WO2020161792A1 - ガイドレール加工装置及びガイドレール加工方法 - Google Patents

ガイドレール加工装置及びガイドレール加工方法 Download PDF

Info

Publication number
WO2020161792A1
WO2020161792A1 PCT/JP2019/004008 JP2019004008W WO2020161792A1 WO 2020161792 A1 WO2020161792 A1 WO 2020161792A1 JP 2019004008 W JP2019004008 W JP 2019004008W WO 2020161792 A1 WO2020161792 A1 WO 2020161792A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide rail
processing
shape
shape measuring
displacement sensor
Prior art date
Application number
PCT/JP2019/004008
Other languages
English (en)
French (fr)
Inventor
憲治 平重
長谷川 正彦
克倫 大木
貴史 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/004008 priority Critical patent/WO2020161792A1/ja
Publication of WO2020161792A1 publication Critical patent/WO2020161792A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides

Definitions

  • the present invention relates to a guide rail processing device and a guide rail processing method for scraping at least a part of a surface to be processed of a guide rail.
  • the grinding belt is held by the processing head. Further, the processing head is moved so that the load current value of the motor that drives the grinding belt becomes the set value (see, for example, Patent Document 1).
  • the conventional guide rail processing device as described above is a device intended to maintain a constant grinding amount in the finishing process during the manufacture of the guide rail. Therefore, it is difficult for the conventional processing apparatus to perform processing according to the actual state of the guide rail.
  • the present invention has been made to solve the above problems, and provides a guide rail processing apparatus and a guide rail processing method that can more easily perform processing according to the actual state of the guide rail. With the goal.
  • a guide rail processing apparatus has a processing tool that scrapes off at least a part of a surface to be processed of the guide rail, and a processing apparatus main body that moves along the guide rail, and a processing device main body along the guide rail. It is equipped with a shape measuring device that is moved to measure the shape of the surface to be machined. ing.
  • a guide rail processing method is an installation step of installing a processing apparatus main body having a processing tool that scrapes off at least a part of a surface to be processed of the guide rail, and a shape measuring apparatus with respect to the guide rail, And a moving step of moving the processing apparatus main body and the shape measuring apparatus along the guide rail, the moving step measuring the guide rail with a processing tool and measuring the surface shape of the surface to be processed by the shape measuring apparatus. And a measuring step for performing.
  • the guide rail processing device and the guide rail processing method of the present invention it is possible to more easily perform processing according to the actual state of the guide rail.
  • FIG. 2 is a sectional view of the car guide rail taken along the line II-II of FIG. 1. It is a perspective view which shows the detailed structure of the processing apparatus main body of FIG. It is the perspective view which looked at the processing device main body of FIG. 3 from the angle different from FIG. It is the perspective view which looked at the processing device main body of FIG. 3 from the angle different from FIG. 3 and FIG. FIG. 6 is a perspective view of the processing apparatus main body of FIG. 3 viewed from an angle different from FIGS. 3 to 5.
  • FIG. 4 is a perspective view showing a state where the processing apparatus main body of FIG. 3 is set on a car guide rail.
  • FIG. 8 is a cross-sectional view showing a contact state between the processing tool of FIG. 7 and a car guide rail.
  • FIG. 8 is a cross-sectional view showing a contact state between the first guide roller, the second guide roller, the first pressing roller, and the second pressing roller of FIG. 7 and the car guide rail.
  • It is a block diagram which shows the shape measuring apparatus of FIG. It is a perspective view which shows typically an example of a structure of the detection part of FIG. It is a perspective view which shows the state which attached the detection part of FIG.
  • FIG. 29 is a configuration diagram showing a modified example in which the guide portion is sandwiched by the processing tool and the pressing roller of FIG. 28. It is a block diagram which shows the modification which abbreviate
  • Embodiment 1 is a configuration diagram showing an elevator according to Embodiment 1 of the present invention, and shows a state during renewal work.
  • a pair of car guide rails 2 is installed in the hoistway 1.
  • Each car guide rail 2 is configured by joining a plurality of rail members in the vertical direction. Further, each car guide rail 2 is fixed to the hoistway wall via a plurality of rail brackets 9.
  • the elevator car 3 is arranged between a pair of car guide rails 2. Further, the car 3 moves up and down in the hoistway 1 along the car guide rail 2.
  • the first end of the suspension 4 is connected to the top of the car 3.
  • a plurality of ropes or a plurality of belts are used.
  • a counterweight (not shown) is connected to the second end of the suspension 4. The car 3 and the counterweight are suspended in the hoistway 1 by a suspension body 4.
  • the middle part of the suspension 4 is wrapped around the drive sheave of a hoist (not shown).
  • the car 3 and the counterweight move up and down in the hoistway 1 by rotating the drive sheave.
  • a pair of counterweight guide rails (not shown) are installed in the hoistway 1. The counterweight moves up and down in the hoistway 1 along the counterweight guide rail.
  • An emergency stop device 5 is installed at the bottom of the car 3.
  • the emergency stop device 5 holds the pair of car guide rails 2 to stop the car 3 in an emergency.
  • Guide devices 6 that are in contact with the car guide rails 2 are attached to both ends in the width direction of the upper part of the car 3 and both ends in the width direction of the lower part of the car 3.
  • a sliding guide shoe or a roller guide device is used as each guide device 6, a sliding guide shoe or a roller guide device is used.
  • a processing device body 7 for processing the car guide rail 2 is provided below the car 3, a processing device body 7 for processing the car guide rail 2 is provided.
  • the processing apparatus main body 7 is shown as a simple box, but the detailed configuration will be described later.
  • the processing device body 7 is suspended from the lower portion of the car 3 into the hoistway 1 via a suspension member 8.
  • a suspension member 8 As the suspending member 8, a flexible cord-shaped member such as a rope, a wire or a belt is used.
  • the car 3 is located above the processing device body 7, and moves the processing device body 7 along the car guide rail 2.
  • a shape measuring device 52 is connected to the lower part of the processing device body 7 via a connecting member 51. Although the shape measuring device 52 is shown as a simple box in FIG. 1, the detailed configuration will be described later.
  • the shape measuring device 52 is connected to the processing device body 7 so as to be movable along the car guide rail 2 together with the processing device body 7. That is, the shape measuring device 52 is moved along the car guide rail 2 by moving the processing device body 7 along the car guide rail 2. Further, the shape measuring device 52 measures the surface shape of the car guide rail 2.
  • the guide rail processing device 100 has a processing device body 7, a suspension member 8, a connecting member 51, and a shape measuring device 52.
  • the guide rail processing device 100 is used when processing the car guide rail 2 installed in the hoistway 1, and is removed during normal operation of the elevator.
  • FIG. 2 is a sectional view of the car guide rail 2 taken along the line II-II of FIG.
  • the car guide rail 2 has a bracket fixing portion 2a and a guide portion 2b.
  • the bracket fixing portion 2a is a portion fixed to the rail bracket 9.
  • the guide portion 2b projects at a right angle from the center of the bracket fixing portion 2a in the width direction toward the car 3 side, and guides the car 3 to move up and down.
  • the guide portion 2b is gripped by the emergency stop device 5 when the car 3 is in an emergency stop.
  • the guide portion 2b has a pair of braking surfaces 2c facing each other and a tip surface 2d.
  • the tip surface 2d is an end surface of the guide portion 2b opposite to the bracket fixing portion 2a, that is, the end surface on the car 3 side.
  • the pair of braking surfaces 2c and the front end surface 2d function as guide surfaces with which the guide device 6 contacts when the car 3 is moved up and down.
  • the pair of braking surfaces 2c are surfaces that the emergency stop device 5 contacts when the car 3 is in an emergency stop.
  • the processing device body 7 in FIG. 1 processes each braking surface 2c. That is, each braking surface 2c is the processed surface of the first embodiment.
  • the shape measuring device 52 of FIG. 1 measures the surface shape of each braking surface 2c as the surface shape of the car guide rail 2.
  • FIG. 3 is a perspective view showing a detailed configuration of the processing apparatus body 7 of FIG.
  • FIG. 4 is a perspective view of the processing apparatus main body 7 of FIG. 3 viewed from an angle different from that of FIG.
  • FIG. 5 is a perspective view of the processing apparatus main body 7 of FIG. 3 viewed from an angle different from FIGS. 3 and 4.
  • FIG. 6 is a perspective view of the processing apparatus main body 7 of FIG. 3 viewed from an angle different from FIGS. 3 to 5.
  • the processing apparatus main body 7 includes a frame 11, a connector 12, a processing tool 13, a processing tool driving device 14, a first guide roller 15, a second guide roller 16, a first pressing roller 17, and a second pressing roller 18. , A first tip surface roller 19 and a second tip surface roller 20.
  • the frame 11 has a frame body 21 and a frame division body 22.
  • the connection tool 12, the processing tool 13, the processing tool drive device 14, the first guide roller 15, the second guide roller 16, the first tip surface roller 19 and the second tip surface roller 20 are provided on the frame body 21. It is provided.
  • the first pressing roller 17 and the second pressing roller 18 are provided in the frame divided body 22.
  • the connector 12 is provided on the upper end of the frame body 21.
  • the hanging member 8 is connected to the connector 12.
  • the processing tool driving device 14 is arranged on the opposite side of the frame body 21 from the processing tool 13. Further, the processing tool drive device 14 rotates the processing tool 13. As the processing tool drive device 14, for example, an electric motor is used.
  • the processing tool 13 processes the braking surface 2c.
  • a grindstone is used as the processing tool 13.
  • As the grindstone a cylindrical flat grindstone having a large number of abrasive grains provided on its outer peripheral surface is used.
  • a cutting tool or the like may be used as the processing tool 13.
  • the processing tool 13 By rotating the processing tool 13 with the outer peripheral surface of the processing tool 13 in contact with the braking surface 2c, at least a part of the braking surface 2c, that is, a part or the entire surface can be scraped off. Thereby, for example, the surface of the braking surface 2c can be shaved, and the surface shape of the braking surface 2c for the safety gear 5 can be made more appropriate.
  • a cover (not shown) is provided on the frame body 21.
  • the braking surface 2c is processed by the processing tool 13, processing chips are generated.
  • the cover prevents the processing waste from being scattered around the processing apparatus body 7.
  • the first guide roller 15 and the second guide roller 16 are provided on the frame main body 21 side by side with the processing tool 13.
  • the first guide roller 15 is arranged above the processing tool 13 and the second guide roller 16 is arranged below the processing tool 13 while the frame 11 is suspended by the suspension member 8.
  • the processing tool 13 is arranged between the first guide roller 15 and the second guide roller 16.
  • the first guide roller 15 and the second guide roller 16 contact the braking surface 2c together with the processing tool 13 to bring the outer peripheral surface of the processing tool 13 into parallel contact with the braking surface 2c. That is, the outer peripheral surface of the processing tool 13 is uniformly contacted with the braking surface 2c in the entire width direction of the processing tool 13.
  • Two line segments, which are the contact portions of the guide rollers 15 and 16 with the braking surface 2c, and one line segment, which are the contact portions with the braking surface 2c of the processing tool 13, can exist in one plane. Is set.
  • the first pressing roller 17 and the first guide roller 15 sandwich the guide portion 2b.
  • the second pressing roller 18 sandwiches the guide portion 2b between the second pressing roller 18 and the second guide roller 16. That is, when the processing tool 13, the first guide roller 15, and the second guide roller 16 contact the braking surface 2c on the processing target side, the first pressing roller 17 and the second pressing roller 18 Contacts the braking surface 2c on the opposite side.
  • the rotation axes of the processing tool 13 and the rollers 15, 16, 17, 18 are parallel or substantially parallel to each other, and are horizontal or substantially horizontal when the car guide rail 2 is processed.
  • the first tip surface roller 19 is provided at the upper end of the frame body 21.
  • the second tip surface roller 20 is provided at the lower end of the frame body 21. That is, the first and second front end surface rollers 19, 20 are arranged at intervals in the vertical direction.
  • the frame divided body 22 is linearly movable with respect to the frame main body 21 between the sandwiched position and the released position.
  • the sandwiching position is a position where the guide portion 2b is sandwiched between the guide rollers 15 and 16 and the pressing rollers 17 and 18.
  • the release position is a position where the pressing rollers 17 and 18 are farther from the guide rollers 15 and 16 than the pinching position.
  • the frame main body 21 is provided with a pair of rod-shaped frame guides 23.
  • the frame guide 23 guides the movement of the frame divided body 22 with respect to the frame body 21. Further, the frame guide 23 penetrates the frame division body 22.
  • a pair of rod fixing parts 24 are provided at the upper and lower ends of the frame body 21.
  • the frame divided body 22 is provided with a pair of facing portions 25 facing the rod fixing portion 24.
  • a frame spring rod 26 is fixed to each rod fixing portion 24. Each frame spring rod 26 penetrates the facing portion 25.
  • a frame spring receiver 27 is attached to the frame spring rod 26.
  • a frame spring 28 is provided between the frame spring receiver 27 and the facing portion 25. Each frame spring 28 generates a force for moving the frame divided body 22 to the sandwiched position.
  • the pressing force applied to the pressing rollers 17 and 18 by the frame spring 28 overcomes the force of the processing device main body 7 inclining due to the eccentricity of the center of gravity of the processing device main body 7, and the outer peripheral surfaces of the guide rollers 15 and 16 and the braking surface 2c.
  • the size is set so that it can be kept parallel to.
  • the pressing force of the pressing rollers 17 and 18 by the frame spring 28 causes the outer peripheral surfaces of the guide rollers 15 and 16 even when the processing apparatus body 7 is moved along the car guide rail 2 while rotating the processing tool 13. And the braking surface 2c are kept parallel to each other.
  • a release position holding mechanism (not shown) is provided between the frame body 21 and the frame divided body 22.
  • the release position holding mechanism holds the frame divided body 22 in the release position against the spring force of the frame spring 28.
  • the processing tool 13 and the processing tool drive device 14 are linearly movable with respect to the frame main body 21 between the processing position and the separated position.
  • the processing position is a position where the processing tool 13 contacts the braking surface 2c with the guide rollers 15 and 16 contacting the braking surface 2c.
  • the separated position is a position where the processing tool 13 is separated from the braking surface 2c in a state where the guide rollers 15 and 16 are in contact with the braking surface 2c.
  • the pressing rollers 17 and 18 are movable in the direction perpendicular to the braking surface 2c. Further, the processing tool 13 and the processing tool drive device 14 are also movable in a direction perpendicular to the braking surface 2c.
  • the processing tool drive device 14 is attached to a flat plate-shaped movable support member 29.
  • a pair of rod-shaped drive device guides 30 are fixed to the frame body 21.
  • the movable support member 29 is slidable along the drive device guide 30.
  • the processing tool 13 and the processing tool drive device 14 are linearly movable with respect to the frame body 21.
  • a processing tool spring 31 is provided between the movable support member 29 and the frame body 21.
  • the processing tool spring 31 generates a force that moves the processing tool 13 and the processing tool drive device 14 to the processing position side.
  • the pressing force of the processing tool 13 by the processing tool spring 31 is set to a magnitude that does not cause a problem such as chattering.
  • a separation position holding mechanism (not shown) is provided between the frame body 21 and the movable support member 29.
  • the separated position holding mechanism holds the processing tool 13 and the processing tool drive device 14 at the separated position against the spring force of the processing tool spring 31.
  • FIG. 7 is a perspective view showing a state where the processing apparatus main body 7 of FIG. 3 is set on the car guide rail 2.
  • FIG. 8 is a perspective view showing a state where the processing apparatus main body 7 of FIG. 4 is set on the car guide rail 2.
  • FIG. 9 is a perspective view showing a state where the processing apparatus main body 7 of FIG. 5 is set on the car guide rail 2.
  • FIG. 10 is a cross-sectional view showing a contact state between the processing tool 13 and the car guide rail 2 of FIG. 7.
  • the width dimension of the outer peripheral surface of the processing tool 13 is larger than the width dimension of the braking surface 2c. As a result, the processing tool 13 is in contact with the entire braking surface 2c in the width direction.
  • FIG. 11 is a cross-sectional view showing a contact state between the car guide rail 2 and the first guide roller 15, the second guide roller 16, the first pressing roller 17, and the second pressing roller 18 of FIG. 7. is there.
  • the outer peripheral surfaces of the first and second guide rollers 15 and 16 are cylindrical. That is, the shapes of the outer peripheral surfaces of the first and second guide rollers 15 and 16 in the cross section along the rotation center C1 of the first and second guide rollers 15 and 16 are straight lines.
  • the outer peripheral surfaces of the first and second pressing rollers 17 and 18 are substantially spherical. That is, the outer peripheral surfaces of the first and second pressing rollers 17 and 18 in the cross section along the rotation center C2 of the first and second pressing rollers 17 and 18 are arcuate.
  • FIG. 12 is a block diagram showing the shape measuring device 52 of FIG.
  • the shape measuring device 52 includes a detection unit 53, a calculation unit 54a, a determination unit 54b, a storage unit 55, and a notification unit 56.
  • the detection unit 53 detects the surface shape data of the braking surface 2c.
  • the detection unit 53 faces the braking surface 2c when detecting the surface shape data of the braking surface 2c. Further, the detection unit 53 outputs a detection signal for calculating the surface shape of the braking surface 2c to the calculation unit 54a.
  • the calculation unit 54a calculates the surface shape of the braking surface 2c based on the detection signal from the detection unit 53. Further, the calculation unit 54a outputs the surface shape as the calculation result to the notification unit 56.
  • the storage unit 55 stores a target value regarding the surface shape of the braking surface 2c, that is, a target shape.
  • the storage unit 55 stores the surface shape as the calculation result of the calculation unit 54a together with the detection position of the surface shape data in the longitudinal direction of the car guide rail 2.
