WO2021134255A1 - 一种巨量转移装置及方法 - Google Patents

一种巨量转移装置及方法 Download PDF

Info

Publication number
WO2021134255A1
WO2021134255A1 PCT/CN2019/130029 CN2019130029W WO2021134255A1 WO 2021134255 A1 WO2021134255 A1 WO 2021134255A1 CN 2019130029 W CN2019130029 W CN 2019130029W WO 2021134255 A1 WO2021134255 A1 WO 2021134255A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
holes
sliding plate
mass transfer
vacuum
Prior art date
Application number
PCT/CN2019/130029
Other languages
English (en)
French (fr)
Inventor
许时渊
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to CN201980003353.8A priority Critical patent/CN111108586B/zh
Priority to US17/263,883 priority patent/US20220336255A1/en
Priority to PCT/CN2019/130029 priority patent/WO2021134255A1/zh
Publication of WO2021134255A1 publication Critical patent/WO2021134255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the invention relates to the technical field of mass transfer, in particular to a mass transfer device and method.
  • Mass transfer devices are used in the transfer of a large number of micro-components (such as Micro-LED). Since Micro-LEDs and other micro-components are divided into R, G, and B three-color Micro-LEDs, the mass transfer devices in the prior art generally The production adopts the all-take and all-transfer method, and it is impossible to selectively transfer a certain part of the micro-components.
  • the technical problem to be solved by the present invention is to provide a massive transfer device and method in view of the above-mentioned drawbacks of the prior art, which aims to solve the problem that a certain part of the micro components cannot be selectively transferred in the prior art.
  • a mass transfer device which comprises: a housing and a sliding plate arranged in the housing; the back of the housing is provided with suction holes for adsorbing micro-elements, and the front of the housing is provided with vacuum holes, the The sliding plate is provided with a first through hole, and the sliding plate can slide in the housing and communicate or disconnect the suction hole and the vacuum hole through the first through hole.
  • the adsorption holes are distributed in a first dot array.
  • the vacuum holes are distributed in a second dot array or a first line array; wherein the lines in the first line array are arranged corresponding to the connecting lines of the suction holes.
  • the first through holes are distributed in a third dot array or a second line array; wherein the lines in the second line array are arranged correspondingly to the connecting lines of the adsorption holes.
  • the mass transfer device wherein the number of points in the third point array is less than the number of points in the second point array, and the number of lines in the second line array is less than the number of lines in the first line array .
  • a second through hole is provided on the sliding plate, and the second through hole is located at a quarter of the two adjacent first through holes.
  • a third through hole is provided on the sliding plate, and the third through hole is located at 1/2 of the two adjacent first through holes.
  • a fourth through hole is provided on the sliding plate, and the fourth through hole is located at 3/4 of the two adjacent first through holes.
  • a mass transfer method wherein the mass transfer device as described in any one of the above is used, and the method includes the steps:
  • the method for mass transfer wherein the sliding of the control sliding plate for a first distance and connecting the corresponding vacuum hole and the suction hole includes:
  • the sliding plate is controlled to slide a first distance so that the first through hole or the second through hole or the third through hole or the fourth through hole communicates with the vacuum hole and the suction hole.
  • Beneficial effects by controlling the sliding of the sliding plate to a first distance and connecting the corresponding vacuum hole and adsorption hole, a massive transfer can be carried out; controlling the sliding of the sliding plate to a second distance and connecting the corresponding vacuum hole and the adsorbing hole to make a massive transfer; Wherein, the vacuum hole and the suction hole connected when the sliding plate slides the second distance are different from the vacuum hole and the suction hole connected when the sliding plate slides the first distance.
  • the vacuum hole and the suction hole can be selectively connected.
  • Fig. 1 is a schematic diagram of the first structure of the mass transfer device of the present invention.
  • Fig. 2 is a schematic diagram of the second structure of the mass transfer device of the present invention.
  • Fig. 3 is a schematic diagram of the first structure of the skateboard in the present invention.
  • Figure 4 is a first cross-sectional view of the mass transfer device of the present invention.
  • Figure 5 is a second cross-sectional view of the mass transfer device of the present invention.
  • Fig. 6 is a schematic diagram of the transfer of the mass transfer device in the present invention.
  • Fig. 7 is a schematic diagram of the second structure of the skateboard in the present invention.
  • Fig. 8 is a third cross-sectional view of the mass transfer device of the present invention.
  • Fig. 9 is a fourth cross-sectional view of the mass transfer device of the present invention.
  • Fig. 10 is a fifth cross-sectional view of the mass transfer device of the present invention.
  • Fig. 11 is a sixth cross-sectional view of the mass transfer device of the present invention.
  • the present invention provides some embodiments of a mass transfer device.
