (ja) * 2015-05-26 2016-12-22 凸版印刷株式会社 非水電解質二次電池用電極

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205609A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 電極およびこれを用いた電池
WO2012128182A1 (ja) * 2011-03-18 2012-09-27 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極、及びリチウムイオン二次電池
EP2752927B1 (en) * 2011-08-30 2017-02-22 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
WO2013129254A1 (ja) * 2012-02-27 2013-09-06 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
JP6506553B2 (ja) * 2012-04-23 2019-04-24 日本ゼオン株式会社 リチウムイオン二次電池
JP6048070B2 (ja) * 2012-10-29 2016-12-21 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
US9882216B2 (en) * 2013-06-04 2018-01-30 Zeon Corporation Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN105378989B (zh) * 2013-07-18 2018-04-27 Jsr株式会社 蓄电设备用粘结剂组合物、蓄电设备用浆料、蓄电设备电极、间隔件以及蓄电设备
KR102493662B1 (ko) * 2014-10-31 2023-01-31 니폰 제온 가부시키가이샤 리튬 이온 2차 전지 부극용 페이스트 조성물, 리튬 이온 2차 전지 부극용 복합 입자, 리튬 이온 2차 전지 부극용 슬러리 조성물, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
JP6152182B1 (ja) * 2016-02-16 2017-06-21 松本油脂製薬株式会社 二次電池スラリー用分散剤組成物及びその利用
JP6911553B2 (ja) * 2016-06-23 2021-07-28 荒川化学工業株式会社 リチウムイオン電池負極用スラリー及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
WO2018043192A1 (ja) * 2016-08-30 2018-03-08 松本油脂製薬株式会社 二次電池スラリー用分散剤組成物及びその利用
JP2018067406A (ja) * 2016-10-18 2018-04-26 松本油脂製薬株式会社 二次電池スラリー用分散剤組成物及びその利用
KR20190082977A (ko) * 2016-11-29 2019-07-10 주식회사 쿠라레 비수 전해질 전지 전극용 바인더 조성물 및 그것을 원료로 하는 하이드로 겔, 및 그것을 이용한 비수 전해질 전지 전극용 슬러리 조성물, 비수 전해질 전지 부극, 및 비수 전해질 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513911A (ja) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド ポリアクリロニトリル−アクリル酸共重合体バインダーを含む負極材料組成物、その製造方法およびその負極材料組成物を含むリチウム二次電池
JP2014531123A (ja) * 2011-10-26 2014-11-20 ネグゼオン・リミテッドNexeon Ltd 二次電池セルの電極組成物
JP2015525437A (ja) * 2012-05-25 2015-09-03 ネグゼオン・リミテッドNexeon Ltd 複合粒子
WO2015163302A1 (ja) * 2014-04-21 2015-10-29 和光純薬工業株式会社 リチウム電池用結着剤
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2016219370A (ja) * 2015-05-26 2016-12-22 凸版印刷株式会社 非水電解質二次電池用電極

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581243A (zh) * 2023-07-12 2023-08-11 宁德时代新能源科技股份有限公司 电极极片、其制备方法、二次电池和用电装置
CN116581243B (zh) * 2023-07-12 2023-11-21 宁德时代新能源科技股份有限公司 电极极片、其制备方法、二次电池和用电装置

Also Published As

Publication number Publication date
JPWO2020066734A1 (ja) 2021-01-07
CN112840481A (zh) 2021-05-25
JP6783412B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
JP6237622B2 (ja) リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6168058B2 (ja) 二次電池用負極、二次電池、スラリー組成物、及び製造方法
WO2017094252A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
JP6123800B2 (ja) 二次電池用負極及びその製造方法
WO2014196547A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2019131210A1 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JP2014089834A (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2012234703A (ja) 金属塩含有バインダー
JP2012256541A (ja) 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2018168615A1 (ja) 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子
JP5978837B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5854867B2 (ja) 電極組成物の製造方法
JP2017062868A (ja) 非水電解質二次電池の電極用バインダー、当該バインダーを含む非水電解質二次電池用電極、及び当該電極を備える非水電解質二次電池
JPWO2019155980A1 (ja) 非水系電池電極用スラリー、並びに非水系電池電極及び非水系電池の製造方法
JP6999416B2 (ja) リチウムイオン二次電池正極用バインダー
JP6783412B2 (ja) 二次電池負極用スラリー組成物、二次電池負極スラリー用分散剤組成物、二次電池用負極、及び二次電池
JP2021136157A (ja) バインダー及びその利用
JP2020181655A (ja) 二次電池正極スラリー用分散剤組成物及びその用途
JP2021089833A (ja) 蓄電デバイススラリー用分散剤組成物及びその用途
JP7267142B2 (ja) 二次電池電極用バインダー及びその利用
JP2021144810A (ja) 蓄電デバイス正極スラリー用分散剤組成物、蓄電デバイス正極用スラリー組成物、蓄電デバイス用正極、及び蓄電デバイス
JP2023019557A (ja) 蓄電デバイス電極用スラリー及びその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504036

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867768

Country of ref document: EP

Kind code of ref document: A1