  • the detection position may be a car position at the time of detecting the surface shape data.
  • the determination unit 54b compares the surface shape as the calculation result with a preset target shape and determines whether or not the degree of processing by the processing apparatus body 7 has reached the target degree. The determination unit 54b also outputs the determination result to the notification unit 56.
  • the notification unit 56 notifies the outside of the surface shape of the braking surface 2c calculated by the calculation unit 54a and the determination result by the determination unit 54b.
  • a unit capable of performing four arithmetic operations such as a microcomputer can be used as the arithmetic unit 54a.
  • a commercially available discriminator or relay meter can be used as the determination unit 54b.
  • a computer can be used as a configuration in which the calculation unit 54a, the determination unit 54b, and the storage unit 55 are combined.
  • a general personal computer can be used as the computer.
  • the computer has a CPU (central processing unit), which is an arithmetic unit, and a hard disk drive.
  • the hard disk drive also stores a shape calculation program, a determination program, and a target shape.
  • the calculation unit 54a is also connected to the detection unit 53 via a cable or the like.
  • the notification unit 56 for example, a relay, a DIO (digital input/output) device, a rotating light, an alarm device, a liquid crystal display, or a combination thereof can be used.
  • FIG. 13 is a perspective view schematically showing an example of the configuration of the detection unit 53 of FIG. Further, FIG. 14 is a perspective view showing a state in which the detection unit 53 of FIG. 13 is mounted on the car guide rail 2.
  • the X direction is a direction perpendicular to the tip surface 2d.
  • the Y direction is a direction perpendicular to the braking surface 2c and is a width direction of the car guide rail 2.
  • the Z direction is a direction along the longitudinal direction of the car guide rail 2 and is a vertical direction.
  • the detection unit 53 includes a measurement frame 57 having a U-shaped cross section, a first displacement sensor 58a, a second displacement sensor 59a, a third displacement sensor 60a, a fourth displacement sensor 61a, a fifth displacement sensor 62a, and a fifth displacement sensor 62a. It has six displacement sensors 63c.
  • the measurement frame 57 has a first facing portion 57a, a second facing portion 57b, and a third facing portion 57c, which serve as the tip surface facing portion, as the workpiece surface facing portion.
  • the first facing portion 57a faces one of the braking surfaces 2c when the surface shape data of the braking surface 2c is detected, that is, when the shape is detected.
  • the second facing portion 57b faces the other braking surface 2c during shape detection.
  • the third facing portion 57c faces the tip surface 2d at the time of shape detection.
  • the first displacement sensor 58a, the second displacement sensor 59a, the third displacement sensor 60a, the fourth displacement sensor 61a, and the fifth displacement sensor 62a are provided in the first facing portion 57a. Further, the first displacement sensor 58a, the second displacement sensor 59a, the third displacement sensor 60a, the fourth displacement sensor 61a, and the fifth displacement sensor 62a correspond to the distance to the opposing braking surface 2c. Generate a signal.
  • the sixth displacement sensor 63c is provided on the third facing portion 57c. Further, the sixth displacement sensor 63c generates a signal according to the distance to the front end surface 2d that faces the sixth displacement sensor 63c.
  • a non-contact type sensor for example, an eddy current type displacement sensor, a laser displacement sensor, or a capacitance type displacement sensor can be used.
  • the first displacement sensor 58a, the second displacement sensor 59a, and the third displacement sensor 60a are arranged on the first straight line L1 at intervals.
  • the fourth displacement sensor 61a and the fifth displacement sensor 62a are arranged at an interval from each other on the second straight line L2 parallel to the first straight line L1.
  • the distance between the first displacement sensor 58a and the second displacement sensor 59a is the same as the distance between the second displacement sensor 59a and the third displacement sensor 60a.
  • the distance between the fourth displacement sensor 61a and the fifth displacement sensor 62a is the same as the distance between the first displacement sensor 58a and the second displacement sensor 59a.
  • the distance between the first displacement sensor 58a and the fourth displacement sensor 61a is the same as the distance between the second displacement sensor 59a and the fifth displacement sensor 62a.
  • the measurement frame 57 is set on the car guide rail 2 so that the first straight line L1 and the second straight line L2 are parallel to the longitudinal direction of the car guide rail 2 during shape detection. At this time, the first straight line L1 and the second straight line L2 are located in a plane parallel to the XZ plane, and the second straight line L2 is located closer to the tip surface 2d side than the first straight line L1.
  • the first displacement sensor 58a is arranged below the second displacement sensor 59a
  • the second displacement sensor 59a is arranged below the third displacement sensor 60a
  • the fourth displacement sensor 61a is arranged below the fifth displacement sensor 62a.
  • the fourth displacement sensor 61a is arranged at the same vertical position as the first displacement sensor 58a at the time of shape detection. Further, the fifth displacement sensor 62a is arranged at the same vertical position as the second displacement sensor 59a at the time of shape detection.
  • the shape measuring device 52 can measure the distance to the braking surface 2c at three points on the straight line L1 along the moving direction of the processing device body 7. Further, the shape measuring device 52 can measure the distance to the braking surface 2c at two points deviating from the straight line L1 in addition to the above-mentioned three points.
  • FIG. 15 is an explanatory diagram showing the behavior of the detection unit 53 in FIG. 14 at the time of shape detection.
  • FIG. 15 shows how the surface shape data is detected while moving the detection unit 53 in the ⁇ Z direction. Further, FIG. 15 shows the detection unit 53 after t seconds, t+ ⁇ seconds, and t+2 ⁇ seconds. Further, in FIG. 15, for easy understanding, the translation amount of the detection unit 53 in the Y direction is shown large.
  • the detection unit 53 is fixed to the processing device body 7.
  • the processing device body 7 is positioned by bringing the rollers 15, 16, 17, 18 into contact with the braking surface 2c. Therefore, the moving posture of the detecting unit 53 is not always constant. That is, the detecting unit 53 translates or tilts in the Y direction as shown in FIG.
  • the cycle of sampling the signals from the displacement sensors 58a, 59a, 60a, 61a, 62a is set to an appropriate value.
  • the second displacement sensor 59a performs the detection after ⁇ seconds at the Z direction position detected by the first displacement sensor 58a.
  • the third displacement sensor 60a performs the detection after ⁇ seconds at the Z direction position detected by the second displacement sensor 59a.
  • the fifth displacement sensor 62a performs the detection after ⁇ seconds at the Z-direction position detected by the fourth displacement sensor 61a.
  • the Z direction position where the signal is sampled from the second displacement sensor 59a after t+ ⁇ seconds from the start of measurement is equal to the Z direction position where the signal is sampled from the first displacement sensor 58a after t seconds from the start of measurement.
  • the Z-direction position at which the signal is sampled from the third displacement sensor 60a after t+ ⁇ seconds from the start of measurement is equal to the Z-direction position at which the signal is sampled from the second displacement sensor 59a after t seconds from the start of measurement.
  • the Z-direction position at which the signal is sampled from the third displacement sensor 60a after t+2 ⁇ seconds from the start of measurement is equal to the Z-direction position at which the signal is sampled from the first displacement sensor 58a after t seconds from the start of measurement.
  • the Z-direction position at which the signal is sampled from the fifth displacement sensor 62a after t+ ⁇ seconds from the start of measurement is equal to the Z-direction position at which the signal is sampled from the fourth displacement sensor 61a at t seconds after the start of measurement.
  • FIG. 16 is a table showing the relationship between the distance to the braking surface 2c obtained from the signals from the displacement sensors 58a, 59a, 60a, 61a and 62a of FIG. 15 and the time from the start of measurement.
  • the distance from each displacement sensor 58a, 59a, 60a, 61a, 62a to the braking surface 2c is obtained by the arithmetic unit 54a performing arithmetic processing on the signal from each displacement sensor 58a, 59a, 60a, 61a, 62a.
  • the detection unit 53 translates or tilts in the Y direction as shown in FIG. Therefore, in order to more accurately derive the surface shape of the braking surface 2c, it is necessary to correct the values shown in FIG.
  • FIG. 17 is an explanatory diagram showing the positional relationship of the displacement sensors 58a, 59a, 60a, 61a, 62a of FIG.
  • the distance between the first displacement sensor 58a and the fourth displacement sensor 61a and the distance between the second displacement sensor 59a and the fifth displacement sensor 62a are respectively g.
  • a straight line that passes through the center of the first displacement sensor 58a and the center of the fourth displacement sensor 61a is parallel or nearly parallel to the X axis at the time of shape detection.
  • the distance between the displacement sensors 58a, 59a, 60a, 61a, 62a is stored in the storage unit 55.
  • ⁇ (j3'-j3)-(j2''-j2') ⁇ /d is t+ ⁇ seconds later than the straight line formed by the first to third displacement sensors 58a, 59a, 60a after t seconds Represents the inclination per unit length of the straight line formed by the first to third displacement sensors 58a, 59a, 60a.
  • the first to third displacement sensors 58a, 59a, and 60a after t seconds are formed on the straight line formed by the first to third displacement sensors 58a, 59a, and 60a.
  • the distance q5 between the first displacement sensor 58a and the braking surface 2c is given by the equation 2.
  • ⁇ (j4'-q4)-(j3''-j3) ⁇ /d is the value obtained after t+2 ⁇ seconds with respect to the straight line formed by the first to third displacement sensors 58a, 59a, 60a after t seconds.
  • the inclination per unit length of the straight line formed by the first to third displacement sensors 58a, 59a, 60a is shown.
  • the first to third displacement sensors 58a, 59a, 60a after t seconds form a straight line on the straight line formed by the first to third displacement sensors 58a, 59a, and 60a.
  • the distance r4 between the fourth displacement sensor 61a and the braking surface 2c is given by Expression 3.
  • ⁇ (j3'-j3)-(j2''-j2') ⁇ /d is t+ ⁇ seconds after the straight line formed by the first to third displacement sensors 58a, 59a, 60a after t seconds.
  • the first to third displacement sensors 58a, 59a, and 60a after t seconds are formed on the straight line formed by the first to third displacement sensors 58a, 59a, and 60a after t+2 ⁇ seconds.
  • the distance r5 between the fourth displacement sensor 61a and the braking surface 2c is given by the equation 4.
  • ⁇ (j4'-q4)-(j3''-j3) ⁇ /d is a value obtained after t+2 ⁇ seconds with respect to a straight line formed by the first to third displacement sensors 58a, 59a, 60a after t seconds.
  • the inclination per unit length of the straight line formed by the first to third displacement sensors 58a, 59a, 60a is shown.
  • the first to third displacement sensors 58a, 59a, and 60a after t seconds are formed on the straight line formed by the first to third displacement sensors 58a, 59a, and 60a. If it is considered that the third displacement sensors 58a, 59a, 60a are present, the distance r4′ between the fifth displacement sensor 62a and the braking surface 2c is given by Equation 5.
  • ⁇ (j4'-q4)-(j3''-j3) ⁇ /d is a value obtained after t+2 ⁇ seconds with respect to a straight line formed by the first to third displacement sensors 58a, 59a, 60a after t seconds.
  • the inclination per unit length of the straight line formed by the first to third displacement sensors 58a, 59a, 60a is shown.
  • R4, r5, r4′ derived by the equations 3 to 5 are values obtained by removing the error in the detection signal due to the translation of the first facing portion 57a in the Y direction and the inclination in the YZ plane.
  • an inclination in the XY plane also occurs in the first facing portion 57a during the measurement of the surface shape. Therefore, for example, r4, r5, and r4' are not necessarily equal.
  • the surface shape of the braking surface 2c in the YZ plane in which the fourth displacement sensor 61a is present is the first measured value over the entire length of the guide rail. It is derived as a standard. Further, by combining the surface shape of the braking surface 2c in the YZ plane where the displacement sensor 58a exists, which is derived by the equation 2, the three-dimensional surface shape of the braking surface 2c is based on the first measured value. Is derived as.
  • the sixth displacement sensor 63c detects the distance from the tip surface 2d at an appropriate sampling period when detecting the shape of the braking surface 2c.
  • FIG. 18 is a flowchart showing the guide rail processing method according to the first embodiment.
  • a control device and a power source (not shown) are loaded into the car 3.
  • the control device is a device that controls the processing device body 7 and the shape measuring device 52. Further, in step S2, the guide rail processing device 100 is carried into the pit of the hoistway 1.
  • step S3 the suspension member 8 is connected to the car 3 to suspend the guide rail processing device 100 in the hoistway 1.
  • step S4 the guide rail processing device 100 is connected to the control device and the power supply. Then, in steps S5 and S6, the guide rail processing apparatus 100 is set on the car guide rail 2.
  • step S5 as shown in FIG. 19, with the processing tool 13 held at the separated position and the frame divided body 22 held at the released position, the guide rollers 15 and 16 are moved to one of the braking surfaces. Contact 2c. Further, the tip end surface rollers 19 and 20 are brought into contact with the tip end surface 2d.
  • step S6 the frame divided body 22 is moved to the sandwiching position, and the guide portion 2b is sandwiched between the guide rollers 15 and 16 and the pressing rollers 17 and 18, as shown in FIG.
  • step S7 After setting the processing device body 7 on the car guide rail 2 in this manner, the processing tool 13 is rotated in step S7. Then, in step S8, as shown in FIG. 21, the processing tool 13 and the processing tool drive device 14 are moved to the processing position, and the car 3 is moved to the uppermost floor at a constant speed lower than the rated speed. That is, the processing device body 7 is moved along the car guide rail 2 while the braking surface 2c is processed by the processing tool 13.
  • step S9 the rotation of the processing tool 13 is stopped and the car 3 is stopped.
  • step S11 the surface shape of the braking surface 2c is measured by the shape measuring device 52 while moving the car 3 to the lowest floor.
  • the braking surface 2c is processed only when the car 3 is raised, it is preferable to keep the processing tool 13 away from the braking surface 2c when the car 3 is lowered.
  • step S12 it is confirmed whether the surface shape of the braking surface 2c has reached the target shape.
  • the guide portion 2b is sandwiched between the guide rollers 15 and 16 and the pressing rollers 17 and 18, and steps S7 to S12 are performed again.
  • the processing is completed.
  • a processing device body 7 which is bilaterally symmetric with FIG. 3 and a shape measuring device 52 which is bilaterally symmetric with FIG.
  • the shape measuring device 52 may be hung upside down and the shape measuring device 52 may be hung upside down.
  • the connector 12 may be added to the lower end of the frame body 21.
  • the guide rail processing method of the first embodiment includes an installation process and a moving process.
  • the processing device body 7 and the shape measuring device 52 are installed in the hoistway 1 with respect to the car guide rail 2.
  • the guide rail processing device 100 is connected to the car 3.
  • the processing device body 7 and the shape measuring device 52 are moved along the car guide rail 2.
  • the moving process includes a processing process, a measurement process, a determination process, and a notification process.
  • the car guide rail 2 is processed by the processing tool 13.
  • the shape measuring device 52 measures the surface shape of the braking surface 2c.
  • the surface shape of the braking surface 2c measured in the measurement step is compared with the target shape to determine whether the degree of processing by the processing apparatus body 7 has reached the target degree.
  • the determination result of the determination process is notified to the outside.
  • the machining device body 7 is controlled based on the measurement value measured in the measurement process.
  • a method of controlling the processing apparatus main body 7 there is a method of controlling at least one of the rotation speed of the processing tool 13, the pressing force of the processing tool 13 against the braking surface 2c, and the moving speed of the processing apparatus main body 7.
  • the amount of processing can be increased by increasing the rotation speed of the processing tool 13, for example.
  • the amount of processing can be increased by increasing the pressing force of the processing tool 13 against the braking surface 2c.
  • the processing amount can be increased by reducing the moving speed of the processing apparatus body 7.
  • the elevator renewal method according to the first embodiment will be described.
  • the existing car 3 and the existing emergency stop device 5 are replaced with a new car and the new emergency stop device while leaving the existing car guide rail 2.
  • the renewal method of the first embodiment includes a rail processing step and a replacement step.
  • the processing apparatus main body 7 is connected to the existing car 3 via the suspending member 8, and the processing apparatus main body 7 is moved along the existing car guide rail 2 by the movement of the existing car 3.
  • the existing car 3 and the existing emergency stop device 5 are replaced with a new car and a new emergency stop device while leaving the existing car guide rail 2.
  • the processing apparatus body 7 and the shape measuring device 52 are moved along the car guide rail 2, and the shape measuring device 52 measures the surface shape of the braking surface 2c.
  • the shape measuring device 52 can measure the distance to the braking surface 2c at three points on the straight line L1 along the moving direction of the processing device body 7. For this reason, it is possible to more easily perform processing according to the actual state of the car guide rail 2.
  • the shape measuring device 52 can measure the distance to the braking surface 2c at two points deviating from the straight line L1. Therefore, the surface shape of the braking surface 2c can be measured more accurately.
  • the sixth displacement sensor 63c on the third facing portion 57c, it is possible to detect the displacement of the detection position by the detection unit 53 when the detection unit 53 largely translates in the direction perpendicular to the distal end surface 2d. Therefore, the data of the surface shape of the braking surface 2c can be obtained more accurately. Thereby, the surface shape of the braking surface 2c of the existing car guide rail 2 for the new emergency stop device can be further optimized while the car guide rail 2 is installed in the hoistway 1.
  • the shape measuring device 52 is connected to the processing device body 7 so as to be movable along the car guide rail 2 together with the processing device body 7. Therefore, the processing work and the measurement work for the car guide rail 2 can be efficiently performed.
  • the determination unit 54b compares the surface shape of the braking surface 2c obtained by the calculation with a preset target shape, and determines whether the degree of processing by the processing apparatus body 7 has reached the target degree. To do. Therefore, it is possible to smoothly determine whether additional processing is necessary.
