WO2019148581A1 - 一种柔性led器件及其制备方法 - Google Patents

一种柔性led器件及其制备方法 Download PDF

Info

Publication number
WO2019148581A1
WO2019148581A1 PCT/CN2018/078493 CN2018078493W WO2019148581A1 WO 2019148581 A1 WO2019148581 A1 WO 2019148581A1 CN 2018078493 W CN2018078493 W CN 2018078493W WO 2019148581 A1 WO2019148581 A1 WO 2019148581A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
type silicon
layer
substrate
composite film
Prior art date
Application number
PCT/CN2018/078493
Other languages
English (en)
French (fr)
Inventor
查宝
曾燚
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/761,110 priority Critical patent/US10355163B1/en
Publication of WO2019148581A1 publication Critical patent/WO2019148581A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to the field of display device manufacturing, and in particular to a flexible LED device and a method of fabricating the same.
  • LED Lighting Emitting Diode
  • LEDs are similar to ordinary diodes in that they consist of a PN junction.
  • the light-emitting mechanism uses solid semiconductor chips as luminescent materials. In the semiconductor, the holes in the P region and the electrons in the N region are recombined, and excess energy is released to cause photon emission. According to different band gaps in different semiconductor materials, the energy states of holes and electrons are different. Therefore, the energy released during the recombination is different, resulting in light of different wavelengths.
  • LEDs are widely used in various fields such as lighting, decoration, backlight and landscape lighting.
  • the development of LED has developed rapidly in various application fields, but it will also encounter some challenges: First, with the advent of the low-carbon economy era, it is imperative to develop more energy-efficient LEDs; Due to the fact that LEDs are hard and cannot be bent, they cannot meet the needs of their use in certain specific occasions. Therefore, the development of flexible LEDs is a problem that needs to be solved at present.
  • the invention provides a flexible LED device and a preparation method thereof, which can overcome the brittleness of the silicon material during bending, can overcome the limitation of the use range of the hard LED, and the process is relatively simple and energy-saving.
  • the invention provides a method for preparing a flexible LED device, the method comprising the following steps:
  • Step S1 providing a P-type silicon wafer as a substrate, spin coating a layer of photoresist on the substrate, and obtaining a patterned P-type silicon on the substrate by an exposure and development process. a microcolumn; wherein at least a portion of the P-type silicon wafer is used as the substrate, and another portion is patterned to form a uniform P-type silicon micron pillar, and the P-type silicon micron pillar is uniform Distributed on the substrate;
  • Step S2 filling a soft mold polymer resin in a gap between the P-type silicon micron columns to form a composite film layer including the P-type silicon micron pillar and the soft mold polymer resin;
  • Step S3 sequentially preparing an N-type doped metal oxide film layer and a first metal electrode layer on the composite film layer;
  • Step S4 peeling off the substrate, preparing a second metal electrode layer on a surface of the composite film layer on which one side of the substrate is peeled off, and then using the composite film layer, the first metal electrode layer, and the The entirety of the second metal electrode layer and the N-type doped metal oxide film layer is transferred onto the flexible substrate to form a flexible LED device.
  • the method further comprises the step of etching the composite film layer such that the P-type silicon micron pillar is coplanar with the soft mold polymer resin.
  • a layer of the N-type doped metal oxide film layer is deposited on the surface of the composite film layer by means of ion magnetron sputtering, so that the N- A type doped metal oxide film layer forms a PN junction with the P-type silicon micron pillar.
  • the invention also provides a flexible LED device prepared by the above preparation method, comprising:
  • the flexible substrate comprising a display area
  • An anode layer corresponding to the display region is prepared on the flexible substrate
  • the composite film layer prepared on the anode layer, the composite film layer comprising a soft mold polymer resin and a P-type silicon micron column;
  • N-type metal oxide layer is prepared on the composite film layer
  • the P-type silicon micron column is uniformly distributed in the composite film layer, and penetrates the soft mold polymer resin to form a P-N junction with the N-type metal oxide layer.
  • the P-type silicon micron column has a diameter of 0.5 um to 10 um.
  • the P-type silicon micron column has a height of 5 um to 100 um.
  • the distance between two adjacent P-type silicon micron columns is 2 um to 20 um.
  • the P-type silicon micron column has a cylindrical shape, a prism shape, a truncated cone shape or a prismatic shape.
  • the material of the soft mold polymer resin is one or more of polymethyl methacrylate, polydimethylsiloxane, flexible epoxy resin, and flexible polyimide. .
  • the present invention also provides a method of fabricating a flexible LED device, the method comprising the steps of:
  • Step S1 providing a P-type silicon wafer as a substrate, spin coating a layer of photoresist on the substrate, and obtaining a patterned P-type silicon on the substrate by an exposure and development process.
