WO2019114173A1 - 微发光二极管及其转移方法 - Google Patents

微发光二极管及其转移方法 Download PDF

Info

Publication number
WO2019114173A1
WO2019114173A1 PCT/CN2018/085128 CN2018085128W WO2019114173A1 WO 2019114173 A1 WO2019114173 A1 WO 2019114173A1 CN 2018085128 W CN2018085128 W CN 2018085128W WO 2019114173 A1 WO2019114173 A1 WO 2019114173A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
emitting diode
light
hole
light emitting
Prior art date
Application number
PCT/CN2018/085128
Other languages
English (en)
French (fr)
Inventor
吴政
李佳恩
徐宸科
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2019114173A1 publication Critical patent/WO2019114173A1/zh
Priority to US16/895,119 priority Critical patent/US11456400B2/en
Priority to US17/939,300 priority patent/US20230006097A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate

Definitions

  • the present invention belongs to the field of semiconductor manufacturing, and in particular relates to a micro light emitting diode and a transfer method thereof.
  • the present invention is directed to a feasible solution to this problem, by which a highly efficient 1111 ⁇ 0 transfer can be achieved.
  • micro-light-emitting diode can be fabricated into a substrate and printed onto a target substrate (e.g., plastic metal, glass, sapphire, transparent material, or flexible material) to avoid micro-light-emitting diode fabrication on the substrate of the object.
  • a target substrate e.g., plastic metal, glass, sapphire, transparent material, or flexible material
  • the first technical solution provided by the present invention is a micro light emitting diode, comprising: an epitaxial stack, which in turn comprises a first type semiconductor layer, an active layer, and a second type semiconductor layer having opposite first surfaces And a second surface; the first electrode is connected to the first type semiconductor layer; the second electrode is connected to the second type semiconductor layer; the first surface has a hole, and the hole opening size area is the first surface area of the chip 30% to 50%.
  • the opening of the aperture begins to taper from the first surface. ⁇ 0 2019/114173 ⁇ (:17 ⁇ 2018/085128
  • the center of the aperture opening does not coincide with the center of the chip.
  • the opening depth of the hole is
  • the first electrode and the second electrode are located on the same or different sides.
  • the size of the micro-light emitting diode is 100 ⁇ 1111x10 ( ⁇ 111 or less).
  • the micro-light emitting diode is a flip-chip structure, a formal structure or a vertical structure.
  • the second technical solution provided by the present invention is a micro light emitting device, including:
  • a micro light emitting diode having an epitaxial stack comprising, in order, a first type semiconductor layer, an active layer, and a second type semiconductor layer having opposite first and second surfaces, a first electrode, and a first type of semiconductor layer is connected, a second electrode is connected to the second type semiconductor layer, the first surface has a hole, and the hole opening size area is 30% to 50% of the first surface area of the chip; the bonding layer having the groove; A bridge structure connecting the edge of the opening of the bonding layer to the first surface of the micro LED; there is a gap between the micro LED and the bonding layer.
  • the number of bridge structures is not less than two.
  • the number of bridge structures is two, and the holes are disposed on one side of the line where the two bridge structures are connected to the first surface.
  • the bridge structure is a dielectric.
  • the bridge structure material is 310 2 , 888, 1203, and the like.
  • the bridge structure has a step between the micro-light emitting diode and the bonding layer, and the thickness of the step is 10% to 50% of the thickness of the entire dielectric layer.
  • the center of the aperture opening does not coincide with the center of the first surface.
  • the opening depth of the hole is
  • the opening of the aperture begins to taper from the first surface.
  • the distance of the micro light-emitting diode from the bottom of the groove is more than one time the thickness of the dielectric layer.
  • the first electrode and the second electrode are located on the same or different sides.
  • the micro-light emitting diode is a flip-chip structure, a formal structure or a vertical structure.
  • the size of the micro light emitting diode is 100 (within X111)
  • the bonding layer material is a glue or a resin. ⁇ 0 2019/114173 ⁇ (:17 ⁇ 2018/085128
  • the bonding layer has a support underneath.
  • the array of micro-lighting devices is comprised of a series of micro-lighting devices.
  • the present invention proposes a third efficient and reliable technical solution, and discloses a micro light emitting diode transfer method.
  • micro light emitting diode having an epitaxial stack, comprising a first type semiconductor layer, an active layer, and a second type semiconductor layer in sequence, the micro light emitting diode having opposite first and second surfaces ,
  • the first surface has a hole or a groove, and the size of the hole or the opening of the cavity is the area of the first surface of the chip.
  • the center of the opening of the hole or the groove does not coincide with the center of the chip, and the opening of the hole or the groove is gradually reduced from the first surface.
  • the micro-light emitting diode is a flip-chip structure, a front-mounted structure or a vertical structure.
  • the transfer film material is PDMS solid polydimethylsiloxane, gum, pyrolyzed gum or the like.
  • the material of the bridge structure is 310 2 , ⁇ , ⁇ 1203, and the like.
  • the transfer film is only convexly in contact with the micro-light emitting diode.
  • the present invention is provided with a hole for matching the transfer film on the first surface of the micro light emitting diode, which is remarkably raised ⁇ 0 2019/114173 ⁇ (:17 ⁇ 2018/085128 High micro-LED transfer efficiency and high reliability.
  • FIG. 1 and FIG. 2 are schematic diagrams of a micro light emitting diode of Embodiment 1.
  • Embodiment 3 is a schematic top view of the micro-light emitting diode of Embodiment 1.
  • FIG. 4 to FIG. 6 are schematic diagrams of the micro light-emitting device of Embodiment 2.
  • FIG. 7 to FIG. 9 are schematic diagrams showing a transfer method of the micro light emitting diode of Embodiment 3.
  • a micro light emitting diode a microchip having a size of 100 100 1 or less selected according to the embodiment, includes: a light emitting epitaxial stack, which in turn comprises a first type semiconductor layer 11 and an active layer 1 2.
  • a second type semiconductor layer 13 having opposing first surface & and second surface 15; a first electrode 14 coupled to said first type semiconductor layer 11; a second electrode 15 being associated with said second type
  • the semiconductor layer 13 is connected; the first electrode 14 and the second electrode 15 are located on the same side or different sides, and the micro light emitting diodes according to product requirements ⁇ 0 2019/114173 ⁇ (:17 ⁇ 2018/085128 may be selected as a flip-chip structure in which the first electrode 14 and the second electrode 15 are located on the same side, a formal structure, or a vertical structure located on the opposite side.
