WO2020019747A1 - 一种中轻度重金属污染土壤上稻米安全生产的方法 - Google Patents

一种中轻度重金属污染土壤上稻米安全生产的方法 Download PDF

Info

Publication number
WO2020019747A1
WO2020019747A1 PCT/CN2019/080477 CN2019080477W WO2020019747A1 WO 2020019747 A1 WO2020019747 A1 WO 2020019747A1 CN 2019080477 W CN2019080477 W CN 2019080477W WO 2020019747 A1 WO2020019747 A1 WO 2020019747A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
selenium
cadmium
iron
agent
Prior art date
Application number
PCT/CN2019/080477
Other languages
English (en)
French (fr)
Inventor
李芳柏
刘传平
Original Assignee
广东省生态环境技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省生态环境技术研究所 filed Critical 广东省生态环境技术研究所
Priority to JP2020538882A priority Critical patent/JP6895590B2/ja
Publication of WO2020019747A1 publication Critical patent/WO2020019747A1/zh
Priority to US16/863,616 priority patent/US10918024B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C14/00Methods or apparatus for planting not provided for in other groups of this subclass
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/005Following a specific plan, e.g. pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C1/00Ammonium nitrate fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C5/00Fertilisers containing other nitrates
    • C05C5/04Fertilisers containing other nitrates containing calcium nitrate
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Definitions