  • Step S2 filling a soft mold polymer resin in a gap between the P-type silicon micron columns to form a composite film layer including the P-type silicon micron pillar and the soft mold polymer resin;
  • Step S3 sequentially preparing an N-type doped metal oxide film layer and a first metal electrode layer on the composite film layer;
  • Step S4 peeling off the substrate, preparing a second metal electrode layer on a surface of the composite film layer on which one side of the substrate is peeled off, and then using the composite film layer, the first metal electrode layer, and the The entirety of the second metal electrode layer and the N-type doped metal oxide film layer is transferred onto the flexible substrate to form a flexible LED device.
  • the method further comprises the step of etching the composite film layer such that the P-type silicon micron pillar is coplanar with the soft mold polymer resin.
  • a layer of the N-type doped metal oxide film layer is deposited on the surface of the composite film layer by means of ion magnetron sputtering, so that the N- A type doped metal oxide film layer forms a PN junction with the P-type silicon micron pillar.
  • the flexible LED device and the preparation method thereof are provided by making the P-type silicon material of the LED device into a uniformly distributed P-type silicon micron column, Then, the soft mold polymer resin is filled in the gap between the P-type silicon micron columns to form a composite film layer including a P-type silicon micron column and a soft mold polymer resin, and then the LED device is prepared.
  • the invention overcomes the influence of the brittleness of the silicon material of the existing LED device on the display performance of the LED device during bending. Since the composite film layer of the invention has the flexible function of ensuring the corresponding function of the semiconductor silicon material, the breakthrough is hard.
  • the limitation of the range of use of the LED, the prepared flexible LED device has uniformity of illumination, is not only relatively simple in process, can be mass-produced, and can also save energy while achieving flexibility.
  • FIG. 1 is a flow chart of a method for preparing a flexible LED device provided by the present invention
  • FIGS. 2a-2f are schematic diagrams of processes for preparing a flexible LED device according to the present invention.
  • FIG. 3 is a schematic structural diagram of a flexible LED device according to an embodiment of the present invention.
  • the invention is directed to the reliability test of the liquid crystal panel of the prior art, and the RA test cannot comprehensively reflect the influence of the temperature generated by the direct type and the side-entry backlight on the normal operation of the GOA circuit, thereby causing technical problems of wasting human and material resources.
  • Embodiments are capable of solving this drawback.
  • FIG. 1 is a flow chart of a method for fabricating a flexible LED device according to the present invention, the method comprising the following steps:
  • Step S1 providing a P-type silicon wafer as a substrate, spin coating a layer of photoresist on the substrate, and obtaining a patterned P-type silicon on the substrate by an exposure and development process.
  • Step S2 filling a soft mold polymer resin in a gap between the P-type silicon micron columns to form a composite film layer including the P-type silicon micron pillar and the soft mold polymer resin;
  • Step S3 sequentially preparing an N-type doped metal oxide film layer and a first metal electrode layer on the composite film layer;
  • Step S4 peeling off the substrate, preparing a second metal electrode layer on a surface of the composite film layer on which one side of the substrate is peeled off, and then using the composite film layer, the first metal electrode layer, and the The entirety of the second metal electrode layer and the N-type doped metal oxide film layer is transferred onto the flexible substrate to form a flexible LED device.
  • FIG. 2a - FIG. 2f is a schematic diagram of a process for preparing a flexible LED device according to the present invention.
  • a square P-type silicon wafer 20 is provided, and a surface of the P-type silicon wafer 20 is spin-coated.
  • a photoresist, a photoresist layer 21 is formed, at least a portion of the P-type silicon wafer 20 is used as the substrate 201, and another portion is patterned, and a uniform film is formed on the substrate 201 by an exposure and development process.
  • P-type silicon micro-pillars 202, and the P-type silicon micro-pillars 202 are uniformly distributed on the substrate 201, and there is a gap between two adjacent P-type silicon micro-pillars 202. Then, the soft mold polymer resin 203 is filled at the gap between the P-type silicon micro-pillars 202 to form a composite layer including the P-type silicon micro-pillar 202 and the soft-mode polymer resin 203.
  • the film layer 22; the composite film layer 22 covers the substrate 201.
  • the composite film layer 22 is etched to etch away the tip of the P-type silicon micron pillar 202 exposed to the soft mold polymer resin 203, so that the P-type silicon micron pillar 202 and The soft mold polymer resin 203 is coplanar to form a flat surface of the composite film layer 22, which can be etched by an oxygen plasma etching method.
