WO2020045633A1 - 硫化物固体電解質及び全固体電池 - Google Patents

硫化物固体電解質及び全固体電池 Download PDF

Info

Publication number
WO2020045633A1
WO2020045633A1 PCT/JP2019/034138 JP2019034138W WO2020045633A1 WO 2020045633 A1 WO2020045633 A1 WO 2020045633A1 JP 2019034138 W JP2019034138 W JP 2019034138W WO 2020045633 A1 WO2020045633 A1 WO 2020045633A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
layer
negative electrode
sulfide
Prior art date
Application number
PCT/JP2019/034138
Other languages
English (en)
French (fr)
Inventor
晃弘 福嶋
諒 佐久間
忠司 掛谷
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to US17/270,728 priority Critical patent/US20210218056A1/en
Priority to CN201980055986.3A priority patent/CN112673506A/zh
Priority to EP22185069.6A priority patent/EP4099464A3/en
Priority to EP22185070.4A priority patent/EP4099465A3/en
Priority to JP2020539630A priority patent/JP7424293B2/ja
Priority to EP22185068.8A priority patent/EP4099463A3/en
Priority to EP19855520.3A priority patent/EP3828980A4/en
Publication of WO2020045633A1 publication Critical patent/WO2020045633A1/ja
Priority to JP2024005315A priority patent/JP2024041952A/ja
Priority to JP2024022173A priority patent/JP2024056927A/ja
Priority to JP2024042111A priority patent/JP2024069528A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte and an all-solid battery.
  • Non-aqueous electrolyte secondary batteries typified by lithium ion non-aqueous electrolyte secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the nonaqueous electrolyte secondary battery generally includes an electrode body having a pair of electrically isolated electrodes, and a nonaqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. Is configured to charge and discharge.
  • Patent Documents For the purpose of improving the safety of non-aqueous electrolyte secondary batteries, all solid-state batteries using a sulfide solid electrolyte or the like as a non-aqueous electrolyte instead of a liquid electrolyte such as an organic solvent have been proposed (Patent Documents). 1).
  • the sulfide solid electrolyte contains Li, P, S and N and is represented by the general formula XLi 2 S-25P 2 S 5 -YLi 3 N (10 ⁇ Y ⁇ 15, 67.5 ⁇ X + Y ⁇ 85).
  • a sulfide solid electrolyte which is a crystalline material having the following composition is disclosed.
  • Patent Document 2 The sulfide solid electrolyte, 70Li 2 S ⁇ 30P 2 S 5 glass ceramics and 60Li 2 S ⁇ 25P 2 S 5 ⁇ 10Li 3 N glass ceramic, to exhibit 10 -3 S / cm or more high ionic conductivity It has been reported.
  • Non-Patent Document 1 The sulfide solid electrolyte, 70Li 2 S ⁇ 30P 2 S 5 glass ceramics and 60Li 2 S ⁇ 25P 2 S 5 ⁇ 10Li 3 N glass ceramic, to exhibit 10 -3 S / cm or more high ionic conductivity It has been reported.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sulfide solid electrolyte having improved resistance to reduction and an all-solid battery provided with the sulfide solid electrolyte.
  • One embodiment of the present invention made to solve the above problem includes a group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V.
  • the sulfide solid electrolyte includes at least one element M selected from the group consisting of N and N, and has a crystal structure.
  • ⁇ ⁇ Another embodiment of the present invention is a sulfide solid electrolyte including Al and N and having a crystal structure.
  • a sulfide solid electrolyte having improved reduction resistance can be obtained.
  • FIG. 1 is a schematic cross-sectional view illustrating an all-solid-state battery according to an embodiment of the present invention. It is an X-ray-diffraction (XRD) spectrum of the sulfide solid electrolyte of an Example and a comparative example. It is a Raman spectrum of the sulfide solid electrolyte of an example and a comparative example. It is a graph which shows the ionic conductivity at 25 degreeC of the sulfide solid electrolyte of an Example and a comparative example. 5 is a graph showing initial charge / discharge performance of all solid state batteries of Examples and Comparative Examples.
  • XRD X-ray-diffraction
  • XRD X-ray-diffraction
  • the sulfide solid electrolyte according to one embodiment of the present invention is selected from the group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V.
  • the present inventors have found that Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, which are difficult to apply as a solid electrolyte due to low ionic conductivity. Attention was paid to the fact that a nitride containing either Mo or V (hereinafter also referred to as an element M) exhibits high reduction resistance. Thus, the present inventors have thought that by including the nitrogen element (N) and the element M in the sulfide solid electrolyte, the reduction resistance of the sulfide solid electrolyte can be improved, and the present invention has been made.
  • the sulfide solid electrolyte is at least one element M selected from the group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V. And N, and having a crystal structure, whereby a sulfide solid electrolyte having improved reduction resistance can be obtained.
  • the element M may be Al.
  • the surface or interface of the sulfide solid electrolyte contains a nitride of the element M, a lithium nitride of the element M, or the like. It is presumed that a highly functional film is formed. For this reason, it is presumed that the reduction resistance of the sulfide solid electrolyte is improved.
  • the all-solid-state battery including the sulfide solid-state electrolyte can be an all-solid-state battery with improved initial coulomb efficiency. Although the reason for this is not clear, the following reason is presumed. It is known that general sulfide solid electrolytes are susceptible to reductive decomposition, and it is known that an all solid state battery provided with such a sulfide solid electrolyte exhibits a large amount of reductive decomposition electricity. High reducibility. Therefore, the initial coulomb efficiency of the all-solid-state battery including the sulfide solid electrolyte can be improved.
  • the sulfide solid electrolyte contains N
  • S is replaced with N having a small ionic radius, and the crystal lattice volume is reduced. Therefore, the ion conductivity can be improved by increasing the space in which lithium ions move. As a result, the initial coulomb efficiency of the all-solid-state battery can be improved while maintaining good ionic conductivity.
  • the element M in the sulfide solid electrolyte may be any element as long as the nitride has high resistance to reduction. Specifically, if it is at least one element selected from the group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V Good. These elements are elements that have been found by first-principles calculation to have high resistance to reduction of the lithium nitride containing the element M (see Non-Patent Document Adv. Sci., 4, 1600517 (2017)). ). Among these, Al, B, and Si are preferable because the cost is low and the manufacturing cost can be low.
  • Specific crystal structure B having diffraction peaks at °, 29.1 ° ⁇ 0.5 ° and 29.8 ° ⁇ 0.5 ° and no diffraction peak at 30.9 ° ⁇ 0.5 ° Is preferred. With the above configuration, the ionic conductivity at 25 ° C. can be further increased.
  • the sulfide solid electrolyte is selected from the group consisting of Li, P, S, N, and Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V.
  • the content ratio of Li with respect to P is 1.64 or more and 4.00 or less in terms of molar ratio
  • the content ratio of N with respect to P Is preferably 0.02 or more and 1.11 or less in molar ratio.
  • the element M may be Al.
  • the molar ratio of the Li to P is 2.77 to 3.38, and the molar ratio of the N to P is 0.28 to 0.65. Is more preferable.
  • the content ratio of Li and N in the sulfide solid electrolyte is within the above range, reduction resistance, atmospheric stability, and ionic conductivity at 25 ° C. can be simultaneously increased.
  • the sulfide solid electrolyte the general formula (100-z) (yLi 2 S ⁇ (1-y) P 2 S 5) ⁇ zLi ⁇ M ⁇ N (where, 0 ⁇ z ⁇ 40,0.50 ⁇ y ⁇ 0.75, ⁇ and ⁇ are numerical values that give stoichiometric ratios according to the type of the element M).
  • the sulfide solid electrolyte has the composition represented by the general formula, reduction resistance is further improved, and the initial coulomb efficiency of an all-solid battery including the sulfide solid electrolyte can be further increased.
  • the sulfide solid electrolyte may further contain Ge. Even with such a sulfide solid electrolyte, the effects of the present invention can be enjoyed.
  • the sulfide solid electrolyte when the sulfide solid electrolyte contains Ge, the sulfide solid electrolyte preferably has a structure having a crystal phase of Li 10 GeP 2 S 12 .
  • the content ratio of the Li to the P is a molar ratio. It is preferably 5.01 or more and 5.61 or less, and the content ratio of N with respect to P is preferably 0.0051 or more and 0.41 or less in terms of molar ratio. Further, it is more preferable that the content ratio of the Li to the P is 5.06 or more and 5.19 or less in terms of a molar ratio, and the content ratio of the N to the P is 0.038 or more and 0.13 or less in a molar ratio. .
  • the general formula (100-z) Li 10 GeP 2 S 12 ⁇ zLi ⁇ M ⁇ N (where 0 ⁇ z ⁇ 50, ⁇ and ⁇ depend on the type of the element M) And a stoichiometric ratio).
  • z satisfies 0 ⁇ z ⁇ 20.
  • the sulfide solid electrolyte preferably has an ionic conductivity at 25 ° C. of 1.0 ⁇ 10 ⁇ 3 S / cm or more.
  • the ionic conductivity of the sulfide solid electrolyte at 25 ° C. is determined by measuring the AC impedance by the following method.
  • 120 mg of the sample powder is charged into a powder molding machine having an inner diameter of 10 mm, and then subjected to uniaxial pressure molding using a hydraulic press at a pressure per sample area of 50 MPa or less.
  • SUS316L powder is charged as a current collector on the upper and lower surfaces of the sample, and then uniaxially pressed at a pressure of 360 MPa per pellet area for 5 minutes to obtain a pellet for ion conductivity measurement.
  • the pellet for ion conductivity measurement is inserted into an HS cell manufactured by Hosen Co., Ltd., and AC impedance measurement is performed.
  • the measurement conditions are an applied voltage amplitude of 20 mV, a frequency range of 1 MHz to 100 mHz, and a measurement temperature of 25 ° C.
  • An all-solid-state battery includes a negative electrode layer, a solid electrolyte layer, and a positive electrode layer, and the negative electrode layer, the solid electrolyte layer, the positive electrode layer, or a combination thereof includes the sulfide solid. It is an all-solid-state battery containing an electrolyte.
  • the all-solid-state battery according to another embodiment of the present invention is excellent in the initial coulomb efficiency because the negative electrode layer, the solid electrolyte layer, the positive electrode layer, or a combination thereof contains the sulfide solid electrolyte. Since the sulfide solid electrolyte has excellent reduction resistance, it is preferable that the negative electrode layer and / or the solid electrolyte layer contain the sulfide solid electrolyte. With the above configuration, the effects of the present invention are further improved.
  • the sulfide solid electrolyte is at least one element M selected from the group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V. And N, and has a crystal structure.
  • the sulfide solid electrolyte is at least one element M selected from the group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V. And N and having a crystal structure, reduction resistance can be improved.
  • the sulfide solid electrolyte can be used for any application that requires ionic conductivity. Above all, the sulfide solid electrolyte is preferably used for a lithium all-solid battery.
  • the element M may be Al.
  • the sulfide solid electrolyte has a crystal structure.
  • “having a crystal structure” means that a peak derived from the crystal structure of the sulfide solid electrolyte is observed in the X-ray diffraction pattern in the X-ray diffraction measurement.
  • the sulfide solid electrolyte may include an amorphous part.
  • the sulfide solid electrolyte having a crystal structure can be obtained, for example, by crystallizing an amorphous sulfide solid electrolyte by heat treatment or the like.
  • Examples of the crystal structure of the sulfide solid electrolyte include an LGPS type, an aldirodite type, Li 7 P 3 S 11 and a Thio-LISICON type.
  • the above crystal structure is preferably LGPS type, aldirodite type, and Li 7 P 3 S 11 from the viewpoint of lithium ion conductivity, and among these, Li 7 P 3 S 11 because of high stability against Li. Is more preferred.
  • the first crystal structure has a diffraction peak at 8 ° ⁇ 0.5 °.
  • the diffraction peak in the first crystal structure may be in the range of 2 ⁇ and further in a range of ⁇ 0.3 ° or in a range of ⁇ 0.1 °.
  • the X-ray diffraction measurement using the CuK ⁇ ray is performed according to the following procedure.
  • An airtight sample holder for X-ray diffraction measurement is filled with the solid electrolyte powder to be measured in an argon atmosphere having a dew point of ⁇ 50 ° C. or less.
  • the powder X-ray diffraction measurement is performed using an X-ray diffractometer (“MiniFlex II” manufactured by Rigaku).
  • the X-ray source is CuK ⁇ ray
  • the tube voltage is 30 kV
  • the tube current is 15 mA
  • the diffracted X-ray is detected by a high-speed one-dimensional detector (model number: D / teX Ultra 2) through a K ⁇ filter having a thickness of 30 ⁇ m.
  • the sampling width is 0.01 °
  • the scan speed is 5 ° / min
  • the divergence slit width is 0.625 °
  • the light receiving slit width is 13 mm (OPEN)
  • the scattering slit width is 8 mm.
  • LGPS-type sulfide solid electrolyte examples include Li 10 GeP 2 S 12 and the like.
  • Examples of the aldirodite type sulfide solid electrolyte include Li 6 PS 5 Cl.
  • the sulfide solid electrolyte preferably contains Li, P, S, N, and the element M.
  • the content ratio of Li with respect to the sulfide solid electrolyte P is preferably 1.64 or more and 4.00 or less, preferably 2.36 or more and 3.70 or less. More preferably, it is 2.60 or more and 3.40 or less.
  • the content ratio of N with respect to P is preferably 0.02 or more and 1.11 or less, more preferably 0.19 or more and 1.01 or less, and even more preferably 0.22 or more and 0.71 or less. , 0.28 or more and 0.65 or less.
  • the content ratio of Li and N in the sulfide solid electrolyte is within the above range, a sulfide solid electrolyte exhibiting good reduction resistance can be obtained.
  • the initial coulomb efficiency of the all-solid-state battery including the sulfide solid electrolyte can be increased.
  • the content ratio of Li to P is 2.60 to 4.00 in molar ratio
  • the content ratio of N to P is 0.19 to 1 in molar ratio. 0.11 or less
  • the content ratio of Li with respect to P is 2.77 or more and 3.38 or less in molar ratio
  • the content ratio of N with respect to P in a molar ratio of 0.28 or more and 0.1 or less. More preferably, it is 65 or less.
  • Li 2 S which is easy to be contained, is not substantially contained, the atmospheric stability of the sulfide solid electrolyte is improved, and the generation of hydrogen sulfide due to the reaction between moisture in the air and S in the sulfide solid electrolyte can be suppressed.
  • the content ratio of the Li with respect to the P is 2.77 or more and 3.38 or less in molar ratio
  • the content ratio of the N with respect to the P is 0.28 or more and 0.65 or less in a molar ratio
  • the Li Is preferably 5.01 or more and 5.61 or less in molar ratio
  • the content ratio of N with respect to P is preferably 0.0051 or more and 0.41 or less in molar ratio.
  • the content ratio of the Li to the P is 5.06 or more and 5.19 or less in terms of a molar ratio
  • the content ratio of the N to the P is 0.038 or more and 0.13 or less in a molar ratio.
  • reduction resistance can be further improved.
  • the initial coulomb efficiency of the all-solid-state battery including the sulfide solid electrolyte can be further increased.
  • Z in the above general formula is preferably more than 0 and 40 or less, more preferably 1 or more and 30 or less, further preferably 1 or more and 5 or less or 10 or more and 30 or less, and 1 or more and 5 or less or 10 or more and 25 or less. Is even more preferable.
  • z in the above general formula is in the range from more than 0 to 40 or less, the reduction resistance of the sulfide solid electrolyte can be further improved.
  • 10 ⁇ z ⁇ 40 the so-called crosslinked sulfur P 2 S 7 4- (S 3 P—S—PS 3 ) that is unstable in the atmosphere is reduced, and Li 2 S that easily reacts with water is substantially reduced.
  • the stability of the sulfide solid electrolyte in the air is improved, and the generation of hydrogen sulfide due to the reaction between moisture in the air and S in the sulfide solid electrolyte can be suppressed.
  • the ionic conductivity at 25 ° C. can be further increased.
  • the ionic conductivity at 25 ° C. can be further increased.
  • 1 ⁇ z ⁇ 5 or 10 ⁇ z ⁇ 25 can be further increased.
  • Y in the above general formula is preferably from 0.50 to 0.75, more preferably from 0.67 to 0.70.
  • the content ratio of Li 2 S and P 2 S 5 in the sulfide solid electrolyte is in the above range, the ionic conductivity of the sulfide solid electrolyte at 25 ° C. is improved.
  • ⁇ ⁇ and ⁇ in the above general formula are numerical values that give stoichiometric ratios according to the type of the element M.
  • the values of ⁇ and ⁇ are not particularly limited, but may be, for example, 0.80 ⁇ ⁇ ⁇ 3.0 and 0.10 ⁇ ⁇ ⁇ 1.2.
  • the general formula (100-z) Li 10 GeP 2 S 12 ⁇ zLi ⁇ M ⁇ N (where 0 ⁇ z ⁇ 50, ⁇ and ⁇ are the types of the element M) Is a numerical value that gives a stoichiometric ratio in accordance with the above formula).
  • the sulfide solid electrolyte is represented by the general formula (100-z) Li 10 GeP 2 S 12 ⁇ zLi 3/2 Al 1/2 N (where 0 ⁇ z ⁇ 50). It preferably has the composition represented.
  • the ionic conductivity at 25 ° C. can be increased.
  • Z in the above general formula is more than 0 and 50 or less, preferably 1 or more and 45 or less, more preferably 3 or more and 35 or less, still more preferably 5 or more and 25 or less, and 7 or more and 20 or less. Even more preferred.
  • z in the above general formula is within the above range, reduction resistance and ionic conductivity at 25 ° C. can be further increased.
  • ⁇ ⁇ and ⁇ in the above general formula are numerical values that give stoichiometric ratios according to the type of the element M.
  • the values of ⁇ and ⁇ are not particularly limited, but may be, for example, 0.80 ⁇ ⁇ ⁇ 3.0 and 0.10 ⁇ ⁇ ⁇ 1.2.
  • the ionic conductivity of the sulfide solid electrolyte at 25 ° C. is preferably 0.4 ⁇ 10 ⁇ 3 S / cm or more, more preferably 1.0 ⁇ 10 ⁇ 3 S / cm or more, and 1.5 More preferably, it is not less than ⁇ 10 ⁇ 3 S / cm.
  • the ionic conductivity at 25 ° C. of the sulfide solid electrolyte is the above value, the high-rate discharge performance of an all-solid battery including the sulfide solid electrolyte can be improved.
  • the sulfide solid electrolyte can be suitably used as a solid electrolyte of an all-solid battery.
  • the all-solid-state battery includes a negative electrode layer, a solid electrolyte layer, and a positive electrode layer.
  • FIG. 1 is a schematic sectional view showing an all-solid-state battery according to an embodiment of the present invention.
  • an all-solid-state battery 10 as a secondary battery, a negative electrode layer 1 and a positive electrode layer 2 are arranged via a solid electrolyte layer 3.
  • the negative electrode layer 1 has a negative electrode substrate layer 4 and a negative electrode mixture layer 5, and the negative electrode substrate layer 4 is the outermost layer of the negative electrode layer 1.
  • the positive electrode layer 2 has a positive electrode substrate layer 7 and a positive electrode mixture layer 6, and the positive electrode substrate layer 7 is the outermost layer of the positive electrode layer 2.
  • a positive electrode mixture layer 6, a solid electrolyte layer 3, a negative electrode mixture layer 5, and a negative electrode substrate layer 4 are laminated on a positive electrode substrate layer 7 in this order.
  • the negative electrode layer 1, the solid electrolyte layer 3, the positive electrode layer 2, or a combination thereof contains the sulfide solid electrolyte.
  • the all-solid-state battery has excellent initial coulomb efficiency because the negative electrode layer 1, the solid electrolyte layer 3, the positive electrode layer 2, or a combination thereof contains the sulfide solid electrolyte. Since the sulfide solid electrolyte has excellent reduction resistance, it is preferable that the negative electrode layer 1 and / or the solid electrolyte layer 3 contain the sulfide solid electrolyte. With the above configuration, the effects of the present invention are further improved.
  • the all-solid-state battery may use a solid electrolyte other than the sulfide solid electrolyte.
  • the other solid electrolyte may be a sulfide solid electrolyte other than the sulfide solid electrolyte, or may be an oxide solid electrolyte, a dry polymer electrolyte, a gel polymer electrolyte, or a pseudo solid electrolyte.
  • the sulfide solid electrolyte other than the sulfide solid electrolyte it is preferable high Li ion conductivity, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S -P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-P 2 S 5 —Li 3 N, Li 2 S—SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, Li 2 S—SiS 2 —B 2 S 3 —LiI, Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 SB—S 2 S 3 , Li 2 SP—P 2 S
  • Li 2 S-P 2 S 5 , xLi 2 S ⁇ (100-x) P 2 S 5 (70 ⁇ x ⁇ 80) is more preferable.
  • the negative electrode layer 1 includes a negative electrode substrate layer 4 and a negative electrode mixture layer 5 laminated on the surface of the negative electrode substrate layer 4.
  • the negative electrode layer 1 may have an intermediate layer (not shown) between the negative electrode base material layer 4 and the negative electrode mixture layer 5.
  • the negative electrode substrate layer 4 is a layer having conductivity.
  • the material of the negative electrode substrate layer 4 is not limited as long as it is a conductor.
  • copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, gold, silver, iron, platinum, chromium, tin, indium and alloys containing at least one of these and stainless steel alloys At least one metal selected from the group consisting of:
  • the lower limit of the average thickness of the negative electrode substrate layer 4 is preferably 3 ⁇ m, more preferably 5 ⁇ m, and still more preferably 8 ⁇ m.
  • the upper limit of the average thickness of the negative electrode substrate layer 4 is preferably 200 ⁇ m, more preferably 100 ⁇ m, and still more preferably 50 ⁇ m.
  • the negative electrode mixture layer 5 can be formed from a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode mixture may contain a negative electrode mixture or a negative electrode composite including the negative electrode active material and the sulfide solid electrolyte.
  • the negative electrode mixture optionally includes optional components such as a solid electrolyte other than the sulfide solid electrolyte, a conductive agent, a binder, and a filler.
  • the negative electrode active material usually, a material capable of inserting and extracting lithium ions is used.
  • the negative electrode active material include metals or semimetals such as Si and Sn; Metal oxides or semimetal oxides such as Si oxides and Sn oxides; Polyphosphate compound; Carbon materials such as graphite (graphite) and non-graphitizable carbon (easy-graphitizable carbon or hard-graphitizable carbon); And a lithium metal composite oxide such as lithium titanate.
  • the lower limit of the content of the negative electrode active material in the negative electrode mixture is preferably 10% by mass, and more preferably 15% by mass.
  • the upper limit of the content of the negative electrode active material is preferably 60% by mass, more preferably 70% by mass, further preferably 80% by mass, particularly preferably 90% by mass, and may be 95% by mass.
  • the negative electrode mixture is a mixture produced by mixing the negative electrode active material and the sulfide solid electrolyte by mechanical milling or the like.
  • a mixture of the negative electrode active material and the sulfide solid electrolyte can be obtained by mixing the particulate negative electrode active material and the particulate sulfide solid electrolyte.
  • the negative electrode composite include a composite having a chemical or physical bond between the negative electrode active material and the sulfide solid electrolyte, a composite in which the negative electrode active material and the sulfide solid electrolyte are mechanically composited, and the like. Is mentioned.
  • the composite is a composite in which the negative electrode active material and the sulfide solid electrolyte are present in one particle.
  • a composite in which the negative electrode active material and the sulfide solid electrolyte form an aggregated state A substance in which the sulfide solid electrolyte-containing film is formed on at least a part of the surface of the substance is exemplified.
  • the negative electrode mixture or the negative electrode composite may contain a solid electrolyte other than the sulfide solid electrolyte. Since the negative electrode active material and the sulfide solid electrolyte contained in the negative electrode mixture constitute the negative electrode mixture or the negative electrode composite, reduction resistance can be improved while maintaining high ionic conductivity, so that the initial coulomb efficiency is excellent. .
  • the lower limit of the content of the solid electrolyte in the negative electrode mixture may be 5% by mass, preferably 10% by mass.
  • the upper limit of the content of the solid electrolyte in the negative electrode mixture is preferably 90% by mass, more preferably 85% by mass, further preferably 80% by mass, and particularly preferably 75% by mass.
  • the lower limit of the content of the sulfide solid electrolyte in the negative electrode mixture may be 5% by mass, and is preferably 10% by mass.
  • the upper limit of the content of the sulfide solid electrolyte in the negative electrode mixture is preferably 90% by mass, more preferably 85% by mass, further preferably 80% by mass, and particularly preferably 75% by mass.
  • the conductive agent is not particularly limited.
  • examples of such a conductive agent include natural or artificial graphite, furnace black, acetylene black, carbon black such as Ketjen black, metal, and conductive ceramics.
  • Examples of the shape of the conductive agent include powder, fiber, and the like.
  • the content of the conductive agent in the negative electrode mixture can be, for example, 0.5% by mass or more and 30% by mass or less.
  • the negative electrode mixture may not contain a conductive agent.
  • the binder is not particularly limited.
  • thermoplastic resins such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide, polyacrylic acid; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene Elastomers such as butadiene rubber (SBR) and fluororubber; and polysaccharide polymers.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • EPDM ethylene-propylene-diene rubber
  • SBR butadiene rubber
  • fluororubber saccharide polymers
  • the filler is not particularly limited.
  • the main components of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, carbon, and the like.
  • the lower limit of the average thickness of the negative electrode mixture layer 5 is preferably 30 ⁇ m, more preferably 60 ⁇ m.
  • the upper limit of the average thickness of the negative electrode mixture layer 5 is preferably 1000 ⁇ m, more preferably 500 ⁇ m, and still more preferably 200 ⁇ m.
  • the intermediate layer is a coating layer on the surface of the negative electrode substrate layer 4, and reduces contact resistance between the negative electrode substrate layer 4 and the negative electrode mixture layer 5 by containing conductive particles such as carbon particles.
  • the configuration of the intermediate layer is not particularly limited.
  • the intermediate layer can be formed of a composition containing a resin binder and conductive particles.
  • the positive electrode layer 2 includes a positive electrode substrate layer 7 and a positive electrode mixture layer 6 laminated on the surface of the positive electrode substrate layer 7.
  • the positive electrode layer 2 may have an intermediate layer between the positive electrode base material layer 7 and the positive electrode mixture layer 6, similarly to the negative electrode layer 1. This intermediate layer can have the same configuration as the intermediate layer of the negative electrode layer 1.
  • the positive electrode substrate layer 7 can have the same configuration as the negative electrode substrate layer 4.
  • the material of the positive electrode substrate layer 7 is not limited as long as it is a conductor.
  • One or more metals selected from the group consisting of alloys can be mentioned.
  • the lower limit of the average thickness of the positive electrode base material layer 7 is preferably 3 ⁇ m, more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the positive electrode substrate layer 7 is preferably 200 ⁇ m, more preferably 100 ⁇ m, and still more preferably 50 ⁇ m.
  • the strength of the positive electrode substrate layer 7 can be sufficiently increased, so that the positive electrode layer 2 can be favorably formed.
  • the volume of other components can be sufficiently ensured.
  • the positive electrode mixture layer 6 can be formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode mixture may contain a positive electrode mixture or a positive electrode composite containing a positive electrode active material and a solid electrolyte.
  • the sulfide solid electrolyte may be used as the solid electrolyte, but it is more preferable to use a solid electrolyte having high oxidation resistance.
  • the positive electrode mixture forming the positive electrode mixture layer 6 includes optional components such as a solid electrolyte, a conductive agent, a binder, and a filler, if necessary, similarly to the negative electrode mixture. Note that the positive electrode mixture layer may be in a form that does not include a solid electrolyte.
  • ⁇ Positive electrode active material As the positive electrode active material contained in the positive electrode mixture layer 6, a known material usually used for an all solid state battery can be used.
  • the positive electrode active material for example, a composite oxide (Li x CoO 2 or Li x NiO having a layered ⁇ -NaFeO 2 type crystal structure) represented by Li x MeO y (Me represents at least one transition metal) 2, Li x MnO 3, Li x Ni ⁇ Co (1- ⁇ ) O 2, Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2 , etc., Li x Mn 2 O 4 having a spinel type crystal structure , Li x Ni ⁇ Mn (2 - ⁇ ) O 4 , etc.), Li w Me x (AO y) z (Me represents at least one transition metal, a represents for example P, Si, B, and V, etc.) (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO
  • Li-Al, Li-In, Li-Sn, Li-Pb, Li-Bi, Li-Ga, Li-Sr, Li-Si, Li-Zn, Li-Cd, Li-Ca, MnO 2 other than the compounds represented by lithium alloy and the general formula such as li-Ba, FeO 2, TiO 2, V 2 O 5, V 6 O 13, TiS 2, etc., than the redox potential anode material Noble materials can be used.
  • the lower limit of the content of the positive electrode active material in the positive electrode mixture is preferably 10% by mass, and more preferably 15% by mass.
  • the upper limit of the content of the positive electrode active material is preferably 60% by mass, more preferably 70% by mass, further preferably 80% by mass, particularly preferably 90% by mass, and may be 95% by mass.
  • the positive electrode mixture is a mixture prepared by mixing a positive electrode active material, a solid electrolyte, and the like by mechanical milling or the like, as in the case of the negative electrode.
  • a mixture of a positive electrode active material and a solid electrolyte can be obtained by mixing a particulate positive electrode active material, a particulate solid electrolyte, and the like.
  • the positive electrode composite also has a chemical or physical bond between the positive electrode active material and the solid electrolyte, as in the case of the negative electrode, and a composite in which the positive electrode active material and the solid electrolyte are mechanically composited. And the like.
  • the composite is one in which the positive electrode active material, the solid electrolyte, and the like are present in one particle.
  • the positive electrode active material, the solid electrolyte, and the like form an aggregated state, the surface of the positive electrode active material.
  • examples include those in which a film containing a solid electrolyte or the like is formed at least partially.
  • the lower limit of the content of the solid electrolyte may be 5% by mass or 10% by mass.
  • the upper limit of the solid electrolyte content in the positive electrode mixture is preferably 90% by mass, more preferably 85% by mass, further preferably 80% by mass, and particularly preferably 75% by mass.
  • the lower limit of the average thickness of the positive electrode mixture layer 6 is preferably 30 ⁇ m, more preferably 60 ⁇ m.
  • the upper limit of the average thickness of the positive electrode mixture layer 6 is preferably 1000 ⁇ m, more preferably 500 ⁇ m, and still more preferably 200 ⁇ m.
  • the average thickness of the positive electrode mixture layer 6 is equal to or more than the lower limit, an all-solid-state battery having a high energy density can be obtained.
  • the average thickness of the positive electrode mixture layer 6 By setting the average thickness of the positive electrode mixture layer 6 to be equal to or less than the upper limit, it is possible to obtain an all-solid-state battery having a high-rate discharge performance and a negative electrode having a high active material utilization rate.
  • the solid electrolyte layer 3 contains an electrolyte for a solid electrolyte layer.
  • the electrolyte for a solid electrolyte layer include, in addition to the sulfide solid electrolyte described above, for example, an oxide solid electrolyte, other sulfide solid electrolytes, a dry polymer electrolyte, a gel polymer electrolyte, and a quasi-solid electrolyte.
  • a sulfide solid electrolyte is preferable from the viewpoint of good ion conductivity and easy interface formation, and the sulfide solid electrolyte is more preferable.
  • the solid electrolyte layer 3 contains the sulfide solid electrolyte, the solid electrolyte layer maintains high ionic conductivity and the reduction resistance is improved, so that the initial coulomb efficiency of the all-solid-state battery can be improved.
  • the electrolyte for the solid electrolyte layer may have a crystal structure, or may be amorphous without a crystal structure.
  • An oxide such as Li 3 PO 4 , a halogen, a halogen compound, or the like may be added to the electrolyte for a solid electrolyte layer.
  • the lower limit of the average thickness of the solid electrolyte layer 3 is preferably 1 ⁇ m, more preferably 3 ⁇ m.
  • the upper limit of the average thickness of the solid electrolyte layer 3 is preferably 50 ⁇ m, more preferably 20 ⁇ m.
  • the average thickness of the solid electrolyte layer 3 is equal to or more than the above lower limit, the positive electrode and the negative electrode can be reliably insulated.
  • the average thickness of the solid electrolyte layer 3 is equal to or less than the upper limit, the energy density of the all-solid-state battery can be increased.
  • the method for manufacturing the all-solid-state battery includes, for example, a sulfide solid electrolyte preparation step of preparing the sulfide solid electrolyte, a negative electrode mixture preparation step, an electrolyte preparation step for a solid electrolyte layer, a positive electrode mixture preparation step, and a negative electrode And a laminating step of laminating the layers, the solid electrolyte layer and the positive electrode layer.
  • the sulfide solid electrolyte is produced by the following procedure.
  • nitride Li 3/2 Al 1/2 N
  • Li 3 N and AlN are mixed in a mortar or the like and then pelletized.
  • heat treatment is performed to produce Li 3/2 Al 1/2 N.
  • Li 3/2 Al 1/2 N is described as “Li 3 AlN 2 ”.
  • sulfide solid electrolyte precursor is prepared. .
  • a method for producing the sulfide solid electrolyte precursor for example, a mechanical milling method, a melt quenching method, or the like can be used.
  • a sulfide solid electrolyte can be produced by performing a heat treatment at a crystallization temperature or higher after producing a sulfide solid electrolyte precursor.
  • the crystallization temperature can be determined by measurement with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the heat treatment temperature is preferably 250 ° C. or more and 400 ° C. or less, and in order to obtain a ⁇ -Li 3 PS 4 crystal structure, the heat treatment temperature is 200 ° C. It is preferable that the temperature is not less than 400 ° C. This is because when heat treatment is performed at a high temperature such as 500 ° C., there is a possibility that a phase transition occurs to Li 4 P 2 S 6 which is a stable phase.