  • the first surface has a hole 16 or a groove used in the transfer process, and the hole 16 or the groove on the first surface is more likely to be located on the first type semiconductor layer, or may be located on the first electrode adopting the vertical structure.
  • the size of the hole 16 or the opening of the cavity is 30% to 50% of the area of the first surface of the chip, and the hole 16 or the groove is not limited to a regular shape, such as a font.
  • the cross shape is an optional shape. Referring to Fig. 2, in order to form a rotational torque effect during the transfer of the micro-light-emitting diode, the center of the hole 16 or the slot opening does not coincide with the center of the chip. Hole 16 or slot opening depth Referring to Fig. 3, the opening of the hole 16 or the groove body is gradually reduced from the first surface, which facilitates the exclusion of the internal gas when the hole 16 is squeezed, thereby improving the positioning function.
  • a micro light emitting device includes:
  • a micro light emitting diode having an epitaxial stack comprising, in order, a first type semiconductor layer 11, an active layer 12, and a second type semiconductor layer 13 having opposite first and second surfaces, first
  • the electrode 14 is connected to the first type semiconductor layer 11, and the second electrode 15 is connected to the second type semiconductor layer 13.
  • the first surface has a hole 16 or a groove body, and the opening area of the hole 16 or the groove body is the first surface area of the chip.
  • the purpose of setting the gap is to reserve a buffer space for the micro-light-emitting diodes.
  • the number of the bridge structures 22 in this embodiment may be selected to be no less than two. If there is only one bridge structure 22, the bridge structure 22 needs to be done. The larger the size, the more difficult it is to break during the transfer. On the other hand, it is also difficult to carry the micro-light-emitting diode of a slightly larger size. The micro-light-emitting device may be broken due to a certain impact.
  • the width of the bridge structure 22 is 8% to 20% of the side length of the micro light-emitting diode. Within this range, the bridge structure 22 can ensure sufficient bearing capacity and can Reduce the difficulty of breaking.
  • the center of the hole 16 or the opening of the slot does not coincide with the center of the first surface, and the hole 16 or the slot is disposed on the side of the connection between the two bridge structures 22 and the first surface, the hole 16 or the slot The body is spaced from the bridge structure 22 to form a torque arm.
  • bridge structure 22 In order to avoid the residual bridge structure 22, it is suitable to select a brittle dielectric, such as selection ⁇ 0 2019/114173 ⁇ (:17 ⁇ 2018/085128 is 310 2 , 3 , 8 1 2 0 3 , etc., bridge structure 22 is also not suitable for metal with good ductility, it is difficult to break when subjected to force, there may be metal residue On the surface of the micro-light-emitting diode, it also causes interference in the use of subsequent processes.
  • a brittle dielectric such as selection ⁇ 0 2019/114173 ⁇ (:17 ⁇ 2018/085128 is 310 2 , 3 , 8 1 2 0 3 , etc.
  • the micro light emitting diode When the micro light emitting diode is transferred, the micro light emitting diode is separated from the bridge structure 22 by the torque, and a sufficient space is reserved at the bottom of the groove 20 to avoid damage of the micro light emitting diode due to the squeeze, and the distance of the micro light emitting diode from the bottom of the groove 20 is More than double the thickness of the dielectric layer.
  • the first electrode 14 and the second electrode 15 are located on the same side or on the same side.
  • the size of the micro LED is 100 ⁇ 1111x100
  • it can be selected as a flip-chip structure, a formal structure or a vertical structure according to different product requirements.
  • Bonding layer Or an inert bonding material such as a resin.
  • the thickness of the bonding layer 21 is relatively thin, it is not suitable for independent as a supporting structure.
  • the bracket 31 is designed to avoid the influence of positioning caused by deformation, and the material of the bracket 31 includes Sapphire, silicon, metal, etc.
  • the bridge structure 22 has a step between the micro light emitting diode and the bonding layer 21, and the thickness of the step is 10% to 50% of the thickness of the entire bridge structure. %.
  • the main function of the step is to control the fracture position, and the length of the residual bridge structure can be controlled to be controlled, which facilitates the transfer of the micro-light-emitting diodes in large quantities.
  • the present invention discloses a method for transferring a micro light emitting diode, which is used to overcome the defects of low efficiency and low reliability in the prior art. Including the following steps:
  • micro light emitting diode having an epitaxial stack, comprising a first type semiconductor layer 11, an active layer 12, and a second type semiconductor layer 13 in sequence, the micro light emitting diode having an opposite first surface and Second surface,
  • the first electrode 14 is connected to the first type semiconductor layer 11,
  • the first surface has a hole 16 or a groove body, and the hole 16 or the groove opening size area is the first surface area of the chip ⁇ 0 2019/114173 ⁇ (: 17 ⁇ 2018/085128 30% ⁇ 50%;
  • the micro light emitting diode covers the sacrificial layer 41 and then at the sacrificial layer.
  • the center of the hole 16 or the opening of the slot does not coincide with the center of the chip, and the center of the hole 16 or the opening of the slot does not coincide with the center of the chip.
  • the hole 16 or the opening of the groove is gradually reduced from the first surface to better match the transfer film 51, and it is easy to discharge the air of the slit during the matching process, thereby improving the accuracy of the transfer.
  • the hole 16 or the groove is disposed at a position where the two bridge structures 22 are connected to the first surface.
  • the hole 16 or the groove is spaced from the bridge structure 22 to form a torque arm.
  • the protrusion 52 of the transfer film 51 is in contact with the hole 16 or the groove body, and a force is applied to the micro light emitting diode through the hole 16 or the inner wall of the groove to form a torque with respect to the two bridge structures 22, and the micro light emitting diode and the bridge structure 22 are easily formed. Separation.
  • the micro light emitting diode may be selected as a flip-chip structure, a formal structure or a vertical structure, and the material of the bridge structure 22 is a dielectric material such as 310 2 , 3 , and 1 2 0 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了微发光二极管及其转移方法,提供顶面具有孔洞的微发光二极管芯粒,在芯粒的侧面和底面镀上牺牲层,芯粒通过牺牲层与键合层固定,芯粒再通过键合层键合到临时基板上,设置分别连接键合层和芯粒的桥结构,消耗掉牺牲层,形成转移装置。转移膜通过挤压孔洞,施加给芯粒一个相对于桥结构的扭矩,在扭矩作用下,芯粒与桥脱离,通过转移膜固定芯粒进行转移。