  • the invention belongs to the field of environmental protection, and particularly relates to a method for safe production of rice on soils polluted by moderate to heavy metals.
  • Rice is a crop that easily absorbs and accumulates heavy metals; rice is the largest food crop in China, and more than 60% of the country's population uses rice as a staple food. Therefore, it is of great environmental and practical significance to study how to achieve safe production of rice on contaminated rice fields.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art and provide a method for the safe production of rice on soils contaminated by heavy metals.
  • This method starts from the whole growth period of rice, and aims at the early stage of vegetative growth of rice.
  • the root system absorbs heavy metals from the soil solution and accumulates in the vegetative organs.
  • the middle and late stages are mainly based on the transport and redistribution of heavy metal elements from vegetative organs to the grains.
  • a technical system that controls (“controls") the activity of heavy metals in the soil and inhibits (“blocks”) heavy metal transport in the later stages to ensure the safe production of rice in moderately and lightly polluted paddy fields.
  • the purpose of the present invention is achieved by the following technical scheme: a method for safe production of rice on soil with moderate to heavy metal contamination, in which a passivating agent is applied before rice transplanting to reduce soil heavy metal activity, and then the rice tillering stage to the booting stage And spraying of foliar barrier at the rice filling stage.
  • the heavy metal contaminated soil is cadmium, lead and / or arsenic contaminated soil.
  • the choice of the passivation agent depends on the type of soil pollutants, the degree of pollution, and other factors; preferably, it is bentonite, gypsum powder, lime, biochar, iron-based biochar, slow-release iron-based biochar, and iron-silicon-sulfur. Elemental composite biochar soil heavy metal conditioner (iron-silicon complex biochar), heavy metal cadmium passivating agent that activates the activity of sulfur reducing bacteria in rice fields Cadmium passivation agent and application "prepared) and one or more mixtures of cadmium and arsenic simultaneous passivation agent.
  • Elemental composite biochar soil heavy metal conditioner iron-silicon complex biochar
  • heavy metal cadmium passivating agent that activates the activity of sulfur reducing bacteria in rice fields Cadmium passivation agent and application "prepared) and one or more mixtures of cadmium and arsenic simultaneous passivation agent.
  • the cadmium and arsenic synchronous passivation agent is a cadmium and arsenic synchronous passivation agent with a three-layer structure from the inside to the outside, each of which has an independent coating film; wherein the innermost layer is a hydrogen ion chemical consumer and the middle layer For the reaction of accelerator humus, the outermost layer is the ore-forming precursor.
  • the mass ratio of the hydrogen ion chemical consumable, the reaction accelerator humus substance and the ore-forming precursor is 1: 8-30: 1-10.
  • the hydrogen ion chemical consumption agent is a chemical agent capable of undergoing an oxidation-reduction reaction in a soil solution and consuming hydrogen ions in the process of being reduced by itself; preferably nitrate and peroxide; more preferably nitrate and peroxide
  • the mixture is obtained by mixing the materials in a mass ratio of 2 to 5: 1.
  • the nitrate is one or two or more of sodium nitrate, potassium nitrate, magnesium nitrate, iron nitrate and calcium nitrate.
  • the peroxide is one or two or more of calcium peroxide, urea peroxide and zinc peroxide.
  • the humus substance of the reaction accelerator is one or two or more of peat soil, humic acid (HA), fulvic acid (FA), humin, fulvic acid, palmitic acid, and black humic acid.
  • the ore-forming precursor is reducing iron powder, ferrous salt and / or solid ferrous mineral; preferably a mixture of reducing iron powder, ferrous salt and solid ferrous mineral; more preferably, reducing iron powder and A mixture of solid ferrous minerals with a mass ratio of 1: 1 to 5;
  • the solid ferrous mineral is one or two or more of siderite, pyrite, pyrite and magnetite.
  • the coating film is composed of a coating material (alkaline coating material), and the coating material is based on the application number 201610071104.0 and the name is "a slow-release iron-based biochar soil heavy metal deactivator" Preparation and Use Method "was prepared in Example 1 of the Chinese patent application.
  • the cadmium and arsenic synchronous passivation agent is preferably prepared by the following method:
  • step (2) coating the hydrogen ion depleting agent core material obtained in step (1) with a coating material to obtain a granulated hydrogen ion depleting agent;
  • step (3) mixing the granulated hydrogen ion depleting agent obtained in step (2) with the humus substance of the reaction accelerator, adding a binder and water to mix evenly, granulating and drying to obtain the inner layer hydrogen ion depleting agent and Core material of intermediate reaction accelerator;
  • step (4) Mix the two-layer structure obtained in step (4) with the ore-forming precursor, then add a binder and water to mix well, granulate and dry to obtain a three-layer structure of cadmium and arsenic synchronous passivation core material ;
  • step (5) The three-layer structure of the cadmium and arsenic synchronous passivation agent core material obtained in step (5) is coated with a coating material to obtain a cadmium and arsenic synchronous passivation agent (cadmium and arsenic synchronous passivation with a three-layer film structure). ⁇ ).
  • the particle size of the hydrogen ion depleting agent core material described in step (1) is 2.5 to 3.5 mm.
  • the amount of the binder added in step (1) corresponds to 3 to 5% (w / w) of the hydrogen ion chemical consumable.
  • the amount of water added in step (1) corresponds to 50 to 60% (w / w) of the hydrogen ion chemical consumer.
  • the binder described in steps (1), (3) and (5) is preferably a biological starch.
  • the biological starch is one or two or more of corn flour, sweet potato flour, potato flour and cassava flour.
  • the mass-volume ratio of the hydrogen ion depleting agent core material and the coating material described in step (2) is 1: 0.3 to 1.2.
  • the thickness of the coating film formed by coating with the coating material described in steps (2), (4), and (6) is 0.5 to 1 mm.
  • the amount of the binder added in step (3) corresponds to 3 to 5% (w / w) of the humus substance of the reaction accelerator.
  • the amount of water added in step (3) corresponds to 50-60% (w / w) of the humus substance of the reaction accelerator.
  • the particle size of the inner layer hydrogen ion depleting agent and the middle layer reaction accelerator core material described in step (3) is 4.5 to 6.5 mm.
  • the ratio of the hydrogen ion depleting agent and the reaction accelerator humus substance in step (3) is 1: 8-30.
  • the ratio of the inner layer hydrogen ion depleting agent, the middle layer reaction accelerator core material and the coating material described in step (4) is based on a mass-volume ratio of 1: 0.3 to 1.2.
  • the amount of the binder added in step (5) corresponds to 3 to 5% (w / w) of the ore-forming precursor.
  • the amount of water added in step (5) corresponds to 50 to 60% (w / w) of the ore-forming precursor.
  • the inner-layer hydrogen ion depleting agent and the middle-layer reaction accelerator of the two-layer structure described in step (5) and the ore-forming precursor are mixed at a mass ratio of 3-9: 1.
  • the particle size of the cadmium-arsenic synchronous passivation core material of the three-layer structure described in step (5) is 8.5-10.5 mm.
  • the mass-volume ratio of the three-layer structure of the cadmium and arsenic synchronous passivating core material and the coating material in step (6) is 1: 0.3 to 1.5, and preferably 1: 0.3 to 1.2.
  • the foliar barrier agent is one or more of acidic silica sol (pure silica sol), selenium-doped nano silica sol (selenium-silicon composite sol), rare earth composite silica sol, and ferrous modified selenium sol.
  • the rare earth composite silica sol is preferably a cerium-doped inorganic nano silica sol (cerium composite silica sol).
  • the ferrous modified selenium sol is prepared by the following method:
  • step (b) Adding a reducing agent to the mixed solution containing iron and selenium obtained in step (a) under a water bath condition of 35 to 85 ° C, and stirring for 5 to 15 minutes. When precipitation no longer occurs, add carbonate and continue stirring 5 to 15 minutes until no more precipitation occurs, filter, take the precipitate, and wash to obtain selenium element and ferrous carbonate precipitation;
  • step (d) adding the selenium element and ferrous carbonate precipitate obtained in step (b) to the emulsified citric acid buffer obtained in step (c) under a water bath condition of 25 to 55 ° C, and stirring to obtain a sol system;
  • step (e) The sol system obtained in step (d) is evaporated and concentrated, and the pH is adjusted to 4.5 to 8.5 to obtain a ferrous modified selenium sol; wherein the content of selenium in the ferrous modified selenium sol is 0.25 to 2.5% (w / v), and the content of the iron element is 2.5 to 7.5% (w / v).
  • the iron-containing compound described in step (a) is one or a mixture of iron salts and ferrous salts
  • the iron salt is preferably iron chloride, iron nitrate or iron citrate.
  • the ferrous salt is preferably ferrous sulfate or ferrous chloride.
  • the selenium-containing compound described in step (a) is one or more of selenic acid, selenate, selenite, and selenite; selenite is preferred.
  • the selenite is preferably sodium selenite.
  • the mass percentage of the iron element in the mixed solution described in step (a) is 5 to 15%; the mass percentage of the selenium element is 0.5 to 5%;
  • the temperature of the water bath in step (b) is preferably 45 to 55 ° C.
  • the reducing agent described in step (b) is preferably one or more of ascorbic acid and reduced glutathione.
  • the molar ratio of the reducing agent to the iron ions in the mixed solution in step (b) is 1.4 to 3: 1.
  • the washing in step (b) is washing with deionized water; preferably, washing is performed 3 to 5 times with 10 to 20 times the mass of deionized water.
  • the carbonate described in step (b) is preferably one or more of potassium carbonate, sodium carbonate, and ammonium carbonate.
  • the molar ratio of the carbonate to the iron ion in the mixed solution in step (b) is 1.0 to 2.0: 1.
  • the emulsifier described in step (c) is preferably one or more of Triton X-100, sodium alkylbenzene sulfonate, agricultural milk 400 and polyethylene glycol.
  • the amount of the emulsifier added in step (c) is calculated based on the mass-volume ratio of the emulsifier to the citric acid buffer solution being 1 to 10: 100.
  • the citric acid buffer solution described in step (c) is a citric acid-potassium citrate buffer solution having a pH of 3.0 to 6.0 and a molar concentration of 0.01 to 0.1 mol / L; preferably, it is obtained by the following steps:
  • citric acid solution and the potassium citrate solution are mixed uniformly to obtain a citric acid buffer solution, wherein the citric acid buffer solution has a pH of 3.0 to 6.0 and a molar concentration of 0.01 to 0.1 mol / L.
  • the stirring rate described in step (d) is 50 to 100 r / min.
  • step (d) The addition of the selenium element and the ferrous carbonate precipitation described in step (d) is preferably achieved by the following method: the selenium element and the ferrous carbonate precipitation are slowly and uniformly added to the emulsified citric acid buffer solution, and the rate of addition is controlled at per liter The amount of precipitation added to the solution is 5-10 g / min until a uniform sol system is formed.
  • the added amount of the selenium element and the ferrous carbonate precipitation described in step (d) is calculated based on the mass-volume ratio of the selenium element and the ferrous carbonate precipitation to the emulsified citric acid buffer solution being 1: 10-100.
  • the pH range in step (e) is preferably 5.5 to 6.5.
  • the application of the passivation agent before the rice transplanting is to apply the passivation agent about 10 days before the rice transplanting, and it is preferably implemented by any of the following methods:
  • a passivating agent is applied about 10 days before rice transplanting.
  • the passivating agent is applied in an amount of 50 to 150 kg when the pollutant exceeds the standard.
  • the pollutant exceeds the standard by 2 to 3 times, 100 to 200 kg / mu is applied; wherein, the passivation agent is preferably one or several mixtures of lime, biochar and cadmium arsenic synchronous passivation agent;
  • passivation agent When soil pollution is arsenic pollution, or compound pollution of arsenic, cadmium, lead, etc., passivation agent is applied about 10 days before rice transplanting.
  • the passivation agent is applied at a dosage of 1 to 2 times the pollutants. 100 to 200 kg / mu for application; 150 to 300 kg / mu for pollutants exceeding 2 to 3 times the standard; wherein the passivation agent is iron-based biochar, slow-release iron-based biochar, iron-silicon One or several mixtures of sulfur multi-element composite biochar soil heavy metal conditioner (iron-sulfur-silicon composite biochar) and cadmium arsenic synchronous passivation agent.
  • the biochar described in the method (A) is prepared according to the method for preparing a biochar material in Example 3 of the patent ZL201410538633.8; the heating process is controlled so that the pH of the prepared biochar is 9-11 and the specific surface area is 80cm 2 / g the above.
  • the specific surface area is preferably 110 cm 2 / g to 150 cm 2 / g.
  • the mass ratio of the hydrogen ion chemical consumption agent, the reaction accelerator humus substance, and the ore-forming precursor in the cadmium-arsenic synchronous passivation agent described in the aspect (A) is 1: 8 to 15: 1 to 5.
  • the mass ratio of the hydrogen ion chemical consumption agent, the reaction accelerator humus substance, and the ore-forming precursor in the cadmium-arsenic synchronous passivation agent described in the aspect (B) is 1: 15-30: 5-10.
  • the method for safe production of rice on soils polluted by moderate to light heavy metals further includes fertilizing at the rice seedling stage and / or rice tillering stage.
  • the top dressing is preferably implemented by the following methods: applying 10-30 kg / mu of nitrate nitrogen fertilizer at the rice seedling stage, and / or applying 10-20 kg / mu of phosphorus and potassium fertilizer at the tillering stage of the rice.
  • the nitrate nitrogen fertilizer is one or more kinds of potassium nitrate, ammonium nitrate, sodium nitrate, calcium nitrate, phosphorus nitrate fertilizer, calcium ammonium nitrate and nitro compound fertilizer.
  • the phosphorus and potassium fertilizer is one or more kinds of potassium dihydrogen phosphate, calcium magnesium phosphate fertilizer, calcium phosphate and calcium superphosphate.
  • the spraying of the foliar barrier agent during the tillering stage to the booting stage of rice and the filling stage of rice is preferably implemented by any of the following methods:
  • the foliar barrier agent sprayed from the tillering stage to the booting stage of the rice is acidic silica sol (pure silica sol) or rare earth composite silica sol (which can inhibit rice absorption Rare earth composite silica sol of heavy metals);
  • the foliar barrier sprayed during the rice filling stage is a ferrous modified selenium sol;
  • the foliar barrier applied during the tillering stage to the booting stage of the rice is selenium-doped nano-silica sol (selenium-silicon composite sol) ;
  • the foliar barrier sprayed during the rice filling stage is a ferrous modified selenium sol.
  • the mass percentage of silica in the acidic silica sol (pure silica sol) described in the aspect (i) is 15 to 20%.
  • the mass percentage of silica in the rare earth composite silica sol described in the aspect (i) is 5 to 10%, and the content of the rare earth element is 1% (w / w) or less; preferably, the mass percentage of silica is 5 to 10 %, And the content of the rare earth element is 0.01 to 1% (w / w).