  • the heat treatment temperature is preferably from 250 ° C to 400 ° C.
  • a sulfide solid electrolyte containing an element such as B or Si and N can be produced.
  • the nitride that can be used in the above-described manufacturing process in addition to the above, LiMgN, LiCaN, LiHf 1/2 N, Li 3/2 Sc 1/2 N, LiZr 1/2 N, and Li 5/3 Ti 1 / 3 N, Li 4/3 Ta 1/3 N, Li 7/4 Ta 1/4 N, Li 7/4 Nb 1/4 N, Li 3/2 W 1/4 N, Li 7/4 V 1 / 4 N and the like.
  • a nitride made of the elements M, Li, and N was used as a starting material, but the method for producing a sulfide solid electrolyte of the present embodiment is not limited to this.
  • a Li 2 SP 2 S 5 -based sulfide solid electrolyte has been described as an example.
  • an LGPS-type or aldirodite-type sulfide solid electrolyte can also be manufactured by a similar manufacturing process. Can be made.
  • Li 3/2 Al 1/2 N, Li 2 S, and P 2 S 5 were used as starting materials, but by further adding a Ge-containing compound such as GeS 2 , LGPS containing Ge was used.
  • a type of the sulfide solid electrolyte may be made.
  • a starting material having a predetermined molar ratio is mixed in a mortar or the like, and then subjected to a mechanical milling method, for example, a ball mill treatment or a vibration mill treatment, to produce a sulfide solid electrolyte precursor. Thereafter, the precursor is heat-treated at a predetermined temperature or higher, whereby a sulfide solid electrolyte can be produced.
  • the heat treatment temperature is preferably 300 ° C. or more and 1000 ° C. or less, and more preferably 350 ° C. or more and 700 ° C. or less. , More preferably 400 to 650 ° C, particularly preferably 450 to 600 ° C.
  • the heat treatment may be performed in a reduced-pressure atmosphere or in an inert gas atmosphere.
  • a negative electrode mixture for forming a negative electrode layer is prepared.
  • the negative electrode mixture contains a mixture or a composite containing the negative electrode active material and the sulfide solid electrolyte
  • the negative electrode active material and the sulfide solid electrolyte are used. Mixing to produce a mixture or composite of the negative electrode active material and the sulfide solid electrolyte.
  • the solid electrolyte layer electrolyte for forming the solid electrolyte layer is prepared.
  • a predetermined material of the electrolyte for the solid electrolyte layer can be obtained by processing by a mechanical milling method.
  • the solid electrolyte layer electrolyte may be produced by heating a predetermined material of the solid electrolyte layer electrolyte to a melting temperature or higher by a melt quenching method, melting and mixing the two at a predetermined ratio, and quenching.
  • a positive electrode mixture for forming a positive electrode layer is prepared.
  • the method for producing the positive electrode mixture is not particularly limited, and can be appropriately selected depending on the purpose. For example, compression molding of the positive electrode active material, mechanical milling of a predetermined material of the positive electrode mixture, sputtering using a target material of the positive electrode active material, and the like can be mentioned.
  • the positive electrode mixture contains a mixture or a composite containing the positive electrode active material and the sulfide solid electrolyte
  • the positive electrode active material and the sulfide solid electrolyte are mixed using, for example, a mechanical milling method. Mixing to produce a mixture or composite of the positive electrode active material and the sulfide solid electrolyte.
  • a negative electrode layer having a negative electrode substrate layer and a negative electrode mixture layer, a solid electrolyte layer, and a positive electrode layer having a positive electrode substrate layer and a positive electrode mixture layer are laminated.
  • the negative electrode layer, the solid electrolyte layer, and the positive electrode layer may be formed sequentially or vice versa, and the order of forming each layer is not particularly limited.
  • the negative electrode layer is formed by pressure-molding a negative electrode base material and a negative electrode mixture
  • the solid electrolyte layer is formed by pressure-forming an electrolyte for a solid electrolyte layer
  • the positive electrode layer is formed by a positive electrode base. It is formed by pressure molding the material and the positive electrode mixture.
  • the negative electrode layer, the solid electrolyte layer, and the positive electrode layer may be laminated by press-molding the negative electrode substrate, the negative electrode mixture, the electrolyte for the solid electrolyte layer, the positive electrode substrate, and the positive electrode mixture at a time.
  • the positive electrode layer, the negative electrode layer, or these layers may be formed in advance, and may be laminated by pressure molding with the solid electrolyte layer.
  • the configuration of the all solid state battery according to the present invention is not particularly limited, and may include other layers other than the negative electrode layer, the positive electrode layer, and the solid electrolyte layer, such as an intermediate layer and an adhesive layer.
  • Example 1 The following process was synthesized 99 (0.70Li 2 S ⁇ 0.30P 2 S 5) ⁇ 1Li 3/2 Al 1/2 N. Li 3 N and AlN were weighed to a molar ratio of 1.2: 1, mixed in a mortar, and pelletized. Next, heat treatment was performed at 750 ° C. for 1 hour to produce Li 3/2 Al 1/2 N. Fabricated Li 3/2 Al 1/2 N, the main phase by XRD measurement was confirmed to be Li 3/2 Al 1/2 N. Next, Li 2 S (99.98%, Aldrich), P 2 S 5 (99%, Aldrich) and Li 3/2 Al 1/2 N were dissolved in a glove box in an argon atmosphere having a dew point of ⁇ 50 ° C. or less.
  • Examples 2 to 9 The value of z in the composition formula (100-z) (0.70Li 2 S ⁇ 0.30P 2 S 5 ) ⁇ zLi 3/2 Al 1 / 2N of the sulfide solid electrolyte is 5 , 7, 10, 15, Except for changing to 20, 25, 30, and 40, the sulfide solid electrolytes of Examples 2 to 9 were synthesized in the same manner as in Example 1.
  • the sulfide solid electrolyte of Example 12 was synthesized in the same manner as in Example 1 except that the weight was adjusted to 26.4: 20.0 (mol%).
  • Li 3 N and BN are weighed to a molar ratio of 1.1: 1, mixed in a mortar, pelletized, and then heat-treated at 800 ° C. for 10 minutes to produce Li 3/2 B 1/2 N. did. Fabricated Li 3/2 B 1/2 N, the main phase by XRD measurement was confirmed to be Li 3/2 B 1/2 N. Next, using the above Li 3/2 B 1/2 N instead of Li 3/2 Al 1/2 N, the composition formula (100-z) of the sulfide solid electrolyte (0.70 Li 2 S.0.
  • Example 19 using the above Li 5/3 Si 1/3 N instead of Li 3/2 Al 1/2 N, the composition formula (100-z) (0.70Li 2 S.0. 30P 2 S 5 ) ⁇ zLi 5/3 Si 1/3 N
  • the procedure of Example 19 was repeated in the same manner as in Example 1 except that the value of z was changed to 1.5, 15, 20, 30, and 45. Twenty-three sulfide solid electrolytes were synthesized.
  • Comparative Example 1 A sulfide solid electrolyte of Comparative Example 1 was synthesized in the same manner as in Example 1 except that Li 3/2 Al 1/2 N was not used as a raw material of the sulfide solid electrolyte.
  • Example 24 By the following treatment, 87.6 (Li 10 GeP 2 S 12 ) ⁇ 12.4Li 3/2 Al 1 / 2N was synthesized. Li 3 N and AlN were weighed to a molar ratio of 1.2: 1, mixed in a mortar, and pelletized. Next, heat treatment was performed at 750 ° C. for 1 hour to produce Li 3/2 Al 1/2 N. Next, Li 2 S (99.98%, Aldrich), P 2 S 5 (99%, Aldrich), GeS 2 (99.99%, high-purity chemical) in a glove box in an argon atmosphere having a dew point of ⁇ 50 ° C. or lower.
  • Li 3/2 Al 1/2 N were weighed to a molar ratio of 5: 1: 1: 0.14 and then mixed in a mortar.
  • This mixed sample was put into a sealed 80 mL zirconia pot containing 160 g of zirconia balls having a diameter of 4 mm. Milling was performed for 40 hours at a revolution speed of 370 rpm using a planetary ball mill (manufactured by FRITSCH, model number: Premium line P-7). Thereafter, heat treatment was performed at 550 ° C. for 8 hours to obtain a sulfide solid electrolyte of Example 24.
  • Example 25, Example 26, Comparative Example 2 The value of z in the composition formula (100-z) (Li 10 GeP 2 S 12 ) ⁇ zLi 3/2 Al 1/2 N of the sulfide solid electrolyte was changed to 30.2, 42.5, and 60.9. Except for this, the sulfide solid electrolytes of Example 25, Example 26, and Comparative Example 2 were synthesized in the same manner as Example 1. [Comparative Example 3] A sulfide solid electrolyte of Comparative Example 3 was synthesized in the same manner as in Example 24 except that Li 3/2 Al 1/2 N was not used as a raw material of the sulfide solid electrolyte.
  • the source was CuK ⁇ ray, the tube voltage was 30 kV, the tube current was 15 mA, and the diffracted X-ray was detected by a high-speed one-dimensional detector (model number: D / teX Ultra2) through a K ⁇ filter having a thickness of 30 ⁇ m.
  • the sampling width was 0.01 °, the scan speed was 5 ° / min, the divergence slit width was 0.625 °, the light receiving slit width was 13 mm (OPEN), and the scattering slit width was 8 mm.
  • Table 1 shows the crystal structures identified from the XRD spectra of Examples 1 to 23, Comparative Example 1 and Reference Example 2.
  • Table 2 shows the crystal structures identified from the XRD spectra of Examples 24 to 26, Comparative Examples 2 and 3, and Reference Examples 3 and 4. Note that “Unknown” in Table 2 indicates that a diffraction peak whose crystal structure could not be identified was confirmed.
  • FIG. 3 shows Raman spectra of Examples 2 to 6 and Comparative Example 1.
  • Table 1 shows the molecular structures identified from the Raman spectra of Examples 1 to 23, Comparative Example 1 and Reference Example 2.
  • Ionic conductivity ( ⁇ ) The ionic conductivity ( ⁇ ) was obtained by measuring the ionic conductivity at 25 ° C. using the “VMP-300” manufactured by (Bio-Logic) and measuring the AC impedance by the method described above.
  • FIG. 4 shows the ionic conductivity at 25 ° C. of Examples 1 to 9 and Comparative Example 1, and Table 1 shows Examples 1 to 23, Comparative Example 1 and Reference Example 2.
  • Table 2 shows the ionic conductivity and activation energy at 25 ° C. of Examples 24 to 26, Comparative Examples 2 and 3, and Reference Examples 3 and 4.
  • a metal Li foil is bonded to the opposite surface of the sulfide solid electrolyte layer of Example 1 and pressed to form a positive electrode mixture layer, a sulfide solid electrolyte layer of Example 1, and a metal Li foil.
  • a laminate was obtained. This laminate was sealed under reduced pressure in an aluminum laminate cell, and pressed using a stainless steel plate to obtain an all-solid-state battery cell (Li-NCA half cell).
  • Example 2 The same operation as in Example 1 was performed except that the sulfide solid electrolyte of Example 1 was changed to the sulfide solid electrolytes of Examples 2 and 4 and Comparative Example 1.
  • An all-solid-state battery cell Li-NCA half cell provided with a sulfide solid electrolyte was obtained.
  • FIG. 5 shows the initial charge / discharge performance of Example 1, Example 2, Example 4, and Comparative Example 1.
  • Table 1 shows the initial coulomb efficiencies (%) of Example 1, Example 2, Example 4, and Comparative Example 1.
  • the charging test conditions were a measurement temperature of 50 ° C., charging was performed at constant current and constant voltage (CCCV), charging current was 0.1 mA / cm 2 , charging lower limit potential was 0.01 V, and total charging time was 100 hours.
  • Charging the reaction in which the mixture layer of the sulfide solid electrolyte of Example 1 is reduced.
  • the amount of charge electricity 20 hours after the start of charging was defined as the reductive decomposition capacity (mAh / g) of the sulfide solid electrolyte after 20 hours.
  • SUS316L powder is 0Vvs. Redox species are solely sulfide solid electrolytes because they are stable at the Li / Li + potential.
  • the amount of electricity flowing through the evaluation cell means the amount of reductive decomposition of the sulfide solid electrolyte. According to the same procedure, the reduction resistance of the sulfide solid electrolytes of Examples 2, 4, 8 to 17, 19, 20, 22 and Comparative Example 1 was evaluated.
  • Table 1 shows the reductive decomposition capacity of the sulfide solid electrolytes of Examples 1, 2, 4, 8 to 17, 19, 20, 22 and Comparative Example 1 20 hours after the start of charging.
  • a metal Li foil is bonded to the opposite surface of the Li 3 PS 4 layer and pressed to form a mixture layer of the sulfide solid electrolyte of Example 24, a Li 3 PS 4 solid electrolyte layer, and a metal Li foil.
  • This laminate was sealed in an aluminum laminate cell under reduced pressure, and pressed using a stainless steel plate, whereby an all-solid-state battery cell having the mixture layer of the sulfide solid electrolyte of Example 24 as a working electrode and a metal Li foil as a counter electrode was used. (Li-Gr half cell) was obtained.
  • Example 24 Except that the sulfide solid electrolyte of Example 24 was changed to the sulfide solid electrolytes of Examples 25 and 26 and Comparative Example 3, the same operation as in Example 24 was performed, and that of Examples 25 and 26 and Comparative Example 3 was repeated. An all solid state battery cell (Li-Gr half cell) equipped with a sulfide solid electrolyte was obtained.
  • Li-Gr half cell Li-Gr half cell
  • FIG. 9 shows dQ / dV curves of Examples 24 to 26 and Comparative Example 3.
  • the obtained pellets are placed inside a sealed desiccator (effective volume 2100 cm 3 , temperature 20 ° C., relative humidity about 90%), and the amount of hydrogen sulfide generated is measured using a hydrogen sulfide sensor (TPA-5200E).
  • TPA-5200E hydrogen sulfide sensor
  • the measurement was terminated when the detection limit of the hydrogen sulfide sensor reached 50 ppm or when the measurement time passed 40 minutes.
  • the generation amount V (cm 3 / g) of hydrogen sulfide generated from the solid electrolyte per 1 g is obtained by using the obtained concentration C (ppm), the real volume L (cm 3 ) of the desiccator, and the mass m (g) of the pellet.
  • V (cm 3 / g) C ⁇ L ⁇ 10 ⁇ 6 / m
  • FIGS. 6 and 7 are graphs showing the relationship between the air exposure time (minutes) and the amount of hydrogen sulfide generated (cm 3 / g) for the sulfide solid electrolyte pellets of the above Examples and Comparative Examples.
  • FIG. 6 shows the amount of hydrogen sulfide generated in Example 4, Example 6, and Comparative Example 1 up to the air exposure time of 20 minutes.
  • FIG. 7 shows the sulfur sulfide emission in Example 6 and Reference Example 1 up to the air exposure time of 40 minutes. Shows the amount of hydrogen generated.
  • the sulfide solid electrolyte of the example including an element of any of Al, B, or Si and N as the element M and having a crystal structure was compared with the sulfide solid electrolyte of Comparative Example 1.
  • the reductive decomposition capacity 20 hours after the start of charging was suppressed, and the initial coulomb efficiency was excellent.
  • the sulfide solid electrolytes of Example 1, Example 2, Example 4 to Example 8, Example 10, Example 12 to Example 17, and Example 19 to Example 22 also have good ionic conductivity at 25 ° C. Met.
  • the sulfide solid electrolyte of Comparative Example 1 which did not contain the elements M and N, had good ionic conductivity, but had a large reductive decomposition capacity after 20 hours from the start of charging, and was inferior in initial Coulomb efficiency.
  • Example 1 and Example 2 had a crystal structure of Li 7 P 3 S 11
  • Example 3 had a crystal structure of ⁇ -Li 3 PS 4
  • Example 11 had a crystal structure of Li 4 P 2 S 6 .
  • the sulfide solid electrolyte of the example shows that the Raman shift derived from the crosslinked sulfur P 2 S 7 4- increases as z increases, that is, as the content of nitrogen (N) increases. 406cm peak around -1 decreases, the peak around the Raman shift 423Cm -1 derived from PS 4 3- emerge. Therefore, it is presumed that the molecular structures based on the Raman spectra of Examples 1 and 15 in Table 1 are composed of PS 4 3 ⁇ , P 2 S 7 4 ⁇ and P 2 S 6 4 ⁇ .
  • the sulfide solid electrolyte not only has high reduction resistance but also has excellent atmospheric stability. The reason why the sulfide-based solid electrolyte has a high effect of suppressing the generation of hydrogen sulfide is presumed as follows. As shown in the Raman spectrum of FIG.
  • the sulfide solid electrolyte of the example has a Raman shift of 406 cm ⁇ 1 derived from the crosslinked sulfur P 2 S 7 4- as z increases, that is, as the N content increases. Near peaks are decreasing. In the sulfide solid electrolyte of the example, no peak derived from Li 2 S appeared in the XRD (X-ray diffraction) spectrum shown in FIG. From these facts, by increasing the content of N in the sulfide solid electrolyte, so-called crosslinked sulfur P 2 S 7 4- (S 3 PS—PS 3 ), which is unstable in the atmosphere, is reduced, and water is reduced.
  • Li 3 N When Li 3 N is used as a starting material for a sulfide-based solid electrolyte containing N, Li 3 N reacts dramatically with P 2 S 5 to release N 2 and precipitate Li 2 S. This is considered to be because the N defect generation energy of Li 3 N is small.
  • the N defect generation energy of Li ⁇ M ⁇ N is larger than the N defect generation energy of Li 3 N, the reaction proceeds slowly in the synthesis process of the sulfide-based solid electrolyte, and N 2 It is considered that the release of Li and the precipitation of Li 2 S are suppressed.
  • the sulfur-based sulfide solid electrolyte containing Li, P, S, Ge, Al, and N and having a crystal structure had excellent ionic conductivity at 25 ° C.
  • the sulfide solid electrolyte according to the present invention has high reduction resistance and can improve the initial coulomb efficiency of an all-solid battery including the sulfide solid electrolyte. Moreover, it was shown that the sulfide solid electrolyte according to the present invention can also improve the atmospheric stability.
  • the all-solid-state battery provided with the sulfide solid electrolyte according to the present invention has excellent initial coulomb efficiency, and is therefore suitably used as, for example, a lithium-ion all-solid-state battery for HEV.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一態様は、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有する硫化物固体電解質である。本発明の別の一態様は、Al及びNを含み、結晶構造を有する硫化物固体電解質である。

Description

硫化物固体電解質及び全固体電池
 本発明は、硫化物固体電解質及び全固体電池に関する。
 リチウムイオン非水電解質二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解質を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。
 近年、非水電解質二次電池の安全性の向上を目的として、非水電解質として有機溶媒等の液体の電解質に代えて硫化物固体電解質等を使用する全固体電池が提案されている(特許文献1参照)。
 硫化物固体電解質の一例として、Li、P、SおよびNを含有し、一般式XLiS-25P-YLiN(10≦Y≦15、67.5≦X+Y≦85)で表される組成を有し、結晶性材料である硫化物固体電解質が開示されている。(特許文献2参照)
 硫化物固体電解質としては、70LiS・30Pガラスセラミックス及び60LiS・25P・10LiNガラスセラミックスが、10-3S/cm以上の高いイオン伝導度を示すことが報告されている。(非特許文献1)
 このような硫化物固体電解質は、本質的に耐酸化性及び耐還元性が低いことが第一原理計算より明らかにされている。(非特許文献2)
特開2000-340257号公報 特開2018-041671号公報 Solid State Ionics,177,2721(2006)、Solid State Ionics,304,85(2016) ACS Appl.Mater.Interfaces、7、23685(2015)
 本発明は、以上のような事情に基づいてなされたものであり、耐還元性が向上された硫化物固体電解質、及び当該硫化物固体電解質を備えた全固体電池の提供を目的とする。
 上記課題を解決するためになされた本発明の一態様は、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有する硫化物固体電解質である。
 本発明の他の一態様は、Al及びNを含み、結晶構造を有する硫化物固体電解質である。
 本発明の一態様又は他の一態様に係る硫化物固体電解質によれば、耐還元性が向上された硫化物固体電解質とすることができる。
本発明の一実施形態における全固体電池を示す模式的断面図である。 実施例及び比較例の硫化物固体電解質のX線回折(XRD)スペクトルである。 実施例及び比較例の硫化物固体電解質のラマンスペクトルである。 実施例及び比較例の硫化物固体電解質の25℃におけるイオン伝導度を示すグラフである。 実施例及び比較例の全固体電池の初回充放電性能を示すグラフである。 実施例及び比較例の硫化物固体電解質の硫化水素発生量を示すグラフである。 実施例及び参考例の硫化物固体電解質の硫化水素発生量を示すグラフである。 実施例、比較例及び参考例の硫化物固体電解質のX線回折(XRD)スペクトルである。 実施例及び比較例の全固体電池のdQ/dV曲線である。
 本発明の一態様に係る硫化物固体電解質は、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有する硫化物固体電解質である。
 本発明者らは、イオン伝導度が低いために固体電解質としての適用が困難であるAl、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vのいずれか(以下、元素Mとも記載する)を含有する窒化物が、高い耐還元性を示すことに着目した。そこで、硫化物固体電解質中に、窒素元素(N)と当該元素Mとを含有させることで、硫化物固体電解質の耐還元性を向上できるのではないかと考え、本発明に至った。
 当該硫化物固体電解質は、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有することで、耐還元性が向上された硫化物固体電解質とすることができる。なお、上記硫化物固体電解質において、元素MはAlであってもよい。この理由については定かでは無いが、以下の理由が推測される。元素MとNとを含む当該硫化物固体電解質が還元雰囲気に曝されると、当該硫化物固体電解質の表面ないし界面に、元素Mの窒化物や元素Mのリチウム窒化物等を含む、耐還元性の高い被膜が形成されると推測される。このために当該硫化物固体電解質の耐還元性が向上すると推測される。
 当該硫化物固体電解質を備えた全固体電池は、初回クーロン効率が向上された全固体電池とすることができる。この理由については定かでは無いが、以下の理由が推測される。一般的な硫化物固体電解質は、還元分解されやすく、そのような硫化物固体電解質を備えた全固体電池は大きな還元分解電気量を示すことが知られているが、当該硫化物固体電解質は耐還元性が高い。このため当該硫化物固体電解質を備えた全固体電池の初回クーロン効率を向上できる。
 さらに、当該硫化物固体電解質がNを含有することで、Sがイオン半径の小さいNと置き換わり結晶格子体積が減少する。そのため、リチウムイオンが移動するスペースが大きくなることでイオン伝導度を向上できる。その結果、良好なイオン伝導度を維持しつつ全固体電池の初回クーロン効率を向上できる。
 上記硫化物固体電解質における元素Mは、窒化物の耐還元性が高いものであればよい。具体的には、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素であればよい。これらの元素は、第一原理計算によって、元素Mを含むリチウム窒化物の耐還元性が高いことが明らかとなっている元素である(非特許文献Adv.Sci.,4,1600517(2017)参照)。これらの中でも、原価が低く、製造コストを低くできることから、Al、B、Siが好ましい。
 上記結晶構造としては、Li11、Li若しくはβ-LiPSの結晶相を有する結晶構造又はCuKα線を用いるX線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有する第一の結晶構造を含むことが好ましい。これにより、25℃におけるイオン伝導度を高めることができる。
 上記第一の結晶構造が上記X線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°、29.8°±0.5°及び30.9°±0.5°に回折ピークを有する特定結晶構造A又は上記X線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有し、30.9°±0.5°に回折ピークを有さない特定結晶構造Bを含むことが好ましい。上記構成により、25℃におけるイオン伝導度をより高めることができる。
 当該硫化物固体電解質がLi、P、S、N、及びAl、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mを含む場合、耐還元性の観点から、上記Pに対する上記Liの含有割合がモル比で1.64以上4.00以下であり、上記Pに対する上記Nの含有割合がモル比で0.02以上1.11以下であることが好ましい。当該硫化物固体電解質におけるLi及びNの含有割合が上記範囲であることで、耐還元性がより向上し、当該硫化物固体電解質を備えた全固体電池の初回クーロン効率をより高めることができる。なお、上記硫化物固体電解質において、元素MはAlであってもよい。
 当該硫化物固体電解質において、上記Pに対する上記Liの含有割合がモル比で2.77以上3.38以下であり、上記Pに対する上記Nの含有割合がモル比で0.28以上0.65以下であるとさらに好ましい。当該硫化物固体電解質におけるLi及びNの含有割合が上記範囲であることで、耐還元性と、大気安定性と、25℃におけるイオン伝導度とを同時に高めることができる。
 当該硫化物固体電解質が、一般式(100-z)(yLiS・(1-y)P)・zLiαβN(但し、0<z≦40、0.50≦y≦0.75、α及びβは、元素Mの種類に応じて、化学量論比を与える数値である)で表される組成を有することが好ましい。当該硫化物固体電解質が、上記一般式で表される組成を有することで、耐還元性がより向上し、当該硫化物固体電解質を備えた全固体電池の初回クーロン効率をより高めることができる。
 当該硫化物固系体電解質は、さらにGeを含んでもよい。このような硫化物固体電解質であっても、本発明の効果を享受できる。
 当該硫化物固体電解質がGeを含む場合、当該硫化物固体電解質は、Li10GeP12の結晶相を有する構造を含むことが好ましい。
 また、当該硫化物固体電解質がLi、P、S、N、Ge、及び上記元素Mを含み、Li10GeP12の結晶相を有する場合、上記Pに対する上記Liの含有割合がモル比で5.01以上5.61以下であり、上記Pに対する上記Nの含有割合がモル比で0.0051以上0.41以下であることが好ましい。また、上記Pに対する上記Liの含有割合がモル比で5.06以上5.19以下であり、上記Pに対する上記Nの含有割合がモル比で0.038以上0.13以下であるとさらに好ましい。
 当該硫化物固体電解質がGeを含む場合、一般式(100-z)Li10GeP12・zLiαβN(但し、0<z≦50、α及びβは、元素Mの種類に応じて、化学量論比を与える数値である)で表される組成を有することが好ましい。中でも、上記一般式において、zが0<z≦20を満たすことが特に好ましい。
 当該硫化物固体電解質の25℃におけるイオン伝導度が1.0×10-3S/cm以上であることが好ましい。上記構成により、当該硫化物固体電解質を備えた全固体電池の高率放電性能を向上できる。
 なお、当該硫化物固体電解質の25℃におけるイオン伝導度は、以下の方法で交流インピーダンスを測定して求める。露点-50℃以下のアルゴン雰囲気下で、内径10mmの粉体成型器に試料粉末を120mg投入したのちに、油圧プレスをもちいて試料面積あたりの圧力50MPa以下で一軸加圧成形する。圧力解放後に、試料の上面および下面に集電体としてSUS316L粉末を投入したのちに、ペレット面積あたりの圧力360MPaで、5分間一軸加圧成形することによりイオン伝導度測定用ペレットを得る。このイオン伝導度測定用ペレットを宝泉社製HSセル内に挿入して交流インピーダンス測定を行う。測定条件は、印加電圧振幅20mV、周波数範囲1MHzから100mHz、測定温度25℃とする。
 本発明の他の一態様に係る全固体電池は、負極層と、固体電解質層と、正極層とを備え、上記負極層、上記固体電解質層、上記正極層又はこれらの組み合わせが当該硫化物固体電解質を含有する全固体電池である。
 本発明の他の一態様に係る全固体電池は、上記負極層、上記固体電解質層、上記正極層又はこれらの組み合わせが当該硫化物固体電解質を含有するので、初回クーロン効率が優れる。当該硫化物固体電解質は耐還元性に優れるため、負極層及び/又は固体電解質層が当該硫化物固体電解質を含有することが好ましい。上記構成により、本発明の効果がより一層優れたものとなる。
 以下、本発明に係る硫化物固体電解質及び全固体電池の実施形態について詳説する。
<硫化物固体電解質>
 当該硫化物固体電解質は、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有する。当該硫化物固体電解質は、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有することで、耐還元性を向上できる。当該硫化物固体電解質は、イオン伝導性を必要とする任意の用途に用いることができる。中でも、当該硫化物固体電解質は、リチウム全固体電池に用いられることが好ましい。なお、上記硫化物固体電解質において、元素MはAlであってもよい。
 当該硫化物固体電解質は、結晶構造を有する。ここで、「結晶構造を有する」とは、X線回折測定において、X線回折パターンに上記硫化物固体電解質の結晶構造由来のピークが観測されることを意味する。当該硫化物固体電解質には非晶部が含まれていてもよい。結晶構造を有する硫化物固体電解質は、例えば、非晶質状態の硫化物固体電解質を、熱処理等により結晶化して得ることができる。
 当該硫化物固体電解質が有する上記結晶構造としては、例えばLGPS型、アルジロダイト型、Li11およびThio-LISICON系などが挙げられる。これらの中でも上記結晶構造としては、リチウムイオン伝導性の観点からはLGPS型、アルジロダイト型、及びLi11が好ましく、これらの中でもLiに対する安定性が高いことからLi11がより好ましい。大気に対する安定性の観点からはLi若しくはβ-LiPSの結晶相を有する結晶構造又はCuKα線を用いるX線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有する第一の結晶構造を含むことが好ましく、これらの中でもリチウムイオン伝導度性が高いことからCuKα線を用いるX線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有する第一の結晶構造であることがより好ましい。
 上記第一の結晶構造は上記X線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°、29.8°±0.5°及び30.9°±0.5°に回折ピークを有する特定結晶構造A又は上記X線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有し、30.9°±0.5°に回折ピークを有さない特定結晶構造Bを含んでもよい。上記構成により、25℃におけるイオン伝導度を高めることができる。
 上記第一の結晶構造における上記回折ピークは、上記2θの範囲の、さらに±0.3°の範囲内にあってもよく、±0.1°の範囲内にあってもよい。
 上記CuKα線を用いるX線回折測定は、以下の手順により行う。気密性のX線回折測定用試料ホルダーに、露点-50℃以下のアルゴン雰囲気下で、測定に供する固体電解質粉末を充填する。X線回折装置(Rigaku社の「MiniFlex II」)を用いて、粉末X線回折測定を行う。線源はCuKα線、管電圧は30kV、管電流は15mAとし、回折X線は厚み30μmのKβフィルターを通し高速一次元検出器(型番:D/teX Ultra 2)にて検出する。サンプリング幅は0.01°、スキャンスピードは5°/min、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとする。
 上記Li11の結晶相を有する結晶構造は、上記CuKα線を用いるX線回折測定において2θ=17.8°±0.5°、18.5°±0.5°、23.7°±0.5°、29.6°±0.5°、30.0°±0.5°の位置に回折ピークを有する。
 上記LGPS型の硫化物固体電解質としては、例えば、Li10GeP12等が挙げられる。Li10GeP12の結晶相を有する結晶構造は、上記CuKα線を用いるX線回折測定において2θ=14.4°±0.5°、20.1°±0.5°、20.4°±0.5°、26.9°±0.5°、29.5°±0.5°、47.3°±0.5°の位置に回折ピークを有する。
 上記アルジロダイト型の硫化物固体電解質としては、例えば、LiPSCl等が挙げられる。LiPSClの結晶相を有する結晶構造は、上記CuKα線を用いるX線回折測定において2θ=15.6°±0.5°、25.5°±0.5°、30.0°±0.5°、31.4°±0.5°、45.0°±0.5°、52.5°±0.5°の位置に回折ピークを有する。
 上記Liの結晶相を有する結晶構造は、上記CuKα線を用いるX線回折測定において2θ=2θ=16.9°±0.5°、27.1°±0.5°、32.1°±0.5°、32.5°±0.5°の位置に回折ピークを有する。
 上記β-LiPSの結晶相を有する結晶構造は、上記CuKα線を用いるX線回折測定において2θ=17.5°±0.5°、18.1°±0.5°、29.1°±0.5°、29.9°±0.5°、31.2°±0.5°の位置に回折ピークを有する。
 当該硫化物固体電解質は、Li、P、S、N、及び元素Mを含むことが好ましい。この場合、耐還元性の観点から、硫化物固体電解質上記Pに対する上記Liの含有割合はモル比で1.64以上4.00以下であると好ましく、2.36以上3.70以下であるとより好ましく、2.60以上3.40以下であるとさらに好ましい。上記Pに対する上記Nの含有割合は、0.02以上1.11以下であると好ましく、0.19以上1.01以下であるとより好ましく、0.22以上0.71以下であるとさらに好ましく、0.28以上0.65以下であると特に好ましい。当該硫化物固体電解質におけるLi及びNの含有割合が上記範囲であることで、良好な耐還元性を示す硫化物固体電解質が得られる。また、当該硫化物固体電解質を備える全固体電池の初回クーロン効率を高めることができる。
 さらに、大気安定性の観点からは、上記Pに対する上記Liの含有割合がモル比で2.60以上4.00以下であり、上記Pに対する上記Nの含有割合がモル比で0.19以上1.11以下であることが好ましく、上記Pに対する上記Liの含有割合がモル比で2.77以上3.38以下であり、上記Pに対する上記Nの含有割合がモル比で0.28以上0.65以下であることがより好ましい。また、元素MとしてAlを含むことが好ましい。これにより、特に一般式におけるyの値が0.75未満の場合に、大気に不安定ないわゆる架橋硫黄P 4-(SP-S-PS)が減少し、水と反応しやすいLiSを実質的に含有しないため、当該硫化物固体電解質の大気安定性が向上し、大気中の水分と硫化物固体電解質中のSとの反応による硫化水素の発生を抑制できる。
 特に、上記Pに対する上記Liの含有割合がモル比で2.77以上3.38以下であり、上記Pに対する上記Nの含有割合がモル比で0.28以上0.65以下であると、耐還元性と、大気安定性と、25℃におけるイオン伝導度とを同時に高めることができるため好ましい。
 当該硫化物固体電解質がLi、P、S、N、Ge、及び上記元素Mを含み、Li10GeP12の結晶相を有する場合には、耐還元性の観点から、上記Pに対する上記Liの含有割合がモル比で5.01以上5.61以下であり、上記Pに対する上記Nの含有割合がモル比で0.0051以上0.41以下であることが好ましい。また、上記Pに対する上記Liの含有割合がモル比で5.06以上5.19以下であり、上記Pに対する上記Nの含有割合がモル比で0.038以上0.13以下であるとさらに好ましい。
 当該硫化物固体電解質としては、一般式(100-z)(yLiS・(1-y)P)・zLiαβN(但し、0<z≦40、0.50≦y≦0.75、)で表される組成を有することが好ましい。当該硫化物固体電解質が上記一般式で表される組成を有することで、耐還元性をより向上できる。また、当該硫化物固体電解質を備える全固体電池の初回クーロン効率をより高めることができる。
 上記一般式におけるzは、0超40以下であると好ましく、1以上30以下であるとより好ましく、1以上5以下又は10以上30以下であるとさらに好ましく、1以上5以下又は10以上25以下であるとよりさらに好ましい。上記一般式におけるzが0超40以下範囲であることで、当該硫化物固体電解質の耐還元性をより向上できる。10≦z≦40であることで、大気に不安定ないわゆる架橋硫黄P 4-(SP-S-PS)が減少し、水と反応しやすいLiSを実質的に含有しないため、当該硫化物固体電解質の大気安定性が向上し、大気中の水分と硫化物固体電解質中のSとの反応による硫化水素の発生を抑制できる。1≦z≦30であることで、25℃におけるイオン伝導度をより高めることができる。1≦z≦5又は10≦z≦30であることで、25℃におけるイオン伝導度をさらに高めることができる。1≦z≦5又は10≦z≦25であることで、25℃におけるイオン伝導度をよりさらに高めることができる。
 上記一般式におけるyは、0.50以上0.75以下であると好ましく、0.67以上0.70以下であるとより好ましい。当該硫化物固体電解質におけるLiS及びPの含有割合が上記範囲であることで、当該硫化物固体電解質の25℃におけるイオン伝導度が向上する。
 上記一般式におけるα及びβは、元素Mの種類に応じて、化学量論比を与える数値である。α及びβの値は特に限定されないが、例えば、0.80≦α≦3.0、0.10≦β≦1.2であってもよい。特に、元素MとしてAlを含む場合においては、α=1.5、β=0.5としてもよい。
 当該硫化物固体電解質がGeを含む場合には、一般式(100-z)Li10GeP12・zLiαβN(但し、0<z≦50、α及びβは、元素Mの種類に応じて、化学量論比を与える数値である)で表される組成を有することが好ましい。例えば、元素MとしてAlを含む場合、当該硫化物固体電解質は、一般式(100-z)Li10GeP12・zLi3/2Al1/2N(但し、0<z≦50)で表される組成を有することが好ましい。硫化物固体電解質がこのような組成を有することで、25℃におけるイオン伝導度を高めることができる。
 上記一般式におけるzは、0超50以下であり、1以上45以下であると好ましく、3以上35以下であるとより好ましく、5以上25以下であるとさらに好ましく、7以上20以下であるとよりさらに好ましい。上記一般式におけるzが上記範囲であることで、耐還元性及び25℃におけるイオン伝導度をより高めることができる。
 上記一般式におけるα及びβは、元素Mの種類に応じて、化学量論比を与える数値である。α及びβの値は特に限定されないが、例えば、0.80≦α≦3.0、0.10≦β≦1.2であってもよい。特に、元素MとしてAlを含む場合においては、α=1.5、β=0.5としてもよい。
 当該硫化物固体電解質の25℃におけるイオン伝導度は、0.4×10-3S/cm以上であると好ましく、1.0×10-3S/cm以上であるとより好ましく、1.5×10-3S/cm以上であるとさらに好ましい。当該硫化物固体電解質の25℃におけるイオン伝導度が上記の値であることで、当該硫化物固体電解質を備えた全固体電池の高率放電性能を向上できる。
 このように、当該硫化物固体電解質は、全固体電池の固体電解質として好適に使用できる。
<全固体電池>
 当該全固体電池は、負極層と、固体電解質層と、正極層とを備える。図1は、本発明の一実施形態における全固体電池を示す模式的断面図である。二次電池である全固体電池10は、負極層1と、正極層2とが固体電解質層3を介して配置される。負極層1は、負極基材層4及び負極合剤層5を有し、負極基材層4が負極層1の最外層となる。正極層2は、正極基材層7及び正極合剤層6を有し、正極基材層7が正極層2の最外層となる。図1に示す全固体電池10においては、正極基材層7上に、正極合剤層6、固体電解質層3、負極合剤層5及び負極基材層4がこの順で積層されている。
 当該全固体電池は、負極層1、固体電解質層3、正極層2又はこれらの組み合わせが当該硫化物固体電解質を含有する。当該全固体電池は、負極層1、固体電解質層3、正極層2又はこれらの組み合わせが当該硫化物固体電解質を含有するので、初回クーロン効率が優れる。当該硫化物固体電解質は耐還元性に優れるため、負極層1及び/又は固体電解質層3が当該硫化物固体電解質を含有することが好ましい。上記構成により、本発明の効果がより一層優れたものとなる。
 当該全固体電池は、当該硫化物固体電解質以外のその他の固体電解質を併せて用いるようにしてもよい。その他の固体電解質としては、当該硫化物固体電解質以外の硫化物固体電解質であってもよいし、酸化物固体電解質、ドライポリマー電解質、ゲルポリマー電解質、擬似固体電解質であってもよい。
 当該硫化物固体電解質以外の硫化物固体電解質としては、Liイオン伝導性が高いことが好ましく、例えばLiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiO、LiS-P-LiO-LiI、LiS-P-LiN、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、LiS-P-Z2n(ただし、m、nは正の数、Zは、Ge、Zn、Gaのいずれかである。)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiδXOε(ただし、δ、εは正の数、Xは、P、Si、Ge、B、Al、Ga、Inのいずれかである。)、Li10GeP12等を挙げることができる。これらの中でも、リチウムイオン伝導性が良好な観点から、LiS-Pが好ましく、xLiS・(100-x)P(70≦x≦80)がより好ましい。
[負極層]
 負極層1は、負極基材層4と、この負極基材層4の表面に積層される負極合剤層5とを備える。負極層1は負極基材層4と負極合剤層5との間に図示しない中間層を有していてもよい。
(負極基材層)
 負極基材層4は導電性を有する層である。負極基材層4の材質としては、導電体であれば限定されない。例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、金、銀、鉄、白金、クロム、スズ、インジウム及びこれらの一種以上を含む合金並びにステンレス合金からなる群から選択される一種以上の金属を挙げることができる。
 負極基材層4の平均厚さの下限としては、3μmが好ましく、5μmがより好ましく、8μmがさらに好ましい。負極基材層4の平均厚さの上限としては、200μmが好ましく、100μmがより好ましく、50μmがさらに好ましい。負極基材層4の平均厚さを上記下限以上とすることで、負極基材層4の強度を十分に高くできるため、負極層1を良好に形成できる。負極基材層4の平均厚さを上記上限以下とすることで、他の構成要素の体積を十分に確保できる。
(負極合剤層)
 負極合剤層5は、負極活物質を含むいわゆる負極合剤から形成することができる。負極合剤は、負極活物質と当該硫化物固体電解質とを含む負極混合物又は負極複合体を含有してもよい。負極合剤は、必要に応じて、当該硫化物固体電解質以外の固体電解質、導電剤、バインダー、フィラー等の任意成分を含む。
〈負極活物質〉
 負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。具体的な負極活物質としては、例えば
 Si、Sn等の金属又は半金属;
 Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;
 ポリリン酸化合物;
 黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料;
 チタン酸リチウム等のリチウム金属複合酸化物等が挙げられる。
 負極合剤における負極活物質の含有量の下限としては、10質量%が好ましく、15質量%がより好ましい。負極活物質の含有量の上限としては、60質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、90質量%が特に好ましく、95質量%であってもよい。負極活物質の含有量を上記範囲とすることで、当該全固体電池の電気容量を高めることができる。
〈負極混合物又は負極複合体〉
 上記負極混合物とは、負極活物質及び当該硫化物固体電解質をメカニカルミリング等で混合することにより作製される混合物である。例えば、負極活物質と当該硫化物固体電解質との混合物は、粒子状の負極活物質及び粒子状の当該硫化物固体電解質を混合して得ることができる。
 上記負極複合体としては、負極活物質及び当該硫化物固体電解質間で化学的又は物理的な結合を有する複合体、負極活物質及び当該硫化物固体電解質を機械的に複合化させた複合体等が挙げられる。上記複合体は、一粒子内に負極活物質及び当該硫化物固体電解質が存在しているものであり、例えば、負極活物質及び当該硫化物固体電解質が凝集状態を形成しているもの、負極活物質の表面の少なくとも一部に当該硫化物固体電解質含有皮膜が形成されているものなどが挙げられる。
 上記負極混合物又は負極複合体は、当該硫化物固体電解質以外の固体電解質を含有してもよい。
 負極合剤が含有する負極活物質及び当該硫化物固体電解質が、負極混合物又は負極複合体を構成することで、高いイオン伝導度を維持しつつ耐還元性を向上できるので、初回クーロン効率が優れる。
 負極合剤が固体電解質を含有する場合、負極合剤における固体電解質の含有量の下限としては、5質量%であってもよく、10質量%が好ましい。負極合剤における固体電解質の含有量の上限は、90質量%が好ましく、85質量%がより好ましく、80質量%がさらに好ましく、75質量%が特に好ましい。固体電解質の含有量を上記範囲とすることで、当該全固体電池の電気容量を高めることができる。
 上記負極層が当該硫化物固体電解質を含有する場合、負極合剤における当該硫化物固体電解質の含有量の下限としては、5質量%であってもよく、10質量%が好ましい。負極合剤における当該硫化物固体電解質の含有量の上限は、90質量%が好ましく、85質量%がより好ましく、80質量%がさらに好ましく、75質量%が特に好ましい。負極合剤における当該硫化物固体電解質の含有量を上記範囲とすることで、上記負極層が当該硫化物固体電解質を含有する場合に全固体電池の初回クーロン効率をより向上できる。
〈その他の任意の成分〉
 上記導電剤としては、特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックスなどが挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。上記負極合剤における導電剤の含有量としては、例えば0.5質量%以上30質量%以下とすることができる。上記負極合剤は、導電剤を含有しなくてもよい。
 上記バインダー(結着剤)としては、特に限定されない。例えばフッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド、ポリアクリル酸等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。
 上記フィラーとしては、特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス、炭素などが挙げられる。
 負極合剤層5の平均厚さの下限としては、30μmが好ましく、60μmがより好ましい。負極合剤層5の平均厚さの上限としては、1000μmが好ましく、500μmがより好ましく、200μmがさらに好ましい。負極合剤層5の平均厚さを上記下限以上とすることで、高いエネルギー密度を有する全固体電池を得ることができる。負極合剤層5の平均厚さを上記上限以下とすることで、高率放電性能に優れ、活物質利用率の高い負極を備える全固体電池を得ることができる。
(中間層)
 上記中間層は、負極基材層4の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで負極基材層4と負極合剤層5との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。
[正極層]
 正極層2は、正極基材層7と、この正極基材層7の表面に積層される正極合剤層6とを備える。正極層2は、負極層1と同様、正極基材層7と正極合剤層6との間に中間層を有していてもよい。この中間層は負極層1の中間層と同様の構成とすることができる。
(正極基材層)
 正極基材層7は、負極基材層4と同様の構成とすることができる。正極基材層7の材質としては、導電体であれば限定されない。例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、金、銀、鉄、白金、クロム、スズ、インジウム及びこれらの一種以上を含む合金、並びにステンレス合金からなる群から選択される一種以上の金属を挙げることができる。
 正極基材層7の平均厚さの下限としては、3μmが好ましく、5μmがより好ましい。正極基材層7の平均厚さの上限としては、200μmが好ましく、100μmがより好ましく、50μmがさらに好ましい。正極基材層7の平均厚さが上記下限以上とすることで、正極基材層7の強度を十分に高くできるため、正極層2を良好に形成できる。正極基材層7の平均厚さを上記上限以下とすることで、他の構成要素の体積を十分に確保できる。
(正極合剤層)
 正極合剤層6は、正極活物質を含むいわゆる正極合剤から形成することができる。正極合剤は、正極活物質と固体電解質とを含む正極混合物又は正極複合体を含有してもよい。上記固体電解質としては、当該硫化物固体電解質を用いてもよいが、耐酸化性の高い固体電解質を用いるのがより好ましい。正極合剤層6を形成する正極合剤は、負極合剤と同様、必要に応じて、固体電解質、導電剤、バインダー、フィラー等の任意成分を含む。なお、正極合剤層は固体電解質を含まない形態であってもよい。
〈正極活物質〉
 正極合剤層6に含まれる正極活物質としては、全固体電池に通常用いられる公知のものが使用できる。上記正極活物質としては、例えばLiMeO(Meは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα-NaFeO型結晶構造を有するLiCoO、LiNiO、LiMnO、LiNiαCo(1-α)、LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn、LiNiαMn(2-α)等)、LiMe(AO(Meは少なくとも一種の遷移金属を表し、Aは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 正極活物質としては、Li-Al、Li-In、Li-Sn、Li-Pb、Li-Bi、Li-Ga、Li-Sr、Li-Si、Li-Zn、Li-Cd、Li-Ca、Li-Ba等のリチウム合金や上記一般式で表される化合物以外のMnO、FeO、TiO、V、V13、TiS等の、酸化還元電位が負極材料よりも貴な材料を用いることができる。
 正極合剤における正極活物質の含有量の下限としては、10質量%が好ましく、15質量%がより好ましい。正極活物質の含有量の上限としては、60質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、90質量%が特に好ましく、95質量%であってもよい。正極活物質の含有量を上記範囲とすることで、当該全固体電池の電気容量を高めることができる。
〈正極混合物又は正極複合体〉
 上記正極混合物は、負極の場合と同様、正極活物質及び固体電解質等をメカニカルミリング等で混合することにより作製される混合物である。例えば、正極活物質と固体電解質等との混合物は、粒子状の正極活物質及び粒子状の固体電解質等を混合して得ることができる。
 上記正極複合体も、負極の場合と同様、正極活物質及び固体電解質等間で化学的又は物理的な結合を有する複合体、正極活物質及び固体電解質等を機械的に複合化させた複合体等が挙げられる。上記複合体は、一粒子内に正極活物質及び固体電解質等が存在しているものであり、例えば、正極活物質及び固体電解質等が凝集状態を形成しているもの、正極活物質の表面の少なくとも一部に固体電解質等含有皮膜が形成されているものなどが挙げられる。
 正極合剤が含有する正極活物質及び固体電解質等が、正極混合物又は正極複合体を構成することで、高いイオン伝導度を維持できる。なお、上記固体電解質としては、当該硫化物固体電解質を用いてもよいが、耐酸化性の高い固体電解質を用いるのがより好ましい。
 正極合剤が固体電解質を含有する場合、固体電解質の含有量の下限としては、5質量%であってもよく、10質量%が好ましい。正極合剤における固体電解質の含有量の上限は、90質量%が好ましく、85質量%がより好ましく、80質量%がさらに好ましく、75質量%が特に好ましい。固体電解質の含有量を上記範囲とすることで、当該全固体電池の電気容量を高めることができる。
 正極合剤層6の平均厚さの下限としては、30μmが好ましく、60μmがより好ましい。正極合剤層6の平均厚さの上限としては、1000μmが好ましく、500μmがより好ましく、200μmがさらに好ましい。正極合剤層6の平均厚さが上記下限以上とすることで、高いエネルギー密度を有する全固体電池を得ることができる。正極合剤層6の平均厚さを上記上限以下とすることで、高率放電性能に優れ、活物質利用率の高い負極を備える全固体電池を得ることができる。
[固体電解質層]
 固体電解質層3は、固体電解質層用電解質を含有する。固体電解質層用電解質としては、上述の当該硫化物固体電解質以外にも、例えば酸化物固体電解質、その他の硫化物固体電解質、ドライポリマー電解質、ゲルポリマー電解質、擬似固体電解質などを挙げることができる。これらの中では、イオン伝導度が良好であり、界面形成が容易であるなどの観点から硫化物固体電解質が好ましく、当該硫化物固体電解質がより好ましい。固体電解質層3が、当該硫化物固体電解質を含有することで、固体電解質層が高いイオン伝導度を維持しつつ耐還元性が向上されるので、全固体電池の初回クーロン効率を向上できる。
 固体電解質層用電解質は、結晶構造を有してもよく、結晶構造を有さない非晶質であってもよい。固体電解質層用電解質には、LiPO等の酸化物やハロゲン、ハロゲン化合物等を添加してもよい。
 固体電解質層3の平均厚さの下限としては、1μmが好ましく、3μmがより好ましい。固体電解質層3の平均厚さの上限としては、50μmが好ましく、20μmがより好ましい。固体電解質層3の平均厚さを上記下限以上とすることで、正極と負極とを確実に絶縁することが可能となる。固体電解質層3の平均厚さを上記上限以下とすることで、全固体電池のエネルギー密度を高めることが可能となる。
[全固体電池の製造方法]
 当該全固体電池の製造方法は、例えば当該硫化物固体電解質を作製する硫化物固体電解質作製工程と、負極合剤作製工程と、固体電解質層用電解質作製工程と、正極合剤作製工程と、負極層、固体電解質層及び正極層を積層する積層工程とを主に備える。
(硫化物固体電解質作製工程)
 本工程では、例えば、以下の手順により、当該硫化物固体電解質を作製する。
(1)窒化物(Li3/2Al1/2N)の作製
 LiN及びAlNを乳鉢等で混合後、ペレット化する。次に、熱処理を行い、Li3/2Al1/2Nを作製する。なお、一般的に「Li3/2Al1/2N」は「LiAlN」と表記される。
(2)硫化物固体電解質の作製
 所定のモル比の上記Li3/2Al1/2N、LiS及びPを乳鉢等で混合した後、硫化物固体電解質前駆体を作製する。硫化物固体電解質前駆体を作製する方法としては、例えばメカニカルミリング法、溶融急冷法等を用いることができる。
 硫化物固体電解質を作製する場合は、硫化物固体電解質前駆体を作製後に、結晶化温度以上で熱処理することにより、硫化物固体電解質を作製することができる。
 上記結晶化温度は、示差走査熱計(DSC)による測定で求めることができる。例えば、Li11結晶構造を得るためには、熱処理温度が250℃以上400℃以下であることが好ましく、β-LiPS結晶構造を得るためには、熱処理温度が200℃以上400℃以下であることが好ましい。これは、500℃のような高温で熱処理した場合、安定相であるLiに相転移してしまう可能性があるためである。例えばCuKα線を用いるX線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有する第一の結晶構造を得るためには、熱処理温度が250℃以上400℃以下であることが好ましい。
 なお、上記作製工程では、元素MとしてAlを含有する硫化物固体電解質を作製する場合について説明したが、上記作製工程と同様の手法により、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有する硫化物固体電解質を作製することができる。例えば、上記作製工程における窒化物として、Li3/2Al1/2Nに代えてLi3/21/2NやLi5/3Si1/3N、Li9/5Si3/10N等を用いることで、BやSi等の元素及びNを含む硫化物固体電解質を作製することができる。上記作製工程において使用できる窒化物としては、上述したもののほかに、さらにLiMgN、LiCaN、LiHf1/2N、Li3/2Sc1/2N、LiZr1/2N、Li5/3Ti1/3N、Li4/3Ta1/3N、Li7/4Ta1/4N、Li7/4Nb1/4N、Li3/21/4N、Li7/41/4N等を例示することができる。
 また、上記作製工程では、出発材料として元素M、Li、及びNからなる窒化物を用いたが、本実施形態の硫化物固体電解質の製造方法はこれに限定されない。
 上記作製工程では、LiS-P系の硫化物固体電解質を例に説明したが、LGPS型や、アルジロダイト型の硫化物固体電解質でも、類似の作製工程によって当該硫化物固体電解質を作製できる。
 例えば、上記作製工程では、出発材料としてLi3/2Al1/2N、LiS及びPを用いたが、さらにGeS等のGe含有化合物を加えることで、Geを含むLGPS型の当該硫化物固体電解質を作製してもよい。
 より具体的には、所定のモル比の出発材料を乳鉢等で混合した後、メカニカルミリング法、例えば、ボールミル処理や振動ミル処理等を行い、硫化物固体電解質前駆体を作製する。その後、該前駆体を所定の温度以上で熱処理することにより、硫化物固体電解質を作製できる。
 例えば、Li10GeP12結晶構造を有する硫化物固体電解質を作製する場合には、熱処理温度が300℃以上1000℃以下であることが好ましく、350℃以上700℃以下であることがより好ましく、400℃以上650℃以下であることがさらに好ましく、450℃以上600℃以下であることが特に好ましい。熱処理は、減圧雰囲気下で行ってもよく、不活性ガス雰囲気下で行ってもよい。
(負極合剤作製工程)
 本工程では、負極層を形成するための負極合剤が作製される。負極合剤が、負極活物質と当該硫化物固体電解質とを含む混合物又は複合体を含有する場合、本工程では、例えばメカニカルミリング法等を用いて負極活物質と、当該硫化物固体電解質とを混合し、負極活物質と当該硫化物固体電解質との混合物又は複合体を作製することを備える。
(固体電解質層用電解質作製工程)
 本工程では、固体電解質層を形成するための上記固体電解質層用電解質が作製される。本工程では、固体電解質層用電解質の所定の材料をメカニカルミリング法により処理して得ることができる。溶融急冷法により固体電解質層用電解質の所定の材料を溶融温度以上に加熱して所定の比率で両者を溶融混合し、急冷することにより固体電解質層用電解質を作製してもよい。その他の固体電解質層用電解質の合成方法としては、例えば減圧封入して焼成する固相法、溶解析出などの液相法、気相法(PLD)、メカニカルミリング後にアルゴン雰囲気下で焼成することなどが挙げられる。なお、固体電解質層用電解質が当該硫化物固体電解質である場合は、固体電解質層用電解質の作製工程では、上述の硫化物固体電解質作製工程が行われる。
(正極合剤作製工程)
 本工程では、正極層を形成するための正極合剤が作製される。正極合剤の作製方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、正極活物質の圧縮成形、正極合剤の所定の材料のメカニカルミリング処理、正極活物質のターゲット材料を用いたスパッタリング等が挙げられる。正極合剤が、正極活物質と当該硫化物固体電解質とを含む混合物又は複合体を含有する場合、本工程では、例えばメカニカルミリング法等を用いて正極活物質と、当該硫化物固体電解質とを混合し、正極活物質と当該硫化物固体電解質との混合物又は複合体を作製することを備える。
(積層工程)
 本工程は、負極基材層及び負極合剤層を有する負極層、固体電解質層、並びに正極基材層及び正極合剤層を有する正極層が積層される。本工程では、負極層、固体電解質層、及び正極層を順次形成してもよいし、この逆であってもよく、各層の形成の順序は特に問わない。上記負極層は、負極基材及び負極合剤を加圧成型することにより形成され、上記固体電解質層は、固体電解質層用電解質を加圧成型することにより形成され、上記正極層は、正極基材及び正極合剤を加圧成型することにより形成される。
 負極基材、負極合剤、固体電解質層用電解質、正極基材及び正極合剤を一度に加圧成型することにより、負極層、固体電解質層及び正極層が積層されてもよい。正極層、負極層、又はこれらの層を予め成形し、固体電解質層と加圧成型して積層してもよい。
[その他の実施形態]
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
 本発明に係る全固体電池の構成については特に限定されるものではなく、例えば中間層や接着層のように、負極層、正極層及び固体電解質層以外のその他の層を備えていてもよい。
<実施例>
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
 以下の処理により、99(0.70LiS・0.30P)・1Li3/2Al1/2Nを合成した。
 LiN及びAlNをモル比で1.2:1となるように秤量し、乳鉢で混合した後ペレット化した。次に、750℃で1時間熱処理してLi3/2Al1/2Nを作製した。作製したLi3/2Al1/2Nは、XRD測定によって主相がLi3/2Al1/2Nであることを確認した。
 次に、露点-50℃以下のアルゴン雰囲気のグローブボックス内でLiS(99.98%、Aldrich)、P(99%、Aldrich)及びLi3/2Al1/2Nをモル比で69.3:29.7:1.0となるように秤量したのちに、乳鉢で混合した。この混合試料を、直径4mmのジルコニアボールが160g入った密閉式の80mLジルコニアポットに投入した。遊星ボールミル(FRITSCH社製、型番Premium line P-7)によって公転回転数510rpmで45時間のミリング処理を行った。2時間熱処理して実施例1の硫化物固体電解質を得た。この熱処理は、結晶化温度以上であって、結晶化温度より100℃以上とならない温度にて行った。結晶化温度はDSCを測定することにより求めた。DSC測定は、以下の条件にて行った。即ち、DSC装置(リガク社製、Thermo Plus DSC8230)を用い、SUS製密閉パンを用い、室温から400℃まで10℃/minで昇温した。
[実施例2から実施例9]
 硫化物固体電解質の組成式(100-z)(0.70LiS・0.30P)・zLi3/2Al1/2Nにおけるzの値を、5、7、10、15、20、25、30、40に変更したこと以外は実施例1と同様にして、実施例2から実施例9の硫化物固体電解質を合成した。
[実施例10]
 硫化物固体電解質の原料としてLiS、P及びLi3/2Al1/2Nを、LiS:P:Li3/2Al1/2N=67.5:22.5:10.0(mol%)となるように秤量したこと以外は実施例1と同様にして、実施例10の硫化物固体電解質を合成した。
[実施例11]
 硫化物固体電解質の原料としてLiS、P及びLi3/2Al1/2Nを、LiS:P:Li3/2Al1/2N=35.0:35.0:30.0(mol%)となるように秤量したこと以外は実施例1と同様にして、実施例11の硫化物固体電解質を合成した。
[実施例12]
 硫化物固体電解質の原料としてLiS、P及びLi3/2Al1/2Nを、LiS:P:Li3/2Al1/2N=53.6:26.4:20.0(mol%)となるように秤量したこと以外は実施例1と同様にして、実施例12の硫化物固体電解質を合成した。
[実施例13]
 硫化物固体電解質の原料としてLiS、P及びLi3/2Al1/2Nを、LiS:P:Li3/2Al1/2N=50.3:24.7:25.0(mol%)となるように秤量したこと以外は実施例1と同様にして、実施例13の硫化物固体電解質を合成した。
[実施例14]
 硫化物固体電解質の原料としてLiS、P及びLi3/2Al1/2Nを、LiS:P:Li3/2Al1/2N=46.9:23.1:30(mol%)となるように秤量したこと以外は実施例1と同様にして、実施例14の硫化物固体電解質を合成した。
 [実施例15から18]
 LiN及びBNをモル比で1.1:1となるように秤量し、乳鉢で混合した後ペレット化した後、800℃で10分間熱処理してLi3/21/2Nを作製した。作製したLi3/21/2Nは、XRD測定によって主相がLi3/21/2Nであることを確認した。
 次に、Li3/2Al1/2Nの代わりに上記Li3/21/2Nを使用し、硫化物固体電解質の組成式(100-z)(0.70LiS・0.30P)・zLi3/21/2Nにおけるzの値を、1、10、20、30に変更したこと以外は実施例1と同様にして、実施例15から18の硫化物固体電解質を合成した。
 [実施例19から23]
 LiN及びSiをモル比で5.1:1となるように秤量し、乳鉢で混合した後ペレット化した後、800℃で10分間熱処理してLi5/3Si1/3Nを作製した。作製したLi5/3Si1/3Nは、XRD測定によって主相がLi5/3Si1/3Nであることを確認した。
 次に、Li3/2Al1/2Nの代わりに上記Li5/3Si1/3Nを使用し、硫化物固体電解質の組成式(100-z)(0.70LiS・0.30P)・zLi5/3Si1/3Nにおけるzの値を、1.5、15、20、30、45に変更したこと以外は実施例1と同様にして、実施例19から23の硫化物固体電解質を合成した。
[比較例1]
 硫化物固体電解質の原料に、Li3/2Al1/2Nを用いないこと以外は実施例1と同様にして、比較例1の硫化物固体電解質を合成した。
[参考例1]
 75LiS・25P(LiPS)をメカニカルミリング法によって合成した。露点-50℃以下のアルゴン雰囲気グローブボックス内で、硫化物固体電解質の原料であるLiS及びPを、LiS:P=75:25(mol%)となるように秤量した後に、メノウ乳鉢で混合した。混合物を、直径4mmのジルコニアボールが160g入った密閉式の80mLジルコニアポットに投入した。遊星ボールミル(FRITSCH社製、型番Premium line P-7)によって公転回転数510rpmで45時間のミリング処理を行った。上記処理により、参考例1の硫化物固体電解質を得た。
[参考例2]
 Li3/2Al1/2Nの代わりに、LiNを使用し、硫化物固体電解質の組成式(100-z)(0.70LiS・0.30P)・zLiNにおけるzの値を20に変更したこと以外は実施例1と同様にして、参考例2の硫化物固体電解質を合成した。
[実施例24]
 以下の処理により、87.6(Li10GeP12)・12.4Li3/2Al1/2Nを合成した。
 LiN及びAlNをモル比で1.2:1となるように秤量し、乳鉢で混合した後ペレット化した。次に、750℃で1時間熱処理してLi3/2Al1/2Nを作製した。
 次に、露点-50℃以下のアルゴン雰囲気のグローブボックス内でLiS(99.98%、Aldrich)、P(99%、Aldrich)、GeS(99.99%、高純度化学研究所)及びLi3/2Al1/2Nをモル比で5:1:1:0.14となるように秤量したのちに、乳鉢で混合した。この混合試料を、直径4mmのジルコニアボールが160g入った密閉式の80mLジルコニアポットに投入した。遊星ボールミル(FRITSCH社製、型番Premium line P-7)によって公転回転数370rpmで40時間のミリング処理を行った。その後、550℃で8時間熱処理して実施例24の硫化物固体電解質を得た。
[実施例25、実施例26、比較例2]
 硫化物固体電解質の組成式(100-z)(Li10GeP12)・zLi3/2Al1/2Nにおけるzの値を、30.2、42.5、60.9に変更したこと以外は実施例1と同様にして、実施例25、実施例26、比較例2の硫化物固体電解質を合成した。
[比較例3]
 硫化物固体電解質の原料に、Li3/2Al1/2Nを用いないこと以外は実施例24と同様にして、比較例3の硫化物固体電解質を合成した。
[参考例3]
 硫化物固体電解質の原料に、Li3/2Al1/2Nの代わりにLiO(99%、高純度化学研究所)を用いて、LiS:P:GeS:LiO=4.86:1:1:0.14(mol%)となるように秤量したこと以外は実施例24と同様にして、参考例3の硫化物固体電解質を合成した。
[参考例4]
 硫化物固体電解質の原料に、Li3/2Al1/2Nの代わりにAl(98%、Aldrich)を用いて、LiS:P:GeS:Al=5:1:0.93:0.035(mol%)となるように秤量したこと以外は実施例24と同様にして、参考例4の硫化物固体電解質を合成した。
[評価]
(1)XRD分析