Description

\¥0 2019/114173 卩(:17 \2018/085128
微发光二极管及其转移方法
技术领域
[0001] 本发明属于半导体制造领域, 具体涉及微发光二极管及其转移方法。
背景技术
[0002] (1111^)) 是目前热门研究的下一代显示器光源。 它具有低功耗、 高 亮度、 超高分辨率与色彩饱和度、 响应速度快、 能耗低、 寿命长灯优点。 此外 , 它的功率消耗量约为1^1)的10%, 01^)的 50%。 而与同样是自发光的 01^) 相比较, 亮度高了 30倍, 且分辨率可以达到 150(^?1 (像素密度) 。
Figure imgf000003_0001
明显的优势, 使得它有望取代现在的 01^0和1^1), 成为下一代显示器的光源。
目前还无法量产, 是因为目前还有许多技术难题需要攻克, 其中一个重要 的技术难题就是如何提高转移效率。 而本发明就是针对此问题提出一种可行的 解决方案, 通过此方案可以实现高效率的1111^0的转移。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 针对由于微发光二极管太小的尺寸, 大批量转移时因为脆弱很难通过常规方法 完成。 相反, 这些阵列使用微转印技术。 对微发光二极管可制成基材和印刷到 目标衬底 (例如, 塑料金属, 玻璃, 蓝宝石, 透明材料, 或柔性材料) , 从而 避免了对象的基板上的微发光二极管制造。
[0004] 本发明提供的第一个技术方案为一种微发光二极管, 包括: 外延叠层, 依次包 含第一类型半导体层、 有源层、 第二类型半导体层, 其具有相对的第一表面和 第二表面; 第一电极, 与所述第一类型半导体层连接; 第二电极, 与所述第二 类型半导体层连接; 第一表面具有孔洞, 孔洞开口大小面积为芯片第一表面面 积的 30%〜 50%。
[0005] 根据本发明优选的, 孔洞开口由第一表面开始逐步缩小。 \¥0 2019/114173 卩(:17 \2018/085128
[0006] 根据本发明优选的, 孔洞开口中心与芯片中心不重合。
[0007] 根据本发明优选的, 孔洞开口深度为
Figure imgf000004_0001
[0008] 根据本发明优选的, 第一电极和第二电极位于同面或异面。
[0009] 根据本发明优选的, 微发光二极管的尺寸为 100^1111x10(^111以内。
[0010] 根据本发明优选的, 微发光二极管为倒装结构、 正装结构或者垂直结构。
[0011] 本发明提供的第二个技术方案为一种微发光装置, 包括:
[0012] 微发光二极管, 微发光二极管具有外延叠层, 依次包含第一类型半导体层、 有 源层、 第二类型半导体层, 其具有相对的第一表面和第二表面, 第一电极, 与 第一类型半导体层连接, 第二电极, 与第二类型半导体层连接, 第一表面具有 孔洞, 孔洞开口大小面积为芯片第一表面面积的 30%〜 50% ; 具有凹槽的键合层 ; 连接键合层凹槽开口边缘与微发光二极管第一表面的桥结构; 微发光二极管 与键合层之间存在间隙。
[0013] 桥结构数量不少于两个。
[0014] 为了更佳的转移效果, 在一些实施例中, 桥结构数量为两个, 孔洞设置于两个 桥结构与第一表面连接位置连线的一侧。
[0015] 根据本发明优选的, 桥结构为介电质。
[0016] 根据本发明优选的, 桥结构材料为 310 2、 、 八 八1203等。
[0017] 根据本发明优选的, 桥结构具有台阶, 台阶的位置在微发光二极管和键合层之 间, 台阶的厚度为整个介电层厚度的 10%〜 50%。
[0018] 根据本发明优选的, 孔洞开口中心与第一表面中心不重合。
[0019] 根据本发明优选的, 孔洞开口深度为
Figure imgf000004_0002
[0020] 根据本发明优选的, 孔洞开口由第一表面开始逐步缩小。
[0021] 根据本发明优选的, 微发光二极管距离凹槽底部距离为介电层厚度的 1倍以上
[0022] 根据本发明优选的, 第一电极和第二电极位于同面或异面。
[0023] 根据本发明优选的, 微发光二极管为倒装结构、 正装结构或者垂直结构。
[0024] 根据本发明优选的, 微发光二极管的尺寸为
Figure imgf000004_0003
100(X111以内
[0025] 根据本发明优选的, 键合层材料为 胶或者树脂。 \¥0 2019/114173 卩(:17 \2018/085128
[0026] 根据本发明优选的, 键合层下方具有支架。
[0027] 在一些实施例中, 微发光装置阵列由一系列微发光装置构成。
[0028] 基于以上微发光二极管、 微发光装置或者微发光装置阵列, 本发明提出第三个 高效且可靠的技术方案, 公开了一种微发光二极管的转移方法,
[0029] ( 1) 提供微发光二极管, 微发光二极管具有外延叠层, 依次包含第一类型半 导体层、 有源层、 第二类型半导体层, 微发光二极管具有相对的第一表面和第 二表面,
[0030] 第一电极, 与第一类型半导体层连接,
[0031] 第二电极, 与第二类型半导体层连接,
[0032] 第一表面具有孔洞或槽体, 孔洞或槽体开口大小面积为芯片第一表面面积的 30