  • a mass transfer device of the present invention includes: a housing 10, a sliding plate 20 arranged in the housing 10; the back of the housing 10 is provided with suction holes for adsorbing micro-components 30 121.
  • a vacuum hole 111 is provided on the front of the housing 10, and a first through hole 21 is provided on the sliding plate 20.
  • the sliding plate 20 can slide in the housing 10 and communicate with each other through the first through hole 21. Or disconnect the suction hole 121 and the vacuum hole 111.
  • the housing 10 includes a panel 11 and a bottom plate 12 connected to each other; a vacuum hole 111 is located on the panel 11 and penetrates the panel 11, and a suction hole 121 is located on the bottom plate 12 and penetrates the bottom plate 12. There is a gap between the panel 11 and the bottom plate 12, and the sliding plate 20 is located in the gap. The height of the gap matches the thickness of the sliding plate 20, so that the sliding plate 20 can slide in the gap without air leakage.
  • the adsorption holes 121 are distributed in a first dot array.
  • the micro-elements 30 are usually distributed in a dot array. Therefore, the adsorption holes 121 are arranged in a corresponding dot array distribution.
  • the dot array here can be a row-column matrix, a circular matrix, etc., when a row-column matrix is used, the sliding plate 20 Sliding in the row or column direction; when a circular matrix is used, the sliding plate 20 rotates (slides) in the circumferential direction with the center of the circle as the rotation axis.
  • a row and column matrix is used for description.
  • the vacuum holes 111 are distributed in a second dot array or a first line array (as shown in FIG. 1); wherein the lines in the first line array and the suction
  • the connection lines of the holes 121 are correspondingly arranged.
  • the vacuum holes 111 form a second dot array, and the second dot array is arranged corresponding to the first dot array, that is, the vacuum holes 111 must cover all the suction holes 121 so that each suction hole 121 can adsorb the micro components 30. It is also possible to connect the dots of the suction holes 121 into a line to form a line array.
  • each row or column of the dot array connects to form a row or column, so that each row or column can share a vacuum channel to connect to the vacuum machine.
  • the vacuum degree of one row or one column is also the same, and the adsorption force is also the same.
  • the first through holes 21 are distributed in a third dot array or a second line array (as shown in FIG. 3); wherein the lines in the second line array and the adsorption
  • the connection lines of the holes 121 are correspondingly arranged.
  • the first through hole 21 on the sliding plate 20 may cover all the suction holes 121 or only part of the suction holes 121.
  • a plurality of first through holes 21 cover all the adsorption holes 121, so the first through hole 21 can communicate with all the vacuum holes 111 and the adsorption holes 121 at one time to achieve full transfer. If the first through hole 21 covers a part of the suction hole 121, the first through hole 21 can only connect part of the vacuum hole 111 and the suction hole 121 at a time to realize partial transfer; the first through hole 21 can communicate with another part after the sliding plate 20 is controlled to slide The vacuum hole 111 and the adsorption hole 121 of the corresponding part are transferred.
  • the three-color Micro-LEDs are evenly distributed, and each color is arranged in sequence.
  • the first through hole 21 only corresponds to one color at a time, and the sliding plate 20 can correspond to the second color after sliding. Continue to slide the slide plate 20 to correspond to the third color, so as to realize the selective transfer of different colors.
  • the number of points in the third point array is less than the number of points in the second point array, as shown in FIGS. 1 to 3, the number of lines in the second line array Less than the number of lines in the first line array. Specifically, with a smaller number of points or lines, partial transfer can be achieved. Specifically, as shown in FIGS.
  • the adsorption hole 121 includes: a first sub-adsorption hole 121a, a second sub-adsorption hole 121b, and a third sub-adsorption hole 121c that are sequentially arranged;
  • the second sub-absorption hole 121b and the third sub-absorption hole 121c are a repeating unit and are repeatedly arranged to form the entire adsorption hole 121. If the distance between two adjacent first suction holes 121 is D, the distance between two adjacent sub suction holes is 3D, that is, the distance between two adjacent first suction holes 121 is 3 times. As shown in FIGS.
  • the first through hole 21 only covers the first sub-absorption hole 121a, the second sub-absorption hole 121b, or the third sub-absorption hole 121c.
  • the first sub-absorption hole 121a, the second sub-absorption hole 121b, or the third sub-absorption hole 121c can selectively adsorb three kinds of micro-elements 30.
  • the sliding plate 20 is provided with a second through hole 22, and the second through hole 22 is located in two adjacent first through holes. 1/4 of hole 21.
  • the sliding plate 20 is provided with a third through hole 23, and the third through hole 23 is located at 1/2 of the two adjacent first through holes 21.
  • the sliding plate 20 is provided with a fourth through hole 24, and the fourth through hole 24 is located at 3/4 of the two adjacent first through holes 21.
  • the first through hole 21 adopts the form of fully covering the adsorption hole 121, and the first through hole 21 is used to connect the adsorption hole 121 and the vacuum hole 111, and then the full transfer can be realized (as shown in FIGS. 7-8).
