WO2020008729A1 - 伝送線路、伝送線路の製造方法及び伝送線路の製造装置 - Google Patents

伝送線路、伝送線路の製造方法及び伝送線路の製造装置 Download PDF

Info

Publication number
WO2020008729A1
WO2020008729A1 PCT/JP2019/019210 JP2019019210W WO2020008729A1 WO 2020008729 A1 WO2020008729 A1 WO 2020008729A1 JP 2019019210 W JP2019019210 W JP 2019019210W WO 2020008729 A1 WO2020008729 A1 WO 2020008729A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
transmission line
shield
main surface
base
Prior art date
Application number
PCT/JP2019/019210
Other languages
English (en)
French (fr)
Inventor
勇一 竹村
重計 久保田
Original Assignee
天竜精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018195188A external-priority patent/JP6507302B1/ja
Priority claimed from JP2019029386A external-priority patent/JP6611293B1/ja
Application filed by 天竜精機株式会社 filed Critical 天竜精機株式会社
Priority to KR1020207027590A priority Critical patent/KR102369036B1/ko
Priority to CN201980022963.2A priority patent/CN111971850B/zh
Publication of WO2020008729A1 publication Critical patent/WO2020008729A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0246Termination of transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]

Definitions

  • the present invention relates to a transmission line, a transmission line manufacturing method, and a transmission line manufacturing apparatus.
  • a signal wiring and a ground wiring are formed in one side area or a central area of one main surface of an insulator layer made of a liquid crystal polymer so as to be insulated and isolated from each other, and the ground wiring is formed on the other main surface of the insulator layer.
  • Patent Document 1 Japanese Patent No. 3497110
  • a dielectric element liquid crystal polymer having flexibility; a linear signal line provided on the dielectric element; and a signal line provided on the dielectric element and facing the signal line.
  • a ground conductor, and an auxiliary ground conductor provided on the opposite side of the ground conductor with respect to the signal line in a direction normal to the main surface of the dielectric element, and a plan view from the normal direction.
  • two bridges sandwiching the signal line and extending along the signal line, and a bridge portion connecting the two major portions and intersecting the signal line
  • a via-hole conductor that electrically connects the auxiliary ground conductor and the ground conductor.
  • the signal line and the auxiliary ground conductor in the normal direction.
  • the distance between the signal line High-frequency signal transmission line of smaller construction than the distance between the ground conductor has been proposed (Patent Document 2: JP Utility Model Registration No. 3173143).
  • the transmission line is required to have a thin structure that can save space while maintaining the shielding performance of suppressing external noise. In particular, reduction of crosstalk between transmission lines has become an issue. Further, transmission line manufacturers are required to produce transmission lines or intermediates thereof in a short production time capable of responding to a sudden increase in demand for portable information terminals and the like.
  • the intermediate product of the transmission line is a semi-finished product in a stage prior to becoming a transmission line, and particularly refers to a semi-finished product having a structure of shielding over the entire circumference.
  • the transmission line disclosed in Patent Document 1 has a structure in which a copper-clad laminate is bent, so that it is difficult to reduce the thickness of the transmission line when shielding over the entire circumference. Further, since the transmission line of Patent Document 2 is not shielded on the side surface, the shielding performance is inferior to that of a structure that shields the entire circumference, and crosstalk increases.
  • the conductive paste such as cream solder or conductive adhesive is thermally cured to connect the ground conductor and the shield conductor. As a bottleneck, the production time (tact time) cannot be made shorter than the thermosetting time.
  • a similar problem also occurs when joining copper-clad laminates using an adhesive. As a conventional technique, a method of reducing crosstalk by forming a via between transmission lines is conceivable. However, since a large number of vias are required, the manufacturing cost increases.
  • the present invention has been made in view of the above circumstances, and has a thin transmission line and a thin transmission line that have reduced crosstalk by shielding over the entire circumference by a configuration in which opposed copper-clad laminates are joined to each other, and a thin transmission line or the thin transmission line.
  • the production time (tact time) is shorter than the thermosetting time of the conductive paste or adhesive by manufacturing the intermediate on a consistent production line and joining the copper-clad laminates without using adhesive or conductive paste. It is an object of the present invention to provide a transmission line manufacturing method and a transmission line manufacturing apparatus that can be shortened.
  • the above-mentioned problem is solved by a solution as disclosed below.
  • the first conductor composed of the transmission line conductor and the ground conductor adjacent to the input end and the output end of the transmission line conductor is a sheet-shaped first base made of a thermoplastic resin.
  • a surface of the base opposite to the first main surface and the side of the second main surface of the first shield; a surface of the base opposite to the first main surface and the second main surface of the first shield; Side, and the coverlay and the second shell. are thermocompression bonding to each other to the side of the second major surface of the field,
  • the second conductor and the third conductor are ultrasonically bonded to each other, and are arranged so as to surround the transmission line conductor with the second conductor and the third conductor.
  • the first conductor composed of the transmission line conductor and the ground conductor adjacent to the input end and the output end of the transmission line conductor is a sheet-shaped first base made of a thermoplastic resin.
  • the second conductor of the first shield and the third conductor of the second shield which are opposed to each other with the base and the coverlay interposed therebetween, surround the transmission line conductor in a state where the second conductor is ultrasonically bonded. It becomes a thin transmission line that is shielded over the circumference and reduces crosstalk. Since the second conductor of the first shield and the third conductor of the second shield are ultrasonically bonded without using an adhesive or a conductive paste, a thin structure can be formed at least by the thickness of the adhesive or the conductive paste. .