%〜50% ;
[0033] (2) 在微发光二极管除了第一表面外, 覆盖牺牲层, 再在牺牲层外覆盖键合 层;
[0034] (3) 微发光二极管通过键合层键合到基架上;
[0035] (4) 制作连接键合层凹槽开口边缘与微发光二极管第一表面桥结构;
[0036] (5) 去除牺牲层, 在微发光二极管与键合层之间设置间隙;
[0037] (6) 通过图形化转移膜向孔洞或槽体施加压力, 转移膜表面具有与孔洞或槽 体匹配的凸起, 转移膜吸附住微发光二极管并让桥结构断裂。
[0038] 根据本发明优选的, 孔洞或槽体开口中心与芯片中心不重合, 孔洞或槽体开口 由第一表面开始逐步缩小。
[0039] 根据本发明优选的, 微发光二极管为倒装结构、 正装结构或者垂直结构。
[0040] 根据本发明优选的, 转移膜材料为 PDMS固态聚二甲基硅氧烷、 胶、 热解胶 胶等。
[0041] 根据本发明优选的, 桥结构的材料为310 2、 、 八 、 八1203等。
[0042] 根据本发明优选的, 转移膜仅凸起与微发光二极管接触。
发明的有益效果
有益效果
[0043] 本发明在微发光二极管的第一表面设置有用于与转移膜匹配的孔洞, 显著地提 \¥0 2019/114173 卩(:17 \2018/085128 高了微发光二极管转移效率, 且具有很高的可靠性。
[0044] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0045] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0046] 图 1、 图 2为实施例 1的微发光二极管示意图
[0047] 图 3为实施例 1的微发光二极管俯视示意图
[0048] 图 4~图6为实施例 2的微发光装置示意图
[0049] 图 7~图9为实施例 3的微发光二极管的转移方法示意图
[0050] 图中标示: 11、 第一类型半导体层, 12、 有源层, 13、 第二类型半导体层, 14 、 第一电极, 15、 第二电极, 16、 孔洞, 20、 凹槽, 21、 键合层, 22、 桥结构 , 31、 基架, 41、 牺牲层, 51、 转移膜, 52、 凸起。
发明实施例
本发明的实施方式
[0051] 以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0052] 实施例一
[0053] 参看附图 1, 一种微发光二极管, 根据本实施例选择的尺寸在 100 100 1以 内的微型芯片, 包括: 发光外延叠层, 依次包含第一类型半导体层 11、 有源层 1 2、 第二类型半导体层 13 , 其具有相对的第一表面&和第二表面 15; 第一电极 14, 与所述第一类型半导体层 11连接; 第二电极 15 , 与所述第二类型半导体层 13连 接; 第一电极 14和第二电极 15位于同面或异面, 根据产品需要, 微发光二极管 \¥0 2019/114173 卩(:17 \2018/085128 可以选择为第一电极 14和第二电极 15位于同面的倒装结构、 正装结构或者位于 异面的垂直结构。
[0054] 第一表面具有在转移过程中使用的孔洞 16或槽体, 处于第一表面的孔洞 16或槽 体更多可能位于第一类型半导体层上, 也可能位于采用垂直结构的第一电极上 , 或者正装结构或者倒装结构的衬底上, 孔洞 16或槽体开口大小面积为芯片第 一表面面积的 30%〜 50%, 孔洞 16或槽体不限于采用规则形状, 例如一字型、 十 字型都是可以选用的形状。 参看图 2, 为了在微发光二极管的转移过程中形成转 动扭矩效果, 孔洞 16或槽体开口中心与芯片中心不重合。 孔洞 16或槽体开口深
Figure imgf000007_0001
参看图 3, 孔洞 16或槽体开口由第一表面开始逐步缩小, 利 于挤压孔洞 16时排除内部气体, 提升定位功能。
[0055] 实施例二
[0056] 参看图 4, 一种微发光装置, 包括:
[0057] 微发光二极管, 微发光二极管具有外延叠层, 依次包含第一类型半导体层 11、 有源层 12、 第二类型半导体层 13 , 其具有相对的第一表面和第二表面, 第一电 极14, 与第一类型半导体层 11连接, 第二电极 15 , 与第二类型半导体层 13连接 , 第一表面具有孔洞 16或槽体, 孔洞 16或槽体开口大小面积为芯片第一表面面 积的 30%〜 50% ; 具有凹槽 20的键合层 21 ; 连接键合层 21凹槽 20开口边缘与微发 光二极管第一表面的桥结构 22; 微发光二极管与键合层 21之间存在间隙, 设置 间隙的目的为微发光二极管提取预留缓冲空间。
[0058] 为了保障桥结构 22对更大微发光二极管有足够的粘附力, 本实施例桥结构 22数 量可以选择不少于两个, 如果只有一个桥结构 22, 一方面桥结构 22需要做的比 较大, 造成在转移时断裂难度加大, 另一方面, 也难以承载稍大尺寸的微发光 二极管, 微发光装置受到一定冲击就可能出现桥结构 22断裂。
[0059] 以桥结构 22数量为两个为例, 桥结构 22的宽度为所在微发光二极管边长的 8% 〜 20%, 在此范围内, 桥结构 22可以保证足够的承载力, 又能降低断裂难度。