  • an N-type doped metal oxide film layer 23 is deposited on the surface of the composite film layer 22 by ion magnetron sputtering, and the N-type doped metal oxide film layer 23 is
  • the P-type silicon micron pillars 202 form a PN junction.
  • a first metal electrode layer 24 is then formed on the N-type doped metal oxide film layer 23, with the first metal electrode layer 24 serving as the cathode layer of the LED device. Thereafter, the substrate 201 and the composite film layer 22 are mechanically peeled off. Preferably, the substrate 201 is peeled off at a position where the soft mold polymer resin 203 is exposed, and the peeling of the composite film layer 22 is maintained. Flatness and integrity of the surface.
  • a second metal electrode layer 25 is prepared on the surface of the side of the composite film layer 22 from which the substrate 201 is peeled off, and the second metal electrode layer 25 serves as an anode layer of the LED device. Finally, the whole composed of the composite film layer 22, the first metal electrode layer 24, the second metal electrode layer 25, and the N-type doped metal oxide film layer 23 is transferred to the PET flexible substrate 26 On top, a flexible LED device is formed.
  • the photoresist is preferably a positive photoresist, and the thickness of the photoresist layer formed is between 100 nm and 300 nm, and the P-type silicon wafer 20 can be patterned by exposure and development. The exposed portion of the portion is eliminated, and a negative photoresist can also be selected.
  • the highly ordered, uniform P-type silicon micron pillars 202 are obtained by an etching process.
  • the soft mold polymer resin 203 may not be exposed when the substrate 201 is peeled off.
  • the soft mold polymer resin 203 is uniformly filled in the gap formed by the two P-type silicon micro-pillars 202 to form the composite film layer 22.
  • the material of the soft mold polymer resin 203 may be one or more selected from the group consisting of polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), flexible epoxy resin, flexible polyimide, and the like. .
  • the thickness of the N-type doped metal oxide film layer 23 is between 200 nm and 500 nm, and the material of the N-type doped metal oxide film layer 23 may be selected from the group consisting of ZnO, Cu 2 O, SnO 2 , and Fe. One or more of 2 O 3 , TiO 2 , ZrO 2 , CoO, WO 3 , In 2 O 3 , Al 2 O 3 , Fe 3 O 4 , etc., different N-type metal oxides and P- Different types of semiconductor silicon have different forbidden band widths, and also correspond to light of different lengths.
  • the material of the first metal electrode layer 24 and the second metal electrode layer 25 may be any one or a plurality of metal composite films of graphene, Ag, Al, Cu, Zn or the like.
  • the present invention further provides a flexible LED device prepared by the above preparation method, comprising: a flexible substrate substrate 30, the flexible substrate substrate 30 includes a display region; and an anode layer 31 corresponding to the display a region is prepared on the flexible substrate 30; a composite film layer 32 is prepared on the anode layer 31, the composite film layer 32 includes a soft mold polymer resin 320 and a P-type silicon micron pillar 321; N- A metal oxide layer 33 is prepared on the composite film layer 32; a cathode layer 34 is formed on the N-type metal oxide layer 33.
  • the P-type silicon micron pillars 321 are evenly distributed in the composite film layer 32, and penetrate through the soft mold polymer resin 320, so that the two ends of the P-type silicon micron pillars 321 are respectively.
  • the anode layer 31 and the N-type metal oxide layer 33 are in contact with each other, and a PN junction is formed with the N-type metal oxide layer 33 to conduct the anode layer 31 and the cathode layer 34.
  • the diameter of the P-type silicon micron pillars 321 ranges from 0.5 um to 10 um, preferably from 2 um to 6 um; the height ranges from 5 um to 100 um, preferably from 20 um to 80 um. And the distance between two adjacent P-type silicon micro-pillars 321 is between 2 um and 20 um, preferably between 5 um and 12 um.
  • the P-type silicon micron pillar 321 has a shape of a cylindrical shape, a prism shape, a truncated cone shape or a prismatic shape, and is not limited herein.
  • the semiconductor device can be improved by the addition of a flexible material to improve the brittleness of the semiconductor silicon material.
  • the silicon material is not damaged when bent.
  • the embodiment provided by the present invention is a form in which a P-type silicon material is formed into a P-type silicon micron column. It can be understood that the present invention can also make a P-type silicon material into other parts without affecting the function.
  • the process accepts a shape that combines organically with the flexible material to improve the brittleness of the silicon material during bending.
  • the flexible LED device and the preparation method thereof are provided by first using a part of a P-type silicon wafer as a substrate, and another part of etching to form a P-type silicon micron column, and then The gap between the P-type silicon micron columns is filled with a soft mold polymer resin to form a composite film layer comprising a P-type silicon micron column and a soft mold polymer resin; and an N-type doped metal oxide film layer is prepared. To form a PN junction, the P-type substrate is then mechanically stripped, and the preparation of the electrode is completed and transferred to a PET substrate to form a flexible LED device.