  • the second through hole 22, the third through hole 23, and the fourth through hole 24 are all partially covered.
  • the distance between two adjacent first through holes 21 is denoted as D
  • the second through hole 22 is located at 1/4D of the two adjacent first through holes 21, that is, the sliding plate 20 moves 1/4D ( Or 3/4D)
  • the second through hole 22 can replace part of the first through hole 21, and connect a part of the suction hole 121 and the vacuum hole 111 to realize partial transfer (as shown in Figs. 7 and 9-11).
  • the third through hole 23 can replace part of the first through hole 21, connecting part of the suction hole 121 and the vacuum hole 111; when the sliding plate 20 moves 3/4D (or 1/4D), the third through hole 23 can replace part of the first through hole 21.
  • the four through holes 24 can replace part of the first through holes 21 and connect part of the suction holes 121 and the vacuum holes 111.
  • first through hole 21, the second through hole 22, the third through hole 23, and the fourth through hole 24 can be optionally provided on the sliding plate 20.
  • first through hole 21 covers all the suction holes 121
  • second through hole 22 covers 1/3 of the suction hole 121.
  • the second through hole 22, the third through hole 23, and the fourth through hole 24 are arranged close to the suction hole 121 covered by them.
  • the first through hole 21 includes : The first sub-through hole 21a, the second sub-through hole 21b, and the third sub-through hole 21c are arranged in sequence; taking the first sub-through hole 21a, the second sub-through hole 21b, and the third sub-through hole 21c as a repeating unit Repeated arrangement will form the entire first through hole 21. If the distance between two adjacent first through holes 21 is D, the distance between two adjacent sub-through holes (such as two adjacent first sub-through holes 21a) is 3D, that is, two adjacent first through holes 21 3 times the spacing.
  • the second through hole 22 is located at 1/4 of the third sub through hole 21c and the first sub through hole 21a; the third through hole 23 is located at 1/2 of the first sub through hole 21a and the second sub through hole 21b , Or located at 1/2 of the second through hole 21b and the third through hole 21c; the fourth through hole 24 is located at 3/4 of the third through hole 21c and the first through hole 21a.
  • the second through hole 22 slides 1/4D in the direction of the third sub through hole 21c, and only the third sub suction hole 121c is connected (as shown in FIGS.
  • the third through hole 23 faces the second sub through hole Sliding 1/2D in the direction of 21b, only the second sub-adsorption hole 121b is connected (as shown in Figures 8 and 10); if the fourth through hole 24 slides 1/4D in the direction of the first sub-through hole 21a, only the first The sub-adsorption holes 121a are connected (as shown in FIGS. 8 and 9).
  • the present invention also provides a preferred embodiment of a mass transfer method:
  • the mass transfer method according to the embodiment of the present invention includes the following steps:
  • Step S100 Control the sliding plate 20 to slide a first distance and communicate with the corresponding vacuum hole 111 and the suction hole 121, and perform massive transfer.
  • the sliding plate 20 is controlled to slide a first distance so that the first through hole 21, the second through hole 22, the third through hole 23 or the fourth through hole 24 communicates with the vacuum hole 111 and the suction hole 121.
  • different through holes are used to connect the vacuum hole 111 and the adsorption hole 121, all or part of the transfer can be realized.
  • Step S200 control the sliding plate 20 to slide a second distance and communicate with the corresponding vacuum hole 111 and the suction hole 121, and perform a massive transfer; wherein, when the sliding plate 20 slides the second distance, the connected vacuum hole 111 and the suction hole 121 slide with the sliding plate 20 The vacuum hole 111 and the suction hole 121 communicating at the first distance are different.
  • the connected vacuum hole 111 and the adsorption hole 121 can be changed to achieve selective transfer.
  • the present invention provides a mass transfer device and method.
  • the mass transfer device includes: a housing, a slide plate arranged in the housing; and the back of the housing is provided with a device for adsorbing micro components
  • the suction hole of the housing is provided with a vacuum hole on the front of the housing, and a first through hole is provided on the sliding plate.
  • the sliding plate can slide in the housing and communicate with or disconnect the suction through the first through hole. Hole and the vacuum hole.
  • controlling the sliding plate to slide a first distance and connecting the corresponding vacuum hole and adsorption hole By controlling the sliding plate to a second distance and connecting the corresponding vacuum hole and the suction hole can also carry out a huge amount of transfer; among them, the sliding plate
  • the vacuum hole and the suction hole that are connected when sliding the second distance are different from the vacuum hole and the suction hole that are connected when the sliding plate slides the first distance.
  • the vacuum hole and the suction hole can be selectively connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种巨量转移装置及方法,所述巨量转移装置包括:壳体(10)、设置在所述壳体(10)内的滑板(20);所述壳体(10)背面设置有用于吸附微元件(30)的吸附孔(121),所述壳体(10)正面设置有真空孔(111),所述滑板(20)上设置有第一通孔(21),所述滑板(20)可在所述壳体(10)内滑动并通过所述第一通孔(21)连通或断开所述吸附孔(121)和所述真空孔(111)。通过控制滑板(20)滑动第一距离并连通对应的真空孔(111)和吸附孔(121),即可进行巨量转移;控制滑板(20)滑动第二距离并连通对应的真空孔(111)和吸附孔(121),也可以进行巨量转移;其中,滑板(20)滑动第二距离时连通的真空孔(111)和吸附孔(121)与滑板(20)滑动第一距离时连通的真空孔(111)和吸附孔(121)不同。也就是说,通过控制滑板(20)的滑动距离可以选择性连通真空孔(111)和吸附孔(121)。