  • the rare earth element includes cerium and the like.
  • the rare earth composite silica sol described in the aspect (i) is preferably a cerium-doped inorganic nano silica sol (cerium composite silica sol).
  • the content of the selenium element in the ferrous-modified selenium sol described in the aspect (i) is 0.25 to 0.5% (w / v), and the content of the iron element is 5 to 7.5% (w / v).
  • the spraying amount of the foliar barrier agent in the method (i) is 500-1000 ml / mu.
  • the method for spraying the foliar barrier in the method (i) is: spraying the foliar silicon barrier after being diluted 100 times after sunny or cloudy at 4 or 4 pm.
  • the mass percentage of silicon dioxide in the selenium-doped nano-silica sol (selenium-silica composite sol) described in the aspect (ii) is 5-10%, and the content of the selenium element is 1.5-2.5% (w / w).
  • the content of selenium in the ferrous-modified selenium sol described in mode (ii) is 1.0 to 2.5% (w / v), and the content of iron is 2.5 to 5% (w / v); ferrous-modified selenium
  • the content of the selenium element in the sol is preferably 1.0 to 2% (w / v), and the content of the iron element is 2.5 to 3.5% (w / v).
  • the spraying amount of the foliar barrier agent in the method (ii) is 500-1000 ml / mu;
  • the method for spraying the foliar barrier in the method (ii) is: spraying the foliar silicon barrier after being diluted 100 times on a sunny or cloudy afternoon at 4 or 4 pm.
  • the tillering period described in the present invention When the tillering increases fastest, it is called the tillering period.
  • the present invention has the following advantages and effects:
  • the present invention Compared with passivation technology that controls soil heavy metal activity alone or physiological barrier technology that separately blocks heavy metal transport, the present invention “controls" soil heavy metal activity through the vegetative growth phase of rice, and “resists” heavy metals from moving above the ground during the reproductive growth phase of rice And grain transport; “control” and “resistance” are used in synergy, in which "control” (vegetative growth phase of rice): before transplanting rice, adopt inactivating agent to reduce soil heavy metal activity; use topdressing during rice seedling to tillering stage Technology to further control the activity of heavy metals; “blocking” (reproductive growth period of rice): during the tillering stage of rice to booting, it uses spraying foliar barrier technology to inhibit the transfer of heavy metals to the ground; foliar spraying barrier is used during rice filling stage Technology inhibits heavy metal transport to grains.
  • the combined technical effect of the invention is far superior to that of separate treatment, and it is also significantly superior to the simple addition of the two, which can ensure the safe production
  • the present invention regulates the regulation of heavy metal absorption and accumulation at different stages of the rice growth period; the technical measures are highly targeted, the effect is significant, and the application is convenient, economical and efficient; and it is suitable for the safety utilization requirements of large and moderately polluted rice fields in China .
  • the present invention adopts the combination of "resistance” and “control”, which can coordinately control the pollution of various heavy metals such as cadmium, arsenic, lead, etc., and can be used in heavy metal compound polluted rice fields; meanwhile, the preferred biochar-based material for passivation agents, It can improve soil structure and increase production.
  • the present invention has a wide range of applications. It can be applied to single cadmium, arsenic, lead and other heavy metal contaminated rice fields, as well as composite heavy metal contaminated rice fields. It can also be applied to lightly contaminated rice fields. It can also be used on moderately polluted paddy soil; it can achieve the standard production of moderately and slightly polluted paddy fields.
  • the cadmium and arsenic synchronous passivation agent in the present invention contains a three-layer structure from the inside to the outside, and each layer has an independent coating film; wherein the innermost layer is a hydrogen ion chemical consumer, and the middle layer is a reaction accelerator humus substance.
  • the outermost layer is the ore-forming precursor.
  • the mass ratio of the hydrogen ion chemical consumable, the reaction accelerator humus substance and the ore-forming precursor is 1: 8-30: 1-10.
  • the hydrogen ion chemical consumption agent is a chemical agent capable of undergoing an oxidation-reduction reaction in a soil solution and consuming hydrogen ions in the process of being reduced by itself; preferably nitrate and peroxide; more preferably nitrate and peroxide
  • the mixture is obtained by mixing the materials in a mass ratio of 2 to 5: 1.
  • the nitrate is one or two or more of sodium nitrate, potassium nitrate, magnesium nitrate, iron nitrate and calcium nitrate.
  • the peroxide is one or two or more of calcium peroxide, urea peroxide and zinc peroxide.
  • the humus substance of the reaction accelerator is one or two or more of peat soil, humic acid (HA), fulvic acid (FA), humin, fulvic acid, palmitic acid, and black humic acid.
  • the ore-forming precursor is reducing iron powder, ferrous salt and / or solid ferrous mineral; preferably a mixture of reducing iron powder, ferrous salt and solid ferrous mineral; more preferably, reducing iron powder and A mixture of solid ferrous minerals with a mass ratio of 1: 1 to 5;
  • the solid ferrous mineral is one or two or more of siderite, pyrite, pyrite and magnetite.
  • the coating film is composed of a coating material (alkaline coating material), and the coating material is based on the application number 201610071104.0 and the name is "a slow-release iron-based biochar soil heavy metal deactivator" Preparation and Use Method "was prepared in Example 1 of the Chinese patent application.
  • the core material and the coating material (the chitosan pH is 9 and the mass fraction is 0.3%) are coated with the core material at a mass-to-volume ratio of 1: 0.5, and the thickness of the coating is controlled to 0.8 mm To obtain an inner layer hydrogen ion depleting agent with a membrane structure.
  • the core material and the coating material (pH 10, 2.5% by mass of chitosan) of the above-mentioned inner layer hydrogen ion depleting agent and middle-layer reaction accelerator are coated with the core material at a mass-volume ratio of 1: 0.5 to control
  • the thickness of the coating is 0.8mm, and an inner layer hydrogen ion consuming agent and a middle layer reaction accelerator with a two-layer film structure are prepared.
  • the core material and the coating material (pH 11 and 5% by mass of chitosan) with the above three-layer structure of cadmium and arsenic synchronous passivation agent are coated with the core material at a mass-to-volume ratio of 1: 0.5 to control
  • the thickness of the coating is 0.8mm, and a cadmium-arsenic synchronous passivation agent with a three-layer film structure is prepared.
  • ferrous modified selenium sol foliar barrier agent (ferrous modified selenium sol) involved in the embodiment of the present invention is prepared by the following method:
  • the sol was concentrated by rotary evaporation to 200 mL, and the pH was adjusted to 4.5 with potassium hydroxide; a ferrous modified selenium sol was obtained; the sol had an iron content of 7.5% (mass-volume ratio) and a selenium content of 0.5% ( Mass-volume ratio).
  • the test site is located in a paddy field in Quantang Town, Xiangxiang Town, Hunan province.
  • the soil in this paddy field is slightly polluted with cadmium.
  • the surface soil (0-30cm) of this field was collected and analyzed.
  • the soil pH was 5.3 and the Cd content was 0.378mg kg -1 .
  • the test crop was rice and the variety was Liangyou.
  • the test consists of 7 treatments, which are:
  • control treatment with separate passivation technology, recorded as T1;
  • step (1) of Example 1 The method of preparing the biochar material in step (1) of Example 1 was prepared as follows: the palms were dried, weighed 10 kg and crushed, placed in a high-temperature furnace, slowly heated to 200 ° C, and held at a constant temperature for 2 hours.
  • the temperature was increased at a rate of °C / minute, and then heated to 800 ° C, and kept at this temperature for 3 hours, and the heating was stopped to prepare a biochar material; the biochar material had a pH of about 9.0 and a specific surface area of about 150 cm 2 / g;
  • biochar is reference patent ZL201410538633.8 in the method of preparing the biochar material in Example 3, and the specific method is as follows: Dry the chaff 10kg was weighed and crushed, placed in a high-temperature furnace, slowly heated to 200 ° C, constant temperature for 2 hours, heated at a rate of 5 ° C / min, and then heated to 300 ° C, and kept at this temperature for 12 hours, stopped heating, and prepared Biochar material; the biochar material has a pH of about 11 and a specific surface area of about 110 cm 2 / g); topdressing once during the tillering stage of rice, topdressing fertilizer is potassium dihydrogen phosphate, and the amount is 10 kg / mu ("control" : Passive + topdressing technology treatment, recorded as T3);
  • the cadmium content of rice after lime + biochar (T2) was 0.228mg / kg, which was a decrease of 15.9% compared with the control.
  • the cadmium content of rice treated with T1 and T2 was higher than the food hygiene standard (rice cadmium ⁇ 0.2mg / kg).
  • Passivation + topdressing technology treatment, (T3), "Control” (T4), and "T5" alone can reduce rice cadmium to food hygiene standards (rice cadmium ⁇ 0.2mg / kg), compared with the control Rice cadmium was reduced by 31.0%, 57.6%, and 48.0%, respectively.
  • C1 is the percentage of cadmium reduction that is "resistance” alone
  • C2 is the percentage of cadmium reduction that is "control” alone.
  • the test site is located in a paddy field in Gongzhuang Town, Huizhou City, Guangdong province.
  • the soil pollution in this paddy field is moderately polluted by cadmium, arsenic, and lead.
  • the surface soil (0-30cm) of this field is collected and analyzed.
  • the soil pH is 5.61 and the Cd content is 0.813mg kg. -1 , As content 49.4 mg kg -1 , Pb content 193 mg kg -1 .
  • the test crop was rice and the variety was Huang Lizhan.
  • the test consists of 7 treatments, which are:
  • topdressing fertilizer was a nitro compound fertilizer with a dosage of 30 kg / mu; the topdressing fertilizer was applied once during the tillering stage of rice; the topdressing fertilizer was calcium superphosphate at a rate of 20kg / mu; at the same time, the rice tillering till the booting stage Period, spray selenium-silicon composite sol (same as T5) on the foliar surface; spray 1 time with ferrous modified selenium sol foliar barrier (same as T5) during the rice filling stage; two sprays at a dose of 1000mL / mu, mixed with water After 100 times, spray at around 4 pm ("Stop" and "Control" synergy: soil passivation + topdressing technology
  • the “Cad” plus “Control” co-processing (T6) had the lowest content of cadmium, inorganic arsenic and lead in rice, only 0.102, 0.089, and 0.104 mg / kg; and only the “Cd” plus “Control” co-processing (T6)
  • the contents of cadmium, inorganic arsenic and lead in rice were all lowered to food hygiene standards (rice cadmium ⁇ 0.2mg / kg, inorganic arsenic ⁇ 0.2mg / kg, lead ⁇ 0.2mg / kg), and had a significant increase in rice yield.
  • the yield increase reached 9.3%, and the significant difference was reached between the control and the control.
  • inorganic arsenic and lead in rice treated with "control” (T4) alone was reduced to food hygiene standards (inorganic arsenic ⁇ 0.2mg / kg, lead ⁇ 0.2mg / kg), but the cadmium content in rice was still higher than the food hygiene standard (rice cadmium> 0.2mg / kg); the content of cadmium and lead in “T5” rice alone was higher than the food hygiene standards (rice cadmium> 0.2mg / kg, rice lead ⁇ 0.2mg / kg).
  • the test site was located in a moderate cadmium-contaminated farmland in Zhangshi Town, Qujiang District, Shaoguan City, Guangdong province; the pH of the farmland soil was 5.32, and the total Cd content was 0.645 mg / kg -1 .
  • the test crop was rice and the variety was Meixiangzhan.
  • the test consists of 7 treatments, which are:
  • control treatment with separate passivation technology, recorded as T2;
  • cerium composite silica sol that is, cerium-doped inorganic nano-silica sol
  • cerium composite silica sol was prepared in accordance with the method of Example 1 of Chinese patent ZL200610036994.8 during the tillering stage to the booting stage of rice.
  • the pH was adjusted to 7.0, and silica sol with a solid content of 10% and cerium sol with a solid content of 1% were mixed after mixing at a volume ratio of 1: 1.
  • Cerium-silica composite sol spraying ferrous-modified selenium sol foliar barrier once during the rice filling stage (the preparation method refers to the preparation method of the above ferrous-modified selenium sol foliar barrier, and controlling the iron content in the sol system 5% (w / v) and selenium content of 0.25% (w / v)); two spraying doses of 1000mL / mu, 100 times water, spraying at about 4 pm ("resistance": leaf Spray the barrier agent on the surface and record it as T5);
  • the test site was located in a moderately cadmium and arsenic compound contaminated paddy field in Hongxing Village, Dongtang Town, Renhua County, Shaoguan City, Guangdong province.
  • the surface soil (0-30cm) of this field was collected and analyzed.
  • the soil pH was 5.86 and the Cd content was 1.85mg kg -1 As content is 38.20 mg kg -1 .
  • the test crop was rice and the variety was Wufengyou 615. There are 4 treatments in the test, which are:
  • the selenium-doped nano-silica sol of selenium-enriched rice was prepared according to the method of Example 1 of the Chinese invention patent ZL201310737996.X, and the final silicon dioxide content was controlled at 5% and the selenium content was 1.5%); sprayed during the rice filling stage Apply the ferrous-modified selenium sol foliar barrier once (the preparation method refers to the method for preparing the ferrous-modified selenium sol foliar barrier, and control the iron content in the sol system to 2.5% (w / v), and the selenium content 1.0% (w / v)); the two spraying doses are 1000 mL / mu, and after spraying water 100 times, spraying at about 4 pm ("resistance" and "control" synergy: soil passivation + topdressing technology + Foliar is
  • the content of cadmium and inorganic arsenic in rice was the lowest after "T” plus “control” co-treatment (T3), the contents were only 0.187mg / kg and 0.081mg / kg; T3)
  • the contents of cadmium and inorganic arsenic in rice were all lowered to food hygiene standards (rice cadmium ⁇ 0.2mg / kg, rice inorganic arsenic ⁇ 0.2mg / kg).
  • the content of cadmium in rice treated with "T1" and "T2" alone was higher than the food hygiene standard (rice cadmium> 0.2mg / kg).
  • the test site was located in a rice field contaminated with Cd in Tongxi Village, Shuitou Town, Fogang County, Qingyuan City, Guangdong province.
  • the surface soil (0-30cm) of this field was collected and analyzed.
  • the soil pH was 4.58
  • the Cd content was 2.86mg kg -1
  • the arsenic content was 22.6 mg kg -1 .
  • the plot is a moderately cadmium-contaminated rice field typically affected by mining.
  • the test crop was rice and the variety was Tianyou 998. There are five treatments in the test, which are:
  • the "C” and “Control” co-processing (T4) had the lowest content of cadmium and inorganic arsenic in rice, only 0.183 mg / kg and 0.173 mg / kg; and only the "C” and “Control” co-processing ( T4)
  • the contents of cadmium and inorganic arsenic in rice were reduced to food hygiene standards (rice cadmium ⁇ 0.2mg / kg, rice inorganic arsenic ⁇ 0.2mg / kg).
  • the content of cadmium in rice treated with "control” (T1, T2) and “resistance” (T3) alone was higher than the food hygiene standard (rice cadmium> 0.2mg / kg).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Soil Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Botany (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

一种中轻度重金属污染土壤上稻米安全生产的方法,在水稻插秧前施用钝化剂以降低土壤重金属活性,然后在水稻分蘖盛期至孕穗期、以及水稻灌浆期喷施叶面阻隔剂;钝化剂包括膨润土、石膏粉、石灰、生物炭、铁基生物炭、缓释型铁基生物炭、铁硫硅复合生物炭、激活稻田土壤硫还原菌活性的重金属镉钝化剂和镉砷同步钝化剂等;叶面阻隔剂为酸性硅溶胶、硒硅复合溶胶、铈复合硅溶胶和亚铁改性硒溶胶等,还可在水稻苗期施加硝态氮肥,和/或在水稻分蘖期追施磷钾肥。所述方法针对水稻整个生育期不同阶段水稻对重金属吸收积累规律进行调控,技术措施针对性强,效果显著,可实现中轻度污染稻田的达标生产。

Description

一种中轻度重金属污染土壤上稻米安全生产的方法 技术领域
本发明属于环保领域,特别涉及一种中轻度重金属污染土壤上稻米安全生产的方法。
背景技术
根据2014年环境保护部与国土资源部联合发布的全国土壤污染状况调查公报显示,全国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧;污染物主要为镉、砷等重金属无机污染物。耕地土壤环境事关广大人民群众“菜篮子”、“米袋子”安全,事关农产品质量和人体健康,事关经济社会发展和国家生态安全,是重大的民生问题和战略问题。水稻是一种易于吸收积累重金属的农作物;而水稻又是我国第一大粮食作物,全国60%以上的人口以稻米为主食。因此,研究如何实现污染稻田上水稻安全生产具有非常重要的环境意义和现实意义。
我国人多地少的国情,决定了我国大面积污染耕地不可能停止农业生产进行修复治理。同时虽然我国土壤污染形势总体情况不容乐观,但是大部分土壤污染以轻度(或轻微)、中度为主,这就决定了我国污染耕地必须走安全利用为主的路子。2016年5月国务院印发的《土壤污染防治行动计划》(以下简称“土十条”),把农用地分类管理,保障农业生产环境安全列为十条重要任务之一;制定了到2020年实现受污染耕地安全利用率达到90%,中轻度受污染耕地实现安全利用面积达到4000万亩的目标。近年来,由于耕地土壤污染引起了社会公众的广泛关注,研发农民可接受、政府可承受、产业可发展的重金属污染稻田的安全利用显得尤为迫切。
目前国内外有关土壤重金属污染修复治理技术已有较多的研究,但是大多关注的是如何降低土壤重金属含量至安全水平;所涉及的技术包含化学淋洗、工程客土、电动修复等,虽然这些技术可以有效降低土壤中重金属含量,但是却往往费用较高、或破坏土壤结构影响土壤生产力、或二次污染风险较大。近年来,植物修复技术由于成本较为低廉;且为原位进行不需要对土壤进行挖掘和扰动,对周边环境影响较小;且不破坏周边景观,有利于生态环境改善;而受到广泛关注。但是植物修复技术在实际应用中耗时较长,需要占用农时,中 断或部分中断农业生产。由此分析,以上这些基于降低土壤重金属含量的土壤修复技术都不能满足于我国大面积中轻度污染耕地的治理需求。农田土壤重金属污染治理必须要研发农民可接受、政府可承受、产业可发展技术体系。
随着对农田土壤重金属污染修复治理认识水平的提升,目前农田土壤重金属污染治理策略已由过去的降低土壤重金属含量为主线,转移到以农产品安全为核心上来。以降低农产品积累重金属为核心的治理方法,可称为阻控技术。我国农田土壤重金属污染阻控技术研究处于刚刚起步阶段,还缺乏成熟的技术体系。有关稻田土壤重金属阻控技术比较集中在土壤重金属钝化技术方面;但是稻米重金属含量除了与土壤中活性有关以外,还与水稻根系吸收的重金属向地上部转运以及从营养器官向籽粒转运能力等因素有关。同时水稻整个生育期长,在不同的生育期其对重金属的吸收积累规律也不同;仅仅在水稻插秧前对土壤重金属进行钝化往往很难保证整个生育期土壤重金属的活性保持一个比较低的水平,单一的技术很难确保中轻度污染土壤上的水稻安全生产。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种中轻度重金属污染土壤上稻米安全生产的方法。该方法从水稻整个生育期出发,针对前期水稻营养生长阶段以根系从土壤溶液中吸收重金属并积累在营养器官内;中后期以重金属元素从营养器官向籽粒转运和再分配为主;提供了前期控制(“控”)土壤重金属活性,后期抑制(“阻”)重金属转运的技术体系,确保中轻度污染稻田水稻的安全生产。
本发明的目的通过下述技术方案实现:一种中轻度重金属污染土壤上稻米安全生产的方法,为在水稻插秧前施用钝化剂以降低土壤重金属活性,然后在水稻分蘖盛期至孕穗期、以及水稻灌浆期喷施叶面阻隔剂。
所述的重金属污染土壤为镉、铅和/或砷污染土壤。
所述的钝化剂的选择视土壤污染物类型、污染程度等因素而定;优选为膨润土、石膏粉、石灰、生物炭、铁基生物炭、缓释型铁基生物炭、铁硅硫多元素复合生物炭土壤重金属调理剂(铁硫硅复合生物炭)、激活稻田土壤硫还原菌活性的重金属镉钝化剂(依据中国专利201610119079.9、名称为“一种激活稻田土壤硫还原菌活性的重金属镉钝化剂与应用”制备)和镉砷同步钝化剂中的一种或几种混合物。
所述的镉砷同步钝化剂为从内到外含有三层结构的镉砷同步钝化剂,其每 层具有独立的包衣膜;其中,最内层为氢离子化学消耗剂,中间层为反应加速器腐殖质类物质,最外层为成矿前驱物。
所述的氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:8~30:1~10。
所述的氢离子化学消耗剂为能在土壤溶液中发生氧化-还原反应、在自身被还原过程中消耗氢离子的化学试剂;优选为硝酸盐和过氧化物;更优选为硝酸盐和过氧化物按质量比2~5:1配比得到的混合物。
所述的硝酸盐为硝酸钠、硝酸钾、硝酸镁、硝酸铁和硝酸钙中的一种或两种以上。
所述的过氧化物为过氧化钙、过氧化尿素和过氧化锌中的一种或两种以上。
所述的反应加速器腐殖质类物质为泥炭土、胡敏酸(HA)、富里酸(FA)、胡敏素、黄腐酸、棕腐酸、黑腐酸中的一种或两种以上。
所述的成矿前驱物为还原性铁粉、亚铁盐和/或固体亚铁矿物;优选为还原性铁粉、亚铁盐和固体亚铁矿物的混合物;更优选为还原性铁粉和固体亚铁矿物按质量比1:1~5配比得到的混合物。
所述的固体亚铁矿物为菱铁矿、蓝铁矿、硫铁矿和磁铁矿中的一种或两种以上。
所述的包衣膜由包衣材料(碱性包衣材料)构成,所述的包衣材料为依据申请号为201610071104.0、名称为“一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法”的中国专利申请中的实施例1制备得到。
所述的镉砷同步钝化剂优选为通过如下方法制备得到:
(1)将氢离子化学消耗剂,加入粘结剂和水混合均匀,造粒并干燥,得到氢离子消耗剂芯材;
(2)将步骤(1)中得到的氢离子消耗剂芯材用包衣材料进行包衣,得到造粒后的氢离子消耗剂;
(3)将步骤(2)中得到的造粒后的氢离子消耗剂和反应加速器腐殖质类物质混合,再加入粘结剂和水混合均匀,造粒并干燥,得到内层氢离子消耗剂和中层反应加速器芯材;
(4)将步骤(3)中得到的内层氢离子消耗剂和中层反应加速器芯材用包衣材料进行包衣,得到两层结构物(两层结构的内层氢离子消耗剂和中层反应加速器);
(5)将步骤(4)中得到的两层结构物和成矿前驱物混合,再加入粘结剂 和水混合均匀,造粒并干燥,得到三层结构的镉砷同步钝化剂芯材;
(6)将步骤(5)中得到的三层结构的镉砷同步钝化剂芯材用包衣材料进行包衣,得到镉砷同步钝化剂(具三层膜结构的镉砷同步钝化剂)。
步骤(1)中所述的氢离子消耗剂芯材的粒径大小为2.5~3.5mm。
步骤(1)中所述的粘结剂的添加量相当于氢离子化学消耗剂的3~5%(w/w)。
步骤(1)中所述的水的添加量相当于氢离子化学消耗剂的50~60%(w/w)。
步骤(1)、(3)和(5)中所述的粘结剂优选为生物淀粉。
所述的生物淀粉为玉米粉、红薯粉、马铃薯粉和木薯粉中的一种或两种以上。
步骤(2)中所述的氢离子消耗剂芯材和包衣材料的质量体积比为1:0.3~1.2。
步骤(2)、(4)和(6)中所述的用包衣材料进行包衣形成的包膜的厚度为0.5~1mm。
步骤(3)中所述的粘结剂的添加量相当于反应加速器腐殖质类物质的3~5%(w/w)。
步骤(3)中所述的水的添加量相当于反应加速器腐殖质类物质的50~60%(w/w)。
步骤(3)中所述的内层氢离子消耗剂和中层反应加速器芯材的粒径大小为4.5~6.5mm。
步骤(3)中所述的氢离子消耗剂和反应加速器类腐殖质物质按质量比1:8~30进行配比。
步骤(4)中所述的内层氢离子消耗剂和中层反应加速器芯材和包衣材料按质量体积比1:0.3~1.2进行配比。
步骤(5)中所述的粘结剂的添加量相当于成矿前驱物的3~5%(w/w)。
步骤(5)中所述的水的添加量相当于成矿前驱物的50~60%(w/w)。
步骤(5)中所述的两层结构的内层氢离子消耗剂和中层反应加速器与成矿前驱物按质量比3~9:1进行配比。
步骤(5)中所述的三层结构的镉砷同步钝化剂芯材的粒径大小为8.5~10.5mm。
步骤(6)中所述的三层结构的镉砷同步钝化剂芯材和包衣材料的质量体积比为1:0.3~1.5,优选为1:0.3~1.2。
所述的叶面阻隔剂为酸性硅溶胶(纯硅溶胶)、硒掺杂纳米硅溶胶(硒硅 复合溶胶)、稀土复合硅溶胶和亚铁改性硒溶胶中的一种或两种以上。
所述的稀土复合硅溶胶优选为铈掺杂无机纳米二氧化硅溶胶(铈复合硅溶胶)。
所述的亚铁改性硒溶胶通过如下方法制备得到:
(a)将含铁化合物和含硒化合物加入到水中,搅拌溶解,得到含铁硒的混合溶液;
(b)在35~85℃水浴条件下,向步骤(a)中得到的含铁硒的混合溶液中加入还原剂,搅拌5~15分钟,待不再产生沉淀时加入碳酸盐,持续搅拌5~15分钟至不再产生沉淀,过滤、取沉淀、洗涤,得到硒单质和碳酸亚铁沉淀;
(c)将乳化剂加入到柠檬酸缓冲溶液中,得到乳化柠檬酸缓冲液;
(d)在25~55℃水浴条件下,将步骤(b)中得到的硒单质和碳酸亚铁沉淀加入到步骤(c)中得到的乳化柠檬酸缓冲液中,搅拌均匀,得到溶胶体系;
(e)将步骤(d)中得到的溶胶体系蒸发浓缩,并调节pH至4.5~8.5,得到亚铁改性硒溶胶;其中,亚铁改性硒溶胶中硒元素的含量为0.25~2.5%(w/v),铁元素的含量为2.5~7.5%(w/v)。
步骤(a)中所述的含铁化合物为铁盐和亚铁盐中的一种或两种混合物;
所述的铁盐优选为氯化铁、硝酸铁或柠檬酸铁。
所述的亚铁盐优选为硫酸亚铁或氯化亚铁。
步骤(a)中所述的含硒化合物为硒酸、硒酸盐、亚硒酸和亚硒酸盐中的一种以上;优选亚硒酸盐。
所述的亚硒酸盐优选为亚硒酸钠。
步骤(a)中所述的混合溶液中铁元素的质量百分比为5~15%;硒元素的质量百分比为0.5~5%;
步骤(b)中所述的水浴的温度优选为45~55℃。
步骤(b)中所述的还原剂优选为抗坏血酸和还原型谷胱甘肽中的一种以上。
步骤(b)中所述的还原剂与混合溶液中铁离子的摩尔比为1.4~3:1。
步骤(b)中所述的洗涤为采用去离子水洗涤;优选为用10~20倍质量的去离子水清洗3~5次。
步骤(b)中所述的碳酸盐优选为碳酸钾、碳酸钠和碳酸铵中的一种以上。
步骤(b)中所述的碳酸盐与混合溶液中铁离子的摩尔比为1.0~2.0:1。
步骤(c)中所述的乳化剂优选为曲拉通X-100,烷基苯磺酸钠,农乳400和聚乙二醇中的一种以上。
步骤(c)中所述的乳化剂的添加量按乳化剂与柠檬酸缓冲液的质量体积比为1~10:100计算。
步骤(c)中所述的柠檬酸缓冲溶液为pH 3.0~6.0、摩尔浓度0.01~0.1mol/L的柠檬酸-柠檬酸钾缓冲溶液;优选为通过如下步骤配置得到:
(I)将柠檬酸(C 6H 8O 7﹒H 2O)用去离子水溶解后定容到1升,得到柠檬酸溶液;其中,柠檬酸溶液的摩尔浓度为0.01~0.1mol/L;
(II)将柠檬酸钾(C 6H 5K 3O 7)用去离子水溶解后定容到1升,得到柠檬酸钾溶液;其中,柠檬酸钾溶液的摩尔浓度为0.01~0.1mol/L;
(III)将柠檬酸溶液和柠檬酸钾溶液混合均匀,得到柠檬酸缓冲溶液;其中,柠檬酸缓冲溶液pH为3.0~6.0、摩尔浓度为0.01~0.1mol/L。
步骤(d)中所述的搅拌的速率为50~100r/min。
步骤(d)中所述的硒单质和碳酸亚铁沉淀的加入优选为通过如下方法实现:将硒单质和碳酸亚铁沉淀缓慢均匀加入到乳化柠檬酸缓冲液中,加入的速度控制在每升溶液中加入的沉淀量为5~10g/min,直至成均匀的溶胶体系。
步骤(d)中所述的硒单质和碳酸亚铁沉淀的添加量按硒单质和碳酸亚铁沉淀与乳化柠檬酸缓冲液的质量体积比为1:10~100计算。
步骤(e)中所述的pH的范围优选为5.5~6.5。
所述的在水稻插秧前施用钝化剂为在水稻插秧前10天左右施用钝化剂,优选为通过如下任一种方式实现:
(A)当土壤污染物为镉、铅等阳离子重金属时,在水稻插秧前10天左右施用钝化剂,钝化剂的施用剂量为:污染物超标1~2倍时,施用50~150公斤/亩;污染物超标2~3倍时,施用100~200公斤/亩;其中,所述的钝化剂优选为石灰、生物炭和镉砷同步钝化剂中的一种或几种混合物;
(B)当土壤污染物为砷污染,或砷与镉、铅等复合污染时,在水稻插秧前10天左右施用钝化剂,钝化剂的施用剂量为:污染物超标1~2倍时,施用100~200公斤/亩;污染物超标2~3倍时,施用150~300公斤/亩;其中,所述的钝化剂为铁基生物炭、缓释型铁基生物炭、铁硅硫多元素复合生物炭土壤重金属调理剂(铁硫硅复合生物炭)和镉砷同步钝化剂中的一种或几种混合物。
方式(A)中所述的生物炭为依据专利ZL201410538633.8实施例3中制备生物炭材料的方法制备;控制升温程序,使得制备的生物炭pH为9~11,比表面积为80cm 2/g以上。
所述的比表面积优选为110cm 2/g~150cm 2/g。
方式(A)中所述的镉砷同步钝化剂中氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:8~15:1~5。
方式(B)中所述的镉砷同步钝化剂中氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:15~30:5~10。
所述的中轻度重金属污染土壤上稻米安全生产的方法,还包括在水稻苗期和/或水稻分蘖期追肥。
所述的追肥优选为通过如下方法实现:在水稻苗期施加10~30公斤/亩的硝态氮肥,和/或在水稻分蘖期追施10~20公斤/亩的磷钾肥。
所述的硝态氮肥为硝酸钾、硝酸铵、硝酸钠、硝酸钙、硝酸磷肥、硝酸铵钙和硝基复合肥中的一种或几种混合物。
所述的磷钾肥为磷酸二氢钾、钙镁磷肥、磷酸钙和过磷酸钙中的一种或几种混合物。
所述的在水稻分蘖盛期至孕穗期、以及水稻灌浆期喷施叶面阻隔剂,优选为通过如下任一种方式实现:
(i)当土壤污染物为镉、铅等阳离子重金属时,在水稻分蘖盛期至孕穗期喷施的叶面阻隔剂为酸性硅溶胶(纯硅溶胶)或稀土复合硅溶胶(可抑制水稻吸收重金属的稀土复合硅溶胶);在水稻灌浆期喷施的叶面阻隔剂为亚铁改性硒溶胶;
(ii)当土壤污染物为砷污染,或砷与镉、铅等复合污染时,在水稻分蘖盛期至孕穗期喷施的叶面阻隔剂为硒掺杂纳米硅溶胶(硒硅复合溶胶);在水稻灌浆期喷施的叶面阻隔剂为亚铁改性硒溶胶。
方式(i)中所述的酸性硅溶胶(纯硅溶胶)中二氧化硅的质量百分数为15~20%。
方式(i)中所述的稀土复合硅溶胶中二氧化硅的质量百分数为5~10%,稀土元素的含量为1%(w/w)以下;优选二氧化硅的质量百分数为5~10%,稀土元素的含量为0.01~1%(w/w)。
所述的稀土元素包括铈元素等。
方式(i)中所述的稀土复合硅溶胶优选为铈掺杂无机纳米二氧化硅溶胶(铈复合硅溶胶)。
方式(i)中所述的亚铁改性硒溶胶中硒元素的含量为0.25~0.5%(w/v),铁元素的含量为5~7.5%(w/v)。
方式(i)中所述的叶面阻隔剂的喷施剂量为500~1000毫升/亩。
方式(i)中所述的喷施叶面阻隔剂的方法为:在晴天或多云的下午4点或4点以后,将叶面硅阻隔剂稀释100倍后雾化喷施。
方式(ii)中所述的硒掺杂纳米硅溶胶(硒硅复合溶胶)中二氧化硅的质量百分数为5~10%,硒元素的含量为1.5~2.5%(w/w)。
方式(ii)中所述的亚铁改性硒溶胶中硒元素的含量为1.0~2.5%(w/v),铁元素的含量为2.5~5%(w/v);亚铁改性硒溶胶中硒元素的含量优选为1.0~2%(w/v),铁元素的含量为2.5~3.5%(w/v)。
方式(ii)中所述的叶面阻隔剂的喷施剂量为500~1000毫升/亩;
方式(ii)中所述的喷施叶面阻隔剂的方法为:在晴天或多云的下午4点或4点以后,将叶面硅阻隔剂稀释100倍后雾化喷施。
本发明中所述的分蘖盛期:分蘖增加最快时,称为分蘖盛期。
本发明相对于现有技术具有如下的优点及效果:
(1)与单独控制土壤重金属活性的钝化技术或单独阻隔重金属转运的生理阻隔技术相比,本发明通过水稻营养生长期“控”土壤重金属活性,水稻生殖生长期“阻”重金属向地上部和籽粒转运;“控”和“阻”联合协同使用,其中,“控”(水稻营养生长期):水稻插秧前,采取施用钝化剂降低土壤重金属活性;在水稻苗期至分蘖期采用追肥技术进一步控制重金属活性;“阻”(水稻生殖生长期):在水稻分蘖盛期至孕穗其采用喷施叶面阻隔剂技术抑制重金属向地上部转运;在水稻灌浆期采用叶面喷施阻隔剂技术抑制重金属向籽粒转运。本发明组合技术效果远远优于单独处理,也显著优于两者简单相加,可以确保中轻度污染稻田水稻的安全生产。
(2)本发明针对水稻整个生育期不同阶段水稻对重金属吸收积累规律进行调控;技术措施针对性强,效果显著,而且施用方便,经济高效;适用于我国大面积中轻度污染稻田安全利用需求。
(3)本发明采用“阻”与“控”相结合,可以协调控制镉、砷、铅等多种重金属污染,可以在重金属复合污染稻田上应用;同时钝化剂优选的生物炭基材料,对土壤结构具有改良作用,并起到一定增产作用。
(4)相比其他技术,本发明适用范围广,既可以应用在单一镉、砷、铅等重金属污染稻田上,也可以应用于复合重金属污染稻田上;既可以应用在轻度污染稻田上,也可以用于中度污染稻田土壤上;可以实现中轻度污染稻田的达标生产。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
1、本发明中镉砷同步钝化剂从内到外含有三层结构,每层具有独立的包衣膜;其中,最内层为氢离子化学消耗剂,中间层为反应加速器腐殖质类物质,最外层为成矿前驱物。
所述的氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:8~30:1~10。
所述的氢离子化学消耗剂为能在土壤溶液中发生氧化-还原反应、在自身被还原过程中消耗氢离子的化学试剂;优选为硝酸盐和过氧化物;更优选为硝酸盐和过氧化物按质量比2~5:1配比得到的混合物。
所述的硝酸盐为硝酸钠、硝酸钾、硝酸镁、硝酸铁和硝酸钙中的一种或两种以上。
所述的过氧化物为过氧化钙、过氧化尿素和过氧化锌中的一种或两种以上。
所述的反应加速器腐殖质类物质为泥炭土、胡敏酸(HA)、富里酸(FA)、胡敏素、黄腐酸、棕腐酸、黑腐酸中的一种或两种以上。
所述的成矿前驱物为还原性铁粉、亚铁盐和/或固体亚铁矿物;优选为还原性铁粉、亚铁盐和固体亚铁矿物的混合物;更优选为还原性铁粉和固体亚铁矿物按质量比1:1~5配比得到的混合物。
所述的固体亚铁矿物为菱铁矿、蓝铁矿、硫铁矿和磁铁矿中的一种或两种以上。
所述的包衣膜由包衣材料(碱性包衣材料)构成,所述的包衣材料为依据申请号为201610071104.0、名称为“一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法”的中国专利申请中的实施例1制备得到。
实施例中涉及的镉砷同步钝化剂具体通过如下方法制备得到:
(1)称取100g硝酸钾、100g硝酸铁、50g过氧化钙、50g过氧化尿素,然后加入5g玉米粉(武汉江民华泰医药化工有限公司)、5g红薯粉(武汉江民华泰医药化工有限公司)、5g木薯粉(湖南湘利来化工有限公司),并加入150mL去离子水,混合均匀后造粒后自然晾干,控制颗粒直径为3mm,制得氢离子消耗剂芯材。
(2)将上述氢离子消耗剂芯材与包衣材料(壳聚糖pH为9,质量份数0.3%)按质量体积比1:0.5对芯材进行包衣,控制包膜厚度为0.8mm,制得具膜结构的内层氢离子消耗剂。
(3)将上述具膜结构的内层氢离子消耗剂与1.4kg泥炭土(中向旭曜科技有限公司)、100g胡敏酸(国药集团)、100g黄腐酸(国药集团)、400g胡敏素(国药集团)、400g黑腐酸(国药集团)、24g玉米粉、24g红薯粉、24g木薯粉、1.2L去离子水,混合均匀后造粒干燥,控制颗粒直径为5.5mm,制得内层氢离子消耗剂和中层反应加速器芯材。
(4)将上述内层氢离子消耗剂和中层反应加速器芯材与包衣材料(pH为10、壳聚糖质量份数2.5%)按质量体积比1:0.5对芯材进行包衣,控制包膜厚度为0.8mm,制得具两层膜结构的内层氢离子消耗剂和中层反应加速器。
(5)将上述具两层膜结构的内层氢离子消耗剂和中层反应加速器与100g还原性铁粉(CR级,国药集团)、200g磁铁矿(CR级,国药集团)、40g玉米粉、40g红薯粉、40g木薯粉、3L去离子水,混合均匀后造粒后自然晾干,控制颗粒直径为9.5mm,制得具三层结构镉砷同步钝化剂芯材。
(6)将上述具三层结构镉砷同步钝化剂芯材与包衣材料(pH为11、壳聚糖质量份数5%)按质量体积比1:0.5对芯材进行包衣,控制包膜厚度为0.8mm,制得具三层膜结构的镉砷同步钝化剂。
2、本发明实施例中涉及的亚铁改性硒溶胶叶面阻隔剂(亚铁改性硒溶胶)通过如下方法制备得到:
(1)含铁硒混合溶液的配制:称取43.5g氯化铁(含有铁元素15g),和2g亚硒酸钠(含硒元素1g),加入84.5mL去离子水,搅拌均匀,充分溶解后,制得含铁硒的混合溶液;
(2)水浴条件下控制温度为35℃,向上述含硒铁混合溶液中,缓慢加入141g抗坏血酸(与混合溶液中铁离子的摩尔比为3:1);边加边搅拌,加完后持续搅拌5分钟;待不再产生粉红色沉淀时,缓慢再加入73.8g碳酸钾(与混合溶液中铁离子的摩尔比为2:1);边加边搅拌,加完后持续搅拌5分钟;直到不再产生沉淀,停止搅拌。将沉淀过滤并用10倍质量的去离子水洗涤5次;获得干净的沉淀物(碳酸亚铁和硒单质混合物约33.07g)。
(3)配制乳化柠檬酸缓冲液:分别称取21.01g柠檬酸(C 6H 8O 7﹒H 2O)和30.64g柠檬酸钾(C 6H 5K 3O 7);用去离子水充分溶解后分别定容到1升,得到柠檬酸溶液和柠檬酸钾溶液;然后分别量取上述柠檬酸溶液930mL和柠檬酸钾溶液70毫升,充分混匀后获得1000毫升pH3.0的0.1摩尔/升的柠檬酸缓冲液;向上述缓冲液中加入50g聚乙二醇和50g烷基苯磺酸钠,充分搅拌后获得乳化 的柠檬酸缓冲液。
(4)在水浴条件下,控制温度为25℃,搅拌速率为50r/min;将步骤(2)制得的沉淀以5g/min的速度缓慢加入步骤(3)的乳化柠檬酸溶液中;直到加完后再持续搅拌10min直至成均匀的溶胶体系。
(5)将上述溶胶旋转蒸发浓缩至200mL,并用氢氧化钾调节pH至4.5;获得亚铁改性硒溶胶;上述溶胶含铁量为7.5%(质量体积比),含硒量为0.5%(质量体积比)。
实施例1
试验点位于湖南省湘乡泉塘镇某稻田,该稻田土壤污染轻度镉污染,采集该田块表层土壤(0-30cm)分析,其土壤pH为5.3,Cd含量0.378mg kg -1
供试作物为水稻,品种为株两优。试验共设7个处理,分别是:
(1)空白对照(CK);
(2)水稻插秧前10天,一次性施加100kg/亩石灰作为基肥(“控”:单独钝化技术处理,记为T1);
(3)水稻插秧前10天,一次性施加50kg/亩石灰和50kg/亩的生物炭作为基肥(“控”:单独钝化技术处理,记为T2);其中,生物炭为依据专利ZL201410538633.8实施例1步骤(1)中制备生物炭材料的方法制备,具体方法如下:将棕榈晾干,称取10kg并破碎,置于高温炉中,缓慢加热到200℃,恒温2小时,以5℃/分钟速率升温,再加热到800℃,并在此温度下保温3小时,停止加热,制备生物炭材料;该生物炭材料pH大约为9.0,比表面积大约为150cm 2/g;
(4)水稻插秧前10天,一次性施加100kg/亩的生物炭作为基肥(生物炭为参考专利ZL201410538633.8实施例3中制备生物炭材料的方法制备,具体方法如下:将谷壳晾干,称取10kg并破碎,置于高温炉中,缓慢加热到200℃,恒温2小时,以5℃/分钟速率升温,再加热到300℃,并在此温度下保温12小时,停止加热,制备生物炭材料;该生物炭材料pH大约为11,比表面积大约为110cm 2/g);在水稻分蘖期追肥1次,追施肥料为磷酸二氢钾,用量为10公斤/亩(“控”:钝化+追肥技术处理,记为T3);
(5)水稻插秧前10天,一次性施加100kg/亩的镉砷同步钝化剂(上述镉砷同步钝化剂,其中氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱 物的质量比为1:8:1)作为基肥;在水稻苗期追肥1次,追施肥料为硝酸铵钙,用量为10公斤/亩;在水稻分蘖期追肥1次,追施肥料为磷酸二氢钾,用量为10公斤/亩(“控”:钝化+追肥技术处理T4);
(6)在水稻分蘖盛期至孕穗期,叶面喷施纯硅溶胶(即酸性硅溶胶:按照专利Z201610119054.9实施例1中的方法制备,并最终将溶胶调节为含二氧化硅质量百分数为15%);在水稻灌浆期喷施1次亚铁改性硒溶胶(上述亚铁改性硒溶胶,其中溶胶中含铁量为7.5%(w/v),含硒量为0.5%(w/v))叶面阻隔剂;两次喷施剂量为500mL/亩,兑水100倍后,在下午4点左右喷施(“阻”:叶面喷施阻隔剂,记为T5);
(7)水稻插秧前10天,一次性施加100kg/亩的镉砷同步钝化剂(同T4)作为基肥;在水稻苗期追肥1次,追施肥料为硝酸铵钙,用量为10公斤/亩;在水稻分蘖期追肥1次,追施肥料为磷酸二氢钾,用量为10公斤/亩;同时,在水稻分蘖盛期至孕穗期,叶面喷施纯硅溶胶(同T5);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(同T5);两次喷施剂量均为500mL/亩,兑水100倍后,在下午4点左右喷施(“阻”与“控”协同:土壤钝化+追肥技术+叶面喷施阻隔剂,记为T6)。
每个处理4次重复,随机排列;共28个试验小区,每个小区面积为5*4=20m 2,保证独立排灌。
表1.不同处理对水稻产量以及稻米镉积累影响
Figure PCTCN2019080477-appb-000001
结果如表1所示,不同处理均可以不同程度降低稻米镉含量,所有处理中以“阻”加“控”协同处理(T6)后稻米镉含量最低,含量仅为0.039mg/kg,与对照比下降了85.6%;且只有“阻”加“控”协同处理(T6)对水稻有显著增产作用,增产达到10.2%,经显著性检验与对照达到显著差异水平。单独石灰处理(T1) 虽然也可以降低稻米镉含量,单独石灰处理(T1)后稻米镉为0.217mg/kg,与对照比下降了19.9%;但是却对水稻有显著减产作用,水稻减产达到了10.7%。石灰+生物炭(T2)后稻米镉为0.228mg/kg,与对照比下降了15.9%;T1和T2处理稻米镉含量均高于食品卫生标准(稻米镉<0.2mg/kg)。钝化+追肥技术处理,(T3)、单独“控”(T4)、单独“阻”(T5)均可以将稻米镉降至食品卫生标准(稻米镉<0.2mg/kg),与对照相比稻米镉分别降低了31.0%,57.6%和48.0%。“阻”与“控”协同处理(T6)稻米镉降低率要显著优于单独“控”(T4)或单独“阻”(T5)的效果。同时“阻”与“控”协同处理(T6)稻米镉降低率也优于单独“控”(T4)与单独“阻”(T5)简单叠加效果。单独“控”(T4)与单独“阻”(T5)简单叠加效果二者简单叠加对稻米镉的降低效果应为C=【1-(100-C1)*(100-C2)/100*100】*100,其中C1为单独“阻”的降镉百分数,C2为单独“控”的降镉百分数。据此计算,单独“控”(T4)与单独“阻”(T5)简单叠加二者对稻米镉的降低效果应为78.0%;而本发明“阻”与“控”协同处理(T6)稻米镉降低率达到了85.6%。
这说明与单独控制土壤重金属活性的钝化技术或单独阻隔重金属转运的生理阻隔技术相比;本发明技术可以达到“阻”与“控”协调;组合技术效果远远优于单独处理,也显著优于两者简单相加;且可以在轻度污染稻田土壤上生产出合格的稻米。
实施例2
试验点位于广东省惠州市公庄镇某稻田,该稻田土壤污染中度镉、砷、铅复合污染,采集该田块表层土壤(0~30cm)分析,其土壤pH为5.61,Cd含量0.813mg kg -1,As含量49.4mg kg -1,Pb含量193mg kg -1
供试作物为水稻,品种为黄莉占。试验共设7个处理,分别是:
(1)空白对照(CK);
(2)水稻插秧前10天,一次性施加300kg/亩缓释型铁基生物炭(根据中国专利ZL201610071104.0“一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法”实施例1方法制备)作为基肥(“控”:单独钝化技术处理,记为T1);
(3)水稻插秧前10天,一次性施加300kg/亩铁硫硅复合生物炭(即铁硅硫多元素复合生物炭土壤重金属调理剂,是根据中国专利ZL201610115576.1“一种铁硅硫多元素复合生物炭土壤重金属调理剂的制备方法”实施例1方法制备)作为基肥(“控”:单独钝化技术处理,记为T2);
(4)水稻插秧前10天,一次性施加300kg/亩的铁基生物炭(是根据中国专利ZL201410538633.8“一种铁基生物炭材料、其制备工艺以及其在土壤污染治理中的应用”实施例2中的方法制备)作为基肥(“控”:单独钝化技术处理,记为T3);
(5)水稻插秧前10天,一次性施加150kg/亩的缓释型铁基生物炭(同T1)和150kg/亩铁硫硅复合生物炭(同T2)作为基肥;在水稻苗期追肥1次,追施肥料为硝基复合肥,用量为30公斤/亩;在水稻分蘖期追肥1次,追施肥料为过磷酸钙,用量为20公斤/亩(“控”:钝化+追肥技术处理T4);
(6)在水稻分蘖盛期至孕穗期,叶面喷施硒硅复合溶胶(即可以抑制水稻重金属吸收积累生产富硒稻米的硒掺杂纳米硅溶胶,为依据中国发明专利ZL201310737996.X实施例1的方法制备,并控制最终的二氧化硅含量为10%,硒含量为2.5%);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(其制备方法参考上述亚铁改性硒溶胶叶面阻隔剂的制备方法,并控制溶胶体系中铁含量为5%(w/v),硒含量为2.5%(w/v));两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施,(“阻”:叶面喷施阻隔剂,记为T5);
(7)水稻插秧前10天,一次性施加150kg/亩的缓释型铁基生物炭(同T1)和150kg/亩铁硫硅复合生物炭(同T2)作为基肥;在水稻苗期追肥1次,追施肥料为硝基复合肥,用量为30公斤/亩;在水稻分蘖期追肥1次,追施肥料为过磷酸钙,用量为20公斤/亩;同时,在水稻分蘖盛期至孕穗期,叶面喷施硒硅复合溶胶(同T5);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(同T5);两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施,(“阻”与“控”协同:土壤钝化+追肥技术+叶面喷施阻隔剂,记为T6)。
每个处理4次重复,随机排列;共28个试验小区,每个小区面积为5*4=20m 2,保证独立排灌。
表2.不同处理对水稻产量以及稻米镉、砷、铅积累影响
Figure PCTCN2019080477-appb-000002
结果如表2所示,不同处理均可以不同程度降低稻米镉、无机砷和铅含量,与对照相比,T1、T2、T3、T4、T5、T6处理后稻米镉分别下降46.9%、44.9%、44.0%、48.4%、41.5%、74.8%;稻米无机砷分别下降31.8%、35.4%、34.7%、42.7%、27.7%,67.5%;稻米铅27.9%、33.0%、32.1%、41.3%、31.1%、67.0%。所有处理中以“阻”加“控”协同处理(T6)后稻米镉、无机砷和铅含量最低,含量仅为0.102、0.089和0.104mg/kg;且只有“阻”加“控”协同处理(T6)后稻米镉、无机砷和铅含量均降至食品卫生标准(稻米镉<0.2mg/kg,无机砷<0.2mg/kg,铅<0.2mg/kg),并且对水稻有显著增产作用,增产达到9.3%,经显著性检验与对照达到显著差异水平。单独“控”(T4)处理稻米无机砷与铅含量降至食品卫生标准(无机砷<0.2mg/kg,铅<0.2mg/kg),但是稻米镉含量仍然高于食品卫生标准(稻米镉>0.2mg/kg);单独“阻”(T5)稻米镉与铅含量均高于食品卫生标准(稻米镉>0.2mg/kg,稻米铅<0.2mg/kg)。按实施例1公式计算,单独“控”(T4)与单独“阻”(T5)简单叠加二者对稻米镉、无机砷和铅的降低效果应为69.8%、58.6%和59.5;而本发明“阻”与“控”协同处理(T6)稻米镉降低率达到了74.8%、67.5%和67.0%。
这说明与单独控制土壤重金属活性的钝化技术或单独阻隔重金属转运的生理阻隔技术相比;本发明采用“阻”与“控”相结合,可以协调控制镉、砷、铅等多种重金属污染;组合技术效果远远优于单独处理,也显著优于两者简单相加;且可以在中度镉、砷、铅复合污染稻田土壤上生产出合格的稻米。
实施例3
试验点位于广东省韶关市曲江区樟市镇某中度镉污染农田;农田土壤pH为5.32,总Cd含量为0.645mg/kg -1
供试作物为水稻,品种为美香占。试验共设7个处理,分别是:
(1)空白对照(CK);
(2)水稻插秧前10天,一次性施加75kg/亩膨润土和75kg/亩石膏粉作为基肥(“控”:单独钝化技术处理,记为T1);
(3)水稻插秧前10天,一次性施加75kg/亩膨润土和75kg/亩的高岭石作为基肥(“控”:单独钝化技术处理,记为T2);
(4)水稻插秧前10天,一次性施加150kg/亩的镉砷同步钝化剂作为基肥(其制备方法参考上述镉砷同步钝化剂的制备方法,并控制氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:15:5)作为基肥;在水稻分 蘖期追肥1次,追施肥料为过磷酸钙,用量为20公斤/亩(“控”:钝化+追肥技术处理,T3);
(5)水稻插秧前10天,一次性施加150kg/亩的镉砷同步钝化剂(同T3)作为基肥;在水稻苗期追肥1次,追施肥料为硝酸钾,用量为30公斤/亩;在水稻分蘖期追肥1次,追施肥料为钙镁磷肥,用量为20公斤/亩(“控”:钝化+追肥技术处理,记为T4);
(6)在水稻分蘖盛期至孕穗期,叶面喷施铈复合硅溶胶(即铈掺杂无机纳米二氧化硅溶胶,为依据中国发明专利ZL200610036994.8实施例1的方法制备,并将二氧化硅溶胶和二氧化铈溶胶渗析后,调整pH为7.0,并分别提取固含量为10%的二氧化硅溶胶与固含量为1%的二氧化铈溶胶按体积比1:1混合后制得铈硅复合溶胶);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(其制备方法参考上述亚铁改性硒溶胶叶面阻隔剂的制备方法,并控制溶胶体系中铁含量为5%(w/v),硒含量为0.25%(w/v));两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施(“阻”:叶面喷施阻隔剂,记为T5);
(7)水稻插秧前10天,一次性施加150kg/亩的镉砷同步钝化剂作为基肥;在水稻苗期追肥1次,追施肥料为硝酸钾,用量为30公斤/亩,在水稻分蘖期追肥1次,追施肥料为钙镁磷肥,用量为20公斤/亩;同时,在水稻分蘖盛期至孕穗期,叶面喷施纯铈硅复合溶胶(同T5);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(同T5);两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施,(“阻”与“控”协同:土壤钝化+追肥技术+叶面喷施阻隔剂,记为T6)。
每个处理4次重复,随机排列;共28个试验小区,每个小区面积为5*4=20m 2,保证独立排灌。
表3.不同处理对水稻产量以及稻米镉积累影响
Figure PCTCN2019080477-appb-000003
结果如表3所示,不同处理均可以不同程度降低稻米镉含量,与对照相比,T1、T2、T3、T4、T5、T6处理后稻米镉分别下降36.9%、35.4%、38.7%、42.0%、36.1%、65.1%。所有处理中以“阻”加“控”协同处理(T6)后稻米镉含量最低,含量仅为0.137mg/kg;且只有“阻”加“控”协同处理(T6)后稻米镉、含量降至食品卫生标准(稻米镉<0.2mg/kg),并且对水稻有显著增产作用,增产达到10.5%,经显著性检验与对照达到显著差异水平。单独“控”(T4)与单独“阻”(T5)处理稻米镉含量均高于食品卫生标准(稻米镉>0.2mg/kg)。按实施例1公式计算,单独“控”(T4)与单独“阻”(T5)简单叠加二者对稻米镉的降低效果应为62.9%;而本发明“阻”与“控”协同处理(T6)稻米镉降低率达到了65.1%;“阻”与“控”协同处理(T6)降镉效果显著优于单独“控”(T4)与单独“阻”(T5),也优于两者简单相加。
这说明与单独控制土壤重金属活性的钝化技术或单独阻隔重金属转运的生理阻隔技术相比;组合技术效果远远优于单独处理,也显著优于两者简单相加;且只有“阻”与“控”协同使用,才可以在中度镉污染稻田土壤上生产出合格的稻米。
实施例4
试验点位于广东省韶关市仁化县董塘镇红星村某中度镉砷复合污染稻田,采集该田块表层土壤(0-30cm)分析,其土壤pH 5.86,Cd含量1.85mg kg -1,As含量38.20mg kg -1
供试作物为水稻,品种为五丰优615。试验共设4个处理,分别是:
(1)空白对照,(CK);
(2)水稻插秧前10天,一次性施加150kg/亩铁硫硅复合生物炭(即铁硅硫多元素复合生物炭土壤重金属调理剂,是根据中国专利ZL201610115576.1“一种铁硅硫多元素复合生物炭土壤重金属调理剂的制备方法”实施例1的方法制备)作为基肥;在水稻苗期追肥1次;追施肥料为硝酸氨,用量为30公斤/亩,在水稻分蘖期追肥1次;追施肥料为磷酸钙,用量为20公斤/亩,(“控”:钝化+追肥技术处理,记为T1);
(3)在水稻分蘖盛期至孕穗期,叶面喷施硒硅复合溶胶(即可以抑制水稻重金属吸收积累生产富硒稻米的硒掺杂纳米硅溶胶,为依据中国发明专利ZL201310737996.X实施例1方法制备,并控制最终的二氧化硅含量为5%,硒含量为1.5%);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(其制备方法 参考上述亚铁改性硒溶胶叶面阻隔剂的制备方法,并控制溶胶体系中铁含量为2.5%(w/v),硒含量为1.0%(w/v));两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施,(“阻”:叶面喷施阻隔剂,记为T2);
(4)水稻插秧前10天,一次性施加150kg/亩铁硫硅复合生物炭(同T1)作为基肥;在水稻苗期追肥1次,追施肥料为硝酸铵,用量为30公斤/亩;在水稻分蘖期追肥1次,追施肥料为磷酸钙,用量为20公斤/亩;同时,在水稻分蘖盛期至孕穗期,叶面喷施硒硅复合溶胶(即可以抑制水稻重金属吸收积累生产富硒稻米的硒掺杂纳米硅溶胶,为依据中国发明专利ZL201310737996.X实施例1的方法制备,并控制最终的二氧化硅含量为5%,硒含量为1.5%);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(其制备方法参考上述亚铁改性硒溶胶叶面阻隔剂的制备方法,并控制溶胶体系中铁含量为2.5%(w/v),硒含量为1.0%(w/v));两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施(“阻”与“控”协同:土壤钝化+追肥技术+叶面喷施阻隔剂,记为T3)。
每个处理4次重复,随机排列;共16个试验小区,每个小区面积为5*4=20m 2,保证独立排灌。
表4.不同处理对水稻产量以及稻米镉、无机砷积累影响
Figure PCTCN2019080477-appb-000004
结果如表4所示,不同处理均可以不同程度降低稻米镉、无机砷含量,与对照相比,T1、T2、T处理后稻米镉分别下降37.1%、30.9%、69.6%;稻米无机砷分别下降34.2%、21.1%、65.8%。所有处理中以“阻”加“控”协同处理(T3)后稻米镉与无机砷含量最低,含量仅为0.187mg/kg与0.081mg/kg;且只有“阻”加“控”协同处理(T3)后稻米镉、无机砷含量均降至食品卫生标准(稻米镉<0.2mg/kg,稻米无机砷<0.2mg/kg)。单独“控”(T1)与单独“阻”(T2)处理稻米镉含量均高于食品卫生标准(稻米镉>0.2mg/kg)。按实施例1公式计算,单独“控”(T1)与单独“阻”(T2)简单叠加二者对稻米镉与无机砷的降低效果应为56.5%与48.1%;而本发明“阻”与“控”协同处理(T3)稻米镉降低率达到了69.6%与65.8%;“阻”与“控”协同处理(T3)降镉效果显著优于单独“控”(T1)与单独 “阻”(T2),也优于两者简单相加。
这说明与单独控制土壤重金属活性的钝化技术或单独阻隔重金属转运的生理阻隔技术相比;组合技术可以协同阻控镉和砷;组合技术效果远远优于单独处理,也显著优于两者简单相加;且只有“阻”与“控”协同使用,才可以在中度镉、砷复合污染稻田土壤上生产出合格的稻米。
实施例5
试验点位于广东省清远市佛冈县水头镇铜溪村一受Cd污染稻田,采集该田块表层土壤(0~30cm)分析,其土壤pH为4.58,Cd含量2.86mg kg -1,砷含量为22.6mg kg -1。该地块为一典型受矿山开采影响的中度镉污染稻田。
供试作物为水稻,品种为天优998。试验共设5个处理,分别是:
(1)空白对照(CK);
(2)水稻插秧前10天,一次性施加150kg/亩镉砷同步钝化剂(其制备方法参考上述镉砷同步钝化剂的制备方法,并控制其氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:15:5)作为基肥;(“控”:钝化处理,记为T1);
(3)水稻插秧前10天,一次性施加150kg/亩镉砷同步钝化剂(其制备方法参考上述镉砷同步钝化剂的制备方法,并控制其氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:30:10)作为基肥;(“控”:钝化处理,记为T2);
(4)在水稻分蘖盛期至孕穗期,在水稻分蘖盛期至孕穗期,叶面喷施硒硅复合溶胶(即可以抑制水稻重金属吸收积累生产富硒稻米的硒掺杂纳米硅溶胶,为依据中国发明专利ZL201310737996.X实施例1方法制备,并控制最终的氧化硅含量为7.5%,硒含量为2.0%);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(其制备方法参考上述亚铁改性硒溶胶叶面阻隔剂的制备方法,并控制溶胶体系中铁含量为3.5%(w/v),硒含量为2.0%(w/v));两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施,(“阻”:叶面喷施阻隔剂,记为T3);
(5)水稻插秧前10天,一次性施加150kg/亩镉砷同步钝化剂(同T2);同时,在水稻分蘖盛期至孕穗期,叶面喷施硒硅复合溶胶(同T3);在水稻灌浆期喷施1次亚铁改性硒溶胶叶面阻隔剂(同T3);两次喷施剂量为1000mL/亩,兑水100倍后,在下午4点左右喷施(“阻”与“控”协同:土壤钝化+叶面喷施阻 隔剂,记为T4)。
每个处理4次重复,随机排列;共20个试验小区,每个小区面积为5*4=20m 2,保证独立排灌。
表5.不同处理对水稻产量以及稻米镉、无机砷积累影响
Figure PCTCN2019080477-appb-000005
结果如表5所示,不同处理均可以不同程度降低稻米镉、无机砷含量,与对照相比,T1、T2、T3、T4处理后稻米镉分别下降38.4%、36.7%、34.5%和68.8%;稻米无机砷分别下降22.0%、26.7%、18.3%和46.3%。所有处理中以“阻”加“控”协同处理(T4)后稻米镉与无机砷含量最低,含量仅为0.183mg/kg与0.173mg/kg;且只有“阻”加“控”协同处理(T4)后稻米镉、无机砷含量均降至食品卫生标准(稻米镉<0.2mg/kg,稻米无机砷<0.2mg/kg)。单独“控”(T1、T2)与单独“阻”(T3)处理稻米镉含量均高于食品卫生标准(稻米镉>0.2mg/kg)。按实施例1公式计算,单独“控”(T1)与单独“阻”(T3)简单叠加二者对稻米镉与无机砷的降低效果应为59.6%与36.3%;而本发明“阻”与“控”协同处理(T4)稻米镉降低率达到了68.8%与46.3%;“阻”与“控”协同处理(T4)降镉效果显著优于单独“控”(T1)与单独“阻”(T3),也优于两者简单相加。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种中轻度重金属污染土壤上稻米安全生产的方法,其特征在于:为在水稻插秧前施用钝化剂以降低土壤重金属活性,然后在水稻分蘖盛期至孕穗期、以及水稻灌浆期喷施叶面阻隔剂。
  2. 根据权利要求1所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于:还包括在水稻苗期和/或水稻分蘖期追肥。
  3. 根据权利要求2所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于,所述的在水稻苗期和/或水稻分蘖期追肥通过如下方法实现:
    在水稻苗期施加10~30公斤/亩的硝态氮肥,和/或在水稻分蘖期追施10~20公斤/亩的磷钾肥;
    所述的硝态氮肥为硝酸钾、硝酸铵、硝酸钠、硝酸钙、硝酸磷肥、硝酸铵钙和硝基复合肥中的一种或几种混合物;
    所述的磷钾肥为磷酸二氢钾、钙镁磷肥、磷酸钙和过磷酸钙中的一种或几种混合物。
  4. 根据权利要求1所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于:
    所述的钝化剂为膨润土、石膏粉、石灰、生物炭、铁基生物炭、缓释型铁基生物炭、铁硅硫多元素复合生物炭土壤重金属调理剂、激活稻田土壤硫还原菌活性的重金属镉钝化剂和镉砷同步钝化剂中的一种或几种混合物;
    所述的叶面阻隔剂为酸性硅溶胶、硒掺杂纳米硅溶胶、稀土复合硅溶胶和亚铁改性硒溶胶中的一种或两种以上。
  5. 根据权利要求4所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于:
    所述的镉砷同步钝化剂为从内到外含有三层结构的镉砷同步钝化剂,每层具有独立的包衣膜;其中,最内层为氢离子化学消耗剂,中间层为反应加速器腐殖质类物质,最外层为成矿前驱物;
    所述的氢离子化学消耗剂为硝酸盐和过氧化物;
    所述的反应加速器腐殖质类物质为泥炭土、胡敏酸、富里酸、胡敏素、黄腐酸、棕腐酸、黑腐酸中的一种或两种以上;
    所述的成矿前驱物为还原性铁粉、亚铁盐和/或固体亚铁矿物。
  6. 根据权利要求5所述的中轻度重金属污染土壤上稻米安全生产的方法, 其特征在于:
    所述的氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:8~30:1~10;
    所述的氢离子化学消耗剂为硝酸盐和过氧化物按质量比2~5:1配比得到的混合物;
    所述的硝酸盐为硝酸钠、硝酸钾、硝酸镁、硝酸铁和硝酸钙中的一种或两种以上;
    所述的过氧化物为过氧化钙、过氧化尿素和过氧化锌中的一种或两种以上;
    所述的成矿前驱物为还原性铁粉和固体亚铁矿物按质量比1:1~5配比得到的混合物;
    所述的固体亚铁矿物为菱铁矿、蓝铁矿、硫铁矿和磁铁矿中的一种或两种以上。
  7. 根据权利要求5或6所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于,所述的在水稻插秧前施用钝化剂通过如下任一种方式实现:
    (A)当土壤污染物为镉和/或铅时,在水稻插秧10天前施用钝化剂,钝化剂的施用剂量为:污染物超标1~2倍时,施用50~150公斤/亩;污染物超标2~3倍时,施用100~200公斤/亩;其中,所述的钝化剂为石灰、生物炭和镉砷同步钝化剂中的一种或几种混合物;所述的镉砷同步钝化剂中氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:8~15:1~5;
    (B)当土壤污染物为砷污染,或砷与镉、铅复合污染时,在水稻插秧10天前施用钝化剂,钝化剂的施用剂量为:污染物超标1~2倍时,施用100~200公斤/亩;污染物超标2~3倍时,施用150~300公斤/亩;其中,所述的钝化剂为铁基生物炭、缓释型铁基生物炭、铁硅硫多元素复合生物炭土壤重金属调理剂和镉砷同步钝化剂中的一种或几种混合物;所述的镉砷同步钝化剂中氢离子化学消耗剂、反应加速器腐殖质类物质和成矿前驱物的质量比为1:15~30:5~10。
  8. 根据权利要求4所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于,所述的亚铁改性硒溶胶通过如下方法制备得到:
    (a)将含铁化合物和含硒化合物加入到水中,搅拌溶解,得到含铁硒的混合溶液;
    (b)在35~85℃水浴条件下,向步骤(a)中得到的含铁硒的混合溶液中加入还原剂,搅拌5~15分钟,待不再产生沉淀时加入碳酸盐,持续搅拌5~15 分钟至不再产生沉淀,过滤、取沉淀、洗涤,得到硒单质和碳酸亚铁沉淀;
    (c)将乳化剂加入到柠檬酸缓冲溶液中,得到乳化柠檬酸缓冲液;
    (d)在25~55℃水浴条件下,将步骤(b)中得到的硒单质和碳酸亚铁沉淀加入到步骤(c)中得到的乳化柠檬酸缓冲液中,搅拌均匀,得到溶胶体系;
    (e)将步骤(d)中得到的溶胶体系蒸发浓缩,并调节pH至4.5~8.5,得到亚铁改性硒溶胶;其中,亚铁改性硒溶胶中硒元素的含量为0.25~2.5%(w/v),铁元素的含量为2.5~7.5%(w/v)。
  9. 根据权利要求8所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于:
    步骤(1)中所述的含铁化合物为铁盐和亚铁盐中的一种或两种混合物;
    步骤(1)中所述的含硒化合物为硒酸、硒酸盐、亚硒酸和亚硒酸盐中的一种以上;
    步骤(2)中所述的还原剂为抗坏血酸和还原型谷胱甘肽中的一种以上;
    步骤(2)中所述的碳酸盐为碳酸钾、碳酸钠和碳酸铵中的一种以上;
    步骤(3)中所述的柠檬酸缓冲溶液为pH 3.0~6.0、摩尔浓度0.01~0.1mol/L的柠檬酸-柠檬酸钾缓冲溶液;
    步骤(3)中所述的乳化剂为曲拉通X-100,烷基苯磺酸钠,农乳400和聚乙二醇中的一种以上。
  10. 根据权利要求8或9所述的中轻度重金属污染土壤上稻米安全生产的方法,其特征在于,所述的在水稻分蘖盛期至孕穗期、以及水稻灌浆期喷施叶面阻隔剂通过如下任一种方式实现:
    (i)当土壤污染物为镉和/或铅时,在水稻分蘖盛期至孕穗期喷施的叶面阻隔剂为酸性硅溶胶或稀土复合硅溶胶;在水稻灌浆期喷施的叶面阻隔剂为亚铁改性硒溶胶;所述酸性硅溶胶中二氧化硅的质量百分数为15~20%;稀土复合硅溶胶中二氧化硅的质量百分数为5~10%,稀土元素的含量为1%(w/w)以下;亚铁改性硒溶胶中硒元素的含量为0.25~0.5%(w/v),铁元素的含量为5~7.5%(w/v);
    (ii)当土壤污染物为砷污染,或砷与镉、铅复合污染时,在水稻分蘖盛期至孕穗期喷施的叶面阻隔剂为硒掺杂纳米硅溶胶;在水稻灌浆期喷施的叶面阻隔剂为亚铁改性硒溶胶;所述硒掺杂纳米硅溶胶中二氧化硅的质量百分数为5~10%,硒元素的含量为1.5~2.5%(w/w);亚铁改性硒溶胶中硒元素的含量为1.0~2.5%(w/v),铁元素的含量为2.5~5%(w/v)。
PCT/CN2019/080477 2018-07-24 2019-03-29 一种中轻度重金属污染土壤上稻米安全生产的方法 WO2020019747A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538882A JP6895590B2 (ja) 2018-07-24 2019-03-29 中・軽度重金属汚染土壌における米の安全な生産方法
US16/863,616 US10918024B2 (en) 2018-07-24 2020-04-30 Method for safe production of rice soil mildly and moderately polluted by heavy metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810816835.2 2018-07-24
CN201810816835.2A CN109122136B (zh) 2018-07-24 2018-07-24 一种中轻度重金属污染土壤上稻米安全生产的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/863,616 Continuation US10918024B2 (en) 2018-07-24 2020-04-30 Method for safe production of rice soil mildly and moderately polluted by heavy metals

Publications (1)

Publication Number Publication Date
WO2020019747A1 true WO2020019747A1 (zh) 2020-01-30

Family

ID=64799034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080477 WO2020019747A1 (zh) 2018-07-24 2019-03-29 一种中轻度重金属污染土壤上稻米安全生产的方法

Country Status (4)

Country Link
US (1) US10918024B2 (zh)
JP (1) JP6895590B2 (zh)
CN (1) CN109122136B (zh)
WO (1) WO2020019747A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567345A (zh) * 2020-06-01 2020-08-25 海南五龙湾农业旅游集团有限公司 一种有机富硒红米稻种植方法
CN113261484A (zh) * 2021-05-24 2021-08-17 中国科学院南京土壤研究所 一种降低作物镉富集能力的育秧基质、制备方法及其应用
CN113292380A (zh) * 2021-07-02 2021-08-24 江西省天久地矿建设工程院 一种降低水稻镉元素的叶面阻控材料及使用方法
CN115160065A (zh) * 2022-07-22 2022-10-11 环保桥(湖南)生态环境工程股份有限公司 一种用于水稻富硒降镉降砷叶面阻控剂及其制备方法
CN116652180A (zh) * 2023-07-31 2023-08-29 环保桥(湖南)生态环境工程股份有限公司 一种基于零价铁粉的复合颗粒及其制备方法与应用
CN117413738A (zh) * 2023-12-19 2024-01-19 中国农业科学院农业资源与农业区划研究所 一种用于镉污染稻田土壤的水稻安全生产方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109122136B (zh) * 2018-07-24 2021-03-23 广东省科学院生态环境与土壤研究所 一种中轻度重金属污染土壤上稻米安全生产的方法
CN111718721A (zh) * 2019-03-18 2020-09-29 武汉中塘环保科技有限公司 一种新型土壤镉砷钝化剂及制备方法
CN110144221B (zh) * 2019-04-28 2020-09-29 北京建工环境修复股份有限公司 一种改良剂及其制备方法和应用
CN111019666A (zh) * 2019-07-04 2020-04-17 湖南科技大学 改良剂及其制备和阻断农作物对重金属吸收的方法
CN110467922A (zh) * 2019-07-12 2019-11-19 广东工业大学 一种含工业木质素的土壤钝化改良剂及其制备方法和应用
CN110452705A (zh) * 2019-07-31 2019-11-15 安徽禾美环保集团有限公司 一种土壤重金属污染修复剂及其制备方法
CN110506588A (zh) * 2019-09-16 2019-11-29 福建省农业科学院土壤肥料研究所 一种生产低重金属污染稻米的综合农艺调控方法
CN110699084B (zh) * 2019-10-09 2021-06-11 东南大学 一种土壤重金属污染固化修复复合药剂及固化修复方法
CN110818468A (zh) * 2019-11-14 2020-02-21 煜环环境科技有限公司 一种砷镉铅复合污染农田多功能修复材料及其施用方法
CN112806222A (zh) * 2019-11-17 2021-05-18 衡阳县湖穗农业有限公司 一种降低再生稻二茬稻米重金属含量的种植方法
CN111213556A (zh) * 2020-02-10 2020-06-02 中南林业科技大学 一种用于中轻度镉污染土壤的水稻安全生产方法
CN111357591A (zh) * 2020-03-16 2020-07-03 环保桥(湖南)生态环境工程股份有限公司 一种镉砷复合污染稻田安全利用方法
CN111349441A (zh) * 2020-04-10 2020-06-30 绍兴市农业科学研究院 一种农田土壤As、Pb复合污染安全利用的方法
CN111819946B (zh) * 2020-07-30 2022-09-20 上海绿乐生物科技有限公司 一种稻田土壤生态环境的综合改良方法
CN111887250B (zh) * 2020-07-31 2021-08-31 农业农村部环境保护科研监测所 一种水稻叶面调理剂及其制备和施用方法
CN112142500A (zh) * 2020-08-19 2020-12-29 韶关市益金农业有限公司 一种水稻田矿物质微量元素土壤调理剂配方及使用方法
CN111937699A (zh) * 2020-09-14 2020-11-17 苏州市智惠岛农业科技有限公司 一种抑制重金属的水稻种植方法
CN112642850B (zh) * 2020-11-13 2022-06-07 湖南有色金属研究院有限责任公司 一种拮抗重金属污染土壤的修复方法
CN113234445A (zh) * 2021-04-01 2021-08-10 农业农村部环境保护科研监测所 一种适用于碱性土壤重金属镉污染修复的调控剂、制备方法及应用
CN113528143B (zh) * 2021-07-08 2022-09-09 华中农业大学 一种稻壳灰粉末复合材料及造粒方法和应用
CN113680809A (zh) * 2021-08-16 2021-11-23 江苏隆昌化工有限公司 一种重金属污染农田超稳矿化土壤修复材料及其使用方法
CN113751489B (zh) * 2021-08-24 2023-04-07 江苏省农业科学院 基于碱性中轻度砷污染土壤改良的可持续生产稻米的方法
CN113785745A (zh) * 2021-10-12 2021-12-14 中国热带农业科学院环境与植物保护研究所 一种南方地质高背景区优质水稻种植方法
CN113951070B (zh) * 2021-10-29 2022-12-20 南京农业大学 一种降低污染土壤有效态砷含量和稻米籽粒砷积累的方法
CN114045173B (zh) * 2021-11-10 2022-08-09 贵州大学 一种汞污染土壤修复剂及其制备方法
CN114180701A (zh) * 2021-11-12 2022-03-15 华中科技大学 一种二价铁活化过氧化脲降解有机砷污染的方法
CN114106838A (zh) * 2021-11-26 2022-03-01 江西师范大学 一种以钙基膨润土为基底的大颗粒镉钝化材料及制备方法
CN114276187B (zh) * 2021-12-27 2023-11-28 华南农业大学 一种碳基海藻硅硒悬浮肥料及其制备方法与在水稻富硒降镉中的应用
CN114350373A (zh) * 2022-01-04 2022-04-15 武汉市秀谷科技有限公司 一种降低酸化土壤稻米中砷的阻控剂及其制备方法
CN114606011B (zh) * 2022-04-21 2023-06-30 厦门大学嘉庚学院 一种酸性土壤改良剂及其制备方法
CN114985446A (zh) * 2022-06-16 2022-09-02 中山大学 一种同步降低酸性镉砷复合污染稻田稻米镉砷含量的方法
CN118020784A (zh) * 2022-09-28 2024-05-14 中国科学院地球化学研究所 一种有效降低水稻籽粒镉含量的方法
CN115553188A (zh) * 2022-10-19 2023-01-03 南京大学 一种联合阻控水稻汞超标的方法
CN117063655B (zh) * 2023-08-15 2024-04-23 湖南省土壤肥料研究所 一种淹水环境下稻田潜育化阻控及协同降镉的方法
CN117247777B (zh) * 2023-11-15 2024-02-09 广东省农业科学院农业质量标准与监测技术研究所 一种中轻度镉污染的农田的污染修复治理方法和土壤调理剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295350A (ja) * 1988-09-30 1990-04-06 Shimadzu Corp Mrイメージング装置
WO2005110091A1 (ja) * 2004-05-19 2005-11-24 Sankyo Agro Company, Limited 農園芸用組成物
CN105524623A (zh) * 2016-02-01 2016-04-27 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法
CN109122136A (zh) * 2018-07-24 2019-01-04 广东省生态环境技术研究所 一种中轻度重金属污染土壤上稻米安全生产的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042135A1 (en) * 1998-02-23 1999-08-26 Kenneth James Dillon Micronutrient-dispensing device and method
US6254656B1 (en) * 1999-04-06 2001-07-03 Fuji Silysia Chemical Ltd. Silica based fertilizer and method for using the same
JP2002095350A (ja) 2000-09-21 2002-04-02 Toyo Hakko:Kk 土に生育する茸類の栽培方法
CN101163530A (zh) * 2005-04-25 2008-04-16 加利福尼亚大学董事会 用于去除水中的砷的组合物和方法
JP2007137780A (ja) * 2005-11-15 2007-06-07 Yoshimasa Kojima 植物成長補助剤
JP2008105912A (ja) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology ナノ複酸化物AxMyOzの製造方法
CN101830735B (zh) * 2010-04-27 2012-05-30 广东省生态环境与土壤研究所 一种用于降低蔬菜重金属和硝酸盐含量的复合叶面硅肥及其制备方法
CN103789114B (zh) * 2013-12-26 2015-08-26 广东省生态环境与土壤研究所 一种可以抑制水稻重金属吸收积累生产富硒稻米的硒掺杂纳米硅溶胶及其制备方法
CN103749223B (zh) * 2013-12-27 2016-11-23 李满旺 稻米镉超标的综合防治方法
CN104388094B (zh) 2014-10-13 2017-04-05 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种铁基生物炭材料、其制备工艺以及其在土壤污染治理中的应用
CN105478074A (zh) * 2015-12-23 2016-04-13 中国科学院烟台海岸带研究所 一种重金属离子去除剂的制备方法及应用
CN105713619B (zh) 2016-03-01 2017-02-22 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种铁硅硫多元素复合生物炭土壤重金属调理剂的制备方法
CN105724428B (zh) * 2016-03-02 2017-02-22 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种精准调控水稻镉吸收转运相关基因表达的叶面阻隔剂与应用
CN105713617B (zh) 2016-03-02 2017-05-03 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种激活稻田土壤硫还原菌活性的重金属镉钝化剂与应用
CN105851002B (zh) * 2016-04-18 2018-07-17 华南农业大学 一种水稻重金属吸收阻隔剂及其使用方法
CN106069429A (zh) * 2016-06-12 2016-11-09 湖南永清环保研究院有限责任公司 一种降低中稻稻米镉含量的方法
CN107880888A (zh) * 2017-06-27 2018-04-06 湖北农谷畅响土壤修复科技股份有限公司 一种土壤镉钝化剂及加工方法
CN107216226A (zh) * 2017-06-30 2017-09-29 四川省地质调查院 一种用于调理镉污染富硒土壤的组合物及其使用方法、用途
CN108031706B (zh) * 2017-11-08 2020-04-24 浙江大学 用于修复土壤Cd污染的土壤改良剂及其应用
CN108277007B (zh) * 2017-12-28 2020-04-21 湖南中创优农农业有限公司 一种治理镉-砷复合污染农田的粒状修复剂及其制备方法
CN108192634A (zh) * 2017-12-29 2018-06-22 湖南省农业环境生态研究所 一种用于稻田Cd/As复合污染修复的土壤调理剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295350A (ja) * 1988-09-30 1990-04-06 Shimadzu Corp Mrイメージング装置
WO2005110091A1 (ja) * 2004-05-19 2005-11-24 Sankyo Agro Company, Limited 農園芸用組成物
CN105524623A (zh) * 2016-02-01 2016-04-27 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法
CN109122136A (zh) * 2018-07-24 2019-01-04 广东省生态环境技术研究所 一种中轻度重金属污染土壤上稻米安全生产的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111567345A (zh) * 2020-06-01 2020-08-25 海南五龙湾农业旅游集团有限公司 一种有机富硒红米稻种植方法
CN111567345B (zh) * 2020-06-01 2022-02-11 海南五龙湾农业旅游集团有限公司 一种有机富硒红米稻种植方法
CN113261484A (zh) * 2021-05-24 2021-08-17 中国科学院南京土壤研究所 一种降低作物镉富集能力的育秧基质、制备方法及其应用
CN113292380A (zh) * 2021-07-02 2021-08-24 江西省天久地矿建设工程院 一种降低水稻镉元素的叶面阻控材料及使用方法
CN115160065A (zh) * 2022-07-22 2022-10-11 环保桥(湖南)生态环境工程股份有限公司 一种用于水稻富硒降镉降砷叶面阻控剂及其制备方法
CN115160065B (zh) * 2022-07-22 2023-06-27 环保桥(湖南)生态环境工程股份有限公司 一种用于水稻富硒降镉降砷叶面阻控剂及其制备方法
CN116652180A (zh) * 2023-07-31 2023-08-29 环保桥(湖南)生态环境工程股份有限公司 一种基于零价铁粉的复合颗粒及其制备方法与应用
CN116652180B (zh) * 2023-07-31 2023-09-26 环保桥(湖南)生态环境工程股份有限公司 一种基于零价铁粉的复合颗粒及其制备方法与应用
CN117413738A (zh) * 2023-12-19 2024-01-19 中国农业科学院农业资源与农业区划研究所 一种用于镉污染稻田土壤的水稻安全生产方法
CN117413738B (zh) * 2023-12-19 2024-03-22 中国农业科学院农业资源与农业区划研究所 一种用于镉污染稻田土壤的水稻安全生产方法

Also Published As

Publication number Publication date
JP6895590B2 (ja) 2021-06-30
JP2021508487A (ja) 2021-03-11
CN109122136A (zh) 2019-01-04
US20200337255A1 (en) 2020-10-29
CN109122136B (zh) 2021-03-23
US10918024B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
WO2020019747A1 (zh) 一种中轻度重金属污染土壤上稻米安全生产的方法
US10131840B2 (en) Method for preparing iron silicon sulfur multi-element composite biochar soil heavy metal conditioner
CN108772418B (zh) 一种稻田土壤镉砷同步钝化剂及其制备方法与应用
WO2017133079A1 (zh) 一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法
CN100515966C (zh) 一种处理污泥中的重金属的方法
CN107987835B (zh) 一种重金属污染土壤复合钝化剂及其制备方法和应用
WO2015096533A1 (zh) 一种可以抑制水稻重金属吸收积累生产富硒稻米的硒掺杂纳米硅溶胶及其制备方法
CN109504398A (zh) 一种腐植酸纳米零价铁土壤Cr污染修复剂及制备方法
WO2017147981A1 (zh) 一种激活稻田土壤硫还原菌活性的重金属镉钝化剂与应用
CN107502357A (zh) 一种土壤重金属修复剂及其制备方法
CN111269722B (zh) 一种治理镉砷复合污染稻田土壤的缓释型修复剂及其制备方法
CN103396268A (zh) 一种炭基长效氮肥生化抑制剂及其制备方法
CN103641649A (zh) 一种具有磁效应的肥料及其制备方法
CN108658708A (zh) 一种用于农田镉污染防治的施肥方法及应用
CN108484337A (zh) 一种盐碱土改良剂及其制备方法
CN108559519A (zh) 重金属镉稳定剂及其制备方法和在水稻土壤中的应用
CN109609131A (zh) 一种用于降低水稻富集镉的铁基调理剂及其制备方法和应用
CN103011973A (zh) 一种具有缓释控失效果的增效型氮磷钾复合肥的制造方法
CN103204748A (zh) 一种提高磷素利用率的有机无机复混肥料及其制备方法
CN109847699A (zh) 一种脱氮除磷复合填料及制备方法
CN114682620A (zh) 一种针对酸性砷、铅、镉复合污染的稻田土壤的治理方法
CN112028713A (zh) 一种治理土壤砷污染的钝化剂及治理方法
CN107512975A (zh) 重金属污染土壤调理剂
AU2021203659A1 (en) Particulate nitrification inhibitor systems
CN108192634A (zh) 一种用于稻田Cd/As复合污染修复的土壤调理剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19841295

Country of ref document: EP

Kind code of ref document: A1