  • the invention overcomes the influence of the brittleness of the silicon material of the LED device on the display performance of the LED device during bending, and the composite film layer of the invention has the flexible property under the corresponding function of the semiconductor silicon material, and breaks through the use of the hard LED. Due to the limitation of the range, the prepared flexible LED device has uniformity of illumination, is not only relatively simple in process, can be mass-produced, and can also save energy while achieving flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种柔性LED器件及其制备方法,包括以下步骤:以一P-型硅晶片为衬底,经曝光显影后形成一层P-型硅微米柱;在所述P-型硅微米柱之间的间隙填充软模高分子树脂形成复合膜层;再在所述复合膜层上依次制备N-型掺杂金属氧化物膜层、第一金属电极层;最后剥离所述衬底,再制备第二金属电极层,最后将其转移至柔性衬底上。

Description

一种柔性LED器件及其制备方法 技术领域
本发明涉及显示器件制造领域,尤其涉及一种柔性LED器件及其制备方法。
背景技术
LED (Lighting Emitting Diode) 即为发光二极管,是一种能将电能转化为光能的半导体固体发光器件,LED与普通的二极管类似都是由一个PN结组成,其发光机理是利用固体半导体芯片作为发光材料,在半导体中通过P区的空穴和和N区的电子发生复合,释放出过剩的能量而引起光子发射,根据不同的半导体材料中禁带宽度不同,其空穴和电子所处的能量状态也不同,因此在其复合时释放出的能量则不同,从而产生不同波长的光。
随着科学技术的发展,LED的性能在不断提高,LED被广泛的应用在各个领域,比如照明、装饰、背光源和景观照明等。LED的发展在各个应用领域发展迅猛,但是也随之而来会遇到一些挑战:其一、随着低碳经济时代的到来,发展更为节能的LED是势在必行的任务;其二、因LED为硬质、不能够弯曲的特点,不能够满足其在某些特定场合的使用需求,因此,发展柔性的LED是当下需解决的问题。
目前要实现LED的柔性,OLED虽然可以很好的实现柔性,但是制程条件苛刻,难以生产尺寸相对较大,而传统的无机半导体LED,一个难以突破的问题就是在于半导体硅材料在弯曲时的脆性问题。
技术问题
本发明提供的一种柔性LED器件及其制备方法,能够克服硅材料的在弯曲时的脆性,能够突破硬质LED使用范围的局限性,制程相对简单且能够节能。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种柔性LED器件的制备方法,所述方法包括以下步骤:
步骤S1、提供一P-型硅晶片为衬底,在所述衬底上旋涂一层光刻胶,通过曝光、显影制程,在所述衬底上获得一层图案化的P-型硅微米柱;其中,至少一部分所述P-型硅晶片用作所述衬底,另一部分图案化后经形成均一的所述P-型硅微米柱,且所述P-型硅微米柱均匀的分布于所述衬底上;
步骤S2、在所述P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括所述P-型硅微米柱与所述软模高分子树脂的复合膜层;
步骤S3、在所述复合膜层上依次制备N-型掺杂金属氧化物膜层、第一金属电极层;
步骤S4、剥离所述衬底,在所述复合膜层剥离掉所述衬底一侧的表面上制备第二金属电极层,然后将由所述复合膜层、所述第一金属电极层、所述第二金属电极层和所述N-型掺杂金属氧化物膜层组成的整体转移至柔性衬底上,形成柔性LED器件。
根据本发明一优选实施例,所述步骤S2之后,所述方法还包括以下步骤:刻蚀所述复合膜层,使所述P-型硅微米柱与所述软模高分子树脂共平面。
根据本发明一优选实施例,所述步骤S3中,采用离子磁控溅射的方式在所述复合膜层表面沉积一层所述N-型掺杂金属氧化物膜层,使所述N-型掺杂金属氧化物膜层与所述P-型硅微米柱形成P-N结。
本发明还提供一种采用上述制备方法制备的柔性LED器件,包括:
柔性衬底基板,所述柔性衬底基板包括有显示区域;
阳极层,对应所述显示区域制备于所述柔性衬底基板上;
复合膜层,制备于所述阳极层上,所述复合膜层包括软模高分子树脂以及P-型硅微米柱;
N-型金属氧化物层,制备于所述复合膜层上;
阴极层,制备于所述N-型金属氧化物层上;
其中,所述P-型硅微米柱均匀的分布于所述复合膜层中,且贯穿于所述软模高分子树脂,与所述N-型金属氧化物层形成P-N结。
根据本发明一优选实施例,所述P-型硅微米柱的直径为0.5um ~10um。
根据本发明一优选实施例,所述P-型硅微米柱的高度为5um~100um。
