WO2020049683A1 - エレベータのガイドレール加工装置及びガイドレール加工方法 - Google Patents

エレベータのガイドレール加工装置及びガイドレール加工方法 Download PDF

Info

Publication number
WO2020049683A1
WO2020049683A1 PCT/JP2018/033021 JP2018033021W WO2020049683A1 WO 2020049683 A1 WO2020049683 A1 WO 2020049683A1 JP 2018033021 W JP2018033021 W JP 2018033021W WO 2020049683 A1 WO2020049683 A1 WO 2020049683A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide rail
processing
main body
car
processing apparatus
Prior art date
Application number
PCT/JP2018/033021
Other languages
English (en)
French (fr)
Inventor
憲治 平重
長谷川 正彦
克倫 大木
貴史 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/033021 priority Critical patent/WO2020049683A1/ja
Priority to CN201880096978.9A priority patent/CN112638810A/zh
Priority to JP2020540943A priority patent/JP7008833B2/ja
Publication of WO2020049683A1 publication Critical patent/WO2020049683A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators

Definitions

  • the present invention relates to an elevator guide rail machining apparatus and a guide rail machining method for shaving at least a part of a guide rail with a machining tool.
  • the grinding belt is held by the processing head. Further, the processing head is moved so that the load current value of the motor driving the grinding belt becomes a set value (for example, see Patent Document 1).
  • existing cars may be replaced with new ones.
  • the existing safety device mounted on the existing car is also replaced with a new safety device.
  • the guide surface of the existing guide rail may be worn due to long-term contact with the guide device mounted on the existing car, and the coefficient of friction with the emergency stop device may be reduced. For this reason, when replacing the existing car with the new car, the existing guide rail is also replaced with the new guide rail.
  • the conventional guide rail processing apparatus as described above is an apparatus aiming to keep the grinding amount constant in a finishing process at the time of manufacturing the guide rail. For this reason, it is difficult for the conventional processing apparatus to perform processing according to the actual state of the guide rail.
  • the present invention has been made in order to solve the above-described problems, and provides an elevator guide rail processing apparatus and a guide rail processing method that can more easily perform processing according to the state of an actual guide rail.
  • the purpose is to gain.
  • An elevator guide rail processing apparatus has a processing tool for scraping at least a part of a guide rail, and a processing apparatus body moved along the guide rail, and a processing apparatus body along the guide rail. It is provided with a measuring device that is moved and measures at least one of the thickness and the surface roughness of the guide rail. Also, the elevator guide rail machining method according to the present invention suspends a machining apparatus main body having a machining tool for scraping at least a part of the guide rail and a measuring device in a hoistway, and attaches the guide rail to the guide rail. A hanging step of setting the processing apparatus body and the measuring apparatus along a guide rail, and a moving step of processing the guide rail with a processing tool; and a measuring apparatus. Measuring at least one of the thickness and surface roughness of the guide rail.
  • machining according to the actual state of the guide rail can be performed more easily.
  • FIG. 1 is a configuration diagram showing an elevator according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the car guide rail along the line II-II in FIG. 1.
  • FIG. 2 is a perspective view illustrating a detailed configuration of a processing apparatus main body of FIG. 1.
  • FIG. 4 is a perspective view of the processing apparatus main body of FIG. 3 viewed from an angle different from that of FIG. 3.
  • FIG. 5 is a perspective view of the processing apparatus main body of FIG. 3 as viewed from an angle different from FIGS. 3 and 4.
  • FIG. 6 is a perspective view of the processing apparatus main body of FIG. 3 as viewed from a different angle from FIGS.
  • FIG. 4 is a perspective view showing a state where the processing apparatus main body of FIG.
  • FIG. 3 is set on a car guide rail.
  • FIG. 5 is a perspective view showing a state where the processing apparatus main body of FIG. 4 is set on a car guide rail.
  • FIG. 6 is a perspective view showing a state where the processing apparatus main body of FIG. 5 is set on a car guide rail.
  • FIG. 8 is a sectional view showing a contact state between the processing tool of FIG. 7 and a car guide tray. It is sectional drawing which shows the contact state of the 1st guide roller of FIG. 7, the 2nd guide roller, the 1st pressing roller, and the 2nd pressing roller, and a car guide rail.
  • FIG. 2 is a block diagram showing the measuring device of FIG.
  • FIG. 13 is a perspective view schematically illustrating an example of a configuration of a detection unit in FIG. 12.
  • FIG. 14 is a perspective view showing a state where the detection unit of FIG. 13 is mounted on a car guide rail.
  • 4 is a flowchart illustrating a guide rail machining method according to the first embodiment. It is a block diagram which shows the state of step S5 of FIG. 15 typically. It is a block diagram which shows the state of step S6 of FIG. 15 typically. It is a block diagram which shows the state of step S8 of FIG. 15 typically. 9 is a flowchart illustrating a guide rail machining method according to the second embodiment.
  • FIG. 13 is a block diagram illustrating a first modification of the measurement device of FIG. 12.
  • FIG. 13 is a block diagram illustrating a second modification of the measurement device in FIG. 12.
  • FIG. 17 is a configuration diagram illustrating a modified example in which the numbers of guide rollers and pressing rollers in FIG. 16 are reduced.
  • FIG. 27 is a configuration diagram illustrating a modification in which a guide portion is sandwiched between the processing tool and the pressing roller in FIG. 26.
  • FIG. 17 is a configuration diagram illustrating a modification in which the pressing roller in FIG. 16 is omitted.
  • FIG. 1 is a configuration diagram showing an elevator according to Embodiment 1 of the present invention, showing a state during renewal work.
  • a pair of car guide rails 2 are installed in a hoistway 1.
  • Each car guide rail 2 is configured by joining a plurality of rail members in a vertical direction.
  • Each car guide rail 2 is fixed to a hoistway wall via a plurality of rail brackets 9.
  • the elevator car 3 is disposed between the pair of car guide rails 2. The car 3 moves up and down the hoistway 1 along the car guide rail 2.
  • the first end of the suspension 4 is connected to the upper part of the car 3.
  • a plurality of ropes or a plurality of belts are used as the suspension 4.
  • a counterweight (not shown) is connected to the second end of the suspension 4. The car 3 and the counterweight are suspended in the hoistway 1 by the suspension body 4.
  • the intermediate portion of the suspension 4 is wound around a drive sheave of a hoist (not shown).
  • the car 3 and the counterweight move up and down in the hoistway 1 by rotating the drive sheave.
  • a pair of counterweight guide rails are provided in the hoistway 1. The counterweight moves up and down in the hoistway 1 along the counterweight guide rail.
  • An emergency stop device 5 is mounted below the car 3.
  • the emergency stop device 5 performs an emergency stop of the car 3 by gripping the pair of car guide rails 2.
  • ⁇ ⁇ ⁇ Guide devices 6 that are in contact with the car guide rails 2 are attached to both ends in the width direction of the upper part of the car 3 and both ends in the width direction of the lower part of the car 3.
  • a sliding guide shoe or a roller guide device is used as each guide device 6, a sliding guide shoe or a roller guide device is used.
  • a processing apparatus main body 7 for processing the car guide rail 2 is provided below the car 3, a processing apparatus main body 7 for processing the car guide rail 2 is provided.
  • the processing apparatus main body 7 is simply shown by a box, but a detailed configuration will be described later.
  • the processing apparatus main body 7 is suspended from the lower part of the car 3 into the hoistway 1 via the suspension member 8.
  • a flexible string-shaped member for example, a rope, a wire, or a belt is used.
  • the car 3 is located above the processing apparatus main body 7 and moves the processing apparatus main body 7 along the car guide rail 2.
  • a measuring device 52 is connected to a lower portion of the processing device main body 7 via a connecting member 51.
  • the measuring device 52 is connected to the processing device main body 7 so as to be movable along the car guide rail 2 together with the processing device main body 7. That is, the measuring device 52 is moved along the car guide rail 2 by moving the processing device main body 7 along the car guide rail 2.
  • the measuring device 52 measures the thickness of the car guide rail 2.
  • the guide rail processing device 100 includes a processing device main body 7, a hanging member 8, a connecting member 51, and a measuring device 52. Further, the guide rail processing apparatus 100 is used when processing the car guide rails 2 installed in the hoistway 1 and is removed during normal operation of the elevator.
  • FIG. 2 is a sectional view of the car guide rail 2 taken along the line II-II in FIG.
  • the car guide rail 2 has a bracket fixing part 2a and a guide part 2b.
  • the bracket fixing portion 2a is a portion fixed to the rail bracket 9.
  • the guide portion 2b projects perpendicularly from the center of the bracket fixing portion 2a in the width direction to the car 3 side, and guides the elevation of the car 3.
  • the guide 2b is gripped by the emergency stop device 5 when the car 3 is stopped in an emergency.
  • the guide portion 2b has a pair of braking surfaces 2c facing each other and a tip surface 2d.
  • the tip surface 2d is the end surface of the guide portion 2b opposite to the bracket fixing portion 2a, that is, the end surface on the car 3 side.
  • the pair of braking surfaces 2c and the tip surface 2d function as guide surfaces that the guide device 6 contacts when the car 3 moves up and down.
  • the pair of braking surfaces 2c are surfaces that the emergency stop device 5 contacts when the car 3 is stopped in an emergency.
  • the measuring device 52 of FIG. 1 measures the thickness of the guide portion 2 b as the thickness of the car guide rail 2.
  • FIG. 3 is a perspective view showing a detailed configuration of the processing apparatus main body 7 of FIG.
  • FIG. 4 is a perspective view of the processing apparatus main body 7 of FIG. 3 viewed from an angle different from that of FIG.
  • FIG. 5 is a perspective view of the processing apparatus main body 7 of FIG. 3 as viewed from an angle different from FIGS. 3 and 4.
  • FIG. 6 is a perspective view of the processing apparatus main body 7 of FIG. 3 viewed from an angle different from that of FIGS.
  • the processing apparatus main body 7 includes a frame 11, a connection tool 12, a processing tool 13, a processing tool driving device 14, a first guide roller 15, a second guide roller 16, a first pressing roller 17, and a second pressing roller 18. , A first front end roller 19 and a second front end roller 20.
  • the frame 11 has a frame body 21 and a frame divided body 22.
  • the connection tool 12, the processing tool 13, the processing tool driving device 14, the first guide roller 15, the second guide roller 16, the first tip roller 19, and the second tip roller 20 are attached to the frame body 21. Is provided.
  • the first pressing roller 17 and the second pressing roller 18 are provided on the frame divided body 22.
  • connection tool 12 is provided at the upper end of the frame main body 21.
  • the suspension member 8 is connected to the connection tool 12.
  • the processing tool driving device 14 is arranged on the frame body 21 on the side opposite to the processing tool 13.
  • the processing tool driving device 14 rotates the processing tool 13.
  • an electric motor is used as the processing tool driving device 14.
  • the processing tool 13 processes the braking surface 2c.
  • a grindstone is used as the processing tool 13.
  • As the grindstone a cylindrical flat grindstone having a large number of abrasive grains on its outer peripheral surface is used. Further, a cutting tool or the like may be used as the processing tool 13.
  • a cover (not shown) is provided on the frame body 21. When processing the braking surface 2c with the processing tool 13, processing chips are generated. The cover prevents the processing waste from scattering around the processing apparatus body 7.
  • the first guide roller 15 and the second guide roller 16 are provided on the frame main body 21 alongside the processing tool 13. With the frame 11 suspended by the suspension member 8, the first guide roller 15 is disposed above the processing tool 13, and the second guide roller 16 is disposed below the processing tool 13. The processing tool 13 is arranged between the first guide roller 15 and the second guide roller 16.
  • the first guide roller 15 and the second guide roller 16 contact the braking surface 2c together with the processing tool 13, thereby bringing the outer peripheral surface of the processing tool 13 into parallel contact with the braking surface 2c. That is, the outer peripheral surface of the processing tool 13 is brought into uniform contact with the braking surface 2c over the entire width direction of the processing tool 13.
  • the two line segments that are the contact portions of the guide rollers 15 and 16 with the braking surface 2c and the one line segment that is the contact portion of the processing tool 13 with the braking surface 2c can exist in one plane. It is set as follows.
  • the first pressing roller 17 sandwiches the guide portion 2b between the first pressing roller 17 and the first guide roller 15.
  • the second pressing roller 18 sandwiches the guide 2 b between the second pressing roller 18 and the second guide roller 16. That is, when the processing tool 13, the first guide roller 15, and the second guide roller 16 come into contact with the braking surface 2c on the side to be processed, the first pressing roller 17 and the second pressing roller 18 Contacts the opposite braking surface 2c.
  • the rotation axes of the processing tool 13 and the rollers 15, 16, 17, 18 are parallel or substantially parallel to each other, and are horizontal or substantially horizontal when the car guide rail 2 is processed.
  • the first tip roller 19 is provided at the upper end of the frame main body 21.
  • the second front end surface roller 20 is provided at a lower end of the frame main body 21. That is, the first and second front end surface rollers 19 and 20 are arranged at an interval in the vertical direction.
  • the frame divided body 22 is linearly movable with respect to the frame body 21 between the sandwiching position and the release position.
  • the sandwiching position is a position where the guide portion 2b is sandwiched between the guide rollers 15, 16 and the pressing rollers 17, 18.
  • the release position is a position where the pressing rollers 17 and 18 are farther from the guide rollers 15 and 16 than the sandwiching position.
  • the frame main body 21 is provided with a pair of rod-shaped frame guides 23.
  • the frame guide 23 guides the movement of the frame divided body 22 with respect to the frame main body 21. Further, the frame guide 23 passes through the frame divided body 22.
  • a pair of rod fixing portions 24 are provided at the upper and lower ends of the frame body 21.
  • the frame split body 22 is provided with a pair of opposing portions 25 opposing the rod fixing portion 24.
  • a frame spring rod 26 is fixed to each rod fixing part 24. Each frame spring rod 26 passes through the facing portion 25.
  • a frame spring support 27 is attached to the frame spring rod 26.