[0060] 参看图 5, 孔洞 16或槽体开口中心与第一表面中心不重合, 孔洞 16或槽体设置 于两个桥结构 22与第一表面连接位置连线的一侧, 孔洞 16或槽体与桥结构 22距 离形成扭矩臂。 为了避免残留桥结构 22, 适合选择为脆性的介电质, 例如选择 \¥0 2019/114173 卩(:17 \2018/085128 为310 2、 3 、 八1 20 3等, 桥结构 22也不适合采用延展性良好的金属, 受力时难 以断裂, 可能有金属残留在微发光二极管表面, 也会在后续工艺的使用上造成 干扰。
Figure imgf000008_0001
在转移微发光二极管时, 微发光 二极管利用扭矩与桥结构 22脱离, 需在凹槽 20底部预留出足够空间, 避免由于 挤压造成微发光二极管损伤, 微发光二极管距离凹槽 20底部距离为介电层厚度 的一倍以上。
[0061] 第一电极 14和第二电极 15位于同面或异面。 微发光二极管的尺寸为 100^1111x100
0111以内, 可以根据不同产品需要选择为倒装结构、 正装结构或者垂直结构。
[0062] 键合层
Figure imgf000008_0002
或者树脂等惰性键合 材料。 基于键合层 21厚度比较薄时不适合独立作为支撑结构, 为提供更稳定的 支撑, 在键合层 21下方具有支架 31, 支架 31设计避免了形变造成的定位上的影 响, 支架 31材料包括蓝宝石、 硅片、 金属等。
[0063] 参看图 6, 本实施例的一种变形为, 桥结构 22具有台阶, 台阶的位置在微发光 二极管和键合层 21之间, 台阶的厚度为整个桥结构厚度的 10%〜 50%。 台阶主要 作用为控制断裂位置, 可控制的选择残余桥结构的长度, 有利于大批量地进行 微发光二极管转移。
[0064] 使用相同的技术和方法可以被用来形成微发光装置阵列。
[0065] 实施例三
[0066] 在实施例一和实施例二的微发光二极管和微发光装置基础上, 本发明公开了一 种微发光二极管的转移方法, 用于克服现有技术中低效、 低可靠的缺陷, 包括 如下步骤:
[0067] 一种微发光二极管的转移方法,
[0068] ( 1) 提供微发光二极管, 微发光二极管具有外延叠层, 依次包含第一类型半 导体层 11、 有源层 12、 第二类型半导体层 13 , 微发光二极管具有相对的第一表 面和第二表面,
[0069] 第一电极 14, 与第一类型半导体层 11连接,
[0070] 第二电极 15 , 与第二类型半导体层 13连接,
[0071] 第一表面具有孔洞 16或槽体, 孔洞 16或槽体开口大小面积为芯片第一表面面积 \¥0 2019/114173 卩(:17 \2018/085128 的 30%〜 50% ;
[0072] (2) 参看图 7 , 在微发光二极管除了第一表面外, 覆盖牺牲层 41, 再在牺牲层
41外覆盖键合层 21 ;
[0073] (3) 微发光二极管通过键合层 21键合到基架 31上;
[0074] (4) 参看图 8, 制作连接键合层 21凹槽 20开口边缘与微发光二极管第一表面桥 结构 22;
[0075] (5) 去除牺牲层 41, 在微发光二极管与键合层 21之间设置间隙;
[0076] (6) 参看图 9, 通过图形化转移膜 51向孔洞 16或槽体施加压力, 转移膜 51材料 适合选择为 PDMS、 胶、 热解胶、 1^胶等吸附性好的材料, 转移膜 51表面具 有与孔洞 16或槽体匹配的凸起 52, 转移膜 51吸附住微发光二极管并让桥结构 22 断裂。 为了避免转移膜 51整面接触粘附性太强, 在释放微发光二极管时, 难以 与微发光二极管分离, 转移过程中, 转移膜 51仅凸起 52部分与微发光二极管接 触, 孔洞 16或槽体的设计也增加了扭断时的受力点, 避免转移膜 51在第一表面 上滑移导致的转移精度降低。
[0077] 孔洞 16或槽体开口中心与芯片中心不重合, 孔洞 16或槽体开口中心与芯片中心 不重合,
Figure imgf000009_0001
孔洞 16或槽体开口由第一表面 开始逐步缩小, 更好地与转移膜 51匹配, 容易在匹配过程中排出缝隙的空气, 提高转移的精度。
[0078] 基于孔洞 16或槽体开口中心与芯片中心不重合, 以实施例 2中描述的两个桥结 构 22为例, 孔洞 16或槽体设置于两个桥结构 22与第一表面连接位置连线的一侧 , 孔洞 16或槽体与桥结构 22距离形成扭矩臂。 在转移膜 51凸起 52与孔洞 16或槽 体接触, 并通过孔洞 16或槽体内壁向微发光二极管施加作用力, 形成相对两个 桥结构 22的扭矩, 轻松将微发光二极管与桥结构 22分离。
[0079] 与前两个实施例相同的, 微发光二极管可以选择为倒装结构、 正装结构或者垂 直结构, 桥结构 22的材料为310 2、 3 、 、 1 20 3等介质材料。
[0080] 以上所述仅为本发明创造的较佳实施例而已, 并不用以限制本发明创造, 凡在 本发明创造的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明创造的保护范围之内。