  • the shape measuring device 52 is provided with a notification unit 56 that notifies the determination result of the determination unit 54b to the outside. Therefore, it is possible to easily confirm whether or not the additional processing is necessary outside the guide rail processing apparatus 100.
  • the processing device body 7 and the shape measuring device 52 are installed on the car guide rail 2 in the hoistway.
  • the processing device body 7 and the shape measuring device 52 are moved along the car guide rail 2. For this reason, it is possible to more easily perform processing according to the actual state of the car guide rail 2.
  • the machining device body 7 is controlled based on the surface shape of the braking surface 2c measured in the measuring process. Therefore, the degree of processing performed by the processing device body 7 can be adjusted more appropriately.
  • the surface shape of the braking surface 2c measured in the measurement step is compared with the target shape to determine whether or not the degree of processing by the processing apparatus body 7 has reached the target degree. Therefore, it is possible to smoothly determine whether additional processing is necessary.
  • the judgment result of the judgment process is notified to the outside. Therefore, it is possible to easily confirm whether or not the additional processing is necessary outside the guide rail processing apparatus 100.
  • the processing device body 7 and the shape measuring device 52 are suspended from the car 3. Therefore, the processing work and the measurement work for the car guide rail 2 can be efficiently performed.
  • the processing apparatus main body 7 is suspended in the hoistway 1 via the suspension member 8. Then, the processing device body 7 is moved along the car guide rail 2 while the braking surface 2c is processed by the processing tool 13. Therefore, the surface shape of the braking surface 2c with respect to the safety device 5 can be further optimized while the car guide rail 2 is installed in the hoistway 1.
  • the processing device body 7 is suspended by a suspension member 8. Therefore, it is possible to prevent the vibration of the car 3 from being transmitted to the processing apparatus main body 7 during the processing of the braking surface 2c. As a result, it is possible to prevent processing defects from occurring and to stably process the braking surface 2c.
  • the processing device body 7 and the shape measuring device 52 are suspended from the car 3. Therefore, it is not necessary to separately prepare a device for lifting the processing device body 7 and the shape measuring device 52. Further, the region of the car guide rail 2 gripped by the safety device 5 can be efficiently processed. Further, even in an elevator having a long up-and-down stroke, it is possible to easily perform processing over the entire length of the car guide rail 2 without using a long suspending member.
  • the processing device main body 7 is provided with guide rollers 15 and 16. Therefore, the outer peripheral surface of the processing tool 13 can be more surely brought into contact with the braking surface 2c in parallel, and the braking surface 2c can be uniformly processed without causing uncut portions.
  • the guide portion 2b is sandwiched between the guide rollers 15 and 16 and the pressing rollers 17 and 18. Therefore, the outer peripheral surface of the processing tool 13 can be more stably brought into contact with the braking surface 2c in parallel. Further, even when the braking surface 2c is tilted in the vertical direction, the outer peripheral surface of the processing tool 13 and the braking surface 2c can be kept parallel to each other.
  • the frame body 21 is provided with the connector 12. Therefore, the processing apparatus main body 7 can be moved along the car guide rail 2 in a state where the suspending member 8 is connected to the connecting tool 12 and is suspended in the hoistway 1. Thereby, the state of the car guide rail 2 with respect to the safety device 5 can be made more appropriate while the car guide rail 2 is installed in the hoistway 1.
  • first guide roller 15 is arranged above the processing tool 13 and the second guide roller 16 is arranged below the processing tool 13. Therefore, the parallelism between the outer peripheral surface of the processing tool 13 and the braking surface 2c can be maintained more stably. As a result, even when the car guide rail 2 is tilted, bent, or wavy in the vertical direction, the outer peripheral surface of the processing tool 13 and the braking surface 2c can be kept parallel to each other.
  • the processing tool 13 is arranged at an intermediate position between the first and second guide rollers 15 and 16. Therefore, the moving direction of the processing tool 13 with respect to the frame body 21 can be set to the direction perpendicular to the braking surface 2c. This makes it possible to stabilize the force with which the processing tool 13 is pressed against the braking surface 2c. Further, it is possible to perform stable processing without causing unevenness in processing, that is, non-uniformity in the amount of scraping.
  • the frame 11 is divided into a frame body 21 and a frame division body 22. Then, the frame spring 28 generates a force for moving the frame divided body 22 to the sandwiching position side. Therefore, the guide portion 2b can be stably sandwiched between the guide rollers 15 and 16 and the pressing rollers 17 and 18 with a simple configuration.
  • the processing tool 13 and the processing tool drive device 14 are movable between the processing position and the separated position. Then, the processing tool spring 31 generates a force for moving the processing tool 13 and the processing tool drive device 14 to the processing position side. Therefore, it is possible to stably press the processing tool 13 against the braking surface 2c and perform stable processing with a simple configuration. Further, by moving the processing tool 13 to the separated position, the processing device body 7 can be moved along the car guide rail 2 without processing the braking surface 2c.
  • the frame body 21 is provided with tip end surface rollers 19, 20. Therefore, the processing device body 7 can be smoothly moved along the car guide rail 2 in a stable posture.
  • the surface shape of the braking surface 2c of the existing car guide rail 2 for the new emergency stop device can be further optimized while the car guide rail 2 is installed in the hoistway 1.
  • the elevator can be renewed without replacing the existing car guide rail 2. Therefore, the construction period can be significantly shortened and the construction cost can be significantly reduced.
  • processing apparatus main body 7 is moved by using the existing cage 3, it is possible to prevent processing scraps generated during processing from adhering to the new cage and the new emergency stop device 5. ..
  • the braking surface 2c by processing the braking surface 2c while monitoring the surface shape of the braking surface 2c measured by the shape measuring device 52, it is possible to prevent defective products due to excessive processing of the braking surface 2c. As a result, the yield can be improved and the cost for construction can be reduced.
  • the configuration of the guide rail processing device 100 does not necessarily have to be the configuration of the first embodiment, and the same effect as that of the first embodiment can be obtained with other configurations.
  • FIG. 22 is a block diagram showing a first modification of the shape measuring device 52 of FIG. In the first modified example, the determination unit 54b and the storage unit 55 are omitted. In this case, the operator may determine whether the degree of processing by the processing apparatus body 7 has reached the target shape.
  • the configuration of the shape measuring device 52 can be simplified.
  • FIG. 23 is a block diagram showing a second modification of the shape measuring device 52 of FIG.
  • the calculation unit 54a of the second modification calculates the correction value based on the surface shape of the braking surface 2c obtained by the calculation and the preset target shape.
  • the correction value is calculated from the surface shape according to the processing position in the car guide rail 2. That is, the correction value takes into consideration the distance between the processing apparatus main body 7 and the shape measuring apparatus 52, and the time difference between the time when processing is performed on a specific point on the braking surface 2c and the time when measurement is performed. It is a value. Further, the correction value corrects a control parameter for controlling at least one of the rotation speed of the processing tool 13, the pressing force of the processing tool 13 against the car guide rail 2, and the moving speed of the processing apparatus body 7. It is a value.
  • the correction value calculated by the calculation unit 54a is output from the notification unit 56 to the communication target.
  • the shape measuring device 52 corrects the control parameter.
  • the notification unit 56 includes a communication device that communicates with a communication target.
  • the communication target is the control device that controls the processing device body 7.
  • the communication target is the elevator control device that controls the moving speed of the car 3.
  • the processing amount can be increased by increasing the rotation speed of the processing tool 13, for example.
  • the amount of processing can be increased by increasing the pressing force of the processing tool 13 against the braking surface 2c.
  • the processing amount of the braking surface 2c can be increased.
  • the number of sensors provided in the detection unit 53 is not particularly limited. The cost can be reduced by reducing the number of sensors. For example, when measuring the two-dimensional shape of the braking surface 2c, the displacement sensors 61a and 62a can be omitted.
  • the number of displacement sensors is increased on the straight line formed by the displacement sensors 58a, 59a, 60a in the surface of the first facing portion 57a, or the displacement sensor 61a in the surface of the first facing portion 57a. , 62a may be added on the straight line.
  • the displacement sensor 63c can be omitted when the displacement of the shape measuring device 52 in the direction perpendicular to the tip surface 2d hardly occurs. If the tip surface 2d is not a flat surface but a curved surface, by adding two more displacement sensors in the same plane of the displacement sensor 63c, the detection unit 53 itself shifts in the direction perpendicular to the tip surface 2d. Can be detected. In that case, three displacement sensors including the displacement sensor 63c are arranged at regular intervals in the direction along the longitudinal direction of the car guide rail 2.
  • the displacement sensor described in the first embodiment has a function of detecting a distance to one point on the braking surface 2c, it simultaneously detects distances to a plurality of points on the braking surface 2c.
  • a line sensor can be used as the non-contact type sensor having a function of simultaneously detecting the distances between a plurality of points on the braking surface 2c. In this case, the number of sensors can be reduced as compared with the case of using a displacement sensor that detects the distance to one point.
  • the braking surface 2c is processed while the processing device body 7 is raised, and the shape measurement device 52 performs the measurement while the shape measurement device 52 is lowered.
  • the braking surface 2c may be processed while the processing device body 7 is lowered, and the shape measurement device 52 may perform the measurement while the shape measurement device 52 is raised.
  • the braking surface 2c may be processed, and at the same time, the shape measuring device 52 may perform the measurement.
  • the shape measuring device 52 may measure the braking surface 2c while lowering the processing device main body 7 and at the same time.
  • the combination of the moving direction of the processing apparatus main body 7 during processing, the moving direction of the shape measuring apparatus 52 during measurement, and the position of the shape measuring apparatus 52 with respect to the processing apparatus main body 7 is not limited to the above example.
  • FIG. 24 is an explanatory diagram showing a first combination example of the moving direction of the guide rail processing device 100 and the position of the shape measuring device 52 with respect to the processing device body 7.
  • FIG. 25 is an explanatory diagram showing a second combination example of the moving direction of the guide rail processing device 100 and the position of the shape measuring device 52 with respect to the processing device body 7.
  • the guide rail processing device 100 is raised and the shape measuring device 52 is arranged on the processing device body 7. Further, in the first combination example, processing and measurement are performed when the guide rail processing apparatus 100 is raised.
  • the guide rail processing device 100 is lowered and the shape measuring device 52 is arranged below the processing device body 7. Further, in the second combination example, processing and measurement are performed when the guide rail processing device 100 is lowered.
  • the shape measuring device 52 is arranged in front of the processing device body 7 in the moving direction of the processing device body 7 when performing the moving step. ..
  • the storage unit 55 also stores the distance between the processing apparatus body 7 and the shape measuring apparatus 52. As a result, when the control parameter is corrected by the correction value considering this distance as in the second modified example shown in FIG. 23, the braking surface 2c is processed while automatically correcting the control parameter. You can
  • FIG. 26 is an explanatory diagram showing a third combination example of the moving direction of the guide rail processing device 100 and the position of the shape measuring device 52 with respect to the processing device body 7.
  • FIG. 27 is an explanatory diagram showing a fourth combination example of the moving direction of the guide rail processing device 100 and the position of the shape measuring device 52 with respect to the processing device body 7.
  • the guide rail processing device 100 is elevated and the shape measuring device 52 is arranged below the processing device body 7. Further, in the third combination example, processing and measurement are performed when the guide rail processing apparatus 100 is raised.
  • the guide rail processing device 100 is lowered, and the shape measuring device 52 is arranged on the processing device body 7. Further, in the fourth combination example, processing and measurement are performed when the guide rail processing device 100 is lowered.
  • the shape measuring device 52 is arranged behind the processing device main body 7 in the moving direction of the processing device main body 7 when performing the moving step. ..
  • the storage unit 55 also stores the distance between the processing apparatus body 7 and the shape measuring apparatus 52, and the Z coordinate in FIG. 14 when the surface shape data of the braking surface 2c is detected.
  • the control parameter is corrected by the correction value as in the second modification shown in FIG. 23, the braking surface 2c is processed while automatically correcting the control parameter during the next processing.
  • the number of guide rollers may be one or three or more. Accordingly, the number of pressing rollers may be one or three or more.
  • the guide portion 2b may be sandwiched by one guide roller 15 and one pressing roller 17.
  • FIG. 29 shows a configuration in which the guide 2b is sandwiched between the processing tool 13 and the pressing roller 17. Even with such a configuration, the processing tool 13 can be applied to the braking surface 2c in parallel.
  • FIG. 30 shows a configuration in which the frame division body and the pressing roller are omitted, and the frame main body 21 is pressed against the guide portion 2b side by the pair of frame main body springs 33. Even with such a configuration, the processing tool 13 can be applied to the braking surface 2c in parallel.
  • the measuring frame 57 has a U-shaped cross section in the first embodiment, but may have a different shape. As long as the measurement frame 57 has the pair of facing portions 57a, the same effect as that of the first embodiment can be obtained.
  • the distance between the first displacement sensor 58a and the second displacement sensor 59a and the distance between the second displacement sensor 59a and the third displacement sensor 60a do not necessarily have to be equal.
  • the displacement sensors 58a, 59a, The sampling period of 60a may be set appropriately.
  • the distance between the first displacement sensor 58a and the second displacement sensor 59a and the distance between the fourth displacement sensor 61a and the fifth displacement sensor 62a do not necessarily have to be equal.
  • the displacement sensors 58a, 59a, The sampling periods of 61a and 62a may be set appropriately.
  • a vibration meter for detecting the vibration of the processing apparatus body 7 may be provided in the guide rail processing apparatus 100, and the guide rail may be processed while measuring the vibration of the processing apparatus body. Then, when the vibration of the processing apparatus main body becomes equal to or more than the threshold value, the processing may be interrupted. As a result, it is possible to suppress the disorder of the machined surface caused by the abnormal vibration and suppress the generation of defective products. Therefore, the yield can be improved and the cost for the construction can be reduced.
  • the number of measurement points on the straight line L1 may be four or more.
  • the number of measurement points on the straight line L2 may be three or more. In this case, it is possible to monitor whether or not the sensor is abnormal.
  • the rotation axis of the processing tool 13 and the rotation axis of the guide roller do not necessarily have to be parallel.
  • the force for pressing the processing tool and the pressing roller against the braking surface is generated by the spring, but may be generated by, for example, a pneumatic cylinder, a hydraulic cylinder, or an electric actuator.
  • the connector 12 may be formed integrally with the frame.
  • the suspending member 8 may be formed integrally with the connector 12.
  • connecting member 51 may be formed integrally with the processing device body 7 or the shape measuring device 52.
  • the processing apparatus main body 7 was hung from the existing car, but it may be hung from the new car.
  • the processing apparatus main body is suspended from the car, but the processing apparatus main body may be suspended from a lifting device such as a winch installed on the top of the hoistway or in the car.
  • the shape measuring device 52 is connected to the processing device main body 7, but the shape measuring device may be separated from the processing device main body. In this case, the shape measuring device may be moved independently of the processing device main body by, for example, a lifting device.
  • the lifting body is a car and the processing target is a car guide rail is shown.
  • the present invention can also be applied to the case where the lifting body is a counterweight and the object to be processed is a counterweight guide rail.
  • the processing device body 7 may be suspended from the counterweight.
  • the guide rail was processed during the renewal work.
  • the present invention can be applied to the case where it is desired to adjust the surface shape of the braking surface in a new elevator, or to refresh the braking surface during maintenance of an existing elevator.
  • the present invention can be applied to various types of elevators such as an elevator having a machine room, a machine room-less elevator, a double deck elevator, and a one-shaft multi-car elevator.
  • the one-shaft multi-car system is a system in which an upper car and a lower car arranged directly below the upper car independently move up and down a common hoistway.
  • the guide rail to be processed is not limited to the elevator guide rail. Further, the present invention can also be applied to, for example, a guide rail that is stood upright.
  • 2 car guide rails 2c braking surface (work surface), 2d tip surface, 3 car (elevating body), 7 processing device body, 13 processing tool, 52 shape measuring device, 53 detection unit, 54b determination unit, 56 notification unit , 100 guide rail processing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

