WO2020057584A1 - 微型芯片的批量转移装置以及方法 - Google Patents

微型芯片的批量转移装置以及方法 Download PDF

Info

Publication number
WO2020057584A1
WO2020057584A1 PCT/CN2019/106597 CN2019106597W WO2020057584A1 WO 2020057584 A1 WO2020057584 A1 WO 2020057584A1 CN 2019106597 W CN2019106597 W CN 2019106597W WO 2020057584 A1 WO2020057584 A1 WO 2020057584A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchips
loading
air extraction
cover
adsorption holes
Prior art date
Application number
PCT/CN2019/106597
Other languages
English (en)
French (fr)
Inventor
程鑫
刘召军
罗冰清
陈日飞
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2020057584A1 publication Critical patent/WO2020057584A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices

Definitions

  • the present disclosure relates to the field of semiconductor display technology, for example, to a batch transfer device and method for microchips.
  • Transferring the prepared huge amount of microchips to the same circuit substrate can improve the integration degree of the chips on the circuit substrate, thereby improving the performance of the circuit substrate provided with the huge number of microchips.
  • a Micro-Light Emitting Diode (Micro-LED) display panel is a Micro-LED chip that thins, miniaturizes, and arrays the LED chip structure design, and uses a complementary metal-oxide semiconductor (Complementary, Metal, Oxide, Semiconductor, CMOS) integrated circuit technology is made into a drive circuit to achieve each pixel address control and display technology driven individually.
  • CMOS complementary metal-oxide semiconductor
  • Micro-LED display panel has many advantages such as self-light-emitting, simple structure, small size and energy saving. It is also compatible with traditional liquid crystal display (Liquid Crystal Display) LCD display panel and organic light-emitting diode (OLED) display.
  • Micro-LED display panels show more excellent performance in multiple indicators such as brightness, life, contrast, response time, energy consumption, viewing angle and resolution. Therefore, Micro-LED display panels have attracted much attention from enterprises. And vigorous research and development, has been considered by many manufacturers as the next-generation display technology.
  • Micro-LED display panels has not achieved industrialization.
  • the main technical difficulty facing the core is the mass transfer technology of Micro-LED chips. Because the size of Micro-LED chips is only about 5 to 20 ⁇ m, in the process of batch transfer of Micro-LED chips to the circuit substrate, problems such as poor efficiency, yield, and transfer accuracy are easy to occur, which brings more practical applications. Big obstacle.
  • the embodiments of the present invention provide a batch transfer device and method for microchips.
  • An embodiment of the present invention provides a batch transfer device of microchips, including:
  • a loading mold which includes a loading area and a non-loading area located at an edge of the loading area.
  • the loading area is provided with a plurality of chip adsorption holes arranged in an array.
  • a cover the cover is provided on a side of the non-loading area away from a direction in which the plurality of microchips are adsorbed, a cavity is formed between the cover and the loading mold, and the cover is provided with an exhaust hole and Inflatable hole
  • An air extraction device the input port of the air extraction device is sealedly connected to the air extraction hole, and the air extraction device is configured to extract gas from the chamber;
  • An inflation device wherein an output port of the inflation device is connected to the inflation hole in a sealed manner, and the inflation device is configured to inflate the chamber.
  • an alignment mark is further provided on the non-loading area to align the plurality of chip adsorption holes with the plurality of microchips one by one.
  • the loading area is further provided with at least one supporting component, the at least one supporting component is located between the plurality of chip adsorption holes and is located in the chamber.
  • the component material of the loading mold includes one of the following: a metal material, a ceramic material, or a polymer material.
  • the forming process of the plurality of chip adsorption holes includes a nano-imprint process or a laser processing process.
  • the shape of the at least one supporting component is a cylinder.
  • the air extraction device includes a mechanical pump or a piezoelectric ceramic pump.
  • the inflator includes a mechanical pump or a piezoelectric ceramic pump.
  • An embodiment of the present invention provides a batch transfer method of microchips, which is applied to the above-mentioned batch transfer device of microchips and includes:
  • Inflating between the plurality of microchips and the cover through the inflation device separates the plurality of microchips from the loading mold and transfers the plurality of microchips to the circuit substrate.
  • the aligning the plurality of chip adsorption holes with the plurality of microchips one by one includes:
  • the plurality of chip adsorption holes are aligned with the plurality of microchips one by one.
  • FIG. 1 is a schematic structural diagram of a batch transfer device of microchips according to the first embodiment
  • FIG. 2 is a schematic structural diagram of another batch transfer device of microchips according to the first embodiment
  • FIG. 3 is a schematic flowchart of a batch transfer method of microchips according to the second embodiment
  • step 110 is a schematic diagram corresponding to step 110 in a method for batch transfer of microchips provided in the second embodiment
  • FIG. 5 is a schematic diagram corresponding to step 120 in a method for batch transfer of microchips provided in the second embodiment