根据本发明一优选实施例,相邻两所述P-型硅微米柱之间的距离为2um~20um。
根据本发明一优选实施例,所述P-型硅微米柱的形状为圆柱形、棱柱形、圆台形或者棱台形。
根据本发明一优选实施例,所述软模高分子树脂的材料为聚甲基丙烯酸甲酯、聚二甲基硅氧烷、柔性环氧树脂以及柔性聚亚酰胺中的一者或一者以上。
本发明还提供一种柔性LED器件的制备方法,所述方法包括以下步骤:
步骤S1、提供一P-型硅晶片为衬底,在所述衬底上旋涂一层光刻胶,通过曝光、显影制程,在所述衬底上获得一层图案化的P-型硅微米柱;
步骤S2、在所述P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括所述P-型硅微米柱与所述软模高分子树脂的复合膜层;
步骤S3、在所述复合膜层上依次制备N-型掺杂金属氧化物膜层、第一金属电极层;
步骤S4、剥离所述衬底,在所述复合膜层剥离掉所述衬底一侧的表面上制备第二金属电极层,然后将由所述复合膜层、所述第一金属电极层、所述第二金属电极层和所述N-型掺杂金属氧化物膜层组成的整体转移至柔性衬底上,形成柔性LED器件。
根据本发明一优选实施例,所述步骤S2之后,所述方法还包括以下步骤:刻蚀所述复合膜层,使所述P-型硅微米柱与所述软模高分子树脂共平面。
根据本发明一优选实施例,所述步骤S3中,采用离子磁控溅射的方式在所述复合膜层表面沉积一层所述N-型掺杂金属氧化物膜层,使所述N-型掺杂金属氧化物膜层与所述P-型硅微米柱形成P-N结。
有益效果
本发明的有益效果为:相较于现有的LED器件,本发明提供的柔性LED器件及其制备方法,通过将LED器件的P-型硅材料制作成均匀分布的P-型硅微米柱,然后在P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括P-型硅微米柱与软模高分子树脂的复合膜层,再进行LED器件的制备。本发明克服了现有LED器件的硅材料在弯曲时由于脆性而导致影响LED器件的显示性能,由于本发明的复合膜层在保证半导体硅材料的相应功能下,具有柔性的特质,突破硬质LED使用范围的局限性,制备的柔性LED器件具有发光均匀性,不仅制程相对简单,可以大规模生产,且在实现柔性的同时也能够节能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的柔性LED器件的制备方法流程图;
图2a~图2f为本发明提供的制备柔性LED器件的过程示意图;
图3为本发明实施例提供的柔性LED器件结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有技术的液晶面板可靠性测试,在RA测试中无法全面的反应出直下式和侧入式背光产生的温度对GOA电路正常工作的影响,从而造成浪费人力物力的技术问题,本实施例能够解决该缺陷。
参考图1,为本发明提供的柔性LED器件的制备方法流程图,所述方法包括以下步骤:
步骤S1、提供一P-型硅晶片为衬底,在所述衬底上旋涂一层光刻胶,通过曝光、显影制程,在所述衬底上获得一层图案化的P-型硅微米柱;
步骤S2、在所述P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括所述P-型硅微米柱与所述软模高分子树脂的复合膜层;
步骤S3、在所述复合膜层上依次制备N-型掺杂金属氧化物膜层、第一金属电极层;
步骤S4、剥离所述衬底,在所述复合膜层剥离掉所述衬底一侧的表面上制备第二金属电极层,然后将由所述复合膜层、所述第一金属电极层、所述第二金属电极层和所述N-型掺杂金属氧化物膜层组成的整体转移至柔性衬底上,形成柔性LED器件。
具体地,请参照图2a-图2f所示,为本发明提供的制备柔性LED器件的过程示意图,先提供一个方形的P-型硅晶片20,在所述P-型硅晶片20表面旋涂光刻胶,形成光刻胶层21,以至少一部分所述P-型硅晶片20用作衬底201,另一部分进行图案化,通过曝光、显影制程,在所述衬底201上形成均一的P-型硅微米柱202,且所述P-型硅微米柱202均匀的分布于所述衬底201上,且相邻两所述P-型硅微米柱202之间存在间隙。然后在所述P-型硅微米柱202之间的所述间隙处填充软模高分子树脂203,形成一层包括所述P-型硅微米柱202与所述软模高分子树脂203的复合膜层22;所述复合膜层22覆盖所述衬底201。再对所述复合膜层22进行刻蚀,将裸露出所述软模高分子树脂203的所述P-型硅微米柱202的尖端刻蚀掉,使所述P-型硅微米柱202与所述软模高分子树脂203共平面,形成平坦的所述复合膜层22的表面,其中可采用氧等离子体刻蚀的方法进行刻蚀。然后采用离子磁控溅射的方式在所述复合膜层22的表面沉积一层N-型掺杂金属氧化物膜层23,使所述N-型掺杂金属氧化物膜层23与所述P-型硅微米柱202形成P-N结。紧接着在所述N-型掺杂金属氧化物膜层23上制备一层第一金属电极层24,以所述第一金属电极层24作为所述LED器件的阴极层。之后将所述衬底201与所述复合膜层22机械剥离,优选的,以能露出所述软模高分子树脂203的位置进行剥离所述衬底201,保持所述复合膜层22的剥离面的平整性与完整性。在所述复合膜层22剥离掉所述衬底201一侧的表面上制备第二金属电极层25,以所述第二金属电极层25作为所述LED器件的阳极层。最后将由所述复合膜层22、所述第一金属电极层24、所述第二金属电极层25和所述N-型掺杂金属氧化物膜层23组成的整体转移至PET柔性衬底26上,形成柔性LED器件。