Description

一种巨量转移装置及方法 技术领域
本发明涉及巨量转移技术领域,尤其涉及的是一种巨量转移装置及方法。
背景技术
巨量转移装置应用于大量微元件(如Micro-LED)的转移,由于Micro-LED等微元件是分为R、G、B三色Micro-LED的,现有技术中的巨量转移装置通产采用的是全取、全转移的方式,无法选择性转移某一部分微元件。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种巨量转移装置及方法,旨在解决现有技术中无法选择性转移某一部分微元件的问题。
本发明解决技术问题所采用的技术方案如下:
一种巨量转移装置,其中,包括:壳体、设置在所述壳体内的滑板;所述壳体背面设置有用于吸附微元件的吸附孔,所述壳体正面设置有真空孔,所述滑板上设置有第一通孔,所述滑板可在所述壳体内滑动并通过所述第一通孔连通或断开所述吸附孔和所述真空孔。
所述的巨量转移装置,其中,所述吸附孔呈第一点阵列分布。
所述的巨量转移装置,其中,所述真空孔呈第二点阵列或第一线阵列分布;其中,所述第一线阵列中的线与所述吸附孔的连线对应设置。
所述的巨量转移装置,其中,所述第一通孔呈第三点阵列或第二线阵列分布;其中,所述第二线阵列中的线与所述吸附孔的连线对应设置。
所述的巨量转移装置,其中,所述第三点阵列中点的数量小于所述第二点阵列中点的数量,所述第二线阵列中线的数量小于所述第一线阵列中线的数量。
所述的巨量转移装置,其中,所述滑板上设置有第二通孔,所述第二通孔位于相邻两个所述第一通孔的1/4处。
所述的巨量转移装置,其中,所述滑板上设置有第三通孔,所述第三通孔位 于相邻两个所述第一通孔的1/2处。
所述的巨量转移装置,其中,所述滑板上设置有第四通孔,所述第四通孔位于相邻两个所述第一通孔的3/4处。
一种巨量转移方法,其中,采用如上述任意一项所述巨量转移装置,所述方法包括步骤:
控制滑板滑动第一距离并连通对应的真空孔和吸附孔,并进行巨量转移;
控制滑板滑动第二距离并连通对应的真空孔和吸附孔,并进行巨量转移;其中,滑板滑动第二距离时连通的真空孔和吸附孔与滑板滑动第一距离时连通的真空孔和吸附孔不同。
所述的巨量转移方法,其中,所述控制滑板滑动第一距离并连通对应的真空孔和吸附孔,包括:
控制滑板滑动第一距离以使第一通孔或第二通孔或第三通孔或第四通孔连通真空孔和吸附孔。
有益效果:通过控制滑板滑动第一距离并连通对应的真空孔和吸附孔,即可进行巨量转移;控制滑板滑动第二距离并连通对应的真空孔和吸附孔,也可以进行巨量转移;其中,滑板滑动第二距离时连通的真空孔和吸附孔与滑板滑动第一距离时连通的真空孔和吸附孔不同。也就是说,通过控制滑板的滑动距离可以选择性连通真空孔和吸附孔。
附图说明
图1是本发明中巨量转移装置的第一结构示意图。
图2是本发明中巨量转移装置的第二结构示意图。
图3是本发明中滑板的第一结构示意图。
图4是本发明中巨量转移装置的第一截面图。
图5是本发明中巨量转移装置的第二截面图。
图6是本发明中巨量转移装置转移的示意图。
图7是本发明中滑板的第二结构示意图。
图8是本发明中巨量转移装置的第三截面图。
图9是本发明中巨量转移装置的第四截面图。
图10是本发明中巨量转移装置的第五截面图。
图11是本发明中巨量转移装置的第六截面图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参阅图1-图11,本发明提供了一种巨量转移装置的一些实施例。
如图4所示,本发明的一种巨量转移装置,包括:壳体10、设置在所述壳体10内的滑板20;所述壳体10背面设置有用于吸附微元件30的吸附孔121,所述壳体10正面设置有真空孔111,所述滑板20上设置有第一通孔21,所述滑板20可在所述壳体10内滑动并通过所述第一通孔21连通或断开所述吸附孔121和所述真空孔111。