Claims

\¥0 2019/114173 卩(:17 \2018/085128 权利要求书
[权利要求 1] 微发光装置, 包括:
微发光二极管, 微发光二极管具有外延叠层, 依次包含第一类型半导 体层、 有源层、 第二类型半导体层, 微发光二极管具有相对的第一表 面和第二表面,
第一电极, 与第一类型半导体层连接,
第二电极, 与第二类型半导体层连接,
第一表面具有孔洞或槽体;
具有凹槽的键合层;
连接键合层凹槽开口边缘与微发光二极管第一表面的桥结构; 微发光二极管与键合层之间存在间隙。
[权利要求 2] 根据权利要求 1所述的微发光装置, 其特征在于: 孔洞或槽体开口由 第一表面开始逐步缩小。
[权利要求 3] 根据权利要求 1所述的微发光装置, 其特征在于: 桥结构数量不少于 两个。
[权利要求 4] 根据权利要求 1所述的微发光装置, 其特征在于: 桥结构数量为两个 , 孔洞设置于两个桥结构与第一表面连接位置连线的一侧。
[权利要求 5] 根据权利要求 1所述的微发光装置, 其特征在于: 微发光二极管的尺 寸为 100^x100(X111以内。
[权利要求 6] 根据权利要求 1所述的微发光装置, 其特征在于: 孔洞或槽体开口中 心与第一表面中心不重合。
[权利要求 7] 根据权利要求 6所述的微发光装置, 其特征在于: 孔洞或槽体开口中 心与第一表面中心不重合, 为了在微发光二极管的转移过程中形成转 动扭矩效果。
[权利要求 8] 根据权利要求 1所述的微发光装置, 其特征在于: 孔洞或槽体开口深 度为 0.1~11«11。
[权利要求 9] 根据权利要求 1所述的微发光装置, 其特征在于: 桥结构为介电质。
[权利要求 10] 根据权利要求 1所述的微发光装置, 其特征在于: 桥结构材料为 3102 \¥0 2019/114173 卩(:17 \2018/085128 、 或八1 20 3
[权利要求 11] 根据权利要求 10所述的微发光装置, 其特征在于: 桥结构具有台阶, 台阶的位置在微发光二极管和键合层之间, 台阶的厚度为整个介电层 厚度的 10%〜 50%。
[权利要求 12] 根据权利要求 1所述的微发光装置, 其特征在于: 微发光二极管距离 凹槽底部距离为桥结构厚度的一倍以上。
[权利要求 13] 根据权利要求 1所述的微发光装置, 其特征在于: 第一电极和第二电 极位于同面或异面。
[权利要求 14] 根据权利要求 1中任意一项所述的微发光装置, 其特征在于: 微发光 二极管为倒装结构、 正装结构或者垂直结构。
[权利要求 15] 根据权利要求 1所述的微发光装置, 其特征在于: 键合层材料为
Figure imgf000011_0001
胶、 11 胶或者树脂。
[权利要求 16] 根据权利要求 15所述的微发光装置, 其特征在于: 键合层下方具有支 架。
[权利要求 17] 根据权利要求 1所述的微发光装置, 其特征在于: 孔洞或槽体开口大 小面积为第一表面面积的 30%〜 50%。
[权利要求 18] 微发光装置阵列, 其特征在于: 包含一系列前述权利要求 1-18所述的 任意一种微发光装置。
[权利要求 19] 微发光二极管, 包括:
外延叠层, 依次包含第一类型半导体层、 有源层、 第二类型半导体层 , 微发光二极管具有相对的第一表面和第二表面; 第一电极, 与所述第一类型半导体层连接;
第二电极, 与所述第二类型半导体层连接;
其特征在于: 第一表面具有孔洞或槽体。
[权利要求 20] 根据权利要求 19所述的微发光二极管, 其特征在于: 孔洞或槽体开口 中心与芯片中心不重合。
[权利要求 21] 根据权利要求 20所述的微发光二极管, 其特征在于: 孔洞或槽体开口 中心与第一表面中心不重合, 为了在微发光二极管的转移过程中形成 \¥0 2019/114173 卩(:17 \2018/085128 转动扭矩效果。
[权利要求 22] 根据权利要求 19所述的微发光二极管, 其特征在于: 孔洞或槽体开口 深度为
Figure imgf000012_0001
[权利要求 23] 根据权利要求 19所述的微发光二极管, 其特征在于: 孔洞或槽体开口 由第一表面开始逐步缩小。