  • FIG. 6 is a schematic diagram corresponding to step 130 in a method for batch transfer of microchips provided in the second embodiment
  • FIG. 7 is a schematic diagram corresponding to step 140 in a method for batch transfer of microchips provided in the second embodiment
  • FIG. 8 is a schematic diagram corresponding to step 150 in a method for batch transfer of microchips provided in the second embodiment
  • FIG. 9 is a schematic diagram corresponding to step 160 in a method for batch transfer of microchips provided in the second embodiment.
  • the microchip batch transfer device includes a loading mold 100, a cover 200, an air extraction device 300, and an air inflation device 400.
  • the loading mold 100 includes a loading area 101 and a non-loading area 102 located on the edge of the loading area 101.
  • the loading area 101 is provided with a plurality of chip adsorption holes 1011 arranged in an array, and the plurality of chip adsorption holes 1011 are configured to adsorb a plurality of microchips.
  • the outer cover 200 is disposed on a side of the non-loading region 102 away from a direction in which a plurality of microchips are adsorbed.
  • a cavity 201 is formed between the outer cover 200 and the loading mold 100.
  • the outer cover 200 is provided with an exhaust hole 202 and an inflation hole 203.
  • the input port 301 of the air extraction device 300 is sealedly connected to the air extraction hole 202.
  • the air extraction device 300 is configured to extract the gas from the chamber 201.
  • the output port 401 of the inflation device 400 is sealedly connected to the inflation hole 203, and the inflation device 400 is configured to inflate the cavity 201.
  • An embodiment of the present invention provides a batch transfer device of micro chips, which can implement a huge transfer process of micro chips to be transferred. Since the cavity 201 is formed between the cover 200 and the loading mold 100, after the edges of the plurality of chip adsorption holes 1011 are in direct contact with the plurality of microchips to be transferred, the plurality of microchips to be transferred may be formed between the plurality of microchips to be transferred and the cover 200.
  • the closed space when the air extraction device 300 extracts the gas in the chamber 201, the closed space is in a negative pressure state at this time, and the loading mold 100 adsorbs a plurality of microchips to be transferred.
  • the inflating device 400 inflates the chamber, a plurality of microchips to be transferred may be in a positive pressure state with the outer cover 200, and the loading mold 100 releases the microchips, thereby realizing the batch transfer of the microchips to be transferred.
  • the cavity 201 formed between the outer cover 200 and the loading mold 100 provided on the non-loading area 102 is evacuated and inflated to precisely control the air pressure in the cavity 201, thereby accurately controlling multiple Adsorption and separation between the transferred microchips and the loading mold 100, thereby greatly improving the accuracy of transferring a large number of microchips to be transferred in batches, so as to solve the process of mass transfer of huge microchips to a circuit substrate in the related technology.
  • Technical problems that are prone to efficiency, poor yield, and poor transfer accuracy have brought greater obstacles to practical applications.
  • an alignment mark is further provided on the non-loading area 102.
  • the plurality of chip adsorption holes 1011 and the plurality of microchips can be aligned one by one.
  • the loading area 101 is further provided with at least one supporting component 1012.
  • the at least one supporting component 1012 is located between the plurality of chip adsorption holes 1011 and is located in the cavity 201.
  • At least one support assembly 1012 may be used to prevent deformation of the loading mold 100. Exemplarily, only two support components 1012 are shown in FIG. 2. For the number of the support components 1012, those skilled in the art can design according to actual conditions.
  • the constituent materials of the loading mold 100 include one of the following: a metal material, a ceramic material, or a polymer material.
  • the metal materials include, but are not limited to, nickel and amorphous alloys made of some metals.
  • Ceramic materials include, but are not limited to: quartz and sapphire.
  • Polymer materials include, but are not limited to: Parylene, Polydimethylsiloxane (PDMS), Polycarbonate (PC), and Polymethylmethacrylate (PMMA).
  • preparation process of the batch transfer device for microchips can be as follows.
  • the sizes and shapes of the plurality of chip adsorption holes 1011 of the loading mold 100 are designed correspondingly.
  • a plurality of through holes arranged in an array that is, a plurality of chip adsorption holes 1011 can be formed.
  • an outer cover 200 is disposed on a side of the non-loading region 102 of the loading mold 100 away from the direction in which a plurality of microchips are adsorbed, and a cavity 201 is formed between the outer cover 200 and the loading mold 100.
  • the outer cover 200 is provided with an air exhaust hole 202 and an air inflation hole 203.
  • the input port 301 of the air extraction device 300 is sealedly connected to the air extraction hole 202.
  • the air extraction device 300 is configured to extract the gas from the chamber 201.
  • the output port 401 of the inflation device 400 is sealedly connected to the inflation hole 203, and the inflation device 400 is configured to inflate the cavity 201.
  • the pattern forming process of the plurality of chip adsorption holes 1011 on the loading mold 100 includes a nano-imprint process or a laser processing process.