具体地,如图-图4所示,壳体10包括:相互连接的面板11和底板12;真空孔111位于面板11上并贯穿面板11,吸附孔121位于底板12上并贯穿底板12。面板11和底板12之间有间隙,滑板20位于间隙内,间隙的高度与滑板20的厚度相匹配,以使滑板20可在间隙内滑动且不会漏风。
值得说明的是,通过控制滑板20滑动第一距离并连通对应的真空孔111和吸附孔121,即可进行巨量转移;控制滑板20滑动第二距离并连通对应的真空孔111和吸附孔121,也可以进行巨量转移;其中,滑板20滑动第二距离时连通的真空孔111和吸附孔121与滑板20滑动第一距离时连通的真空孔111和吸附孔121不同。也就是说,通过控制滑板20的滑动距离可以选择性连通真空孔111和吸附孔121。
在本发明的一个较佳实施例中,如图2所示,所述吸附孔121呈第一点阵列分布。具体地,微元件30通常采用点阵列分布,因此,将吸附孔121设置成相应的点阵列分布,当然这里的点阵列可以是行列矩阵、圆形矩阵等,采用行列矩阵时,则滑板20沿行或列的方向滑动;采用圆形矩阵时,则滑板20以圆心为转轴,沿圆周方向转动(滑动)。本实施例中以行列矩阵进行说明。
在本发明的一个较佳实施例中,所述真空孔111呈第二点阵列或第一线阵列 分布(如图1所示);其中,所述第一线阵列中的线与所述吸附孔121的连线对应设置。具体地,真空孔111形成第二点阵列,第二点阵列与第一点阵列对应设置,也就是说,真空孔111必须覆盖所有的吸附孔121,使得每个吸附孔121都能够吸附微元件30。也可以将吸附孔121的点连成线,则形成线阵列,例如,将点阵列的每行或列连接起来形成一行或一列,如此每一行或一列可共用一个真空通道与真空机连接,这一行或一列的真空度也一致,吸附力也相同。
在本发明的一个较佳实施例中,所述第一通孔21呈第三点阵列或第二线阵列分布(如图3所示);其中,所述第二线阵列中的线与所述吸附孔121的连线对应设置。
具体地,滑板20上的第一通孔21可以是覆盖所有的吸附孔121,也可以仅覆盖部分的吸附孔121。若干第一通孔21覆盖所有的吸附孔121,则第一通孔21一次可以连通所有的真空孔111和吸附孔121,实现全转移。若第一通孔21覆盖部分吸附孔121,则第一通孔21一次只能连通部分真空孔111和吸附孔121,实现部分转移;在控制滑板20滑动后第一通孔21可以连通另外一部分的真空孔111和吸附孔121,实现相应的部分转移。例如,如图4和图5所示,三色Micro-LED采用均匀分布,每种颜色依次排列,第一通孔21每一次只对应一种颜色,滑板20滑动后可对应第二种颜色,继续滑动滑板20可对应第三种颜色,从而实现不同颜色的选择性转移。
在本发明的一个较佳实施例中,所述第三点阵列中点的数量小于所述第二点阵列中点的数量,如图1-图3所示,所述第二线阵列中线的数量小于所述第一线阵列中线的数量。具体地,采用更少的点的数量或线的数量,可以实现部分转移。具体地,如图4-图5所示,吸附孔121包括:依次设置的第一子吸附孔121a、第二子吸附孔121b、第三子吸附孔121c;以第一子吸附孔121a、第二子吸附孔121b、第三子吸附孔121c为一个重复单元进行重复排布则形成整个吸附孔121。若相邻两个第一吸附孔121的间距为D,相邻两个子吸附孔的间距为3D,也即相邻两个第一吸附孔121的间距的3倍。如图4-图5所示,第一通孔21仅覆盖第一子吸附孔121a、第二子吸附孔121b或第三子吸附孔121c,通过控制滑板20每移动D,则可改变其连通第一子吸附孔121a、第二子吸附孔121b或第三子吸附孔121c,从而可以选择性吸附3种微元件30。