  • cut surfaces are formed on both sides in the longitudinal direction. According to this configuration, since both sides in the longitudinal direction are cut, the width dimension is constant.
  • the first conductor formed of the transmission line conductor and the ground conductors respectively adjacent to the input end and the output end of the transmission line conductor may be formed at a predetermined pitch.
  • a base formed on the main surface, a sheet-shaped coverlay covering the transmission line conductor, a first shield formed with a second conductor on a second main surface of the sheet-shaped second base material, and a third conductor A transmission line provided with a second shield formed on a sheet-shaped third base material, or a first conductor composed of a transmission line conductor and ground conductors respectively close to an input end and an output end of the transmission line conductor Is formed on a first main surface of a first base material made of a thermoplastic resin in the form of a sheet, and at least a plurality of the transmission line conductors of the first conductor are formed at a predetermined pitch, and each of the transmission line conductors Sheet covering A coverlay made of a thermoplastic resin, a second shield formed on a
  • a method of manufacturing a transmission line including a second shield formed on a third base member comprising: a first thermocompression bonding step of thermocompression bonding the coverlay to the first main surface; An unnecessary area removing step of removing an unnecessary area between the transmission line conductor and the transmission line conductor to form a through-hole penetrating the first intermediate body with respect to the thermocompression-bonded first intermediate; A second thermocompression bonding step of thermocompression-bonding the second main surface side of the first shield to a surface of the base opposite to the first main surface with respect to the second intermediate body having a through hole; While the first shield is thermocompressed, the second shield is A first bonding step of ultrasonic bonding an exposed surface of the third conductor on the exposed surface of, and having a.
  • the first thermocompression bonding step, the unnecessary area removal step, the second thermocompression bonding step, and the first bonding step are performed by sending the base, the coverlay, the first shield, and the second shield at a predetermined pitch.
  • a thin transmission line or an intermediate body thereof with reduced crosstalk by shielding over the entire circumference can be manufactured by a consistent manufacturing line.
  • the production time (tact time) is reduced by thermosetting of the conductive paste or the adhesive. It can be less than the time and the required components are minimized.
  • the second thermocompression bonding step includes thermocompression bonding the second intermediate body to a surface of the base opposite to the first main surface on a side of the second main surface of the first shield and the cover. It is preferable that the side of the second main surface of the second shield is thermocompression-bonded to a ray. With this configuration, the second intermediate body is thermocompression-bonded to the surface of the base opposite to the first main surface on the side of the second main surface of the first shield, and the second shield of the second shield is simultaneously attached to the coverlay. Since the two main surfaces are thermocompression-bonded, wrinkles of the first shield and the second shield can be prevented.
  • the first conductor including the transmission line conductor and the ground conductors respectively adjacent to the input end and the output end of the transmission line conductor has a first pitch of a sheet-like first base material at a predetermined pitch.
  • a base formed on the main surface, or a first conductor composed of a transmission line conductor and a ground conductor adjacent to an input end and an output end of the transmission line conductor, respectively, is a sheet-shaped first base material made of a thermoplastic resin.
  • a base feeder is provided on the first main surface and supplies a base on which at least the transmission line conductors of the first conductor are formed at a predetermined pitch, and a sheet-like coverlay covering the transmission line conductor is supplied.
  • Coverlay supplying machine for supplying a first shield in which a second conductor is formed on a second main surface of a sheet-like second base material, and a third conductor in which a third conductor is sheet-like To wood
  • a second shield feeder for supplying a second shield made,
  • a first thermocompression bonding machine that thermocompression-bonds the coverlay to the first main surface, and a first intermediate body where the coverlay is thermocompression-bonded, to an unnecessary area between the transmission line conductor and the transmission line conductor.
  • An unnecessary region removing machine that removes and forms a through hole that penetrates the first intermediate body, and a second intermediate body that has the through hole formed therein is provided on a surface of the base opposite to the first main surface.
  • thermocompression bonding machine that thermocompression-bonds the second main surface side of the first shield; and an exposed surface of the third conductor on an exposed surface of the second conductor in a state where the first shield is thermocompressed.
  • a first joining machine for ultrasonically joining the two.
  • the first thermocompression bonding machine, the punching machine, the second thermocompression bonding machine, and the first bonding machine cooperate to operate, and the second conductor of the first shield that is opposed to the base and the coverlay is interposed therebetween.
  • the third conductor of the second shield are ultrasonically bonded through the through hole. Therefore, it is possible to manufacture a thin transmission line having a reduced crosstalk by shielding over the entire circumference or an intermediate body thereof on a consistent production line.
  • the production time (tact time) is reduced by thermosetting of the conductive paste or the adhesive. It can be shorter than the time and can be produced in a short time.
  • the shield is formed over the entire circumference.
  • a thin transmission line with reduced crosstalk can be realized.
  • the transmission line manufacturing method and the transmission line manufacturing apparatus of the present invention it is possible to manufacture a thin transmission line having a reduced crosstalk by shielding over the entire circumference or an intermediate body thereof with a consistent manufacturing line.
  • FIG. 1 is a configuration diagram schematically showing an arrangement configuration of a transmission line manufacturing apparatus according to an embodiment of the present invention.
  • 2A is a schematic plan view illustrating a base according to the present embodiment
  • FIG. 2B is a schematic plan view illustrating a first intermediate body in which a coverlay according to the present embodiment is thermocompression-bonded to the base.