ガイドレール加工装置は、加工装置本体と形状測定装置とを有している。加工装置本体は、ガイドレールの被加工面の少なくとも一部を削り取る加工具を有しており、ガイドレールに沿って移動する。形状測定装置は、加工装置本体とともにガイドレールに沿って移動され、被加工面の形状を測定する。また、形状測定装置は、加工装置本体の移動方向に沿う直線上の少なくとも3点で、被加工面までの距離を測定可能になっている。

Description

ガイドレール加工装置及びガイドレール加工方法
 この発明は、ガイドレールの被加工面の少なくとも一部を削り取るガイドレール加工装置及びガイドレール加工方法に関するものである。
 従来のガイドレールの加工装置では、研削ベルトが加工ヘッドに保持されている。また、研削ベルトを駆動するモータの負荷電流値が設定値となるように、加工ヘッドが移動される(例えば、特許文献1参照)。
特開2005-224877号公報
 上記のような従来のガイドレールの加工装置は、ガイドレールの製造時の仕上げ工程で、研削量を一定に保つことを目的とした装置である。このため、従来の加工装置では、実際のガイドレールの状態に応じて加工を施すことが困難である。
 この発明は、上記のような課題を解決するためになされたものであり、実際のガイドレールの状態に応じた加工をより容易に行うことができるガイドレール加工装置及びガイドレール加工方法を得ることを目的とする。
 この発明に係るガイドレール加工装置は、ガイドレールの被加工面の少なくとも一部を削り取る加工具を有しており、ガイドレールに沿って移動する加工装置本体、及び加工装置本体とともにガイドレールに沿って移動され、被加工面の形状を測定する形状測定装置を備え、形状測定装置は、加工装置本体の移動方向に沿う直線上の少なくとも3点で、被加工面までの距離を測定可能になっている。
 この発明に係るガイドレール加工方法は、ガイドレールの被加工面の少なくとも一部を削り取る加工具を有している加工装置本体と、形状測定装置とを、ガイドレールに対して設置する設置工程、及び加工装置本体と形状測定装置とをガイドレールに沿って移動させる移動工程を備え、移動工程は、加工具によってガイドレールを加工する加工工程と、形状測定装置により被加工面の表面形状を測定する測定工程とを含む。
 この発明のガイドレール加工装置及びガイドレール加工方法によれば、実際のガイドレールの状態に応じた加工をより容易に行うことができる。
この発明の実施の形態1によるエレベータを示す構成図である。 図1のII-II線に沿うかごガイドレールの断面図である。 図1の加工装置本体の詳細な構成を示す斜視図である。 図3の加工装置本体を図3とは異なる角度から見た斜視図である。 図3の加工装置本体を図3及び図4とは異なる角度から見た斜視図である。 図3の加工装置本体を図3~5とは異なる角度から見た斜視図である。 図3の加工装置本体をかごガイドレールにセットした状態を示す斜視図である。 図4の加工装置本体をかごガイドレールにセットした状態を示す斜視図である。 図5の加工装置本体をかごガイドレールにセットした状態を示す斜視図である。 図7の加工具とかごガイドレールとの接触状態を示す断面図である。 図7の第1のガイドローラ、第2のガイドローラ、第1の押付ローラ、及び第2の押付ローラと、かごガイドレールとの接触状態を示す断面図である。 図1の形状測定装置を示すブロック図である。 図12の検出部の構成の一例を模式的に示す斜視図である。 図13の検出部をかごガイドレールに装着した状態を示す斜視図である。 図14の検出部の形状検出時の挙動を示す説明図である。 図15の各センサからの信号により求めた制動面までの距離と、測定開始からの時間との関係を示す表である。 図14の各変位センサの位置関係を示す説明図である。 実施の形態1のガイドレール加工方法を示すフローチャートである。 図18のステップS5の状態を模式的に示す構成図である。 図18のステップS6の状態を模式的に示す構成図である。 図18のステップS8の状態を模式的に示す構成図である。 図12の形状測定装置の第1の変形例を示すブロック図である。 図12の形状測定装置の第2の変形例を示すブロック図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する形状測定装置の位置との第1の組み合わせ例を示す説明図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する形状測定装置の位置との第2の組み合わせ例を示す説明図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する形状測定装置の位置との第3の組み合わせ例を示す説明図である。 ガイドレール加工装置の移動方向と、加工装置本体に対する形状測定装置の位置との第4の組み合わせ例を示す説明図である。 図19のガイドローラ及び押付ローラの個数をそれぞれ削減した変形例を示す構成図である。 図28の加工具と押付ローラとにより案内部を挟み込む構成とした変形例を示す構成図である。 図19の押付ローラを省略した変形例を示す構成図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 <エレベータの構成>
 図1は、この発明の実施の形態1によるエレベータを示す構成図であり、リニューアル工事中の状態を示している。図1において、昇降路1内には、一対のかごガイドレール2が設置されている。各かごガイドレール2は、複数本のレール部材を上下方向に継ぎ合わせて構成されている。また、各かごガイドレール2は、複数のレールブラケット9を介して昇降路壁に対して固定されている。
 昇降体であるかご3は、一対のかごガイドレール2間に配置されている。また、かご3は、かごガイドレール2に沿って昇降路1内を昇降する。
 かご3の上部には、懸架体4の第1の端部が接続されている。懸架体4としては、複数本のロープ又は複数本のベルトが用いられている。懸架体4の第2の端部には、図示しない釣合おもりが接続されている。かご3及び釣合おもりは、懸架体4により昇降路1内に吊り下げられている。
 懸架体4の中間部は、図示しない巻上機の駆動シーブに巻き掛けられている。かご3及び釣合おもりは、駆動シーブを回転させることにより、昇降路1内を昇降する。昇降路1内には、図示しない一対の釣合おもりガイドレールが設置されている。釣合おもりは、釣合おもりガイドレールに沿って昇降路1内を昇降する。
 かご3の下部には、非常止め装置5が搭載されている。非常止め装置5は、一対のかごガイドレール2を把持することにより、かご3を非常停止させる。
 かご3の上部の幅方向両端部とかご3の下部の幅方向両端部とには、かごガイドレール2に接するガイド装置6がそれぞれ取り付けられている。各ガイド装置6としては、スライディングガイドシュー又はローラガイド装置が用いられている。
 <加工装置本体及び形状測定装置の配置>
 かご3の下方には、かごガイドレール2に対して加工を施す加工装置本体7が設けられている。図1では加工装置本体7を単なるボックスで示しているが、詳細な構成は後述する。
 加工装置本体7は、吊り下げ部材8を介して、かご3の下部から昇降路1内に吊り下げられている。吊り下げ部材8としては、可撓性を有する紐状の部材、例えば、ロープ、ワイヤ又はベルトが用いられる。
 かご3は、加工装置本体7の上方に位置しており、加工装置本体7をかごガイドレール2に沿って移動させる。
 加工装置本体7の下部には、接続部材51を介して形状測定装置52が接続されている。図1では形状測定装置52を単なるボックスで示しているが、詳細な構成は後述する。
 形状測定装置52は、加工装置本体7とともにかごガイドレール2に沿って移動可能に加工装置本体7に接続されている。即ち、形状測定装置52は、加工装置本体7をかごガイドレール2に沿って移動させることにより、かごガイドレール2に沿って移動される。また、形状測定装置52は、かごガイドレール2の表面形状を測定する。
 ガイドレール加工装置100は、加工装置本体7、吊り下げ部材8、接続部材51、及び形状測定装置52を有している。また、ガイドレール加工装置100は、昇降路1に設置された状態のかごガイドレール2に加工を施す際に使用されるもので、エレベータの通常運転時には撤去される。
 <かごガイドレールの形状>
 図2は、図1のII-II線に沿うかごガイドレール2の断面図である。かごガイドレール2は、ブラケット固定部2aと、案内部2bとを有している。ブラケット固定部2aは、レールブラケット9に固定される部分である。案内部2bは、ブラケット固定部2aの幅方向中央からかご3側へ直角に突出し、かご3の昇降を案内する。また、案内部2bは、かご3の非常停止時に非常止め装置5により把持される。
 さらに、案内部2bは、互いに対向する一対の制動面2cと、先端面2dとを有している。先端面2dは、案内部2bのブラケット固定部2aとは反対側、即ちかご3側の端面である。一対の制動面2c及び先端面2dは、かご3の昇降時に、ガイド装置6が接する案内面として機能する。また、一対の制動面2cは、かご3の非常停止時に非常止め装置5が接する面である。
 図1の加工装置本体7は、各制動面2cに対して加工を施す。即ち、各制動面2cは、実施の形態1の被加工面である。また、図1の形状測定装置52は、かごガイドレール2の表面形状として、各制動面2cの表面形状を測定する。
 <加工装置本体の構成>
 図3は、図1の加工装置本体7の詳細な構成を示す斜視図である。図4は、図3の加工装置本体7を図3とは異なる角度から見た斜視図である。図5は、図3の加工装置本体7を図3及び図4とは異なる角度から見た斜視図である。図6は、図3の加工装置本体7を図3~5とは異なる角度から見た斜視図である。
 加工装置本体7は、フレーム11、接続具12、加工具13、加工具駆動装置14、第1のガイドローラ15、第2のガイドローラ16、第1の押付ローラ17、第2の押付ローラ18、第1の先端面ローラ19、及び第2の先端面ローラ20を有している。
 フレーム11は、フレーム本体21とフレーム分割体22とを有している。接続具12、加工具13、加工具駆動装置14、第1のガイドローラ15、第2のガイドローラ16、第1の先端面ローラ19、及び第2の先端面ローラ20は、フレーム本体21に設けられている。
 第1の押付ローラ17及び第2の押付ローラ18は、フレーム分割体22に設けられている。
 接続具12は、フレーム本体21の上端部に設けられている。接続具12には、吊り下げ部材8が接続される。
 加工具駆動装置14は、フレーム本体21の加工具13とは反対側に配置されている。また、加工具駆動装置14は、加工具13を回転させる。加工具駆動装置14としては、例えば電動モータが用いられている。
 加工具13は、制動面2cに加工を施す。加工具13としては、砥石が用いられる。砥石としては、外周面に多数の砥粒が設けられている円筒状の平形砥石が用いられる。また、加工具13として、切削工具等を用いてもよい。
 加工具13の外周面を制動面2cに接触させた状態で加工具13を回転させることにより、制動面2cの少なくとも一部、即ち一部又は全面を削り取ることができる。これにより、例えば制動面2cの表面を削り、非常止め装置5に対する制動面2cの表面形状をより適正な形状にすることができる。
 フレーム本体21には、図示しないカバーが設けられている。加工具13により制動面2cに加工を施す際には、加工屑が発生する。カバーは、加工屑が加工装置本体7の周囲に散乱することを防止する。
 第1のガイドローラ15及び第2のガイドローラ16は、加工具13と並んでフレーム本体21に設けられている。吊り下げ部材8によりフレーム11を吊り下げた状態で、第1のガイドローラ15は加工具13の上方に配置され、第2のガイドローラ16は加工具13の下方に配置される。加工具13は、第1のガイドローラ15と第2のガイドローラ16との中間に配置されている。
 第1のガイドローラ15及び第2のガイドローラ16は、加工具13とともに制動面2cに接することにより、加工具13の外周面を制動面2cに平行に接触させる。即ち、加工具13の幅方向全体で加工具13の外周面を制動面2cに均等に接触させる。
 ガイドローラ15,16の制動面2cとの接触部である2本の線分と、加工具13の制動面2cとの接触部である1本の線分とは、1つの平面内に存在できるように設定されている。
 第1の押付ローラ17は、第1のガイドローラ15との間に案内部2bを挟み込む。第2の押付ローラ18は、第2のガイドローラ16との間に案内部2bを挟み込む。即ち、加工具13、第1のガイドローラ15、及び第2のガイドローラ16が、加工対象となっている側の制動面2cに接するとき、第1の押付ローラ17及び第2の押付ローラ18は、反対側の制動面2cに接する。
 加工具13及びローラ15,16,17,18の回転軸は、互いに平行又はほぼ平行、かつ、かごガイドレール2の加工時には水平又はほぼ水平である。
 第1の先端面ローラ19は、フレーム本体21の上端部に設けられている。第2の先端面ローラ20は、フレーム本体21の下端部に設けられている。即ち、第1及び第2の先端面ローラ19,20は、上下方向に互いに間隔をおいて配置されている。
 フレーム分割体22は、挟み込み位置と解放位置との間で、フレーム本体21に対して直線的に移動可能になっている。挟み込み位置は、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを挟み込む位置である。解放位置は、挟み込み位置よりも押付ローラ17,18がガイドローラ15,16から離れた位置である。
 フレーム本体21には、一対の棒状のフレームガイド23が設けられている。フレームガイド23は、フレーム本体21に対するフレーム分割体22の移動を案内する。また、フレームガイド23は、フレーム分割体22を貫通している。
 フレーム本体21の上下端部には、一対のロッド固定部24が設けられている。フレーム分割体22には、ロッド固定部24に対向する一対の対向部25が設けられている。各ロッド固定部24には、フレームばねロッド26が固定されている。各フレームばねロッド26は、対向部25を貫通している。
 フレームばねロッド26には、フレームばね受け27が取り付けられている。フレームばね受け27と対向部25との間には、それぞれフレームばね28が設けられている。各フレームばね28は、フレーム分割体22を挟み込み位置へ移動させる力を発生している。
 フレームばね28による押付ローラ17,18の加圧力は、加工装置本体7の重心位置の偏心によって、加工装置本体7が傾こうとする力に打ち勝ち、ガイドローラ15,16の外周面と制動面2cとの平行を維持できるような大きさに設定されている。
 また、フレームばね28による押付ローラ17,18の加圧力は、加工具13を回転させながら加工装置本体7をかごガイドレール2に沿って移動させたときにも、ガイドローラ15,16の外周面と制動面2cとの平行を維持できるような大きさに設定されている。
 フレーム本体21とフレーム分割体22との間には、図示しない解放位置保持機構が設けられている。解放位置保持機構は、フレームばね28のばね力に抗して、フレーム分割体22を解放位置に保持する。
 加工具13及び加工具駆動装置14は、加工位置と離隔位置との間でフレーム本体21に対して直線的に移動可能になっている。加工位置は、ガイドローラ15,16が制動面2cに接した状態で、加工具13が制動面2cに接する位置である。離隔位置は、ガイドローラ15,16が制動面2cに接した状態で、加工具13が制動面2cから離れる位置である。
 上記のように、押付ローラ17,18は、制動面2cに対して直角の方向へ移動可能になっている。また、加工具13及び加工具駆動装置14も、制動面2cに対して直角の方向へ移動可能になっている。