在本发明的一个较佳实施例中,如图7和图11所示,所述滑板20上设置有第二通孔22,所述第二通孔22位于相邻两个所述第一通孔21的1/4处。所述滑板20上设置有第三通孔23,所述第三通孔23位于相邻两个所述第一通孔21的1/2处。所述滑板20上设置有第四通孔24,所述第四通孔24位于相邻两个所述第一通孔21的3/4处。
具体地,在第一通孔21的基础上,设置第二通孔22、第三通孔23或者第四通孔24,可进一步加强巨量转移装置的可选性。例如,第一通孔21采用全覆盖吸附孔121的形式,用第一通孔21连通吸附孔121和真空孔111,则可实现全转移(如图7-图8所示)。第二通孔22、第三通孔23、第四通孔24均采用部分覆盖的形式。相邻两个第一通孔21之间的距离记为D,则第二通孔22位于相邻两个第一通孔21的1/4D处,也就是说,滑板20移动1/4D(或3/4D)时,第二通孔22可替换部分第一通孔21,连通部分吸附孔121和真空孔111,实现部分转移(如图7、图9-图11所示)。同理,滑板20移动1/2D时,第三通孔23可替换部分第一通孔21,连通部分吸附孔121和真空孔111;滑板20移动3/4D(或1/4D)时,第四通孔24可替换部分第一通孔21,连通部分吸附孔121和真空孔111。
第一通孔21、第二通孔22、第三通孔23、第四通孔24中,可以任选一种或多种设置在滑板20上。例如,第一通孔21、第二通孔22、第三通孔23、第四通孔24均设置在滑板20上时,第一通孔21覆盖全部吸附孔121,第二通孔22、第三通孔23、第四通孔24均覆盖1/3的吸附孔121。为了尽量减小滑板20的移动距离,第二通孔22、第三通孔23、第四通孔24靠近其覆盖的吸附孔121设置,具体地,如图所示,第一通孔21包括:依次设置的第一子通孔21a、第二子通孔21b、第三子通孔21c;以第一子通孔21a、第二子通孔21b、第三子通孔21c为一个重复单元进行重复排布则形成整个第一通孔21。若相邻两个第一通孔21的间距为D,相邻两个子通孔(如相邻两个第一子通孔21a)的间距为3D,也即相邻两个第一通孔21的间距的3倍。那么第二通孔22位于第三子通孔21c与第一子通孔21a的1/4处;第三通孔23位于第一子通孔21a和第二子通孔21b的1/2处,或者位于第二子通孔21b和第三子通孔21c的1/2处;第四通孔24位于第三子通孔21c与第一子通孔21a的3/4处。第二通孔22向第三子 通孔21c的方向滑动1/4D,则只有第三子吸附孔121c连通(如图8和图11所示);第三通孔23向第二子通孔21b方向滑动1/2D,则只有第二子吸附孔121b连通(如图8和图10所示);第四通孔24向第一子通孔21a的方向滑动1/4D,则只有第一子吸附孔121a连通(如图8和图9所示)。
基于上述巨量转移装置,本发明还提供了一种巨量转移方法的较佳实施例:
如图1所示,本发明实施例所述的巨量转移方法,包括以下步骤:
步骤S100、控制滑板20滑动第一距离并连通对应的真空孔111和吸附孔121,并进行巨量转移。
具体地,控制滑板20滑动第一距离以使第一通孔21、第二通孔22、第三通孔23或第四通孔24连通真空孔111和吸附孔121。采用不同通孔连通真空孔111和吸附孔121时可以实现全部或部分转移。
步骤S200、控制滑板20滑动第二距离并连通对应的真空孔111和吸附孔121,并进行巨量转移;其中,滑板20滑动第二距离时连通的真空孔111和吸附孔121与滑板20滑动第一距离时连通的真空孔111和吸附孔121不同。
具体地,控制滑板20不同距离时,可以改变连通的真空孔111和吸附孔121,从而达到选择性转移。