  • FIG. 3 is a schematic plan view showing a second intermediate body having a through hole according to the embodiment.
  • FIG. 3A is a schematic plan view illustrating a fourth intermediate body in which the second shield according to the present embodiment is ultrasonically bonded
  • FIG. 3B illustrates a sixth intermediate body having a window according to the present embodiment. It is a schematic plan view.
  • FIG. 1 is a configuration diagram schematically showing an arrangement configuration of a transmission line manufacturing apparatus according to an embodiment of the present invention.
  • 2A is a schematic plan view illustrating a base according to the present embodiment
  • FIG. 2B is a schematic plan view illustrating a first intermediate body
  • FIG. 4A is a schematic plan view illustrating the transmission line according to the present embodiment
  • FIG. 4B is a schematic side view illustrating the transmission line according to the present embodiment
  • 5A is a schematic sectional view showing a base according to the present embodiment
  • FIG. 5B is a schematic sectional view showing a first intermediate body in which a coverlay according to the present embodiment is thermocompression-bonded to the base.
  • FIG. 3 is a schematic cross-sectional view showing a second intermediate body having a through hole according to the present embodiment.
  • FIG. 6A is a schematic cross-sectional view showing a fourth intermediate body in which the second shield according to the present embodiment is ultrasonically bonded
  • FIG. 6B is a schematic cross-sectional view showing a transmission line according to the present embodiment.
  • FIG. 7A is a schematic sectional view showing another example of the transmission line according to the present embodiment
  • FIG. 7B is a schematic sectional view showing another example of the transmission line according to the present embodiment
  • FIG. 8A is a diagram schematically illustrating a first thermocompression bonding machine according to the present embodiment
  • FIG. 8B is a diagram schematically illustrating an unnecessary area removing machine according to the present embodiment
  • FIG. It is a figure which shows the said 2nd thermocompression bonding machine typically.
  • 9A is a diagram schematically illustrating an ultrasonic bonding machine according to the present embodiment
  • FIG. 9B is a diagram schematically illustrating a laser processing machine according to the present embodiment
  • FIG. 9C is an inspection according to the present embodiment. It is a figure which shows a machine typically.
  • FIG. 10 is a configuration diagram schematically illustrating an arrangement configuration of another example of the transmission line manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a procedure for manufacturing the transmission
  • FIG. 1 is a configuration diagram schematically illustrating an example of a transmission line manufacturing apparatus 1 according to the present embodiment.
  • the left side in the figure is the upstream side, and the right side in the figure is the downstream side.
  • the transmission line manufacturing apparatus 1 includes, in order from the upstream side, a first thermocompression bonding machine 2, an unnecessary area removing machine 3, a second thermocompression bonding machine 4, a first bonding machine 5, a second bonding machine 6, a laser processing machine 7, An inspection machine 8, a split take-out machine 9, and a transfer machine 17 are provided, and a controller 10 for controlling these is provided.
  • members having the same functions are denoted by the same reference numerals, and repeated description thereof may be omitted.
  • a base feeder 11 and a tension adjuster 15 and a coverlay feeder 12 and a tension adjuster 15 are disposed upstream of the first thermocompression bonding machine 2.
  • a first shield feeder 13 and a tension adjuster 15 and a second shield feeder 14 and a tension adjuster 15 are disposed upstream of the second thermocompression bonding machine 4.
  • the tension adjusting device 15 has a tension roller as an example, and a sheet-like work (the base 30, the coverlay 35, the first intermediate body 51, the first shield 40, and the second shield 45) depends on the position of the tension roller. Is kept within a certain range.
  • a pitch feeder 16 is provided upstream of the second thermocompression bonding machine 4, and a pitch feeder 16 is provided upstream of the inspection machine 8.
  • the pitch feeder 16 has a feed roller as an example, and the feed pitch of the sheet-like work (the first intermediate body 52 and the sixth intermediate body 56) is kept constant by the feed amount of the feed roller.
  • FIG. 8A is a diagram schematically showing the first thermocompression bonding machine 2.
  • the first thermocompression bonding machine 2 has, as an example, a press plate having a built-in heater, and presses and heats the base 30 and the cover lay 35 while pressing the base 30 and the cover lay 35 from above and below. This is a configuration in which one intermediate 51 is formed.
  • FIG. 8B is a diagram schematically showing the unnecessary area removing machine 3.
  • the unnecessary region removing machine 3 has, as an example, a punching blade and a receiving table for receiving the punching blade.
  • the unnecessary region R1 of the first intermediate body 51 is punched by the punching blade to remove the unnecessary region R1 and to remove the first intermediate member.
  • a through hole U1 that penetrates through the first intermediate body 51 is formed to form the second intermediate body 52.
  • the unnecessary region removing machine 3 can apply a laser processing machine that removes the unnecessary region R1 by laser irradiation.
  • FIG. 8C is a diagram schematically showing the second thermocompression bonding machine 4.
  • the second thermocompression bonding machine 4 has, as an example, a press plate with a built-in heater, and presses the first shield 40 and the second intermediate body 52 from above and below with the two press plates facing each other. In this configuration, the first shield 40 is thermocompressed to the base 30 and the second shield 45 is thermocompressed to the coverlay 35 at the same time.
  • thermocompression bonding machine 2 and the second thermocompression bonding machine 4 can have the same device configuration. This facilitates maintenance of the device.