[权利要求 24] 根据权利要求 19所述的微发光二极管, 其特征在于: 第一电极和第二 电极位于同面或异面。
[权利要求 25] 根据权利要求 19所述的微发光二极管, 其特征在于: 微发光二极管为 倒装结构、 正装结构或者垂直结构。
[权利要求 26] 根据权利要求 19所述的微发光二极管, 其特征在于: 微发光二极管的 尺寸为 100^x100(X111以内。
[权利要求 27] 根据权利要求 19所述的微发光二极管, 其特征在于: 孔洞或槽体开口 大小面积为第一表面面积的 30%〜 50%。
[权利要求 28] 微发光二极管的转移方法,
( 1) 提供微发光二极管, 微发光二极管具有外延叠层, 依次包含第 一类型半导体层、 有源层、 第二类型半导体层, 微发光二极管具有相 对的第一表面和第二表面,
第一电极, 与第一类型半导体层连接,
第二电极, 与第二类型半导体层连接,
第一表面具有孔洞或槽体;
(2) 在微发光二极管除了第一表面外, 覆盖牺牲层, 再在牺牲层外 覆盖键合层;
(3) 微发光二极管通过键合层键合到基架上;
(4) 制作连接键合层凹槽开口边缘与微发光二极管第一表面桥结构
(5) 去除牺牲层, 在微发光二极管与键合层之间设置间隙;
(6) 通过图形化转移膜向孔洞或槽体施加压力, 转移膜表面具有与 孔洞或槽体匹配的凸起, 转移膜吸附住微发光二极管并让桥结构断裂 \¥0 2019/114173 卩(:17 \2018/085128
[权利要求 29] 根据权利要求 28所述的转移方法, 其特征在于: 孔洞或槽体开口大小 面积为第一表面面积的 30%〜 50%
[权利要求 30] 根据权利要求 28所述的转移方法, 其特征在于: 孔洞或槽体开口中心 与芯片中心不重合, 孔洞或槽体开口由第一表面开始逐步缩小。
[权利要求 31] 根据权利要求 30所述的转移方法, 其特征在于: 孔洞或槽体开口中心 与第一表面中心不重合, 为了在微发光二极管的转移过程中形成转动 扭矩效果。
[权利要求 32] 根据权利要求 28所述的转移方法, 其特征在于: 微发光二极管为倒装 结构、 正装结构或者垂直结构。
[权利要求 33] 根据权利要求 28所述的转移方法, 其特征在于: 转移膜材料为 PDMS 、 胶、 热解胶、
Figure imgf000013_0001
胶等。
[权利要求 34] 根据权利要求 28所述的转移方法, 其特征在于: 桥结构的材料为310
2、 、 、 八1 20 3等。
[权利要求 35] 根据权利要求 28所述的转移方法, 其特征在于: 转移膜仅凸起与微发 光二极管接触。
PCT/CN2018/085128 2017-12-11 2018-04-28 微发光二极管及其转移方法 WO2019114173A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/895,119 US11456400B2 (en) 2017-12-11 2020-06-08 Light-emitting diode and method for transferring the same
US17/939,300 US20230006097A1 (en) 2017-12-11 2022-09-07 Light-emitting structure and light-emitting device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711306978.0A CN108231968B (zh) 2017-12-11 2017-12-11 微发光二极管及其转移方法
CN201711306978.0 2017-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/895,119 Continuation-In-Part US11456400B2 (en) 2017-12-11 2020-06-08 Light-emitting diode and method for transferring the same

Publications (1)

Publication Number Publication Date
WO2019114173A1 true WO2019114173A1 (zh) 2019-06-20

Family

ID=62653478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085128 WO2019114173A1 (zh) 2017-12-11 2018-04-28 微发光二极管及其转移方法

Country Status (3)

Country Link
US (1) US11456400B2 (zh)
CN (1) CN108231968B (zh)
WO (1) WO2019114173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796230B (zh) * 2022-05-31 2023-03-11 友達光電股份有限公司 發光元件基板及其製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786642B (zh) * 2018-03-20 2023-08-11 厦门市三安光电科技有限公司 微发光元件、微发光二极管及其转印方法
TWI660524B (zh) * 2018-07-17 2019-05-21 友達光電股份有限公司 發光裝置及其製造方法
CN111292631B (zh) * 2018-11-21 2022-03-25 成都辰显光电有限公司 微发光二极管显示面板及其制备方法
WO2020155176A1 (zh) * 2019-02-03 2020-08-06 泉州三安半导体科技有限公司 发光装置
WO2020191593A1 (zh) * 2019-03-25 2020-10-01 厦门市三安光电科技有限公司 微发光组件、微发光二极管及微发光二极管转印方法
TWI692883B (zh) 2019-04-24 2020-05-01 錼創顯示科技股份有限公司 微型元件及其結構
US11038088B2 (en) 2019-10-14 2021-06-15 Lextar Electronics Corporation Light emitting diode package
CN116154063A (zh) * 2020-04-01 2023-05-23 厦门三安光电有限公司 发光二极管
TWI718923B (zh) * 2020-04-08 2021-02-11 台灣愛司帝科技股份有限公司 發光二極體晶片結構以及晶片移轉系統與方法
CN113782475A (zh) * 2020-06-10 2021-12-10 佛山市国星光电股份有限公司 Led芯片转移结构、其制作方法和芯片转移方法
CN112968079B (zh) * 2020-07-08 2022-05-13 重庆康佳光电技术研究院有限公司 发光单元、显示背板及其制作方法和芯片及其转移方法
CN114068372A (zh) * 2020-07-29 2022-02-18 华为技术有限公司 一种用于Micro LED晶粒的转移组件及转移方法
CN112750935B (zh) * 2020-12-31 2022-03-15 深圳市思坦科技有限公司 一种led芯片及其制作方法
TWI777733B (zh) * 2021-08-18 2022-09-11 隆達電子股份有限公司 發光二極體晶片與發光二極體晶片裝置
CN116053361A (zh) * 2021-10-28 2023-05-02 重庆康佳光电技术研究院有限公司 转移基板、制备方法和led芯片的巨量转移方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826435A (zh) * 2016-04-28 2016-08-03 歌尔声学股份有限公司 红光微发光二极管的形成方法、制造方法、背板及电子设备
CN106058010A (zh) * 2016-07-26 2016-10-26 深圳市华星光电技术有限公司 微发光二极管阵列的转印方法
US20170133818A1 (en) * 2015-06-18 2017-05-11 X-Celeprint Limited Laser array display
CN106941108A (zh) * 2017-05-23 2017-07-11 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
CN107170773A (zh) * 2017-05-23 2017-09-15 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
JPH09148225A (ja) * 1995-11-27 1997-06-06 Hitachi Ltd 基板ホルダーおよびそれを用いた微細加工装置
JP3906653B2 (ja) * 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
TWI671811B (zh) * 2009-05-12 2019-09-11 美國伊利諾大學理事會 用於可變形及半透明顯示器之超薄微刻度無機發光二極體之印刷總成
US8835940B2 (en) * 2012-09-24 2014-09-16 LuxVue Technology Corporation Micro device stabilization post
US9217541B2 (en) * 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US9929053B2 (en) * 2014-06-18 2018-03-27 X-Celeprint Limited Systems and methods for controlling release of transferable semiconductor structures
KR101680788B1 (ko) * 2015-04-13 2016-11-29 한국과학기술원 유연기구 메커니즘을 이용한 중공형 2축 직선운동 스테이지
US9640715B2 (en) * 2015-05-15 2017-05-02 X-Celeprint Limited Printable inorganic semiconductor structures
KR102412409B1 (ko) * 2015-10-26 2022-06-23 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US10297502B2 (en) * 2016-12-19 2019-05-21 X-Celeprint Limited Isolation structure for micro-transfer-printable devices
CN107154374B (zh) * 2017-05-23 2019-09-10 深圳市华星光电技术有限公司 微转印方法
US10832935B2 (en) * 2017-08-14 2020-11-10 X Display Company Technology Limited Multi-level micro-device tethers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170133818A1 (en) * 2015-06-18 2017-05-11 X-Celeprint Limited Laser array display
CN105826435A (zh) * 2016-04-28 2016-08-03 歌尔声学股份有限公司 红光微发光二极管的形成方法、制造方法、背板及电子设备
CN106058010A (zh) * 2016-07-26 2016-10-26 深圳市华星光电技术有限公司 微发光二极管阵列的转印方法
CN106941108A (zh) * 2017-05-23 2017-07-11 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
CN107170773A (zh) * 2017-05-23 2017-09-15 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796230B (zh) * 2022-05-31 2023-03-11 友達光電股份有限公司 發光元件基板及其製造方法

Also Published As

Publication number Publication date
CN108231968A (zh) 2018-06-29
US20200303595A1 (en) 2020-09-24
CN108231968B (zh) 2020-02-11
US11456400B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2019114173A1 (zh) 微发光二极管及其转移方法
US11894353B2 (en) Driving substrate and manufacturing method thereof, and micro LED bonding method
WO2019127704A1 (zh) 微型发光二极管显示面板及其制作方法
JP7154371B2 (ja) マイクロ発光デバイス、マイクロ発光ダイオード及びマイクロ発光ダイオードの転写方法
EP1900680A3 (en) Cap wafer having electrodes
WO2020057584A1 (zh) 微型芯片的批量转移装置以及方法
CN109962146A (zh) 将微型元件贴附至导电垫的贴附方法与其微型结构
EP1564802A3 (en) Thin film semiconductor device and method for fabricating the same
EP1555517A3 (en) Capacitive pressure sensor
CN110165024B (zh) 微型元件转移方法
CN103474425B (zh) 高发光均匀性的微型柔性led面阵器件及制备方法
TW201212303A (en) LED packaging structure and packaging method thereof
TWI453960B (zh) 發光二極體封裝方法
WO2019148581A1 (zh) 一种柔性led器件及其制备方法
CN102544279A (zh) 发光二极管及其形成方法
CN203165886U (zh) 一种影像传感器结构
TWI361499B (en) Method for packaging led
CN107611238A (zh) 一种led芯片级封装器件及其制作方法
CN108493320B (zh) 纳米复合缓冲镀层mcob封装氮化铝基板及其制备方法
CN203503689U (zh) 覆晶式led芯片
CN103208585B (zh) 芯片封装结构及其制造方法
CN204303863U (zh) 一种led结构
US20230006097A1 (en) Light-emitting structure and light-emitting device including the same
CN207068846U (zh) 一种多芯片串联式背光led
TWI311822B (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888064

Country of ref document: EP

Kind code of ref document: A1