综上所述,本发明所提供的一种巨量转移装置及方法,所述巨量转移装置包括:壳体、设置在所述壳体内的滑板;所述壳体背面设置有用于吸附微元件的吸附孔,所述壳体正面设置有真空孔,所述滑板上设置有第一通孔,所述滑板可在所述壳体内滑动并通过所述第一通孔连通或断开所述吸附孔和所述真空孔。通过控制滑板滑动第一距离并连通对应的真空孔和吸附孔,即可进行巨量转移;控制滑板滑动第二距离并连通对应的真空孔和吸附孔,也可以进行巨量转移;其中,滑板滑动第二距离时连通的真空孔和吸附孔与滑板滑动第一距离时连通的真空孔和吸附孔不同。也就是说,通过控制滑板的滑动距离可以选择性连通真空孔和吸附孔。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种巨量转移装置,其特征在于,包括:壳体、设置在所述壳体内的滑板;所述壳体背面设置有用于吸附微元件的吸附孔,所述壳体正面设置有真空孔,所述滑板上设置有第一通孔,所述滑板可在所述壳体内滑动并通过所述第一通孔连通或断开所述吸附孔和所述真空孔。
  2. 根据权利要求1所述的巨量转移装置,其特征在于,所述吸附孔呈第一点阵列分布。
  3. 根据权利要求2所述的巨量转移装置,其特征在于,所述真空孔呈第二点阵列或第一线阵列分布;其中,所述第一线阵列中的线与所述吸附孔的连线对应设置。
  4. 根据权利要求3所述的巨量转移装置,其特征在于,所述第一通孔呈第三点阵列或第二线阵列分布;其中,所述第二线阵列中的线与所述吸附孔的连线对应设置。
  5. 根据权利要求4所述的巨量转移装置,其特征在于,所述第三点阵列中点的数量小于所述第二点阵列中点的数量,所述第二线阵列中线的数量小于所述第一线阵列中线的数量。
  6. 根据权利要求3所述的巨量转移装置,其特征在于,所述滑板上设置有第二通孔,所述第二通孔位于相邻两个所述第一通孔的1/4处。
  7. 根据权利要求3所述的巨量转移装置,其特征在于,所述滑板上设置有第三通孔,所述第三通孔位于相邻两个所述第一通孔的1/2处。
  8. 根据权利要求3所述的巨量转移装置,其特征在于,所述滑板上设置有第四通孔,所述第四通孔位于相邻两个所述第一通孔的3/4处。
  9. 一种巨量转移方法,其特征在于,采用如权利要求1-8任意一项所述巨量转移装置,所述方法包括步骤:
    控制滑板滑动第一距离并连通对应的真空孔和吸附孔,并进行巨量转移;
    控制滑板滑动第二距离并连通对应的真空孔和吸附孔,并进行巨量转移;其中,滑板滑动第二距离时连通的真空孔和吸附孔与滑板滑动第一距离时连通的真空孔和吸附孔不同。
  10. 根据权利要求9所述的巨量转移方法,其特征在于,所述控制滑板滑动第一距离并连通对应的真空孔和吸附孔,包括:
    控制滑板滑动第一距离以使第一通孔或第二通孔或第三通孔或第四通孔连通真空孔和吸附孔。
PCT/CN2019/130029 2019-12-30 2019-12-30 一种巨量转移装置及方法 WO2021134255A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980003353.8A CN111108586B (zh) 2019-12-30 2019-12-30 一种巨量转移装置及方法
US17/263,883 US20220336255A1 (en) 2019-12-30 2019-12-30 Mass Transfer Device and Method
PCT/CN2019/130029 WO2021134255A1 (zh) 2019-12-30 2019-12-30 一种巨量转移装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130029 WO2021134255A1 (zh) 2019-12-30 2019-12-30 一种巨量转移装置及方法

