WO2020052192A1 - 显示面板、显示屏和显示终端 - Google Patents

显示面板、显示屏和显示终端 Download PDF

Info

Publication number
WO2020052192A1
WO2020052192A1 PCT/CN2019/073884 CN2019073884W WO2020052192A1 WO 2020052192 A1 WO2020052192 A1 WO 2020052192A1 CN 2019073884 W CN2019073884 W CN 2019073884W WO 2020052192 A1 WO2020052192 A1 WO 2020052192A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
path
substrate
conductive line
Prior art date
Application number
PCT/CN2019/073884
Other languages
English (en)
French (fr)
Inventor
楼均辉
许立雄
童晓阳
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to EP19860678.2A priority Critical patent/EP3734662B1/en
Priority to JP2020562823A priority patent/JP6963124B2/ja
Priority to KR1020207021968A priority patent/KR102437633B1/ko
Publication of WO2020052192A1 publication Critical patent/WO2020052192A1/zh
Priority to US16/896,221 priority patent/US11362146B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a display screen, and a display terminal.
  • Full screens are usually slotted or perforated.
  • Apple's Liu Haiping etc. are all slotted or perforated in the display area corresponding to components such as cameras and sensors.
  • the camera function is implemented, external light is shot into the camera below the display through the slot or hole on the display, so as to take a picture.
  • neither the Liu Haiping nor the punched screen is a true full screen. Therefore, the industry urgently needs to develop a true full screen.
  • An embodiment of the present application provides a display panel including a substrate and a plurality of film layers sequentially disposed on the substrate. At least one of the film layers has a graphic structure, and the display panel has at least a first position and is different from The second position of the first position is different from the film layer passing in the thickness direction of the display panel at the first position and the second position, and the film position along the display panel is at the first position.
  • the number of film layers passing in the thickness direction is i
  • the thickness of each film layer is d1, d2, ... di
  • the number of film layers passing in the thickness direction of the display panel at the second position is j
  • the thickness of each film layer D1, D2 ... Dj, i, j are natural numbers, where the first position and the second position satisfy the following conditions:
  • n1, n2 ... ni are the film layer coefficients corresponding to the film layers passing along the thickness direction of the display panel at the first position
  • N1, N2 ... Ni are the film coefficients corresponding to those at the second position, respectively.
  • the film coefficients corresponding to the film layers passing along the thickness direction of the display panel, n1, n2 ... ni, N1, N2 ... Nj are constants between 1 and 2; ⁇ is a constant between 380 and 780nm; Is a natural number; ⁇ is a constant between 0 and 0.2.
  • is the wavelength of visible light
  • n1, n2 ... ni, N1, N2 ... Nj are the refractive indices of the corresponding film layers at the wavelength of the visible light.
  • the values of L1-L2 are 0.
  • the display panel is an active matrix organic light emitting diode (Active Matrix Organic Light Emitting Diode (abbreviated as AMOLED) display panel or a passive matrix organic light emitting diode (Passive Matrix Organic Light Emitting Diode (abbreviated as PMOLED display panel))
  • the film layer includes an encapsulation layer, a second electrode layer, a light emitting layer, a first electrode layer, and a pixel defining layer;
  • the film passing through the first position or the second position is a first path, a second path, or a third path, respectively, wherein:
  • the first path includes a packaging layer, a second electrode layer, a light emitting layer, a first electrode layer, and a substrate;
  • the second path includes an encapsulation layer, a second electrode layer, a pixel defining layer, a first electrode layer, and a substrate;
  • the third path includes a packaging layer, a second electrode layer, a pixel defining layer, and a substrate.
  • the display panel is a flexible screen using a thin film packaging method
  • the packaging layer includes a thin film packaging layer
  • the thin film packaging layer includes an organic material packaging layer
  • the thickness of the organic material packaging layer in the first path is greater than The thickness of the organic material encapsulation layer in other paths.
  • the display panel is a hard screen using a glass powder packaging method
  • the packaging layer includes a vacuum gap layer and a packaging substrate
  • the thickness of the vacuum gap layer in the first path is greater than the vacuum gap layer in other paths. thickness of.
  • the value of ⁇ ranges from 500 to 600 nm, preferably 550 nm.
  • the display panel is an AMOLED display panel
  • the film layer further includes a conductive line
  • the conductive line is a single-layer line or a multilayer line
  • the conductive line includes a scan line, a data line, a power line, and a reset At least one of the lines;
  • the film layer passing through the first position or the second position further includes a fourth path, and the fourth path includes an encapsulation layer, a second electrode layer, a pixel defining layer, a conductive line, and a substrate.
  • the conductive line is a single-layer line, the conductive line is provided on the same layer as the first electrode layer, and the conductive line is the same material as the first electrode layer, and the fourth path is The second path includes a film layer and a film layer having the same thickness;
  • the conductive line is a multilayer circuit, at least one of the conductive lines is disposed on the same layer as the first electrode layer, and the conductive line and the first electrode layer are made of the same material or different materials.
  • the conductive line is a double-layer line, and includes a first conductive line and a second conductive line.
  • the first conductive line and the first electrode layer are disposed on the same layer, and the film layer further includes a planarization layer.
  • the second conductive line is disposed between the planarization layer and the substrate, the first conductive line and the second conductive line are the same material as the first electrode layer, and the fourth path includes a package Layer, a second electrode layer, a pixel-defining layer, the first conductive circuit and / or the second conductive circuit, and a substrate.
  • the path further includes a fifth path, and the fifth path includes an encapsulation layer.
  • the display panel is an AMOLED display panel
  • the film layer further includes a support layer provided on the pixel-defining layer, and a thin film transistor (Thin Film Transistor, abbreviated as TFT) structural layer for making a pixel circuit;
  • TFT Thin Film Transistor
  • the support layer is a transparent structure, and at least one of the second path, the third path, and the fourth path further includes a support layer and / or a TFT structure layer.
  • the display panel is an AMOLED display panel
  • the film layer further includes a support layer provided on a pixel-defining layer and a TFT structure layer for making a pixel circuit; the support layer is an opaque structure, and the TFT The structure layer is disposed below the support layer.
  • the display panel is an AMOLED display panel
  • the first electrode is circular, oval, or dumbbell-shaped.
  • a pixel opening is formed on the pixel defining layer, and the pixel opening includes a first type of pixel opening; each side of the projection of the first type of pixel opening on the substrate is a curve, and each side is mutually Not parallel.
  • the projection of the first type of pixel opening on the substrate is a graphic unit or a plurality of graphic units communicating with each other; the graphic unit is circular or oval.
  • the conductive line is curved and arranged in an extending direction; the conductive line is provided around the first electrode, and the conductive line extends in an arc around an edge of the first electrode.
  • both sides of the conductive line in the extending direction are wavy, and the crests of the two sides are opposite to each other and the troughs are opposite.
  • the display panel is a PMOLED display panel
  • the film layer further includes an isolation pillar provided on the pixel-defining layer
  • the path further includes a sixth path
  • the sixth path includes a second electrode layer and an isolation layer.
  • a pillar, a pixel defining layer, and a substrate, and the material of the isolation pillar is a transparent material.
  • the isolation layer includes a plurality of isolation pillars of the first type; in the extension direction of the isolation pillars of the first type, the width of the isolation pillars of the first type changes continuously or intermittently, and the extension directions are parallel On the substrate; the width is a dimension of the projection formed by the first type of isolation pillar on the substrate perpendicular to the extension direction.
  • the display panel is a PMOLED display panel, and both sides of the first electrode or the second electrode in the extending direction are wavy, and the peaks of the two sides are opposite to each other and the troughs are opposite; preferably Ground, the crests and troughs of adjacent first or second electrodes are set.
  • the film layer further includes a conductive line, the conductive line is a single-layer line or a multilayer line, and the conductive line includes at least one of a scan line, a data line, a power line, and a reset line.
  • the conductive line when the conductive line is a single-layer line, the conductive line is provided on the same layer as the first electrode layer; or, when the conductive line is a multi-layer line, at least one of the conductive lines is provided It is disposed in the same layer as the first electrode layer; the conductive wires are the same as or different from the material of the first electrode layer.
  • the film layer passing by the first position or the second position further includes a seventh Path
  • the seventh path includes a packaging layer, a second electrode layer, a light emitting structure layer, a first electrode layer, a conductive line, and a substrate.
  • the first position and the second position by adjusting the thickness and / or the refractive index of one or more film layers that are different in the film layers passing between the two positions, the first position and the second position are adjusted.
  • the second position satisfies the condition.
  • An embodiment of the present application further provides a display screen having at least one display area; the at least one display area includes a first display area, and a photosensitive device may be disposed below the first display area;
  • the display panel of any of the above embodiments is provided in the first display area, and each display area in the at least one display area is used to display a dynamic or static picture.
  • the at least one display area further includes a second display area; the display panel provided in the first display area is a PMOLED display panel or an AMOLED display panel, and the display panel provided in the second display area is AMOLED Display panel.
  • An embodiment of the present application further provides a display terminal, including:
  • the display screen described in the above embodiment is covered on the device body;
  • the device region is located below the first display region, and a photosensitive device for light collection through the first display region is disposed in the device region.
  • the device region is a slotted region; and the photosensitive device includes a camera and / or a light sensor.
  • the display panel provided in the embodiment of the present application has a graphic structure in a film layer, and the display panel has at least a first position and a second position different from the first position, and the first position And the second position satisfies the following condition (m-0.2) ⁇ ⁇ L 1 -L 2 ⁇ (m + 0.2) ⁇ . Since the film passing through the first position and the second position satisfies the above relationship, when light is emitted from the display panel through two paths, the phase difference is small.
  • the phase difference between light rays of the same phase passing through the display panel is one of the important reasons for diffraction to occur
  • the phase difference is within a preset range.
  • the diffraction phenomenon caused by the phase difference is reduced, so that the light passes through the display surface.
  • the above-mentioned image distortion due to diffraction is small, the clarity of the image perceived by the camera behind the display panel is improved, and the photosensitive element behind the display panel can be obtained. The clear and real image realizes the full screen display.
  • the first position and the second position correspond to positions where light is incident on each path, and paths through which light passes through the display panel are multiple paths.
  • the number of paths is displayed according to a vertical direction.
  • the type of path that the light of the panel passes through the display panel is determined, and different paths include different film layers. Therefore, when there are multiple paths, the difference between the optical path formed by the incident light passing through two of the paths and the integer multiple of the wavelength of the incident light is within a preset range. These light passing through these paths pass through the display panel The subsequent diffraction can be effectively reduced.
  • the more paths that satisfy the conditions the weaker the diffraction phenomenon of light after passing through the display panel.
  • the error between the difference between the optical paths formed by the light passing through any two paths in the path and an integer multiple of the wavelength of the incident light is within a preset range. In this way, the phase difference caused by the phase difference after the light passes through the display panel can be eliminated, which can greatly reduce the occurrence of diffraction phenomena.
  • the display panel in the embodiment of the present application may be PMOLED or AMOLED.
  • light may form different paths when passing through the display panel.
  • the thickness and / or refractive index of a film layer such that it satisfies the difference between the optical path length of the light passing through the path and the optical path length of the other path or paths satisfies the above relationship, and the thickness is adjusted as needed.
  • the thickness cannot be adjusted if the performance requirements are met.
  • the material of the film layer can be adjusted to change the refractive index of the film layer to achieve the above purpose.
  • the display panel in the embodiment of the present application can preferentially adjust the thickness of the pixel-defining layer or the thickness of the electrode layer. Since the thickness of the pixel-defining layer is thicker than that of other film layers, it is easy to adjust.
  • the optical path of light through the path is adjusted by adjusting the thickness of the pixel defining layer.
  • the material of the pixel-defining layer may be adjusted to change its refractive index.
  • the optical path length of light passing through the path may be adjusted by adjusting the refractive index of the pixel-defining layer, thereby reducing the diffraction phenomenon after light passes through the display panel.
  • An embodiment of the present application further provides a display screen and a display terminal having the display screen.
  • the display panel in the above embodiment is used, and a photosensitive element such as a camera or a photosensitive element is provided below the display panel. Diffraction can be better eliminated, so the camera and photosensitive element can get more realistic incident light.
  • FIG. 1 is a structural diagram of a display panel in an embodiment of the present application.
  • FIG. 2 is a structural diagram of a display panel in another embodiment of the present application.
  • FIG. 3 is a structural diagram of a display panel in another embodiment of the present application.
  • FIG. 4 is a structural diagram of a display panel in another embodiment of the present application.
  • FIG. 5 is a structural diagram of a display panel in another embodiment of the present application.
  • FIG. 6 is a structural diagram of light passing through a display panel in another embodiment of the present application.
  • FIG. 7 is a structural diagram of a display panel in another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a cathode of a display panel in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of light passing through a cathode in an embodiment of the present application.
  • FIG. 10 is a top view of a first type of isolation pillar in the embodiment of the present application.
  • FIG. 11 is a top view of a first type of isolation pillar in another embodiment of the present application.
  • FIG. 12 is a top view of an anode of an AMOLED display screen in an embodiment of the present application.
  • FIG. 13 is a top view of an anode of an AMOLED display panel in another embodiment of the present application.
  • FIG. 14 is a top view of an anode of an AMOLED display panel in another embodiment of the present application.
  • 15 is a plan view of an opening projection of a pixel defining layer in an embodiment of the present application.
  • 16 is a top view of an opening projection and an anode of a pixel defining layer in another embodiment of the present application.
  • 17 is a top view of an electrode pattern of a PMOLED display panel in an embodiment of the present application.
  • FIG. 18 is a top view of an anode and a cathode pattern of a PMOLED display panel in an embodiment of the present application;
  • 19 is a top view of a cathode and anode pattern of a PMOLED display panel in another embodiment of the present application.
  • 20 is a plan view of a conductive wire extending in an arc shape around an edge of a first electrode in an embodiment of the present application;
  • FIG. 21 is a top view of an opaque supporting layer provided in the embodiment of the present application.
  • 22 is a schematic structural diagram of a display screen in an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a terminal structure in an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a device body in an embodiment of the present application.
  • the full screen in the prior art is not a true full screen.
  • a photosensitive device such as a camera
  • the display above the photosensitive device such as a camera
  • the panel has a high light transmittance
  • the inventors further found that when a photosensitive device such as a camera is placed below the transparent display panel, the photo obtained by taking a picture is blurred.
  • the inventor's research found that the root cause of this problem is that, due to the presence of patterned film layer structures in the display screen, external light passes through these patterned film layer structures and is diffracted, resulting in blurred photographs.
  • the inventors have discovered that different cross-sectional structures are formed in the area with the patterned film layer and the area without the patterned film layer, so when light enters the display screen and reaches the photosensitive element, the light paths passing through are different.
  • different film structures produce differences in light path length due to differences in refractive index and thickness.
  • the light that is originally in the same phase will have a phase difference.
  • This phase difference is one of the important reasons for diffraction. This phase difference will cause obvious diffraction phenomena, causing the light to pass through the display panel. After the diffraction fringes are generated, the picture is distorted and blurred.
  • the display panel includes a substrate 1 and a first film layer 2 and a second film layer 3 which are sequentially disposed on the substrate 1.
  • the first film layer 2 has a patterned structure.
  • the second film layer 3 is a film layer disposed on the first film layer 2. Since the second film layer has a graphic structure, the display panel has a first position A and a second position B different from the first position, and the thickness of the display panel is along the thickness of the display panel at the first position A and the second position B. The direction of the film is different, as shown in the path a and path b.
  • the paths a and b include different film layers
  • the path a includes the second film layer 3, the first film layer 2, and the substrate 1
  • the path b includes the second film layer 3 and the substrate 1.
  • path a and path b meet the following conditions:
  • the film coefficients corresponding to the substrate 1, the first film layer 2, and the second film layer 3 are n 1 , n 2 , and n 3 , the thickness of the substrate 1 is d 1 , the thickness of the first film layer is d 2 , and the second film The distance of the layer in the path a is d a , and the distance of the second film layer in the path b is d b .
  • d 2 + d a d b
  • L a n 1 ⁇ d 1 + n 2 ⁇ d 2 + n 3 ⁇ d a
  • L b n 1 ⁇ d 1 + n 3 ⁇ d b
  • L L a -L b
  • is a distance coefficient, and the value ranges from 380 to 780 nm.
  • the film layer coefficients n 1 , n 2 , and n 3 correspond to the substrate 1, the first film layer 2, and the second film layer 3, and ⁇ is a wavelength of visible light.
  • the film layers passing in the thickness direction of the display panel at the first position A and the second position B are different, the first position A and the second position B corresponds to two positions where the light passes through the display panel vertically, forming a path through which the two lights pass.
  • the film coefficients of the first and second film layers are reasonably selected so that the position A and the position B meet the above conditions, that is, when the light passes from the path a and the path b
  • the difference between the optical paths between the two paths and the wavelength of the light satisfy the above conditions.
  • the phase difference is relatively small.
  • phase difference between light rays of the same phase passing through the display panel is one of the important reasons for diffraction to occur
  • the phase difference is small.
  • the diffraction phenomenon is weak, reducing the diffraction phenomenon caused by the phase difference, so that the light does not cause the above-mentioned image distortion due to diffraction after passing through the display panel, improves the clarity of the image perceived by the camera behind the display panel, and makes the light sensitivity behind the display panel.
  • the components can obtain clear and realistic images, and realize a full-screen display.
  • the selected difference L a -L b is 0, i.e. the optical path of the two paths is 0, compared to an integral multiple of the operation better, better realized.
  • the number of film layers passing through the first position and the second position is determined according to actual conditions.
  • the number of film layers passing along the thickness direction of the display panel at the first position is i
  • the thickness of each film layer is d 1 , d 2 ?? d i
  • the number of film layers passing in the thickness direction of the display panel at the second position is j
  • the thickness of each film layer is D 1 , D 2 ... D j , i, j are natural numbers, wherein the first position and the second position satisfy the following conditions:
  • n 1 , n 2 ... n i are film coefficients corresponding to the film layers passing along the thickness direction of the display panel at the first position, respectively, and N 1 , N 2 ... N i are respectively The film layer coefficients corresponding to the film layers passing along the thickness direction of the display panel at the second position, the values of n 1 , n 2 ... n i, N 1 , N 2 ... N i range from 1 to 2 ; ⁇ is the distance coefficient, and the value ranges from 380 to 780 nm; m is a natural number.
  • n 1 , n 2 ... n i, N 1 , N 2 ... N i range from 1 to 2, which correspond to the refractive index ranges of the film layers in the transparent screen, and the distance coefficient ⁇ corresponds to The wavelength of visible light.
  • the optical path L 1 of light passing through the first position and the optical path of light passing through the second position is L 2 , that is, the difference between the optical path of light passing through the panel from the first position and the second position is L 1 -L 2.
  • the error between the difference between the optical path length and an integer multiple of the wavelength is within a preset range. After the light passes through the panel from the first position and the second position, the phase difference is small. The diffraction phenomenon is not obvious.
  • the first position and the second position may also be any positions corresponding to light incident, as long as the film layers passing through the first position and the second position are different.
  • the film layer may be multiple film layers.
  • One or more of the film layers have a graphic structure, so that when light passes vertically through the display panel, multiple paths are formed, each path includes a different film layer, and the light path of light passes through at least two of them.
  • the above-mentioned correspondence exists between the difference between the difference and the wavelength of the light, so that the diffraction phenomenon of the light after passing through the two paths can be reduced.
  • the diffraction of light passing through these paths through the display panel can be effectively reduced.
  • the more paths that meet the conditions the weaker the diffraction phenomenon of light passing through the display panel.
  • the The differences all satisfy the above corresponding relationship. In this way, the phase difference caused by the phase difference after the light passes through the display panel can be eliminated, which can greatly reduce the occurrence of diffraction phenomena.
  • the display panel in this embodiment is an AMOLED display panel.
  • the display panel includes a substrate 001, a laminate 002, a planarization layer 003, a conductive wire 0041, an anode layer 0041, The pixel defining layer 005, the light emitting structure layer 006, and the cathode layer 007.
  • the substrate 001 here may be a rigid substrate, such as a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate; the substrate 001 may also be a flexible transparent substrate such as a PI film to improve the transparency of the device. Since the substrate is the same in all paths through which the light passes vertically, the substrate has no substantial effect on the difference between the optical paths through which the light passes through different paths.
  • a laminate 002 is provided on the substrate 001, and the laminate 002 includes a pixel circuit.
  • the laminate 002 includes one or more switching devices and capacitors.
  • the plurality of switching devices are connected in series or in parallel according to needs, such as 2T1C, Pixel circuits such as 7T1C are not limited in this embodiment.
  • the switching device may be a thin film transistor TFT, and the thin film transistor may be an oxide thin film transistor or a low temperature polysilicon thin film transistor (Low Temperature, Thin Film, Transistor, LTPS).
  • Zinc Oxide Thin Film Transistor, abbreviated as IGZO TFT).
  • the switching device may also be a metal-oxide semiconductor field-effect transistor (Metal-Oxide-Semiconductor, Field-Effect, Transistor, MOSFET), or other components that have conventional switching characteristics, such as Insulated gate bipolar transistors (Insulated Gate Bipolar Translator, IGBT for short) and the like, as long as the electronic components that can realize the switching function in this embodiment and can be integrated into the display panel fall into the protection scope of this application.
  • Metal-Oxide-Semiconductor Field-Effect, Transistor, MOSFET
  • IGBT Insulated gate bipolar Translator
  • the pixel driving circuit includes a variety of devices, so it also forms a multilayer film structure, including source, drain, gate, gate insulating layer, active layer, interlayer insulating layer, etc., each film layer forms a patterned film layer structure.
  • each film layer forms a patterned film layer structure.
  • the path through which light passes will be different, so the optical path of the path through which light passes can be adjusted by adjusting the thickness or refractive index of each film layer in the pixel circuit.
  • other film layers can also be adjusted to work together to adjust the optical path of light through the path.
  • a planarization layer 003 is provided on the stack 002, and a flat plane is formed by the planarization layer 003, which is convenient for setting electrodes and wires. Because the stack 002 has a patterned structure, the thickness of the flattening layer 003 at different positions is different. By adjusting the thickness and refractive index of the flattening layer at different positions, the optical paths of different paths can be adjusted.
  • An anode layer 004 and a conductive wire 0041 are provided on the planarization layer 003.
  • the anode layer 0042 and the conductive line 0041 in FIG. 2 are the same layer.
  • the anode layer 0042 and the conductive line 0041 may be different layers prepared separately, including scan lines, data lines, power lines, and reset lines. At least one of the scan lines may include a SCAN line and an EM line, the data line is Vdata, the power line is VDD or VSS, and the reset line is Vref.
  • the conductive line may be a layer or a plurality of conductive lines provided on the planarization layer, and the conductive line may be a plurality of layers arranged at intervals and crossing each other.
  • the anode layer 0042 and the conductive wire 0041 can be made of transparent conductive materials.
  • indium tin oxide Indium Tin Oxide, ITO for short
  • indium zinc oxide IZO
  • silver-doped oxide Indium tin oxide (Ag + ITO) or silver-doped indium zinc oxide (Ag + IZO).
  • the conductive material is preferably indium zinc oxide.
  • materials such as aluminum-doped zinc oxide, silver-doped ITO, or silver-doped IZO are used as the transparent conductive material.
  • Both the thickness and the refractive index of the anode layer 0042 and the conductive wire 0041 can be adjusted.
  • the optical path of light passing through this path can be adjusted, so that the optical path of other paths The difference between them satisfies the above conditions.
  • the anode layer 0042 is ITO
  • its thickness is generally 20 nanometers to 200 nanometers.
  • the thickness of the ITO layer can be adjusted within this range.
  • the conductive wires 0041 and the anode layer 0042 are prepared separately, the thickness and refractive index thereof can be adjusted separately.
  • the thickness and / or refractive index of each layer of wire can also be adjusted separately. If they are formed by the same layer, the thickness and refractive index of the conductive wire 0041 and the anode layer 0042 can only be adjusted at the same time.
  • the conductive wire 0041 and the anode layer 042 are provided on the same layer.
  • the conductive wire 0041 is a multi-layer circuit
  • the material of the wire and the anode layer may be the same or different.
  • the conductive line may also be a double-layer line, such as including a first conductive line and a second conductive line.
  • the first conductive line is disposed on the same layer as the anode layer, and the second conductive line is disposed on the planarization layer and the substrate.
  • the first conductive line and the second conductive line are the same as the material of the first electrode layer (anode layer), the encapsulation layer, the second electrode layer (cathode layer), the pixel defining layer, the first A conductive line and the substrate form a light path; the encapsulation layer, the second electrode layer, the pixel-defining layer, the second conductive line, and the substrate may also form a light path; the first conductive line and the second conductive line are projected to overlap Part of the package layer, the second electrode layer (cathode layer), the pixel-defining layer, the first conductive circuit, the second conductive circuit, and the substrate may also form a light path.
  • a path through which light passes may further include packaging.
  • a pixel defining layer 005 is provided on the anode layer 0042 to limit the position of the pixel, and a pixel opening is formed on the pixel defining layer 005.
  • the thickness of the pixel defining layer 005 is relatively large, and its adjustable range is larger. Generally, the thickness of the pixel defining layer 005 is 0.3-3 micrometers, and the thickness of the pixel defining layer 005 can be adjusted within this range. Therefore, it is preferable to adjust the thickness of the pixel defining layer 005 so that the optical path meets the above requirements. If the thickness of the pixel-defining layer 005 cannot be adjusted alone to meet the requirements, the material of the pixel-defining layer 005 can be adjusted in combination to adjust its refractive index. The thickness and refractive index of the pixel defining layer 005 can also be adjusted at the same time, so as to adjust the optical path of light passing through the path.
  • a support layer 0051 is provided above the pixel-defining layer 005 for supporting a mask during the production process. As shown in FIG. 3, if the support layer 0051 is a transparent structure, for the light path passing through the support layer 0051, the optical path of the path can also be adjusted by adjusting the thickness and refractive index of the support layer 0051. Because the structure of the pixel driving circuit in the stack 002 is more complicated, the adjustment of each film layer is also more complicated.
  • the support layer 0051 can also be set as an opaque structure, as shown in Fig.
  • the black opaque support layer Spacer can be selected, or abbreviated as SPC.
  • a black opaque structure is used to block one or more TFT structures in the pixel circuit.
  • the TFT structure is set under the black support layer 0051, so that light passes through.
  • the display panel does not pass through multiple film layer structures in the pixel circuit, which avoids the generation of diffraction phenomena caused by the patterned structure of the part, and simplifies the process of adjusting the optical paths of different paths.
  • a pixel opening is formed in the pixel defining layer 005, and a light emitting structure layer 006 is provided in the pixel opening and above the pixel defining layer 005.
  • an OLED Organic Light-Emitting Diode
  • the light emitting structure layer 006 generally includes a light extraction layer, an electron injection layer, an electron transport layer, a hole blocking layer, a light emitting layer, a hole transport layer, and a hole injection layer. Except for the light-emitting layer, the remaining layers are provided on the entire surface, so the remaining layers have no effect on the difference between the optical paths of the paths through which light passes.
  • the light-emitting layer is disposed in the pixel opening.
  • Different light-emitting sub-pixels include different light-emitting materials, including red light-emitting materials, blue light-emitting materials, and green light-emitting materials.
  • the optical path of light passing through the path can also be adjusted by adjusting the thickness or refractive index of the light-emitting material in the light-emitting layer, or adjusting the thickness and refractive index of the light-emitting material at the same time.
  • the adjustable range of the light-emitting layer is small.
  • the optical path is adjusted through cooperation with other film layers. It is difficult to adjust the optical path alone to meet the above requirements.
  • a cathode layer 007 is disposed above the light-emitting structure layer 006. Because the cathode layer is disposed on the entire surface, the cathode layer has no substantial effect on the difference between the optical paths of light through the various paths.
  • a light extraction layer 008 may be further disposed above the cathode layer 007. As shown in FIG. 5, the light extraction layer 008 may be omitted in some embodiments.
  • the encapsulation layer is provided on the outside of the light extraction layer 008.
  • the encapsulation layer can be a hard screen package or an organic thin film package.
  • the display panel in FIG. 5 is a hard screen using a glass frit package (ie, Frit package).
  • the packaging layer includes a low vacuum gap layer 009 and a packaging substrate 010. The vacuum gap layer is filled with an inert gas, and the packaging substrate is a package. glass.
  • the display panel shown in FIG. 5 when light passes through the display panel, a plurality of light paths can be formed. Since the display panel has two different ways of a top-emitting structure and a bottom-emitting structure, if the display panel is a top-emitting structure, one side of the package faces outward, the substrate is inside, and the camera is disposed below the substrate. If the display panel has a bottom-emitting structure, one side of the substrate faces outward and one side of the package faces inward, and the camera is disposed below the package glass.
  • the display panel is a transparent display panel. When a camera disposed below the display panel works, pixels in the camera area do not emit light, so as to facilitate the transmission of external light.
  • the path of light passing through the panel is the same.
  • the top light-emitting structure is taken as an example for description.
  • Light enters the display screen from one side of the packaging glass 010, and when the light passes through the display panel, various paths are formed. As shown in Figure 6.
  • the path A includes a package substrate 010, a vacuum gap layer 009, a light extraction layer 008, a cathode layer 007, a light emitting structure layer 006, an anode layer 0042, a planarization layer 003, a laminate 002, and a substrate 001 in this order.
  • Path B includes a package glass layer 010, a vacuum gap layer 009, a light extraction layer 008, a cathode layer 007, a light emitting structure layer 006, a pixel defining layer 005, a planarization layer 003, a stack 002, and a substrate 001 in this order.
  • Path C includes the packaging glass layer 010, the vacuum gap layer 009, the light extraction layer 008, the cathode layer 007, the light emitting structure layer 006, the pixel defining layer 005, the conductive line 0041, the planarization layer 003, the stack 002, and the substrate 001 in this order. .
  • Path D includes the packaging glass layer 010, the vacuum gap layer 009, the light extraction layer 008, the cathode layer 007, the light emitting structure layer 006, the pixel definition layer 005, the anode layer 0042, and the planarization layer 003. , Laminated 002, substrate 001.
  • the thickness of the low vacuum gap layer in the path A is larger than the thickness of the low vacuum gap layer in the other paths.
  • the optical path of light passing through path A is L A
  • the optical path of light passing through path B is L B
  • the optical path of light passing through path C is L C.
  • n is an integer
  • is the wavelength of light
  • is a constant between 0 and 0.2.
  • suitable values such as 0, 0.1, 0.15, and 0.2 can be selected.
  • the smaller ⁇ is selected, the smaller the phase difference between the rays after passing through the two paths.
  • L d 1 * n 1 + d 2 * n 2 + ... + d i * n i , where L is the optical path length, i is the number of structural layers in the path through which light passes, d 1 , d 2 , ..., d i is the thickness of each structural layer in the path through which light passes; n 1 , n 2 , ..., n i is the refractive index of each structural layer in the path through which light passes.
  • the optical path length of each path can be calculated.
  • the substrate 001, the package substrate 010, the light extraction layer 008, and the cathode layer 007 are the same material and have the same thickness, which need not be considered.
  • the layers that differ from path A and path B are the vacuum gap layer 009 (both in path A and path B but with different thickness), the pixel-defining layer 005 (in path B), and the anode layer 0042 (in path A).
  • the thickness difference of the vacuum gap layer 009 in the path A and the path B is the same as the thickness of the pixel defining layer 005 in the path B. Therefore, the thickness of the pixel defining layer 005 is adjusted.
  • the thickness of the vacuum gap layer 009 in the path A and the path B is different. It will adjust accordingly. It can be seen that the main film layers affecting the paths A and B are the anode layer 0042 and the pixel defining layer 005. By adjusting the thickness and / or the refractive index of the anode layer 0042, or adjusting the thickness and / or the refractive index of the pixel defining layer 005, or adjusting the anode layer 0042 and the pixel defining layer 005 at the same time, the optical paths of the paths A and B are adjusted. The difference between the difference and the integer multiple of the wavelength is within a preset range.
  • the inner light emitting layer in the light emitting structure layer 006 also differs. There may be differences between the light emitting layer in the pixel opening and the light emitting layer outside the opening, and the path can be further adjusted by adjusting the light emitting layer.
  • the film structures of the planarization layer 003 and the stack 002 in the path A and the path B may also be different, and the optical path length may be adjusted by adjusting the thickness and / or the refractive index of different film layers.
  • a black support layer 0051 can also be provided above the switching device of the pixel circuit, so that light does not pass through the pixel circuit, avoiding the effect of light on the performance of the pixel circuit, and avoiding pixels The problem of light diffraction caused by the presence of various layers of the circuit.
  • the layers included are not repeated, and the main difference is that the path C includes a conductive line 0041, and the thickness of the pixel-defining layer 005 in the path C is different from the thickness of the pixel-defining layer 005 in the path B.
  • the difference between the thickness of the pixel-defining layer 005 in the path C and the thickness of the pixel-defining layer 005 in the path B is the same as the thickness of the conductive line 0041. Therefore, by adjusting the thickness and the refractive index of the conductive line 0041, the optical path between the path B and the path C is adjusted. The difference satisfies the above relationship.
  • the conductive line of the path C may also be a double-layer line, including a first conductive line and a second conductive line.
  • the first conductive line and the first electrode layer are disposed on the same layer, and the second conductive line is disposed on a flat surface.
  • the error between the difference and an integer multiple of the wavelength of the externally incident light is within a predetermined range, so that the phase difference between the light rays after passing through the two paths is relatively small.
  • the difference between path A and path C is the encapsulation layer, pixel-defining layer 005, anode layer 0042, and conductive line 0041.
  • the thickness of the encapsulation layer is determined by the thickness of pixel-defining layer 005, so the thickness or refractive index of pixel-defining layer 005 can be adjusted. Alternatively, the thickness and the refractive index of the pixel defining layer 005 can be adjusted at the same time. If the anode layer 0042 and the conductive line 0041 are the same layer, the anode layer 0042 and the conductive line 0041 have no substantial influence on the difference between the optical paths of the paths A and C.
  • the difference between the optical paths of the path A and the path C can also be adjusted by adjusting the thickness and / or the refractive index of the anode layer 0042 and the conductive line 0041.
  • the difference between path A and path D is the packaging layer and the pixel-defining layer 005.
  • the thickness of the packaging layer is determined by the thickness of the pixel-defining layer 005. Therefore, the thickness or refractive index of the pixel-defining layer 005 can be adjusted or the pixel-defining layer 005 can be adjusted at the same time. Thickness and refractive index to adjust the difference between the optical paths of path A and path D.
  • path B and path D The difference between path B and path D is the pixel-defining layer 005 and the anode layer 0042, so the thickness / refractive index of the pixel-defining layer 005 and the anode layer 0042 can be adjusted to adjust the difference between the optical paths of the paths B and D value.
  • path C and path D lies in the anode layer 0042 and the conductive line 0041. If the anode layer 0042 and the conductive line 0041 are on the same layer, the optical paths of the paths A and C are the same. Difference, if the anode layer 0041 and the conductive wire 0041 are different layers, the difference between the optical paths of the path C and the path D can also be adjusted by adjusting the thickness and / or the refractive index of the anode layer 0042 and the conductive wire 0041 .
  • a supporting layer may be included in the path B, path C, and path D.
  • the path B, path C, and path D may further include a TFT structure layer forming a pixel circuit. Since the TFT structure layer includes There are multiple layers, so different layers of the TFT structure will appear in path B, path C, and path D according to the specific structure. Since the support layer 0051 is disposed on the pixel defining layer 005, the support layer 0051 does not appear in the path A.
  • the conductive line in the above embodiment may be a single-layer conductive line or a multi-layer conductive line, and the conductive line includes at least one of a scan line, a data line, a power line, and a reset line, where the scan line may include a SCAN line and EM line, data line is Vdata, power line is VDD or VSS, reset line is Vref.
  • the conductive line may also be a double-layer line, such as including a first conductive line and a second conductive line. The first conductive line is disposed on the same layer as the anode layer, and the second conductive line is disposed on the planarization layer and the substrate.
  • the first conductive line and the second conductive line are the same as the material of the first electrode layer (anode layer), the encapsulation layer, the second electrode layer (cathode layer), the pixel defining layer, the first A conductive line and substrate form a light path; the encapsulation layer, the second electrode layer (cathode layer), the pixel defining layer, the second conductive line, and the substrate may also form a light path; the first conductive line and the second conductive In the overlapping part of the line projection, the packaging layer, the second electrode layer (cathode layer), the pixel defining layer, the first conductive line, the second conductive line, and the substrate may also form a light path.
  • a path through which light passes may further include packaging.
  • an AMOLED display panel disclosed in another embodiment of the present application preferably adjusts the thickness of the anode layer 0042 in the path A and the thickness of the pixel defining layer 005 in the path C so that the path The optical paths of A and path C are the same.
  • a thin-film encapsulation may also be adopted. As shown in FIG. 7, a thin-film encapsulation is performed on the outside of the light extraction layer 008 to form a thin-film encapsulation layer.
  • the thin-film encapsulation layer includes an inorganic material encapsulation layer 012 and
  • the organic material encapsulation layer 011 and the inorganic material encapsulation layer 012 are provided on the entire surface and have a uniform thickness, so they have no effect on the difference between the optical paths of the paths.
  • the organic material encapsulation layer 011 fills the pixel opening. After filling the pixel opening, an entire encapsulation layer is formed.
  • the thickness of the organic material encapsulation layer is different. Therefore, by adjusting the thickness of the organic material encapsulation layer 011 within the pixel opening, or the refractive index of the organic material encapsulation layer, light transmission can be adjusted.
  • the thickness and refractive index of the organic material encapsulation layer can also be adjusted at the same time, or they can be adjusted in combination with other methods.
  • the thickness of the organic material encapsulation layer in path A is greater than the thickness of the organic material encapsulation layer in other paths.
  • the paths include a packaging layer, a second electrode layer, a light emitting structure layer, a first electrode layer, and a substrate; and / or The path includes a packaging layer, a second electrode layer, a light-emitting structure layer, a pixel-defining layer, and a substrate; and / or the path includes a packaging layer, a second electrode layer, a light-emitting structure layer, a pixel-defining layer, conductive lines, and a substrate. If the distribution of multiple wires at different positions and the distribution of pixel circuits are considered, more paths can be formed.
  • the thickness and / or the refractive index of one or more film layers that are different in each of the different paths are adjusted so as to satisfy the difference between the optical paths of at least two paths and the integer multiple of the wavelength of light
  • the error within the preset range can reduce the diffraction of light after passing through these two paths.
  • the optical path between One or more of the difference and an integer multiple of the wavelength of light are within a preset range.
  • the specific adjustment manners have been separately introduced in the above embodiments, and are not repeated here.
  • the shape of the anode electrode, the pixel opening, and the wire can be adjusted to further reduce the diffraction.
  • the shape of the anode 300 can be set to a circle as shown in FIG. 12, or an oval shape as shown in FIG. 13, or a dumbbell shape as shown in FIG. 14.
  • the anode can also be formed by other Curves with different radii of curvature. As light passes through obstacles such as slits, small holes, or disks, it will bend and spread to varying degrees, and deviate from the original straight line. This phenomenon is called diffraction.
  • the distribution of diffraction fringes will be affected by the image of the size of the obstacle, such as the width of the slit and the size of the pinhole. .
  • the shape of the anode By changing the shape of the anode to round, oval or dumbbell shape, it can be ensured that when the light passes through the anode layer, diffraction fringes with different positions and diffusion directions can be generated at different positions of the anode, thereby weakening the diffraction effect and ensuring the camera.
  • the graphics obtained by taking pictures have a higher definition.
  • the sides of the projection of the opening on the pixel defining layer 005 on the substrate are not parallel to each other and each side is a curve, that is, the opening has a varying width in all directions and has different diffraction diffusions at the same position.
  • the opening has a varying width in all directions and has different diffraction diffusions at the same position.
  • diffraction fringes with different positions and diffusion directions can be generated at different width positions, and no more obvious diffraction effect will be generated, thereby ensuring that the photosensitive element disposed below the display panel can normal work.
  • the openings on the pixel-defining layer are all set to be rectangular or square according to the pixel size.
  • a rectangular opening is taken as an example for description. Since the rectangle has two sets of parallel sides, the rectangular shape has the same width in the length and width directions. Therefore, when external light passes through the opening, diffraction fringes having the same position and the same diffusion direction are generated at different positions in the length direction or the width direction, and a significant diffraction effect may occur, making the photosensitive element below the display panel unable to normal work.
  • the display panel in this embodiment can solve this problem well, and ensure that the photosensitive elements under the display panel can work normally.
  • the curve used on each side of the projection of the opening on the substrate may be at least one of a circle, an ellipse, and other curves having varying curvatures.
  • the sides of the opening are curved. Therefore, when the light passes through the opening, the diffraction fringes generated will not diffuse in one direction, but will diffuse in a 360-degree direction, which makes the diffraction extremely insignificant and has a better diffraction improvement effect. .
  • the projection graphic unit opening on the substrate is circular, oval, dumbbell-shaped or wavy, similar to the shape of the anode 300, please refer to the shape of the anode 300 shown in FIGS. 12-14. I will not repeat them here.
  • the shape of the projection of the opening on the substrate can be determined according to the shape of the corresponding light emitting structure. For example, the number can be determined according to the aspect ratio of the light emitting structure.
  • the projection shape of the opening on the substrate may also be an axisymmetric structure, so as to ensure that each pixel on the entire display panel has a uniform aperture ratio and does not affect the final display effect. Referring to FIG.
  • the corresponding light-emitting structure when the projection of the opening on the substrate is a circle, the corresponding light-emitting structure has a rectangular or square shape with an aspect ratio less than 1.5, and the axis of symmetry of the projection of the opening corresponds to the symmetry axis of the corresponding light-emitting structure.
  • the diameter of the circle in the projection is smaller than the minimum width of the light emitting structure.
  • the diameter of the projected circle can be determined according to the shape of the light emitting structure and the comprehensive aperture ratio. Since the determination process can be determined by using the method for determining the size of the opening in the related technology, it is not described herein.
  • the pixel opening and the anode electrode can also be set off-center, that is, the center of the pixel opening and the center of the anode electrode do not coincide.
  • the aspect ratio of the sub-pixel corresponding to the opening is between 1.5 and 2.5.
  • the opening is projected to form a dumbbell shape by connecting two circles to each other.
  • the two circles are respectively arranged along the length direction of the corresponding light emitting structure.
  • the aspect ratio of the light emitting structure corresponding to the opening is greater than 2.5.
  • the opening is projected into a wave shape formed by three or more circles communicating with each other.
  • the three or more circles are respectively arranged along the length direction of the corresponding light emitting structure.
  • a connecting portion is further formed in the projection.
  • the connecting portion is an arc, that is, the intersection of three or more circles is connected by an arc, so that when the light passes through the connecting portion, it can also diffuse in all directions, thereby improving the diffraction effect.
  • the projection of the opening may be a circle or two dumbbell shapes that are connected to each other.
  • the projection can be a dumbbell shape with two circles communicating with each other, or a wave shape with three circles communicating with each other, as shown in FIG. 15.
  • the anode layer 004 is circular, and the pixel opening 005 is also circular, as shown in FIG. 16.
  • the display panel is PMOLED. Because PMOLED and AMOLED have different structures, when light passes through PMOLED, different paths are formed. As shown in FIG. 8, the PMOLED includes a substrate 110, an anode layer 120, a pixel defining layer 130, a spacer 140, a light emitting structure layer 150, and a cathode layer 160.
  • the anode layer 120 includes a plurality of first electrodes, and a plurality of anodes are regularly arranged on the substrate 110 on.
  • a light emitting structure layer 150 is formed on the anode, and a cathode layer 160 is formed on the light emitting structure layer 150.
  • the isolation pillar 140 is formed on the pixel defining layer 130 and is disposed between adjacent first electrodes.
  • the isolation pillars 140 are used to separate the cathodes of two adjacent sub-pixel regions. As shown in FIG. 8, the isolation pillars 140 have an inverted trapezoidal structure and are made of a transparent material, such as a transparent photoresist. The surface of the isolation pillar 140 is higher than the surface height of the adjacent region. Therefore, when a cathode is prepared on the surface of the display panel, the cathode formed above the isolation pillar 140 is disconnected from the cathode on the adjacent pixel region, thereby achieving phase separation. Isolation of the cathodes of adjacent sub-pixel regions ultimately ensures that each sub-pixel region can be driven normally.
  • the PMOLED further includes the isolation pillars 140, a part of the path through which the light passes also includes the isolation pillars 140.
  • the path C includes the cathode layer 160, the isolation pillar 140, the pixel defining layer 130, and the substrate 110.
  • the path D includes the cathode layer 160, the light-emitting structure layer 150, the anode layer 120, and the substrate 110.
  • different film layers include an isolation column 140, a pixel defining layer 130, a light emitting structure layer 150, and an anode layer 120.
  • the optical path length of light can be adjusted by adjusting the thickness and / or the refractive index of the film layers that have differences.
  • the adjustment methods of the remaining paths are the same as those in the foregoing embodiment, and details are not described herein again.
  • the path A, path B, path C, and path D in the above embodiments may also be referred to as a first path, a second path, a third path, a fourth path, and the like.
  • the above-mentioned light may be selected as visible light, and the wavelength of the light is 380-780 nanometers, preferably the wavelength of the light is 500-600 nanometers.
  • the light in this range (ie, green light) is more sensitive to the human eye. Since the human eye is most sensitive to green, the incident light can be selected based on green light, that is, when adjusting the optical path through each path, ⁇ can choose the wavelength of green light from 500 nm to 560 nm, such as 540 nm, 550 nm, 560 Nanometer. Since the wavelength of green light is between red and blue, choosing green light can take into account both red and blue light.
  • the inventors further research found that in order to further reduce the external light passing through the pattern in the display panel area, lateral diffraction will also occur, which will cause diffraction fringes, which will affect the normal operation of light sensitive devices such as cameras.
  • the isolation pillar 140 includes a plurality of isolation pillars of the first type.
  • the width of the isolation pillars of the first type changes continuously or intermittently.
  • the extension direction is parallel to the substrate; the width is a dimension of a projection formed on the substrate by the first type of isolation pillars in a direction perpendicular to the extension direction.
  • FIG. 10 is a schematic structural diagram of a first type of isolation pillar in an embodiment. In the extending direction of the first type of isolation pillars, the width of the first type of isolation pillars continuously changes.
  • FIG. 11 is a top view of a first type of isolation pillar in another embodiment, that is, a schematic diagram of a top surface structure thereof.
  • the non-linear shape is formed by connecting the edges of multiple broken line segments, thereby ensuring that the first type of isolation pillar has a varying width along the extension direction to improve the diffraction effect.
  • the openings of the fold line segments are disposed toward the sub-pixel region to reduce the impact on the pixels and ensure that the brightness of the pixel can meet the requirements while ensuring the pixel aperture ratio.
  • the polyline segment corresponding to each pixel region may also be composed of more polyline segments, thereby forming a jagged edge.
  • the shape of the anode and the cathode in the PMOLED may be set such that both sides in the extending direction are wavy, and the peaks of the two sides are opposite to each other and the troughs are opposite, as shown in FIG. 17. Further, the crests and troughs of two adjacent electrodes may be staggered.
  • Both the anode and the cathode can be provided as strip-shaped wavy electrodes.
  • the extension direction of the second electrode 160 and the extension direction of the first electrode 120 are perpendicular to each other, thereby forming a light-emitting area of the display panel in the overlapping area.
  • the first electrode 120 is an anode
  • the second electrode 160 is a cathode.
  • each anode is used to drive one row / column or multiple row / column sub-pixels.
  • one pixel (or pixel unit) includes at least three sub-pixels of red, green, and blue. In other embodiments, one pixel unit may also include four sub-pixels of red, green, blue, and white.
  • the arrangement of the sub-pixels can be a parallel arrangement of RGB sub-pixels, a V-shaped arrangement, and a PenTile arrangement.
  • pixel units arranged in parallel with RGB sub-pixels are used as an example for description. It can be understood that the display panel in this embodiment can also be applied to other arrangements other than the RGB sub-pixel arrangement.
  • the number of columns / rows of pixels corresponding to each cathode is M, and the number of columns / rows of pixels corresponding to each anode is N, then M should be greater than or equal to 3N.
  • one pixel unit is constituted by using RBG sub-pixels, and the number of columns / rows of the sub-pixels driven by the cathodes is 3N.
  • the number of columns / rows M of the sub-pixels driven by the cathode is 4N. It can be understood that in other embodiments, the column pixels can be driven by the cathode and the row pixels can be driven by the anode. The two are just different arrangement directions of the anode and the cathode.
  • FIG. 19 is a schematic structural diagram of a cathode and an anode in a PMOLED display panel according to another embodiment.
  • one pixel unit includes three red, green, and blue sub-pixels. Therefore, each anode 120 is used to drive a column of pixel units, and each cathode 160 is used to drive a row of sub-pixels.
  • the anode pattern can be referred to FIG. 17, that is, the width W1 opposite to the wave peak T is 30 ⁇ m to (AX) ⁇ m, the width W2 opposite to the wave trough B is X ⁇ m to W1, and the minimum distance D1 is (A-W1). , The maximum distance D2 is (A-W2).
  • X is the minimum process size.
  • the width W3 at the relative positions of the peaks of the two sides of the cathode is X micrometers to ((A-X) / 3) micrometers. It can be understood that, in other embodiments, when the sub-pixels in one pixel unit are N, the width W3 at the relative positions of the peaks T of the two sides of the cathode 160 is X micrometers to ((A-X) / N) micrometers. In this embodiment, the width W4 where the valleys of the two sides of the cathode 160 are opposite is X micrometers to W1, the minimum distance D3 is (A-W3), and the maximum distance D4 is (A-W4). Where A is the pixel size and X is the minimum process size. In the above embodiments, the distance between adjacent electrodes is between 4 micrometers and 20 micrometers.
  • the conductive lines are bent in an extending direction; the conductive lines are provided around the first electrode, and the conductive lines extend arcuately around the edges of the first electrode, as shown in FIG. 20 As shown. Both sides of the conductive line in the extending direction are wavy, and the wave peaks of the two sides are opposite to each other, and the wave troughs are opposite, as shown in FIG. 17. As shown in FIG. 20, when there are transparent electrode traces, the traces are designed as arc-shaped traces according to the size of the pixel electrode, which can further eliminate diffraction compared with the traditional straight line.
  • the opaque support layer 0051 can also be set to a circle or an oval shape. As shown in FIG. 21, by setting the shape of the support layer 0051 to an oval shape, the diffraction can be further reduced.
  • a display screen is also provided in this embodiment.
  • the display screen includes a first display area 161 and a second display area 162, and the first display area 161 and the second display area 162 are both used to display static or dynamic information.
  • the first display area 161 adopts the display panel mentioned in any of the above embodiments, and the first display area 161 is located at an upper part of the display screen.
  • the above display panel after light passes through the display panel through at least two of the paths, there is no phase difference, and diffraction interference is reduced. If the phase does not change after light passes through all the paths in the display panel, the diffraction interference caused by the phase difference can be avoided, and the camera below the screen can obtain clear and true image information.
  • the display screen may further include three or more display areas, such as including three display areas (a first display area, a second display area, and a third display area).
  • the first display area uses The display panel mentioned in any of the above embodiments, which display panel is used in the second display area and the third display area, is not limited in this embodiment, and may be a PMOLED display panel or an AMOLED display panel, of course The display panel in this embodiment may also be used.
  • This embodiment further provides a display device including the above display screen covered on the device body.
  • the display device may be a product or component having a display function, such as a mobile phone, a tablet, a television, a display, a palmtop computer, an ipod, a digital camera, a navigator, and the like.
  • FIG. 23 is a schematic structural diagram of a display terminal according to an embodiment.
  • the display terminal includes a device body 810 and a display screen 820.
  • the display screen 820 is disposed on the device body 810 and is connected to the device body 810.
  • the display screen 820 may use the display screen in any of the foregoing embodiments to display a static or dynamic picture.
  • FIG. 24 is a schematic structural diagram of a device body 810 in an embodiment.
  • the device body 810 may be provided with a slotted area 812 and a non-slotted area 814.
  • Photosensitive devices such as a camera 930 and a light sensor may be disposed in the slotted area 812.
  • the display panel of the first display area of the display screen 820 is bonded to the slotted area 812 so that the above-mentioned photosensitive devices such as the camera 930 and the light sensor can pass external light through the first display area. Acquisition and other operations.
  • the display panel in the first display area can effectively improve the diffraction phenomenon caused by external light transmitted through the first display area, the quality of the image captured by the camera 930 on the display device can be effectively improved, and the image captured by the diffraction can be avoided. Distortion can also improve the accuracy and sensitivity of the light sensor to sense external light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请中提供一种显示面板,其膜层中具有图形化结构,所述显示面板上至少具有第一位置和不同于所述第一位置的第二位置,所述第一位置和所述第二位置满足预设条件。由于第一位置和第二位置经过的膜层满足该对应关系,使得当光线通过两条路径从显示面板射出后,其相位差较小。由于相同相位的光线经过显示面板后产生相位差异是衍射发生的重要原因之一,采用本申请实施例中的方案,相同相位的光线经两条路径穿过显示面板后,相位差在预设范围内,减小了相位差异导致的衍射现象,提高了显示面板后方的摄像头感知图像的清晰度,使得显示面板后的感光元件能够获得清晰、真实的图像,实现了全面屏显示。

Description

显示面板、显示屏和显示终端 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板、显示屏和显示终端。
背景技术
随着显示终端的快速发展,用户对屏幕占比的要求越来越高,使得显示终端的全面屏显示受到业界越来越多的关注。全面屏常规地多为开槽或开孔的方式,如苹果的刘海屏等,均是在摄像头、传感器等元件对应的显示屏区域开槽或开孔。在实现拍照功能时,外部光线通过显示屏上的槽或孔射入显示屏下方的摄像头,从而实现拍照。但是,不论是刘海屏还是打孔屏,均不是真正的全面屏,因此,业界急需研发出真正的全面屏。
发明内容
基于此,有必要针对上述技术问题,提供一种可实现全面屏的显示面板、显示屏和显示终端。
为此,本申请提供如下技术方案:
本申请实施例提供一种显示面板,包括基板以及依次设置在所述基板上的多个膜层,至少一个所述膜层具有图形化结构,所述显示面板上至少具有第一位置和不同于所述第一位置的第二位置,在所述第一位置和所述第二位置处沿所述显示面板的厚度方向经过的膜层不同,在所述第一位置处沿所述显示面板的厚度方向经过的膜层数量为i,各膜层厚度分别为d1、d2……di,在所述第二位置处沿所述显示面板的厚度方向经过的膜层数量为j,各膜层厚度分别为D1、D2……Dj,i,j为自然数,其中所述第一位置和所述第二位置满足以下条件:
L1=d1*n1+d2*n2+…+di*ni,
L2=D1*N1+D2*N2+…+Dj*Nj,
(m-δ)λ≤L1-L2≤(m+δ)λ,
其中n1、n2…ni分别为与在所述第一位置处沿所述显示面板的厚度方向经过的膜层相对应的膜层系数,N1、N2…Ni分别为与在所述第二位置处沿所述显示面板的厚度方向经过的膜层相对应的膜层系数,n1、n2…ni、N1、N2…Nj为1~2之间的常数;λ为380~780nm之间的常数;m为自 然数;δ为0~0.2之间的常数。
可选地,所述λ为可见光的波长,所述n1、n2…ni、N1、N2…Nj为所述可见光的波长下对应膜层的折射率。
可选地,所述L1-L2的值为0。
可选地,所述显示面板为有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,缩写为AMOLED)显示面板或无源矩阵有机发光二极管(Passive Matrix Organic Light Emitting Diode,缩写为PMOLED显示面板),所述膜层包括封装层、第二电极层、发光层、第一电极层、像素限定层;
所述第一位置或第二位置经过的膜层分别为第一路径、第二路径或第三路径,其中,
所述第一路径包括封装层、第二电极层、发光层、第一电极层和基板;
所述第二路径包括封装层、第二电极层、像素限定层、第一电极层和基板;
所述第三路径包括封装层、第二电极层、像素限定层和基板。
可选地,所述显示面板为采用薄膜封装方式的柔性屏,所述封装层包括薄膜封装层,所述薄膜封装层包括有机材料封装层,所述第一路径中有机材料封装层的厚度大于其他路径中有机材料封装层的厚度。
可选地,所述显示面板为采用玻璃粉封装方式的硬屏,所述封装层包括真空间隙层和封装基板,所述第一路径中的真空间隙层的厚度大于其他路径中的真空间隙层的厚度。
可选地,所述λ的取值范围为500-600nm,优选为550nm。
可选地,所述显示面板为AMOLED显示面板,所述膜层还包括导电线,所述导电线为单层线路或多层线路,所述导电线包括扫描线、数据线、电源线、复位线中的至少一种;
所述第一位置或第二位置经过的膜层还包括第四路径,所述第四路径包括封装层、第二电极层、像素限定层、导电线和基板。
可选地,所述导电线为单层线路,所述导电线与所述第一电极层同层设置,且所述导电线与所述第一电极层的材料相同,所述第四路径与所述第二路径包括的膜层及膜层厚度相同;
或者,所述导电线为多层线路,所述导电线中的至少一层与所述第一电极层同层设置,且所述导电线与所述第一电极层的材料相同或不同。
可选地,所述导电线为双层线路,包括第一导电线路和第二导电线路,所述第一导电线路与所述第一电极层同层设置,所述膜层还包括平坦化层,所述第二导电线路设置于平坦化层和所述基板之间,所述第一导电线路和所述第二导电线路与所述第一电极层的材料相同,所述第四路径包括封装层、第二电极层、像素限定层、所述第一导电线路和/或所述第二导电线路、基板。
可选地,所述导电线在所述基板上的投影与所述第一电极层在所述基板上的投影部分重叠时,所述路径还包括第五路径,所述第五路径包括封装层、第二电极层、发光层、第一电极层、第二导电线路和基板。
可选地,所述显示面板为AMOLED显示面板,所述膜层还包括设置在像素限定层上的支撑层、用于制作像素电路的薄膜晶体管(Thin Film Transistor,缩写为TFT)结构层;
所述支撑层为透明结构,所述第二路径、所述第三路径和所述第四路径中的至少一个还包括支撑层和/或TFT结构层。
可选地,所述显示面板为AMOLED显示面板,所述膜层还包括设置在像素限定层上的支撑层、用于制作像素电路的TFT结构层;所述支撑层为不透明结构,所述TFT结构层设置在所述支撑层的下方。
可选地,所述显示面板为AMOLED显示面板,所述第一电极为圆形、椭圆形或者哑铃形。
可选地,所述像素限定层上形成像素开口,所述像素开口包括第一类型像素开口;所述第一类型像素开口在所述基板上的投影的各边均为曲线,且各边互不平行。
可选地,所述第一类型像素开口在所述基板上的投影为一个图形单元或者多个彼此连通的图形单元;所述图形单元为圆形或者椭圆形。
可选地,所述导电线在延伸方向上弯曲设置;所述第一电极周围设置有所述导电线,所述导电线绕所述第一电极的边缘弧形延伸。
可选地,所述导电线在延伸方向上的两条边均为波浪形,所述两条边的波峰相对设置,且波谷相对。
可选地,所述显示面板为PMOLED显示面板,所述膜层还包括设置在像素限定层上的隔离柱,所述路径还包括第六路径,所述第六路径包括第二电极层、隔离柱、像素限定层、基板,所述隔离柱的材料为透明材料。
可选地,所述隔离层包括多个第一类型隔离柱;在所述第一类型隔离 柱的延伸方向上,所述第一类型隔离柱的宽度连续变化或间断变化,所述延伸方向平行于所述基板;所述宽度为所述第一类型隔离柱在所述基板上形成的投影在垂直于所述延伸方向上的尺寸。
可选地,所述显示面板为PMOLED显示面板,所述第一电极或第二电极在延伸方向上的两条边均为波浪形,所述两条边的波峰相对设置,且波谷相对;优选地,相邻的第一电极或第二电极波峰和波谷错峰设置。
可选地,所述膜层还包括导电线,所述导电线为单层线路或多层线路,所述导电线包括扫描线、数据线、电源线、复位线中的至少一种。
可选地,所述导电线为单层线路时,所述导电线与所述第一电极层同层设置;或者,所述导电线为多层线路时,所述导电线中的至少一层与所述第一电极层同层设置;所述导电线与所述第一电极层的材料相同或不同。
可选地,所述导电线在所述基板上的投影与所述第一电极层在所述基板上的投影部分重叠时,所述第一位置或第二位置经过的膜层还包括第七路径,所述第七路径包括封装层、第二电极层、发光结构层、第一电极层、导电线和基板。
可选地,对于第一位置和第二位置,通过调整两个位置经过的膜层中存在差异的一个或多个膜层的厚度和/或折射率,以使所述第一位置和所述第二位置满足所述条件。
本申请实施例还提供一种显示屏,具有至少一个显示区;所述至少一个显示区包括第一显示区,所述第一显示区下方可设置感光器件;
其中,在所述第一显示区设置有上述实施例任意所述的显示面板,所述至少一个显示区中各显示区均用于显示动态或静态画面。
可选地,所述至少一个显示区还包括第二显示区;在所述第一显示区设置的显示面板为PMOLED显示面板或AMOLED显示面板,在所述第二显示区设置的显示面板为AMOLED显示面板。
本申请实施例还提供一种显示终端,包括:
设备本体,具有器件区;
上述实施例中所述的显示屏,覆盖在所述设备本体上;
其中,所述器件区位于所述第一显示区下方,且所述器件区中设置有透过所述第一显示区进行光线采集的感光器件。
可选地,所述器件区为开槽区;以及所述感光器件包括摄像头和/或光线感应器。
本申请技术方案,具有如下优点:
(1)本申请实施例中提供的显示面板,其膜层中具有图形化结构,所述显示面板上至少具有第一位置和不同于所述第一位置的第二位置,所述第一位置和所述第二位置满足以下条件(m-0.2)λ<L 1-L 2<(m+0.2)λ。由于第一位置和第二位置经过的膜层满足上述关系,当光线通过两条路径从显示面板射出后,其相位差较小。由于相同相位的光线经过显示面板后产生相位差异是衍射发生的重要原因之一,采用本申请实施例中的方案,相同相位的光线经两条路径穿过显示面板后,相位差在预设范围内,减小了相位差异导致的衍射现象,使得光线穿过显示面上述由于衍射导致的图像失真较小,提高了显示面板后方的摄像头感知图像的清晰度,使得显示面板后的感光元件能够获得清晰、真实的图像,实现了全面屏显示。
(2)本申请实施例中提供的显示面板,上述第一位置和所述第二位置对应每条路径光入射的位置,光穿过显示面板的路径为多条路径,路径的数量根据垂直显示面板的光线穿过显示面板时经过的路径的种类来确定,不同的路径包括的膜层不同。因此当存在多条路径时,入射光穿过其中两条路径形成的光程之间的差值与入射光波长的整数倍的误差在预设范围内,这些通过这些路径的光穿过显示面板后的衍射可以有效降低,满足条件的路径越多,光线穿过显示面板后的衍射现象就越弱。作为优选的方案,路径中光经过任意两个路径后形成的光程之间的差值与入射光波长的整数倍的误差在预设范围内。这样,光线穿过显示面板后由于相位差异导致的相位差就都可以消除,从而可大大降低衍射现象的出现。
(3)本申请实施例中的显示面板,可以是PMOLED,也可以是AMOLED,根据显示面板的膜层化结构的不同,光线穿过显示面板时可以形成不同的路径,通过调整某条路径中的一个膜层的厚度和/或折射率,使其满足光线穿过该路径的光程与其他一条或多条路径的光程之间的差值为满足上述关系,厚度根据需要来调整,如果厚度在满足性能要求的情况下无法调整,可以调整该膜层的材料,从而改变该膜层的折射率,从而到达上述目的。
(4)本申请实施例中的显示面板,可以优先调整像素限定层的厚度或所述电极层的厚度,由于像素限定层的厚度较其他膜层厚一些,易于调整,在满足性能要求的前提下,通过调整像素限定层的厚度来调整光穿过该路径的光程。此外,也可以调整像素限定层的材料,使其折射率发生变化,通过调整像素限定层的折射率来调整光穿过该路径的光程,从而光穿过显示面板后的降低衍射现象。
(5)本申请实施例中还提供一种显示屏,以及具有该显示屏的显示终端,采用上述实施例中的显示面板,在显示面板下方设置感光元件如摄像头、光敏元件等,由于显示面板可以更好的消除衍射,因此摄像头和感光元件可以获得更加真实的射入光线。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中的显示面板的结构图;
图2为本申请另一实施例中的显示面板的结构图;
图3为本申请另一实施例中的显示面板的结构图;
图4为本申请另一实施例中的显示面板的结构图;
图5为本申请另一实施例中的显示面板的结构图;
图6为本申请另一实施例中的光线穿过显示面板的结构图;
图7为本申请另一实施例中的显示面板的结构图;
图8为本申请实施例中的显示面板的阴极的结构示意图;
图9为本申请实施例中的光线穿过阴极的结构示意图;
图10为本申请实施例中的第一类型隔离柱的俯视图;
图11为本申请另一实施例中的第一类型隔离柱的俯视图;
图12为本申请实施例中AMOLED显示屏的阳极的俯视图;
图13为本申请另一实施例中AMOLED显示面板的阳极的俯视图;
图14为本申请另一实施例中AMOLED显示面板的阳极的俯视图;
图15为本申请实施例中像素限定层的开口投影的俯视图;
图16为本申请另一实施例中像素限定层的开口投影和阳极的俯视图;
图17为本申请实施例中PMOLED显示面板的电极图案的俯视图;
图18为本申请实施例中PMOLED显示面板的阳极和阴极图案的俯视图;
图19为本申请另一实施例中的PMOLED显示面板的阴极和阳极图案的俯视图;
图20为本申请实施例中导电线绕第一电极的边缘呈弧形延伸的俯视图;
图21为本申请实施例中将不透明的支撑层设置为椭圆形的俯视图;
图22为本申请实施例中的显示屏的结构示意图;
图23为本申请实施例中的终端结构的示意图;
图24为本申请实施例中的设备本体的示意图。
具体实施方式
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”以及“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,当元件被称为“形成在另一元件上”时,它可以直接连接到另一元件上或者可能同时存在居中元件。当一个元件被认为是“连接”另一个元件,它可以直接连接到另一元件或者同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。
如背景技术介绍,现有技术中的全面屏并非真正的全面屏,但是,在研究过程中发现,若将显示面板直接覆盖在摄像头等感光器件上时,首先要求位于摄像头等感光器件上方的显示面板具有高透光率,但是,发明人进一步发现,将摄像头等感光器件设置在透明显示面板下方时,拍照得到的照片模糊。进一步地,发明人研究发现,出现这个问题的根本原因在于,由于显示屏内存在图案化的膜层结构,外部光线穿过这些图案化的膜层结构后,发生衍射,进而导致拍照模糊。
进一步地,发明人发现,在有图案化膜层的区域和无图案化膜层的区域形成不同的剖面结构,因此光线射入显示屏到达感光元件时,经过的光路是不同。光线通过透明屏的不同区域时,不同的膜层结构由于折射率和厚度的差异,对光线产生光程之间的差值。当光线穿过这些不同的区域后,原本是相同相位的光线就会产生相位差异,这个相位差异是产生衍射的重要原因之一,该相位差异会造成明显的衍射现象,导致光线穿过显示面板后产生衍射条纹,使得拍照画面失真,出现模糊情况。
此外,由于电子设备的显示屏体内存在的像素开口、电极、导电走线等,外部光线经过这些区域的边缘时会造成较为复杂的衍射强度分布,从而出现衍射条纹,进而会影响摄像头等感光器件的正常工作。例如,位于透明显示区域之下的摄像头工作时,外部光线经过显示屏内的导线材料走线、电极边缘或像素开口边缘时后会发生较为明显的衍射,从而使得摄像头拍摄到的画面出现失真的问题。
本实施例提供一种显示面板,如图1所示,包括基板1,以及依次设置在所述基板1上的第一膜层2和第二膜层3,第一膜层2具有图形化结构,第二膜层3为设置在第一膜层2上的膜层。由于第二膜层具有图形化结构, 在该显示面板上具有第一位置A和不同于第一位置的第二位置B,在第一位置A和第二位置B处沿所述显示面板的厚度方向经过的膜层不同,如图中的路径a和路径b。本实施方案中路径a和路径b包括的膜层不同,路径a包括第二膜层3、第一膜层2和基板1,路径b包括第二膜层3和基板1。其中,路径a和路径b满足如下条件:
基板1、第一膜层2、第二膜层3对应的膜层系数为n 1、n 2、n 3,基板1的厚度为d 1,第一膜层的厚度为d 2,第二膜层在路径a中的距离为d a,第二膜层在路径b中的距离为d b,在本实施例中,d 2+d a=d b,L a=n 1×d 1+n 2×d 2+n 3×d a;L b=n 1×d 1+n 3×d b;L=L a-L b,L满足以下条件:
(m-0.2)λ<L<(m+0.2)λ;
其中m为自然数;λ为距离系数,取值范围为380~780nm。
在本实施例中,膜层系数为n 1、n 2、n 3对应基板1、第一膜层2、第二膜层3,λ为可见光的波长。
本方案中的显示面板,由于其膜层中具有图形化结构,在第一位置A和第二位置B处沿所述显示面板的厚度方向经过的膜层不同,第一位置A和第二位置B对应光垂直穿过显示面板的两个位置,形成两个光穿过的路径。通过合理设置第一膜层和第二膜层的厚度,合理选择第一膜层和第二膜层的膜层系数,使得位置A和位置B满足上述条件,也就是当光从路径a和路径b垂直基板表面射入显示面板后,两条路径之间的光程之间的差值与光的波长满足上述条件,当光线通过两条路径从显示面板射出后,其相位差比较小。由于相同相位的光线经过显示面板后产生相位差异是衍射发生的重要原因之一,采用本实施例中的方案,相同相位的光线经两条路径穿过显示面板后,相位差较小,产生的衍射现象弱,降低了相位差异导致的衍射现象,使得光线穿过显示面板后不会产生上述由于衍射导致的图像失真,提高了显示面板后方的摄像头感知图像的清晰度,使得显示面板后的感光元件能够获得清晰、真实的图像,实现了全面屏显示。
在一些具体的实施方案中,选择L a-L b的差值为0,也就是两条路径的光程为0,相较于整数倍,更好操作,更好实现。
在其他可替换的实施方案中,第一位置和第二位置经过的膜层的数量根据实际情况确定,如在所述第一位置处沿所述显示面板的厚度方向经过的膜层数量为i,各膜层厚度分别为d 1、d 2……d i,在所述第二位置处沿所述显示面板的厚度方向经过的膜层数量为j,各膜层厚度分别为D 1、D 2……D j,i,j为自然数,其中所述第一位置和所述第二位置满足以下条件:
L 1=d 1*n 1+d 2*n 2+…+d i*n i
L 2=D 1*N 1+D 2*N 2+…+D j*N j
(m-0.2)λ<L 1-L 2<(m+0.2)λ,
其中n 1、n 2…n i分别为与在所述第一位置处沿所述显示面板的厚度方向经过的膜层相对应的膜层系数,N 1、N 2…N i分别为与在所述第二位置处沿所述显示面板的厚度方向经过的膜层相对应的膜层系数,n 1、n 2…n i、N 1、N 2…N i的取值范围为1~2;λ为距离系数,取值范围为380~780nm;m为自然数。上述n 1、n 2…n i、N 1、N 2…N i的取值范围为1~2,对应的是透明屏幕中各膜层的折射率的取值范围,距离系数λ对应的是可见光的波长。经过第一位置的光的光程L 1,经过第二位置的光的光程为L 2,也就是光从第一位置和第二位置穿过面板的光程之间的差值为L 1-L 2,上述条件中,该光程之间的差值与波长的整数倍的误差在预设范围内,光从第一位置和第二位置穿过面板后,相位差异较小,导致的衍射现象不明显。
第一位置和第二位置也可以是对应光入射的任何位置,只要满足第一位置和第二位置经过的膜层不同就可以,作为其他的实施方式,上述膜层可以是多个膜层,其中的一个或多个膜层具有图形化结构,这样光垂直穿过显示面板时,就会形成多条路径,每条路径所包括的膜层不同,光穿过其中至少两条路径的光程之间的差值与为光的波长存在上述对应关系,从而可以降低光穿过这两条路径后的衍射现象。通过这些路径的光穿过显示面板后的衍射可以有效降低,满足条件的路径越多,光线穿过显示面板后的衍射现象就越弱。作为进一步优选的方案,所述外部入射光以垂直于所述基板表面的方向射入所述显示面板,并穿过所述多条路径中的任意两条路径后,得到的光程之间的差值均满足上述对应关系。这样,光线穿过显示面板后由于相位差异导致的相位差就都可以消除,从而可大大降低衍射现象的出现。
作为一种具体的实施方式,本实施方式中的显示面板为AMOLED显示面板,如图2所示,该显示面板包括基板001、叠层002、平坦化层003,导电线0041、阳极层0042、像素限定层005、发光结构层006、阴极层007。
此处的基板001可以是刚性基板,如玻璃基板、石英基板或者塑料基板等透明基板;基板001也可为柔性透明基板,如PI薄膜等,以提高器件的透明度。由于基板在光线垂直穿过所有路径中都是相同的,因此基板对于光线穿过不同路径的光程之间的差值没有实质性影响。
在基板001上设置有叠层002,叠层002中包括像素电路,具体地,包括一个或多个开关器件以及电容等器件,根据需要将多个开关器件进行串联或者并联的连接,如2T1C、7T1C等像素电路,本实施例对此不作限定。开关器件可以是薄膜晶体管TFT,薄膜晶体管可为氧化物薄膜晶体管或者低温多晶硅薄膜晶体管(Low Temperature Poly Silicon Thin Film Transistor,缩写为LTPS TFT),薄膜晶体管优选为铟镓锌氧化物薄膜晶体管(Indium Gallium Zinc Oxide Thin Film Transistor,缩写为IGZO TFT)。在另一可替换 实施例中,开关器件还可为金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,缩写为MOSFET),还可为常规地具有开关特性的其它元件,如绝缘栅双极型晶体管(Insulated Gate Bipolar Translator,缩写为IGBT)等,只要能够实现本实施例中开关功能并且能够集成至显示面板中的电子元件均落入本申请保护范围内。
像素驱动电路包括多种器件,因此也形成多层膜层结构,包括源极、漏极、栅极、栅极绝缘层、有源层、层间绝缘层等,各膜层形成图形化膜层结构。在不同的路径中,光线穿过的路径会不同,因此通过调整所述像素电路中各膜层的厚度或者折射率可以调整光穿过的路径的光程。除调整叠层002中的各个路径上的膜层外,也可以结合调整其他膜层,共同作用来调整光穿过该路径的光程。
在叠层002上设置平坦化层003,通过平坦化层003形成一个平坦的平面,便于设置电极以及导线等。由于叠层002上具有图形化结构,因此平坦化层003在不同位置的厚度存在不同,通过调整平坦化层不同位置的厚度以及折射率,可以调整不同路径的光程。
在平坦化层003上设置有阳极层0042和导电线0041。图2中的阳极层0042和导电线0041是同一层,在其他实施例中,阳极层0042和导电线0041也可以是分别制备的不同层,包括扫描线、数据线、电源线、复位线中的至少一种,其中扫描线可以包括SCAN线和EM线,数据线为Vdata,电源线为VDD或VSS,复位线为Vref。导电线可以是设置在平坦化层上的一层或者多层导线,导电线可以为间隔、交叉设置的多层。阳极层0042和导电线0041可以采用透明导电材料,一般可以采用铟锡氧化物(Indium Tin Oxid,缩写为ITO),也可为铟锌氧化物(Indium Zinc Oxide,IZO)、或者掺杂银的氧化铟锡(Ag+ITO)、或者掺杂银的氧化铟锌(Ag+IZO)。由于ITO工艺成熟、成本低,导电材料优选为铟锌氧化物。进一步地,为了在保证高透光率的基础上,减小各导电走线的电阻,透明导电材料采用铝掺杂氧化锌、掺杂银的ITO或者掺杂银的IZO等材料。
阳极层0042和导电线0041的厚度和折射率都可以调整,通过调整厚度或折射率或者同时调整厚度和折射率,来调整光穿过该路径的光程,从而使得与其他路径的光程之间的差值满足上述条件。阳极层0042为ITO时,其厚度一般为20纳米-200纳米,可在该范围内调整ITO层的厚度。导电线0041和阳极层0042分别制备时,可以分别调整其厚度和折射率,如果导电线是多层的,也可以分别调整每层导线的厚度和/或折射率。如果是由同一层形成的,则只能同时调整导电线0041和阳极层0042的厚度和折射率。
本实施方案中导电线0041和阳极层0042是同层设置的,在其他的实施方案中,导电线0041为多层线路时,导电线中可以存在一层与所述阳极层同层设置,导电线与阳极层的材料可以相同也可以不同。
在其他的实施方案中,导电线也可以为双层线路,如包括第一导电线路和第二导电线路,第一导电线路与阳极层同层设置,第二导电线路设置于平坦化层和基板之间,所述第一导电线路和所述第二导电线路与所述第一电极层(阳极层)的材料相同,封装层、第二电极层(阴极层)、像素限定层、所述第一导电线路、基板形成一条光的路径;封装层、第二电极层、像素限定层、第二导电线路、基板也可以形成一条光的路径;在第一导电线路和第二导电线路投影交叠的部分,封装层、第二电极层(阴极层)、像素限定层、第一导电线路、第二导电线路、基板也可以形成一条光的路径。
在具体的实施方式中,所述导电线在所述基板上的投影,与所述第一电极层(阳极层)在所述基板上的投影部分重叠时,光穿过的路径还可以包括封装层、第二电极层(阴极层)、发光层、第一电极层(阳极层)、第二导电线路和基板。
在阳极层0042上设置有像素限定层005,用于对像素的位置进行限位,像素限定层005上形成像素开口。像素限定层005的厚度比较大,其可调的范围大一些。一般像素限定层005的厚度为0.3-3微米,可以在该范围内调整像素限定层005的厚度。因此优选通过调整像素限定层005的厚度使得光程满足上述要求。如果单独调整像素限定层005的厚度无法使其满足要求,可以结合调整像素限定层005的材料,从而调整其折射率。也可以同时调整像素限定层005的厚度和折射率,从而调整光穿过该路径的光程。
在一些实施方式中,在像素限定层005的上方设置有支撑层0051,用于在生产过程中对掩膜(mask)进行支撑。如图3所示,如果支撑层0051是透明结构,对于穿过支撑层0051的光线路径,还可以通过调整支撑层0051的厚度和折射率来调整该路径的光程。由于叠层002中的像素驱动电路结构比较复杂,各膜层调整起来也会比较复杂,还可以将支撑层0051设置为不透光结构,如图4所示,如采用黑色的不透光结构(可选择黑色不透光的支撑层Spacer,或简写为SPC),采用黑色的不透光结构遮挡像素电路中的一个或多个TFT结构设置在黑色的支撑层0051的下方,这样光线穿过显示面板时就不会经过像素电路中的多个膜层结构,在避免该部分图形化结构导致的衍射现象的产生的同时,简化了调整不同路径的光程的过程。
像素限定层005上形成像素开口,在像素开口内以及像素限定层005的上方设置有发光结构层006,此处采用OLED(Organic Light-Emitting Diode,有机发光二极管)。对于发光结构层006一般包括光取出层、电子注入层、电子传输层、空穴阻挡层、发光层、空穴传输层、空穴注入层。除发光层外,其余的各层为整面设置的,因此其余的各层对光穿过的路径的光程之间的差值没有影响。发光层设置在像素开口内,不同的发光子像素包括的发光层的发光材料不同,包括红色发光材料,蓝色发光材料,绿色发光材料。对于不同的发光子像素,也可以通过调整发光层中的发光材 料的厚度或者折射率,或者同时调整发光材料的厚度和折射率来调整光线穿过该路径的光程。
由于发光结构层整体的厚度较小,因此该发光层的可调范围较小,一般通过与其他膜层的配合来进行光程的调节,很难单独调节使光程满足上述要求。
发光结构层006的上方设置阴极层007。由于阴极层是整面设置,因此阴极层对光穿过各路径的光程之间的差值没有实质影响。阴极层007的上方还可以设置有光取出层008,如图5所示,光取出层008在一些实施方式中也可以省略。
在光取出层008的外侧设置有封装层。封装层可以是硬屏封装,也可以是有机薄膜封装。图5中的显示面板为采用玻璃粉封装(即Frit封装)方式的硬屏,所述封装层包括低真空间隙层009和封装基板010,在真空间隙层中填充有惰性气体,封装基板为封装玻璃。
在图5所示的显示面板中,当光线穿过该显示面板时,可以形成多条光路。由于显示面板具有顶发光结构和底发光结构两种不同的方式,如果该显示面板为顶发光结构,则封装的一侧朝外,基板在内部,摄像头设置在基板的下方。如果显示面板为底发光结构,则基板的一侧朝外,封装的一侧朝内,摄像头设置在封装玻璃的下方。该显示面板为透明显示面板,当设置在显示面板下方的摄像头工作时,摄像头区域的像素不发光,以便于外界光线的透过。
不管是顶发光结构还是底发光结构,光线穿过面板的路径是相同的。该实施例中,以顶发光结构为示例进行说明,光线从封装玻璃010的一侧射入显示屏中,当光线从显示面板穿过时,形成多种路径。如图6所示。
路径A包括依次穿过封装基板010、真空间隙层009、光取出层008、阴极层007、发光结构层006、阳极层0042、平坦化层003、叠层002、基板001。
路径B包括依次穿过封装玻璃层010、真空间隙层009、光取出层008、阴极层007、发光结构层006、像素限定层005、平坦化层003、叠层002、基板001。
路径C包括依次穿过封装玻璃层010、真空间隙层009、光取出层008、阴极层007、发光结构层006、像素限定层005、导电线0041、平坦化层003、叠层002、基板001。
路径D包括依次穿过路径A包括依次穿过的封装玻璃层010、真空间隙层009、光取出层008、阴极层007、发光结构层006、像素限定层005、阳极层0042、平坦化层003、叠层002、基板001。
路径A中的低真空间隙层的厚度大于其他路径中低真空间隙层的厚度。
光线穿过路径A的光程为L A,光线穿过路径B的光程为L B,光线穿过路径C的光程为L C,通过调整上述一个或多个膜层的厚度或者折射率,使得:
(m-δ)λ<L A-L B<(m+δ)λ,
m为整数,λ为光的波长,δ为0~0.2之间的常数,如可以选择0、0.1、0.15、0.2等合适的值。δ选择的越小,光线穿过两条路径后的相位差越小。
路径A、路径B、路径C中任意两个路径之间的光程差均满足上述关系。
当δ选择为0时,就可以满足路径A、路径B、路径C之间的光程之间的差值均为光的波长的整数倍。这样,光线穿过路径A、路径B、路径C三条路径后,射入光线的相位与射出光线的相位差异小,可大大降低衍射现象的发生。
上述光程L A、L B、L C的计算公式如下:
L=d 1*n 1+d 2*n 2+…+d i*n i,其中L为光程,i为光穿过的路径中结构层的数量,d 1,d 2,…,d i为光穿过的路径中各结构层的厚度;n 1,n 2,…,n i为所述光穿过的路径中各结构层的折射率。
通过测量各层的厚度和折射率,可以计算出每条路径的光程。
为了通过调整路径中的各膜层,使其满足上述光程之间的差值的要求,首先需要确定该层中影响光程的膜层有哪些,虽然每条路径穿过的膜层较多,但是,计算光程之间的差值时,如果路径中都存在相同的膜层,膜层的材料和厚度均相同,则不会影响这两条路径之间的光程之间的差值。只有不同材料的膜层、或者相同材料但厚度不同的膜层,才会影响光程之间的差值。
具体地,对于路径A和路径B而言,基板001、封装基板010、光取出层008、阴极层007是相同的材料,且厚度相同,可以不用考虑。路径A与路径B有区别的层在于真空间隙层009(路径A和路径B中都有但厚度不同)、像素限定层005(路径B中有)、阳极层0042(路径A中有),由于真空间隙层009在路径A和路径B中的厚度差与像素限定层005在路径B中的厚度相同,因此调整像素限定层005的厚度,真空间隙层009在路径A与路径B中的厚度差异也会随之调整。可见,影响路径A和路径B的主要膜层为阳极层0042和像素限定层005。通过调整阳极层0042的厚度和/或折射率,或者调整像素限定层005的厚度和/或折射率,或者同时调整阳极层0042和像素限定层005使得所述路径A和路径B的光程之间的差值与波 长的整数倍的误差在预设范围内。
当然,上述路径A和路径B中,发光结构层006中内部的发光层也存在不同,像素开口内的发光层与开口外的发光层可能存在区别,也可以通过调整发光层来进一步调整路径的光程。此外,平坦化层003和叠层002位于路径A和路径B中的膜层结构也可以不同,可以通过调整不同的膜层的厚度和/或折射率进行光程的调整。由于无机绝缘层002中的像素电路结构复杂,也可以将黑色的支撑层0051设置在像素电路的开关器件的上方,使得光线不通过像素电路,避免光线对像素电路的性能产生影响,同时避免像素电路的各个膜层的存在而产生的光线衍射问题。
对于路径B和C,其包括的各层不再赘述,其存在的主要区别为路径C中包括导电线0041,路径C中像素限定层005的厚度与路径B中像素限定层005的厚度不同,路径C中像素限定层005的厚度与路径B中像素限定层005的厚度差与导电线0041的厚度相同,因此通过调整导电线0041的厚度和折射率使得路径B和路径C的光程之间的差值满足上述关系。路径C的导电线还可以是双层线路,包括第一导电线路和第二导电线路,所述第一导电线路与所述第一电极层同层设置,所述第二导电线路设置于平坦化层和所述基板之间,通过调整第一导电线路和第二导电线路的厚度和/或折射率,以使所述外界入射光穿过路径B和路径C后,得到的光程之间的差值与所述外界入射光的波长的整数倍的误差在预定范围内,使得光线穿过两条路径后的相位差异比较小。
对于路径A和路径C的区别在于封装层、像素限定层005、阳极层0042和导电线0041,封装层的厚度由像素限定层005的厚度确定,因此可以调整像素限定层005的厚度或折射率或者同时调整像素限定层005的厚度和折射率。如果阳极层0042和导电线0041是同一层,则阳极层0042和导电线0041对路径A和路径C的光程之间的差值没有实质影响,如果阳极层0042和导电线0041是不同层的,则还可以通过调整阳极层0042和导电线0041的厚度和/或折射率来调整路径A和路径C的光程之间的差值。
对于路径A和路径D的区别在于封装层和像素限定层005,封装层的厚度由像素限定层005的厚度确定,因此可以调整像素限定层005的厚度或折射率或者同时调整像素限定层005的厚度和折射率,来调整路径A和路径D的光程之间的差值。
对于路径B和路径D的区别在于像素限定层005和阳极层0042,因此可以调整像素限定层005和阳极层0042的厚度/或折射率,来调整路径B和路径D的光程之间的差值。
对于路径C和路径D的区别在于阳极层0042和导电线0041,如果是阳极层0042和导电线0041同一层,则对路径A和路径C的光程是相同的, 不存在光程之间的差值,如果阳极层0042和导电线0041是不同层的,则还可以通过调整阳极层0042和导电线0041的厚度和/或折射率来调整路径C和路径D的光程之间的差值。
当支撑层0051为透明结构时,在路径B、路径C、路径D中还可以包括支撑层,路径B、路径C、路径D中还可以包括形成像素电路的TFT结构层,由于TFT结构层包括多层,因此根据具体的结构设置在路径B、路径C、路径D会出现TFT结构的不同层。由于支撑层0051是设置在像素限定层005上的,因此路径A中不会出现支撑层0051。
上述实施方案中的导电线,可以为单层导电线路或多层导电线路,所述导电线包括扫描线、数据线、电源线、复位线中的至少一种,其中扫描线可以包括SCAN线和EM线,数据线为Vdata,电源线为VDD或VSS,复位线为Vref。在其他的实施方案中,导电线也可以为双层线路,如包括第一导电线路和第二导电线路,第一导电线路与阳极层同层设置,第二导电线路设置于平坦化层和基板之间,所述第一导电线路和所述第二导电线路与所述第一电极层(阳极层)的材料相同,封装层、第二电极层(阴极层)、像素限定层、所述第一导电线路、基板形成一条光的路径;封装层、第二电极层(阴极层)、像素限定层、第二导电线路、基板也可以形成一条光的路径;在第一导电线路和第二导电线路投影交叠的部分,封装层、第二电极层(阴极层)、像素限定层、第一导电线路、第二导电线路、基板也可以形成一条光的路径。在具体的实施方式中,所述导电线在所述基板上的投影,与所述第一电极层(阳极层)在所述基板上的投影部分重叠时,光穿过的路径还可以包括封装层、第二电极层(阴极层)、发光层、第一电极层(阳极层)、第二导电线路和基板。
结合图6,在以上实施例的基础上,本申请另一个实施例公开的AMOLED显示面板,优选通过调整路径A中的阳极层0042的厚度,和路径C中像素限定层005的厚度,使得路径A和路径C的光程相同。
除上述硬封装的方式外,还可以采用薄膜封装的方式,如图7所示,在光取出层008的外侧进行薄膜封装,形成薄膜封装层,所述薄膜封装层包括无机材料封装层012和有机材料封装层011,无机材料封装层012是整面设置的,厚度均匀,因此对于各条路径的光程之间的差值没有影响。有机材料封装层011是填满像素开口的,填满像素开口后形成一个整层的封装层。因此在不同的路径中,有机材料封装层的厚度不同,故通过调整所述有机材料封装层011位于所述像素开口内的厚度,或所述有机材料封装层的折射率,能够实现调整光穿过该路径的光程。也可以同时调整有机材料封装层的厚度和折射率,或者结合其他方式共同调整。路径A中有机材料封装层的厚度大于其他路径中机材料封装层的厚度。
综上所述,由于在光穿过显示面板时,可以形成的路径有多条,例如 所述路径包括封装层、第二电极层、发光结构层、第一电极层和基板;和/或所述路径包括封装层、第二电极层、发光结构层、像素限定层和基板;和/或所述路径包括封装层、第二电极层、发光结构层、像素限定层、导电线和基板。如果考虑到不同位置的多条导线的分布、像素电路的分布情况,还可以形成更多的路径。根据本申请思路,只要调整各个不同路径中存在差异的一个或多个膜层的厚度和/或折射率,使其满足至少两条路径的光程之间的差值与光的波长的整数倍的误差在预设范围内,就可以降低光穿过这两条路径后的衍射,满足条件的路径越多,可以更好的降低衍射。可选地,通过调整封装层、发光结构层、第一电极层、像素限定层、绝缘层、导电线中的一个或多个层的厚度和/或折射率,以使所述光程之间的一个或多个差值与光的波长的整数倍在预设范围内。具体的调整方式上述实施例中已经分别介绍,在此不再赘述。
对于上述实施例中的AMOLED的显示屏,为进一步降低在横向方向上产生的衍射,可以通过调整阳极层的电极、像素开口以及导线的形状,进一步降低衍射。AMOLED显示屏中,阳极300的形状都可设置为如图12所示的圆形,或者如图13所示的椭圆形,或者如图14所示的哑铃形,此外,阳极还可以由其它各处具有不同曲率半径的曲线构成。由于光在穿过狭缝、小孔或者圆盘之类的障碍物时,会发生不同程度的弯散传播,从而偏离原来的直线传播,这种现象称之为衍射。衍射过程中,衍射条纹的分布会受到障碍物尺寸的影像,例如狭缝的宽度、小孔的尺寸等,具有相同宽度的位置处产生的衍射条纹的位置一致,从而会出现较为明显的衍射效应。通过将阳极形状改为圆形、椭圆形或者哑铃形,可以确保光线经过阳极层时,在阳极的不同宽度位置处能够产生具有不同位置以及扩散方向的衍射条纹,从而弱化衍射效应,进而确保摄像头设置在该显示面板下方时,拍照得到的图形具有较高的清晰度。
为了进一步降低衍射,像素限定层005上的开口在基板上的投影的各边互不平行且各边均为曲线,也即开口在各个方向上均具有变化的宽度且在同一位置具有不同衍射扩散方向,当外部光线经过该开口时,在不同宽度位置上能够产生具有不同位置和扩散方向的衍射条纹,进而不会产生较为明显的衍射效应,从而可以确保设置于该显示面板下方的感光元件能够正常工作。
相关技术中,像素限定层上的开口均根据像素大小设置成长方形或者正方形。以长方形的开口为例进行说明,由于长方形存在两组相互平行的边,从而使得其在长度和宽度方向上均具有相同的宽度。因此,当外部光线经过该开口时,在长度方向或者宽度方向的不同位置均产生具有相同位置且扩散方向一致的衍射条纹,从而会出现明显的衍射效应,使得位于该显示面板下方的感光元件无法正常工作。本实施例中的显示面板可以很好的解决该问题,确保显示面板下方的感光元件能够正常工作。
在一可选实施例中,开口在基板上的投影的各边采用的曲线可以为圆 形、椭圆形和其它具有变化曲率的曲线中的至少一种。开口的各边为曲线,因此,当光线经过开口时,产生的衍射条纹不会朝着一个方向扩散,而是朝着360度方向扩散,从而使得衍射极不明显,具有较佳的衍射改善效果。
在一可选实施例中,开口在基板上的投影图形单元为圆形、椭圆形或者哑铃形或者波浪形,与阳极300的形状类似,请参照图12-14所示的阳极300的形状,在此不再赘述。开口在基板上投影的形状可以根据对应的发光结构的形状来确定。例如,可以根据发光结构的长宽比来确定个数。在一实施例中,开口在基板上的投影形状还可以为轴对称结构,从而确保整个显示面板上的各像素具有一致的开口率,不会影响最终的显示效果。参见图12,开口在基板上的投影为一个圆形时,对应的发光结构形状为长宽比小于1.5的长方形或者正方形,开口投影的对称轴与相应发光结构的对称轴对应。投影中的圆的直径小于发光结构的最小宽度。具体地,投影的圆的直径可以根据发光结构的形状并综合开口率进行确定。由于确定过程可以采用相关技术中确定开口的尺寸的方法来确定,此处不赘述。像素开口和阳极电极还可以偏心设置,也就是像素开口的圆心和阳极电极的圆心不重合。
开口对应的子像素的长宽比在1.5到2.5之间。此时,开口投影为由两个圆形彼此连通形成哑铃形。两个圆分别沿对应的发光结构的长度方向排布。在一实施例中,两个圆之间有连接部,连接部的两边均为曲线,而确保光线经过连接部时,也能够向各个方向扩散,从而改善衍射效果。
开口对应的发光结构的长宽比大于2.5。此时,开口投影为由三个以上圆形彼此连通而成的波浪形。三个以上圆形分别沿对应的发光结构的长度方向排布。在一实施例中,投影中还形成有连接部。连接部为弧线,也即三个以上圆形的相交处采用弧线连接,从而确保光线经过连接部时,也能够向各个方向扩散,从而改善衍射效果。
当开口对应的发光结构的长宽比等于1.5时,开口投影可以为一个圆形,也可以为两个圆形彼此连通的哑铃形。当开口对应的发光结构的长宽比等于2.5时,投影可以为两个圆形彼此连通的哑铃形,也可以为由三个圆形彼此连通的波浪形,如图15所示。当阳极层0042为圆形,像素开口005也为圆形时,如图16所示。
在另外的一个实施例中,显示面板为PMOLED,由于PMOLED与AMOLED结构不同,因此当光线穿过PMOLED时,会形成不同的路径。如图8所示,PMOLED包括基板110、阳极层120、像素限定层130、隔离柱140、发光结构层150、阴极层160,阳极层120包括多个第一电极,多个阳极规则排列在基板110上。阳极上形成发光结构层150,发光结构层150上形成阴极层160。隔离柱140形成在像素限定层130上,且设置在相邻第一电极之间。隔离柱140用于将相邻两个子像素区域的阴极间隔开来,如图8所示,隔离柱140为倒梯形结构,为透明材料,如透明光刻胶。隔 离柱140的表面会高于相邻区域的表面高度,因此在显示面板的表面制备阴极时,形成在隔离柱140上方的阴极与相邻的像素区域上的阴极是断开的,从而实现相邻子像素区域的阴极的隔离,最终确保各子像素区域能够正常被驱动。由于在PMOLED中,还包括隔离柱140,因此在光线穿过的部分路径中,还会包括隔离柱140。如图9所示,路径C中包括阴极层160、隔离柱140、像素限定层130和基板110,路径D中包括阴极层160、发光结构层150、阳极层120、和基板110。路径C和路径D中,不同的膜层包括隔离柱140、像素限定层130、发光结构层150、阳极层120,通过调整其中一个或多个层的厚度和/或折射率,可以调整光穿过该路径C和路径D的光程之间的差值。在每条路径中,可以通过调整存在差异的膜层的厚度和/或折射率,实现对光穿过的光程的调整。其余的路径的调整方式与上述实施例中的相同,不再赘述。上述实施例中的路径A、路径B、路径C、路径D也可以称为第一路径、第二路径、第三路径、第四路径等。
作为具体的实施方式,上述的光可选择为可见光,光的波长为380~780纳米,优选所述光的波长为500-600纳米,该范围内的光线(即绿光)人眼比较敏感。由于人眼对绿色最敏感,入射光可选择以绿光为基准,即在调整经各路径的光程时,λ可以选择绿光的波长500纳米~560纳米,如540纳米、550纳米、560纳米。由于绿色光的波长在红色和蓝色之间,选择绿色光可以同时兼顾红色和蓝色光。
发明人进一步研究发现,为进一步降低外部光线经过显示面板区域的内的图形时,也会产生横向衍射,从而出现衍射条纹,进而会影响摄像头等感光器件的正常工作。
为了避免降低上述原因导致的衍射现象,上述隔离柱140包括多个第一类型隔离柱,在所述第一类型隔离柱的延伸方向上,所述第一类型隔离柱的宽度连续变化或间断变化,所述延伸方向平行于所述基板;所述宽度为所述第一类型隔离柱在所述基板上形成的投影在垂直于所述延伸方向上的尺寸。图10为一实施例中的第一类型隔离柱的结构示意图。在第一类型隔离柱的延伸方向上,第一类型隔离柱的宽度连续变化。当外部光线经过第一类型隔离柱时,在不同最大宽度位置处产生的衍射条纹的位置不同,从而使得衍射不太明显,达到改善衍射的效果。图11为另一实施例中的第一类型隔离柱的俯视图,也即其顶面结构示意图。此时非直线形状为多个折线段的边缘相连而成,从而确保第一类型隔离柱沿延伸方向具有变化的宽度,以改善衍射效果。在本实施例中,各折线段的开口朝向子像素区域设置,以降低对像素的影响,在确保像素开口率的同时确保其亮度能够满足需求。在其他的实施例中,对应于每个像素区域的折线段还可以由更多的折线段构成,从而形成锯齿状边缘。
为了进一步降低衍射,PMOLED中的阳极和阴极的形状可以设置为在延伸方向上的两条边均为波浪形,所述两条边的波峰相对设置,且波谷相 对,如图17所示。进一步地,还可以将相邻的两个电极的波峰和波谷交错设置。
阳极和阴极都可以设置为条状波浪形的电极,如图18所示,第二电极160的延伸方向与第一电极120的延伸方向相互垂直,从而在交叠区域形成显示面板的发光区域,其中,第一电极120为阳极,第二电极160为阴极。在本实施例中,每个阳极用于驱动一行/列或者多行/列子像素。通常,一个像素(或者像素单元)至少包括红绿蓝三个子像素。在其他的实施例中,一个像素单元也可以包括红绿蓝白四个子像素。子像素的排布方式可以为RGB子像素并行排列、V型排列以及PenTile排列等。在本申请中均以呈RGB子像素并行排列的像素单元为例进行说明。可以理解,本实施例中的显示面板也可以适用于除了RGB子像素排列之外的其他排列方式。在其他的实施例中,每个阴极对应驱动的像素列数/行数为M,每个阳极对应的像素的列数/行数为N,则M应该大于或者等于3N。具体地,采用RBG子像素构成一个像素单元,阴极对应驱动的子像素的列数/行数M为3N。在其他的实施例中,如果采用RGBW子像素构成一个像素单元,则阴极对应驱动的子像素的列数/行数M为4N。可以理解,在其他的实施例中,也可以由阴极驱动列像素而阳极驱动行像素,二者仅仅是阳极和阴极的排布方向不同而已。
图19为另一实施例中的PMOLED显示面板中的阴极和阳极的结构示意图。此时,一个像素单元包括红绿蓝三个子像素,因此每个阳极120用于驱动一列像素单元,每个阴极160用于驱动一行子像素。阳极的图案可以参照图17,也即其在波峰T相对处的宽度W1为30微米~(A-X)微米,波谷B相对处的宽度W2为X微米~W1,最小间距D1为(A-W1),最大间距D2为(A-W2)。X为最小工艺尺寸。
参见图19,阴极的两条边的波峰相对位置处的宽度W3为X微米~((A-X)/3)微米。可以理解,在其他实施例中,当一个像素单元内的子像素为N时,阴极160的两条边的波峰T相对位置处的宽度W3为X微米~((A-X)/N)微米。在本实施例中,阴极160的两条边的波谷相对处的宽度W4为X微米~W1,最小间距D3为(A-W3),最大间距D4为(A-W4)。其中A为像素大小,X为最小工艺尺寸。在上述实施例中,相邻电极的间距均在4微米~20微米之间。
对于AMOLED显示面板和PMOLED显示面板,导电线在延伸方向上弯曲设置;所述第一电极周围设置有所述导电线,所述导电线绕所述第一电极的边缘弧形延伸,如图20所示。所述导电线在延伸方向上的两条边均为波浪形,所述两条边的波峰相对设置,且波谷相对,如图17所示。如图20所示,当有透明的电极走线时,将走线根据像素电极的大小,设计成圆弧形性的走线,相对于传统的直线可以进一步消除衍射。
此外,当显示面板中有非透明区块时,将非透明区域设计成圆形或者 椭圆形,也可以抑制衍射。因此可将不透明的支撑层0051也设置为圆形或者椭圆形,如图21所示,通过将支撑层0051的形状设置为椭圆形,进一步降低衍射。
本实施例中还提供一种显示屏,如图22所示,显示屏包括第一显示区161和第二显示区162,第一显示区161和第二显示区162均用于显示静态或者动态画面,其中,第一显示区161采用上述任一实施例中所提及的显示面板,第一显示区161位于显示屏的上部。由于上述显示面板中,光线通过其中的至少两条路径穿过显示面板后,不会产生相位差异,降低了衍射干扰。如果光穿过显示面板中所有的路径后,相位都不发生变化,则可以避免相位差异导致的衍射干扰,屏幕下方的摄像头可以获得清晰、真实的图像信息。
在一可替换实施例中,显示屏还可包括三个甚至更多个显示区域,如包括三个显示区域(第一显示区域、第二显示区域和第三显示区域),第一显示区域采用上述任一实施例中所提及的显示面板,第二显示区域和第三显示区域采用何种显示面板,本实施例对此不作限定,可以为PMOLED显示面板,也可为AMOLED显示面板,当然,也可以采用本实施例中的显示面板。
本实施例还提供一种显示设备,包括覆盖在设备本体上的上述显示屏。上述显示设备可以为手机、平板、电视机、显示器、掌上电脑、ipod、数码相机、导航仪等具有显示功能的产品或者部件。
图23为一实施例中的显示终端的结构示意图,该显示终端包括设备本体810和显示屏820。显示屏820设置在设备本体810上,且与该设备本体810相互连接。其中,显示屏820可以采用前述任一实施例中的显示屏,用以显示静态或者动态画面。
图24为一实施例中的设备本体810的结构示意图。在本实施例中,设备本体810上可设有开槽区812和非开槽区814。在开槽区812中可设置有诸如摄像头930以及光传感器等感光器件。此时,显示屏820的第一显示区的显示面板对应于开槽区812贴合在一起,以使得上述的诸如摄像头930及光传感器等感光器件能够透过该第一显示区对外部光线进行采集等操作。由于第一显示区中的显示面板能够有效改善外部光线透射该第一显示区所产生的衍射现象,从而可有效提升显示设备上摄像头930所拍摄图像的质量,避免因衍射而导致所拍摄的图像失真,同时也能提升光传感器感测外部光线的精准度和敏感度。
虽然结合附图描述了本申请的实施例,但是本领域技术人员可以在不脱离本申请的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (20)

  1. 一种显示面板,包括基板以及依次设置在所述基板上的多个膜层,至少一个所述膜层具有图形化结构,其中,所述显示面板上至少具有第一位置和不同于所述第一位置的第二位置,在所述第一位置和所述第二位置处沿所述显示面板的厚度方向经过的膜层不同,在所述第一位置处沿所述显示面板的厚度方向经过的膜层数量为i,各膜层厚度分别为d 1、d 2……d i,在所述第二位置处沿所述显示面板的厚度方向经过的膜层数量为j,各膜层厚度分别为D 1、D 2……D j,i,j为自然数,其中所述第一位置和所述第二位置满足以下条件:
    L 1=d 1*n 1+d 2*n 2+…+d i*n i
    L 2=D 1*N 1+D 2*N 2+…+D j*N j
    (m-δ)λ≤L 1-L 2≤(m+δ)λ,
    其中n 1、n 2…n i分别为与在所述第一位置处沿所述显示面板的厚度方向经过的膜层相对应的膜层系数,N 1、N 2…N i分别为与在所述第二位置处沿所述显示面板的厚度方向经过的膜层相对应的膜层系数,n 1、n 2…n i、N 1、N 2…N j为1~2之间的常数;λ为380~780nm之间的常数;m为自然数;δ为0~0.2之间的常数。
  2. 根据权利要求1所述的显示面板,其中,所述λ为可见光的波长,所述n 1、n 2…n i、N 1、N 2…N j为所述可见光的波长下对应膜层的折射率。
  3. 根据权利要求1所述的显示面板,其中,所述L 1-L 2的值为0。
  4. 根据权利要求1或2或3所述的显示面板,其中,所述显示面板为 有源矩阵有机发光二极管显示面板或无源矩阵有机发光二极管显示面板,所述膜层包括封装层、第二电极层、发光层、第一电极层、像素限定层;
    所述第一位置或第二位置经过的膜层分别为第一路径、第二路径或第三路径,其中,
    所述第一路径包括封装层、第二电极层、发光层、第一电极层和基板;
    所述第二路径包括封装层、第二电极层、像素限定层、第一电极层和基板;
    所述第三路径包括封装层、第二电极层、像素限定层和基板。
  5. 根据权利要求4所述的显示面板,其中,所述显示面板为采用薄膜封装方式的柔性屏或硬屏,所述封装层包括薄膜封装层,所述薄膜封装层包括有机材料封装层,所述第一路径中有机材料封装层的厚度大于其他路径中有机材料封装层的厚度。
  6. 根据权利要求4所述的显示面板,其中,所述显示面板为采用玻璃粉封装方式的硬屏,所述封装层包括真空间隙层和封装基板,所述第一路径中的真空间隙层的厚度大于其他路径中的真空间隙层的厚度。
  7. 根据权利要求4所述的显示面板,其中,所述显示面板为有源矩阵有机发光二极管显示面板,所述膜层还包括导电线;
    所述第一位置或第二位置经过的膜层还包括第四路径,所述第四路径包括封装层、第二电极层、像素限定层、导电线和基板。
  8. 根据权利要求7所述的显示面板,其中,所述导电线为单层线路, 所述导电线与所述第一电极层同层设置,且所述导电线与所述第一电极层的材料相同,所述第四路径与所述第二路径包括的膜层及膜层厚度相同;
    或者,所述导电线为多层线路,所述导电线中的至少一层与所述第一电极层同层设置,且所述导电线与所述第一电极层的材料相同或不同。
  9. 根据权利要求8所述的显示面板,其中,所述导电线为双层线路,包括第一导电线路和第二导电线路,所述第一导电线路与所述第一电极层同层设置,所述膜层还包括平坦化层,所述第二导电线路设置于平坦化层和所述基板之间,所述第一导电线路和所述第二导电线路与所述第一电极层的材料相同,所述第四路径包括封装层、第二电极层、像素限定层、所述第一导电线路和/或所述第二导电线路、基板。
  10. 根据权利要求9所述的显示面板,其中,所述导电线在所述基板上的投影与所述第一电极层在所述基板上的投影部分重叠时,所述路径还包括第五路径,所述第五路径包括封装层、第二电极层、发光层、第一电极层、第二导电线路和基板。
  11. 根据权利要求7所述的显示面板,其中,所述显示面板为有源矩阵有机发光二极管显示面板,所述膜层还包括设置在像素限定层上的支撑层、用于制作像素电路的薄膜晶体管结构层;
    所述支撑层为透明结构,所述第二路径、所述第三路径和所述第四路径中的至少一个还包括支撑层和/或薄膜晶体管结构层。
  12. 根据权利要求4所述的显示面板,其中,所述显示面板为有源矩阵有机发光二极管显示面板,所述膜层还包括设置在像素限定层上的支撑 层、用于制作像素电路的薄膜晶体管结构层;所述支撑层为不透明结构,所述薄膜晶体管结构层设置在所述支撑层的下方。
  13. 根据权利要求4所述的显示面板,其中,所述像素限定层上形成像素开口,所述像素开口包括第一类型像素开口;所述第一类型像素开口在所述基板上的投影的各边均为曲线,且各边互不平行。
  14. 根据权利要求8所述的显示面板,其中,所述导电线在延伸方向上弯曲设置;所述第一电极周围设置有所述导电线,所述导电线绕所述第一电极的边缘弧形延伸。
  15. 根据权利要求4所述的显示面板,其中,所述显示面板为无源矩阵有机发光二极管显示面板,所述膜层还包括设置在像素限定层上的隔离柱,所述路径还包括第六路径,所述第六路径包括第二电极层、隔离柱、像素限定层、基板,所述隔离柱的材料为透明材料。
  16. 根据权利要求15所述的显示面板,其中,所述隔离层包括多个第一类型隔离柱;在所述第一类型隔离柱的延伸方向上,所述第一类型隔离柱的宽度连续变化或间断变化,所述延伸方向平行于所述基板;所述宽度为所述第一类型隔离柱在所述基板上形成的投影在垂直于所述延伸方向上的尺寸。
  17. 根据权利要求4所述的显示面板,其中,所述显示面板为无源矩阵有机发光二极管显示面板,所述第一电极或第二电极在延伸方向上的两条边均为波浪形,所述两条边的波峰相对设置,且波谷相对;相邻的第一电极或第二电极波峰和波谷错峰设置。
  18. 根据权利要求17所述的显示面板,其中,所述膜层还包括导电线,所述导电线为单层线路或多层线路,所述导电线包括扫描线、数据线、电源线、复位线中的至少一种,
    所述导电线为单层线路时,所述导电线与所述第一电极层同层设置,;
    所述导电线为多层线路时,所述导电线中的至少一层与所述第一电极层同层设置;所述导电线与所述第一电极层的材料相同或不同,
    所述导电线在所述基板上的投影,与所述第一电极层在所述基板上的投影部分重叠时,所述所述第一位置或第二位置经过的膜层还包括第七路径,所述第七路径包括封装层、第二电极层、发光结构层、第一电极层、导电线和基板。
  19. 一种显示屏,其中,具有至少一个显示区;所述至少一个显示区包括第一显示区,所述第一显示区下方可设置感光器件;
    其中,在所述第一显示区设置有如权利要求1~18中任意一项所述的显示面板,所述至少一个显示区中各显示区均用于显示动态或静态画面。
  20. 如权利要求19所述的显示屏,其中,所述至少一个显示区还包括第二显示区;在所述第一显示区设置的显示面板为无源矩阵有机发光二极管显示面板或有源矩阵有机发光二极管显示面板,在所述第二显示区设置的显示面板为有源矩阵有机发光二极管显示面板。
PCT/CN2019/073884 2018-09-14 2019-01-30 显示面板、显示屏和显示终端 WO2020052192A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19860678.2A EP3734662B1 (en) 2018-09-14 2019-01-30 Display panel and display screen
JP2020562823A JP6963124B2 (ja) 2018-09-14 2019-01-30 表示パネル、ディスプレイ及び表示端末
KR1020207021968A KR102437633B1 (ko) 2018-09-14 2019-01-30 디스플레이 패널, 디스플레이 스크린 및 디스플레이 단말기
US16/896,221 US11362146B2 (en) 2018-09-14 2020-06-09 Display panel, display screen, and display terminal with plurality of film layer and multiple optical lengths

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811077014.8A CN110911440B (zh) 2018-09-14 2018-09-14 显示面板、显示屏和显示终端
CN201811077014.8 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/896,221 Continuation US11362146B2 (en) 2018-09-14 2020-06-09 Display panel, display screen, and display terminal with plurality of film layer and multiple optical lengths

Publications (1)

Publication Number Publication Date
WO2020052192A1 true WO2020052192A1 (zh) 2020-03-19

Family

ID=68049137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073884 WO2020052192A1 (zh) 2018-09-14 2019-01-30 显示面板、显示屏和显示终端

Country Status (7)

Country Link
US (1) US11362146B2 (zh)
EP (1) EP3734662B1 (zh)
JP (1) JP6963124B2 (zh)
KR (1) KR102437633B1 (zh)
CN (1) CN110911440B (zh)
TW (1) TWI677090B (zh)
WO (1) WO2020052192A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736120A (zh) * 2020-12-30 2021-04-30 武汉华星光电半导体显示技术有限公司 背板结构及显示面板
KR20210078561A (ko) * 2019-03-29 2021-06-28 쿤산 고-비젼녹스 옵토-일렉트로닉스 씨오., 엘티디. 투명 디스플레이 패널, 디스플레이 스크린 및 마스크
CN113053253A (zh) * 2020-10-19 2021-06-29 上海鲲游科技有限公司 屏下光学系统、相位补偿元件及其方法和电子设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496260B (zh) 2015-10-26 2020-05-19 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
KR102563713B1 (ko) 2017-04-26 2023-08-07 오티아이 루미오닉스 인크. 표면의 코팅을 패턴화하는 방법 및 패턴화된 코팅을 포함하는 장치
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
WO2019215591A1 (en) 2018-05-07 2019-11-14 Oti Lumionics Inc. Method for providing an auxiliary electrode and device including an auxiliary electrode
CN113330359B (zh) * 2019-02-01 2023-01-24 Oppo广东移动通信有限公司 电子设备及显示装置
WO2020178804A1 (en) 2019-03-07 2020-09-10 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN109950285B (zh) * 2019-03-28 2021-05-25 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
KR20220046551A (ko) 2019-06-26 2022-04-14 오티아이 루미오닉스 인크. 광 회절 특성을 갖는 광 투과 영역을 포함하는 광전자 디바이스
CN110401746B (zh) * 2019-07-19 2021-08-31 Oppo广东移动通信有限公司 终端
US11239305B2 (en) * 2019-07-24 2022-02-01 Taiwan Semiconductor Manufacturing Company, Ltd. Display device and manufacturing method thereof
CN110473898B (zh) * 2019-07-30 2021-10-08 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制作方法
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
CN110867476B (zh) 2019-11-27 2022-10-04 武汉天马微电子有限公司 一种显示面板及显示装置
CN111009619B (zh) * 2019-12-24 2022-05-17 昆山国显光电有限公司 透光显示面板及其制作方法、显示面板
CN111599848B (zh) * 2020-05-29 2021-12-03 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN112687193B (zh) * 2020-12-28 2022-09-16 合肥维信诺科技有限公司 显示面板
CN115548231A (zh) * 2021-06-29 2022-12-30 京东方科技集团股份有限公司 一种显示面板及显示装置
CN117560949A (zh) * 2021-12-31 2024-02-13 湖北长江新型显示产业创新中心有限公司 一种显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367938A (zh) * 1999-06-02 2002-09-04 精工爱普生株式会社 多波长发光装置、电子设备以及干涉镜
US6639250B1 (en) * 1999-08-20 2003-10-28 Seiko Epson Corporation Multiple-wavelength light emitting device and electronic apparatus
CN104488106A (zh) * 2012-05-25 2015-04-01 株式会社Lg化学 有机发光器件及其制造方法
CN207380686U (zh) * 2017-09-28 2018-05-18 云谷(固安)科技有限公司 触控面板及应用其的显示装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163887B2 (ja) * 1993-04-23 2001-05-08 松下電器産業株式会社 投写型表示装置
US5576870A (en) 1993-04-23 1996-11-19 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel having a phase grating formed of liquid crystal molecules
US7344825B2 (en) * 2002-04-04 2008-03-18 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device, and developing apparatus using the method
EP2326143B1 (en) * 2003-01-24 2013-04-24 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US7129634B2 (en) * 2004-04-07 2006-10-31 Eastman Kodak Company Color OLED with added color gamut pixels
JP4742639B2 (ja) * 2005-03-25 2011-08-10 セイコーエプソン株式会社 発光装置
EP1811570B1 (en) * 2006-01-23 2020-11-25 Samsung Display Co., Ltd. Organic light emitting display and method of fabricating the same
JP4961152B2 (ja) * 2006-03-15 2012-06-27 株式会社リコー 光学素子と光偏向素子及び画像表示装置
JP2008111978A (ja) * 2006-10-30 2008-05-15 Nitto Denko Corp 積層光学フィルム、積層光学フィルムを用いた液晶パネル、液晶表示装置、および画像表示装置
WO2008097046A1 (en) * 2007-02-05 2008-08-14 Lg Chem, Ltd. Organic light-emitting device having improved light-emitting efficiency and method for fabricating the same
CN102656492B (zh) * 2010-01-21 2015-03-04 株式会社东芝 带干涉型滤光片层的基板及使用该基板的显示装置
CN104280807A (zh) * 2010-01-21 2015-01-14 株式会社东芝 带干涉型滤光片层的基板及使用该基板的显示装置
JP5497546B2 (ja) * 2010-06-14 2014-05-21 日東電工株式会社 液晶パネルおよび液晶表示装置
SG189485A1 (en) * 2010-11-30 2013-05-31 Sharp Kk Liquid crystal display element and liquid crystal module
KR101684488B1 (ko) 2010-11-30 2016-12-08 닛토덴코 가부시키가이샤 터치 입력 기능을 가지는 표시 패널 장치
JP6172980B2 (ja) * 2012-03-14 2017-08-02 日東電工株式会社 液晶表示パネルの製造方法
CN202693831U (zh) * 2012-07-16 2013-01-23 京东方科技集团股份有限公司 一种狭缝光栅及显示装置
US8883531B2 (en) * 2012-08-28 2014-11-11 Lg Display Co., Ltd. Organic light emitting diode display device and method of manufacturing the same
TWI499831B (zh) 2012-09-05 2015-09-11 Innocom Tech Shenzhen Co Ltd 液晶顯示面板
TWI599082B (zh) * 2012-10-09 2017-09-11 財團法人工業技術研究院 增亮型自發光型顯示器
CN106158911B (zh) * 2016-05-23 2019-06-14 信利(惠州)智能显示有限公司 一种智能窗的制备方法
TWI625242B (zh) * 2016-07-12 2018-06-01 Nitto Denko Corp Long optical film laminate, long optical film laminate roll and IPS liquid crystal display device
CN106324897B (zh) * 2016-10-28 2019-06-14 京东方科技集团股份有限公司 显示面板和显示装置
CN107092402A (zh) * 2017-04-19 2017-08-25 维沃移动通信有限公司 一种显示屏及电子设备
CN107505767A (zh) 2017-10-16 2017-12-22 京东方科技集团股份有限公司 光转换结构、背光模组、彩膜基板以及显示装置
WO2020052232A1 (zh) * 2018-09-14 2020-03-19 昆山国显光电有限公司 显示面板、显示屏和显示终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367938A (zh) * 1999-06-02 2002-09-04 精工爱普生株式会社 多波长发光装置、电子设备以及干涉镜
US6639250B1 (en) * 1999-08-20 2003-10-28 Seiko Epson Corporation Multiple-wavelength light emitting device and electronic apparatus
CN104488106A (zh) * 2012-05-25 2015-04-01 株式会社Lg化学 有机发光器件及其制造方法
CN207380686U (zh) * 2017-09-28 2018-05-18 云谷(固安)科技有限公司 触控面板及应用其的显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734662A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210078561A (ko) * 2019-03-29 2021-06-28 쿤산 고-비젼녹스 옵토-일렉트로닉스 씨오., 엘티디. 투명 디스플레이 패널, 디스플레이 스크린 및 마스크
JP2022512355A (ja) * 2019-03-29 2022-02-03 クンシャン ゴー-ビシオノクス オプト-エレクトロニクス カンパニー リミテッド 透明な表示パネル、ディスプレイ及びマスク板
JP7297067B2 (ja) 2019-03-29 2023-06-23 クンシャン ゴー-ビシオノクス オプト-エレクトロニクス カンパニー リミテッド 透明な表示パネル、ディスプレイ及びマスク板
KR102549362B1 (ko) * 2019-03-29 2023-06-29 쿤산 고-비젼녹스 옵토-일렉트로닉스 씨오., 엘티디. 투명 디스플레이 패널, 디스플레이 스크린 및 마스크
US11895859B2 (en) 2019-03-29 2024-02-06 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Transparent display panels, display screens, and mask plates
CN113053253A (zh) * 2020-10-19 2021-06-29 上海鲲游科技有限公司 屏下光学系统、相位补偿元件及其方法和电子设备
CN112736120A (zh) * 2020-12-30 2021-04-30 武汉华星光电半导体显示技术有限公司 背板结构及显示面板
CN112736120B (zh) * 2020-12-30 2023-04-18 武汉华星光电半导体显示技术有限公司 背板结构及显示面板

Also Published As

Publication number Publication date
KR102437633B1 (ko) 2022-08-29
JP6963124B2 (ja) 2021-11-05
EP3734662A4 (en) 2021-03-03
JP2021511649A (ja) 2021-05-06
CN110911440B (zh) 2020-10-16
CN110911440A (zh) 2020-03-24
EP3734662A1 (en) 2020-11-04
KR20200100182A (ko) 2020-08-25
TWI677090B (zh) 2019-11-11
US20200303472A1 (en) 2020-09-24
TW201929219A (zh) 2019-07-16
US11362146B2 (en) 2022-06-14
EP3734662B1 (en) 2023-02-01

Similar Documents

Publication Publication Date Title
WO2020052192A1 (zh) 显示面板、显示屏和显示终端
WO2020052232A1 (zh) 显示面板、显示屏和显示终端
US11895859B2 (en) Transparent display panels, display screens, and mask plates
WO2020238343A1 (zh) 显示基板、显示面板及显示装置
US11968873B2 (en) Display substrate and display device
WO2020192054A1 (zh) 透明阵列基板、透明显示面板、显示面板及显示终端
WO2020087799A1 (zh) 显示屏及显示终端
CN109859649B (zh) 一种透明显示面板及其制备方法和显示装置
CN107221547B (zh) 显示设备
CN110911439B (zh) 显示面板、显示屏和显示终端
WO2021196076A1 (zh) 触控结构、触控显示面板及电子装置
CN110911438B (zh) 显示面板、显示屏和显示终端
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
WO2021243812A1 (zh) Oled显示面板及其制作方法
WO2023230811A1 (zh) 显示基板以及显示装置
WO2023246378A1 (zh) 触控显示结构及显示装置
CN218831219U (zh) 显示装置
US20230171994A1 (en) Light emitting display device
WO2023230805A1 (zh) 显示基板以及显示装置
WO2023245557A1 (zh) 显示基板及其制备方法、显示装置
WO2023137663A1 (zh) 显示基板和显示装置
KR20230108741A (ko) 표시 장치 및 표시 장치의 제조 방법
KR20140124616A (ko) 디스플레이 장치와 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19860678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20207021968

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020562823

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019860678

Country of ref document: EP

Effective date: 20200727

NENP Non-entry into the national phase

Ref country code: DE