  • FIG. 9A is a view schematically showing the first welding machine 5 (first ultrasonic welding machine) or the second welding machine 6 (second ultrasonic welding machine).
  • the first joining machine 5 includes, as an example, a main body in which a vibrating body is built, a head portion (horn) attached to the main body portion and ultrasonically vibrated by vibration transmitted from the vibrating body, and a receiving portion for receiving the head portion.
  • the first shield 40 is thermocompression-bonded to the base 30 by the head portion and the receiving portion that are arranged to face each other, and the second shield 45 is attached to the coverlay 35. In this configuration, the work in the thermocompression-bonded state is sandwiched from above and below, and the head portion is ultrasonically vibrated to form the fourth intermediate body 54 by ultrasonic bonding.
  • the first bonding machine 5 (the first ultrasonic bonding machine) may be configured such that the second shield 53 is attached to the third intermediate body 53 in which the first shield 40 is thermocompression-bonded to the base 30 by the head unit and the receiving unit which are arranged to face each other.
  • the fourth intermediate body 54 is formed by ultrasonically joining the workpiece in a state where the workpieces 45 are overlapped and sandwiching the workpiece from above and below, and ultrasonically vibrating the head part.
  • the fourth intermediate 54 is a semi-finished product that is a pre-stage semi-finished product that becomes the transmission line 20 and that has a structure of shielding over the entire circumference.
  • the second bonding machine 6 (second ultrasonic bonding machine) includes, as an example, a main body portion having a built-in vibrating body, and a head portion (horn) attached to the main body portion and ultrasonically vibrating with vibration transmitted from the vibrating body.
  • a receiving portion for receiving the head portion, the head portion and the receiving portion disposed opposite to each other to sandwich the fourth intermediate body 54 from above and below, and to ultrasonically vibrate the head portion to perform ultrasonic bonding.
  • a fifth intermediate 55 is formed.
  • the first joining machine 5 and the second joining machine 6 can have the same device configuration. This facilitates maintenance of the device.
  • a head unit that performs ultrasonic vibration is arranged to face the first jointing machine 5 and the second joining machine 6 so as to have both functions.
  • FIG. 9B is a view schematically showing the laser beam machine 7.
  • the laser beam machine 7 is configured to form a sixth intermediate body 56 by removing a predetermined region by laser irradiation and partially exposing the third conductor 46.
  • FIG. 9C is a diagram schematically showing the inspection machine 8.
  • the inspection machine 8 checks whether the transmission line conductor 32 is disconnected and the continuity level is within a normal range by applying a current by bringing a contact pin projecting downward at a predetermined interval into contact with the transmission line conductor 32.
  • Configuration As a configuration other than the above, the inspection machine 8 inspects whether the transmission line conductor 32 is disconnected or the conduction level is within a normal range by capturing an image of the transmission line conductor 32 with a camera and analyzing the image. In some cases, the inspection machine 8 performs both the electrical characteristic inspection by energizing the transmission line conductor 32 and the appearance characteristic inspection by imaging the transmission line conductor 32 and analyzing the image. It may be.
  • a split take-out machine 9 for taking out the transmission line 20 from the sixth intermediate body 56.
  • the split take-out machine 9 has, as an example, a punching blade and a receiving table for receiving the punching blade, and the transmission line 20 is separated by punching out the sixth intermediate body 56 that has been subjected to in-line inspection along a predetermined cut line by the punching blade. Then, the transmission line 20 is taken out.
  • the split take-out device 9 is configured to scribe the sixth intermediate body 56 subjected to in-line inspection along a predetermined cut line to separate the transmission line 20 and take out the transmission line 20.
  • the split take-out device 9 may be configured to irradiate the sixth intermediate body 56 subjected to in-line inspection with laser along a predetermined cut line to separate the transmission line 20 and take out the transmission line 20.
  • a tray 18 for accommodating the transmission line 20 is disposed downstream of the split take-out device 9.
  • the transmission line 20 manufactured in the above-described integrated manufacturing line and subjected to the inline inspection is transferred by the transfer device 17 in a state of being vacuum-adsorbed, for example, and stored in the tray 18.
  • a thin transmission line 20 with reduced crosstalk by shielding over the entire circumference can be manufactured consistently in one manufacturing line. Since the transmission line 20 is manufactured by thermocompression bonding or ultrasonic bonding without using an adhesive or a conductive paste, the production time (tact time) should be shorter than the thermosetting time of the conductive paste or the adhesive. And the necessary components are minimized.
  • the second thermocompression bonding machine 4 is configured to thermocompression-bond the first shield 40 to the base 30 and thermocompression-bond the second shield 45. According to this configuration, since the first shield 40 and the second shield 45 are simultaneously thermocompression-bonded simultaneously, it is possible to prevent wrinkles from being formed on the first shield 40 and the second shield 45 during thermocompression.
  • the above manufacturing equipment is an example.
  • the transmission line manufacturing apparatus 1 is not limited to the above embodiment. As a configuration other than the above, for example, manufacturing equipment and inspection equipment downstream of the joining machine 5 may be omitted.
  • the manufacture by the transmission line manufacturing apparatus 1 is completed in the state of the fourth intermediate body 54 having a structure of shielding over the entire circumference. Then, it is stored in a transport container or a tray in a reel state, a strip state, an individual state, or the like, and is shipped as a fourth intermediate body 54, or the fourth intermediate body 54 is post-processed on another manufacturing line.
  • the fourth intermediate body 54 is assembled and processed on the assembly line of the electronic device to become the transmission line 20.
  • a solder joining machine is arranged in place of the second ultrasonic joining machine 6, and the fourth intermediate body 54 is sandwiched from above and below by a head portion and a receiving portion arranged opposite to the solder joining machine.
  • the fifth intermediate body 55 is formed by soldering by sandwiching and supplying solder from the head and heating.
  • an adhesive bonding machine may be provided in place of the second ultrasonic bonding machine 6, and the fifth intermediate body 55 may be formed by bonding using an adhesive or a conductive paste.
  • an etching machine is arranged in place of the laser machine 7, and a predetermined region is removed by etching to partially expose the third conductor 46 to form the sixth intermediate 56. It may be.
  • FIG. 10 is a configuration diagram schematically showing an arrangement configuration of another example of the transmission line manufacturing apparatus 1 of the embodiment.
  • a first shield feeder 13 and a tension adjuster 15 are disposed upstream of the second thermocompression bonding machine 4.
  • a second shield feeder 14 and a tension adjuster 15 are disposed upstream of the first joining machine 5.
  • the first shield 40 is thermocompression-bonded to the base 30 by the second thermocompression bonding machine 4 to form the third intermediate 53.
  • the second shield 45 is ultrasonically welded to the work in a state where the second shield 45 is overlapped on the third intermediate body 53 by the first joining machine 5 to form the fourth intermediate body 54.
  • the configuration shown in FIG. 1 or FIG. 10 can be selected according to the standard such as the size and material of the transmission line 20 and the standard such as the size and material of the components. Equipment and inspection equipment can be added or omitted as appropriate.
  • FIG. 11 is a flowchart showing a procedure for manufacturing the transmission line 20.
  • the transmission line 20 includes a first thermocompression bonding step S1, an unnecessary area removing step S2, a second thermocompression bonding step S3, a first bonding step S4, a second bonding step S5, a laser processing step S6, an inspection step S7, and a dividing step. It is manufactured in the order of S8.
  • the above manufacturing procedure is an example.
  • the first joining step S4 and the second joining step S5 can be performed simultaneously, and the second joining step S5 can be omitted.
  • the laser processing step S6 can be omitted, the inspection step S7 can be omitted, and the division step S8 can be omitted.
  • the fourth intermediate body 54, the fifth intermediate body 55, the sixth intermediate body 56, or the transmission line 20 are shipped in a state where a plurality of the intermediate bodies are arranged on a single sheet at a predetermined pitch in the longitudinal direction, and the electronic device in the next process is shipped.
  • the sheet may be divided on the assembly line described above, and the transmission line 20 may be taken out and used.
  • FIG. 2A is a schematic plan view showing the base 30,
  • FIG. 2B is a schematic plan view showing the first intermediate body 51, and
  • FIG. 2C is a schematic plan view showing the second intermediate body 52.
  • FIG. 3A is a schematic plan view showing a fourth intermediate body 54, and
  • FIG. 3B is a schematic plan view showing a sixth intermediate body 56.
  • FIG. 4A is a schematic plan view showing the transmission line 20, and FIG. 4B is a schematic side view showing the transmission line 20.
  • FIG. 5A is a schematic sectional view showing the base 30 at the position of the transmission line conductor 32, and similarly, FIG. 5B is a schematic sectional view showing the first intermediate body 51, and FIG. FIG. 6A is a schematic sectional view showing the fourth intermediate body 54, and FIG. 6B is a schematic sectional view showing the transmission line 20 at the position of the transmission line conductor 32.
  • the base 30 is made of a copper-clad laminate (CCL), and the transmission line conductors 32 are arranged at a predetermined pitch P1 in the longitudinal direction at a first main surface 34a of a sheet-like first base material 34a. Is formed.
  • the first conductor 31 is close to the transmission line conductor 32 formed in a straight line, and the input end and the output end of the transmission line conductor 32, and the side close to the input end and the output end is “U-shaped” or “ And a ground conductor 33 formed in a “U-shape”.
  • a connector is connected to an input end and an output end of the ground conductor 33 and the transmission line conductor 32 via, for example, solder or conductive paste (not shown).
  • solder or conductive paste not shown.
  • a plurality of ground conductors formed in a “U-shape” or “U-shape” in which the first conductor 31 is adjacent to the input end and the output end of the transmission line conductor 32 on a one-to-one basis. 33 in some cases.
  • a plurality of transmission line conductors 32 are arranged at a predetermined pitch in the longitudinal direction on a sheet-like first base material 34. In the state of FIG. 2A, the transmission line conductors 32 are disposed between the transmission line conductors 32. There is an unnecessary area R1.
  • the first conductor 31 is made of, for example, copper foil.
  • the first base material 34 is made of, for example, a thermoplastic resin.
  • the first base material 34 is made of, for example, liquid crystal polymer (LCP), polyimide (PI), polyamide (PA), or polyetheretherketone (PEEK).
  • LCP liquid crystal polymer
  • PI polyimide
  • PA polyamide
  • PEEK polyetheretherketone
  • the sheet-like base 30 is attached to the base supply device 11 in a reel state, and supplied so as to be capable of continuous processing.
  • the first conductor 31 is, for example, a copper foil having a thickness of 5 ⁇ m or more and 25 ⁇ m or less.
  • the first base material 34 is, for example, a liquid crystal polymer (LCP) having a thickness of 50 ⁇ m or more and 150 ⁇ m or less.
  • LCP liquid crystal polymer
  • the first conductor 31 is formed by pattern-etching a copper clad laminate (CCL).
  • the base 30 irradiates an oxygen-containing plasma to the surface on the side where the first conductor 31 is bonded (the first main surface 34a) by a plasma irradiation device, and And reforming. Irradiation with the oxygen-containing plasma improves the degree of adhesion during the first thermocompression bonding.
  • a plasma irradiation device is disposed upstream of the first thermocompression bonding machine 2 to irradiate the first main surface 34a with oxygen-containing plasma (not shown).
  • the coverlay 35 is made of, for example, a thermoplastic resin.
  • the coverlay 35 is made of, for example, liquid crystal polymer (LCP), polyimide (PI), polyamide (PA), or polyetheretherketone (PEEK).
  • LCP liquid crystal polymer
  • PI polyimide
  • PA polyamide
  • PEEK polyetheretherketone
  • the cover lay 35 is attached to the cover lay feeder 12 in a reel state, and is supplied so as to be capable of continuous processing.
  • the coverlay 35 is, for example, a liquid crystal polymer (LCP) having a thickness of 25 [ ⁇ m] or more and 125 [ ⁇ m] or less.
  • LCP liquid crystal polymer
  • the first shield 40 is made of, for example, a copper-clad laminate (CCL), and the second conductor 41 is formed on the second main surface 42a of the sheet-like second base material 42.
  • the second conductor 41 may be bonded to the entire surface of the second base material 42 or may be bonded in a mesh shape.
  • the second conductor 41 is made of, for example, copper foil.
  • the second substrate 42 is made of, for example, a thermoplastic resin.
  • the second substrate 42 is made of, for example, a liquid crystal polymer (LCP), polyimide (PI), polyamide (PA), or polyetheretherketone (PEEK).
  • LCP liquid crystal polymer
  • PI polyimide
  • PA polyamide
  • PEEK polyetheretherketone
  • the first shield 40 is attached to the first shield feeder 13 in a reel state and supplied so as to be capable of continuous processing.
  • the second conductor 41 is, for example, a copper foil having a thickness of 5 ⁇ m or more and 25 ⁇ m or less.
  • the second base material 42 is, for example, a polyimide (PI) having a thickness of 5 ⁇ m or more and 25 ⁇ m or less.
  • PI polyimide
  • As the first shield 40 for example, a copper-clad laminate (CCL) is used as it is.
  • the first shield 40 irradiates an oxygen-containing plasma to the surface (the second main surface 42a) on the side to which the second conductor 41 is bonded by a plasma irradiation device as a pretreatment of the second thermocompression bonding step S3.
  • a plasma irradiation device is disposed on the upstream side of the second thermocompression bonding machine 4 to irradiate the second main surface 42a with oxygen-containing plasma (not shown).
  • the second shield 45 is made of, for example, a copper-clad laminate (CCL), and the third conductor 46 is formed on one surface of a sheet-shaped third base material 47.
  • the third conductor 46 may be attached to the entire surface of the third base material 47 or may be attached in a mesh shape.
  • the third conductor 46 is made of, for example, copper foil.
  • the third base material 47 is made of, for example, a thermoplastic resin.
  • the third substrate 47 is made of, for example, liquid crystal polymer (LCP), polyimide (PI), polyamide (PA), or polyetheretherketone (PEEK).
  • LCP liquid crystal polymer
  • PI polyimide
  • PA polyamide
  • PEEK polyetheretherketone
  • the second shield 45 is attached to the second shield feeder 14 in a reel state, and supplied so as to be capable of continuous processing.
  • the third conductor 46 is, for example, a copper foil having a thickness of 5 ⁇ m or more and 25 ⁇ m or less.
  • the third base material 47 is, for example, polyimide (PI) having a thickness of 5 ⁇ m or more and 25 ⁇ m or less.
  • the second shield 45 is used with the copper clad laminate (CCL) as it is.
  • the second shield 45 has, for example, the same material configuration as the first shield 40.
  • the second shield 45 irradiates the surface on the side where the third conductor 46 is bonded with oxygen-containing plasma by a plasma irradiation device to remove organic substances, Reform. Irradiation with oxygen-containing plasma improves the degree of adhesion in the first bonding step S4.
  • a plasma irradiation device is disposed upstream of the first joining machine 5 to irradiate the surface on the side where the third conductor 46 is bonded with oxygen-containing plasma (not shown).
  • the coverlay 35 is thermocompression bonded to the first main surface 34a of the first base material 34, as shown in FIGS. 2B and 5B.
  • the first base material 34 and the cover lay 35 are made of the same material, and the heating temperature is equal to or lower than the melting point of the first base material 34 and the cover lay 35.
  • a heating temperature within [° C] preferably a heating temperature within plus or minus 5 [° C], more preferably within a plus or minus 2 [° C]
  • heat is applied under a predetermined pressure for a predetermined time to perform thermocompression bonding.
  • the first intermediate 51 is applied under a predetermined pressure for a predetermined time to perform thermocompression bonding.
  • the first thermocompression bonding step S1 is a heating temperature of 180 ° C. or more and 280 ° C. or less, a pressing force of 10 MPa or more and 60 MPa or less, and a pressure of 5 seconds or more and 240 seconds.
  • Thermocompression bonding is performed for the following heating / pressing time.
  • the thermocompression bonding is performed in the air as an example.
  • the unnecessary area removing step S2 the unnecessary area R1 between the transmission line conductor 32 and the transmission line conductor 32 is removed from the first intermediate body 51 by punching.
  • a through-hole U1 penetrating through the first intermediate body 51 is formed to be a second intermediate body 52.
  • the through holes U1 are, for example, rectangular or rounded rectangles, and are formed at predetermined intervals P2 in the longitudinal direction.
  • the predetermined interval P2 is preferably equal to or less than 2.5 [mm]. Thereby, the effect of reducing crosstalk is enhanced.
  • the length of the through hole U1 is set to be 0.2 times or more and less than 1.0 times the entire length of the transmission line conductor 32.
  • the predetermined interval P2 is set to 1.5 [mm] or more. Thereby, joining of the second conductor 41 and the third conductor 46 becomes easy.
  • the predetermined interval P2 is set to less than 0.5 [mm]. Thereby, the effect of reducing crosstalk is further enhanced.
  • the predetermined interval P2 is set to 0.0 [mm]. Thereby, the effect of reducing crosstalk is maximized.
  • the second thermocompression bonding step S3 is performed on the surface of the base 30 opposite to the first main surface 34a with respect to the second intermediate member 52.
  • the side of the surface 42a is thermocompression-bonded, and at the same time, the second shield 46 is thermocompression-bonded to the first main surface 34a of the base 30.
  • the first base material 34 and the second base material 42 are made of different materials
  • the second base material 42 and the third base material 47 are made of the same material
  • the heating temperature is equal to or lower than the melting point of the first base material 34.
  • thermocompression bonding is preferably performed by heating at a heating temperature within plus or minus 2 [° C.] while applying a predetermined pressure at a predetermined time.
  • the second intermediate member 52 is thermocompression bonded to the surface of the base 30 opposite to the first main surface 34a on the side of the second main surface 42a of the first shield 40.
  • the heating temperature is equal to or lower than the melting point of the first base material 34 and the deflection temperature under load of the first base material 34 or the first base material 34 Heating temperature within plus or minus 20 [° C], preferably within plus or minus 5 [° C], more preferably within plus or minus 2 [° C] around the deflection temperature under load at a given pressure and at a given pressure It heats and press-fits for a time while pressurizing.
  • the second thermocompression bonding step S3 is a heating temperature of 180 ° C. or more and 280 ° C. or less, a pressing force of 10 MPa or more and 60 MPa or less, and a pressure of 5 seconds or more and 240 seconds.
  • Thermocompression bonding is performed for the following heating / pressing time.
  • the thermocompression bonding is performed in the air as an example.
  • the first bonding step S4 ultrasonically bonds the exposed surface of the third conductor 46 to the exposed surface of the second conductor 41.
  • the second conductor 41 and the third conductor 46 are made of the same material, and the horn is pressed with a pressing force of not less than 500 [N] and not more than 2500 [N], and the frequency is 15 [kHz] or more and 200 [N].
  • ultrasonic vibration of [kHz] or less ultrasonic bonding is performed, and the fourth intermediate body 54 is obtained.
  • the fourth intermediate 54 manufactured on a consistent production line is shipped as a fourth intermediate 54 having a structure that shields all around, or the fourth intermediate 54 is manufactured on another production line.
  • the fourth intermediate body 54 is assembled and processed in an electronic device assembly line to form the transmission line 20.
  • the second joining step S5 is performed following the first joining step S4.
  • the end of the third conductor 46 is ultrasonically joined to the end of the ground conductor 33 with respect to the fourth intermediate body 54.
  • the ends of the ground conductor 33 are the respective ends on the transmission line conductor 32 side.
  • the ends of the third conductor 46 are both ends.
  • the second conductor 41 and the third conductor 46 are made of the same material, and the horn is pressed with a pressing force of not less than 500 [N] and not more than 2500 [N], and the frequency is 15 [kHz] or more and 200 [N].
  • ultrasonic vibration of [kHz] or less ultrasonic bonding is performed to obtain a fifth intermediate 55.
  • the laser processing step S6 is performed following the second bonding step S5.
  • the surface of the fifth intermediate body 55 on the side opposite to the bonding surface with the ground conductor 33 in the third conductor 46 is partially exposed by laser irradiation, and
  • the window portions V1 are formed at intervals, and the sixth intermediate body 56 is formed.
  • the window portion V1 has, for example, a square shape or a rounded square shape, and a plurality of the window portions V1 are formed at predetermined intervals.
  • Laser irradiation is performed at a predetermined output for a predetermined time. For the laser irradiation, known equipment and a known method can be applied.
  • the laser processing step S6 may be omitted.
  • the inspection step S7 is performed following the laser processing step S6.
  • the transmission pin conductor 32 is not disconnected by bringing the contact pin of the inspection device 8 into contact with the transmission line conductor 32 to energize the sixth intermediate body 56, and the conduction level is within the normal range.
  • Check that For the continuity inspection a known facility and a known construction method can be applied. Note that the inspection step S7 may not be performed here, but may be performed on another manufacturing line.
  • the dividing step S8 is performed following the inspection step S7.
  • the transmission line 20 is separated and taken out by punching out the sixth in-line body 56, which has been subjected to the in-line inspection, along a predetermined cut line by the punching blade of the dividing take-out machine 9.
  • Known equipment and a known construction method can be applied to divisional take-out.
  • the division step S8 may not be performed here, but may be performed on another manufacturing line.