  • Nano-imprinting processes include, but are not limited to, UV-cured nano-imprinting, thermoplastic nano-imprinting, roll-to-roll nano-imprinting, and roll-to-board nano-imprinting.
  • Laser processing technologies include, but are not limited to, laser interference technology and laser direct writing technology.
  • an etching process is further included. The etching process may be dry etching, wet etching, or electroplating.
  • the shape of at least one supporting component 1012 is a cylinder.
  • the air extraction device 300 includes, but is not limited to, a mechanical pump or a piezoelectric ceramic pump.
  • the inflator 400 includes, but is not limited to, a mechanical pump or a piezoelectric ceramic pump.
  • the material of the loading mold 100 may be a hard material or a flexible material.
  • the embodiment of the present invention provides a batch transfer method of microchips.
  • the micro chip batch transfer method is applied to a micro chip batch transfer device as shown in FIG. 1 or FIG. 2.
  • the method steps are as follows.
  • Step 110 Place a plurality of microchips 501 arranged in an array on the sample stage 500.
  • a plurality of microchips 501 arranged in an array are placed on a sample stage 500.
  • the micro chip 501 is, for example, a micro light emitting diode chip.
  • the micro light emitting diode chip can be prepared by using a metal organic chemical vapor deposition method. Specifically, a gallium nitride (GaN) epitaxial layer can be deposited on a clean sapphire substrate.
  • the epitaxial layer includes, but is not limited to, an n-type GaN epitaxial layer, a multiple quantum well layer, and a p-type GaN epitaxial layer; photolithography, cleaning, and etching are used.
  • a chip process such as etching, electrode deposition, and the like is used to form a micro-light emitting diode (Micro-LED) chip as shown in FIG. 4.
  • Step 120 Align the plurality of chip adsorption holes 1011 with the plurality of microchips 501 one by one.
  • a plurality of chip adsorption holes 1011 are aligned with a plurality of microchips 501 one by one.
  • Step 130 Press the batch transfer device of the microchips so that the edges of the plurality of chip adsorption holes 1011 are in direct contact with the plurality of microchips 501.
  • the batch transfer device of the microchips is pressed down so that the edges of the plurality of chip adsorption holes 1011 are in direct contact with the plurality of microchips 501.
  • the area of the chip adsorption hole 1011 is smaller than or equal to the area of the microchip 501. Exemplarily, in this embodiment, only the case where the area of the chip adsorption hole 1011 is equal to the area of the microchip 501 is shown.
  • Step 140 Extract the gas between the plurality of microchips 501 and the outer cover 200 through the air extraction device 300, so that the plurality of microchips 501 and the loading mold 100 are adsorbed together.
  • the air extraction device 300 extracts gas between a plurality of microchips 501 and the outer cover 200, and the gas between the plurality of microchips 501 and the outer cover 200 passes through the air extraction hole 202 on the outer cover 200 from the input port of the air extraction device 300 301 is pulled out, and a plurality of microchips 501 are attracted to the loading mold 100. At this time, the space between the plurality of microchips 501 and the cover 200 is in a negative pressure state.
  • Step 150 Transfer the batch transfer device of the microchips to which the plurality of microchips 501 are adsorbed to the circuit substrate 600.
  • a batch transfer device of microchips to which a plurality of microchips 501 are adsorbed is transferred over a circuit substrate 600.
  • the plurality of microchips 501 can be transferred to the circuit substrate 600 along with the batch transfer device of the microchips.
  • the mass transfer process of the high-density microchips 501 can be completed by a multiple batch transfer method.
  • a large-area loading mold 100 can be used to implement a huge amount of microchip 501 transfer process.
  • An embodiment of the present invention provides a batch transfer method for microchips. Since a cavity 201 is formed between the cover 200 and the loading mold 100, after the edges of the plurality of chip adsorption holes 1011 are in direct contact with the plurality of microchips 501 to be transferred, the plurality of microchips 501 to be transferred may be in contact with the cover 200. A closed space is formed therebetween. When the air extraction device 300 extracts the gas from the chamber 201, the closed space is in a negative pressure state at this time, and the loading mold 100 adsorbs a plurality of microchips 501 to be transferred.
  • the cavity 201 formed between the outer cover 200 and the loading mold 100 provided on the non-loading area 102 is evacuated and inflated to precisely control the air pressure in the cavity 201, thereby accurately controlling multiple Adsorption and separation between the transferred microchips 501 and the loading mold 100, thereby greatly improving the accuracy of transferring a large number of microchips 501 to be transferred in batches, so as to solve the problem of mass transfer of huge microchips to circuit substrates in related technologies In the process, technical problems such as poor efficiency, good yield, and poor transfer accuracy are easy to appear, which brings great obstacles to practical application.
  • step 120 the plurality of chip adsorption holes 1011 are aligned with the plurality of microchips 501 one by one, and the method includes: The alignment marks align the plurality of chip suction holes 1011 with the plurality of microchips 501 one by one.