 以下の方法にてX線回折測定を行った。気密性のX線回折測定用試料ホルダーを用い、露点-50℃以下のアルゴン雰囲気下で実施例及び比較例の硫化物固体電解質粉末を充填した。X線回折装置(Rigaku社製「miniFlex II」)を用いて粉末X線回折測定を行った。線源はCuKα線、管電圧は30kV、管電流は15mAとし、回折X線は厚み30μmのKβフィルターを通し高速一次元検出器(型番:D/teX Ultra2)にて検出した。サンプリング幅は0.01°、スキャンスピードは5°/分、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとした。
 図2に、実施例1から3、6、8、9、10、11及び比較例1の2θ=10°から40°の範囲におけるX線回折(XRD)スペクトルを示す。表1に、実施例1から23、比較例1及び参考例2のXRDスペクトルから同定された結晶構造を示す。
 図8に、実施例24、比較例3及び参考例3、4の2θ=10°から60°の範囲におけるX線回折(XRD)スペクトルを示す。表2に、実施例24から26、比較例2、3、及び参考例3、4のXRDスペクトルから同定された結晶構造を示す。なお、表2中の「Unknown」は、結晶構造を同定できない回折ピークが確認されたことを示す。
(2)ラマン分光分析
 以下の方法にてラマンスペクトルを測定した。レーザラマン分光光度計(堀場製作所社製「LabRAM HR Revolution」)を用い、励起レーザ波長532nm(YAGレーザ)、グレーティング600gr/mmの条件において、100cm-1から1800cm-1の波数範囲でラマン分光測定を行った。
 図3に実施例2から6及び比較例1のラマンスペクトルを示す。表1に、実施例1から23、比較例1及び参考例2のラマンスペクトルから同定された分子構造を示す。
(3)イオン伝導度(σ)
 イオン伝導度(σ)は、25℃におけるイオン伝導度を、(Bio-Logic)社製「VMP-300」を用いて上述の方法で交流インピーダンスを測定して求めた。
 なお、実施例24から26、比較例2、3、及び参考例3、4については、-30℃、-20℃、-10℃、0℃、50℃の各温度におけるイオン伝導度も測定し、アレニウス式により活性化エネルギーを算出した。
 図4に実施例1から9及び比較例1、表1に実施例1から23、比較例1及び参考例2の25℃におけるイオン伝導度を示す。
 表2に実施例24から26、比較例2、3、及び参考例3、4の25℃におけるイオン伝導度と、活性化エネルギーを示す。
(4)初回クーロン効率及び充放電性能
(4-1)正極活物質の作製
 超脱水エタノールに金属Liを溶解させた後に、ニオブエトキシド(Nb(OC)を溶解させることで、LiNbO前駆体溶液を調製した。パウレック社製の転動流動コーティング装置(FD-MP-01F)を用いて、LiNi0.8Co0.15Al0.05(NCA)の粒子表面へのLiNbO前駆体のコートを行った。LiNbO前駆体をコーティングしたNCAを350℃、1時間熱処理することによりLiNbOコートNCAを作製した。このLiNbOコートNCAを正極活物質として用いた。
(4-2)全固体電池セル(Li-NCAハーフセル)の作製
 LiNbOコートNCAと参考例1の硫化物固体電解質(LiPS)を、LiNbOコートNCA:LiPS=70:30(質量%)となるように秤量した後に、メノウ乳鉢で混合した。内径10mmの粉体成型器に実施例1の硫化物固体電解質を投入した後に、油圧プレスを用いて加圧成型した。圧力解放後に、実施例1の固体電解質層の片面にNCA‐LiPS混合粉末を投入して試料面積あたり360MPa、5分加圧成型した。圧力解放後に、実施例1の硫化物固体電解質層の反対面に金属Li箔を貼り合わせて加圧成型することにより、正極合剤層、実施例1の硫化物固体電解質層及び金属Li箔の積層体を得た。この積層体をアルミラミネートセル内に減圧封入して、ステンレス鋼板を用いて圧迫することにより、全固体電池セル(Li‐NCAハーフセル)を得た。
 上記実施例1の硫化物固体電解質を実施例2、4及び比較例1の硫化物固体電解質にしたこと以外は実施例1と同様の操作をして、実施例2、4及び比較例1の硫化物固体電解質を備えた全固体電池セル(Li‐NCAハーフセル)を得た。
(4-3)充放電試験
 上記全固体電池セル(Li-NCAハーフセル)に対して、以下の条件にて充放電試験を行った。充放電試験は50℃の恒温槽内で行った。充電は、充電電流0.125mA/cm、充電上限電圧4.35Vで、定電流定電圧(CCCV)充電とした。充電終止条件は充電電流が0.0625mA/cmとなるまでとした。放電は、放電電流0.125mA/cm、放電終止電圧2.85Vで、定電流(CC)放電とした。充電及び放電の間の休止時間を30分とした。このときの初回充電電気量に対する上記初回放電容量の百分率を「初回クーロン効率(%)」として求めた。
 図5に、実施例1、実施例2、実施例4及び比較例1の初回充放電性能を示す。表1に実施例1、実施例2、実施例4及び比較例1の初回クーロン効率(%)を示す。
(5)硫化物固体電解質の耐還元性
(5-1)耐還元性評価用セルによる評価試験
 露点-50℃以下のアルゴン雰囲気のグローブボックス内で、実施例1の硫化物固体電解質とSUS316L粉末とを質量比で1:4となるように秤量した後に、メノウ乳鉢で混合した。内径10mmの粉体成型器に参考例1の硫化物固体電解質(LiPS)を投入した後に、油圧プレスを用いて加圧成型した。圧力解放後に、LiPS層の片面に上記SUS316粉末と実施例1の硫化物固体電解質粉末との混合粉末を投入して360MPa、5分加圧成型した。圧力解放後に、LiPS層の反対面に金属Li箔を貼り合わせて加圧成型することにより実施例1の硫化物固体電解質の混合物層、LiPS層及び金属Li箔の積層体を得た。
 この積層体をアルミラミネートセル内に減圧封入して、ステンレス鋼板を用いて圧迫することにより、実施例1の硫化物固体電解質の混合物層を作用極、金属Li箔を対極とする耐還元性評価用セルを得た。
 充電試験条件は、測定温度50℃、充電は定電流定電圧(CCCV)充電とし、充電電流0.1mA/cm、充電下限電位は0.01V、総充電時間を100時間とした。ここで、実施例1の硫化物固体電解質の混合物層が還元される反応を「充電」とする。充電開始から20時間後の充電電気量を、硫化物固体電解質の20時間後の還元分解容量(mAh/g)とした。SUS316L粉末は0Vvs.Li/Liの電位で安定であるために、レドックス種は硫化物固体電解質のみである。従って、この評価用セルに流れる電気量は、硫化物固体電解質の還元分解量を意味する。
 同様の手順により、実施例2、4、8から17、19、20、22及び比較例1の硫化物固体電解質の耐還元性の評価を行った。
 表1に、実施例1、2、4、8から17、19、20、22及び比較例1の硫化物固体電解質の充電開始から20時間後の還元分解容量を示す。
(5-2)全固体電池セル(Li-Grハーフセル)による評価試験
 実施例24から26、比較例2、3、及び参考例3、4の硫化物固体電解質については、以下に示す手順で耐還元性を評価した。
 黒鉛粒子(Gr)と実施例24の硫化物固体電解質(Li10.21GePAl0.07120.14)を、Gr:Li10.21GePAl0.07120.14=60:40(質量%)となるように秤量した後に、メノウ乳鉢で混合した。内径10mmの粉体成型器にLiPSを投入した後に、油圧プレスを用いて加圧成型した。圧力開放後に、LiPS層の片面に、Gr-Li10.21GePAl0.07120.14混合粉末を投入して加圧成型した。圧力開放後に、LiPS層の反対面に金属Li箔を貼り合せて加圧成型することにより、実施例24の硫化物固体電解質の混合物層、LiPS固体電解質層及び金属Li箔の積層体を得た。この積層体をアルミラミネートセル内に減圧封入して、ステンレス鋼板を用いて圧迫することにより、実施例24の硫化物固体電解質の混合物層を作用極、金属Li箔を対極とする全固体電池セル(Li-Grハーフセル)を得た。
 上記実施例24の硫化物固体電解質を実施例25、26及び比較例3の硫化物固体電解質にしたこと以外は実施例24と同様の操作をして、実施例25、26及び比較例3の硫化物固体電解質を備えた全固体電池セル(Li-Grハーフセル)を得た。
 上記全固体電池セル(Li-Grハーフセル)について、以下の条件にて放電試験(Grのlithiation)を行った。放電試験は50℃の恒温槽内で行った。放電は、放電電流0.125mA/cmで、定電流(CC)放電とした。このときの放電容量Qを、電圧Vで微分した微分値dQ/dVと、電圧Vとの関係を示すグラフ(dQ/dV曲線)をプロットした。
 図9に、実施例24から26、及び比較例3のdQ/dV曲線を示す。表2に、実施例24から26、及び比較例3のdQ/dV=-100mAhg-1-1における電圧Vの値を示す。なお、図9から、0.4V付近のdQ/dVの変化量が大きいことが確認される。Grのlithiation電位は約0.1VvsLi/Liであることから、上記0.4V付近のdQ/dVの変化は、硫化物固体電解質の還元分解に由来するものと推定される。従って、本実施例の全固体電池セル(Li-Grハーフセル)のdQ/dV=-100mAhg-1-1における電圧Vの値が卑な方向にシフトすることは、硫化物固体電解質の還元分解電位が卑な方向にシフトしたこと、即ち耐還元性が向上したことを意味する。
(6)大気安定性の評価
 硫化物固体電解質の大気中における化学的安定性を評価するために硫化水素発生量の測定を行った。露点-50℃以下のアルゴン雰囲気のグローブボックス内で、内径10mmの粉体成型器を用いて実施例及び比較例の硫化物固体電解質粉末100mgを試料面積当たり360MPa、5分間一軸加圧成形することによりペレットを得た。その後、得られたペレットを密閉されたデシケータ(実質容積2100cm、温度20℃、相対湿度約90%)の内部に配置し、硫化水素センサー(TPA-5200E)をもちいて、硫化水素の発生量を測定した。硫化水素センサーの検出上限値である50ppmに達するか、測定時間が40分経過したところで測定を終了した。
 1g当たりの固体電解質から発生する硫化水素の発生量V(cm/g)は、得られた濃度C(ppm)、デシケータの実質容積L(cm)及びペレットの質量m(g)を用いて下記式から求めた。
 V(cm/g)=C×L×10-6/m
 図6及び図7は、上記実施例及び比較例の硫化物固体電解質ペレットについて、大気曝露時間(分)と硫化水素発生量(cm/g)との関係を示すグラフである。
図6は、実施例4、実施例6及び比較例1における大気曝露時間20分までの硫化水素発生量を示し、図7は、実施例6及び参考例1における大気曝露時間40分までの硫化水素発生量を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、元素MとしてAl、B、又はSiのいずれかの元素及びNを含み、結晶構造を有する実施例の硫化物固体電解質は、比較例1の硫化物固体電解質と比較して、充電開始から20時間後の還元分解容量が抑制されており、初回クーロン効率が優れていた。実施例1、実施例2、実施例4から実施例8、実施例10、実施例12から実施例17、実施例19から実施例22の硫化物固体電解質は、25℃におけるイオン伝導度も良好であった。
 一方、元素M及びNを含まない比較例1の硫化物固体電解質は、イオン伝導度は良好であったが、充電開始から20時間後の還元分解容量が大きく、初回クーロン効率が劣っていた。
 表1から、Pに対するLiの含有割合がモル比で2.77以上3.38以下であり、Pに対するNの含有割合がモル比で0.28以上0.65以下であると、10-3Scm-1以上のイオン伝導度を示し、かつ良好な大気安定性を示すと予想される構造を有する硫化物固体電解質が得られたため、硫化物固体電解質の組成がこのような値であると、特に好ましいことが確認された。
 また、硫化物固体電解質が元素MとしてAlを含む場合においては、Pに対するLiの含有割合がモル比で3.40であり、Pに対するNの含有割合がモル比で0.71であるような、Li元素及びNの含有割合が大きい場合であっても、LiSが析出しなかった。このことから、元素MとしてAlを含むと特に好ましいことが示唆された。
 図2に示すように、全ての実施例及び比較例の硫化物固体電解質は、XRDスペクトルでピークが観測され、結晶構造を有することが確認された。実施例1及び実施例2はLi11、実施例3はβ-LiPS、実施例11はLiの結晶構造を有していた。実施例4から9の硫化物固体電解質の結晶構造は、2θ=17.9°、19.1°、29.1°、29.8°及び30.9°に回折ピークを有する特定結晶構造Aであった。実施例10の硫化物固体電解質の結晶構造は、2θ=17.9°、19.1°、29.1°及び29.8°に回折ピークを有する特定結晶構造Bであることが確認された。
 図3のラマンスペクトルが示すように、実施例の硫化物固体電解質は、zが大きくなるにつれて、すなわち窒素(N)の含有量が大きくなるにつれて架橋硫黄P 4-に由来するラマンシフト406cm-1付近のピークが減少し、PS 3-に由来するラマンシフト423cm-1付近のピークが出現する。このため、表1の実施例1及び実施例15のラマンスペクトルによる分子構造は、PS 3-、P 4-及びP 4-から構成されることが推測される。実施例7から実施例9、実施例11から実施例14、実施例20から22のラマンスペクトルによる分子構造は、PS 3-から構成されることが推測される。
 図6及び図7に示すように、実施例4及び実施例6の硫化水素発生量が比較例1の硫化水素発生量と比べて少ないことが確認できた。特に、z=20の実施例6は、比較例1、参考例1と比較して硫化水素発生に対する抑制効果が優れていた。このため、当該硫化物固体電解質は、耐還元性が高いのみならず、大気安定性にも優れることが示唆された。
 当該硫化物系固体電解質が硫化水素の発生に対する抑制効果が高い理由としては以下のように推測される。図3のラマンスペクトルが示すように、実施例の硫化物固体電解質は、zが大きくなるにつれて、すなわちNの含有量が大きくなるにつれて架橋硫黄P 4-に由来するラマンシフト406cm-1付近のピークが減少している。また、実施例の硫化物固体電解質は、図2に示すXRD(X線回折)スペクトルにおいて、LiS由来のピークが現れなかった。これらのことから、当該硫化物固体電解質はNの含有量を多くすることで、大気に不安定ないわゆる架橋硫黄P 4-(SP-S-PS)が減少し、水と反応しやすいLiSが実質的に含有されないため、硫化水素の発生に対する抑制効果を向上できると推測される。
 なお、実施例6(z=20)が、架橋硫黄P 4-を有さない参考例1よりも硫化水素の発生量が少ない理由は、固体電解質の構造中に、Nが導入されることで三次元ネットワークが構成され、結合が強固になったためであると考えられる。酸化物ガラスのOの一部をNに置き換えたオキシナイトライドガラスにおいて、Nを導入することにより、耐水性が向上することが一般的に知られている。
 z=20、y=0.70としてNの含有量を固定した実施例6、実施例17、実施例21、参考例2をそれぞれ比較すると、元素Mを含まない参考例2でのみLiSが析出していることが分かる。このことから、元素Mを含むことによりLiSの析出が抑制できると考えられる。
 当該硫化物固体電解質が元素Mを含むことでLiSの析出が抑制できる理由としては、以下のことが考えられる。Nを含む硫化物系固体電解質の出発材料としてLiNを用いる場合には、LiNとPとが劇的に反応してNが放出され、LiSが析出する。これは、LiNのN欠陥生成エネルギーが小さいためと考えられる。これに対し本願発明では、LiαβNのN欠陥生成エネルギーが、LiNのN欠陥生成エネルギーよりも大きいため、硫化物系固体電解質の合成過程で反応が緩やかに進行し、Nの放出と、LiSの析出とが抑制されると考えられる。
 なお、ここでいう「欠陥生成エネルギー」とは、欠陥を含まない結晶構造の全エネルギーEperfectと、欠陥を含む結晶構造の全エネルギーEvacancyと、欠陥原子の化学ポテンシャルμとを用いて算出される値であり、以下の式によって定義されるパラメータを意味する。
       Edefect = ( Evacancy + μ ) - Eperfect   
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、Li、P、S、Ge、Al及びNを含み、結晶構造を有する硫黄系硫化物固体電解質は、25℃におけるイオン伝導度が優れていた。
 また、dQ/dV=-100mAhg-1-1における電圧Vの値が卑な方向にシフトすることは、硫化物固体電解質の還元分解電位が卑な方向にシフトしたこと、即ち耐還元性が向上したことを意味することから、実施例の硫化物固体電解質は、耐還元性にも優れていた。
 中でも実施例24の硫化物固体電解質は、25℃において、参考例3、4のような硫化物固体電解質に比べて優れたイオン伝導度を示すことが認められた。
 以上の結果から、本発明に係る硫化物固体電解質は、耐還元性が高く、当該硫化物固体電解質を備えた全固体電池の初回クーロン効率を向上できることが示された。また、本発明に係る硫化物固体電解質は、大気安定性についても向上できることが示された。
 本発明に係る硫化物固体電解質を備えた全固体電池は、初回クーロン効率が優れるので、例えばHEV用のリチウムイオン全固体電池として好適に用いられる。
1  負極層
2  正極層
3  固体電解質層
4  負極基材層
5  負極合剤層
6  正極合剤層
7  正極基材層
10 全固体電池