 図4に示すように、加工具駆動装置14は、平板状の可動支持部材29に取り付けられている。フレーム本体21には、一対の棒状の駆動装置ガイド30が固定されている。可動支持部材29は、駆動装置ガイド30に沿ってスライド可能になっている。これにより、加工具13及び加工具駆動装置14は、フレーム本体21に対して直線的に移動可能になっている。
 可動支持部材29とフレーム本体21との間には、加工具ばね31が設けられている。加工具ばね31は、加工具13及び加工具駆動装置14を加工位置側へ移動させる力を発生する。加工具ばね31による加工具13の加圧力は、ビビリなどの不具合が発生しない大きさに設定されている。
 フレーム本体21と可動支持部材29との間には、図示しない離隔位置保持機構が設けられている。離隔位置保持機構は、加工具ばね31のばね力に抗して、加工具13及び加工具駆動装置14を離隔位置に保持する。
 なお、図7は、図3の加工装置本体7をかごガイドレール2にセットした状態を示す斜視図である。図8は、図4の加工装置本体7をかごガイドレール2にセットした状態を示す斜視図である。図9は、図5の加工装置本体7をかごガイドレール2にセットした状態を示す斜視図である。
 図10は、図7の加工具13とかごガイドレール2との接触状態を示す断面図である。加工具13の外周面の幅寸法は、制動面2cの幅寸法よりも大きい。これにより、加工具13は、制動面2cの幅方向の全体に接触している。
 図11は、図7の第1のガイドローラ15、第2のガイドローラ16、第1の押付ローラ17、及び第2の押付ローラ18と、かごガイドレール2との接触状態を示す断面図である。第1及び第2のガイドローラ15,16の外周面は、円筒状である。即ち、第1及び第2のガイドローラ15,16の回転中心C1に沿う断面における第1及び第2のガイドローラ15,16の外周面の形状は、直線である。
 第1及び第2の押付ローラ17,18の外周面は、略球面状である。即ち、第1及び第2の押付ローラ17,18の回転中心C2に沿う断面における第1及び第2の押付ローラ17,18の外周面の形状は、円弧状である。
 <形状測定装置の構成>
 図12は、図1の形状測定装置52を示すブロック図である。形状測定装置52は、検出部53、演算部54a、判定部54b、記憶部55、及び報知部56を有している。
 検出部53は、制動面2cの表面形状データを検出する。また、検出部53は、制動面2cの表面形状データの検出時に、制動面2cに対向する。また、検出部53は、制動面2cの表面形状を演算するための検出信号を演算部54aに出力する。
 演算部54aは、検出部53からの検出信号に基づいて、制動面2cの表面形状を演算する。また、演算部54aは、演算結果としての表面形状を報知部56に出力する。
 記憶部55は、制動面2cの表面形状に関する目標値、即ち目標形状を記憶している。また、記憶部55は、演算部54aによる演算結果としての表面形状を、かごガイドレール2の長手方向における表面形状データの検出位置とともに記憶する。検出位置は、表面形状データの検出時のかご位置であってもよい。
 判定部54bは、演算結果としての表面形状を、予め設定された目標形状と比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかを判定する。また、判定部54bは、判定結果を報知部56に出力する。
 報知部56は、演算部54aで演算された制動面2cの表面形状と、判定部54bによる判定結果とを外部に報知する。
 ここで、検出部53による制動面2cの表面形状データの検出、検出部53から演算部54aへの検出信号の出力、及び演算部54aによる制動面2cの表面形状の演算の一連の動作を、「測定」とする。
 演算部54aとしては、マイコン等の四則演算可能なユニットを用いることができる。判定部54bとしては、市販されている弁別器又はリレーメータを用いることができる。
 また、演算部54aと判定部54bと記憶部55とを組み合わせた構成として、コンピュータを用いることができる。コンピュータとしては、一般的なパーソナルコンピュータを用いることができる。この場合、コンピュータは、演算装置であるCPU(central processing unit)と、ハードディスクドライブとを有している。また、ハードディスクドライブは、形状演算プログラム、判定プログラム、及び目標形状を記憶している。
 また、演算部54aは、ケーブル等を介して検出部53に接続されている。報知部56としては、例えば、リレー、DIO(digital input/output)装置、回転灯、警報器、液晶ディスプレイ、又はこれらの組み合わせを用いることができる。
 <検出部の構成>
 図13は、図12の検出部53の構成の一例を模式的に示す斜視図である。また、図14は、図13の検出部53をかごガイドレール2に装着した状態を示す斜視図である。
 図14において、X方向は、先端面2dに垂直な方向である。Y方向は、制動面2cに垂直な方向であり、かごガイドレール2の幅方向である。Z方向は、かごガイドレール2の長手方向に沿う方向であり、鉛直方向である。
 検出部53は、断面U字形の測定フレーム57、第1の変位センサ58a、第2の変位センサ59a、第3の変位センサ60a、第4の変位センサ61a、第5の変位センサ62a、及び第6の変位センサ63cを有している。
 測定フレーム57は、被加工面対向部としての第1の対向部57a、第2の対向部57b、及び先端面対向部としての第3の対向部57cを有している。第1の対向部57aは、制動面2cの表面形状データの検出時、即ち形状検出時に、一方の制動面2cに対向する。第2の対向部57bは、形状検出時に、他方の制動面2cに対向する。第3の対向部57cは、形状検出時に、先端面2dに対向する。
 第1の変位センサ58a、第2の変位センサ59a、第3の変位センサ60a、第4の変位センサ61a、及び第5の変位センサ62aは、第1の対向部57aに設けられている。また、第1の変位センサ58a、第2の変位センサ59a、第3の変位センサ60a、第4の変位センサ61a、及び第5の変位センサ62aは、対向する制動面2cまでの距離に応じた信号を発生する。
 第6の変位センサ63cは、第3の対向部57cに設けられている。また、第6の変位センサ63cは、対向する先端面2dまでの距離に応じた信号を発生する。
 各変位センサ58a,59a,60a,61a,62a,63cとしては、非接触式のセンサ、例えば渦電流式変位センサ、レーザ変位センサ、又は静電容量式変位センサを用いることができる。
 第1の変位センサ58a、第2の変位センサ59a、及び第3の変位センサ60aは、第1の直線L1上に互いに間隔をおいて配置されている。第4の変位センサ61a、及び第5の変位センサ62aは、第1の直線L1に平行な第2の直線L2上に互いに間隔をおいて配置されている。
 第1の変位センサ58aと第2の変位センサ59aとの間隔は、第2の変位センサ59aと第3の変位センサ60aとの間隔と同じである。第4の変位センサ61aと第5の変位センサ62aとの間隔は、第1の変位センサ58aと第2の変位センサ59aとの間隔と同じである。
 第1の変位センサ58aと第4の変位センサ61aとの間隔は、第2の変位センサ59aと第5の変位センサ62aとの間隔と同じである。
 測定フレーム57は、形状検出時に、第1の直線L1及び第2の直線L2がかごガイドレール2の長手方向に平行になるように、かごガイドレール2にセットされる。このとき、第1の直線L1及び第2の直線L2は、XZ平面に平行な面内に位置し、2の直線L2は、第1の直線L1よりも先端面2d側に位置する。
 また、形状検出時に、第1の変位センサ58aは第2の変位センサ59aの下方に配置され、第2の変位センサ59aは第3の変位センサ60aの下方に配置され、第4の変位センサ61aは第5の変位センサ62aの下方に配置される。
 また、第4の変位センサ61aは、形状検出時に、第1の変位センサ58aと同じ上下方向位置に配置される。また、第5の変位センサ62aは、形状検出時に、第2の変位センサ59aと同じ上下方向位置に配置される。
 形状測定装置52は、加工装置本体7の移動方向に沿う直線L1上の3点で、制動面2cまでの距離を測定可能になっている。また、形状測定装置52は、上記の3点に加えて、直線L1から外れた2点で、制動面2cまでの距離を測定可能になっている。
 <検出部による形状検出動作>
 次に、図15は、図14の検出部53の形状検出時の挙動を示す説明図である。図15では、検出部53を-Z方向へ移動させながら表面形状データを検出する様子を示している。また、図15では、t秒後、t+α秒後、及びt+2α秒後の検出部53を示している。また、図15では、分かり易さのため、検出部53のY方向への並進量を大きく示している。
 検出部53は、加工装置本体7に対して固定されている。また、加工装置本体7は、ローラ15,16,17,18を制動面2cに接触させることにより、位置決めされている。このため、検出部53の移動中の姿勢は、常に一定ではない。即ち、検出部53は、図15に示すように、Y方向へ並進したり、傾いたりする。
 また、各変位センサ58a,59a,60a,61a,62aから信号をサンプリングする周期は、適正な値に設定される。これにより、第2の変位センサ59aは、第1の変位センサ58aが検出を実施したZ方向位置で、α秒後に検出を実施する。また、第3の変位センサ60aは、第2の変位センサ59aが検出を実施したZ方向位置で、α秒後に検出を実施する。また、第5の変位センサ62aは、第4の変位センサ61aが検出を実施したZ方向位置で、α秒後に検出を実施する。
 図15では、測定開始からt+α秒後に第2の変位センサ59aから信号をサンプリングするZ方向位置は、測定開始からt秒後に第1の変位センサ58aから信号をサンプリングするZ方向位置と等しい。
 また、測定開始からt+α秒後に第3の変位センサ60aから信号をサンプリングするZ方向位置は、測定開始からt秒後に第2の変位センサ59aから信号をサンプリングするZ方向位置と等しい。
 また、測定開始からt+2α秒後に第3の変位センサ60aから信号をサンプリングするZ方向位置は、測定開始からt秒後に第1の変位センサ58aから信号をサンプリングするZ方向位置と等しい。
 また、測定開始からt+α秒後に第5の変位センサ62aから信号をサンプリングするZ方向位置は、測定開始からt秒後に第4の変位センサ61aから信号をサンプリングするZ方向位置と等しい。
 図16は、図15の各変位センサ58a,59a,60a,61a,62aからの信号により求めた制動面2cまでの距離と、測定開始からの時間との関係を示す表である。
 各変位センサ58a,59a,60a,61a,62aから制動面2cまでの距離は、各変位センサ58a,59a,60a,61a,62aからの信号を演算部54aが演算処理することによって求められる。
 上記のように、各変位センサ58a,59a,60a,61a,62aによる形状検出時には、検出部53は、図15に示すように、Y方向へ並進したり、傾いたりする。このため、制動面2cの表面形状をより正確に導出するためには、図16に記載の値を補正する必要がある。
 ここで、制動面2cの2次元形状を求める演算式について説明する。まず、制動面2cの表面形状を演算する式を説明するため、各変位センサ58a,59a,60a,61a,62a間の距離を定義する。図17は、図14の各変位センサ58a,59a,60a,61a,62aの位置関係を示す説明図である。
 図17において、第1の変位センサ58aと第2の変位センサ59aとの間の距離、第2の変位センサ59aと第3の変位センサ60aとの間の距離、及び第4の変位センサ61aと第5の変位センサ62aとの間の距離を、それぞれdとする。
 また、第1の変位センサ58aと第4の変位センサ61aとの間の距離、及び第2の変位センサ59aと第5の変位センサ62aとの間の距離を、それぞれgとする。
 また、第1の変位センサ58aの中心と第4の変位センサ61aの中心とを通る直線は、形状検出時には、X軸と平行又はほぼ平行である。これら各変位センサ58a,59a,60a,61a,62a間の距離は、記憶部55が記憶している。
 <2次元形状を求める演算の原理>
 第1ないし第3の変位センサ58a,59a,60aを使用した測定においては、まず、第1の直線L1上の等間隔の3点で、制動面2cまでの距離を同時に測定する。そして、次の3点での測定時に、前回の測定時と同一の2点で、制動面2cまでの距離を再度測定する。これにより、測定時の検出部53の傾きによる測定誤差を補正し、4点目を求めることができる。即ち、先頭のセンサで測定した値を、後続の2つのセンサで測定した2点の測定値と、これら2点を前回測定した測定値とを用いて補正することができる。
 <2次元形状を求める演算式>
 次に、制動面2cの表面形状を求めるための演算式を説明する。図15において、t秒後の第1の対向部57aの姿勢を基準とする。まず、t+α秒後に第1の変位センサ58aが存在するZ方向位置において、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線上に、t+α秒後の第1ないし第3の変位センサ58a,59a,60aが存在すると考えた場合、第1の変位センサ58aと制動面2cとの間の距離q4は、式1にて与えられる。
 q4=j4-(j3'-j3)-[{(j3'-j3)-(j2''-j2')}/d]×d ・・・式1
 式1において、{(j3'-j3)-(j2''-j2')}/dは、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線に対する、t+α秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線の単位長さ当たりの傾きを表す。
 同様に、t+2α秒後に第1の変位センサ58aが存在するZ方向位置において、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線上に、t+2α秒後の第1ないし第3の変位センサ58a,59a,60aが存在すると考えた場合、第1の変位センサ58aと制動面2cとの間の距離q5は、式2にて与えられる。
 q5=j5-(j4'-q4)-[{(j4'-q4)-(j3''-j3)}/d]×d ・・・式2
 式2において、{(j4'-q4)-(j3''-j3)}/dは、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線に対する、t+2α秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線の単位長さ当たりの傾きを表す。
 式1、式2と同様の演算を繰り返していくことで、かごガイドレール2の全長に渡って、第1の変位センサ58aが存在するYZ平面内での制動面2cの表面形状が求められる。また、式1、2と同様の演算を繰り返すことによって、第1の対向部57aのY方向への並進と、YZ平面内での傾きとによる検出信号の誤差を、取り除くことができる。
 <3次元形状を求める演算の原理>
 第1ないし第5の変位センサ58a,59a,60a、61a,62aを使用した測定においては、まず、第1の変位センサ58aと第2の変位センサ59aと第4の変位センサ61aとが成す3角形と、第2の変位センサ59aと第3の変位センサ60aと第5の変位センサ62aとが成す3角形との2つの3角形で同時に測定を行う。そして、次の2つの3角形での同時測定時に、前回測定時と同一の1つの3角形で再度測定を行う。これにより、測定時の検出部53の傾きによる測定誤差を補正し、3個目の3角形を求めることができる。