其中,所述光刻胶优选为正性光刻胶,形成的所述光刻胶层的厚度在100nm~300nm之间,通过曝光、显影,可将所述P-型硅晶片20的图案化部分中的曝光部分的消除掉,也可以选择负性光刻胶。通过蚀刻工艺后获得高度有序、均匀的所述P-型硅微米柱202。剥离所述衬底201时也可以不露出所述软模高分子树脂203。
所述软模高分子树脂203均匀的填充于两所述P-型硅微米柱202形成的所述间隙处,形成所述复合膜层22。所述软模高分子树脂203的材料可以选择聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、柔性环氧树脂、柔性聚亚酰胺等其中的一种或多种。
所述N-型掺杂金属氧化物膜层23的厚度为200nm~500nm之间,所述N-型掺杂金属氧化物膜层23的材料可以选择为ZnO、Cu 2O、SnO 2、Fe 2O 3、TiO 2、ZrO 2、CoO、WO 3、In 2O 3、Al 2O 3、Fe 3O 4等其中的一种或一种以上,不同的N-型金属氧化物和P-型半导体硅之间的禁带宽度不同,也对应发出不同长度波长的光。所述第一金属电极层24以及所述第二金属电极层25的材料可以为石墨烯、Ag、Al、Cu、Zn等导体金属中的任意一种或者多种金属复合膜。
参照图3所示,本发明还提供一种采用上述制备方法制备的柔性LED器件,包括:柔性衬底基板30,所述柔性衬底基板30包括有显示区域;阳极层31,对应所述显示区域制备于所述柔性衬底基板30上;复合膜层32,制备于所述阳极层31上,所述复合膜层32包括软模高分子树脂320以及P-型硅微米柱321;N-型金属氧化物层33,制备于所述复合膜层32上;阴极层34,制备于所述N-型金属氧化物层33上。其中,所述P-型硅微米柱321均匀的分布于所述复合膜层32中,且贯穿于所述软模高分子树脂320,使所述P-型硅微米柱321两端分别与所述阳极层31以及所述N-型金属氧化物层33接触,且与所述N-型金属氧化物层33形成P-N结,从而导通所述阳极层31与所述阴极层34。
所述P-型硅微米柱321的直径范围在0.5um ~10um之间,优选为2um~6um;高度在5um~100um之间,优选高度为20um~80um。以及相邻两所述P-型硅微米柱321之间的距离为2um~20um之间,优选为5um~12um之间。所述P-型硅微米柱321的形状为圆柱形、棱柱形、圆台形或者棱台形等形状,此处不做限制。
由于本发明将LED器件中的半导体硅材料制作成与高分子树脂结合的形式,在保证该半导体硅材料原有的作用下,通过增加柔性材料,改善该半导体硅材料的脆性问题,使该半导体硅材料在弯曲时不被破坏。本发明提供的实施例是将P-型硅材料制作成P-型硅微米柱的形式,可以理解的是,在不影响功能的情况下,本发明还可将P-型硅材料制作成其他工艺可接受的形状,使其与柔性材料有机的结合,从而改善硅材料在弯曲时的脆性问题。
相较于现有的LED器件,本发明提供的柔性LED器件及其制备方法,首先以P-型硅晶片的一部分作为衬底,另一部分刻蚀形成一层P-型硅微米柱,然后在P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括P-型硅微米柱与软模高分子树脂的复合膜层;再制备N-型掺杂金属氧化物膜层以形成P-N结,之后将P-型衬底机械剥离,完成电极的制备后再转移至PET衬底上形成柔性LED器件。本发明克服了LED器件的硅材料在弯曲时由于脆性而导致影响LED器件的显示性能,由于本发明的复合膜层在保证半导体硅材料的相应功能下,具有柔性的特质,突破硬质LED使用范围的局限性,制备的柔性LED器件具有发光均匀性,不仅制程相对简单,可以大规模生产,且在实现柔性的同时也能够节能。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (12)

  1. 一种柔性LED器件的制备方法,其中,所述方法包括以下步骤:
    步骤S1、提供一P-型硅晶片为衬底,在所述衬底上旋涂一层光刻胶,通过曝光、显影制程,在所述衬底上获得一层图案化的P-型硅微米柱;其中,至少一部分所述P-型硅晶片用作所述衬底,另一部分图案化后经形成均一的所述P-型硅微米柱,且所述P-型硅微米柱均匀的分布于所述衬底上;
    步骤S2、在所述P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括所述P-型硅微米柱与所述软模高分子树脂的复合膜层;
    步骤S3、在所述复合膜层上依次制备N-型掺杂金属氧化物膜层、第一金属电极层;
    步骤S4、剥离所述衬底,在所述复合膜层剥离掉所述衬底一侧的表面上制备第二金属电极层,然后将由所述复合膜层、所述第一金属电极层、所述第二金属电极层和所述N-型掺杂金属氧化物膜层组成的整体转移至柔性衬底上,形成柔性LED器件。
  2. 根据权利要求1所述的方法,其中,所述步骤S2之后,所述方法还包括以下步骤:刻蚀所述复合膜层,使所述P-型硅微米柱与所述软模高分子树脂共平面。
  3. 根据权利要求1所述的方法,其中,所述步骤S3中,采用离子磁控溅射的方式在所述复合膜层表面沉积一层所述N-型掺杂金属氧化物膜层,使所述N-型掺杂金属氧化物膜层与所述P-型硅微米柱形成P-N结。