Claims (13)

  1.  Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mと、Nとを含み、結晶構造を有する硫化物固体電解質。
  2.  Al及びNを含み、結晶構造を有する硫化物固体電解質。
  3.  上記結晶構造が、Li11、Li若しくはβ-LiPSの結晶相を有する結晶構造又はCuKα線を用いるX線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有する第一の結晶構造を含む請求項1又は請求項2に記載の硫化物固体電解質。
  4.  上記第一の結晶構造が上記X線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°、29.8°±0.5°及び30.9°±0.5°に回折ピークを有する特定結晶構造A又は上記X線回折測定において2θ=17.9°±0.5°、19.1°±0.5°、29.1°±0.5°及び29.8°±0.5°に回折ピークを有し、30.9°±0.5°に回折ピークを有さない特定結晶構造Bを含む請求項3に記載の硫化物固体電解質。
  5.  Li、P、S、N、及び、Al、Si、B、Mg、Zr、Ti、Hf、Ca、Sr、Sc、Ce、Ta、Nb、W、Mo、Vからなる群より選択される少なくとも一つの元素Mを含み、
     上記Pに対する上記Liの含有割合がモル比で1.64以上4.00以下であり、 上記Pに対する上記Nの含有割合がモル比で0.02以上1.11以下である請求項1から請求項4のいずれか1項に記載の硫化物固体電解質。
  6.  上記Pに対する上記Liの含有割合がモル比で2.77以上3.38以下であり、上記Pに対する上記Nの含有割合がモル比で0.28以上0.65以下である請求項5に記載の硫化物固体電解質。
  7.  一般式(100-z)(yLiS・(1-y)P)・zLiαβN(但し、0<z≦40、0.50≦y≦0.75、α及びβは、元素Mの種類に応じて、化学量論比を与える数値である)で表される組成を有する請求項1から請求項6のいずれか1項に記載の硫化物固体電解質。
  8.  さらにGeを含む、請求項1又は請求項2に記載の硫化物固体電解質。
  9.  上記結晶構造が、Li10GeP12の結晶相を有する結晶構造を含む、請求項8に記載の硫化物固体電解質。
  10.  Li、P、S、N、Ge、及び上記元素Mを含み、
     上記Pに対する上記Liの含有割合がモル比で5.01以上5.61以下であり、
     上記Pに対する上記Nの含有割合がモル比で0.0051以上0.41以下である請求項8又は請求項9に記載の硫化物固体電解質。
  11.  一般式(100-z)Li10GeP12・zLiαβN(但し、0<z≦50、α及びβは、元素Mの種類に応じて、化学量論比を与える数値である)で表される組成を有する請求項8から請求項10のいずれか1項に記載の硫化物固体電解質。
  12.  25℃におけるイオン伝導度が1.0×10-3S/cm以上である請求項1から請求項11のいずれか1項に記載の硫化物固体電解質。
  13.  負極層と、
     固体電解質層と、
     正極層と
     を備え、
     上記負極層、上記固体電解質層、上記正極層又はこれらの組み合わせが請求項1から請求項12のいずれか1項に記載の硫化物固体電解質を含有する全固体電池。
PCT/JP2019/034138 2018-08-30 2019-08-30 硫化物固体電解質及び全固体電池 WO2020045633A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US17/270,728 US20210218056A1 (en) 2018-08-30 2019-08-30 Sulfide solid electrolyte and all-solid-state battery
CN201980055986.3A CN112673506A (zh) 2018-08-30 2019-08-30 硫化物固体电解质和全固体电池
EP22185069.6A EP4099464A3 (en) 2018-08-30 2019-08-30 Sulfide solid electrolyte and all-solid-state battery
EP22185070.4A EP4099465A3 (en) 2018-08-30 2019-08-30 Sulfide solid electrolyte and all-solid-state battery
JP2020539630A JP7424293B2 (ja) 2018-08-30 2019-08-30 硫化物固体電解質及び全固体電池
EP22185068.8A EP4099463A3 (en) 2018-08-30 2019-08-30 Sulfide solid electrolyte and all-solid-state battery
EP19855520.3A EP3828980A4 (en) 2018-08-30 2019-08-30 SOLID SULPHIDE ELECTROLYTE AND FULLY SOLID BATTERY
JP2024005315A JP2024041952A (ja) 2018-08-30 2024-01-17 硫化物固体電解質及び全固体電池
JP2024022173A JP2024056927A (ja) 2018-08-30 2024-02-16 硫化物固体電解質及び全固体電池
JP2024042111A JP2024069528A (ja) 2018-08-30 2024-03-18 硫化物固体電解質及び全固体電池

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018161831 2018-08-30
JP2018-161831 2018-08-30
JP2018-232775 2018-12-12
JP2018232775 2018-12-12
JP2019045347 2019-03-13
JP2019-045347 2019-03-13
JP2019-103611 2019-06-03
JP2019103611 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020045633A1 true WO2020045633A1 (ja) 2020-03-05

Family

ID=69643664

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/034139 WO2020045634A1 (ja) 2018-08-30 2019-08-30 硫化物固体電解質の製造方法、硫化物固体電解質、全固体電池、及び硫化物固体電解質の製造に用いる原料化合物の選択方法
PCT/JP2019/034138 WO2020045633A1 (ja) 2018-08-30 2019-08-30 硫化物固体電解質及び全固体電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034139 WO2020045634A1 (ja) 2018-08-30 2019-08-30 硫化物固体電解質の製造方法、硫化物固体電解質、全固体電池、及び硫化物固体電解質の製造に用いる原料化合物の選択方法

Country Status (5)

Country Link
US (2) US20210194050A1 (ja)
EP (6) EP4099463A3 (ja)
JP (8) JP7435452B2 (ja)
CN (2) CN112740458A (ja)
WO (2) WO2020045634A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172159A1 (ja) * 2020-02-28 2021-09-02 株式会社Gsユアサ 固体電解質、固体電解質の製造方法及び蓄電素子
US20220021021A1 (en) * 2020-03-16 2022-01-20 Solid Power, Inc. Solid electrolyte material and solid-state battery made therewith
WO2022239614A1 (ja) * 2021-05-11 2022-11-17 株式会社Gsユアサ 硫化物固体電解質、硫化物固体電解質の製造方法、蓄電素子、電子機器及び自動車
WO2023090289A1 (ja) * 2021-11-16 2023-05-25 三井金属鉱業株式会社 固体電解質及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11984552B2 (en) * 2018-11-16 2024-05-14 Samsung Electronics Co., Ltd. Phase-transition solid electrolyte material and all solid secondary battery including the same
CN110554021A (zh) * 2019-09-16 2019-12-10 吉林师范大学 一种SPR在近红外具有强SERS活性的Ag/TiS2分层复合基底及其制备方法
US11522169B2 (en) * 2020-08-13 2022-12-06 The Regents Of The University Of California Sulfide-based all-solid-state battery including surface heat-treated positive electrode active material and method of manufacturing the same
JP7484737B2 (ja) 2021-01-19 2024-05-16 トヨタ自動車株式会社 硫化物固体電解質、前駆体、全固体電池および硫化物固体電解質の製造方法
CN113363568B (zh) * 2021-06-29 2022-04-19 深圳高能时代科技有限公司 一种制备硫化物固态电解质的方法
CN113471521B (zh) * 2021-06-30 2022-08-19 国联汽车动力电池研究院有限责任公司 一种无机硫化物固体电解质及其制备方法
CN113363569B (zh) * 2021-06-30 2023-05-05 国联汽车动力电池研究院有限责任公司 一种高稳定性无机硫化物固体电解质及其制备方法
WO2024117146A1 (ja) * 2022-11-30 2024-06-06 株式会社Gsユアサ 固体電解質、正極用固体電解質、複合体、蓄電素子用正極及び蓄電素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116276A (en) * 1980-02-15 1981-09-11 Citizen Watch Co Ltd Solid electrochemical cell
JP2000340257A (ja) 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd リチウム二次電池
JP2012243443A (ja) * 2011-05-17 2012-12-10 Toyota Motor Corp 正極活物質粒子及びその製造方法
JP2018041671A (ja) 2016-09-08 2018-03-15 トヨタ自動車株式会社 硫化物固体電解質、リチウム固体電池および硫化物固体電解質の製造方法
WO2019098245A1 (ja) * 2017-11-14 2019-05-23 出光興産株式会社 金属元素含有硫化物系固体電解質及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2270771A1 (fr) * 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP5888609B2 (ja) 2012-02-06 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6037444B2 (ja) * 2013-01-17 2016-12-07 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US9379383B2 (en) * 2013-06-17 2016-06-28 Electronics And Telecommunications Research Institute Lithium battery and method of preparing the same
JP6077403B2 (ja) 2013-06-28 2017-02-08 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP6678405B2 (ja) * 2015-07-09 2020-04-08 国立大学法人東京工業大学 リチウム固体電解質
JP6798797B2 (ja) * 2016-05-27 2020-12-09 出光興産株式会社 固体電解質の製造方法
JP6878059B2 (ja) 2017-03-15 2021-05-26 トヨタ自動車株式会社 硫化物固体電解質及びその製造方法
CN110621616B (zh) * 2017-03-29 2023-06-30 索利得动力公司 固体电解质材料和用其制作的固态电池
JP6986468B2 (ja) * 2017-03-31 2021-12-22 国立大学法人東京工業大学 固体電解質材料およびその製造方法
US10431849B2 (en) * 2017-04-21 2019-10-01 GM Global Technology Operations LLC High energy density alkali metal batteries incorporating solid electrolytes
JP6568141B2 (ja) * 2017-04-27 2019-08-28 古河機械金属株式会社 リチウムイオン電池用固体電解質材料およびリチウムイオン電池用固体電解質材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116276A (en) * 1980-02-15 1981-09-11 Citizen Watch Co Ltd Solid electrochemical cell
JP2000340257A (ja) 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd リチウム二次電池
JP2012243443A (ja) * 2011-05-17 2012-12-10 Toyota Motor Corp 正極活物質粒子及びその製造方法
JP2018041671A (ja) 2016-09-08 2018-03-15 トヨタ自動車株式会社 硫化物固体電解質、リチウム固体電池および硫化物固体電解質の製造方法
WO2019098245A1 (ja) * 2017-11-14 2019-05-23 出光興産株式会社 金属元素含有硫化物系固体電解質及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ACS APPL. MATER. INTERFACES, vol. 7, 2015, pages 23685
See also references of EP3828980A4
SOLID STATE IONICS, vol. 177, 2006, pages 2721
SOLID STATE IONICS, vol. 304, 2016, pages 85

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172159A1 (ja) * 2020-02-28 2021-09-02 株式会社Gsユアサ 固体電解質、固体電解質の製造方法及び蓄電素子
US20220021021A1 (en) * 2020-03-16 2022-01-20 Solid Power, Inc. Solid electrolyte material and solid-state battery made therewith
US11923503B2 (en) * 2020-03-16 2024-03-05 Solid Power Operating, Inc. Bromine and iodine lithium phosphorous sulfide solid electrolyte and solid-state battery including the same
WO2022239614A1 (ja) * 2021-05-11 2022-11-17 株式会社Gsユアサ 硫化物固体電解質、硫化物固体電解質の製造方法、蓄電素子、電子機器及び自動車
WO2023090289A1 (ja) * 2021-11-16 2023-05-25 三井金属鉱業株式会社 固体電解質及びその製造方法

Also Published As

Publication number Publication date
WO2020045634A1 (ja) 2020-03-05
EP4099464A2 (en) 2022-12-07
JP2024073592A (ja) 2024-05-29
EP4099465A2 (en) 2022-12-07
EP4099466A2 (en) 2022-12-07
CN112673506A (zh) 2021-04-16
EP4099463A3 (en) 2023-01-04
JP2024050822A (ja) 2024-04-10
EP4099466A3 (en) 2023-01-11
JPWO2020045634A1 (ja) 2021-09-02
US20210194050A1 (en) 2021-06-24
US20210218056A1 (en) 2021-07-15
JP7424293B2 (ja) 2024-01-30
EP3828979A1 (en) 2021-06-02
EP3828979A4 (en) 2021-09-22
CN112740458A (zh) 2021-04-30
EP4099463A2 (en) 2022-12-07
EP3828980A1 (en) 2021-06-02
EP4099464A3 (en) 2023-01-04
EP4099465A3 (en) 2023-01-04
JP7435452B2 (ja) 2024-02-21
JP2024041952A (ja) 2024-03-27
JP2024059818A (ja) 2024-05-01
JP2024056927A (ja) 2024-04-23
JPWO2020045633A1 (ja) 2021-08-26
EP3828980A4 (en) 2021-09-22
JP2024069528A (ja) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020045633A1 (ja) 硫化物固体電解質及び全固体電池
US11670798B2 (en) Solid electrolyte for a lithium-ion electrochemical cell
JP6119469B2 (ja) イオン伝導性固体、その製造方法及び固体電池
JP2018514908A (ja) ナトリウムイオン電池用の正極活性物質
WO2021157361A1 (ja) 正極材料および電池
JP2021057342A (ja) 固体イオン伝導体化合物、それを含む固体電解質、それを含む電気化学セル、及びその製造方法
JP2021072288A (ja) 固体イオン伝導体化合物、それを含む固体電解質、それを含む電気化学セル、及びその製造方法
CN111180634B (zh) 复合结构体、锂电池和复合结构体的制造方法
JP7115337B2 (ja) 固体電解質、リチウムイオン蓄電素子、及びこれらの製造方法
WO2021220927A1 (ja) 正極材料、および、電池
JP7451746B2 (ja) 固体電解質、それを含む電気化学電池、及び固体電解質の製造方法
JP2019040752A (ja) 全固体型二次電池
KR20210055581A (ko) 고체 전해질, 이를 포함하는 전기화학전지 및 고체 전해질의 제조방법
JP2024096917A (ja) 硫化物固体電解質及び全固体電池
JP2019129096A (ja) 全固体電池及び全固体電池の製造方法
US20230352728A1 (en) Solid ion conductor compound, solid electrolyte comprising same, electrochemical cell comprising same, and manufacturing method thereof
EP3649082B1 (en) New lithium mixed metal sulfide with high ionic conductivity
KR20230013092A (ko) 고체 전해질 재료, 고체 전해질, 고체 전해질의 제조 방법 및 전고체 전지
KR20240051584A (ko) 수분 안정성이 우수한 고체전해질 및 이의 제조방법
KR20240035589A (ko) 리튬 이온 전도성 고체 전해질 재료, 리튬 이온 전도성 고체 전해질, 이들의 제조 방법 및 전고체 전지
KR20230013091A (ko) 고체 전해질 재료, 고체 전해질, 고체 전해질의 제조 방법 및 전고체 전지
JP2023028295A (ja) 固体電解質材料、固体電解質及びその製造方法
KR20230013093A (ko) 고체 전해질 재료, 고체 전해질, 고체 전해질의 제조 방법 및 전고체 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855520

Country of ref document: EP

Effective date: 20210224