 <3次元形状を求める演算式>
 次に、第4の変位センサ61aが存在するYZ平面内での制動面2cの表面形状を求める演算式について説明する。まず、第4及び第5の変位センサ61a,62aからの信号から得られた図16の値から、第1の対向部57aのY方向への並進と、YZ平面内での傾きとによる検出信号の誤差を取り除く。
 t+α秒後に第4の変位センサ61aが存在するZ方向位置において、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線上に、t+α秒後の第1ないし第3の変位センサ58a,59a,60aが存在すると考えた場合、第4の変位センサ61aと制動面2cとの間の距離r4は、式3にて与えられる。
 r4=k4-(j3'-j3)-[{(j3'-j3)-(j2''-j2')}/d]×d ・・・式3
 式3において、{(j3'-j3)-(j2''-j2')}/dは、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線に対する、t+α秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線の単位長さ当たりの傾きを表す。
 同様に、t+2α秒後に第4の変位センサ61aが存在するZ方向位置において、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線上に、t+2α秒後の第1ないし第3の変位センサ58a,59a,60aが存在すると考えた場合、第4の変位センサ61aと制動面2cとの間の距離r5は、式4にて与えられる。
 r5=k5-(j4'-q4)-[{(j4'-q4)-(j3''-j3)}/d]×d ・・・式4
 式4において、{(j4'-q4)-(j3''-j3)}/dは、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線に対する、t+2α秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線の単位長さ当たりの傾きを表す。
 同様に、t+2α秒後に第5の変位センサ62aが存在するZ方向位置において、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線上に、t+2α秒後の第1ないし第3の変位センサ58a,59a,60aが存在すると考えた場合、第5の変位センサ62aと制動面2cとの間の距離r4'は、式5にて与えられる。
 r4'=k4'-(j4'-q4)-[{(j4'-q4)-(j3''-j3)}/d]×0 ・・・式5
 式5において、{(j4'-q4)-(j3''-j3)}/dは、t秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線に対する、t+2α秒後の第1ないし第3の変位センサ58a,59a,60aが成す直線の単位長さ当たりの傾きを表す。
 式3~5によって導出されたr4、r5、r4'は、第1の対向部57aのY方向への並進と、YZ平面内での傾きとによる検出信号の誤差を取り除いた値である。しかしながら、第1の対向部57aには、表面形状の測定中に、XY平面内の傾きも生じる。このため、例えばr4、r5、r4'は、必ずしも等しくならない。
 そこで、式3~5の演算結果に対して、さらに補正を加える。t+2α秒後に第5の変位センサ62aが存在するZ方向位置において、t秒後の第1ないし第3の変位センサ58a,59a,61aが成す平面上に、t+2α秒後の第1ないし第3の変位センサ58a,59a,61aが存在すると考えた場合の、第5の変位センサ62aと制動面2cとの距離s5は、式6にて与えられる。
 s5=r5-(r4'-r4) ・・・式6
 式3~6と同様の演算を繰り返していくことで、ガイドレールの全長に渡って、第4の変位センサ61aが存在するYZ平面内での制動面2cの表面形状が、最初の測定値を基準として導出される。また、式2にて導出された、変位センサ58aが存在するYZ平面内での制動面2cの表面形状を組み合わせることで、制動面2cの三次元的な表面形状が、最初の測定値を基準として導出される。
 なお、第6の変位センサ63cは、制動面2cの形状検出時に、適当なサンプリング周期で、先端面2dとの間の距離を検出する。
 <加工方法>
 次に、図18は、実施の形態1のガイドレール加工方法を示すフローチャートである。加工装置本体7によりかごガイドレール2に加工を施す場合、まずステップS1において、図示しない制御装置及び電源をかご3に搬入する。制御装置は、加工装置本体7及び形状測定装置52を制御する装置である。また、ステップS2において、ガイドレール加工装置100を昇降路1のピットに搬入する。
 続いて、かご3を昇降路1の下部に移動させておき、ステップS3において、吊り下げ部材8をかご3に接続して、ガイドレール加工装置100を昇降路1内に吊り下げる。また、ステップS4において、ガイドレール加工装置100を制御装置及び電源に接続する。そして、ステップS5、6において、ガイドレール加工装置100をかごガイドレール2にセットする。
 具体的には、ステップS5において、図19に示すように、加工具13が離隔位置に保持され、フレーム分割体22が解放位置に保持された状態で、ガイドローラ15,16を一方の制動面2cに接触させる。また、先端面ローラ19,20を先端面2dに接触させる。
 この後、ステップS6において、フレーム分割体22を挟み込み位置に移動させ、図20に示すように、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを挟み込ませる。
 このようにして加工装置本体7をかごガイドレール2にセットした後、ステップS7において、加工具13を回転させる。そして、ステップS8において、図21に示すように、加工具13及び加工具駆動装置14を加工位置に移動させるとともに、かご3を定格速度よりも低速の一定速度で最上階へ移動させる。即ち、加工具13によって制動面2cに加工を施しながら、加工装置本体7をかごガイドレール2に沿って移動させる。
 かご3が最上階に到着すると、ステップS9において、加工具13及び加工具駆動装置14を離隔位置に移動させる。また、ステップS10において、加工具13の回転を停止させるとともに、かご3を停止させる。
 この後、ステップS11において、かご3を最下階へ移動させながら、形状測定装置52により制動面2cの表面形状の測定を行う。この例では、かご3の上昇時のみ制動面2cに加工を施すので、かご3の下降時には、加工具13を制動面2cから離しておくのが好ましい。
 かご3が最下階に到着すると、ステップS12において、制動面2cの表面形状が目標形状に達していたかどうかを確認する。制動面2cの表面形状が目標形状に達していない場合、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを挟み込み、ステップS7~12を再度実施する。制動面2cの表面形状が目標形状に達していた場合、加工完了となる。
 なお、第3の対向部57cに設けられた第6の変位センサ63cが検出する距離が異常値を示した場合は、測定を再度実施する。
 反対側の制動面2cに対して加工を施す場合、図3とは左右対称の加工装置本体7及び図3とは左右対称の形状測定装置52を用いるか、又は、図3の加工装置本体7を上下反対向きに吊り下げるとともに、形状測定装置52を上下反対向きに吊り下げればよい。後者の場合、フレーム本体21の下端部にも接続具12を追加すればよい。
 上記の加工方法を残りのかごガイドレール2に対しても施すことにより、全ての制動面2cに加工を施すことができる。また、2台以上の加工装置本体7により2面以上の制動面2cに同時に加工を施すこともできる。
 実施の形態1のガイドレール加工方法は、設置工程と移動工程とを含んでいる。設置工程では、加工装置本体7と形状測定装置52とが、昇降路1内で、かごガイドレール2に対して設置される。また、設置工程では、ガイドレール加工装置100がかご3に接続される。
 移動工程では、加工装置本体7と形状測定装置52とがかごガイドレール2に沿って移動される。
 また、移動工程は、加工工程、測定工程、判定工程、及び報知工程を含んでいる。加工工程では、加工具13によりかごガイドレール2に加工が施される。測定工程では、形状測定装置52により制動面2cの表面形状が測定される。
 判定工程では、測定工程で測定された制動面2cの表面形状と目標形状とを比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかが判定される。報知工程では、判定工程での判定結果が外部に報知される。
 また、加工工程では、測定工程で測定された測定値に基づいて、加工装置本体7が制御される。加工装置本体7を制御する方法としては、加工具13の回転数、加工具13の制動面2cへの押し付け力、及び加工装置本体7の移動速度の少なくともいずれか1つを制御する方法が挙げられる。
 例えば加工具13の回転数を上げることで、加工量を増加させることができる。また、加工具13の制動面2cへの押し付け力を増加させることで、加工量を増加させることができる。また、加工装置本体7の移動速度を遅くすることで、加工量を増加させることができる。
 <リニューアル方法>
 次に、実施の形態1のエレベータのリニューアル方法について説明する。実施の形態1では、既設のかごガイドレール2を残したまま、既設のかご3及び既設の非常止め装置5を新設のかご及び新設の非常止め装置に入れ換える。また、実施の形態1のリニューアル方法は、レール加工工程及び入れ換え工程を含む。
 レール加工工程では、既設のかごガイドレール2の制動面2cの少なくとも一部を、上記のような加工装置本体7を用いて削り取る加工を施す。このとき、吊り下げ部材8を介して加工装置本体7を既設のかご3に接続し、既設のかご3の移動により加工装置本体7を既設のかごガイドレール2に沿って移動させる。
 この後、入れ換え工程を実施する。入れ換え工程では、既設のかごガイドレール2を残したまま、既設のかご3及び既設の非常止め装置5を、新設のかご及び新設の非常止め装置に入れ換える。
 このようなガイドレール加工装置100では、加工装置本体7及び形状測定装置52がかごガイドレール2に沿って移動され、形状測定装置52によって制動面2cの表面形状が測定される。また、形状測定装置52は、加工装置本体7の移動方向に沿う直線L1上の3点で、制動面2cまでの距離を測定可能になっている。このため、実際のかごガイドレール2の状態に応じた加工をより容易に行うことができる。
 また、形状測定装置52は、上記の3点に加えて、直線L1から外れた2点で、制動面2cまでの距離を測定可能になっている。このため、制動面2cの表面形状をより正確に測定することができる。
 また、第3の対向部57cに第6の変位センサ63cを設けることで、検出部53が先端面2dに垂直な方向へ大きく並進した際に、検出部53による検出位置のズレを検知することができ、制動面2cの表面形状のデータをより正確に得ることができる。これにより、新設の非常止め装置に対する既設のかごガイドレール2の制動面2cの表面形状を、かごガイドレール2を昇降路1に設置したまま、より適正化することができる。
 また、形状測定装置52は、加工装置本体7とともにかごガイドレール2に沿って移動可能に加工装置本体7に接続されている。このため、かごガイドレール2に対する加工作業と測定作業とを効率的に行うことができる。
 また、判定部54bは、演算により得られた制動面2cの表面形状を、予め設定された目標形状と比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかを判定する。このため、追加の加工が必要であるかどうかの判定をスムーズに行うことができる。
 また、形状測定装置52には、判定部54bによる判定結果を外部に報知する報知部56が設けられている。このため、追加加工が必要であるかどうかの判定を、ガイドレール加工装置100の外部で容易に確認することができる。
 また、実施の形態1のガイドレール加工方法の設置工程では、加工装置本体7と形状測定装置52とが、昇降路内で、かごガイドレール2に対して設置される。また、移動工程では、加工装置本体7と形状測定装置52とがかごガイドレール2に沿って移動される。このため、実際のかごガイドレール2の状態に応じた加工をより容易に行うことができる。
 また、加工工程では、測定工程で測定された制動面2cの表面形状に基づいて、加工装置本体7が制御される。このため、加工装置本体7による加工の度合いをより適正に調整することができる。
 また、加工工程では、加工具13の回転数、加工具13のかごガイドレール2への押し付け力、及び加工装置本体7の移動速度の少なくともいずれか1つが制御される。このため、加工装置本体7による加工の度合いをより適正に調整することができる。
 また、判定工程では、測定工程で測定された制動面2cの表面形状と目標形状とを比較して、加工装置本体7による加工の度合いが目標の度合いに達したかどうかが判定される。このため、追加の加工が必要であるかどうかの判定をスムーズに行うことができる。
 また、報知工程では、判定工程での判定結果が外部に報知される。このため、追加加工が必要であるかどうかの判定を、ガイドレール加工装置100の外部で容易に確認することができる。
 また、設置工程では、加工装置本体7と形状測定装置52とが、かご3から吊り下げられる。このため、かごガイドレール2に対する加工作業と測定作業とを効率的に行うことができる。
 また、上記のようなガイドレール加工装置100及びガイドレール加工方法では、吊り下げ部材8を介して加工装置本体7が昇降路1内に吊り下げられる。そして、加工具13により制動面2cに加工を施しながら加工装置本体7がかごガイドレール2に沿って移動される。このため、非常止め装置5に対する制動面2cの表面形状を、かごガイドレール2を昇降路1に設置したまま、より適正化することができる。
 また、加工装置本体7は、吊り下げ部材8により吊り下げられている。このため、制動面2cの加工中に、かご3の振動が加工装置本体7に伝わるのを防止することができる。これにより、加工不具合の発生を防止し、制動面2cを安定して加工することができる。
 また、加工装置本体7及び形状測定装置52は、かご3から吊り下げられる。このため、加工装置本体7及び形状測定装置52を揚重する装置を別途用意する必要がない。また、かごガイドレール2の非常止め装置5が把持する領域に、効率的に加工を施すことができる。また、昇降行程が長いエレベータにおいても、長い吊り下げ部材を用いることなく、かごガイドレール2の全長に渡って容易に加工を施すことができる。
 また、加工装置本体7には、ガイドローラ15,16が設けられている。このため、加工具13の外周面をより確実に制動面2cに平行に接触させることができ、削り残しを発生させずに、制動面2cに均等に加工を施すことができる。
 また、案内部2bは、ガイドローラ15,16と押付ローラ17,18との間に挟み込まれる。このため、加工具13の外周面をより安定して制動面2cに平行に接触させることができる。また、制動面2cに上下方向の傾きがあった場合にも、加工具13の外周面と制動面2cとの平行を維持することができる。
 また、フレーム本体21には、接続具12が設けられている。このため、接続具12に吊り下げ部材8を接続して昇降路1内に吊り下げた状態で、加工装置本体7をかごガイドレール2に沿って移動させることができる。これにより、非常止め装置5に対するかごガイドレール2の状態を、昇降路1にかごガイドレール2を設置したまま、より適正な状態にすることができる。