Abstract

一种微型芯片的批量转移装置以及方法。该微型芯片的批量转移装置包括:装载模具(100),装载模具(100)包括装载区(101)和位于装载区(101)边缘的非装载区(102),装载区(101)上设置有阵列式排列的多个芯片吸附孔(1011),多个芯片吸附孔(1011)设置为吸附多个微型芯片;外罩(200),外罩(200)设置在非装载区(102)上远离吸附多个微型芯片的方向的一侧,外罩(200)和装载模具(100)之间形成腔室(201),外罩(200)上设置有抽气孔(202)和充气孔(203);抽气装置(300),抽气装置(300)的输入口(301)与抽气孔(202)密封连接,抽气装置(300)设置为抽取腔室(201)的气体;充气装置(400),充气装置(400)的输出口(401)与充气孔(203)密封连接,充气装置(400)设置为向腔室(201)充气。

Description

微型芯片的批量转移装置以及方法
本申请要求在2018年09月20日提交中国专利局、申请号为201811100272.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及半导体显示技术领域,例如涉及一种微型芯片的批量转移装置以及方法。
背景技术
将制备好的巨量的微型芯片转移至同一电路基板上,可以提高电路基板上的芯片的集成度,从而提高设置有巨量微型芯片的电路基板的性能。
示例性地,微型发光二极管(Micro-Light Emitting Diode,Micro-LED)显示面板是一种将LED芯片结构设计进行薄膜化、微小化、阵列化的Micro-LED芯片,并采用互补金属氧化物半导体(Complementary Metal Oxide semiconductor,CMOS)集成电路工艺制成驱动电路,来实现每一个像素点定址控制和单独驱动的显示技术。Micro-LED显示面板具有自发光、结构简单、体积小和节能等多种优点,且与传统的液晶显示器(Liquid Crystal Display,LCD)显示面板和有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板相比,Micro-LED显示面板在亮度、寿命、对比度、反应时间、能耗、可视角度和分辨率等多个指标展示了更为优异的性能,因此Micro-LED显示面板备受企业关注和大力研发,已被许多厂家视为下一代显示技术。
但是,在现阶段,Micro-LED显示面板的发展并未实现产业化,主要面临的核心技术难点是Micro-LED芯片的巨量转移(Mass Transfer)技术。由于Micro-LED芯片尺寸仅在5~20μm等级左右,因此在将Micro-LED芯片批量式转移至电路基板过程中,易出现效率、良品率和转移精度较差的问题,给实际应用带来较大的阻碍。
发明内容
本发明实施例提供了一种微型芯片的批量转移装置以及方法。
本发明实施例提供了一种微型芯片的批量转移装置,包括:
装载模具,所述装载模具包括装载区和位于所述装载区边缘的非装载区,所述装载区上设置有阵列式排列的多个芯片吸附孔,所述多个芯片吸附孔设置为吸附多个微型芯片;
外罩,所述外罩设置在所述非装载区上远离吸附所述多个微型芯片的方向的一侧,所述外罩和所述装载模具之间形成腔室,所述外罩上设置有抽气孔和充气孔;
抽气装置,所述抽气装置的输入口与所述抽气孔密封连接,所述抽气装置设置为抽取所述腔室的气体;
充气装置,所述充气装置的输出口与所述充气孔密封连接,所述充气装置设置为向所述腔室充气。
一实施例中,所述非装载区上还设置有对准标记,以将所述多个芯片吸附孔与所述多个微型芯片一一对准。
一实施例中,所述装载区上还设置有至少一个支撑组件,所述至少一个支撑组件位于所述多个芯片吸附孔之间,且位于所述腔室内。
一实施例中,所述装载模具的组成材料包括以下之一:金属材料、陶瓷材料或者高分子材料。
一实施例中,所述多个芯片吸附孔的形成工艺包括纳米压印工艺或者激光加工工艺。
一实施例中,所述至少一个支撑组件的形状为圆柱体。
一实施例中,所述抽气装置包括机械泵或者压电陶瓷泵。
一实施例中,所述充气装置包括机械泵或者压电陶瓷泵。
本发明实施例提供了一种微型芯片的批量转移方法,应用于上述的微型芯片的批量转移装置,包括:
在样品台上放置阵列式排列的多个微型芯片;
将所述多个芯片吸附孔与所述多个微型芯片一一对准;
下压所述微型芯片的批量转移装置,以使所述多个芯片吸附孔的边缘与所 述多个微型芯片直接接触;
通过所述抽气装置抽取所述多个微型芯片与所述外罩之间的气体,使所述多个微型芯片与所述装载模具吸附在一起;
将吸附有所述多个微型芯片的所述微型芯片的批量转移装置转移至电路基板上方;
通过所述充气装置向所述多个微型芯片与所述外罩之间充气,使所述多个微型芯片与所述装载模具分离,并使所述多个微型芯片转移至所述电路基板上。
一实施例中,所述将所述多个芯片吸附孔与所述多个微型芯片一一对准,包括:
根据所述对准标记,将所述多个芯片吸附孔与所述多个微型芯片一一对准。
附图说明
图1为实施例一提供的一种微型芯片的批量转移装置的结构示意图;