  • a frame spring 28 is provided between the frame spring support 27 and the facing portion 25. Each frame spring 28 generates a force to move the frame divided body 22 to the sandwiching position.
  • the pressing force of the pressing rollers 17 and 18 by the frame spring 28 overcomes the force of the processing device body 7 tilting due to the eccentricity of the position of the center of gravity of the processing device body 7, and the outer peripheral surfaces of the guide rollers 15 and 16 and the braking surface 2c.
  • the size is set so as to maintain the parallelism.
  • the pressing force of the pressing rollers 17 and 18 by the frame spring 28 is not limited to the outer peripheral surface of the guide rollers 15 and 16 even when the processing apparatus main body 7 is moved along the car guide rail 2 while rotating the processing tool 13.
  • the braking surface 2c are set to have such a size that the parallelism can be maintained.
  • a release position holding mechanism (not shown) is provided between the frame main body 21 and the frame divided body 22.
  • the release position holding mechanism holds the frame segment 22 in the release position against the spring force of the frame spring 28.
  • the processing tool 13 and the processing tool driving device 14 can be moved linearly with respect to the frame body 21 between the processing position and the separation position.
  • the processing position is a position where the processing tool 13 contacts the braking surface 2c in a state where the guide rollers 15, 16 contact the braking surface 2c.
  • the separation position is a position where the processing tool 13 is separated from the braking surface 2c in a state where the guide rollers 15, 16 are in contact with the braking surface 2c.
  • the pressing rollers 17, 18 are movable in a direction perpendicular to the braking surface 2c. Further, the processing tool 13 and the processing tool driving device 14 are also movable in a direction perpendicular to the braking surface 2c.
  • the processing tool driving device 14 is attached to a flat movable support member 29.
  • a pair of rod-shaped drive guides 30 are fixed to the frame body 21.
  • the movable support member 29 is slidable along the drive device guide 30. Thereby, the processing tool 13 and the processing tool driving device 14 can be moved linearly with respect to the frame main body 21.
  • a processing tool spring 31 is provided between the movable support member 29 and the frame main body 21.
  • the processing tool spring 31 generates a force to move the processing tool 13 and the processing tool driving device 14 to the processing position.
  • the pressing force of the processing tool 13 by the processing tool spring 31 is set to a size that does not cause a problem such as chatter.
  • a separation position holding mechanism (not shown) is provided between the frame main body 21 and the movable support member 29.
  • the separation position holding mechanism holds the processing tool 13 and the processing tool driving device 14 at the separation position against the spring force of the processing tool spring 31.
  • FIG. 7 is a perspective view showing a state in which the processing apparatus main body 7 of FIG. 3 is set on the car guide rail 2.
  • FIG. 8 is a perspective view showing a state where the processing apparatus main body 7 of FIG. 4 is set on the car guide rail 2.
  • FIG. 9 is a perspective view showing a state where the processing apparatus main body 7 of FIG. 5 is set on the car guide rail 2.
  • FIG. 10 is a cross-sectional view showing a contact state between the processing tool 13 and the car guide rail 2 in FIG.
  • the width dimension of the outer peripheral surface of the processing tool 13 is larger than the width dimension of the braking surface 2c.
  • the processing tool 13 is in contact with the entire braking surface 2c in the width direction.
  • FIG. 11 is a cross-sectional view showing a contact state between the first guide roller 15, the second guide roller 16, the first pressing roller 17, the second pressing roller 18, and the car guide rail 2 in FIG. is there.
  • the outer peripheral surfaces of the first and second guide rollers 15 and 16 are cylindrical. That is, the outer peripheral surfaces of the first and second guide rollers 15, 16 in a cross section along the rotation center C1 of the first and second guide rollers 15, 16 are straight lines.
  • the outer peripheral surfaces of the first and second pressing rollers 17, 18 are substantially spherical. That is, the outer peripheral surfaces of the first and second pressing rollers 17, 18 in a cross section along the rotation center C2 of the first and second pressing rollers 17, 18 are arc-shaped.
  • FIG. 12 is a block diagram showing the measuring device 52 of FIG.
  • the measurement device 52 includes a detection unit 53, a measurement unit 54, a storage unit 55, and a notification unit 56.
  • the detecting section 53 faces the braking surface 2c when measuring the thickness of the guide section 2b.
  • the detection unit 53 outputs a detection signal for measuring the thickness of the guide unit 2b to the measurement unit 54.
  • the measuring section 54 measures the thickness of the guide section 2b based on the detection signal from the detecting section 53. In addition, the measurement unit 54 compares the measured value obtained by the measurement with a preset target value to determine whether the degree of processing by the processing apparatus body 7 has reached the target degree. The measurement unit 54 outputs the measurement value and the determination result to the notification unit 56 as the measurement result.
  • the storage unit 55 stores a target value related to the thickness of the guide unit 2b.
  • the notification unit 56 notifies the measured value measured by the measurement unit 54 and the determination result by the measurement unit 54 to the outside.
  • a rail thickness gauge can be used as the detection unit 53.
  • As the measuring unit 54 a commercially available discriminator or relay meter can be used.
  • a computer can be used as a configuration in which the measurement unit 54 and the storage unit 55 are combined.
  • the computer a general personal computer can be used.
  • the computer has a CPU (central processing unit), which is an arithmetic unit, and a hard disk drive that stores a determination program and target values.
  • the measuring section 54 is connected to the detecting section 53 via a cable or the like.
  • the notification unit 56 for example, a relay, a digital input / output (DIO) device, a rotating light, an alarm, a liquid crystal display, or a combination thereof can be used.
  • DIO digital input / output
  • FIG. 13 is a perspective view schematically showing an example of the configuration of the detection section 53 of FIG.
  • FIG. 14 is a perspective view showing a state where the detection unit 53 of FIG. 13 is mounted on the car guide rail 2.
  • the detection unit 53 includes a thickness gauge frame 57 having a U-shaped cross section, a pair of first displacement sensors 58a and 58b, a pair of second displacement sensors 59a and 59b, and a pair of third displacement sensors 60a and 60b. And
  • the thickness gauge frame 57 has a first facing portion 57a, a second facing portion 57b, and a third facing portion 57c.
  • the first facing portion 57a faces one of the braking surfaces 2c when measuring the thickness of the guide portion 2b.
  • the second facing portion 57b faces the other braking surface 2c when measuring the thickness of the guide portion 2b.
  • the third facing portion 57c faces the distal end surface 2d when measuring the thickness of the guide portion 2b.
  • the first displacement sensor 58a, the second displacement sensor 59a, and the third displacement sensor 60a are provided on the first facing portion 57a.
  • the first displacement sensor 58b, the second displacement sensor 59b, and the third displacement sensor 60b are provided on the second facing portion 57b.
  • the first displacement sensors 58a and 58b face each other.
  • the second displacement sensors 59a and 59b face each other.
  • the third displacement sensors 60a and 60b face each other.
  • the first displacement sensor 58a, the second displacement sensor 59a, and the third displacement sensor 60a are spaced apart from each other on a straight line parallel to the longitudinal direction of the car guide rail 2 when measuring the thickness of the guide portion 2b. Are located.
  • the first displacement sensor 58b, the second displacement sensor 59b, and the third displacement sensor 60b are spaced apart from each other on a straight line parallel to the longitudinal direction of the car guide rail 2 when measuring the thickness of the guide portion 2b. Are located.
  • the displacement sensors 58a, 58b, 59a, 59b, 60a, 60b generate a signal according to the distance to the opposing braking surface 2c when measuring the thickness of the guide 2b. Further, as each of the displacement sensors 58a, 58b, 59a, 59b, 60a, 60b, a non-contact type sensor, for example, an eddy current type displacement sensor can be used.
  • FIG. 15 is a flowchart illustrating the guide rail machining method according to the first embodiment.
  • a control device and a power supply (not shown) are carried into the car 3.
  • the control device is a device that controls the processing device main body 7 and the measuring device 52.
  • the guide rail processing device 100 is carried into the pit of the hoistway 1.
  • step S4 the guide rail machining device 100 is connected to a control device and a power supply. Then, in steps S5 and S6, the guide rail processing device 100 is set on the car guide rail 2.
  • step S5 in a state where the processing tool 13 is held at the separated position and the frame divided body 22 is held at the release position, the guide rollers 15, 16 are moved to one of the braking surfaces. 2c. Further, the front end rollers 19 and 20 are brought into contact with the front end face 2d.
  • step S6 the frame division body 22 is moved to the sandwiching position, and the guide portion 2b is sandwiched between the guide rollers 15, 16 and the pressing rollers 17, 18 as shown in FIG.
  • step S7 After setting the processing apparatus main body 7 on the car guide rail 2 in this way, in step S7, the processing tool 13 is rotated. Then, in step S8, as shown in FIG. 18, the processing tool 13 and the processing tool driving device 14 are moved to the processing position, and the car 3 is moved to the top floor at a constant speed lower than the rated speed. That is, the processing apparatus body 7 is moved along the car guide rail 2 while processing the braking surface 2c by the processing tool 13.
  • step S9 the processing tool 13 and the processing tool driving device 14 are moved to the separated position.
  • step S10 the rotation of the processing tool 13 is stopped, and the car 3 is stopped.
  • step S11 the thickness of the guide portion 2b is measured by the measuring device 52 while moving the car 3 to the lowest floor.
  • the processing since the processing is performed on the braking surface 2c only when the car 3 is raised, it is preferable that the processing tool 13 is separated from the braking surface 2c when the car 3 is lowered.
  • step S12 When the car 3 arrives at the lowest floor, it is checked in step S12 whether the thickness of the guide 2b has reached the target value. If the thickness of the guide portion 2b has not reached the target value, the guide portion 2b is sandwiched between the guide rollers 15, 16 and the pressing rollers 17, 18, and steps S7 to S12 are performed again. If the thickness of the guide portion 2b has reached the target value, the processing is completed.
  • a processing device body 7 that is symmetrical to that in FIG. 3 may be used, or the processing device body 7 in FIG. 3 may be suspended upside down. In the latter case, the connection tool 12 may be added to the lower end of the frame body 21.
  • the guide rail machining method includes a hanging step and a moving step.
  • the processing apparatus main body 7 and the measurement apparatus 52 are suspended in the hoistway 1 and set on the car guide rail 2.
  • the processing apparatus main body 7 and the measurement apparatus 52 are suspended from the car 3 that moves up and down along the car guide rail 2.
  • the processing device main body 7 and the measuring device 52 are moved along the car guide rail 2.
  • the moving step includes a processing step, a measuring step, a determining step, and a notifying step.
  • the processing step the car guide rail 2 is processed by the processing tool 13.
  • the measuring step the thickness of the guide portion 2b is measured by the measuring device 52.
  • the measured value measured in the measurement step is compared with a target value to determine whether the degree of processing by the processing apparatus body 7 has reached the target degree.
  • the notification step the result of the determination in the determination step is reported to the outside.
  • the processing device main body 7 is controlled based on the measured values measured in the measurement step.
  • a method of controlling the processing device main body 7 a method of controlling at least one of the number of rotations of the processing tool 13, the pressing force of the processing tool 13 against the braking surface 2c, and the moving speed of the processing device main body 7 can be mentioned.
  • the processing amount can be increased.
  • the amount of processing can be increased by increasing the pressing force of the processing tool 13 against the braking surface 2c. Further, by reducing the moving speed of the processing apparatus main body 7, the processing amount can be increased.
  • the existing car 3 and the existing safety device 5 are replaced with the new car and the new safety device while the existing car guide rail 2 is left. Further, the renewal method of the first embodiment includes a rail processing step and a replacement step.
  • the processing apparatus main body 7 is connected to the existing car 3 via the suspension member 8, and the processing apparatus main body 7 is moved along the existing car guide rail 2 by moving the existing car 3.
  • the replacement process is performed.
  • the existing car 3 and the existing safety device 5 are replaced with the new car and the new safety device while leaving the existing car guide rails 2.
  • the measuring device 52 is connected to the processing device body 7 so as to be movable along the car guide rail 2 together with the processing device body 7. Therefore, the machining operation and the measurement operation for the car guide rail 2 can be efficiently performed.
  • the measuring unit 54 compares the measured value with the target value to determine whether the degree of processing by the processing device main body 7 has reached the target degree. Therefore, it can be smoothly determined whether or not additional processing is required.
  • the measuring device 52 is provided with a notifying unit 56 for notifying the determination result of the measuring unit 54 to the outside. For this reason, it can be easily confirmed outside the guide rail machining apparatus 100 whether or not additional machining is necessary.
  • the machining device body 7 and the measuring device 52 are suspended in the hoistway 1 and set on the car guide rail 2.
  • the processing device main body 7 and the measuring device 52 are moved along the car guide rail 2. Therefore, processing according to the actual state of the car guide rails 2 can be performed more easily.
  • the processing device main body 7 is controlled based on the measured values measured in the measurement step. For this reason, the degree of processing by the processing apparatus main body 7 can be more appropriately adjusted.
  • the processing step at least one of the number of rotations of the processing tool 13, the pressing force of the processing tool 13 on the car guide rail 2, and the moving speed of the processing apparatus body 7 is controlled. For this reason, the degree of processing by the processing apparatus main body 7 can be more appropriately adjusted.
  • the measured value measured in the measuring step is compared with the target value to determine whether the degree of processing by the processing apparatus body 7 has reached the target degree. Therefore, it can be smoothly determined whether or not additional processing is required.
  • the notification step the result of the determination in the determination step is reported to the outside. For this reason, it can be easily confirmed outside the guide rail machining apparatus 100 whether or not additional machining is necessary.
  • the processing apparatus main body 7 and the measurement apparatus 52 are suspended from the car 3. Therefore, the machining operation and the measurement operation for the car guide rail 2 can be efficiently performed.
  • the processing device main body 7 is suspended in the hoistway 1 via the suspension member 8. Then, the processing apparatus main body 7 is moved along the car guide rail 2 while processing the braking surface 2 c by the processing tool 13. Therefore, the coefficient of friction of the car guide rail 2 with respect to the safety device 5 can be further optimized while the car guide rail 2 is installed in the hoistway 1.
  • the processing apparatus body 7 is suspended by the suspension member 8. Therefore, it is possible to prevent the vibration of the car 3 from being transmitted to the processing device body 7 during the processing of the braking surface 2c. Thereby, it is possible to prevent the occurrence of a processing defect and to stably process the braking surface 2c.
  • the processing device body 7 and the measuring device 52 are suspended from the car 3. Therefore, it is not necessary to separately prepare a device for lifting the processing device main body 7. Moreover, the area
  • the processing apparatus body 7 is provided with guide rollers 15 and 16. For this reason, the outer peripheral surface of the processing tool 13 can be more reliably brought into parallel contact with the braking surface 2c, and the braking surface 2c can be uniformly processed without leaving uncut portions.
  • the guide 2b is sandwiched between the guide rollers 15, 16 and the pressing rollers 17, 18. For this reason, the outer peripheral surface of the processing tool 13 can be more stably contacted in parallel with the braking surface 2c. Further, even when the braking surface 2c is vertically inclined, the outer peripheral surface of the processing tool 13 and the braking surface 2c can be kept parallel.
  • the frame body 21 is provided with the connection tool 12. Therefore, the processing apparatus main body 7 can be moved along the car guide rail 2 in a state where the hanging member 8 is connected to the connecting tool 12 and is suspended in the hoistway 1. Thereby, the state of the car guide rail 2 with respect to the safety device 5 can be made more appropriate while the car guide rail 2 is installed in the hoistway 1.
  • the first guide roller 15 is disposed above the processing tool 13, and the second guide roller 16 is disposed below the processing tool 13. Therefore, the parallelism between the outer peripheral surface of the processing tool 13 and the braking surface 2c can be more stably maintained. Thus, even when the car guide rail 2 is vertically inclined, bent, or undulated, the outer peripheral surface of the processing tool 13 and the braking surface 2c can be kept parallel.
  • the processing tool 13 is disposed at an intermediate position between the first and second guide rollers 15 and 16. For this reason, the moving direction of the processing tool 13 with respect to the frame main body 21 can be a direction perpendicular to the braking surface 2c. Thereby, the force for pressing the processing tool 13 against the braking surface 2c can be stabilized. In addition, it is possible to perform stable processing without generating unevenness of processing, that is, non-uniformity of the shaving amount.
  • the frame 11 is divided into a frame main body 21 and a frame divided body 22.
  • the frame spring 28 generates a force to move the frame divided body 22 to the sandwiching position side. Therefore, with a simple configuration, the guide portion 2b can be stably sandwiched between the guide rollers 15, 16 and the pressing rollers 17, 18.
  • the processing tool 13 and the processing tool driving device 14 are movable between a processing position and a separation position.
  • the processing tool spring 31 generates a force for moving the processing tool 13 and the processing tool driving device 14 to the processing position. Therefore, with a simple configuration, the processing tool 13 can be stably pressed against the braking surface 2c to perform stable processing. Further, by moving the processing tool 13 to the separated position, the processing apparatus main body 7 can be moved along the car guide rail 2 without processing the braking surface 2c.
  • the frame body 21 is provided with front end surface rollers 19 and 20. Therefore, the processing apparatus main body 7 can be smoothly moved in a stable posture along the car guide rail 2.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the measuring device 52 according to the second embodiment measures the surface roughness of the braking surface 2c.
  • the configuration of the measuring device 52 of the second embodiment is the same as that of FIG.
  • the detection unit 53 faces the braking surface 2c when measuring the surface roughness of the braking surface 2c. Further, the detecting section 53 outputs a detection signal for measuring the surface roughness of the guide section 2b to the measuring section 54.
  • the measuring unit 54 measures the surface roughness of the braking surface 2c based on the detection signal from the detecting unit 53.
  • the storage unit 55 stores a target value relating to the surface roughness of the braking surface 2c.
  • a surface roughness meter can be used as the detection unit 53.
  • the surface roughness meter for example, an optical surface roughness detector can be used.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 19 is a flowchart showing a guide rail machining method according to the second embodiment.
  • the surface roughness of the braking surface 2c is measured by the measuring device 52 while moving the car 3 to the lowest floor.
  • the car 3 arrives at the lowest floor, it is checked in step S22 whether the surface roughness of the braking surface 2c has reached the target value.
  • Other guide rail processing methods and renewal methods are the same as those in the first embodiment.
  • the processing device main body 7 and the measuring device 52 are moved along the car guide rail 2, and the measuring device 52 measures the surface roughness of the braking surface 2c. Therefore, processing according to the actual state of the car guide rails 2 can be performed more easily. Further, the same effect as in the first embodiment can be obtained.
  • FIG. 20 is a block diagram showing a first modification of the measuring device 52 of FIG. In the first modification, the storage unit 55 is omitted. In this case, the operator may determine whether the degree of processing by the processing apparatus body 7 has reached the target value.
  • the configuration of the measuring device 52 can be simplified.
  • the first modification shown in FIG. 20 can be applied to both the first and second embodiments.
  • FIG. 21 is a block diagram showing a second modification of the measuring device 52 of FIG.
  • the measuring unit 54 of the second modification calculates a correction value based on the measured value and the target value.
  • the correction value is a value for correcting a control parameter for controlling at least one of the rotation speed of the processing tool 13, the pressing force of the processing tool 13 against the car guide rail 2, and the moving speed of the processing apparatus body 7. is there.
  • the correction value calculated by the measurement unit 54 is output from the notification unit 56 to the communication target. Thereby, the measuring device 52 corrects the control parameter.
  • the notification unit 56 includes a communication device that performs communication with a communication target.
  • the communication target is the control device that controls the processing device body 7.
  • the communication target is the elevator control device that controls the moving speed of the car 3.
  • control parameters can be automatically changed, and the work efficiency can be improved.
  • the second modification shown in FIG. 21 can be applied to both the first and second embodiments.
  • the surface roughness of the braking surface 2c may be increased by lowering the rotation speed of the processing tool 13. it can. Also, by increasing the pressing force of the processing tool 13 against the braking surface 2c, the surface roughness can be increased. Further, by increasing the moving speed of the processing apparatus body 7, the surface roughness of the braking surface 2c can be increased.
  • the number of sensors provided in the detection unit 53 is not particularly limited.
  • the cost can be reduced by reducing the number of sensors.
  • the braking device 2c is processed while the processing device body 7 is raised, and the measurement is performed by the measurement device 52 while the measurement device 52 is lowered.
  • the braking surface 2c may be processed while the processing device body 7 is lowered, and the measurement by the measurement device 52 may be performed while the measurement device 52 is raised.
  • the combination of the moving direction of the processing device body 7 during processing, the moving direction of the measuring device 52 during measurement, and the position of the measuring device 52 with respect to the processing device body 7 is not limited to the above example.
  • FIG. 22 is an explanatory diagram showing a first example of a combination of the moving direction of the guide rail processing device 100 and the position of the measuring device 52 with respect to the processing device main body 7.
  • FIG. 23 is an explanatory diagram showing a second combination example of the moving direction of the guide rail processing device 100 and the position of the measuring device 52 with respect to the processing device main body 7.
  • the guide rail processing device 100 is raised, and the measuring device 52 is disposed on the processing device main body 7. In the first combination example, processing and measurement are performed when the guide rail processing apparatus 100 is lifted.
  • the guide rail processing device 100 is lowered, and the measuring device 52 is disposed below the processing device main body 7. In the second combination example, processing and measurement are performed when the guide rail processing device 100 is lowered.
  • the measuring device 52 is disposed in front of the processing device body 7 in the moving direction of the processing device body 7 when performing the moving process.
  • FIG. 24 is an explanatory diagram showing a third combination example of the moving direction of the guide rail processing device 100 and the position of the measuring device 52 with respect to the processing device main body 7.
  • FIG. 25 is an explanatory diagram showing a fourth example of the combination of the moving direction of the guide rail processing device 100 and the position of the measuring device 52 with respect to the processing device main body 7.
  • the guide rail processing device 100 is raised, and the measuring device 52 is disposed below the processing device main body 7. In the third combination example, processing and measurement are performed when the guide rail processing apparatus 100 is lifted.
  • the guide rail processing device 100 is lowered, and the measuring device 52 is disposed on the processing device main body 7. In the fourth combination example, processing and measurement are performed when the guide rail processing device 100 is lowered.
  • the measuring device 52 is disposed behind the processing device main body 7 in the moving direction of the processing device main body 7 when performing the moving process.
  • the thickness of the guide portion 2b or the surface roughness of the braking surface 2c immediately after the processing can be measured.
  • processing may be performed on the braking surface 2c while automatically correcting the control parameter at the next processing. it can.
  • the number of guide rollers may be one or three or more. Accordingly, the number of pressing rollers may be one or three or more. For example, as shown in FIG. 26, one guide roller 15 and one pressing roller 17 may sandwich the guide portion 2b.
  • FIG. 27 shows a configuration in which the guide 2b is sandwiched between the processing tool 13 and the pressing roller 17. Even with such a configuration, the processing tool 13 can be applied in parallel to the braking surface 2c.
  • FIG. 28 shows a configuration in which the frame divided body and the pressing roller are omitted, and the frame main body 21 is pressed toward the guide portion 2 b by the pair of frame main body springs 33. Even with such a configuration, the processing tool 13 can be applied in parallel to the braking surface 2c.
  • both the thickness of the guide rail and the surface roughness of the braking surface may be measured by the measuring device.
  • a vibrometer for detecting the vibration of the processing apparatus main body may be provided in the guide rail processing apparatus, and the guide rail may be processed while measuring the vibration of the processing apparatus main body. Then, the processing may be interrupted when the vibration of the processing apparatus main body becomes equal to or more than the threshold value. Thereby, it is possible to suppress the disturbance of the processing surface caused by the abnormal vibration, and it is possible to suppress the occurrence of defective products. Therefore, the yield can be improved and the cost for the construction can be reduced.
  • the rotation axis of the processing tool and the rotation axis of the guide roller are not necessarily parallel.
  • the force for pressing the processing tool and the pressing roller against the braking surface is generated by the spring, but may be generated by, for example, a pneumatic cylinder, a hydraulic cylinder, or an electric actuator.
  • connection tool may be formed integrally with the frame.
  • the processing apparatus main body is suspended from the existing car, but it may be suspended from a new car.
  • the main body of the processing apparatus is suspended from the car.
  • the main body of the processing apparatus may be suspended from a lifting device such as a winch installed on the hoistway or the car.
  • the measuring device is connected to the processing device main body, but the measuring device may be separated from the processing device main body. In this case, the measuring device may be moved independently of the processing device main body by, for example, a lifting device.
  • the lifting body is a car and the object to be processed is a car guide rail is shown.
  • the present invention can also be applied to a case where the lifting / lowering body is a counterweight and the object to be processed is a counterweight guide rail.
  • the processing device body may be suspended from the counterweight.
  • the guide rail was processed during the renewal work.
  • the present invention can also be applied to a case where it is desired to adjust the surface roughness of the braking surface in a newly installed elevator, or to refresh the braking surface during maintenance of an existing elevator.
  • the present invention can be applied to various types of elevators such as an elevator having a machine room, a machine room-less elevator, a double deck elevator, and a one-shaft multi-car type elevator.
  • the one-shaft multi-car system is a system in which an upper car and a lower car disposed directly below an upper car independently move up and down a common hoistway.

Landscapes

  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

エレベータのガイドレール加工装置は、加工装置本体と、測定装置とを有している。加工装置本体は、ガイドレールの少なくとも一部を削り取る加工具を有している。また、加工装置本体は、ガイドレールに沿って移動される。測定装置は、加工装置本体とともにガイドレールに沿って移動される。また、測定装置は、ガイドレールの厚さ及び面粗さの少なくともいずれか一方を測定する。

Description

エレベータのガイドレール加工装置及びガイドレール加工方法
 この発明は、ガイドレールの少なくとも一部を加工具により削り取るエレベータのガイドレール加工装置及びガイドレール加工方法に関するものである。
 従来のガイドレールの加工装置では、研削ベルトが加工ヘッドに保持されている。また、研削ベルトを駆動するモータの負荷電流値が設定値となるように、加工ヘッドが移動される(例えば、特許文献1参照)。
特開2005-224877号公報
 従来のエレベータのリニューアル工事において、既設のかごを新設のかごと入れ換える場合がある。この場合、既設のかごに搭載されている既設の非常止め装置も、新設の非常止め装置に入れ換えられる。また、既設のガイドレールの案内面は、既設のかごに搭載されているガイド装置との長期間の接触により摩耗し、非常止め装置に対する摩擦係数が小さくなっていることがある。このため、既設のかごを新設のかごと入れ換える場合、既設のガイドレールも新設のガイドレールと入れ換えられる。
 しかし、この場合、既設のガイドレール及び新設のガイドレールの搬送等に手間がかかり、工期が長くなる。また、コストも高くなる。
 これに対して、上記のような従来のガイドレールの加工装置は、ガイドレールの製造時の仕上げ工程で、研削量を一定に保つことを目的とした装置である。このため、従来の加工装置では、実際のガイドレールの状態に応じて加工を施すことが困難である。
 この発明は、上記のような課題を解決するためになされたものであり、実際のガイドレールの状態に応じた加工をより容易に行うことができるエレベータのガイドレール加工装置及びガイドレール加工方法を得ることを目的とする。
 この発明に係るエレベータのガイドレール加工装置は、ガイドレールの少なくとも一部を削り取る加工具を有しており、ガイドレールに沿って移動される加工装置本体、及び加工装置本体とともにガイドレールに沿って移動され、ガイドレールの厚さ及び面粗さの少なくともいずれか一方を測定する測定装置を備えている。
 また、この発明に係るエレベータのガイドレール加工方法は、ガイドレールの少なくとも一部を削り取る加工具を有している加工装置本体と、測定装置とを、昇降路内に吊り下げるとともに、ガイドレールに対してセットする吊り下げ工程、及び加工装置本体と測定装置とをガイドレールに沿って移動させる移動工程を備え、移動工程は、加工具によりガイドレールに加工を施す加工工程と、測定装置により、ガイドレールの厚さ及び面粗さの少なくともいずれか一方を測定する測定工程とを含む。
 この発明のエレベータのガイドレール加工装置及びガイドレール加工方法によれば、実際のガイドレールの状態に応じた加工をより容易に行うことができる。
この発明の実施の形態1によるエレベータを示す構成図である。 図1のII-II線に沿うかごガイドレールの断面図である。 図1の加工装置本体の詳細な構成を示す斜視図である。 図3の加工装置本体を図3とは異なる角度から見た斜視図である。 図3の加工装置本体を図3及び図4とは異なる角度から見た斜視図である。 図3の加工装置本体を図3~5とは異なる角度から見た斜視図である。 図3の加工装置本体をかごガイドレールにセットした状態を示す斜視図である。 図4の加工装置本体をかごガイドレールにセットした状態を示す斜視図である。 図5の加工装置本体をかごガイドレールにセットした状態を示す斜視図である。 図7の加工具とかごガイドレーとの接触状態を示す断面図である。 図7の第1のガイドローラ、第2のガイドローラ、第1の押付ローラ、及び第2の押付ローラと、かごガイドレールとの接触状態を示す断面図である。 図1の測定装置を示すブロック図である。 図12の検出部の構成の一例を模式的に示す斜視図である。 図13の検出部をかごガイドレールに装着した状態を示す斜視図である。 実施の形態1のガイドレール加工方法を示すフローチャートである。 図15のステップS5の状態を模式的に示す構成図である。 図15のステップS6の状態を模式的に示す構成図である。 図15のステップS8の状態を模式的に示す構成図である。 実施の形態2のガイドレール加工方法を示すフローチャートである。 図12の測定装置の第1の変形例を示すブロック図である。 図12の測定装置の第2の変形例を示すブロック図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する測定装置の位置との第1の組み合わせ例を示す説明図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する測定装置の位置との第2の組み合わせ例を示す説明図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する測定装置の位置との第3の組み合わせ例を示す説明図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する測定装置の位置との第4の組み合わせ例を示す説明図である。 図16のガイドローラ及び押付ローラの個数をそれぞれ削減した変形例を示す構成図である。 図26の加工具と押付ローラとにより案内部を挟み込む構成とした変形例を示す構成図である。 図16の押付ローラを省略した変形例を示す構成図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるエレベータを示す構成図であり、リニューアル工事中の状態を示している。図1において、昇降路1内には、一対のかごガイドレール2が設置されている。各かごガイドレール2は、複数本のレール部材を上下方向に継ぎ合わせて構成されている。また、各かごガイドレール2は、複数のレールブラケット9を介して昇降路壁に対して固定されている。
 昇降体であるかご3は、一対のかごガイドレール2間に配置されている。また、かご3は、かごガイドレール2に沿って昇降路1内を昇降する。
 かご3の上部には、懸架体4の第1の端部が接続されている。懸架体4としては、複数本のロープ又は複数本のベルトが用いられている。懸架体4の第2の端部には、図示しない釣合おもりが接続されている。かご3及び釣合おもりは、懸架体4により昇降路1内に吊り下げられている。
 懸架体4の中間部は、図示しない巻上機の駆動シーブに巻き掛けられている。かご3及び釣合おもりは、駆動シーブを回転させることにより、昇降路1内を昇降する。昇降路1内には、図示しない一対の釣合おもりガイドレールが設置されている。釣合おもりは、釣合おもりガイドレールに沿って昇降路1内を昇降する。
 かご3の下部には、非常止め装置5が搭載されている。非常止め装置5は、一対のかごガイドレール2を把持することにより、かご3を非常停止させる。
 かご3の上部の幅方向両端部とかご3の下部の幅方向両端部とには、かごガイドレール2に接するガイド装置6がそれぞれ取り付けられている。各ガイド装置6としては、スライディングガイドシュー又はローラガイド装置が用いられている。
 かご3の下方には、かごガイドレール2に対して加工を施す加工装置本体7が設けられている。図1では加工装置本体7を単なるボックスで示しているが、詳細な構成は後述する。
 加工装置本体7は、吊り下げ部材8を介して、かご3の下部から昇降路1内に吊り下げられている。吊り下げ部材8としては、可撓性を有する紐状の部材、例えば、ロープ、ワイヤ又はベルトが用いられる。
 かご3は、加工装置本体7の上方に位置しており、加工装置本体7をかごガイドレール2に沿って移動させる。
 加工装置本体7の下部には、接続部材51を介して測定装置52が接続されている。測定装置52は、加工装置本体7とともにかごガイドレール2に沿って移動可能に加工装置本体7に接続されている。即ち、測定装置52は、加工装置本体7をかごガイドレール2に沿って移動させることにより、かごガイドレール2に沿って移動される。また、測定装置52は、かごガイドレール2の厚さを測定する。
 ガイドレール加工装置100は、加工装置本体7、吊り下げ部材8、接続部材51、及び測定装置52を有している。また、ガイドレール加工装置100は、昇降路1に設置された状態のかごガイドレール2に加工を施す際に使用されるもので、エレベータの通常運転時には撤去される。
 図2は、図1のII-II線に沿うかごガイドレール2の断面図である。かごガイドレール2は、ブラケット固定部2aと、案内部2bとを有している。ブラケット固定部2aは、レールブラケット9に固定される部分である。案内部2bは、ブラケット固定部2aの幅方向中央からかご3側へ直角に突出し、かご3の昇降を案内する。また、案内部2bは、かご3の非常停止時に非常止め装置5により把持される。
 さらに、案内部2bは、互いに対向する一対の制動面2cと、先端面2dとを有している。先端面2dは、案内部2bのブラケット固定部2aとは反対側、即ちかご3側の端面である。一対の制動面2c及び先端面2dは、かご3の昇降時に、ガイド装置6が接する案内面として機能する。また、一対の制動面2cは、かご3の非常停止時に非常止め装置5が接する面である。
 図1の測定装置52は、かごガイドレール2の厚さとして、案内部2bの厚さを測定する。
 <加工装置本体の構成>
 図3は、図1の加工装置本体7の詳細な構成を示す斜視図である。図4は、図3の加工装置本体7を図3とは異なる角度から見た斜視図である。図5は、図3の加工装置本体7を図3及び図4とは異なる角度から見た斜視図である。図6は、図3の加工装置本体7を図3~5とは異なる角度から見た斜視図である。
 加工装置本体7は、フレーム11、接続具12、加工具13、加工具駆動装置14、第1のガイドローラ15、第2のガイドローラ16、第1の押付ローラ17、第2の押付ローラ18、第1の先端面ローラ19、及び第2の先端面ローラ20を有している。
 フレーム11は、フレーム本体21とフレーム分割体22とを有している。接続具12、加工具13、加工具駆動装置14、第1のガイドローラ15、第2のガイドローラ16、第1の先端面ローラ19、及び第2の先端面ローラ20は、フレーム本体21に設けられている。
 第1の押付ローラ17及び第2の押付ローラ18は、フレーム分割体22に設けられている。
 接続具12は、フレーム本体21の上端部に設けられている。接続具12には、吊り下げ部材8が接続される。
 加工具駆動装置14は、フレーム本体21の加工具13とは反対側に配置されている。また、加工具駆動装置14は、加工具13を回転させる。加工具駆動装置14としては、例えば電動モータが用いられている。
 加工具13は、制動面2cに加工を施す。加工具13としては、砥石が用いられる。砥石としては、外周面に多数の砥粒が設けられている円筒状の平形砥石が用いられる。また、加工具13として、切削工具等を用いてもよい。
 加工具13の外周面を制動面2cに接触させた状態で加工具13を回転させることにより、制動面2cの少なくとも一部、即ち一部又は全面を削り取ることができる。これにより、例えば制動面2cの表面粗さを粗くし、非常止め装置5に対する制動面2cの摩擦係数をより適正な値にすることができる。
 フレーム本体21には、図示しないカバーが設けられている。加工具13により制動面2cに加工を施す際には、加工屑が発生する。カバーは、加工屑が加工装置本体7の周囲に散乱することを防止する。
 第1のガイドローラ15及び第2のガイドローラ16は、加工具13と並んでフレーム本体21に設けられている。吊り下げ部材8によりフレーム11を吊り下げた状態で、第1のガイドローラ15は加工具13の上方に配置され、第2のガイドローラ16は加工具13の下方に配置される。加工具13は、第1のガイドローラ15と第2のガイドローラ16との中間に配置されている。
 第1のガイドローラ15及び第2のガイドローラ16は、加工具13とともに制動面2cに接することにより、加工具13の外周面を制動面2cに平行に接触させる。即ち、加工具13の幅方向全体で加工具13の外周面を制動面2cに均等に接触させる。
 ガイドローラ15,16の制動面2cとの接触部である2本の線分と、加工具13の制動面2cとの接触部である1本の線分とは、1つの平面内に存在できるように設定されている。
 第1の押付ローラ17は、第1のガイドローラ15との間に案内部2bを挟み込む。第2の押付ローラ18は、第2のガイドローラ16との間に案内部2bを挟み込む。即ち、加工具13、第1のガイドローラ15、及び第2のガイドローラ16が、加工対象となっている側の制動面2cに接するとき、第1の押付ローラ17及び第2の押付ローラ18は、反対側の制動面2cに接する。
 加工具13及びローラ15,16,17,18の回転軸は、互いに平行又はほぼ平行、かつ、かごガイドレール2の加工時には水平又はほぼ水平である。
 第1の先端面ローラ19は、フレーム本体21の上端部に設けられている。第2の先端面ローラ20は、フレーム本体21の下端部に設けられている。即ち、第1及び第2の先端面ローラ19,20は、上下方向に互いに間隔をおいて配置されている。
 フレーム分割体22は、挟み込み位置と解放位置との間で、フレーム本体21に対して直線的に移動可能になっている。挟み込み位置は、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを挟み込む位置である。解放位置は、挟み込み位置よりも押付ローラ17,18がガイドローラ15,16から離れた位置である。
 フレーム本体21には、一対の棒状のフレームガイド23が設けられている。フレームガイド23は、フレーム本体21に対するフレーム分割体22の移動を案内する。また、フレームガイド23は、フレーム分割体22を貫通している。
 フレーム本体21の上下端部には、一対のロッド固定部24が設けられている。フレーム分割体22には、ロッド固定部24に対向する一対の対向部25が設けられている。各ロッド固定部24には、フレームばねロッド26が固定されている。各フレームばねロッド26は、対向部25を貫通している。
 フレームばねロッド26には、フレームばね受け27が取り付けられている。フレームばね受け27と対向部25との間には、それぞれフレームばね28が設けられている。各フレームばね28は、フレーム分割体22を挟み込み位置へ移動させる力を発生している。
 フレームばね28による押付ローラ17,18の加圧力は、加工装置本体7の重心位置の偏心によって、加工装置本体7が傾こうとする力に打ち勝ち、ガイドローラ15,16の外周面と制動面2cとの平行を維持できるような大きさに設定されている。
 また、フレームばね28による押付ローラ17,18の加圧力は、加工具13を回転させながら加工装置本体7をかごガイドレール2に沿って移動させたときにも、ガイドローラ15,16の外周面と制動面2cとの平行を維持できるような大きさに設定されている。
 フレーム本体21とフレーム分割体22との間には、図示しない解放位置保持機構が設けられている。解放位置保持機構は、フレームばね28のばね力に抗して、フレーム分割体22を解放位置に保持する。
 加工具13及び加工具駆動装置14は、加工位置と離隔位置との間でフレーム本体21に対して直線的に移動可能になっている。加工位置は、ガイドローラ15,16が制動面2cに接した状態で、加工具13が制動面2cに接する位置である。離隔位置は、ガイドローラ15,16が制動面2cに接した状態で、加工具13が制動面2cから離れる位置である。
 上記のように、押付ローラ17,18は、制動面2cに対して直角の方向へ移動可能になっている。また、加工具13及び加工具駆動装置14も、制動面2cに対して直角の方向へ移動可能になっている。
 図4に示すように、加工具駆動装置14は、平板状の可動支持部材29に取り付けられている。フレーム本体21には、一対の棒状の駆動装置ガイド30が固定されている。可動支持部材29は、駆動装置ガイド30に沿ってスライド可能になっている。これにより、加工具13及び加工具駆動装置14は、フレーム本体21に対して直線的に移動可能になっている。
 可動支持部材29とフレーム本体21との間には、加工具ばね31が設けられている。加工具ばね31は、加工具13及び加工具駆動装置14を加工位置側へ移動させる力を発生する。加工具ばね31による加工具13の加圧力は、ビビリなどの不具合が発生しない大きさに設定されている。
 フレーム本体21と可動支持部材29との間には、図示しない離隔位置保持機構が設けられている。離隔位置保持機構は、加工具ばね31のばね力に抗して、加工具13及び加工具駆動装置14を離隔位置に保持する。
 なお、図7は、図3の加工装置本体7をかごガイドレール2にセットした状態を示す斜視図である。図8は、図4の加工装置本体7をかごガイドレール2にセットした状態を示す斜視図である。図9は、図5の加工装置本体7をかごガイドレール2にセットした状態を示す斜視図である。
 図10は、図7の加工具13とかごガイドレール2との接触状態を示す断面図である。加工具13の外周面の幅寸法は、制動面2cの幅寸法よりも大きい。これにより、加工具13は、制動面2cの幅方向の全体に接触している。
 図11は、図7の第1のガイドローラ15、第2のガイドローラ16、第1の押付ローラ17、及び第2の押付ローラ18と、かごガイドレール2との接触状態を示す断面図である。第1及び第2のガイドローラ15,16の外周面は、円筒状である。即ち、第1及び第2のガイドローラ15,16の回転中心C1に沿う断面における第1及び第2のガイドローラ15,16の外周面の形状は、直線である。
 第1及び第2の押付ローラ17,18の外周面は、略球面状である。即ち、第1及び第2の押付ローラ17,18の回転中心C2に沿う断面における第1及び第2の押付ローラ17,18の外周面の形状は、円弧状である。
 <測定装置の構成>
 図12は、図1の測定装置52を示すブロック図である。測定装置52は、検出部53、測定部54、記憶部55、及び報知部56を有している。
 検出部53は、案内部2bの厚さ測定時に、制動面2cに対向する。また、検出部53は、案内部2bの厚さを測定するための検出信号を測定部54に出力する。
 測定部54は、検出部53からの検出信号に基づいて、案内部2bの厚さを測定する。また、測定部54は、測定により得られた測定値を、予め設定された目標値と比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかを判定する。また、測定部54は、測定結果として、測定値及び判定結果を報知部56に出力する。
 記憶部55は、案内部2bの厚さに関する目標値を記憶している。報知部56は、測定部54で測定された測定値と、測定部54による判定結果とを外部に報知する。
 検出部53としては、レール厚さ計を用いることができる。測定部54としては、市販されている弁別器又はリレーメータを用いることができる。
 また、測定部54と記憶部55とを組み合わせた構成として、コンピュータを用いることができる。コンピュータとしては、一般的なパーソナルコンピュータを用いることができる。この場合、コンピュータは、演算装置であるCPU(central processing unit)と、判定プログラム及び目標値を記憶したハードディスクドライブとを有している。
 また、測定部54は、ケーブル等を介して検出部53に接続されている。報知部56としては、例えば、リレー、DIO(digital input/output)装置、回転灯、警報器、液晶ディスプレイ、又はこれらの組み合わせを用いることができる。
 図13は、図12の検出部53の構成の一例を模式的に示す斜視図である。また、図14は、図13の検出部53をかごガイドレール2に装着した状態を示す斜視図である。
 検出部53は、断面U字形の厚さ計フレーム57と、一対の第1の変位センサ58a,58bと、一対の第2の変位センサ59a,59bと、一対の第3の変位センサ60a,60bとを有している。
 厚さ計フレーム57は、第1の対向部57a、第2の対向部57b、及び第3の対向部57cを有している。第1の対向部57aは、案内部2bの厚さ測定時に、一方の制動面2cに対向する。第2の対向部57bは、案内部2bの厚さ測定時に、他方の制動面2cに対向する。第3の対向部57cは、案内部2bの厚さ測定時に、先端面2dに対向する。
 第1の変位センサ58a、第2の変位センサ59a、及び第3の変位センサ60aは、第1の対向部57aに設けられている。第1の変位センサ58b、第2の変位センサ59b、及び第3の変位センサ60bは、第2の対向部57bに設けられている。
 第1の変位センサ58a,58bは、互いに対向している。第2の変位センサ59a,59bは、互いに対向している。第3の変位センサ60a,60bは、互いに対向している。
 第1の変位センサ58a、第2の変位センサ59a、及び第3の変位センサ60aは、案内部2bの厚さ測定時に、かごガイドレール2の長手方向に平行な直線上に互いに間隔をおいて配置されている。
 第1の変位センサ58b、第2の変位センサ59b、及び第3の変位センサ60bは、案内部2bの厚さ測定時に、かごガイドレール2の長手方向に平行な直線上に互いに間隔をおいて配置されている。
 各変位センサ58a,58b,59a,59b,60a,60bは、案内部2bの厚さ測定時に、対向する制動面2cまでの距離に応じた信号を発生する。また、各変位センサ58a,58b,59a,59b,60a,60bとしては、非接触式のセンサ、例えば渦電流式変位センサを用いることができる。
 <加工方法>
 次に、図15は、実施の形態1のガイドレール加工方法を示すフローチャートである。加工装置本体7によりかごガイドレール2に加工を施す場合、まずステップS1において、図示しない制御装置及び電源をかご3に搬入する。制御装置は、加工装置本体7及び測定装置52を制御する装置である。また、ステップS2において、ガイドレール加工装置100を昇降路1のピットに搬入する。
 続いて、かご3を昇降路1の下部に移動させておき、ステップS3において、吊り下げ部材8をかご3に接続して、ガイドレール加工装置100を昇降路1内に吊り下げる。また、ステップS4において、ガイドレール加工装置100を制御装置及び電源に接続する。そして、ステップS5、6において、ガイドレール加工装置100をかごガイドレール2にセットする。
 具体的には、ステップS5において、図16に示すように、加工具13が離隔位置に保持され、フレーム分割体22が解放位置に保持された状態で、ガイドローラ15,16を一方の制動面2cに接触させる。また、先端面ローラ19,20を先端面2dに接触させる。
 この後、ステップS6において、フレーム分割体22を挟み込み位置に移動させ、図17に示すように、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを挟み込ませる。
 このようにして加工装置本体7をかごガイドレール2にセットした後、ステップS7において、加工具13を回転させる。そして、ステップS8において、図18に示すように、加工具13及び加工具駆動装置14を加工位置に移動させるとともに、かご3を定格速度よりも低速の一定速度で最上階へ移動させる。即ち、加工具13によって制動面2cに加工を施しながら、加工装置本体7をかごガイドレール2に沿って移動させる。
 かご3が最上階に到着すると、ステップS9において、加工具13及び加工具駆動装置14を離隔位置に移動させる。また、ステップS10において、加工具13の回転を停止させるとともに、かご3を停止させる。
 この後、ステップS11において、かご3を最下階へ移動させながら、測定装置52により案内部2bの厚さの測定を行う。この例では、かご3の上昇時のみ制動面2cに加工を施すので、かご3の下降時には、加工具13を制動面2cから離しておくのが好ましい。
 かご3が最下階に到着すると、ステップS12において、案内部2bの厚さが目標値に達していたかどうかを確認する。案内部2bの厚さが目標値に達していない場合、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを挟み込み、ステップS7~12を再度実施する。案内部2bの厚さが目標値に達していた場合、加工完了となる。
 反対側の制動面2cに対して加工を施す場合、図3とは左右対称の加工装置本体7を用いるか、又は図3の加工装置本体7を上下反対向きに吊り下げればよい。後者の場合、フレーム本体21の下端部にも接続具12を追加すればよい。
 上記の加工方法を残りのかごガイドレール2に対しても施すことにより、全ての制動面2cに加工を施すことができる。また、2台以上の加工装置本体7により2面以上の制動面2cに同時に加工を施すこともできる。
 実施の形態1のガイドレール加工方法は、吊り下げ工程と移動工程とを含んでいる。吊り下げ工程では、加工装置本体7と測定装置52とが、昇降路1内に吊り下げられるとともに、かごガイドレール2に対してセットされる。また、吊り下げ工程では、かごガイドレール2に沿って昇降するかご3から、加工装置本体7と測定装置52とが吊り下げられる。
 移動工程では、加工装置本体7と測定装置52とがかごガイドレール2に沿って移動される。
 また、移動工程は、加工工程、測定工程、判定工程、及び報知工程を含んでいる。加工工程では、加工具13によりかごガイドレール2に加工が施される。測定工程では、測定装置52により案内部2bの厚さが測定される。
 判定工程では、測定工程で測定された測定値を目標値と比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかが判定される。報知工程では、判定工程での判定結果が外部に報知される。
 また、加工工程では、測定工程で測定された測定値に基づいて、加工装置本体7が制御される。加工装置本体7を制御する方法としては、加工具13の回転数、加工具13の制動面2cへの押し付け力、及び加工装置本体7の移動速度の少なくともいずれか1つを制御する方法が挙げられる。
 例えば加工具13の回転数を上げることで、加工量を増加させることができる。また、加工具13の制動面2cへの押し付け力を増加させることで、加工量を増加させることができる。また、加工装置本体7の移動速度を遅くすることで、加工量を増加させることができる。
 <リニューアル方法>
 次に、実施の形態1のエレベータのリニューアル方法について説明する。実施の形態1では、既設のかごガイドレール2を残したまま、既設のかご3及び既設の非常止め装置5を新設のかご及び新設の非常止め装置に入れ換える。また、実施の形態1のリニューアル方法は、レール加工工程及び入れ換え工程を含む。
 レール加工工程では、既設のかごガイドレール2の制動面2cの少なくとも一部を、上記のような加工装置本体7を用いて削り取る加工を施す。このとき、吊り下げ部材8を介して加工装置本体7を既設のかご3に接続し、既設のかご3の移動により加工装置本体7を既設のかごガイドレール2に沿って移動させる。
 この後、入れ換え工程を実施する。入れ換え工程では、既設のかごガイドレール2を残したまま、既設のかご3及び既設の非常止め装置5を、新設のかご及び新設の非常止め装置に入れ換える。
 このようなガイドレール加工装置100では、加工装置本体7及び測定装置52がかごガイドレール2に沿って移動され、測定装置52によって案内部2bの厚さが測定される。このため、実際のかごガイドレール2の状態に応じた加工をより容易に行うことができる。
 また、測定装置52は、加工装置本体7とともにかごガイドレール2に沿って移動可能に加工装置本体7に接続されている。このため、かごガイドレール2に対する加工作業と測定作業とを効率的に行うことができる。
 また、測定部54は、測定値を目標値と比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかを判定する。このため、追加の加工が必要であるかどうかの判定をスムーズに行うことができる。
 また、測定装置52には、測定部54による判定結果を外部に報知する報知部56が設けられている。このため、追加加工が必要であるかどうかの判定を、ガイドレール加工装置100の外部で容易に確認することができる。
 また、実施の形態1のガイドレール加工方法の吊り下げ工程では、加工装置本体7と測定装置52とが、昇降路1内に吊り下げられるとともに、かごガイドレール2に対してセットされる。また、移動工程では、加工装置本体7と測定装置52とがかごガイドレール2に沿って移動される。このため、実際のかごガイドレール2の状態に応じた加工をより容易に行うことができる。
 また、加工工程では、測定工程で測定された測定値に基づいて、加工装置本体7が制御される。このため、加工装置本体7による加工の度合いをより適正に調整することができる。
 また、加工工程では、加工具13の回転数、加工具13のかごガイドレール2への押し付け力、及び加工装置本体7の移動速度の少なくともいずれか1つが制御される。このため、加工装置本体7による加工の度合いをより適正に調整することができる。
 また、判定工程では、測定工程で測定された測定値を目標値と比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかが判定される。このため、追加の加工が必要であるかどうかの判定をスムーズに行うことができる。
 また、報知工程では、判定工程での判定結果が外部に報知される。このため、追加加工が必要であるかどうかの判定を、ガイドレール加工装置100の外部で容易に確認することができる。
 また、吊り下げ工程では、加工装置本体7と測定装置52とが、かご3から吊り下げられる。このため、かごガイドレール2に対する加工作業と測定作業とを効率的に行うことができる。
 また、上記のようなガイドレール加工装置100及びガイドレール加工方法では、吊り下げ部材8を介して加工装置本体7が昇降路1内に吊り下げられる。そして、加工具13により制動面2cに加工を施しながら加工装置本体7がかごガイドレール2に沿って移動される。このため、非常止め装置5に対するかごガイドレール2の摩擦係数を、かごガイドレール2を昇降路1に設置したまま、より適正化することができる。
 また、加工装置本体7は、吊り下げ部材8により吊り下げられている。このため、制動面2cの加工中に、かご3の振動が加工装置本体7に伝わるのを防止することができる。これにより、加工不具合の発生を防止し、制動面2cを安定して加工することができる。
 また、加工装置本体7及び測定装置52は、かご3から吊り下げられる。このため、加工装置本体7を揚重する装置を別途用意する必要がない。また、かごガイドレール2の非常止め装置5が把持する領域に、効率的に加工を施すことができる。また、昇降行程が長いエレベータにおいても、長い吊り下げ部材を用いることなく、かごガイドレール2のほぼ全長に渡って容易に加工を施すことができる。
 また、加工装置本体7には、ガイドローラ15,16が設けられている。このため、加工具13の外周面をより確実に制動面2cに平行に接触させることができ、削り残しを発生させずに、制動面2cに均等に加工を施すことができる。
 また、案内部2bは、ガイドローラ15,16と押付ローラ17,18との間に挟み込まれる。このため、加工具13の外周面をより安定して制動面2cに平行に接触させることができる。また、制動面2cに上下方向の傾きがあった場合にも、加工具13の外周面と制動面2cとの平行を維持することができる。
 また、フレーム本体21には、接続具12が設けられている。このため、接続具12に吊り下げ部材8を接続して昇降路1内に吊り下げた状態で、加工装置本体7をかごガイドレール2に沿って移動させることができる。これにより、非常止め装置5に対するかごガイドレール2の状態を、昇降路1にかごガイドレール2を設置したまま、より適正な状態にすることができる。
 また、加工具13の上方に第1のガイドローラ15が配置され、加工具13の下方に第2のガイドローラ16が配置されている。このため、加工具13の外周面と制動面2cとの平行をより安定して維持することができる。これにより、かごガイドレール2の上下方向の傾き、曲がり、又はうねりがあった場合にも、加工具13の外周面と制動面2cとの平行を維持することができる。
 また、加工具13は、第1及び第2のガイドローラ15,16の中間位置に配置されている。このため、フレーム本体21に対する加工具13の移動方向を、制動面2cに直角な方向とすることができる。これにより、加工具13を制動面2cに押し付ける力を安定させることができる。また、加工のムラ、即ち削り取る量の不均一が発生することがなく、安定した加工を施すことができる。
 また、フレーム11は、フレーム本体21とフレーム分割体22とに分割されている。そして、フレームばね28は、フレーム分割体22を挟み込み位置側へ移動させる力を発生している。このため、簡単な構成により、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを安定して挟み込むことができる。
 また、加工具13及び加工具駆動装置14は、加工位置と離隔位置との間で移動可能となっている。そして、加工具ばね31は、加工具13及び加工具駆動装置14を加工位置側へ移動させる力を発生している。このため、簡単な構成により、加工具13を安定して制動面2cに押し当て、安定した加工を施すことができる。また、加工具13を離隔位置に移動させることで、制動面2cを加工せずに加工装置本体7をかごガイドレール2に沿って移動させることもできる。
 また、フレーム本体21には、先端面ローラ19,20が設けられている。このため、加工装置本体7をかごガイドレール2に沿って安定した姿勢でスムーズに移動させることができる。
 また、上記のようなエレベータのリニューアル方法では、既設のかごガイドレール2の制動面2cの少なくとも一部を削り取る加工を施す。この後、既設のかごガイドレール2を残したまま、既設のかご3及び既設の非常止め装置5を、新設のかご及び新設の非常止め装置に入れ換える。このため、新設の非常止め装置に対する既設のかごガイドレール2の摩擦係数を、かごガイドレール2を昇降路1に設置したまま、より適正化することができる。
 これにより、既設のかごガイドレール2を取り換えることなく、エレベータのリニューアルを実現することができる。従って、工期を大幅に短縮することができるとともに、工事にかかる費用も大幅に削減することができる。
 また、測定装置52による測定値を監視しながら制動面2cに加工を施すことで、制動面2cを加工し過ぎることによる不良品の発生を防ぐことができる。これにより、歩留まりを向上できるとともに、工事にかかるコストを削減することができる。
 また、加工装置本体7を既設のかご3を利用して移動させるので、加工時に発生する加工屑等が新設のかご及び新設の非常止め装置5に付着するのを防止することができる。
 実施の形態2.
 次に、この発明の実施の形態2について説明する。実施の形態2の測定装置52は、制動面2cの面粗さを測定する。また、実施の形態2の測定装置52の構成は、図12と同様である。
 検出部53は、制動面2cの面粗さ測定時に、制動面2cに対向する。また、検出部53は、案内部2bの面粗さを測定するための検出信号を測定部54に出力する。
 測定部54は、検出部53からの検出信号に基づいて、制動面2cの面粗さを測定する。記憶部55は、制動面2cの面粗さに関する目標値を記憶している。
 検出部53としては、面粗さ計を用いることができる。また、面粗さ計としては、例えば光学式の面粗さ検出器を用いることができる。他の構成は、実施の形態1と同様である。
 図19は、実施の形態2のガイドレール加工方法を示すフローチャートである。実施の形態2では、ステップS21において、かご3を最下階へ移動させながら、測定装置52により制動面2cの面粗さの測定を行う。そして、かご3が最下階に到着すると、ステップS22において、制動面2cの面粗さが目標値に達していたかどうかを確認する。他のガイドレール加工方法及びリニューアル方法は、実施の形態1と同様である。
 このようなガイドレール加工装置100及びガイドレール加工方法では、加工装置本体7及び測定装置52がかごガイドレール2に沿って移動され、測定装置52によって制動面2cの面粗さが測定される。このため、実際のかごガイドレール2の状態に応じた加工をより容易に行うことができる。また、実施の形態1と同様の効果を得ることができる。
 なお、図20は、図12の測定装置52の第1の変形例を示すブロック図である。第1の変形例では、記憶部55が省略されている。この場合、加工装置本体7による加工の度合いが目標値に達したかどうかの判定を、作業者が行ってもよい。
 このような第1の変形例によれば、測定装置52の構成を簡略化することができる。また、図20に示した第1の変形例は、実施の形態1、2のどちらにも適用できる。
 また、図21は、図12の測定装置52の第2の変形例を示すブロック図である。第2の変形例の測定部54は、測定値と目標値とに基づいて、補正値を算出する。補正値は、加工具13の回転数、加工具13のかごガイドレール2への押し付け力、及び加工装置本体7の移動速度の少なくともいずれか1つを制御するための制御パラメータを補正する値である。
 測定部54で算出された補正値は、報知部56から通信対象へ出力される。これにより、測定装置52は、制御パラメータを補正する。報知部56は、通信対象との通信を行う通信装置を含んでいる。
 補正値が上記の回転数及び押し付け力の少なくともいずれか一方の制御パラメータを補正する値を含む場合、通信対象は、加工装置本体7を制御する制御装置である。また、補正値が上記の移動速度の制御パラメータを補正する値を含む場合、通信対象は、かご3の移動速度を制御するエレベータ制御装置である。
 このような第2の変形例によれば、制御パラメータの変更を自動的に行うことができ、作業効率を向上させることができる。また、図21に示した第2の変形例は、実施の形態1、2のどちらにも適用できる。
 制動面2cの面粗さを調整する場合、例えば面粗さの測定値が目標値よりも小さい領域に対しては、加工具13の回転数を下げることで、面粗さを増加させることができる。また、加工具13の制動面2cへの押し付け力をを増加させることで、面粗さのを増加させることができる。また、加工装置本体7の移動速度を速くすることで、制動面2cの面粗さを増加させることができる。
 また、実施の形態1、2において、検出部53に設けるセンサの数は特に限定されない。例えばセンサの数を減らすことで、コストを削減することができる。
 また、実施の形態1、2では、加工装置本体7を上昇させながら制動面2cに加工を施し、測定装置52を下降させながら測定装置52による測定を行った。これに対して、加工装置本体7を下降させながら制動面2cに加工を施し、測定装置52を上昇させながら、測定装置52による測定を行ってもよい。
 また、加工時の加工装置本体7の移動方向と、測定時の測定装置52の移動方向と、加工装置本体7に対する測定装置52の位置との組み合わせは、上記の例に限定されない。
 図22は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する測定装置52の位置との第1の組み合わせ例を示す説明図である。また、図23は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する測定装置52の位置との第2の組み合わせ例を示す説明図である。
 第1の組み合わせ例では、ガイドレール加工装置100が上昇しており、測定装置52が加工装置本体7の上に配置されている。また、第1の組み合わせ例では、ガイドレール加工装置100の上昇時に加工及び測定を行う。
 第2の組み合わせ例では、ガイドレール加工装置100が下降しており、測定装置52が加工装置本体7の下に配置されている。また、第2の組み合わせ例では、ガイドレール加工装置100の下降時に加工及び測定を行う。
 このように、第1及び第2の組み合わせ例では、移動工程を実施する際に、測定装置52が、加工装置本体7に対して、加工装置本体7の移動方向の前方に配置されている。
 これにより、加工直前の案内部2bの厚さ又は制動面2cの面粗さを測定しながら、制動面2cに加工を施すことができる。また、図21に示した第2の変形例のように、補正値により制御パラメータを補正する場合、制御パラメータを自動的に補正しながら、制動面2cに加工を施すことができる。
 図24は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する測定装置52の位置との第3の組み合わせ例を示す説明図である。また、図25は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する測定装置52の位置との第4の組み合わせ例を示す説明図である。
 第3の組み合わせ例では、ガイドレール加工装置100が上昇しており、測定装置52が加工装置本体7の下に配置されている。また、第3の組み合わせ例では、ガイドレール加工装置100の上昇時に加工及び測定を行う。
 第4の組み合わせ例では、ガイドレール加工装置100が下降しており、測定装置52が加工装置本体7の上に配置されている。また、第4の組み合わせ例では、ガイドレール加工装置100の下降時に加工及び測定を行う。
 このように、第3及び第4の組み合わせ例では、移動工程を実施する際に、測定装置52が、加工装置本体7に対して、加工装置本体7の移動方向の後方に配置されている。
 これにより、制動面2cに加工を施しながら、加工直後の案内部2bの厚さ又は制動面2cの面粗さを測定することができる。また、図21に示した第2の変形例のように、補正値により制御パラメータを補正する場合、次の加工時に、制御パラメータを自動的に補正しながら、制動面2cに加工を施すことができる。
 また、ガイドローラは、1個又は3個以上であってもよい。これに伴い、押付ローラも1個又は3個以上であってもよい。例えば、図26に示すように、1個のガイドローラ15と1個の押付ローラ17とにより案内部2bを挟み込む構成としてもよい。
 また、加工具を制動面に安定して平行に当てることができれば、ガイドローラ及び押付ローラは省略してもよい。例えば、図27は加工具13と押付ローラ17とにより案内部2bを挟み込む構成を示している。このような構成によっても、加工具13を制動面2cに平行に当てることができる。
 また、図28は、フレーム分割体及び押付ローラを省略し、フレーム本体21を一対のフレーム本体ばね33により案内部2b側へ押し付ける構成を示している。このような構成によっても、加工具13を制動面2cに平行に当てることができる。
 また、測定装置により、ガイドレールの厚さと制動面の面粗さとの両方を測定してもよい。
 また、加工装置本体の振動を検出する振動計をガイドレール加工装置に設け、加工装置本体の振動を測定しながらガイドレールに加工を施してもよい。そして、加工装置本体の振動が閾値以上となった場合に、加工を中断させるようにしてもよい。これにより、異常振動により発生する加工面の乱れを抑制することができ、不良品の発生を抑制することができる。従って、歩留まりを向上させることができるとともに、工事にかかるコストを削減することができる。
 また、加工具の回転軸とガイドローラの回転軸とは、必ずしも平行でなくてもよい。
 また、上記の例では、加工具及び押付ローラを制動面に押し付ける力をばねにより発生させたが、例えば、空圧シリンダ、油圧シリンダ、又は電動アクチュエータにより発生させてもよい。
 また、接続具は、フレームに一体に形成してもよい。
 また、上記の例では、既設のかごから加工装置本体を吊り下げたが、新設のかごから吊り下げてもよい。
 また、上記の例では、加工装置本体をかごから吊り下げたが、昇降路の上部又はかごに設置したウインチ等の揚重装置から加工装置本体を吊り下げてもよい。
 また、上記の例では、測定装置を加工装置本体に接続したが、測定装置を加工装置本体から切り離してもよい。この場合、例えば揚重装置により、測定装置を加工装置本体から独立して移動させてもよい。
 また、上記の例では、昇降体がかごであり、加工対象がかごガイドレールである場合を示した。しかし、この発明は、昇降体が釣合おもりであり、加工対象が釣合おもりガイドレールである場合にも適用できる。この場合、加工装置本体は、釣合おもりから吊り下げてもよい。
 また、上記の例では、リニューアル工事の際にガイドレールに加工を施した。しかし、例えば、新設のエレベータにおいて制動面の面粗さを調整したい場合、又は既設のエレベータの保守時に制動面をリフレッシュしたい場合にも、この発明を適用できる。
 また、この発明は、機械室を有するエレベータ、機械室レスエレベータ、ダブルデッキエレベータ、ワンシャフトマルチカー方式のエレベータなど、種々のタイプのエレベータに適用できる。ワンシャフトマルチカー方式は、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式である。
 1 昇降路、2 かごガイドレール、3 かご(昇降体)、7 加工装置本体、13 加工具、52 測定装置、56 報知部、100 ガイドレール加工装置。

Claims (12)

  1.  ガイドレールの少なくとも一部を削り取る加工具を有しており、前記ガイドレールに沿って移動される加工装置本体、及び
     前記加工装置本体とともに前記ガイドレールに沿って移動され、前記ガイドレールの厚さ及び面粗さの少なくともいずれか一方を測定する測定装置
     を備えているエレベータのガイドレール加工装置。
  2.  前記測定装置は、前記加工装置本体とともに前記ガイドレールに沿って移動可能に前記加工装置本体に接続されている請求項1記載のエレベータのガイドレール加工装置。
  3.  前記測定装置は、測定により得られた測定値を目標値と比較して、前記加工装置本体による加工の度合いが目標の度合いに達したかどうかを判定する請求項1又は請求項2に記載のエレベータのガイドレール加工装置。
  4.  前記測定装置は、判定結果を外部に報知する報知部を有している請求項3記載のエレベータのガイドレール加工装置。
  5.  前記測定装置は、前記測定値と前記目標値とに基づいて、前記加工具の回転数、前記加工具の前記ガイドレールへの押し付け力、及び前記加工装置本体の移動速度の少なくともいずれか1つを制御するための制御パラメータを補正する請求項3又は請求項4に記載のエレベータのガイドレール加工装置。
  6.  ガイドレールの少なくとも一部を削り取る加工具を有している加工装置本体と、測定装置とを、昇降路内に吊り下げるとともに、前記ガイドレールに対してセットする吊り下げ工程、及び
     前記加工装置本体と前記測定装置とを前記ガイドレールに沿って移動させる移動工程
     を備え、
     前記移動工程は、
     前記加工具により前記ガイドレールに加工を施す加工工程と、
     前記測定装置により、前記ガイドレールの厚さ及び面粗さの少なくともいずれか一方を測定する測定工程と
     を含むエレベータのガイドレール加工方法。
  7.  前記加工工程では、前記測定工程で測定された測定値に基づいて、前記加工装置本体を制御する請求項6記載のエレベータのガイドレール加工方法。
  8.  前記加工工程では、前記加工具の回転数、前記加工具の前記ガイドレールへの押し付け力、及び前記加工装置本体の移動速度の少なくともいずれか1つを制御する請求項7記載のエレベータのガイドレール加工方法。
  9.  前記測定工程で測定された測定値を目標値と比較して、前記加工装置本体による加工の度合いが目標の度合いに達したかどうかを判定する判定工程
     を備えている請求項6から請求項8までのいずれか1項に記載のエレベータのガイドレール加工方法。
  10.  前記吊り下げ工程では、前記ガイドレールに沿って昇降する昇降体から、前記加工装置本体と前記測定装置とを吊り下げる請求項6から請求項9までのいずれか1項に記載のエレベータのガイドレール加工方法。
  11.  前記移動工程では、前記加工装置本体に対して、前記加工装置本体の移動方向の前方に前記測定装置を配置する請求項6から請求項10までのいずれか1項に記載のエレベータのガイドレール加工方法。
  12.  前記移動工程では、前記加工装置本体に対して、前記加工装置本体の移動方向の後方に前記測定装置を配置する請求項6から請求項10までのいずれか1項に記載のエレベータのガイドレール加工方法。
PCT/JP2018/033021 2018-09-06 2018-09-06 エレベータのガイドレール加工装置及びガイドレール加工方法 WO2020049683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/033021 WO2020049683A1 (ja) 2018-09-06 2018-09-06 エレベータのガイドレール加工装置及びガイドレール加工方法
CN201880096978.9A CN112638810A (zh) 2018-09-06 2018-09-06 电梯的导轨加工装置和导轨加工方法
JP2020540943A JP7008833B2 (ja) 2018-09-06 2018-09-06 エレベータのガイドレール加工装置及びガイドレール加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033021 WO2020049683A1 (ja) 2018-09-06 2018-09-06 エレベータのガイドレール加工装置及びガイドレール加工方法

Publications (1)

Publication Number Publication Date
WO2020049683A1 true WO2020049683A1 (ja) 2020-03-12

Family

ID=69723028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033021 WO2020049683A1 (ja) 2018-09-06 2018-09-06 エレベータのガイドレール加工装置及びガイドレール加工方法

Country Status (3)

Country Link
JP (1) JP7008833B2 (ja)
CN (1) CN112638810A (ja)
WO (1) WO2020049683A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337792A (ja) * 1992-06-03 1993-12-21 Toshiba Corp ガイドレールの端部加工装置
JPH09323873A (ja) * 1996-06-07 1997-12-16 Hitachi Building Syst Co Ltd エレベータガイドレールの研削装置
WO2008023407A1 (fr) * 2006-08-22 2008-02-28 Mitsubishi Electric Corporation Rail de guidage pour ascenseur et dispositif de traitement de surface de rail surface pour ascenseur
JP2008119767A (ja) * 2006-11-09 2008-05-29 Toyota Motor Corp 機械加工方法と機械加工システム
JP2011218498A (ja) * 2010-04-12 2011-11-04 Mori Seiki Co Ltd 工作機械における被加工物計測装置およびその方法
JP2018069391A (ja) * 2016-10-31 2018-05-10 日本精工株式会社 研削装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233307A (ja) * 1986-03-31 1987-10-13 芝浦メカトロニクス株式会社 レ−ル形状の修正方法および装置
JPH054786A (ja) * 1991-06-27 1993-01-14 Toshiba Corp エレベータガイドレール連結方法及び連結装置
JP3833453B2 (ja) 2000-08-07 2006-10-11 株式会社日立製作所 レール加工装置及びレール加工方法
JP2002060164A (ja) * 2000-08-23 2002-02-26 Toshiba Corp エレベータ
JP4183998B2 (ja) * 2002-07-26 2008-11-19 東芝エレベータ株式会社 エレベータのレール制錆ローラ装置
JP2010168182A (ja) * 2009-01-23 2010-08-05 Mitsubishi Electric Building Techno Service Co Ltd エレベータレール錆落とし装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337792A (ja) * 1992-06-03 1993-12-21 Toshiba Corp ガイドレールの端部加工装置
JPH09323873A (ja) * 1996-06-07 1997-12-16 Hitachi Building Syst Co Ltd エレベータガイドレールの研削装置
WO2008023407A1 (fr) * 2006-08-22 2008-02-28 Mitsubishi Electric Corporation Rail de guidage pour ascenseur et dispositif de traitement de surface de rail surface pour ascenseur
JP2008119767A (ja) * 2006-11-09 2008-05-29 Toyota Motor Corp 機械加工方法と機械加工システム
JP2011218498A (ja) * 2010-04-12 2011-11-04 Mori Seiki Co Ltd 工作機械における被加工物計測装置およびその方法
JP2018069391A (ja) * 2016-10-31 2018-05-10 日本精工株式会社 研削装置

Also Published As

Publication number Publication date
CN112638810A (zh) 2021-04-09
JP7008833B2 (ja) 2022-01-25
JPWO2020049683A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP4855416B2 (ja) エレベータの制御装置
JP7003290B2 (ja) ガイドレール加工装置及びガイドレール加工方法
WO2020049683A1 (ja) エレベータのガイドレール加工装置及びガイドレール加工方法
WO2020054066A1 (ja) ガイドレール加工装置及びガイドレール加工方法
JP6765534B2 (ja) エレベータのガイドレール加工方法、ガイドレール加工装置、及びリニューアル方法
JP6719686B2 (ja) エレベータのガイドレール加工装置
JP6939994B2 (ja) 溝摩耗検知装置
JP6808052B2 (ja) エレベータのガイドレール加工装置
WO2020161792A1 (ja) ガイドレール加工装置及びガイドレール加工方法
JP6671566B1 (ja) ガイドレール加工装置及びガイドレール加工方法
JP6821066B2 (ja) エレベータのガイドレール加工装置及びガイドレール加工方法
JP2018203498A (ja) エレベーター装置
JP6918239B2 (ja) エレベータのガイドレール加工装置
JP7364129B2 (ja) 測定方法及び測定用装置
CN117602474A (zh) 一种电梯故障监控处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932765

Country of ref document: EP

Kind code of ref document: A1