 また、加工具13の上方に第1のガイドローラ15が配置され、加工具13の下方に第2のガイドローラ16が配置されている。このため、加工具13の外周面と制動面2cとの平行をより安定して維持することができる。これにより、かごガイドレール2の上下方向の傾き、曲がり、又はうねりがあった場合にも、加工具13の外周面と制動面2cとの平行を維持することができる。
 また、加工具13は、第1及び第2のガイドローラ15,16の中間位置に配置されている。このため、フレーム本体21に対する加工具13の移動方向を、制動面2cに直角な方向とすることができる。これにより、加工具13を制動面2cに押し付ける力を安定させることができる。また、加工のムラ、即ち削り取る量の不均一が発生することがなく、安定した加工を施すことができる。
 また、フレーム11は、フレーム本体21とフレーム分割体22とに分割されている。そして、フレームばね28は、フレーム分割体22を挟み込み位置側へ移動させる力を発生している。このため、簡単な構成により、ガイドローラ15,16と押付ローラ17,18との間に案内部2bを安定して挟み込むことができる。
 また、加工具13及び加工具駆動装置14は、加工位置と離隔位置との間で移動可能となっている。そして、加工具ばね31は、加工具13及び加工具駆動装置14を加工位置側へ移動させる力を発生している。このため、簡単な構成により、加工具13を安定して制動面2cに押し当て、安定した加工を施すことができる。また、加工具13を離隔位置に移動させることで、制動面2cを加工せずに加工装置本体7をかごガイドレール2に沿って移動させることもできる。
 また、フレーム本体21には、先端面ローラ19,20が設けられている。このため、加工装置本体7をかごガイドレール2に沿って安定した姿勢でスムーズに移動させることができる。
 また、上記のようなエレベータのリニューアル方法では、既設のかごガイドレール2の制動面2cの少なくとも一部を削り取る加工を施す。この後、既設のかごガイドレール2を残したまま、既設のかご3及び既設の非常止め装置5を、新設のかご及び新設の非常止め装置に入れ換える。このため、新設の非常止め装置に対する既設のかごガイドレール2の制動面2cの表面形状を、かごガイドレール2を昇降路1に設置したまま、より適正化することができる。
 これにより、既設のかごガイドレール2を取り換えることなく、エレベータのリニューアルを実現することができる。従って、工期を大幅に短縮することができるとともに、工事にかかる費用も大幅に削減することができる。
 また、加工装置本体7を既設のかご3を利用して移動させるので、加工時に発生する加工屑等が新設のかご及び新設の非常止め装置5に付着するのを防止することができる。 
 また、形状測定装置52により測定された制動面2cの表面形状を監視しながら制動面2cに加工を施すことで、制動面2cを加工し過ぎることによる不良品の発生を防ぐことができる。これにより、歩留まりを向上できるとともに、工事にかかるコストを削減することができる。
 なお、ガイドレール加工装置100の構成としては、必ずしも実施の形態1の構成である必要はなく、その他の構成でも実施の形態1と同様の効果を得ることができる。
 図22は、図12の形状測定装置52の第1の変形例を示すブロック図である。第1の変形例では、判定部54bと記憶部55とが省略されている。この場合、加工装置本体7による加工の度合いが目標形状に達したかどうかの判定を、作業者が行ってもよい。
 このような第1の変形例によれば、形状測定装置52の構成を簡略化することができる。
 また、図23は、図12の形状測定装置52の第2の変形例を示すブロック図である。第2の変形例の演算部54aは、演算により得られた制動面2cの表面形状と、予め設定された目標形状とに基づいて、補正値を算出する。
 補正値は、かごガイドレール2内の加工位置に応じた表面形状から算出する。即ち、補正値は、加工装置本体7と形状測定装置52との距離、及び制動面2c上の特定の点に対して加工を実施した時刻と測定を実施した時刻との時間のずれを考慮した値である。また、補正値は、加工具13の回転数、加工具13のかごガイドレール2への押し付け力、及び加工装置本体7の移動速度の少なくともいずれか1つを制御するための制御パラメータを補正する値である。
 演算部54aで算出された補正値は、報知部56から通信対象へ出力される。これにより、形状測定装置52は、制御パラメータを補正する。報知部56は、通信対象との通信を行う通信装置を含んでいる。
 補正値が上記の回転数及び押し付け力の少なくともいずれか一方の制御パラメータを補正する値を含む場合、通信対象は、加工装置本体7を制御する制御装置である。また、補正値が上記の移動速度の制御パラメータを補正する値を含む場合、通信対象は、かご3の移動速度を制御するエレベータ制御装置である。
 このような第2の変形例によれば、制御パラメータの変更を自動的に行うことができ、作業効率を向上させることができる。
 また、制動面2cの一部で加工装置本体7による加工量を増加させる場合、例えば、加工具13の回転数を増やすことで加工量を増加させることができる。また、加工具13の制動面2cへの押し付け力を増加させることで、加工量を増加させることができる。また、加工装置本体7の移動速度を遅くすることで、制動面2cの加工量を増加させることができる。
 また、実施の形態1において、検出部53に設けるセンサの数は特に限定されない。センサの数を減らすことで、コストを削減することができる。例えば、制動面2cの二次元形状を測定する場合は、変位センサ61a,62aは省略可能である。
 一方で、測定精度を上げる場合は、第1の対向部57a面内の変位センサ58a、59a、60aが成す直線上に変位センサを増やすか、又は第1の対向部57a面内の変位センサ61a,62aが成す直線上に変位センサを増やせばよい。
 また、変位センサ63cは、先端面2dに垂直な方向への形状測定装置52の変位が殆ど発生しない場合、省略可能である。また、先端面2dが平面でなく曲面である場合は、変位センサ63cの同一平面内に変位センサをさらに2つ追加することで、検出部53自体の、先端面2dに垂直な方向へのずれを検出することができる。その場合、変位センサ63cを含む3つの変位センサをかごガイドレール2の長手方向に沿った方向に一定間隔をおいて配置する。
 また、実施の形態1で示した変位センサは、制動面2c面上の1点との間の距離を検出する機能を有するが、制動面2c上の複数の点との間の距離を同時に検出する機能を有する非接触式センサを用いてもよい。制動面2c上の複数の点との間の距離を同時に検出する機能を有する非接触式センサとしては、例えばラインセンサを用いることができる。この場合、1点との間の距離を検出する変位センサを使う場合よりも、センサの個数を減らすことができる。
 また、実施の形態1では、加工装置本体7を上昇させながら制動面2cに加工を施し、形状測定装置52を下降させながら形状測定装置52による測定を行った。これに対して、加工装置本体7を下降させながら制動面2cに加工を施し、形状測定装置52を上昇させながら、形状測定装置52による測定を行ってもよい。
 また、加工装置本体7を上昇させながら制動面2cに加工を施すと同時に、形状測定装置52による測定を行ってもよい。又は、加工装置本体7を下降させながら制動面2cに加工を施すと同時に、形状測定装置52による測定を行ってもよい。
 また、加工時の加工装置本体7の移動方向と、測定時の形状測定装置52の移動方向と、加工装置本体7に対する形状測定装置52の位置との組み合わせは、上記の例に限定されない。
 図24は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する形状測定装置52の位置との第1の組み合わせ例を示す説明図である。また、図25は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する形状測定装置52の位置との第2の組み合わせ例を示す説明図である。
 第1の組み合わせ例では、ガイドレール加工装置100が上昇しており、形状測定装置52が加工装置本体7の上に配置されている。また、第1の組み合わせ例では、ガイドレール加工装置100の上昇時に加工及び測定を行う。
 第2の組み合わせ例では、ガイドレール加工装置100が下降しており、形状測定装置52が加工装置本体7の下に配置されている。また、第2の組み合わせ例では、ガイドレール加工装置100の下降時に加工及び測定を行う。
 このように、第1及び第2の組み合わせ例では、移動工程を実施する際に、形状測定装置52が、加工装置本体7に対して、加工装置本体7の移動方向の前方に配置されている。
 これにより、加工直前の制動面2cの表面形状を測定しながら、制動面2cに加工を施すことができる。また、記憶部55は、加工装置本体7と形状測定装置52との距離を記憶している。これにより、図23に示した第2の変形例のように、この距離と考慮した補正値により制御パラメータを補正する場合、制御パラメータを自動的に補正しながら、制動面2cに加工を施すことができる。
 図26は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する形状測定装置52の位置との第3の組み合わせ例を示す説明図である。また、図27は、ガイドレール加工装置100の移動方向と、加工装置本体7に対する形状測定装置52の位置との第4の組み合わせ例を示す説明図である。
 第3の組み合わせ例では、ガイドレール加工装置100が上昇しており、形状測定装置52が加工装置本体7の下に配置されている。また、第3の組み合わせ例では、ガイドレール加工装置100の上昇時に加工及び測定を行う。
 第4の組み合わせ例では、ガイドレール加工装置100が下降しており、形状測定装置52が加工装置本体7の上に配置されている。また、第4の組み合わせ例では、ガイドレール加工装置100の下降時に加工及び測定を行う。
 このように、第3及び第4の組み合わせ例では、移動工程を実施する際に、形状測定装置52が、加工装置本体7に対して、加工装置本体7の移動方向の後方に配置されている。
 これにより、制動面2cに加工を施しながら、加工直後の制動面2cの表面形状を測定することができる。また、記憶部55は、加工装置本体7と形状測定装置52との距離、及び制動面2cの表面形状データ検出時の図14におけるZ座標を記憶している。これにより、図23に示した第2の変形例のように、補正値により制御パラメータを補正する場合、次の加工時に、制御パラメータを自動的に補正しながら、制動面2cに加工を施すことができる。
 また、ガイドローラは、1個又は3個以上であってもよい。これに伴い、押付ローラも1個又は3個以上であってもよい。例えば、図28に示すように、1個のガイドローラ15と1個の押付ローラ17とにより案内部2bを挟み込む構成としてもよい。
 また、加工具を制動面に安定して平行に当てることができれば、ガイドローラ及び押付ローラは省略してもよい。例えば、図29は加工具13と押付ローラ17とにより案内部2bを挟み込む構成を示している。このような構成によっても、加工具13を制動面2cに平行に当てることができる。
 また、図30は、フレーム分割体及び押付ローラを省略し、フレーム本体21を一対のフレーム本体ばね33により案内部2b側へ押し付ける構成を示している。このような構成によっても、加工具13を制動面2cに平行に当てることができる。
 また、測定フレーム57は実施の形態1において断面U字形としたが、異なる形状であってもよい。測定フレーム57としては、一対の対向部57aさえ有していれば、実施の形態1と同様の効果を得ることができる。
 また、第1の変位センサ58aと第2の変位センサ59aとの間の間隔と、第2の変位センサ59aと第3の変位センサ60aとの間の間隔とは必ずしも等しくする必要はない。第1の変位センサ58aと第2の変位センサ59aとの間の間隔が、第2の変位センサ59aと第3の変位センサ60aと間の間隔と等しくない場合は、各変位センサ58a,59a,60aのサンプリング周期を適切に設定すればよい。
 また、第1の変位センサ58aと第2の変位センサ59aとの間の間隔と、第4の変位センサ61aと第5の変位センサ62aとの間の間隔は必ずしも等しくする必要はない。第1の変位センサ58aと第2の変位センサ59aと間の間隔が、第4の変位センサ61aと第5の変位センサ62aとの間の間隔と等しくない場合は、各変位センサ58a,59a,61a,62aのサンプリング周期を適切に設定すればよい。
 また、加工装置本体7の振動を検出する振動計をガイドレール加工装置100に設け、加工装置本体の振動を測定しながらガイドレールに加工を施してもよい。そして、加工装置本体の振動が閾値以上となった場合に、加工を中断させるようにしてもよい。これにより、異常振動により発生する加工面の乱れを抑制することができ、不良品の発生を抑制することができる。従って、歩留まりを向上させることができるとともに、工事にかかるコストを削減することができる。
 また、直線L1上の測定点は、4点以上であってもよい。また、直線L2上の測定点は、3点以上であってもよい。この場合、センサの異常の有無を監視することができる。
 また、加工具13の回転軸とガイドローラの回転軸とは、必ずしも平行でなくてもよい。
 また、上記の例では、加工具及び押付ローラを制動面に押し付ける力をばねにより発生させたが、例えば、空圧シリンダ、油圧シリンダ、又は電動アクチュエータにより発生させてもよい。
 また、接続具12は、フレームに一体に形成してもよい。また、吊り下げ部材8は、接続具12に一体に形成してもよい。
 さらに、接続部材51は、加工装置本体7、もしくは形状測定装置52に一体に形成してもよい。
 また、上記の例では、既設のかごから加工装置本体7を吊り下げたが、新設のかごから吊り下げてもよい。
 また、上記の例では、加工装置本体をかごから吊り下げたが、昇降路の上部又はかごに設置したウインチ等の揚重装置から加工装置本体を吊り下げてもよい。
 また、上記の例では、形状測定装置52を加工装置本体7に接続したが、形状測定装置を加工装置本体から切り離してもよい。この場合、例えば揚重装置により、形状測定装置を加工装置本体から独立して移動させてもよい。
 また、上記の例では、昇降体がかごであり、加工対象がかごガイドレールである場合を示した。しかし、この発明は、昇降体が釣合おもりであり、加工対象が釣合おもりガイドレールである場合にも適用できる。この場合、加工装置本体7は、釣合おもりから吊り下げてもよい。
 また、上記の例では、リニューアル工事の際にガイドレールに加工を施した。しかし、例えば、新設のエレベータにおいて制動面の表面形状を調整したい場合、又は既設のエレベータの保守時に制動面をリフレッシュしたい場合にも、この発明を適用できる。
 また、この発明は、機械室を有するエレベータ、機械室レスエレベータ、ダブルデッキエレベータ、ワンシャフトマルチカー方式のエレベータなど、種々のタイプのエレベータに適用できる。ワンシャフトマルチカー方式は、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式である。
 また、加工対象となるガイドレールは、エレベータのガイドレールに限定されない。また、この発明は、例えば、斜めに立てられているガイドレールにも適用できる。
 2 かごガイドレール、2c 制動面(被加工面)、2d 先端面、3 かご(昇降体)、7 加工装置本体、13 加工具、52 形状測定装置、53 検出部、54b 判定部、56 報知部、100 ガイドレール加工装置。