图2为实施例一提供的另一种微型芯片的批量转移装置的结构示意图;
图3为实施例二提供的一种微型芯片的批量转移方法的流程示意图;
图4为实施例二提供的一种微型芯片的批量转移方法中步骤110对应的示意图;
图5为实施例二提供的一种微型芯片的批量转移方法中步骤120对应的示意图;
图6为实施例二提供的一种微型芯片的批量转移方法中步骤130对应的示意图;
图7为实施例二提供的一种微型芯片的批量转移方法中步骤140对应的示意图;
图8为实施例二提供的一种微型芯片的批量转移方法中步骤150对应的示意图;
图9为实施例二提供的一种微型芯片的批量转移方法中步骤160对应的示意图。
具体实施方式
下面结合附图和实施例对本文作进一步的详细说明。
实施例一
本发明实施例提供了一种微型芯片的批量转移装置。参见图1,该微型芯片的批量转移装置包括:装载模具100,外罩200,抽气装置300和充气装置400。装载模具100包括装载区101和位于装载区101边缘的非装载区102,装载区101上设置有阵列式排列的多个芯片吸附孔1011,多个芯片吸附孔1011设置为吸附多个微型芯片。外罩200设置在非装载区102上远离吸附多个微型芯片的方向的一侧,外罩200和装载模具100之间形成腔室201,外罩200上设置有抽气孔202和充气孔203。抽气装置300的输入口301与抽气孔202密封连接,抽气装置300设置为抽取腔室201的气体。充气装置400的输出口401与充气孔203密封连接,充气装置400设置为向腔室201充气。
通过高准度的设备,将大量的微型芯片转移至目标基板或者电路上,此过程被称为巨量转移(Mass Transfer)技术。本发明实施例提供了一种微型芯片的批量转移装置,可以实现对待转移微型芯片的巨量转移过程。由于外罩200和装载模具100之间形成了腔室201,因此多个芯片吸附孔1011的边缘与多个待转移的微型芯片直接接触后,多个待转移的微型芯片可以与外罩200之间形成密闭空间,当抽气装置300抽取腔室201的气体时,此时密闭空间处于负压状态,装载模具100吸附多个待转移的微型芯片。当充气装置400向腔室充气时,多个待转移的微型芯片可以与外罩200之间处于正压状态,装载模具100释放微型芯片,实现了将待转移微型芯片批量转移的过程。本发明实施例通过对设置在非装载区102上的外罩200和装载模具100之间形成的腔室201进行抽气和充气达到精确控制腔室201内气压的目的,从而精确控制了多个待转移的微型芯片与装载模具100之间的吸附和分离,进而极大地提高了批量转移巨量待转移微型芯片的精度,以解决相关技术中在将巨量微型芯片批量式转移至电路基板过程中,易出现效率、良品率和转移精度较差,给实际应用带来较大的阻碍的技术问题。
一实施例中,在上述技术方案的基础上,非装载区102上还设置有对准标记。根据非装载区102上设置的对准标记,可以将多个芯片吸附孔1011与多个 微型芯片进行一一对准。
一实施例中,参见图2,装载区101上还设置有至少一个支撑组件1012,至少一个支撑组件1012位于多个芯片吸附孔1011之间,且位于腔室201内。至少一个支撑组件1012可以用于防止装载模具100变形。示例性地,图2中仅示出2个支撑组件1012,对于支撑组件1012的数量,本领域技术人员可以根据实际情况自行设计。
一实施例中,在上述技术方案的基础上,装载模具100的组成材料包括以下之一:金属材料、陶瓷材料或者高分子材料。其中,金属材料包括但不限于:镍以及一些金属制成的非晶合金。陶瓷材料包括但不限于:石英以及蓝宝石。高分子材料包括但不限于:聚对二甲苯(Parylene)、聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)、聚碳酸酯(Polycarbonate,PC)和有机玻璃(Polymethyl methacrylate,PMMA)。
需要说明的是,微型芯片的批量转移装置的制备过程可以如下。
根据多个微型芯片的尺寸和形状,对应设计装载模具100的多个芯片吸附孔1011的尺寸和形状。通过对装载模具100进行图形化的加工工艺可以形成阵列排布的多个通孔,即多个芯片吸附孔1011。然后通过键合工艺,在装载模具100的非装载区102上远离吸附多个微型芯片的方向的一侧设置外罩200,外罩200和装载模具100之间形成腔室201。之后再在外罩200上设置抽气孔202和充气孔203。抽气装置300的输入口301与抽气孔202密封连接,抽气装置300设置为抽取腔室201的气体。充气装置400的输出口401与充气孔203密封连接,充气装置400设置为向腔室201充气。
一实施例中,在上述技术方案的基础上,装载模具100上的多个芯片吸附孔1011的图形化形成工艺包括纳米压印工艺或者激光加工工艺。纳米压印工艺包括但不限于:紫外固化纳米压印、热塑纳米压印、卷对卷纳米压印以及卷对板纳米压印。激光加工工艺包括但不限于:激光干涉技术以及激光直写技术。装载模具100上的多个芯片吸附孔1011的图形化形成工艺之后还包括刻蚀工艺,刻蚀工艺可以是干法刻蚀、湿法刻蚀或者电镀等。
一实施例中,参见图2,在上述技术方案的基础上,至少一个支撑组件1012 的形状为圆柱体。