  4. 一种采用权利要求1所述的制备方法制备的柔性LED器件,其包括:
    柔性衬底基板,所述柔性衬底基板包括有显示区域;
    阳极层,对应所述显示区域制备于所述柔性衬底基板上;
    复合膜层,制备于所述阳极层上,所述复合膜层包括软模高分子树脂以及P-型硅微米柱;
    N-型金属氧化物层,制备于所述复合膜层上;
    阴极层,制备于所述N-型金属氧化物层上;
    其中,所述P-型硅微米柱均匀的分布于所述复合膜层中,且贯穿于所述软模高分子树脂,与所述N-型金属氧化物层形成P-N结。
  5. 根据权利要求4所述的柔性LED器件,其中,所述P-型硅微米柱的直径为0.5um ~10um。
  6. 根据权利要求4所述的柔性LED器件,其中,所述P-型硅微米柱的高度为5um~100um。
  7. 根据权利要求4所述的柔性LED器件,其中,相邻两所述P-型硅微米柱之间的距离为2um~20um。
  8. 根据权利要求4所述的柔性LED器件,其中,所述P-型硅微米柱的形状为圆柱形、棱柱形、圆台形或者棱台形。
  9. 根据权利要求4所述的柔性LED器件,其中,所述软模高分子树脂的材料为聚甲基丙烯酸甲酯、聚二甲基硅氧烷、柔性环氧树脂以及柔性聚亚酰胺中的一者或一者以上。
  10. 一种柔性LED器件的制备方法,其中,所述方法包括以下步骤:
    步骤S1、提供一P-型硅晶片为衬底,在所述衬底上旋涂一层光刻胶,通过曝光、显影制程,在所述衬底上获得一层图案化的P-型硅微米柱;
    步骤S2、在所述P-型硅微米柱之间的间隙填充软模高分子树脂,形成一层包括所述P-型硅微米柱与所述软模高分子树脂的复合膜层;
    步骤S3、在所述复合膜层上依次制备N-型掺杂金属氧化物膜层、第一金属电极层;
    步骤S4、剥离所述衬底,在所述复合膜层剥离掉所述衬底一侧的表面上制备第二金属电极层,然后将由所述复合膜层、所述第一金属电极层、所述第二金属电极层和所述N-型掺杂金属氧化物膜层组成的整体转移至柔性衬底上,形成柔性LED器件。
  11. 根据权利要求10所述的方法,其中,所述步骤S2之后,所述方法还包括以下步骤:刻蚀所述复合膜层,使所述P-型硅微米柱与所述软模高分子树脂共平面。
  12. 根据权利要求10所述的方法,其中,所述步骤S3中,采用离子磁控溅射的方式在所述复合膜层表面沉积一层所述N-型掺杂金属氧化物膜层,使所述N-型掺杂金属氧化物膜层与所述P-型硅微米柱形成P-N结。
PCT/CN2018/078493 2018-01-30 2018-03-09 一种柔性led器件及其制备方法 WO2019148581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/761,110 US10355163B1 (en) 2018-01-30 2018-03-09 Flexible LED device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810087983.5A CN108281518B (zh) 2018-01-30 2018-01-30 一种柔性led器件及其制备方法
CN201810087983.5 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019148581A1 true WO2019148581A1 (zh) 2019-08-08

Family

ID=62805718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078493 WO2019148581A1 (zh) 2018-01-30 2018-03-09 一种柔性led器件及其制备方法

Country Status (2)

Country Link
CN (1) CN108281518B (zh)
WO (1) WO2019148581A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200089794A (ko) * 2019-01-17 2020-07-28 삼성디스플레이 주식회사 표시 장치와 그의 제조 방법
WO2020150902A1 (zh) * 2019-01-22 2020-07-30 深圳市柔宇科技有限公司 柔性显示面板及其制作方法
CN110323312B (zh) * 2019-06-19 2021-04-20 武汉理工大学 一种无机柔性光电子器件结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032800A1 (en) * 2007-07-30 2009-02-05 Samsung Electro-Mechanics Co., Ltd. Photonic crystal light emitting device
CN102623590A (zh) * 2012-03-31 2012-08-01 中国科学院半导体研究所 纳米氮化镓发光二极管的制作方法
CN103022299A (zh) * 2012-12-27 2013-04-03 中国科学院半导体研究所 制备微纳米柱发光二极管的方法