Claims (16)

  1.  ガイドレールの被加工面の少なくとも一部を削り取る加工具を有しており、前記ガイドレールに沿って移動する加工装置本体、及び
     前記加工装置本体とともに前記ガイドレールに沿って移動され、前記被加工面の形状を測定する形状測定装置
     を備え、
     前記形状測定装置は、前記加工装置本体の移動方向に沿う直線上の少なくとも3点で、前記被加工面までの距離を測定可能になっているガイドレール加工装置。
  2.  前記形状測定装置は、前記3点に加えて、前記直線から外れた少なくとも2点で、前記被加工面までの距離を測定可能になっている請求項1記載のガイドレール加工装置。
  3.  前記ガイドレールは、前記被加工面に直角であり、かつ前記ガイドレールの長手方向に平行な先端面を有しており、
     前記形状測定装置は、前記先端面までの距離を測定可能になっている請求項1又は請求項2に記載のガイドレール加工装置。
  4.  前記形状測定装置は、前記加工装置本体に対して固定されている請求項1から請求項3までのいずれか1項に記載のガイドレール加工装置。
  5.  前記形状測定装置は、前記加工装置本体による加工の度合いが目標の度合いに達したかどうかを判定する判定部を有している請求項1から請求項4までのいずれか1項に記載のガイドレール加工装置。
  6.  前記形状測定装置は、判定結果を外部に報知する報知部を有している請求項5記載のガイドレール加工装置。
  7.  前記形状測定装置は、測定値と目標値とに基づいて、前記加工具の回転数、前記加工具の前記ガイドレールへの押し付け力、及び前記加工装置本体の移動速度の少なくともいずれか1つを制御するための制御パラメータを演算する請求項1から請求項6までのいずれか1項に記載のガイドレール加工装置。
  8.  ガイドレールの被加工面の少なくとも一部を削り取る加工具を有している加工装置本体と、形状測定装置とを、前記ガイドレールに対して設置する設置工程、及び
     前記加工装置本体と前記形状測定装置とを前記ガイドレールに沿って移動させる移動工程
     を備え、
     前記移動工程は、
     前記加工具によって前記ガイドレールを加工する加工工程と、
     前記形状測定装置により前記被加工面の表面形状を測定する測定工程と
     を含むガイドレール加工方法。
  9.  前記測定工程では、前記加工装置本体の移動方向に沿う直線上の少なくとも3点で、前記被加工面までの距離を測定する請求項8記載のガイドレール加工方法。
  10.  前記測定工程では、前記3点に加えて、前記直線から外れた少なくとも2点で、前記被加工面までの距離を測定する請求項9記載のガイドレール加工方法。
  11.  前記設置工程では、
     前記ガイドレールに沿って昇降する昇降体に、前記加工装置本体と前記形状測定装置とを接続する請求項8から請求項10までのいずれか1項に記載のガイドレール加工方法。
  12.  前記移動工程では、
     前記加工装置本体に対して、前記加工装置本体の移動方向の前方に前記形状測定装置を配置する請求項8から請求項11までのいずれか1項に記載のガイドレール加工方法。
  13.  前記移動工程では、
     前記加工装置本体に対して、前記加工装置本体の移動方向の後方に前記形状測定装置を配置する請求項8から請求項11までのいずれか1項に記載のガイドレール加工方法。
  14.  前記加工工程では、
     前記測定工程で測定された測定値に基づいて、前記加工具の回転数、前記加工具の前記ガイドレールへの押し付け力、及び前記加工装置本体の移動速度の少なくともいずれか1つを制御する請求項8から請求項13までのいずれか1項に記載のガイドレール加工方法。
  15.  前記移動工程は、
     前記測定工程で測定された測定値を目標値と比較して、前記加工装置本体による加工の度合いが目標の度合いに達したかどうかを判定する判定工程
     をさらに含む請求項8から請求項14までのいずれか1項に記載のガイドレール加工方法。
  16.  前記移動工程は、
     前記判定工程により判定された判定結果を外部に報知する報知工程
     をさらに含む請求項15記載のガイドレール加工方法。
PCT/JP2019/004008 2019-02-05 2019-02-05 ガイドレール加工装置及びガイドレール加工方法 WO2020161792A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004008 WO2020161792A1 (ja) 2019-02-05 2019-02-05 ガイドレール加工装置及びガイドレール加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004008 WO2020161792A1 (ja) 2019-02-05 2019-02-05 ガイドレール加工装置及びガイドレール加工方法

Publications (1)

Publication Number Publication Date
WO2020161792A1 true WO2020161792A1 (ja) 2020-08-13

Family

ID=71947574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004008 WO2020161792A1 (ja) 2019-02-05 2019-02-05 ガイドレール加工装置及びガイドレール加工方法

Country Status (1)

Country Link
WO (1) WO2020161792A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106607A (ja) * 1983-11-14 1985-06-12 Mitsubishi Heavy Ind Ltd 圧延機のロ−ル研削方法
JPH11160062A (ja) * 1997-09-25 1999-06-18 Otis Elevator Co レール測量装置
JP2005060066A (ja) * 2003-08-18 2005-03-10 Hitachi Building Systems Co Ltd レール据付精度測定装置および方法
JP2008161969A (ja) * 2006-12-28 2008-07-17 Nagase Integrex Co Ltd 研削盤
WO2019008708A1 (ja) * 2017-07-05 2019-01-10 三菱電機株式会社 エレベータのガイドレール加工方法、ガイドレール加工装置、及びリニューアル方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106607A (ja) * 1983-11-14 1985-06-12 Mitsubishi Heavy Ind Ltd 圧延機のロ−ル研削方法
JPH11160062A (ja) * 1997-09-25 1999-06-18 Otis Elevator Co レール測量装置
JP2005060066A (ja) * 2003-08-18 2005-03-10 Hitachi Building Systems Co Ltd レール据付精度測定装置および方法
JP2008161969A (ja) * 2006-12-28 2008-07-17 Nagase Integrex Co Ltd 研削盤
WO2019008708A1 (ja) * 2017-07-05 2019-01-10 三菱電機株式会社 エレベータのガイドレール加工方法、ガイドレール加工装置、及びリニューアル方法

Similar Documents

Publication Publication Date Title
JPWO2007063574A1 (ja) エレベータの制御装置
JP7003290B2 (ja) ガイドレール加工装置及びガイドレール加工方法
WO2020161792A1 (ja) ガイドレール加工装置及びガイドレール加工方法
JP6980122B2 (ja) ガイドレール加工装置及びガイドレール加工方法
JP6765534B2 (ja) エレベータのガイドレール加工方法、ガイドレール加工装置、及びリニューアル方法
JP7008833B2 (ja) エレベータのガイドレール加工装置及びガイドレール加工方法
JP6939994B2 (ja) 溝摩耗検知装置
JP6719686B2 (ja) エレベータのガイドレール加工装置
JP6808052B2 (ja) エレベータのガイドレール加工装置
JP6671566B1 (ja) ガイドレール加工装置及びガイドレール加工方法
JP5762264B2 (ja) 溝加工装置を備えたエレベータ装置
JP6821066B2 (ja) エレベータのガイドレール加工装置及びガイドレール加工方法
JP6918239B2 (ja) エレベータのガイドレール加工装置
JP2007071705A (ja) 細径長尺丸棒の曲り量計測装置
JP6548559B2 (ja) シーブ溝修正装置
CN116829487A (zh) 停靠位置部件的位置保持辅具和停靠位置部件的更换方法
PL227593B1 (pl) Przyrząd do pomiaru geometrii rowków kół, krążków i rolek współpracujących z linami

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP