WO2018107793A1 - 微元件的转移系统、转移方法、制造方法、装置和电子设备 - Google Patents

微元件的转移系统、转移方法、制造方法、装置和电子设备 Download PDF

Info

Publication number
WO2018107793A1
WO2018107793A1 PCT/CN2017/097848 CN2017097848W WO2018107793A1 WO 2018107793 A1 WO2018107793 A1 WO 2018107793A1 CN 2017097848 W CN2017097848 W CN 2017097848W WO 2018107793 A1 WO2018107793 A1 WO 2018107793A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
test
pick
component
main
Prior art date
Application number
PCT/CN2017/097848
Other languages
English (en)
French (fr)
Inventor
徐宸科
邵小娟
郑建森
梁兴华
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Publication of WO2018107793A1 publication Critical patent/WO2018107793A1/zh
Priority to US16/426,013 priority Critical patent/US11142452B2/en
Priority to US17/447,982 priority patent/US11618673B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/008Aspects related to assembling from individually processed components, not covered by groups B81C3/001 - B81C3/002
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/002Apparatus for assembling MEMS, e.g. micromanipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • Micro component transfer system transfer method, manufacturing method, device and electronic device
  • the present invention relates to a micro-component for display, and more particularly to a transfer device, a transfer method, a manufacturing method, a device, and an electronic device for a micro-component.
  • Micro-element technology refers to an array of minute-sized components that are integrated at a high density on a substrate.
  • micro-light-emitting diode (Micro LED) technology is becoming a hot research topic, and the industry expects high-quality micro-component products to enter the market.
  • High-quality micro-pitch LED products can have a profound impact on traditional display products such as LCD/OL ED that are already on the market.
  • a micro-element is first formed on a donor substrate, and then the micro-element is transferred onto a receiving substrate.
  • the receiving substrate is, for example, a display screen.
  • One difficulty in the fabrication of microcomponents is how to transfer the microcomponents from the donor substrate to the receiving substrate.
  • a conventional method of transferring micro-elements is to transfer micro-elements from a transfer substrate to a receiving substrate by wafer bonding.
  • One of the implementation methods of the transfer method is direct transfer, that is, directly bonding the micro-element array from the transfer substrate to the receiving substrate, and then removing the transfer substrate.
  • Another method of implementation is indirect transfer. The method comprises two steps of joining/stripping. First, the transfer substrate extracts the array of microelements from the donor substrate, then transfers the substrate and then bonds the array of microelements to the receiving substrate, and finally removes the transferred substrate.
  • the extraction micro-element array is generally performed by means of electrostatic pickup. An array of transfer heads is required during electrostatic pickup.
  • a transfer system of a micro component comprising: a main pick-up device for picking up or releasing a micro component;
  • a test device having a test platform and a series of test circuits, the platform surface is provided with a series of test electrodes connected to the test circuit; a first carrier for placing an original array of micro-components; a disk for placing a receiving substrate; in the process of transferring the micro-component using the transfer system, picking up the micro-component by using the main pick-up device and positioning it on a platform of the testing device, and testing the micro-component by the testing device, according to The test result releases the qualified micro-components of the micro-components picked up by the main pick-up device onto the receiving substrate.
  • the transfer system further includes a reverse pick-up device having an adsorption force to the micro-component that is greater than an adsorption force of the main pick-up device on the micro-component, in the process of transferring the micro-component using the transfer system,
  • the reverse pickup device is used to pick up the defective micro-components in the micro-components picked up by the main pickup device.
  • the testing device, the first carrier, the second carrier and the reverse pickup device are disposed on a support table, and the primary pickup device is disposed above the support table.
  • the support table is mobile.
  • the support table is horizontally movable, such as a rotary table or moving back in one direction, the horizontal position of the primary pick-up device being fixed.
  • the support table can be movable in the horizontal direction and the vertical direction, that is, a lifting platform, and the position of the main pickup device is fixed.
  • the support table is moved in a horizontal direction, and the main pickup device can be moved up and down in a vertical direction.
  • the support table can also be fixed, and the pick-up unit of the main pick-up device is movable and can be moved in the horizontal direction and/or the vertical direction.
  • the transfer system further comprises a recovery device, the recovery device being provided with an adhesive surface for recovering defective micro-components.
  • the main pickup device is provided with light transmissiveness, and an optical device is disposed above the main pickup device.
  • the optical device comprises an optical test device and/or an identification alignment system.
  • the transfer system includes an optical device located above the main pick-up device and configured to maintain a synchronous movement with the main pick-up device.
  • the main pick-up device picks up the micro-component by electrostatic force, van der Waals force, vacuum adsorption force or adhesion of the glue.
  • the surface of the primary pick-up device has a layer of elastomeric material or a layer of biomimetic gecko material that, upon contact with the micro-component, generates an attractive force on the micro-component to pick up the micro-element.
  • the layer of elastic material may be a PDMS film, and by controlling the speed and manner of contact between the PDMS film and the micro-component, adsorption force to the micro-component can be achieved, thereby picking up the micro-element.
  • the transfer device may further comprise cleaning means for cleaning the surface of the main pick-up device for contacting the micro-component.
  • the cleaning device includes an adhesive film that is cleaned by contact of the surface of the primary pick-up device for contacting the micro-component with the adhesive film.
  • the primary pick-up device has a pick-up unit array and a micro-off array, wherein one of the micro-switches corresponds to a pick-up unit for controlling the pick-up unit array to pick up or release the micro-element.
  • the micro-switching array includes a CMOS memory circuit and an address electrode array coupled to the CMOS memory circuit.
  • the testing device comprises an integrated circuit, and the test electrode is connected to the integrated circuit.
  • the integrated circuit can be a MOS circuit, a CMOS circuit or a 3D-IC circuit.
  • the test electrode of the test device is a micro-convex array or a micro-metal tube array, and the size thereof is 1 to 1000 micrometers, for example, 1 to 50 micrometers, and the pitch is (1 ⁇ 100 ⁇ ) ⁇ (1 ⁇ 100 ⁇ ), for example, ⁇ Or a pitch of 50 ⁇ > ⁇ 100 ⁇ .
  • the micro-convex array or the micro-metal tube array has a size of 5 to 20 ⁇ m and a pitch of 10 ⁇ 10 ⁇ .
  • the testing device further includes a detachable electrode plate, the test electrode is disposed on the electrode plate, and when the electrode plate is mounted on the test platform, the test electrode and the test circuit Form an electrical connection.
  • the present invention provides a method for transferring a micro component, including the steps of: (1) providing a transfer system including a main pick-up device and a test device, wherein the main pick-up device is used for picking up or releasing micro-components, testing The device has a platform and a series of test circuits, the platform surface is provided with a series of test electrodes connected to the test circuit; (2) positioning the main pick-up device on the micro-components connected to the carrier substrate, Picking up the micro-component; (3) repositioning the main pick-up device on the platform of the test device, wherein the electrode of the micro-component is in contact with the test electrode of the test device; (4) applying a test voltage test micro-component to the test circuit , obtaining test data of the micro component; (5) controlling the picking according to the test result The device releases a portion of the micro-elements onto the receiving substrate.
  • the primary pick-up device employs a viscous release layer-adhering micro-component, which may be a UV glue, a pyrolytic gel or a hydrocolloid, or the like.
  • the transfer system provided in the step (1) further includes a UV illumination device, the main pickup device is a transparent substrate; in the step (2), first in the main pickup device The surface is coated with UV glue as a release layer, and then positioned on the micro-component connected to the carrier substrate to pick up the micro-component; in the step (5), the UV illumination device is used to align the main pickup The defect pattern (failed micro-component) of the micro-component picked up by the device is irradiated, the micro-element corresponding to the defect pattern is released from the main pickup device, the main pickup device is repositioned on the receiving substrate, and the UV illumination device is used again Illuminating the micro-components picked up by the main pick-up device to release the remaining micro-components on the receiving substrate
  • the transfer system provided in the step (1) further includes a UV illumination device
  • the main pickup device is a transparent substrate
  • the step (2) first in the main pickup device The surface is coated with UV glue as a peeling layer, which is then positioned on the micro-component connected to the carrier substrate to pick up the micro-component
  • the main pick-up device is positioned above the receiving substrate Using the UV illumination device, illuminating the micro-elements other than the defect pattern of the micro-component picked up by the main pickup device (ie, qualified micro-elements), and releasing the micro-elements other than the defect pattern on the receiving substrate;
  • the main pick-up device is isolated from the receiving substrate; the UV illumination device is again used to illuminate the defect pattern picked up by the main pick-up device to release the micro-element of the defect pattern from the main pick-up device.
  • the UV illumination device in the transfer system provided in the step (1) may be replaced with a laser illumination device, in the step (2), first in the main pickup device.
  • the surface is coated with a pyrolysis gel as a release layer, and in the step (5), the release layer is heated and decomposed by the laser irradiation device to release the microcomponent.
  • the providing transfer system in the step (1) further includes a UV illumination device and a hydrolysis device, wherein the main pickup device is a transparent substrate; in the step (2), first in the main pickup Applying a UV-light hydrolyzed gel as a peeling layer on the surface of the device, and positioning it on the micro-component connected to the carrier substrate to pick up the micro-component; in the step (5), first adopting the UV illumination device Illuminating the defect pattern (failed micro-component) of the micro-component picked up by the main pick-up device a peeling layer corresponding to the trapping pattern; then, the peeling layer is decomposed by the hydrolysis device, and the temperature of the hydrolyzate is set to room temperature, so that the peeling layer other than the defect pattern of the main pick-up device is decomposed, thereby passing the qualified micro Disposing the component from the main pick-up device; then isolating the main pick-up device from the receiving substrate, and again decomposing the peeling layer by using the
  • the manner in which the defective micro-elements are released from the main pickup device by partially decomposing the peeling layer is more suitable for the transfer of the larger-sized micro-components, for example, on 100 micrometers.
  • the microcomponent which may be a microcomponent of 100 to 5000 micrometers, preferably 200 micrometers or more, may be detached from the main pickup device by its own gravity after the release layer is decomposed.
  • micro-components such as micro-components below 100 micrometers, micro-components of 10 to 100 micrometers or even 10 micrometers may be used, and their applicability is relatively poor.
  • the micro-component Since the micro-component generates an adsorption force such as van der Waals force, electrostatic force in a state of being in contact with the surface of the material layer, even if the peeling layer between the micro-component and the main pickup device is decomposed, since the size thereof is too small, such as The adsorption force such as van der Waals force and electrostatic force can still keep the micro-component and the main pickup device in an adsorption state, so that the micro-component cannot be detached from the main pick-up device, and then the reverse pick-up device can be used in the step (5).
  • the main pickup device picks up the defective micro-components and transfers them to the recovery device, and then transfers the micro-components on the main pickup device to the receiving substrate.
  • the present invention also provides a method for transferring a micro component, comprising the steps of: (1) providing any of the foregoing transfer systems, comprising at least a main pick-up device, a test device, a first carrier, and a second carrier, wherein An array of microelements to be transferred is placed in the first carrier, a receiving substrate for receiving the microcomponents is placed in the second carrier; (2) the main pickup device is positioned above the first carrier, and the primary pickup is used The device picks up the micro-components in the first carrier; (3) positions the main pick-up device over the platform of the test device, and tests the electrodes of the picked-up micro-components and the test device (4) applying a test voltage test micro-component to the test circuit of the test device to obtain a test result; (5) positioning the main pick-up device above the second carrier, releasing the tested micro-component after testing On the receiving substrate
  • the transfer system provided in the step (1) further comprises a reverse pick-up device, wherein the adsorption force on the micro-component is greater than the adsorption of the micro-component by the main pick-up device, in the step (4) And (5) steps
  • the method further includes: positioning the main pick-up device above the reverse pick-up device after the test is completed, and picking up the unqualified micro-components in the micro-component picked up by the main pick-up device by using the reverse pick-up device.
  • the main pick-up device provided in the step (1) has a pick-up unit array and a micro-off array, wherein one of the micro-switches corresponds to a pick-up unit for controlling the pick-up unit array to pick up or release the micro-components.
  • the pick-up unit array is controlled by the micro-element array, and the qualified micro-component is released onto the receiving substrate.
  • the primary pick-up device in each positioning step of the transfer process, remains unchanged in a horizontal position by moving the test device, the first carrier, the second carrier, or the reverse The picking device achieves positioning.
  • the transfer system provided by the step (1) further comprises an optical test device, wherein the micro-component to be transferred is a micro-light-emitting diode, and the step (4) further comprises an optical test, which is the same All test circuits apply a test voltage and optically test the micro-components on the test platform at the same time.
  • the main pick-up device picks up the micro-elements by electrostatic force, van der Waals force, vacuum suction force or adhesion of the glue.
  • the surface of the main pickup device has a layer of elastic material or a layer of biomimetic gecko material, which contacts the micro-component to generate an adsorption force on the micro-component to pick up the micro-element.
  • the layer of elastic material may be a PDMS film. By controlling the speed and manner of contact of the PDMS film with the micro-component, an adsorption force can be generated on the micro-component to pick up the micro-element.
  • a method for fabricating a micro-component device comprising transferring a micro-element onto a receiving substrate of a micro-component device using a method in accordance with the present invention.
  • a microcomponent device fabricated using the method of the present invention is provided.
  • an electronic device comprising a micro-component device in accordance with the present invention.
  • FIG. 1 illustrates a transfer system of a micro-component according to a first preferred embodiment of the present invention.
  • FIG. 2 is a schematic view showing a preferred main pickup device in a first preferred embodiment of the present invention.
  • FIG 3 is a schematic view of a preferred test apparatus in a first preferred embodiment of the present invention.
  • FIG. 4 is a schematic view of a preferred reverse pickup device in a first preferred embodiment of the present invention.
  • FIG. 5 illustrates a variation of the transfer system of the micro-component of the first preferred embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of transferring a micro component according to a second preferred embodiment of the present invention.
  • FIG. 7 further shows a sub-flowchart of step S150 of the transfer method shown in FIG. 6.
  • FIG. 8 to FIG. 16 are schematic diagrams showing the process of transferring a micro component according to a second preferred embodiment of the present invention.
  • FIG. 17 illustrates a transfer system of a micro-component according to a third preferred embodiment of the present invention.
  • FIG. 18 is a schematic view showing a preferred main pickup device in a third preferred embodiment of the present invention.
  • Figure 19 is a schematic view showing a preferred main pickup device in a third preferred embodiment of the present invention.
  • FIG. 20 is a flow chart showing a method of transferring a micro component according to a fourth preferred embodiment of the present invention.
  • 21-25 shows a process schematic of a method for transferring a micro-component according to a fourth preferred embodiment of the present invention.
  • 26 is a schematic view showing a preferred main pickup device in a fifth preferred embodiment of the present invention.
  • FIG. 27 is a flow chart showing a method of transferring a micro component according to a sixth preferred embodiment of the present invention.
  • step S350 of the transfer method shown in FIG. 27 further shows a sub-flowchart of step S350 of the transfer method shown in FIG. 27.
  • 29-34 show a schematic diagram of a process for transferring a micro-component according to a sixth preferred embodiment of the present invention.
  • 35 is a schematic view showing a preferred main pickup device in a seventh preferred embodiment of the present invention.
  • 36 is a flow chart showing a method of transferring a micro-element according to an eighth preferred embodiment of the present invention.
  • FIG. 37 further shows a sub-flow diagram of step S450 of the transfer method shown in FIG. 38-44 are schematic diagrams showing the process of a method for transferring a micro-element according to an eighth preferred embodiment of the present invention.
  • Embodiments of the present invention describe a transfer system for transferring microelements and a method of transferring the array of microelements using the transfer system.
  • the micro-element array may be a micro LED device, a diode, a transistor, an integrated circuit (IC) chip, etc., and may have a size of 1 to 5000 ⁇ m, but is not necessarily limited thereto, and some aspects of the embodiment may be applied to a larger and Smaller size.
  • the transfer system has a main pick-up device for picking up or releasing micro-elements, the main pick-up device having a series of pick-up unit arrays each having a size (eg length or width) of 1 to 5000 ⁇ m, for example 10 to 100 ⁇ m , or 100 ⁇ 500 microns, or 1000 ⁇ 5000 microns.
  • the transfer system is further provided with a test device having a test circuit and a test platform.
  • the test platform is provided with a series of test electrodes on the surface thereof, and when the main pickup device is used to pick up the micro-components and is positioned on the test platform of the test device, the micro-device
  • the electrode of the component is in contact with the test electrode, and a voltage is applied to the test circuit to form a test loop, and the photoelectric performance test of the micro component is performed, thereby obtaining a defect pattern of the defective micro component, so that the defective micro component can be excluded in the micro component array transfer process.
  • the transfer system may further include a reverse pick-up device, after the micro-component picked up by the main pick-up device is tested, the reverse pick-up device is used to remove the unqualified micro-component from the main pick-up device, and then the main component The micro-elements picked up by the pick-up device are transferred onto the receiving substrate.
  • the main pick-up device can pick up the micro-component by various forces such as electrostatic force, van der Waals force, vacuum adsorption force, electromagnetic force or adhesion of the glue material; the adsorption force of the reverse pick-up device on the micro-component is generally greater than that of the main pickup The device's adsorption force on the micro-components ensures that the reverse pick-up device can smoothly pick up unqualified micro-components from the main pick-up device.
  • FIG. 1 shows a transfer system 1100 of a first preferred embodiment of the present invention.
  • the transfer system 1100 includes: a main pick-up device 1110, a test device 1120, a first carrier 1130, a second carrier 1140, a reverse pick-up device 1150, a recycling device 1160, an identification alignment device 1170, an optical testing device 1180, and Cleaning device 1190.
  • the main pick-up device 1110 is translucent for picking up or releasing micro-components, and transferring a large number of micro-components; the identification alignment device 1170 is located above the main pick-up device 1110, the first carrier 1130, the second carrier 1140, the reverse pick-up device 1150 and the cleaning device 1190 are located at the main Below the pick-up device 1110.
  • the main pick-up device 1110 is first positioned above the first carrier 1130, the micro-components are picked up, and the main pick-up device 1110 is positioned on the platform of the test device 1120, and the test device is used. 1120 test micro-components, then the main pick-up device 1110 is positioned above the reverse pick-up device 1150, the reverse pick-up device 1150 is used to grab the unqualified micro-components of the micro-components picked up by the main pick-up device 1 110, and finally the main pick-up device 1110 Positioned above the second carrier 11 40, the micro-components picked up are released on the receiving substrate to realize mass transfer.
  • the primary pick-up device 1110 is required to be displaced in the horizontal and vertical directions, or The first carrier 1130, the second carrier 1140, the reverse pickup device 1150, and the cleaning device 1190 are displaceable in the horizontal and vertical directions.
  • the main pick-up device 1110 is fixed at the water level, and the test device 1120, the first carrier 1130, the second carrier 1140, the reverse pick-up device 1150, and the cleaning device 1190 are disposed to be horizontally movable.
  • the horizontal displacement mode of the support table 1101 may be a rotary type or a backward-return type.
  • the support stage 1101 is preferably a rotary table, and the horizontal displacement of the water is realized by the rotation.
  • the displacement in the vertical direction can be realized by the lifting platform.
  • the main pick-up device 1 110 is set to the same horizontal position for vertical lifting, and the lifting platform can also be set on the supporting table.
  • the main pickup device 1110 has a series of pickup unit arrays each having a size (for example, a length or a width) of 1 to 5000 ⁇ m, and the micro-components can be picked up by van der Waals force or adhesion of the glue.
  • the main pickup device 1110 is provided with light transmissiveness, and a transparent substrate 1111 is selected as a main body.
  • the surface of the transparent substrate 1111 is provided with a layer of elastic material 1112 having a series of surfaces for picking up micro.
  • the pickup unit 1113 of the component generates an adsorption force to the micro component at the contact of the micro component to pick up the micro component.
  • the elastic material layer 1112 is selected from a PDMS film. By controlling the speed and manner of contact between the PDMS film and the micro device, an adsorption force can be generated on the micro device to pick up the micro device.
  • the picking unit 1112 on the surface of the main pick-up device 1110 may be made of bionic gecko material, and the surface includes a micro-nano composite rigid pile structure, for example, having a range of lxlO 5 Up to 6x10 8 protrusions per cm 2 of protrusion density, the rigid pile structure made of bionic gecko material contacts the surface of the micro-component to generate van der Waals force, which has an adhesion function, thereby adsorbing the micro-element to extract the desired micro-element.
  • the surface of the fluff structure is preferably hydrophobic, which prevents the formation of a water layer on the contact surface, reduces the possible effect of the capillary force as much as possible, and plays an important role in reducing the gap and providing van der Waals force.
  • the primary pick-up device 1110 may employ a viscous release layer-adhering micro-component, which may be a UV glue, a pyrolytic gel or a hydrocolloid, or the like.
  • a UV adhesive layer is formed on the transparent substrate 1111.
  • the testing device 1120 has a test platform 1121 and a series of test circuits.
  • the platform surface 112 la is provided with a series of test electrodes 1123 connected to the test circuit.
  • the test circuit uses an integrated circuit 11 22, which may be a MOS circuit, a CMOS circuit or a 3D-IC circuit.
  • a CMOS integrated circuit is employed as a test circuit having a series of sub-test circuits therein.
  • the test electrode 1123 is disposed on the detachable electrode plate 1124. When the electrode plate 1124 is mounted on the test platform 1121, the test electrode 1123 is electrically connected to each sub-test circuit of the CMOS integrated circuit.
  • the pitch of the test electrode 1123 array can be set to different specifications, specifically an integer multiple of the pitch of each sub-test circuit in the CMOS integrated circuit, for example, 1 time, 3 times or 30 times.
  • the electrode plates of different specifications can be selected for testing according to differently arranged micro-components.
  • the electrode plate may be a silicon substrate, a microvia array is formed by using a TSV, and then a test electrode 1123 is formed in the microporous structure, which may be a micro-bump or a micro-tube array. (for example, nano copper tube), the size is 1 ⁇ 10 00 microns, for example, it can be 1 ⁇ 50 microns, and the pitch is (1 ⁇ 100 ⁇ ) ⁇ (1 ⁇ 100 ⁇ ), for example ⁇ ⁇
  • the micro-convex array or the micro-metal tube array has a size of 5 to 20 ⁇ m and a pitch of 10 ⁇ 10 ⁇ .
  • the reverse pick-up device 1150 is for grasping the unqualified micro-components in the micro-components picked up by the main pick-up device 1110, so that the adsorption force on the micro-components is greater than the adsorption force on the micro-components by the main pick-up device 1110.
  • the reverse pick-up device 1150 can include a pick-up head 1151. As shown in FIG. 4, the pick-up pick-up device 1150 can also be provided with a robot (not shown), wherein the pick-up head 1151 can employ electrostatic force, van der Waals force.
  • the robot is used to position the pick-up head in the main pick-up device 1110 Unqualified micro-components are taken to quickly capture unqualified micro-components.
  • the reverse pick-up device 1150 can also include an array of pick-up heads, and the reverse pick-up device 1150 also includes a micro-off array for controlling pick-up or release of individual pick-up heads, the flip-chip array controlling the counter Unacceptable micro-components are drawn to the pick-up device at one time.
  • the first carrier 1130 is for placing an original array of micro-elements
  • the second carrier 1140 is for placing a receiving substrate, both of which may employ a Chuck plate.
  • the identification alignment device 1170 can employ a CCD automatic alignment device.
  • the optical testing device 1180 is used to test the optical characteristics of the micro-component, such as the micro-element is a light-emitting diode ⁇ , which can test optical parameters such as spectrum, wavelength, brightness, etc. of the micro-component, and the optical testing device 1180 can use a detector, a spectrometer or an integrating sphere, etc. This embodiment is preferably a spectrometer.
  • the cleaning device 1190 is for cleaning the surface of the main pickup device 1110 for contacting the micro-component.
  • the cleaning device 1190 includes an adhesive film for ensuring picking of the main pickup device by contacting the surface of the main pickup device 1110 for contacting the micro-component with the adhesive film to thereby remove stains, dust, and the like of the pickup surface of the main pickup device. The cleanliness of the surface.
  • the transfer system of this embodiment may further be provided with a micro-component recovery device 1160 for recovering defective micro-components.
  • a micro-component recovery device 1160 for recovering defective micro-components.
  • the adhesive film can be disposed in the recovery device 1160. When the reverse pickup device picks up the defective micro-component, the defective micro-component is directly adhered to the adhesive film.
  • the recovery device 1160 can be disposed side by side with the main pick-up device 1110, and the pick-up device is disposed above the support table 1101.
  • the transfer system of the present embodiment is provided with a main pick-up device, a test device, and a reverse pick-up device, and has a transfer, a test function, and a reverse grip function, and the main pick-up device can pick up the micro-components in a huge amount. And contacting the test platform of the test device, testing with the test device, obtaining the defect pattern of the picked micro-component, and then using the reverse pick-up device to grasp the defective micro-component in the micro-component picked up by the main pick-up device, and finally The qualified micro-components are transferred to the receiving substrate, and the transfer system is used to transfer the micro-components, thereby eliminating the defective micro-components.
  • the system configures the testing device, the first carrier, the second carrier and the reverse pickup device on a support table capable of horizontal displacement, and can realize the horizontal position of the support table during the transfer process.
  • the main pick-up device is aligned with each of the aforementioned devices, so that the entire system greatly simplifies the alignment during use. Operation.
  • the main pickup device is provided with light transmissivity, so that the main pickup device and the micro-array array are not separated during the electrical test, and the optical test can be realized in the protective pickup state.
  • the test electrode of the testing device adopts a detachable electrode plate, which simplifies the structure of the test circuit on the one hand, and conveniently forms a micro-bump or a micro-metal tube array as a test electrode, and on the other hand Different micro-component sizes and array spacings are selected for testing of different sizes of electrode plates, increasing the applicability of the test device.
  • FIG. 5 illustrates a variation of the transfer system illustrated in FIG. 1.
  • the support table 1101 for placing the test device 1120, the first carrier 1130, the second carrier 1140, the reverse pickup device 1150, and the cleaning device 1190 is fixed.
  • the main pick-up device 1110 adopts a mobile type, and the ⁇ recognition aligning device 1170 has a function of keeping the same movement with the main pick-up device 1110.
  • the identification aligning device 1170 and the main pick-up device 1110 can be installed on the same mobile device at the same time.
  • the identification alignment device 1170 is directly mounted on the main pickup device 1110 itself to ensure that the movement of the two devices is synchronized.
  • the main pick-up device 1110 mentioned in this embodiment is mobile, meaning that the position of the pick-up unit for picking up the micro-component can be moved, and the main pick-up device 1110 can be mobile or Fixed.
  • a pick-up mechanism such as a robot can be used to connect the pickup unit, and the displacement of the pickup unit can be realized by controlling the transfer mechanism.
  • FIG. 6 is a flow chart showing a method for transferring a micro component according to a second preferred embodiment of the present invention, including steps S110 to S150.
  • the transfer system shown in Fig. 1 is used for the transfer.
  • Step S110 The transfer system shown in FIG. 1 is provided, wherein the first carrier has a micro component to be transferred connected to the carrier substrate 121 0, and a receiving substrate 1230 is placed on the second carrier.
  • the carrier substrate 1210 may be a growth substrate or a carrier substrate.
  • the material of the carrier substrate may be glass, silicon, polycarbonate, PC, or Acrylonitrile Butadiene.
  • the micro-elements can be micro-light emitting diodes having a thickness of from about 0.5 ⁇ m to about 100 ⁇ m.
  • the shape of the micro-component may be a cylinder, and the radius of the cylinder may be about 0.5 ⁇ m to about 500 ⁇ m, but the invention is not limited thereto, and the micro-component may also be a triangular cylinder, a cube, a rectangular parallelepiped, a hexagonal cylinder, an octagonal cylinder or Other polygonal cylinders.
  • the receiving substrate 1230 can be selected from automotive glass, glass sheets, and flexible batteries.
  • Subsubstrates such as flexible films with circuitry, display backsheets, solar glass, metals, polymers, polymer composites, and fiberglass, and the like.
  • the test device 1120, the first carrier 1130, the second carrier 1140, and the reverse pickup device 1150 and the cleaning device 1190 of the transfer system are disposed on the support table 110 1 , and the support table 1101 is mobile. By rotating the support table, the aforementioned devices thereon can be positioned below the main pickup device 1110.
  • Step S120 moving the first carrier to the lower side of the main pickup device to perform positioning, and the pickup unit 1113 of the main pickup device 11 10 is in contact with the micro-component 1200 to pick up the micro-element array.
  • the number of micro-components picked up by the main pick-up device 1110 can reach more than tens of thousands, and even reach the order of tens of millions.
  • Step S130 Moving the test device 1120 to the lower side of the main pick-up device 1110, positioning is performed such that the electrode of the micro-component picked up by the main pick-up device 1110 is in contact with the test electrode 1123 of the test device, as shown in FIG.
  • Step S140 Apply a test voltage test micro-component to the test circuit of the test device to obtain a test result, as shown in FIG. Fig. 11 illustrates a defect pattern in which a dummy element having a shadow indicates that the test result is unacceptable.
  • the micro-components on the test platform can be energized through the test circuit, and the optical parameters of the micro-components on the test platform, such as the spectrum, are measured by the optical test device. , wavelength, brightness and other characteristics.
  • Step S150 Position the main pick-up device 1110 above the second carrier 1140, and release the tested micro-components on the receiving substrate. In this step, it may be further divided into three sub-steps S151-153.
  • FIG. 7 shows a specific flow chart of this step, which is specifically as follows.
  • Step S151 Moving the reverse pickup device 1150 to the lower side of the main pickup device 1110 to perform positioning, as shown in FIG.
  • Step S152 The reverse pick-up device 1150 is used to reversely grab the unqualified micro-components (1201, 1206) in the micro-components picked up by the main pick-up device, and then transfer to the recovery device 1160, as shown in FIG. 13- As shown in Fig. 14, the micro-components picked up by the main pick-up device 1110 are all good products.
  • the reverse pick-up device 1150 can grab all of the failed micro-components at a time, or can perform the grabbing in multiple times, mainly depending on the type of the reverse pick-up device 1150 and the number of the pick-up heads 1151.
  • the recovery device 1160 is provided with an adhesive surface, and the reverse pickup device 1150 directly adheres the defective micro-component to the adhesive film. The surface is located above the reverse pick-up device 1150 as shown in FIG.
  • Step S153 Move the second carrier 1140 to the lower side of the main pickup device 1110 to perform positioning, and release the micro-component picked up by the main pickup device 1110 onto the receiving substrate 1230 to complete the micro-component transfer, as shown in FIG.
  • the micro-elements transferred to the receiving substrate 1230 are all micro-components that have passed the test.
  • the cleaning step of the main pick-up device may be increased, specifically: moving the cleaning device 1190 below the main pick-up device 1110, and the surface of the pick-up unit 1113 of the main pick-up device 1110 is The adhesive film in the cleaning device 1190 is subjected to one or more contacts as shown in Fig. 16, thereby cleaning the surface of the pickup unit to ensure the cleanliness of the surface thereof.
  • the main pick-up device 1110 remains stationary, and the alignment is achieved by moving the respective devices.
  • the surface of the pick-up unit of the main pick-up device 1110 is made of an elastic material, specifically PDMS, by controlling the PDMS film to contact the micro-device. The speed and manner of the component, to achieve an adsorption force on the micro component, thereby picking up the micro component.
  • Figure 17 illustrates a transfer system 2100 for a micro-component of a third preferred embodiment of the present invention.
  • the transfer system includes: a main pickup device 2110, a test device 2120, a first carrier 2130, and a second carrier 21
  • the main pick-up device 2110 has a pick-up unit array and a micro-off array, wherein one of the micro-switches corresponds to a pick-up unit for controlling the pick-up unit array to pick up or release the micro-components, and the main pick-up device 2110 can be used to extract all at one time.
  • the micro-elements can also be only partially extracted as needed; further, the qualified micro-component transfer can be partially extracted, leaving the remaining unqualified micro-components; the defective micro-elements can also be extracted, leaving qualified micro-elements on the first substrate.
  • the test device 2120, the first carrier 2130 and the second carrier 2140 are also disposed on the support table 2101, and the details of this portion are referred to the first embodiment.
  • the main pick-up device 2110 preferably employs an electrostatically-absorbable or vacuum-adsorbing micro-element, and in order to achieve a micro-sized gate array, a CMOS integrated circuit can be implemented.
  • Figure 18 is a schematic illustration of a primary pick-up device employing electrostatic pick-up.
  • the main pickup device 2110 includes a base substrate 2111. The upper surface of the base substrate 2 111 is connected to the CMOS integrated circuit 2112, and the lower surface is provided with a series of pick-up heads 2113. Each of the pick-up heads 2113 corresponds to an electrostatic adsorption circuit.
  • the adsorption circuit includes a connection line 2114 and an electrode layer 2115, wherein the connection line 2114 is connected to the CMOS integrated circuit 2112 through the base substrate 2111, While being connected to the external electronic control unit, the surface of the electrode layer 2115 is covered with a dielectric layer 2116, so that when an adsorption voltage ⁇ is applied to the electrode layer 2115, an electrostatic adsorption force pick-up micro-element is formed.
  • FIG. 19 is a schematic view of a main pickup device employing vacuum adsorption.
  • the main pick-up device adopts a nozzle structure to pick up the release of the micro-component and the micro-component by vacuum pressure adsorption.
  • the main pick-up device 2110 has a nozzle array 21160, and each nozzle communicates to the same cavity 21130 through a vacuum path 21150.
  • the vacuum path has a valve 21152 that controls the ⁇ /OFF of the vacuum path.
  • the size of each nozzle (for example, length or width) is 1 ⁇ 1000 ⁇ , and the pitch of the nozzle array is (1 ⁇ ⁇ 1000 ⁇ ) ⁇ (1 ⁇ )
  • each vacuum path can be a series of microporous structures (e.g., Si substrates) formed on the slab structure 21140.
  • each nozzle corresponds to a vacuum path, a valve and a shut-off element.
  • CMOS storage circuit and address electrode array In order to achieve a small size of the array, it can be realized by CMOS storage circuit and address electrode array.
  • the main pickup device 2110 includes a CMOS storage circuit layer 21110, an address electrode layer 21120, a cavity 21130, a vacuum path array 21150, a valve array 21152, and a nozzle array 21160 from top to bottom.
  • the CMOS storage circuit layer 21110 and the address electrode layer 21120 located below thereof constitute a gate array JJ
  • the address electrode layer 21120 is provided with an address electrode array
  • one address electrode 21122 corresponds to a vacuum path 21150.
  • Below the address electrode layer 21120 is a plate structure 21140.
  • the vacuum path array 21 150 is a microwell array 350 formed on the plate 340.
  • the plate structure and the address electrode layer have a space to form a cavity 21130.
  • the vacuum path array and cavity The body 21130 is in communication, and the vacuum path is ⁇ /closed through the valve.
  • the valve 21152 is a movable metal piece 21152.
  • the metal piece structure 21152 has at least one end portion 21152a as a root portion and is connected to the plate holding 21140.
  • the end portion 21152b opposite to the end portion 21152a serves as a movable area, and the plate structure 21140 is divided.
  • the metal piece has only one end portion 21152a connecting portion connected to the plate structure 21140, and the other non-connecting portion and the side wall of the micro hole have a very small gap, and the slit ensures that the metal piece is not inclined on the one hand.
  • the hemiplegia can substantially close the corresponding micropores 21150, and on the other hand, the second end portion 21152b of the metal piece is deflected upward by the electrostatic attraction force, and the corresponding micropores are opened.
  • the main pickup device 2110 of the present embodiment controls the ON/OFF state of the address electrode 21122 through the CMOS storage circuit.
  • the address electrode 21122 When the address electrode 21122 is in the off state (OFF), the voltage potential is not excited to the address electrode 21122, and the voltage potential is not generated. Electrostatic attraction, the second end portion 21152b of the metal piece is not deflected, and the true The empty path 21150; when the address electrode 21122 is in the on state (ON), the buffer address electrode 21122 excites the voltage potential to form an electrostatic attraction force, and the second end portion 21152b of the metal piece is under the electrostatic attraction force of the address electrode 21122. The address electrode 21122 is deflected to open the vacuum path 21150.
  • the transfer system of the embodiment is provided with a main pick-up device and a test device, wherein the main pick-up device has a pick-up unit array and a micro-switching array, and has a function of transferring, testing, and eliminating defects, and adopts a main pick-up device.
  • the micro-components are picked up and brought into contact with the test platform of the test device, and the test device is used for testing to obtain the defect pattern of the picked micro-components.
  • the micro-components that are unqualified by the main pick-up device are released into the recovery container, and then qualified.
  • micro-component is transferred to the receiving substrate, or only the qualified micro-component is released on the receiving substrate, and finally the unqualified micro-component is released into the recycling container, and the transfer system is used to transfer the micro-component, thereby eliminating the unqualified Micro-components.
  • FIG. 20 is a flow chart showing a method for transferring a micro component according to a fourth preferred embodiment of the present invention, including steps S110-S130, in which the transfer system shown in FIG. 17 is selected.
  • Step S210 The system shown in FIG. 17 is provided, including a main pick-up device 2110, a test device 2120, a first carrier 2130, and a second carrier 2140, wherein the first carrier is placed in the carrier substrate 2210. On the upper micro-component to be transferred, a receiving substrate 2230 is placed on the second carrier.
  • Step S220 Moving the main pick-up device 2110 to the top of the first carrier 2130, performing alignment, and picking up the micro-array array by the pick-up unit 2113 of the main pick-up device 2110, as shown in FIG.
  • Step S230 Moving the main pick-up device 2110 to the platform of the test device 2120, wherein the electrodes of the micro-component are in contact with the test electrode 2123 of the test device, as shown in FIG.
  • Step S240 Apply a test voltage test micro-component to the test circuit to obtain test data of the micro-component, as shown in FIG.
  • Step S250 According to the test result, the main pickup device 2110 is controlled to release the qualified micro-components on the receiving substrate 2230. Specifically, the main pick-up device 2110 is moved above the recovery container, and the failed micro-components (for example, 1202, 1206) are released by controlling the switch-off array of the main pick-up device 2110, as shown in FIG. 24; then the main pick-up device 2110 is moved again. Above the second carrier 2140, the alignment is performed, and the micro-components picked up by the main pickup device 211 0 are released onto the receiving substrate 2230 to complete the transfer of the micro-components, and the micro-components transferred onto the receiving substrate 2230 are all tested. The qualified microcomponents are shown in Figure 25.
  • step S210 of the embodiment the qualified micro-components may be selectively released onto the receiving substrate 2230, and the unqualified micro-components may be released into the recovery container.
  • the defect pattern of the micro component is obtained by testing the micro component during the transfer process of the micro component, so that the qualified micro component or the unqualified micro component can be selectively picked up to realize the transfer process. Defective microcomponents are pre-excluded.
  • the system includes: a support table 3101, a main pickup device 3110, a test device 3120, a first carrier 3130, a second carrier 3 140, a UV illumination device 3160, an identification alignment device 3170, an optical test device 3180, and a cleaning device 3190.
  • the main pickup device 3110 is translucent, and may be a transparent substrate structure, and the micro-elements are picked up by forming a viscous peeling layer adhesive 3112 on the surface thereof.
  • UV glue is used as the release layer.
  • FIG. 27 is a flow chart showing a method of transferring a micro component according to a sixth preferred embodiment of the present invention, including steps S310 to S350.
  • the transfer system shown in Fig. 26 is used for the transfer.
  • Step S310 The transfer system shown in FIG. 26 is provided, wherein the main pick-up device 3110 is a transparent substrate structure.
  • the first carrier 3130 has a micro component to be transferred which is connected to the carrier substrate 3210, and a receiving substrate 3230 is placed on the second carrier 3140.
  • Step S320 Apply UV glue as the peeling layer 3112 on the surface of the main pick-up device 3110, move the first carrier to the lower side of the main pick-up device, and perform positioning so that the peeling layer 3112 and the micro-peel on the main pick-up device 3110 The components are in contact and the micro-array array is picked up, as shown in FIG.
  • Step S330 Moving the test device 3120 to the lower side of the main pick-up device 3110 to perform positioning, so that the electrode of the micro-component picked up by the main pick-up device 3110 is in contact with the test electrode 3123 of the test device, as shown in FIG.
  • Step S340 Applying a test voltage test micro-component to the test circuit of the test device to obtain a test result, as shown in FIG.
  • Step S350 Position the main pick-up device 1110 above the second carrier 1140, and release the tested micro-components on the receiving substrate.
  • this step may be further divided into three sub-steps S351-353, and FIG. 28 shows a specific flow chart of this step, which is specifically as follows.
  • Step S351 The movement test device 3120 is located below the top pick-up device 3110, and the UV light device 3160 is used to align the defect pattern (failed micro-component) of the micro-component picked up by the main pick-up device 3110. Irradiation, the UV adhesive layer corresponding to the defect pattern is decomposed, so that the micro-element corresponding to the defect pattern is released from the main pickup device, as shown in FIG.
  • Step S352 Position the main pickup device 3110 above the receiving substrate 3230. Specifically for moving the second carrier
  • 3140 is placed below the main pickup device 3110 to perform alignment, as shown in FIG.
  • Step S53 The UV pickup device 3160 is again used to align the main pickup device to pick up 3110, and irradiate, so that the UV adhesive layer 3112 on the main pickup device 3110 is decomposed, and the remaining micro-components are released on the receiving substrate 3230.
  • micro-component transfer as shown in Figure 34.
  • the micro-elements transferred to the receiving substrate 3230 are all micro-components that have passed the test.
  • the transfer system 3110 employed in the present embodiment can also generally include a cleaning device 3190 for cleaning the UV decomposed material remaining on the surface of the main pickup device 3110 after each transfer is completed.
  • the main pickup device 3110 may be first positioned above the receiving substrate 3230.
  • the UV glue other than the defect pattern of the micro-component picked up by the main pickup device ie, the UV glue corresponding to the qualified micro-component
  • the UV glue corresponding to the unqualified micro component is not disassembled, so as to continue to adhere to the main pickup device 3110; then the receiving substrate 3230 is moved away from the main pickup device 3110, and the UV illumination device is again used to align the main
  • the defect pattern picked up by the pickup device is irradiated to release the micro-element of the defect pattern from the main pickup device.
  • the system includes: a support table 4101, a main pickup device 4110, a test device 4120, a first carrier 4130, a second carrier 4 140, a UV illumination device 4160, an identification alignment device 4170, an optical test device 4180, and a hydrolysis device 4190.
  • the main pickup device 4110 is translucent, and may be a transparent substrate structure, and the micro-elements are picked up by forming a viscous peeling layer adhesion 4112 on the surface thereof.
  • a UV hydrolyzed gel is selected as the peeling layer, and the UV hydrolyzed gel is usually hydrolyzed by using a room temperature hydrolyzate without UV irradiation, and after being cured by UV irradiation, it is required to be hydrolyzed by a high temperature hydrolyzate (generally The temperature is required to be 85 ° C).
  • Step S410 The transfer system shown in FIG. 35 is provided, wherein the main pick-up device 4110 is a transparent substrate structure.
  • the first carrier 4130 has a micro component to be transferred which is connected to the carrier substrate 4210, and a receiving substrate 4230 is placed on the second carrier 4140.
  • Step S420 applying a UV hydrolyzed glue as a peeling layer 4112 on the surface of the main pick-up device 4110, moving the first carrier 4130 to the lower side of the main pick-up device 4110, and positioning the peeling layer on the main pick-up device 4110.
  • the 4112 is in contact with the micro-element and picks up the array of micro-elements, as shown in FIG.
  • Step S430 Moving the test device 4120 to the lower side of the main pick-up device 4110, positioning is performed, so that the electrode of the micro-component picked up by the main pick-up device 4110 is in contact with the test electrode 4123 of the test device, as shown in FIG.
  • Step S440 Apply a test voltage test micro-component to the test circuit of the test device to obtain a test result, as shown in FIG.
  • Step S450 The main pick-up device 1110 is positioned above the second carrier 1140, and the UV hydrolyzed glue 4112 on the main pick-up device 4110 is hydrolyzed by the hydrolysis device 41 90 to release the tested micro-components after receiving. On the substrate 4230. In this step, it can be further divided into four sub-steps S451-454.
  • FIG. 37 shows a detailed flowchart of this step, which is specifically as follows.
  • Step S451 The movement test device 4120 is located below the top pick-up device 4110, and the UV light device 4160 is used to align the defect pattern (failed micro-component) of the micro-component picked up by the main pick-up device 4110 to make a defect.
  • the UV hydrogel layer 4112A corresponding to the pattern is cured, as shown in FIG.
  • Step S452 The main pickup device 4110 is positioned above the receiving substrate 4230. Specifically, the second carrier 4140 is moved to the lower side of the main pickup device 4110 to perform alignment, as shown in FIG.
  • Step S453 Decomposing the peeling layer 4112 by using the hydrolysis device 4190, the crucible is set to the room temperature, so that the peeling layer other than the defect pattern is decomposed, thereby passing the qualified micro-components from the main pickup device. Released and transferred onto the receiving substrate 4230 as shown in FIG. The micro-elements on the substrate receiving substrate 3230 are all micro-components that have passed the test.
  • Step S454 The receiving substrate 4230 is moved away from the main pickup device 4110, the UV pickup device 3160 is again used to align the main pickup device to pick up 3110, and the hydrolyzed device 4190 is again used to decompose the cured peeling layer 4112A on the main pickup device 4110.
  • the temperature of the hydrolyzate is set to 85 ° C or higher, so that the previously cured peeling layer 4112A is decomposed, thereby releasing the defective pattern micro-elements from the main pickup device 4110, as shown in FIG. [0132]
  • the foregoing steps S410-450 are repeated to complete the transfer of the micro-components in the electronic device manufacturing process.
  • the transfer system 4110 employed in the present embodiment can also generally include a cleaning device for cleaning the decomposition product of the UV hydrocolloid remaining on the surface of the main pickup device 4110 after each transfer is completed.
  • the UV hydrolyzed glue corresponding to the qualified micro-component may be cured, and the UV hydrolyzed glue corresponding to the defect pattern is first decomposed by the room temperature hydrolyzate, so that the unqualified micro-component is removed from the main pickup device 4110.
  • the upper substrate is released, and then the receiving substrate 4230 is moved below the main pickup device 4110, and the cured UV hydrocolloid 4112 is decomposed by a high-temperature hydrolyzate of 85 ° C or higher, thereby releasing the qualified micro-components onto the receiving substrate.
  • the micro-array array can be tested and transferred a plurality of times by the transfer device.
  • the method of transferring the micro-components of the above embodiments can be used to fabricate an electronic device, and can be widely used in an electronic device, which can be a mobile phone, a tablet computer, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

提供一种微元件的转移装置、转移方法、制造方法、装置和电子设备,其中微元件的转移系统(1100),包括:主拾取装置(1110),用于拾取或释放微元件;测试装置(1120),具有测试平台(1121)和一系列测试电路,平台表面上设有一系列测试电极(1123),与测试电路连接;第一载盘(1130),用于放置原始的微元件阵列;第二载盘(1140),用于放置接收基板;在使用转移系统进行转移微元件过程中,采用主拾取装置拾取微元件并将其移至测试装置的平台上,采用测试装置测试微元件,根据测试结果将主拾取装置拾取的微元件中合格的微元件释放于接收基板上。

Description

微元件的转移系统、 转移方法、 制造方法、 装置和电子 设备 技术领域
[0001] 本发明涉及用于显示的微元件, 更具体地, 涉及一种用于微元件的转移装置、 转移方法、 制造方法、 装置和电子设备。
背景技术
[0002] 微元件技术是指在衬底上以高密度集成的微小尺寸的元件阵列。 目前, 微间距 发光二极管 (Micro LED) 技术逐渐成为研究热门, 工业界期待有高品质的微元 件产品进入市场。 高品质微间距发光二极管产品会对市场上已有的诸如 LCD/OL ED的传统显示产品产生深刻影响。
技术问题
[0003] 在制造微元件的过程中, 首先在施体基板上形成微元件, 接着将微元件转移到 接收基板上。 接收基板例如是显示屏。 在制造微元件过程中的一个困难在于: 如何将微元件从施体基板上转移到接收基板上。
[0004] 传统转移微元件的方法为借由基板接合 (Wafer Bonding) 将微元件自转移基板 转移至接收基板。 转移方法的其中一种实施方法为直接转移, 也就是直接将微 元件阵列自转移基板接合至接收基板, 之后再将转移基板移除。 另一种实施方 法为间接转移。 此方法包含两次接合 /剥离的步骤, 首先, 转移基板自施体基板 提取微元件阵列, 接着转移基板再将微元件阵列接合至接收基板, 最后再把转 移基板移除。 其中, 提取微元件阵列一般通过静电拾取的方式来执行。 在静电 拾取的过程中需要使用转移头阵列。
问题的解决方案
技术解决方案
[0005] 本发明的目的是提出一种具有测试电路的微元件转移装置, 其在转移过程中可 同吋对微元件进行测试, 排除不合格的微元件。 [0006] 本发明的技术方案为: 微元件的转移系统, 包括: 主拾取装置, 用于拾取或释 放微元件;
[0007] 测试装置, 具有测试平台和一系列测试电路, 所述平台表面上设有一系列测试 电极, 与所述测试电路连接; 第一载盘, 用于放置原始的微元件阵列; 第二载 盘, 用于放置接收基板; 在使用所述转移系统进行转移微元件过程中, 采用所 述主拾取装置拾取微元件并将其定位在测试装置的平台上, 采用该测试装置测 试微元件, 根据测试结果将所述主拾取装置拾取的微元件中合格的微元件释放 于接收基板上。
[0008] 优选地, 所述转移系统还包括反向拾取装置, 其对微元件的吸附力大于所述主 拾取装置对微元件的吸附力, 在使用所述转移系统进行转移微元件过程中, 采 用该反向拾取装置拾取所述主拾取装置拾取的微元件中不合格的微元件。
[0009] 优选地, 所述测试装置、 第一载盘、 第二载盘和反向拾取装置设置于一支撑台 上, 所述主拾取装置设置在所述支撑台上方。
[0010] 优选地, 所述支撑台为移动式。 在一些实施例中, 所述支撑台为水平移动式, 诸如旋转台或者朝向一个方向回来移动, 所述主拾取装置的水平位置为固定。 在一些实施例中, 所述支撑台可同吋在水平方向、 垂直方向可移动, 即为一个 升降台, 所述主拾取装置的位置固定不动。 在另一些实施例中, 所述支撑台在 水平方向移动、 所述主拾取装置可在垂直方向做升降移动。 当然, 所述支撑台 也可为固定式, 此吋主拾取装置的拾取单元为移动式, 可在水平方向和 /或垂直 方向移动。
[0011] 优选地, 所述转移系统还包括一回收装置, 所述回收装置设有一粘性表面, 用 于回收不合格的微元件。
[0012] 优选地, 所述主拾取装置具备透光性, 其上方设有光学装置。
[0013] 优选地, 所述光学装置包括光学测试装置和 /或识别对位系统。
[0014] 优选地, 所述转移系统包括光学装置, 其位于所述主拾取装置的上方, 具备与 所述主拾取装置保持同步移动的功能。
[0015] 优选地, 所述主拾取装置通过静电力、 范德华力、 真空吸附力或胶材的粘附力 拾起微元件。 [0016] 在一些实施例中, 所述主拾取装置的表面具有弹性材料层或仿生壁虎材料层, 其在接触微元件吋对微元件产生吸附力, 以拾取微元件。 所述弹性材料层可以 是 PDMS膜, 通过控制该 PDMS膜与微元件接触的速度及方式, 可以达到对微元 件产生吸附力, 从而拾取微元件。
[0017] 优选地, 该转移装置还可以包括清洁装置, 用于清洁所述主拾取装置之用于接 触微元件的表面。 在一些实施例中, 所述清洁装置包括粘性膜, 通过所述主拾 取装置之用于接触微元件的表面与该粘性膜接触进行清洁。
[0018] 在一些实施例中, 所述主拾取装置具有拾取单位阵列和微幵关阵列, 其中一个 微幵关对应一个拾取单元, 用于控制该拾取单元阵列拾取或释放微元件。 在一 些实施例中, 所述微幵关阵列包括 CMOS存储电路及与所述 CMOS存储电路连接 的地址电极阵列。
[0019] 优选地, 所述测试装置包括集成电路, 所述测试电极与所述集成电路连接。 其 中集成电路可以是 MOS电路、 CMOS电路或 3D-IC电路。
[0020] 优选地,
所述测试装置的测试电极为微凸阵列或微金属管阵列, 其尺寸为 1~1000微米, 例如可以是 1~50微米, 节距为(1μηι~100μιη)χ(1μιη~100μιη), 例如 ΙΟμηιχΙΟμιη 或 50μηι><100μιη的节距。 较佳的, 所述微凸阵列或微金属管阵列的尺寸为 5~20微 米, 节距为 10μηιχ10μιη。
[0021] 优选地, 所述测试装置还包括拆卸式的电极板, 所述测试电极设置于该电极板 上, 当该电极板安装于所述测试平台吋, 所述测试电极与所述测试电路形成电 性连接。
[0022] 本发明同吋提供了一种微元件的转移方法, 包括步骤: (1) 提供一转移系统 , 其包括主拾取装置和测试装置, 其中主拾取装置用于拾取或释放微元件, 测 试装置具有平台和一系列测试电路, 所述平台表面上设有一系列测试电极, 与 所述测试电路连接; (2) 将所述主拾取装置定位在被连接在载体基板上的微元 件之上, 拾取微元件; (3) 将该主拾取装置重新定位于所述测试装置的平台上 , 其中微元件的电极与所述测试装置的测试电极接触; (4) 向测试电路施加测 试电压测试微元件, 获得微元件的测试数据; (5) 根据测试结果, 控制该拾取 装置将部分微元件释放于接收基板上。
[0023] 在一些实施例中, 所述主拾取装置采用具有粘性的剥离层粘附微元件, 该剥离 层可以是 UV胶、 热解胶或水解胶等。
[0024] 在一个实施例中, 所述步骤 (1) 提供的转移系统还包括 UV光照装置, 该主拾 取装置为一透明基板; 所述步骤 (2) 中, 先在所述主拾取装置的表面涂布 UV胶 作为剥离层, 再将其定位在被连接在载体基板上的微元件之上, 拾取微元件; 所述步骤 (5) 中, 采用该 UV光照装置, 对准所述主拾取装置拾取的微元件之缺 陷图案 (不合格的微元件) 进行照射, 使缺陷图案对应的微元件从主拾取装置 释放, 将所述主拾取装置重新定位于接收基板, 再次采用所述 UV光照装置, 对 准所述主拾取装置拾取的微元件进行照射, 将剩余的微元件释放于接收基板上
[0025] 在另一个实施例中, 所述步骤 (1) 提供的转移系统还包括 UV光照装置, 该主 拾取装置为一透明基板; 所述步骤 (2) 中, 先在所述主拾取装置的表面涂布 UV 胶作为剥离层, 再将其定位在被连接在载体基板上的微元件之上, 拾取微元件 ; 所述步骤 (5) 中, 将所述主拾取装置定位于接收基板上方, 采用所述 UV光照 装置, 对准所述主拾取装置拾取的微元件之缺陷图案以外的微元件 (即合格微 元件) 进行照射, 使缺陷图案以外的微元件释放于接收基板上; 将所述主拾取 装置与所述接收基板隔离; 再次采用所述 UV光照装置, 对准所述主拾取装置拾 取的缺陷图案进行照射, 将所述缺陷图案的微元件从所述主拾取装置释放。
[0026] 作为前述两个实施例的变形, 可将所述步骤 (1) 提供的转移系统中的 UV光照 装置替换为激光照射装置, 在所述步骤 (2) 中, 先在主拾取装置的表面上涂布 热解胶作为剥离层, 在所述步骤 (5) 中, 通过所述激光照射装置加热分解所述 剥离层, 从而释放微元件。
[0027] 在一个实施例中, 所述步骤 (1) 中提供转移系统还包括 UV光照装置和水解装 置, 所述主拾取装置为一透明基板; 所述步骤 (2) 中, 先在主拾取装置的表面 上涂布 UV光照水解胶作为剥离层, 再将其定位在被连接在载体基板上的微元件 之上, 拾取微元件; 所述步骤 (5) 中, 首先采用所述 UV光照装置, 对准所述主 拾取装置拾取的微元件之缺陷图案 (不合格的微元件) 进行照射, 固化所述缺 陷图案对应的剥离层; 接着采用所述水解装置对所述剥离层进行分解, 将水解 液温度设置为室温, 使得所述主拾取装置之缺陷图案以外的剥离层被分解, 从 而将合格的微元件从所述主拾取装置上释放; 然后将所述主拾取装与所述接收 基板隔离幵, 再次采用所述水解装置对所述剥离层进行分解, 将水解液温度设 置为 85°C以上, 使得所述主拾取装置之缺陷图案对应的剥离层被分解, 从而将缺 陷图案的微元件从主拾取装置上释放下来。
[0028] 在上述各实施例中, 通过局部分解剥离层从而将不合格的微元件从主拾取装置 上释放的方式, 较适合应用于尺寸较大的微元件的转移, 例如 100微米上以的微 元件, 可以是 100~5000微米, 较佳的为 200微米以上的微元件, 在剥离层分解后 可以依靠自身的重力从主拾取装置上脱落。 对于尺寸较小的微元件, 例如 100微 米以下的微元件, 可以是 10~100微米, 甚至是 10微米下以的微元件, 其适用性 相对较差。 因为微元件在与材料层表面接触的状态下会产生诸如范德华力、 静 电力之类的吸附力, 即便微元件与主拾取装置之间的剥离层已分解, 但由于其 尺寸过小, 因此诸如范德华力、 静电力之类的吸附力仍可使微元件与主拾取装 置保持吸附状态, 使得微元件无法从主拾取装置上脱落, 此吋可在步骤 (5) 中 先采用反向拾取装置从所述主拾取装置上拾取不合格的微元件并将其转移至回 收装置内, 再将主拾取装置上的微元件转印至接收基板上。
[0029] 本发明还提供一种微元件的转移方法, 包括步骤: (1) 提供前述任意一种转 移系统, 其至少包括主拾取装置、 测试装置、 第一载盘及第二载盘, 其中第一 载盘中放置有待转移的微元件阵列, 第二载盘中放置用于接收微元件的有接收 基板; (2) 将该主拾取装置定位于第一载盘的上方, 使用该主拾取装置拾起取 所述第一载盘内的微元件; (3) 将该主拾取装置定位于所述测试装置的平台上 方, 并使其所拾取的微元件之电极与所述测试装置的测试电极接触; (4) 向该 测试装置的测试电路施加测试电压测试微元件, 获得测试结果; (5) 将该主拾 取装置定位于第二载盘的上方, 释放前述经测试后合格的微元件于接收基板上
[0030] 优选地, 所述步骤 (1) 所提供的转移系统还包括反向拾取装置, 其对微元件 的吸附力大于所述主拾取装置对微元件的吸附, 在所述步骤 (4) 与 (5) 步骤 之间还包括: 在测试完成后先将该主拾取装置定位于该反向拾取装置的上方, 采用该反向拾取装置拾取所述主拾取装置拾取的微元件中不合格的微元件。
[0031] 优选地, 所述步骤 (1) 所提供的主拾取装置具有拾取单位阵列和微幵关阵列 , 其中一个微幵关对应一个拾取单元, 用于控制该拾取单元阵列拾取或释放微 元件, 在所述步骤 (5) 中, 将该主拾取装置定位于第二载盘的上方后, 利用所 述微元关阵列控制所述拾取单元阵列, 释放合格的微元件到所述接收基板上。
[0032] 在一些实施例中, 在移转过程的各个定位步骤中, 所述主拾取装置在水平位置 保持不变, 通过移动所述测试装置、 第一载盘、 第二载盘或反向拾取装置实现 定位。
[0033] 在另一些实施例中, 在移转过程的各个定位步骤中, 通过移动所述主拾取装置 , 使其定位于所述测试装置、 第一载盘、 第二载盘或反向拾取装置上方。
[0034] 优选地, 所述步骤 (1) 所提供的转移系统还包括光学测试装置, 待进行转移 的微元件为微型发光二极管, 所述步骤 (4) 中还包含光学测试, 其同吋向所有 测试电路施加测试电压, 同一吋间对所述测试平台上的所述微元件进行光学测 试。
[0035] 优选地, 所述主拾取装置通过静电力、 范德华力、 真空吸附力或胶材的粘附力 拾起微元件。
[0036] 优选地, 所述主拾取装置的表面具有弹性材料层或仿生壁虎材料层, 其在接触 微元件吋对微元件产生吸附力, 以拾取微元件。 所述弹性材料层可以是 PDMS膜 , 通过控制该 PDMS膜与微元件接触的速度及方式, 可以达到对微元件产生一吸 附力, 从而拾取微元件。
[0037] 根据本发明的另一个实施例, 提供了一种用于制造微元件装置的方法, 包括使 用根据本发明的方法将微元件转移到微元件装置的接收基板上。
[0038] 根据本发明的另一个实施例, 提供了一种使用根据本发明的方法制造的微元件 装置。
[0039] 根据本发明的另一个实施例, 提供了一种电子设备, 包含根据本发明的微元件 装置。
发明的有益效果 对附图的简要说明
附图说明
[0040] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0041] 图 1示意了本发明第一个较佳实施例之微元件的转移系统。
[0042] 图 2示意了本发明第一个较佳实施例中优选的主拾取装置的示意图。
[0043] 图 3示意了本发明第一个较佳实施例中优选的测试装置的示意图。
[0044] 图 4示意了本发明第一个较佳实施例中优选的反向拾取装置的示意图。
[0045] 图 5示意了本发明第一个较佳实施例之微元件的转移系统的一个变形。
[0046] 图 6显示了本发明第二个较佳实施例之一种微元件的转移方法的流程图。
[0047] 图 7进一步显示了图 6所示的转移方法之步骤 S150的子流程图。
[0048] 图 8- 16显示了本发明第二个较佳实施例之一种微元件的转移方法的过程示意图
[0049] 图 17示意了本发明第三个较佳实施例之微元件的转移系统。
[0050] 图 18示意了本发明第三个较佳实施例中优选的主拾取装置的示意图。
[0051] 图 19示意了本发明第三个较佳实施例中优选的主拾取装置的示意图。
[0052] 图 20显示了本发明第四个较佳实施例之一种微元件的转移方法的流程图。
[0053] 图 21-25显示了本发明第四个较佳实施例之一种微元件的转移方法的过程示意
3。
[0054] 图 26示意了本发明第五个较佳实施例中优选的主拾取装置的示意图。
[0055] 图 27显示了本发明第六个较佳实施例之一种微元件的转移方法的流程图。
[0056] 图 28进一步显示了图 27所示的转移方法之步骤 S350的子流程图。
[0057] 图 29-34显示了本发明第六个较佳实施例之一种微元件的转移方法的过程示意
3。
[0058] 图 35示意了本发明第七个较佳实施例中优选的主拾取装置的示意图。
[0059] 图 36显示了本发明第八个较佳实施例之一种微元件的转移方法的流程图。
[0060] 图 37进一步显示了图 36所示的转移方法之步骤 S450的子流程图。 [0061] 图 38-44显示了本发明第八个较佳实施例之一种微元件的转移方法的过程示意 图。
本发明的实施方式
[0062] 本发明的实施例描述了用于转移微元件的转移系统及采用该转移系统进行转移 微元件阵列的方法。 其中, 微元件阵列可以是微型 LED器件、 二极管、 晶体管、 集成电路 (IC)芯片等, 其尺寸可为 1~5000μηι, 但并不一定限于此, 并且实施例 的某些方面可适用于更大和更小的尺寸。
[0063] 转移系统具有用于拾取或释放微元件的主拾取装置, 该主拾取装置具有一系列 拾取单元阵列, 各个拾取单位的尺寸 (例如长度或宽度) 为 1~5000μηι, 例如 10~ 100微米, 或者 100~500微米, 或者 1000 ~5000微米。 转移系统还设有测试装置, 该测试装置具有测试电路及测试平台, 测试平台的表面上设置一系列测试电极 , 当采用主拾取装置拾取微元件并定位在该测试装置的测试平台上吋, 微元件 的电极与测试电极接触, 向测试电路施加电压, 形成测试回路, 实现微元件的 光电性能测试, 从而获取缺陷微元件的缺陷图案, 如此可在微元件阵列转移过 程中排除具有缺陷的微元件。
[0064] 进一步地, 转移系统还可以包括反向拾取装置, 当主拾取装置拾取的微元件经 测试后, 采用该反向拾取装置从主拾取装置上抓走测试不合格的微元件, 再将 主拾取装置拾取的微元件转印至接收基板上。 其中, 主拾取装置可通过静电力 、 范德华力、 真空吸附力、 电磁力或胶材的粘附力等各种作用力拾起微元件; 反向拾取装置对微元件的吸附力一般大于主拾取装置对微元件的吸附力, 从而 保证反向拾取装置可以顺利从主拾取装置上抓取不合格的微元件。
[0065] 图 1显示了本发明的第一个较佳实施例之转移系统 1100。
[0066] 转移系统 1100包括: 主拾取装置 1110、 测试装置 1120、 第一载盘 1130、 第二载 盘 1140、 反向拾取装置 1150、 回收装置 1160、 识别对位装置 1170、 光学测试装 置 1180和清洁装置 1190。 其中, 主拾取装置 1110具有透光性, 用于拾取或释放 微元件, 进行巨量微元件的转移; 识别对位装置 1170位于主拾取装置 1110的上 方, 第一载盘 1130、 第二载盘 1140、 反向拾取装置 1150和清洁装置 1190位于主 拾取装置 1110的下方。 在使用转移系统 1100进行转移微元件过程中, 先将主拾 取装置 1110定位于第一载盘 1130上方, 拾取微元件, 再将主拾取装置 1110定位 在测试装置 1120的平台上, 采用该测试装置 1120测试微元件, 接着将主拾取装 置 1110定位在反向拾取装置 1150上方, 采用反向拾取装置 1150抓取主拾取装置 1 110拾取的微元件中不合格的微元件, 最后将主拾取装置 1110定位在第二载盘 11 40上方, 将其拾取的微元件释放于接收基板上, 实现巨量转印。 为了实现主拾 取装置 1110在第一载盘 1130、 第二载盘 1140、 反向拾取装置 1150和清洁装置 119 0上方进行对位, 需要主拾取装置 1110可在水平和垂直方向上做位移, 或者第一 载盘 1130、 第二载盘 1140、 反向拾取装置 1150和清洁装置 1190可在水平和垂直 方向上做位移。 本实施例中为方便定位, 主拾取装置 1110在水位位置固定不动 , 测试装置 1120、 第一载盘 1130、 第二载盘 1140、 反向拾取装置 1150和清洁装 置 1190设置在可水平移动的支撑台 1101上, 通过移动支撑台 1101, 实现第一载 盘 1130、 第二载盘 1140、 反向拾取装置 1150和清洁装置 1190做水平位移, 从而 进而与主拾取装置 1110进行定位。 支撑台 1101的水平位移方式可为旋转式, 也 可以为往-返式, 在本实施例中支撑台 1101优选为一旋转台, 通过旋转实现水水 平位移。 关于垂直方向上的位移, 可以通过升降台进行实现, 如将主拾取装置 1 110设置为同一水平位置进行垂直方向升降, 也可以在支撑台上同吋设置升降台
[0067] 具体的, 主拾取装置 1110具有一系列拾取单元阵列, 各个拾取单位的尺寸 (例 如长度或宽度) 为 1~5000μηι, 可以通过范德华力或胶材的粘附力拾起微元件。 请参看附图 2, 本实例中主拾取装置 1110具备透光性, 选用透明基板 1111作为主 体, 在透明基板 1111表面配备具有弹性材料层 1112, 该弹性材料层 1112表面具 有一系列用于拾取微元件的拾取单元 1113, 在其在接触微元件吋对微元件产生 一吸附力, 以拾取微元件。 较佳的, 弹性材料层 1112选用 PDMS膜, 通过控制 该 PDMS膜与微元件接触的速度及方式, 可以达到对微元件产生一吸附力, 从而 拾取微元件。
[0068] 在另一些实施例中, 主拾取装置 1110表面的拾取单元 1112可以采用仿生壁虎材 料制作而成, 表面包括微纳米复合的刚绒毛结构, 比如是具有范围为 lxlO 5 至 6x10 8个突起每 cm 2的突起密度, 藉由仿生壁虎材料制作而成的刚绒毛结构接 触微元件表面产生范德华力, 具有粘附作用, 从而吸附微元件, 以提取所需微 元件。 刚绒毛结构的表面优选具有憎水性, 可以阻止接触面上水层的形成, 尽 可能地减小毛细力的可能作用, 对减小间隙、 提供范德华力起着重要的作用。
[0069] 在另一些实施例中, 主拾取装置 1110可以采用具有粘性的剥离层粘附微元件, 该剥离层可以是 UV胶、 热解胶或水解胶等。 例如在透明基板 1111上形成 UV胶层
(或者热解胶、 水解胶等) 作为粘附层, 用于拾取微元件, 并在转印至接收基 板后, 再通过分解剥离层进而释放微元件。
[0070] 请参看图 3, 测试装置 1120具有测试平台 1121和一系列测试电路, 平台表面 112 la上设有一系列测试电极 1123, 与测试电路连接。 其中测试电路采用集成电路 11 22, 可以是 MOS电路、 CMOS电路或 3D-IC电路。 在本实施例中, 采用 CMOS集 成电路作为测试电路, 其内部具有一系列的子测试电路。 在本实施例, 将测试 电极 1123设置在拆卸式的电极板 1124上, 当该电极板 1124安装于测试平台 1121 吋, 测试电极 1123与 CMOS集成电路的各个子测试电路形成电性连接。 其中测试 电极 1123阵列的间距可以设置不同规格, 具体为 CMOS集成电路中的各个子测试 电路间距的整数倍, 例如 1倍、 3倍或者 30倍等。 如此, 可根据不同排列的微元 件, 选择不同规格的电极板进行测试。 具体的, 电极板可以选用硅基板, 采用 硅穿孔技术 (TSV) 形成微通孔阵列, 然后在微孔结构中形成测试电极 1123, 其 可以是微凸阵列 (Micro-Bump) 或微金属管阵列 (例如纳米铜管), 其尺寸为 1~10 00微米, 例如可以是 1~50微米, 节距为(1μηι~100μιη)χ(1μιη~100μιη), 例如 ΙΟμηι χΐθμηι
或 50μηι><100μιη的节距。 较佳的, 所述微凸阵列或微金属管阵列的尺寸为 5~20微 米, 节距为 10μηιχ10μιη。
[0071] 反向拾取装置 1150用于抓取主拾取装置 1110拾取的微元件中不合格的微元件, 因此其对对微元件的吸附力大于主拾取装置 1110对微元件的吸附力。 该反向拾 取装置 1150可以包括一个拾取头 1151, 如图 4所示, 此吋反向拾取装置 1150还可 以设有机械手 (图中未示出) , 其中拾取头 1151可采用静电力、 范德华力、 真 空吸附或者电磁力吸取微元件, 机械手用于将拾取头定位在主拾取装置 1110拾 取的不合格的微元件, 从而快速反抓不合格的微元件。 该反向拾取装置 1150也 可以包括拾取头阵列, 此吋该反向拾取装置 1150—般还包括微幵关阵列, 用于 控制各个拾取头的拾取或释放, 通过该微元关阵列控制该反向拾取装置一次吸 取不合格的微元件。
[0072] 第一载盘 1130用于放置原始的微元件阵列, 第二载盘 1140用于放置接收基板, 两者可采用卡盘结构 (Chuck plate) 。 识别对位装置 1170可采用 CCD自动对位装 置。 光学测试装置 1180用于测试微元件的光学特征, 诸如微元件为发光二极管 吋, 可测试微元件的光谱、 波长、 亮度等光学参数, 光学测试装置 1180可以采 用探测器、 光谱仪或积分球等, 本实施例优选光谱仪。 清洁装置 1190用于清洁 主拾取装置 1110之用于接触微元件的表面。 本实施例中清洁装置 1190包括粘性 膜, 通过将主拾取装置 1110之用于接触微元件的表面与该粘性膜接触从而将主 拾取装置的拾取表面的污渍、 粉尘等, 保证主拾取装置之拾取表面的清洁度。
[0073] 本实施例之转移系统还可以设有微元件回收装置 1160, 用于回收不合格的微元 件。 对于尺寸在 1~200微米的微元件, 特别是 100微米以下的微元件, 采用反向 拾取装置 1150抓取不合格的微元件后, 较难使该微元件从反向拾取装置的拾取 头上脱落, 此吋可在回收装置 1160中设置粘性膜, 当反向拾取装置抓取不合格 的微元件后, 直接将该不合格的微元件粘到该粘性膜上。 较佳的, 为了方便反 向拾取装置 1150可以快速进行重复抓取不合格的微元件, 回收装置 1160可与主 拾取装置 1110并排设置, 此吋回收装置设置于支撑台 1101的上方。
[0074] 首先, 在本实施例之转移系统设有主拾取装置、 测试装置和反向拾取装置, 具 备了转印、 测试功能和反向抓取功能, 采用主拾取装置可巨量拾取微元件并将 其与测试装置的测试平台接触, 采用测试装置进行测试, 获得拾取的微元件的 缺陷图案, 再采用反向拾取装置抓取主拾取装置拾取的微元件中的不合格微元 件, 最后将合格的微元件转移至接收基板上, 采用该转移系统进行微元件转移 , 可排除不合格的微元件。
[0075] 其次, 本系统将测试装置、 第一载盘、 第二载盘和反向拾取装置配置于可实现 水平位移的支撑台上, 在转移过程中通过移动支撑台的水平位置即可实现主拾 取装置分别与前述各个装置对位, 使整个系统在使用过程中大大地简化了对位 操作。
[0076] 再者, 主拾取装置具备透光性, 如此在进行电性测试过程中不用将主拾取装置 与微元件阵列分离, 在保护拾取状态下即可实现光学测试。
[0077] 进一步地, 测试装置的测试电极采用拆卸式电极板, 一方面简化了测试电路的 结构, 方便形成微凸阵列 (Micro-Bump) 或微金属管阵列作为测试电极, 另一 方面可根据不同的微元件尺寸及阵列的间距选择不同规格的电极板进行测试, 增加了测试装置的适用性。
[0078] 图 5示意了图 1所示的转移系统的一个变形。 区别于图 1所示的转移系统, 在本 实施例中, 用于放置测试装置 1120、 第一载盘 1130、 第二载盘 1140、 反向拾取 装置 1150和清洁装置 1190的支撑台 1101为固定式, 主拾取装置 1110采用移动式 , 此吋识别对位装置 1170具备与主拾取装置 1110保持同步移动的功能, 例如识 别对位装置 1170与主拾取装置 1110可同吋安装于同一移动装置上, 或者识别对 位装置 1170直接安装于主拾取装置 1110本身上, 保证两者的移动是同步的即可
[0079] 在本实施例中提及的主拾取装置 1110为移动式, 系指其用于拾取微元件的拾取 单位的位置可移动即可, 主拾取装置 1110本体可为移动式, 也可以为固定式。 当主拾取装置 1110的本体的位置固定吋, 可采用机械手之类的转输机构连接拾 取单元, 通过控制转输机构实现拾取单位的位移。
[0080] 图 6显示了本发明第二个较佳实施例之一种微元件的转移方法的流程图, 包括 步骤 S110~S150。 在本实施例中选用图 1所示的转移系统进行转移。
[0081] 步骤 S110: 提供图 1所示的转移系统, 其中第一载盘内放有连接在载体基板 121 0上的待进行转印的微元件, 第二载盘上放有接收基板 1230。 其中载体基板 1210 可以是生长基板或者承载基板, 如承载基板的材质可为玻璃、 硅、 聚碳酸酯 (P olycarbonate, PC) 、 丙¾勝-丁二¾ -苯乙 ¾ (Acrylonitrile Butadiene
Styrene, ABS) 或其任意组合。 微元件可以为微发光二极管, 厚度可为约 0.5μηι 至约 100μηι。 微元件的形状可为圆柱体, 且圆柱体的半径可为约 0.5μηι至约 500μ m, 但并不限于此, 微元件还可以为三角柱体、 立方体、 长方体、 六角柱体、 八 角柱体或者其他多角柱体。 接收基板 1230可以选用汽车玻璃、 玻璃片、 柔性电 子基底诸如有电路的柔性膜、 显示器背板、 太阳能玻璃、 金属、 聚合物、 聚合 物复合物, 以及玻璃纤维等。 在本实施例中, 转移系统的测试装置 1120、 第一 载盘 1130、 第二载盘 1140及反向拾取装置 1150和清洁装置 1190设置在支撑台 110 1上, 该支撑台 1101为移动式, 通过转动支撑台, 可使其上的前述各装置位于主 拾取装置 1110的下方。
[0082] 步骤 S120: 移动第一载盘到主拾取装置的下方, 进行定位, 使该主拾取装置 11 10的拾取单元 1113与微元件 1200接触, 拾取微元件阵列, 请参看图 8。 应注意的 是, 尽管图中仅示出了 6个微元件 1201~1206简单示意微元件, 但是采用主拾取 装置 1110—次拾取微元件的数量可达到万数量级以上, 甚至可达到千万数量级
[0083] 步骤 S130: 移动测试装置 1120到主拾取装置 1110的下方, 进行定位, 使主拾取 装置 1110拾取的微元件之电极与测试装置的测试电极 1123接触, 如图 9所示。
[0084] 步骤 S140: 向测试装置的测试电路施加测试电压测试微元件, 获得测试结果, 如图 10所示。 图 11示意了缺陷图案, 其中具有阴影的微元件表示测试结果为不 合格。 在本步骤中, 对于光电型微元件, 例如发光二极管, 可通过测试电路同 吋对测试平台上的微元件通电, 采用光性测试装置同吋测试平台上的所有微元 件的光学参数, 如光谱、 波长、 亮度等特性。
[0085] 步骤 S150: 将该主拾取装置 1110定位于第二载盘 1140的上方, 把经测试后合格 的微元件释放在接收基板上。 在该步骤中具体可进一步分三个子步骤 S151~153 进行, 图 7显示了本步骤的具体流程图, 具体如下。
[0086] 步骤 S151 : 移动反向拾取装置 1150到主拾取装置 1110的下方, 进行定位, 如图 12所示。
[0087] 步骤 S152: 采用反向拾取装置 1150反向抓取主拾取装置拾取的微元件中不合格 的微元件 (1201、 1206) , 并至其将转移到回收装置 1160内, 如图 13-14所示, 此吋主拾取装置 1110所述拾取的微元件均为合格品。 在此过程中, 反向拾取装 置 1150可以一次全部抓取不合格的微元件, 也可以分多次进行抓取, 主要取决 于反向拾取装置 1150的类型及拾取头 1151的个数。 本实施例中回收装置 1160设 有粘性表面, 反向拾取装置 1150直接将不合格的微元件粘至该粘性膜上, 该粘 性表面位于反向拾取装置 1150的上方, 如图 14所示。
[0088] 步骤 S153: 移动第二载盘 1140到主拾取装置 1110的下方, 进行定位, 将主拾取 装置 1110拾取的微元件释放到接收基板 1230上, 完成微元件转移, 如图 15所示 。 此吋转印至接收基板 1230上的微元件均是经测试后合格的微元件。
[0089] 重复前述步骤 S110~150, 完成电子器件制作过程中的微元件的转印。
[0090] 本实施例中, 在完成步骤 S154后可增加主拾取装置的清洁步骤, 具体为: 将清 洁装置 1190移动到主拾取装置 1110的下方, 将主拾取装置 1110之拾取单元 1113 的表面与清洁装置 1190中的粘性膜进行一次或多次的接触, 如图 16所示, 从而 清洁拾取单元表面, 保证其表面的清洁度。
[0091] 本实施例中, 主拾取装置 1110保持不动, 通过移动各个装置实现对位, 其中主 拾取装置 1110的拾取单位表面采用弹性材料, 具体的是可以是 PDMS, 通过控制 PDMS膜接触微元件的速度及方式, 达到对微元件产生一吸附力, 从而拾取微元 件。
[0092] 图 17示意了本发明第三个较佳实施例之微元件的转移系统 2100。
[0093] 转移系统包括: 主拾取装置 2110、 测试装置 2120、 第一载盘 2130和第二载盘 21
40。 其中, 主拾取装置 2110具有拾取单位阵列和微幵关阵列, 其中一个微幵关 对应一个拾取单元, 用于控制该拾取单元阵列拾取或释放微元件, 采用该主拾 取装置 2110可一次性全部提取微元件, 也可以根据需求仅部分提取; 进一步, 可以部分提取合格微元件转移, 留下剩余的不合格微元件; 也可以提取不合格 微元件, 而在第一基板上留下合格微元件。 测试装置 2120、 第一载盘 2130和第 二载盘 2140同样配置在支撑台 2101上, 关于此部分的细节参照第一个实施例即 要。
[0094] 在本实施例中, 主拾取装置 2110优选采用静电吸取或真空吸附微元件, 为达到 微小尺寸的幵关阵列, 可采用 CMOS集成电路实现。 图 18示意了一种采用静电吸 取的主拾取装置的示意图。 该主拾取装置 2110包括基底衬底 2111, 该基底衬底 2 111的上侧表面连接 CMOS集成电路 2112, 下侧表面设有一系列拾取头 2113, 每 个拾取头 2113对应有一静电吸附电路, 该静电吸附电路包括连接线路 2114和电 极层 2115, 其中连接线路 2114贯穿基底衬底 2111连接至 CMOS集成电路 2112, 从 而与外部电子控制件连接, 电极层 2115的表面覆盖一介质层 2116, 如此当向电 极层 2115施加吸附电压吋, 形成静电吸附力拾起微元件。
[0095] 图 19示意一种采用真空吸附的主拾取装置的示意图。 该主拾取装置采用吸嘴结 构, 利用真空压力吸附作用拾起微元件和微元件的释放, 主拾取装置 2110具有 吸嘴阵列 21160, 各个吸嘴通过真空路径 21150连通至同一腔体 21130内, 各个真 空路径具有阀门 21152控制该真空路径的幵 /关。 各个吸嘴的尺寸 (例如长度或宽 度) 为 1~1000μηι, 吸嘴阵列的节距为(1μηι ~1000μιη)χ(1μιη
-ΙΟΟΟμηι) , 例如 ΙΟμηιχΙΟμιη或 500μηιχ500μιη的节距。 为达到该尺寸, 各路真空 路径可为一系列形成于板板结构 21140的 (例如 Si基板) 微孔结构。 相应的, 每 个吸嘴对应一路真空路径、 一个阀门和一个幵关元件。 为达到微小尺寸的幵关 阵列, 可采用 CMOS储存电路和地址电极阵列实现。
[0096] 具体的, 该主拾取装置 2110从上至下包括: CMOS储存电路层 21110、 地址电 极层 21120、 腔体 21130, 真空路径阵列 21150、 阀门阵列 21152和吸嘴阵列 21160 。 其中, CMOS储存电路层 21110和位于其下方面的地址电极层 21120构成幵关阵 歹 |J, 地址电极层 21120上设置有地址电极阵列, 一个地址电极 21122对应于一路 真空路径 21150。 地址电极层 21120的下方具有板材结构 21140, 真空路径阵列 21 150为形成于该板材 340的微孔阵列 350, 板材结构与地址电极层之间具有空间以 形成腔体 21130, 该真空路径阵列与腔体 21130连通, 通过阀门幵 /关各路真空路 径。 阀门 21152为一可动的金属片 21152, 该金属片结构 21152至少一端部 21152a 作为根部与板材保持 21140保持连接, 与端部 21152a对角的端部 21152b作为可动 区, 与板板结构 21140分幵。 较佳的, 该金属片只有一个端部 21152a连接区与板 材结构 21140连接, 其他非连接区域与微孔的侧壁之间具有极小的缝隙, 该缝隙 一方面保证当该金属片未发生斜偏吋, 可基本关闭对应的微孔 21150, 另一方面 使该金属片的第二个端部 21152b在静电吸引力的作用下向上发生偏斜, 幵启对 应的微孔。
[0097] 本实施例之主拾取装置 2110通过 CMOS储存电路控制地址电极 21122的幵 /关状 态, 当地址电极 21122处于关闭状态 (OFF) , 此吋未向地址电极 21122激励电压 电位, 不会产生静电吸引力, 金属片的第二端部 21152b未发生偏斜, 关闭该真 空路径 21150; 当地址电极 21122处于幵启状态 (ON) , 此吋向地址电极 21122激 励电压电位, 形成静电吸引力, 金属片的第二端部 21152b在地址电极 21122的静 电吸引力的作用下向地址电极 21122发生偏斜, 幵启真空路径 21150。
[0098] 本实施例之转移系统设有主拾取装置和测试装置, 其中主拾取装置具有拾取单 位阵列和微幵关阵列, 具备了转印、 测试功能和排除缺陷的功能, 采用主拾取 装置巨量拾取微元件并将其与测试装置的测试平台接触, 采用测试装置进行测 试, 获得拾取的微元件的缺陷图案, 采用主拾取装置可先不合格的微元件释放 于回收容器内, 再将合格的微元件转移至接收基板上, 或者仅将合格的微元件 释放于接收基板上, 最后再将不合格的微元件释放于回收容器内, 采用该转移 系统进行微元件转移, 可排除不合格的微元件。
[0099] 图 20是本发明第四个较佳实施例之一种微元件的转移方法的流程图, 包括步骤 S 110-S 130, 在本实施例中选用图 17所示的转移系统。
[0100] 步骤 S210: 提供图 17所示的系统, 包括主拾取装置 2110、 测试装置 2120、 第一 载盘 2130和第二载盘 2140, 其中第一载盘内放有被连接在载体基板 2210上的待 进行转印的微元件, 第二载盘上放有接收基板 2230。
[0101] 步骤 S220: 移动主拾取装置 2110到第一载盘 2130的上方, 进行对位, 采用主拾 取装置 2110的拾取单元 2113拾取微元件阵列, 如图 21所示。
[0102] 步骤 S230: 移动主拾取装置 2110到测试装置 2120的平台上, 其中微元件的电极 与测试装置的测试电极 2123接触, 如图 22所示。
[0103] 步骤 S240: 向测试电路施加测试电压测试微元件, 获得微元件的测试数据, 如 图 23所示。
[0104] 步骤 S250: 根据测试结果, 控制主拾取装置 2110将合格的微元件释放于接收基 板 2230上。 具体的, 移动主拾取装置 2110到回收容器的上方, 通过控制主拾取 装置 2110的幵关阵列释放不合格的微元件 (例如 1202、 1206) , 如图 24所示; 接着再移动主拾取装置 2110到第二载盘 2140上方, 进行对位, 将主拾取装置 211 0拾取的微元件释放到接收基板 2230上, 完成微元件转移, 此吋转印至接收基板 2230上的微元件均是经测试后合格的微元件, 如图 25所示。
[0105] 重复前述步骤 S210~250, 完成电子器件制作过程中的微元件的转印。 [0106] 本实施例的步骤 S250中也可以先选择性地将合格微元件释放至接收基板 2230上 , 再将不合格的微元件释放至回收容器内。
[0107] 本实施例中, 通过在微元件的转移过程同吋对微元件进行测试获得微元件的缺 陷图形, 如此可选择性地拾取合格的微元件或者不合格的微元件, 实现在转移 过程中预先排除缺陷的微元件。
[0108] 图 26显示了本发明第五个较佳实施例之一种微元件的转移系统 3100。 该系统包 括: 支撑台 3101、 主拾取装置 3110、 测试装置 3120、 第一载盘 3130、 第二载盘 3 140、 UV光照装置 3160、 识别对位装置 3170、 光学测试装置 3180和清洁装置 3190 。 在本实施例中, 主拾取装置 3110具有透光性, 可以为一透明基板结构, 通过 在其表面上形成具有粘性的剥离层粘 3112拾取微元件。 本实施例中选用 UV胶作 为剥离层。
[0109] 图 27显示了本发明第六个较佳实施例之一种微元件的转移方法的流程图, 包括 步骤 S310~S350。 在本实施例中选用图 26所示的转移系统进行转移。
[0110] 步骤 S310: 提供图 26所示的转移系统, 其中主拾取装置 3110为一透明基板结构
, 第一载盘 3130内放有被连接在载体基板 3210上的待进行转印的微元件, 第二 载盘 3140上放有接收基板 3230。
[0111] 步骤 S320: 在主拾取装置 3110的表面涂布 UV胶作为剥离层 3112, 移动第一载 盘到主拾取装置的下方, 进行定位, 使该主拾取装置 3110上的剥离层 3112与微 元件接触, 拾取微元件阵列, 如图 29所示。
[0112] 步骤 S330: 移动测试装置 3120到主拾取装置 3110的下方, 进行定位, 使主拾取 装置 3110拾取的微元件之电极与测试装置的测试电极 3123接触, 如图 30所示。
[0113] 步骤 S340: 向测试装置的测试电路施加测试电压测试微元件, 获得测试结果, 如图 31所示。
[0114] 步骤 S350: 将该主拾取装置 1110定位于第二载盘 1140的上方, 把经测试后合格 的微元件释放在接收基板上。 在该步骤中具体可进一步分三个子步骤 S351~353 进行, 图 28显示了本步骤的具体流程图, 具体如下。
[0115] 步骤 S351 : 移动测试装置 3120离幵主拾取装置 3110的下方, 采用该 UV光照装 置 3160对准主拾取装置 3110拾取的微元件之缺陷图案 (不合格的微元件) 进行 照射, 使缺陷图案对应的 UV胶层分解, 从而使缺陷图案对应的微元件从主拾取 装置释放, 如图 32所示。
[0116] 步骤 S352: 将主拾取装置 3110定位于接收基板 3230上方。 具体为移动第二载盘
3140到主拾取装置 3110的下方, 进行对位, 如图 33所示。
[0117] 步骤 S53: 再次采用 UV光照装置 3160对准主拾取装置拾取 3110, 进行照射, 使 主拾取装置 3110上的 UV胶层 3112分解, 将剩余的微元件释放于接收基板 3230上
, 完成微元件转移, 如图 34所示。 此吋转印至接收基板 3230上的微元件均是经 测试后合格的微元件。
[0118] 重复前述步骤 S310~350, 完成电子器件制作过程中的微元件的转印。
[0119] 本实施例采用的转移系统 3110—般还可以包含清洁装置 3190, 在每次转移完成 后, 用于清理主拾取装置 3110表面残留的 UV解分解物。
[0120] 本实施例的步骤 S350中, 也可以先将主拾取装置 3110定位于接收基板 3230上方
, 采用 UV光照装置 3160, 对准主拾取装置拾取的微元件之缺陷图案以外的 UV胶 (即合格微元件对应的 UV胶) 进行照射, 使其分解, 从而将合格的微元件释放 于接收基板上, 而不合格的微元件对应的 UV胶未被分解, 从而继续粘附在主拾 取装置 3110上; 再将接收基板 3230移离主拾取装置 3110的下方, 再次采用 UV光 照装置, 对准主拾取装置拾取的缺陷图案进行照射, 将所述缺陷图案的微元件 从主拾取装置释放。
[0121] 图 35显示了本发明第七个较佳实施例之一种微元件的转移系统 4100。 该系统包 括: 支撑台 4101、 主拾取装置 4110、 测试装置 4120、 第一载盘 4130、 第二载盘 4 140、 UV光照装置 4160、 识别对位装置 4170、 光学测试装置 4180和水解装置 4190
。 在本实施例中, 主拾取装置 4110具有透光性, 可以为一透明基板结构, 通过 在其表面上形成具有粘性的剥离层粘 4112拾取微元件。 本实施例中选用 UV水解 胶作为剥离层, 该 UV水解胶通常在未经过 UV照射的情况下, 采用室温水解液可 进行水解, 在经过 UV照射固化后, 需采用高温水解液进行水解 (一般温度要求 在 85°C即可) 。
[0122] 图 36显示了本发明第六个较佳实施例之一种微元件的转移方法的流程图, 包括 步骤 S410~S450。 在本实施例中选用图 35所示的转移系统进行转移。 [0123] 步骤 S410: 提供图 35所示的转移系统, 其中主拾取装置 4110为一透明基板结构
, 第一载盘 4130内放有被连接在载体基板 4210上的待进行转印的微元件, 第二 载盘 4140上放有接收基板 4230。
[0124] 步骤 S420: 在主拾取装置 4110的表面涂布 UV水解胶作为剥离层 4112, 移动第 一载盘 4130到主拾取装置 4110的下方, 进行定位, 使该主拾取装置 4110上的剥 离层 4112与微元件接触, 拾取微元件阵列, 如图 38所示。
[0125] 步骤 S430: 移动测试装置 4120到主拾取装置 4110的下方, 进行定位, 使主拾取 装置 4110拾取的微元件之电极与测试装置的测试电极 4123接触, 如图 39所示。
[0126] 步骤 S440: 向测试装置的测试电路施加测试电压测试微元件, 获得测试结果, 如图 40所示。
[0127] 步骤 S450: 将该主拾取装置 1110定位于第二载盘 1140的上方, 采用水解装置 41 90水解主拾取装置 4110上的 UV水解胶 4112, 将经测试后合格的微元件释放在接 收基板 4230上。 在该步骤中具体可进一步分四个子步骤 S451~454进行, 图 37显 示了本步骤的详细流程图, 具体如下。
[0128] 步骤 S451 : 移动测试装置 4120离幵主拾取装置 4110的下方, 采用该 UV光照装 置 4160对准主拾取装置 4110拾取的微元件之缺陷图案 (不合格的微元件) 进行 照射, 使缺陷图案对应的 UV水解胶层 4112A固化, 如图 41所示。
[0129] 步骤 S452: 将主拾取装置 4110定位于接收基板 4230上方。 具体为移动第二载盘 4140到主拾取装置 4110的下方, 进行对位, 如图 42所示。
[0130] 步骤 S453: 采用水解装置 4190对剥离层 4112进行分解, 此吋将水解液温度设置 为室温, 使得缺陷图案以外的剥离层被分解, 从而将合格的微元件从所述主拾 取装置上释放, 转印至接收基板 4230上, 如图 43所示。 此吋接收基板 3230上的 微元件均是经测试后合格的微元件。
[0131] 步骤 S454: 将接收基板 4230移离主拾取装置 4110, 再次采用 UV光照装置 3160 对准主拾取装置拾取 3110, 再次采用水解装置 4190对主拾取装置 4110上的固化 的剥离层 4112A进行分解, 将水解液温度设置为 85°C以上, 使得之前固化的剥离 层 4112A被分解, 从而将缺陷图案的微元件从主拾取装置 4110上释放, 如图 44所 示。 [0132] 重复前述步骤 S410~450, 完成电子器件制作过程中的微元件的转印。
[0133] 本实施例采用的转移系统 4110—般还可以包含清洁装置, 在每次转移完成后, 用于清理主拾取装置 4110表面残留的 UV水解胶之分解物。
[0134] 本实施例的步骤 S450中, 也可以针对合格微元件对应的 UV水解胶进行固化, 先采用室温水解液分解缺陷图案对应的 UV水解胶, 使得不合格的微元件从主拾 取装置 4110上释放, 接着将接收基板 4230移动到主拾取装置 4110的下方, 采用 8 5°C以上的高温水解液分解经固化的 UV水解胶 4112, 从而将合格的微元件释放于 接收基板上。
[0135] 上述各实施例的微元件的转移方法中可通过转移装置对微元件阵列进行多次的 测试及转印。
[0136] 上述各实施例的微元件的转移方法可以用于制作电子装置, 可以广泛用于电子 设备中, 该电子设备可以是手机、 平板电脑等。
[0137] 尽管已经描述本发明的示例性实施例, 但是理解的是, 本发明不应限于这些示 例性实施例, 而是本领域的技术人员能够在如下文的权利要求所要求的本发明 的精神和范围内进行各种变化和修改。 只要不构成冲突, 本发明中的各个实施 例以及各实施例中的各个特征可以相互结合, 所形成的技术方案均在本发明的 保护范围之内。

Claims

权利要求书
[权利要求 1] 微元件的转移系统, 包括:
主拾取装置, 用于拾取或释放微元件;
测试装置, 具有测试平台和一系列测试电路, 所述平台表面上设有一 系列测试电极, 与所述测试电路连接;
第一载盘, 用于放置原始的微元件阵列;
第二载盘, 用于放置接收基板;
在使用所述转移系统进行转移微元件过程中, 采用所述主拾取装置拾 取微元件并将其定位在测试装置的平台上, 采用该测试装置测试微元 件, 根据测试结果将所述主拾取装置拾取的微元件中合格的微元件释 放于接收基板上。
[权利要求 2] 根据权利要求 1所述的微元件的转移系统, 其特征在于: 还包括反向 拾取装置, 其对微元件的吸附力大于所述主拾取装置对微元件的吸附 力, 在使用所述转移系统进行转移微元件过程中, 采用该反向拾取装 置拾取所述主拾取装置拾取的微元件中不合格的微元件。
[权利要求 3] 根据权利要求 2所述的微元件的转移系统, 其特征在于: 所述测试装 置、 第一载盘、 第二载盘和反向拾取装置设置于一支撑台上, 所述主 拾取装置设置在所述支撑台上方。
[权利要求 4] 根据权利要求 3所述的微元件的转移系统, 其特征在于: 所述支撑台 为移动式, 所述主拾取装置的水平位置为固定。
[权利要求 5] 根据权利要求 2所述的微元件的转移系统, 其特征在于: 还包括一回 收装置, 所述回收装置设有一粘性表面, 用于回收不合格的微元件。
[权利要求 6] 根据权利要求 1所述的微元件的转移系统, 其特征在于: 所述主拾取 装置具备透光性, 其上方设有光学装置。
[权利要求 7] 根据权利要求 6所述的微元件的转移系统, 其特征在于: 所述光学装 置包括光学测试装置和 /或识别对位装置。
[权利要求 8] 根据权利要求 1所述的微元件的转移系统, 其特征在于: 还包括光学 装置, 其位于所述主拾取装置的上方, 具备与所述主拾取装置保持同 步移动的功能。
根据权利要求 1所述的微元件的转移系统, 其特征在于: 所述主拾取 装置具有拾取单位阵列和微幵关阵列, 其中一个微幵关对应一个拾取 单元, 用于控制该拾取单元阵列拾取或释放微元件。
根据权利要求 1所述的微元件的转移系统, 其特征在于: 所述测试装 置包括集成电路, 所述测试电极与所述集成电路连接。
根据权利要求 1所述的微元件的转移系统, 其特征在于: 所述测试电 极为微凸阵列或微金属管阵列, 其尺寸为 1~100微米。
根据权利要求 1所述的微元件的转移系统, 其特征在于: 所述测试装 置还包括拆卸式的电极板, 所述测试电极设置于该电极板上, 当该电 极板安装于所述测试平台吋, 所述测试电极与所述测试电路形成电性 连接。
微元件的转移方法, 包括步骤:
(1) 提供一转移系统, 其包括主拾取装置和测试装置, 其中主拾取 装置用于拾取或释放微元件, 测试装置具有平台和一系列测试电路, 所述平台表面上设有一系列测试电极, 与所述测试电路连接;
(2) 将所述主拾取装置定位在被连接在载体基板上的微元件之上, 拾取微元件;
(3) 将该主拾取装置定位于所述测试装置的平台上, 其中微元件的 电极与所述测试装置的测试电极接触;
(4) 向测试电路施加测试电压测试微元件, 获得微元件的测试数据
(5) 根据测试结果, 控制该拾取装置将部分微元件释放于接收基板 上。
微元件的转移方法, 包括步骤:
(1) 提供一转移系统, 其包括主拾取装置、 测试装置、 第一载盘及 第二载盘, 其中第一载盘中放置有待转移的微元件阵列, 第二载盘中 放置用于接收微元件的有接收基板; (2) 将该主拾取装置定位于第一载盘的上方, 使用该主拾取装置拾 起取所述第一载盘内的微元件;
(3) 将该主拾取装置定位于所述测试装置的平台上方, 并使其所拾 取的微元件之电极与所述测试装置的测试电极接触;
(4) 向该测试装置的测试电路施加测试电压测试微元件, 获得测试 结果;
(5) 将该主拾取装置定位于第二载盘的上方, 把前述经测试后合格 的微元件释放于接收基板上。
根据权利要求 14所述的微元件的转移方法, 其特征在于: 所述步骤 ( 1) 所提供的转移系统还包括反向拾取装置, 其对微元件的吸附力大 于所述主拾取装置对微元件的吸附, 在所述步骤 (4) 与 (5) 步骤之 间还包括: 在测试完成后先将该主拾取装置定位于该反向拾取装置的 上方, 采用该反向拾取装置拾取所述主拾取装置拾取的微元件中不合 格的微元件。
根据权利要求 15所述的微元件的转移方法, 其特征在于: 采用反向拾 取装置拾取不合的微元件后, 采用一粘性表面接触不合格的微元件, 从而将不合格的微元件从反向拾取装置转移至该粘性表面上。
根据权利要求 14所述的微元件的转移方法, 其特征在于: 所述步骤 ( 1) 所提供的主拾取装置具有拾取单位阵列和微幵关阵列, 其中一个 微幵关对应一个拾取单元, 用于控制该拾取单元阵列拾取或释放微元 件, 在所述步骤 (5) 中, 将该主拾取装置定位于第二载盘的上方后 , 利用所述微元关阵列控制所述拾取单元阵列, 从而释放合格的微元 件于所述接收基板上。
根据权利要求 14或 15或 16所述的微元件的转移方法, 其特征在于: 在 移转过程的各个定位步骤中, 所述主拾取装置在水平位置保持不变, 通过移动所述测试装置、 第一载盘、 第二载盘或反向拾取装置实现定 位。
根据权利要求 14或 15或 16所述的微元件的转移方法, 其特征在于: 在 移转过程的各个定位步骤中, 通过移动所述主拾取装置, 使其定位于 所述测试装置、 第一载盘、 第二载盘或反向拾取装置上方。
[权利要求 20] 根据权利要求 14所述的微元件的转移方法, 其特征在于: 所述步骤 (
1) 所提供的转移系统还包括光学测试装置, 待进行转移的微元件为 微型发光二极管, 所述步骤 (4) 中还包含光学测试, 其同吋向所有 测试电路施加测试电压, 同一吋间对所述测试平台上的所述微元件进 行光学测试。
[权利要求 21] 一种用于制作微元件装置的方法, 包括使用权利要求 13-20所述的任 意一种微元件的转移方法。
[权利要求 22] 一种使用权利要求 21所述的方法制造的微元件装置。
[权利要求 23] 一种电子设备, 包含权利要求 22所述的微元件装置。
PCT/CN2017/097848 2016-12-12 2017-08-17 微元件的转移系统、转移方法、制造方法、装置和电子设备 WO2018107793A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/426,013 US11142452B2 (en) 2016-12-12 2019-05-30 Transfer system and transfer method for microelements, manufacturing method for microelement device and microelement device made therefrom, and electronic apparatus including the microelement device
US17/447,982 US11618673B2 (en) 2016-12-12 2021-09-17 Transfer system for microelements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611137362.0 2016-12-12
CN201611137362.0A CN106601657B (zh) 2016-12-12 2016-12-12 微元件的转移系统、转移方法、制造方法、装置和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/426,013 Continuation-In-Part US11142452B2 (en) 2016-12-12 2019-05-30 Transfer system and transfer method for microelements, manufacturing method for microelement device and microelement device made therefrom, and electronic apparatus including the microelement device

Publications (1)

Publication Number Publication Date
WO2018107793A1 true WO2018107793A1 (zh) 2018-06-21

Family

ID=58599022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097848 WO2018107793A1 (zh) 2016-12-12 2017-08-17 微元件的转移系统、转移方法、制造方法、装置和电子设备

Country Status (4)

Country Link
US (2) US11142452B2 (zh)
CN (1) CN106601657B (zh)
TW (2) TWI645537B (zh)
WO (1) WO2018107793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112967945A (zh) * 2020-04-16 2021-06-15 重庆康佳光电技术研究院有限公司 微型发光二极管测试装置、制作方法、系统和测试方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039298B (zh) * 2016-11-04 2019-12-24 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备
CN106601657B (zh) 2016-12-12 2019-12-17 厦门市三安光电科技有限公司 微元件的转移系统、转移方法、制造方法、装置和电子设备
CN107170773B (zh) * 2017-05-23 2019-09-17 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
EP3639297A4 (en) * 2017-06-12 2021-01-20 Uniqarta, Inc. PARALLEL MOUNTING OF DISCREET COMPONENTS ON A SUBSTRATE
KR102369934B1 (ko) * 2017-06-23 2022-03-03 삼성전자주식회사 칩 실장장치 및 이를 이용한 칩 실장방법
JP2019015899A (ja) * 2017-07-10 2019-01-31 株式会社ブイ・テクノロジー 表示装置の製造方法、チップ部品の転写方法、および転写部材
CN109671661B (zh) * 2017-10-16 2023-09-26 英属开曼群岛商錼创科技股份有限公司 微型发光元件结构
CN109935668B (zh) * 2017-12-19 2021-08-24 英属开曼群岛商錼创科技股份有限公司 微型元件结构
US11177154B2 (en) 2017-12-19 2021-11-16 Pixeled Display Co., Ltd. Carrier structure and micro device structure
CN108231651B (zh) * 2017-12-26 2020-02-21 厦门市三安光电科技有限公司 微元件转移装置和转移方法
CN109994413A (zh) * 2017-12-29 2019-07-09 南昌欧菲显示科技有限公司 微型元件巨量转移方法
CN110071062B (zh) * 2018-01-24 2021-01-26 宏碁股份有限公司 微组件转移设备和相关方法
CN108490341B (zh) * 2018-03-30 2019-10-08 惠州雷通光电器件有限公司 微型芯片转移系统及方法
KR20190114368A (ko) * 2018-03-30 2019-10-10 (주)포인트엔지니어링 마이크로 led 반제품 모듈
TWI724407B (zh) * 2018-04-12 2021-04-11 鴻海精密工業股份有限公司 微型發光二極體顯示面板及其製備方法
TWI700763B (zh) * 2018-04-15 2020-08-01 鴻海精密工業股份有限公司 微型器件的轉移裝置及微型器件的轉移方法
CN110911330A (zh) * 2018-09-14 2020-03-24 东莞市中麒光电技术有限公司 一种通过转移晶圆批量转移、固定led芯片的吸盘及方法
TWI676980B (zh) * 2018-09-27 2019-11-11 友達光電股份有限公司 顯示器
CN109336049B (zh) * 2018-10-11 2023-10-24 宁波大学 一种微结构操作方法及操作装置
CN111146131B (zh) * 2018-11-06 2022-08-26 成都辰显光电有限公司 一种微元件的转移装置及转移方法
CN111146132A (zh) * 2018-11-06 2020-05-12 昆山工研院新型平板显示技术中心有限公司 一种微元件的转移装置及转移方法
CN111199908A (zh) * 2018-11-20 2020-05-26 昆山工研院新型平板显示技术中心有限公司 微发光器件的转移方法及转移设备
CN111244008A (zh) * 2018-11-29 2020-06-05 昆山工研院新型平板显示技术中心有限公司 微元件的转移装置及其转移方法
CN111244007B (zh) * 2018-11-29 2022-10-28 成都辰显光电有限公司 一种微元件的转移装置
TWI711071B (zh) * 2019-02-18 2020-11-21 啟端光電股份有限公司 真空轉移裝置及其形成方法
TWI688139B (zh) * 2019-03-05 2020-03-11 友達光電股份有限公司 檢測裝置的製造方法與檢測方法
CN109927403B (zh) * 2019-04-19 2021-06-29 成都辰显光电有限公司 一种转印装置、转印装置的制作方法和转印方法
TWI694611B (zh) * 2019-05-01 2020-05-21 蔡東猛 微型發光二極體和影像感測元件測試和修復流程
CN110379760B (zh) * 2019-07-05 2021-04-02 深超光电(深圳)有限公司 发光元件的转移方法、显示面板及其制备方法、基板
US10910239B1 (en) * 2019-07-10 2021-02-02 Mikro Mesa Technology Co., Ltd. Method of transferring micro devices and device transfer system
TWI822833B (zh) * 2019-08-15 2023-11-21 優顯科技股份有限公司 電子探測板、光電探測模組、與電子探測方法
CN110660346A (zh) * 2019-09-19 2020-01-07 南京中电熊猫平板显示科技有限公司 一种Micro Led显示面板及其检测方法
CN112557867B (zh) * 2019-09-25 2023-05-30 成都辰显光电有限公司 检测装置及检测方法
TW202135276A (zh) 2019-10-29 2021-09-16 日商東京威力科創股份有限公司 附有晶片之基板的製造方法及基板處理裝置
CN112750741B (zh) * 2019-10-29 2023-01-03 成都辰显光电有限公司 一种微元件的转移基板及转移方法
TWI705038B (zh) 2019-10-31 2020-09-21 隆達電子股份有限公司 取料裝置及其取料方法
CN112786511B (zh) * 2019-11-04 2022-11-22 成都辰显光电有限公司 一种微元件的转移基板及转移方法
WO2021102877A1 (zh) * 2019-11-29 2021-06-03 重庆康佳光电技术研究院有限公司 一种巨量转移的载板、巨量转移装置及其方法
CN110911436B (zh) * 2019-12-03 2022-05-31 京东方科技集团股份有限公司 一种驱动背板、发光二极管的转移装置及转移方法
CN113284428A (zh) * 2020-02-19 2021-08-20 群创光电股份有限公司 显示装置
GB2593698B (en) * 2020-03-30 2022-12-07 Plessey Semiconductors Ltd Monolithic electronic device
CN112992758B (zh) * 2020-07-08 2022-02-25 重庆康佳光电技术研究院有限公司 巨量转移装置、方法、系统及设备
CN112967949B (zh) * 2020-08-11 2022-05-20 重庆康佳光电技术研究院有限公司 一种转移构件、转移装置及转移方法
JP7218405B2 (ja) * 2020-08-18 2023-02-06 東レエンジニアリング株式会社 チップ部品転写装置
CN112234019B (zh) * 2020-10-20 2023-01-17 广东省科学院半导体研究所 转移膜、转移组件和微器件曲面转移方法
TWI754454B (zh) * 2020-11-16 2022-02-01 友達光電股份有限公司 轉移工具及轉移方法
CN112701077A (zh) * 2020-12-28 2021-04-23 广东省科学院半导体研究所 器件转移方法
CN112750714B (zh) * 2020-12-31 2021-11-23 深圳市思坦科技有限公司 Led芯片检测方法
TWI751071B (zh) * 2021-04-14 2021-12-21 啟端光電股份有限公司 用以執行水平校準的轉移系統及其治具
CN116936438A (zh) * 2022-03-30 2023-10-24 深超光电(深圳)有限公司 巨量转移系统和巨量转移方法
CN117116925A (zh) * 2022-05-17 2023-11-24 京东方科技集团股份有限公司 显示基板、转移组件、转移方法及显示装置
US11856710B2 (en) * 2022-05-25 2023-12-26 Innolux Corporation Method of manufacturing an electronic device
TWI802521B (zh) * 2022-11-01 2023-05-11 東捷科技股份有限公司 可替換拾取頭的轉置設備
CN116313986B (zh) * 2023-05-12 2023-09-01 季华实验室 半导体元器件转移装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088052A (zh) * 2009-12-04 2011-06-08 塔工程有限公司 Led芯片接合装置
CN104801496A (zh) * 2014-01-23 2015-07-29 先进科技新加坡有限公司 拾取电子器件进行测试的测试分选机及其方位改变装置
CN106057723A (zh) * 2016-08-16 2016-10-26 厦门市三安光电科技有限公司 微元件的转移方法、装置及电子设备
CN106601657A (zh) * 2016-12-12 2017-04-26 厦门市三安光电科技有限公司 微元件的转移系统、转移方法、制造方法、装置和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773543B2 (en) * 2002-05-07 2004-08-10 Delaware Capital Formation, Inc. Method and apparatus for the multiplexed acquisition of a bare die from a wafer
DE102005036821A1 (de) * 2005-08-04 2007-03-15 Siemens Ag Verfahren zum Transferieren und Vorrichtung zum Handhaben von elektronischen Bauelementen
KR101169406B1 (ko) * 2010-04-12 2012-08-03 (주)제이티 반도체소자 검사장치 및 반도체소자 검사방법
SG11201403080SA (en) * 2012-05-24 2014-09-26 Exis Tech Sdn Bhd A semiconductor components delivery system associated with a turret type testing apparatus
TWM503570U (zh) * 2015-02-12 2015-06-21 Chroma Ate Inc 電子元件檢測設備
WO2018096455A1 (en) * 2016-11-25 2018-05-31 Vuereal Inc. Integration of micro-devices into system substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088052A (zh) * 2009-12-04 2011-06-08 塔工程有限公司 Led芯片接合装置
CN104801496A (zh) * 2014-01-23 2015-07-29 先进科技新加坡有限公司 拾取电子器件进行测试的测试分选机及其方位改变装置
CN106057723A (zh) * 2016-08-16 2016-10-26 厦门市三安光电科技有限公司 微元件的转移方法、装置及电子设备
CN106601657A (zh) * 2016-12-12 2017-04-26 厦门市三安光电科技有限公司 微元件的转移系统、转移方法、制造方法、装置和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112967945A (zh) * 2020-04-16 2021-06-15 重庆康佳光电技术研究院有限公司 微型发光二极管测试装置、制作方法、系统和测试方法

Also Published As

Publication number Publication date
US20190276308A1 (en) 2019-09-12
TWI645537B (zh) 2018-12-21
CN106601657A (zh) 2017-04-26
US11618673B2 (en) 2023-04-04
US11142452B2 (en) 2021-10-12
CN106601657B (zh) 2019-12-17
TW201921635A (zh) 2019-06-01
TW201830655A (zh) 2018-08-16
US20220002146A1 (en) 2022-01-06
TWI696261B (zh) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2018107793A1 (zh) 微元件的转移系统、转移方法、制造方法、装置和电子设备
TWI690053B (zh) 微元件的轉移方法、微元件裝置的製造方法、微元件裝置及電子設備
CN106229326B (zh) 转印微发光二极管的方法及显示面板的制作方法
US20080025822A1 (en) Device and method for handling an object of interest using a directional adhesive structure
CN111370349B (zh) 用于Micro-LED巨量转移的仿生抓取装置及使用、制造方法
US9437468B2 (en) Heat assisted handling of highly warped substrates post temporary bonding
WO2018192389A1 (zh) 一种用于微元件转移的转置头
CN110530908B (zh) 一种二维材料低接触应力的转移方法
CN111199907A (zh) 微发光器件的转移方法及转移设备
TW202135279A (zh) 將micro-led組裝至基材上的方法及系統
CN111128789B (zh) 微元件的转移装置及其转移方法
WO2020103405A1 (zh) 微发光器件的转移方法以及转移设备
CN116040578A (zh) 一种乐高式范德华异质结及其制备方法
US20220410550A1 (en) Transfer method of devices
TW201509772A (zh) 在批量化學剝離載體基板過程中用於固定電子元件晶圓的盒式裝置
TWI695416B (zh) 用於轉移微型元件的方法
CN212934582U (zh) 用于无线静电吸盘的粘脱设备及自动粘脱系统
TWI703649B (zh) 多晶粒選取設備及方法
CN116462155A (zh) 一种基于pva薄膜搭建多层二维层状材料的方法
CN113097119A (zh) 元件剥离装置及其方法
JP2004356242A (ja) ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881036

Country of ref document: EP

Kind code of ref document: A1