Publications (1)

Publication Number Publication Date
WO2021134255A1 true WO2021134255A1 (zh) 2021-07-08

Family

ID=70427483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130029 WO2021134255A1 (zh) 2019-12-30 2019-12-30 一种巨量转移装置及方法

Country Status (3)

Country Link
US (1) US20220336255A1 (zh)
CN (1) CN111108586B (zh)
WO (1) WO2021134255A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446469B (zh) * 2020-06-10 2022-08-23 重庆康佳光电技术研究院有限公司 一种显示屏拼接装置及拼接屏
CN112992759B (zh) * 2020-10-16 2022-04-19 重庆康佳光电技术研究院有限公司 一种器件转移设备及其制备方法、器件转移方法
WO2022082366A1 (zh) * 2020-10-19 2022-04-28 重庆康佳光电技术研究院有限公司 一种转移构件及其制备方法、转移头
CN112967988B (zh) * 2020-11-04 2022-07-29 重庆康佳光电技术研究院有限公司 一种微元件的转移装置及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328576A (zh) * 2016-09-30 2017-01-11 厦门市三安光电科技有限公司 用于微元件转移的转置头的制作方法
CN109256351A (zh) * 2018-09-20 2019-01-22 南方科技大学 微型芯片的批量转移装置以及转移方法
US20190333791A1 (en) * 2018-04-30 2019-10-31 Cree, Inc. Apparatus and methods for mass transfer of electronic die
CN110504192A (zh) * 2019-06-10 2019-11-26 义乌臻格科技有限公司 一种适用于微芯片巨量转移拾取头的生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3021324A1 (de) * 1980-06-06 1981-12-24 Robert Bosch Gmbh, 7000 Stuttgart Ultraschall-bondeinrichtung
JP4482243B2 (ja) * 2001-03-13 2010-06-16 株式会社新川 ダイのピックアップ方法及びピックアップ装置
US20070063402A1 (en) * 2003-02-21 2007-03-22 Masanobu Soyama Substrate processing table and substrate processing device
US7905471B2 (en) * 2004-11-22 2011-03-15 Electro Scientific Industries, Inc. Vacuum ring designs for electrical contacting improvement
US20090075459A1 (en) * 2007-09-06 2009-03-19 Kabushiki Kaisha Shinkawa Apparatus and method for picking-up semiconductor dies
KR102517784B1 (ko) * 2018-05-16 2023-04-04 (주)포인트엔지니어링 마이크로 led 흡착체
CN110544661A (zh) * 2018-05-29 2019-12-06 普因特工程有限公司 微led转印头及利用其的微led转印系统
US11107711B2 (en) * 2019-03-20 2021-08-31 Beijing Boe Display Technology Co., Ltd. Micro light emitting diode transferring apparatus, method for transferring micro light emitting diode, and display apparatus
CN109879051A (zh) * 2019-04-22 2019-06-14 零八一电子集团四川天源机械有限公司 Led灯带吸附装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328576A (zh) * 2016-09-30 2017-01-11 厦门市三安光电科技有限公司 用于微元件转移的转置头的制作方法
US20190333791A1 (en) * 2018-04-30 2019-10-31 Cree, Inc. Apparatus and methods for mass transfer of electronic die
CN109256351A (zh) * 2018-09-20 2019-01-22 南方科技大学 微型芯片的批量转移装置以及转移方法
CN110504192A (zh) * 2019-06-10 2019-11-26 义乌臻格科技有限公司 一种适用于微芯片巨量转移拾取头的生产方法

Also Published As

Publication number Publication date
CN111108586A (zh) 2020-05-05
US20220336255A1 (en) 2022-10-20
CN111108586B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2021134255A1 (zh) 一种巨量转移装置及方法
US11892497B2 (en) Micro device arrangement in donor substrate
WO2019075814A1 (zh) 一种有机发光二极管显示器
US20220005881A1 (en) Pixel arrangement structure and display panel
TWI264605B (en) Improvements to color flat panel display sub-pixel arrangements and layouts for sub-pixel rendering with split blue sub-pixels
WO2020124693A1 (zh) Oled像素结构
WO2014190685A1 (zh) Oled像素限定结构、其制作方法及阵列基板
TWM573448U (zh) Pixel structure, mask and display device
US10798369B2 (en) Three-dimensional display device
WO2020228429A1 (zh) 显示基板、显示面板和显示装置
WO2019218471A1 (zh) 一种显示面板及其制作方法、显示装置
CN106933431A (zh) 有机发光二极管触控显示基板及触控显示装置
US20190172876A1 (en) Stacked oled device and method of making the same
CN104731437A (zh) 触控显示面板及其制作方法、显示装置
WO2019042048A1 (zh) 像素结构、掩膜版及显示装置
WO2013100462A1 (ko) 기판처리장치
US20190056625A1 (en) Color filter substrate, fabricating method thereof, display panel and display device
CN102142446B (zh) 制造图像感测器的方法与其图像感测器
CN205809499U (zh) 一种阵列基板、显示面板和显示装置
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
CN105629566A (zh) 一种彩膜基板、其制作方法、液晶显示面板及显示装置
CN116199015A (zh) 固定机构及膜片转运装置
WO2016078079A1 (zh) 彩膜基板、彩色滤光片、显示面板及显示装置
WO2016111449A1 (ko) 다중 포트 위상 가변기
US20180240931A1 (en) Micro-device panel and manufacturing process thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958090

Country of ref document: EP

Kind code of ref document: A1