一实施例中,在上述技术方案的基础上,抽气装置300包括但不限于机械泵或者压电陶瓷泵。
一实施例中,在上述技术方案的基础上,充气装置400包括但不限于机械泵或者压电陶瓷泵。
一实施例中,装载模具100的材料可以是硬质材料也可以是柔性材料。
实施例二
和上述实施例一基于同一构思,本发明实施例提供了一种微型芯片的批量转移方法。该微型芯片的批量转移方法应用于如图1或图2所示的微型芯片的批量转移装置。如图1至图3所示,该方法步骤如下。
步骤110、在样品台500上放置阵列式排列的多个微型芯片501。
参见图4,样品台500上放置有阵列式排列的多个微型芯片501。
在本实施例中,微型芯片501,示例性地,微型芯片501为微型发光二极管芯片。微型发光二极管芯片可以采用金属有机化学气相沉积的制备方法进行制备。具体地,可以在洁净蓝宝石衬底上沉积氮化镓(GaN)外延层,外延层包含但不限于n型GaN外延层、多量子阱层、p型GaN外延层;采用光刻、清洗、刻蚀、电极沉积等芯片工艺制成如图4所示的微型发光二极管(Micro-Light Emitting Diode,Micro-LED)芯片。
步骤120、将多个芯片吸附孔1011与多个微型芯片501一一对准。
参见图5,将多个芯片吸附孔1011与多个微型芯片501一一对准。
步骤130、下压微型芯片的批量转移装置,以使多个芯片吸附孔1011的边缘与多个微型芯片501直接接触。
参见图6,下压微型芯片的批量转移装置,以使多个芯片吸附孔1011的边缘与多个微型芯片501直接接触。一实施例中,芯片吸附孔1011的面积小于或等于微型芯片501的面积。示例性地,在本实施例中,仅仅示出了芯片吸附孔1011的面积等于微型芯片501的面积的情况。
步骤140、通过抽气装置300抽取多个微型芯片501与外罩200之间的气体, 使多个微型芯片501与装载模具100吸附在一起。
参见图7,抽气装置300抽取多个微型芯片501与外罩200之间的气体,多个微型芯片501与外罩200之间的气体经过外罩200上的抽气孔202从抽气装置300的输入口301被抽出,多个微型芯片501与装载模具100吸附在一起。此时,多个微型芯片501与外罩200之间的空间处于负压状态。
步骤150、将吸附有多个微型芯片501的微型芯片的批量转移装置转移至电路基板600上方。
参见图8,将吸附有多个微型芯片501的微型芯片的批量转移装置转移至电路基板600上方。在范德华力和吸力的共同作用下,多个微型芯片501可以跟随微型芯片的批量转移装置转移至电路基板600上方。
步骤160、通过充气装置400向多个微型芯片501与外罩200之间充气,使多个微型芯片501与装载模具100分离,并使多个微型芯片501转移至电路基板600上。
参见图9,通过充气装置400向多个微型芯片501与外罩200之间充气,可以使多个微型芯片501与装载模具100分离,并使多个微型芯片501转移至电路基板600上。此时,多个微型芯片501与外罩200之间的空间处于正压状态。
对于样品台500上有高密度的微型芯片501时,可通过多次批量转移方法,完成高密度的微型芯片501的巨量转移过程。对于样品台500上有大面积的微型芯片501时,可通过大面积的装载模具100来实现微型芯片501的巨量转移过程。
本发明实施例提供了一种微型芯片的批量转移转移方法。由于外罩200和装载模具100之间形成了腔室201,因此多个芯片吸附孔1011的边缘与多个待转移的微型芯片501直接接触后,多个待转移的微型芯片501可以与外罩200之间形成密闭空间,当抽气装置300抽取腔室201的气体时,此时密闭空间处于负压状态,装载模具100吸附多个待转移的微型芯片501。当充气装置400向腔室201充气时,多个待转移的微型芯片501可以与外罩200之间处于正压状态,装载模具100释放微型芯片501,实现了将待转移微型芯片501批量转移的过程。本发明实施例通过对设置在非装载区102上的外罩200和装载模具100 之间形成的腔室201进行抽气和充气达到精确控制腔室201内气压的目的,从而精确控制了多个待转移的微型芯片501与装载模具100之间的吸附和分离,进而极大地提高了批量转移巨量待转移微型芯片501的精度,以解决相关技术中在将巨量微型芯片批量式转移至电路基板过程中,易出现效率、良品率和转移精度较差,给实际应用带来较大的阻碍的技术问题。
一实施例中,在上述技术方案的基础上,在步骤120中,将多个芯片吸附孔1011与多个微型芯片501一一对准,包括:根据装载模具100包括的非装载区102上设置的对准标记,将多个芯片吸附孔1011与多个微型芯片501一一对准。
一实施例中,装载模具100和外罩200均可以采用透明材质的材料制成,非装载区102上设置有至少两个对准标记,且样品台500上也设置有与上述至少两个对准标记一一对应的至少两个对准标记,对准标记的形状可以为“+”等。一实施例中,可以在非装载区102上远离或者靠近样品台500的一面设置至少两个对准标记。一实施例中,可以设置非装载区102上的至少两个对准标记中的两个对准标记位于非装载区102的对角位置,使得对多个微型芯片501的吸附更加准确和简便。

Claims (10)

  1. 一种微型芯片的批量转移装置,包括:
    装载模具,所述装载模具包括装载区和位于所述装载区边缘的非装载区,所述装载区上设置有阵列式排列的多个芯片吸附孔,所述多个芯片吸附孔设置为吸附多个微型芯片;
    外罩,所述外罩设置在所述非装载区上远离吸附所述多个微型芯片的方向的一侧,所述外罩和所述装载模具之间形成腔室,所述外罩上设置有抽气孔和充气孔;
    抽气装置,所述抽气装置的输入口与所述抽气孔密封连接,所述抽气装置设置为抽取所述腔室的气体;
    充气装置,所述充气装置的输出口与所述充气孔密封连接,所述充气装置设置为向所述腔室充气。
  2. 根据权利要求1所述的装置,其中,所述非装载区上还设置有对准标记,以将所述多个芯片吸附孔与所述多个微型芯片一一对准。
  3. 根据权利要求1所述的装置,其中,所述装载区上还设置有至少一个支撑组件,所述至少一个支撑组件位于所述多个芯片吸附孔之间,且位于所述腔室内。
  4. 根据权利要求1所述的装置,其中,所述装载模具的组成材料包括以下之一:金属材料、陶瓷材料或者高分子材料。
  5. 根据权利要求1所述的装置,其中,所述多个芯片吸附孔的形成工艺包括纳米压印工艺或者激光加工工艺。
  6. 根据权利要求3所述的装置,其中,所述至少一个支撑组件的形状为圆柱体。
  7. 根据权利要求1所述的装置,其中,所述抽气装置包括机械泵或者压电陶瓷泵。
  8. 根据权利要求1所述的装置,其中,所述充气装置包括机械泵或者压电陶瓷泵。
  9. 一种微型芯片的批量转移方法,应用于权利要求1-8任一项所述的微型芯片的批量转移装置,包括:
    在样品台上放置阵列式排列的多个微型芯片;
    将所述多个芯片吸附孔与所述多个微型芯片一一对准;
    下压所述微型芯片的批量转移装置,以使所述多个芯片吸附孔的边缘与所述多个微型芯片接触;
    通过所述抽气装置抽取所述多个微型芯片与所述外罩之间的气体,使所述多个微型芯片与所述装载模具吸附在一起;
    将吸附有所述多个微型芯片的所述微型芯片的批量转移装置转移至电路基板上方;
    通过所述充气装置向所述多个微型芯片与所述外罩之间充气,使所述多个微型芯片与所述装载模具分离,并使所述多个微型芯片转移至所述电路基板上。
  10. 根据权利要求9所述的方法,其中,所述将所述多个芯片吸附孔与所述多个微型芯片一一对准,包括:
    根据所述对准标记,将所述多个芯片吸附孔与所述多个微型芯片一一对准。
PCT/CN2019/106597 2018-09-20 2019-09-19 微型芯片的批量转移装置以及方法 WO2020057584A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811100272.3A CN109256351B (zh) 2018-09-20 2018-09-20 微型芯片的批量转移装置以及转移方法
CN201811100272.3 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057584A1 true WO2020057584A1 (zh) 2020-03-26

Family

ID=65048435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106597 WO2020057584A1 (zh) 2018-09-20 2019-09-19 微型芯片的批量转移装置以及方法

Country Status (2)

Country Link
CN (1) CN109256351B (zh)
WO (1) WO2020057584A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256351B (zh) * 2018-09-20 2021-06-08 南方科技大学 微型芯片的批量转移装置以及转移方法
CN110088886B (zh) 2019-03-20 2022-09-09 京东方科技集团股份有限公司 微发光二极管转移设备、转移微发光二极管的方法、显示设备
CN111987193B (zh) * 2019-05-22 2021-06-11 成都辰显光电有限公司 微发光二极管转移装置及其制作方法
CN112017988B (zh) * 2019-05-31 2024-03-19 成都辰显光电有限公司 转移设备
CN110504192B (zh) * 2019-06-10 2022-05-27 义乌臻格科技有限公司 一种适用于微芯片巨量转移拾取头的生产方法
CN110459500A (zh) * 2019-07-29 2019-11-15 南京中电熊猫平板显示科技有限公司 微型器件真空吸头以及微型器件转移的方法
WO2021134255A1 (zh) * 2019-12-30 2021-07-08 重庆康佳光电技术研究院有限公司 一种巨量转移装置及方法
TWI727853B (zh) * 2020-07-15 2021-05-11 歆熾電氣技術股份有限公司 晶片移轉系統與晶片移轉方法
CN113410169A (zh) * 2021-05-18 2021-09-17 深圳市百柔新材料技术有限公司 一种转移装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178135A (ja) * 1996-12-19 1998-06-30 Dainippon Printing Co Ltd リードフレームの吸着搬送装置
TW201034927A (en) * 2009-03-25 2010-10-01 Au Optronics Corp Vacuum suction apparatus
CN102163658A (zh) * 2011-02-01 2011-08-24 哈尔滨工业大学 Led多芯片吸嘴
CN204289398U (zh) * 2014-11-18 2015-04-22 安徽安芯电子科技有限公司 半导体芯片分向测试装置
CN109256351A (zh) * 2018-09-20 2019-01-22 南方科技大学 微型芯片的批量转移装置以及转移方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205214A (ja) * 1989-12-29 1991-09-06 Matsushita Electric Ind Co Ltd 素子の定ピッチ分離装置
US20030062734A1 (en) * 2001-10-02 2003-04-03 Faris Sadeg M. Device and method for handling fragile objects, and manufacturing method thereof
US20030102016A1 (en) * 2001-12-04 2003-06-05 Gary Bouchard Integrated circuit processing system
US9391042B2 (en) * 2012-12-14 2016-07-12 Apple Inc. Micro device transfer system with pivot mount
US9698134B2 (en) * 2014-11-27 2017-07-04 Sct Technology, Ltd. Method for manufacturing a light emitted diode display
KR102416621B1 (ko) * 2015-08-31 2022-07-05 삼성디스플레이 주식회사 발광 다이오드 트랜스퍼
KR101712187B1 (ko) * 2015-11-05 2017-03-13 (주) 씨앤아이테크놀로지 반도체 패키지의 일괄 처리 방법 및 장치
CN107039298B (zh) * 2016-11-04 2019-12-24 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备
CN106952852B (zh) * 2017-04-17 2023-09-05 如皋市大昌电子有限公司 一种用于芯片焊接时批量转运的吸笔装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178135A (ja) * 1996-12-19 1998-06-30 Dainippon Printing Co Ltd リードフレームの吸着搬送装置
TW201034927A (en) * 2009-03-25 2010-10-01 Au Optronics Corp Vacuum suction apparatus
CN102163658A (zh) * 2011-02-01 2011-08-24 哈尔滨工业大学 Led多芯片吸嘴
CN204289398U (zh) * 2014-11-18 2015-04-22 安徽安芯电子科技有限公司 半导体芯片分向测试装置
CN109256351A (zh) * 2018-09-20 2019-01-22 南方科技大学 微型芯片的批量转移装置以及转移方法

Also Published As

Publication number Publication date
CN109256351B (zh) 2021-06-08
CN109256351A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2020057584A1 (zh) 微型芯片的批量转移装置以及方法
US9496155B2 (en) Methods of selectively transferring active components
WO2018107793A1 (zh) 微元件的转移系统、转移方法、制造方法、装置和电子设备
CN112967984B (zh) 微芯片的巨量转移方法及显示背板
WO2018192389A1 (zh) 一种用于微元件转移的转置头
WO2019114173A1 (zh) 微发光二极管及其转移方法
US11631601B2 (en) Transfer head for transferring micro element and transferring method of micro element
KR20120052344A (ko) 반도체 요소의 건식 전사 인쇄용 진공 결합 공구 장치
CN110165024B (zh) 微型元件转移方法
WO2020088099A1 (zh) 一种微器件转移装置及其制备方法
CN110739260B (zh) 一种转移基板和转移方法
GB2545155A (en) Assembly of semiconductor devices
CN110228784B (zh) Mems阵列系统和操纵物体的方法
CN110391165B (zh) 转移载板与晶粒载板
WO2020103405A1 (zh) 微发光器件的转移方法以及转移设备
CN112768370B (zh) 微元件的转移方法及转移装置
CN108878412A (zh) 全彩MicroLEDs显示装置制备方法
CN112967971B (zh) 一种Micro-LED的转移基板及其制备方法
WO2020096638A1 (en) Holding chucks having compartmentalized holding cavities and uses for such holding chucks
WO2020258644A1 (zh) 一种microled芯片的转移方法
KR20140061912A (ko) 스탬프 구조체 및 이를 이용한 전사 방법
JP2022543329A (ja) マイクロ発光ダイオードのマストランスファー方法及びシステム
TW202046381A (zh) 發光二極體晶粒轉移方法及具有磁性基板的發光二極體晶粒
WO2008088069A1 (ja) 微小構造体の集積方法,微小構造体およびマイクロデバイス
CN111987193B (zh) 微发光二极管转移装置及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862543

Country of ref document: EP

Kind code of ref document: A1