CN107482088A (zh) * 2017-06-29 2017-12-15 西安交通大学 一种超柔性氮化镓基金字塔结构半导体器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037613A (zh) * 2017-12-18 2018-05-15 深圳市华星光电技术有限公司 柔性液晶显示器及其背光源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032800A1 (en) * 2007-07-30 2009-02-05 Samsung Electro-Mechanics Co., Ltd. Photonic crystal light emitting device
CN102623590A (zh) * 2012-03-31 2012-08-01 中国科学院半导体研究所 纳米氮化镓发光二极管的制作方法
CN103022299A (zh) * 2012-12-27 2013-04-03 中国科学院半导体研究所 制备微纳米柱发光二极管的方法
CN107482088A (zh) * 2017-06-29 2017-12-15 西安交通大学 一种超柔性氮化镓基金字塔结构半导体器件及其制备方法

Also Published As

Publication number Publication date
CN108281518A (zh) 2018-07-13
CN108281518B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US10741608B2 (en) Manufacturing method of micro light-emitting diode display panel
EP3340330A1 (en) Organic light-emitting diode device, manufacturing method, and display apparatus
US20210091057A1 (en) Driving substrate and manufacturing method thereof, and micro led bonding method
EP2996167B1 (en) Flexible substrate, manufacturing method for same, and oled display apparatus
WO2019148581A1 (zh) 一种柔性led器件及其制备方法
CN105702707B (zh) 显示基板、显示装置及掩膜版
US8367446B2 (en) Method for preparing patterned substrate by using nano- or micro- particles
US9594193B2 (en) Printing plate, scattering layer, method for fabricating the same, and display apparatus
WO2020238841A1 (zh) 显示基板及其制造方法、显示面板
CN103474425B (zh) 高发光均匀性的微型柔性led面阵器件及制备方法
CN106098700B (zh) 像素结构、制作方法及显示面板
US20210343572A1 (en) Method for Transferring Massive Light Emitting Diodes and Display Back Plate Assembly
US20200251683A1 (en) Organic light emitting diode display panel and preparation method thereof
CN113299803A (zh) 一种Micro LED芯片单体器件的制备方法、显示模块及显示装置
CN110299466B (zh) 一种基板及剥离方法
CN109119450B (zh) 显示基板及其制作方法、显示面板、显示装置
WO2020215562A1 (zh) 一种显示面板及显示装置
CN101867001B (zh) 自对准工艺制作凸形图形衬底的方法
WO2015122652A1 (ko) 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드
TW202226579A (zh) 顯示器及其製造方法
CN104362167A (zh) 有机电致发光显示面板、基板及其制作方法、显示装置
WO2021174598A1 (zh) 显示面板及显示面板的制备方法
JP2022543329A (ja) マイクロ発光ダイオードのマストランスファー方法及びシステム
US20140255640A1 (en) Sapphire substrate structure for pattern etching and method of forming pattern sapphire substrate
US10355163B1 (en) Flexible LED device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904333

Country of ref document: EP

Kind code of ref document: A1