  • the transmission line 20 manufactured on the consistent manufacturing line and subjected to the in-line inspection is conveyed by the transfer device 17 in a vacuum-sucked state as an example and stored in the tray 18.
  • FIGS. 4A and 6B show a transmission line 20 having a two-core structure in which two transmission line conductors 32 are arranged in parallel.
  • FIG. 7A there is a case where the transmission line 20 has a three-core structure in which three transmission line conductors 32 are arranged in parallel with each other.
  • the transmission line 20 may have a multi-core structure in which four or more transmission line conductors 32 are arranged in parallel.
  • the first thermocompression bonding step S1, the unnecessary area removing step S2, and the second thermocompression bonding are performed by sending the base 30, the coverlay 35, the first shield 40, and the second shield 45 at a predetermined pitch P1.
  • the step S3 and the first joining step S4 it is possible to manufacture a thin transmission line 20 having a reduced crosstalk by shielding over the entire circumference with a consistent line. Since the second conductor of the first shield 40 and the third conductor of the second shield are ultrasonically bonded without using an adhesive or a conductive paste, the production time (tact time) is reduced by the heat of the conductive paste or the adhesive. It can be shorter than the curing time, and the required components are minimized.
  • the ground conductor 33 disposed close to the input end and the output end of the transmission line conductor 32 is simultaneously connected to the third conductor 41 in a state where the second conductor 41 and the third conductor 46 are ultrasonically bonded. 46 can be ultrasonically bonded. And since the 1st shield 40 and the 2nd shield 45 are an integral structure, generation of wrinkles and stress distortion at the time of simultaneously ultrasonically bonding the ground conductor 33 to the third conductor 46 can be prevented. According to this configuration, since the third conductor 46 has an integral structure with the second shield 45, the surface of the third conductor 46 opposite to the joint surface with the ground conductor 33 is partially irradiated with the laser. The exposed windows V1 can be easily formed at predetermined intervals.
  • the transmission line manufacturing apparatus 1 and the transmission line manufacturing method according to the above-described embodiment make it possible to manufacture the thin transmission line 20 having excellent shielding performance and reduced crosstalk between transmission lines, and having a structure capable of saving space.
  • a first conductor 31 composed of a transmission line conductor 32 and a ground conductor 33 proximate to an input end and an output end of the transmission line conductor 32 is a sheet-shaped first conductor 31 made of a thermoplastic resin.
  • a base 30 formed on the first main surface 34a of the member 34 and having at least a plurality of transmission line conductors 32 formed at a predetermined pitch P1 among the first conductors 31, and a sheet-like thermoplastic resin covering each transmission line conductor 32 Coverlay 35, a first shield 40 formed on a second main surface 42a of a second base material 42 in which the second conductor 41 is made of a thermoplastic resin and a third conductor 46 is made of a heat conductive sheet.
  • the side of the second main surface 42a of the second shield 45 is thermocompression-bonded to each other, and the second conductor 41 and the third conductor 46, which are opposed to each other, are ultrasonically bonded to each other. And the third conductor 46 so as to surround the transmission line conductor 32.
  • the second conductor 41 of the first shield 40 and the third conductor 45 of the second shield 45 which are opposed to each other with the base 30 and the coverlay 35 interposed therebetween.
  • the transmission line 20 is shielded over the entire circumference so as to surround the transmission line conductor 32 in a state where the conductor 46 is ultrasonically joined, and the thin transmission line 20 has reduced crosstalk. Since the second conductor 41 of the first shield 40 and the third conductor 46 of the second shield 45 are ultrasonically bonded without using an adhesive or a conductive paste, at least the thickness of the adhesive or the conductive paste is reduced. It can be made thin. Also, the manufacturing cost can be greatly reduced as compared with the conventional method of reducing crosstalk by forming vias between transmission lines.
  • the end of the ground conductor 33 and the end of the third conductor 46 are ultrasonically bonded to each other. According to this configuration, external noise can be prevented by a shielding effect on the input end and the output end of the transmission line conductor 32.
  • a plurality of windows V1 are formed at predetermined intervals in the third base material 47, and a part of the third conductor 46 is exposed by the window V1 so as to be externally connectable.
  • the configuration is such that it is easy to externally connect a part of the third conductor 46 exposed by the window portion V1 to the housing or the ground wiring of the portable information terminal to enhance the shielding performance. .
  • cut surfaces are formed on both sides in the longitudinal direction. According to this configuration, the width dimension becomes constant by cutting both sides in the longitudinal direction.
  • the present invention is not limited to the above-described embodiment.
  • the configuration is such that the sheet-shaped base 30 is supplied in a reel state.
  • the sheet-shaped base 30 is stacked on a magazine in a sheet shape of a predetermined size, and is supplied to the production line from the magazine by a supply roller or the like. It is also possible.
  • the coverlay 35, the first shield 40, and the second shield 45 can be stacked on a magazine in a sheet shape of a predetermined size, and supplied from the magazine to a production line by a supply roller or the like.

Abstract

全周に亘ってシールドしてクロストークを低減した薄型の伝送線路を提供することを課題とする。 解決手段として、伝送線路(20)は、伝送線路導体(32)とグランド導体(33)とからなる第1導体(31)が第1基材(34)の第1主面(34a)に形成されたベース(30)を備え、第1基材(34)における第1主面(34a)とカバーレイ(35)、ベース(30)における第1主面(34a)の反対側の面と第1シールド(40)の第2主面(42a)の側、ベース(30)における第1主面(34a)の反対側の面と第1シールド(40)の第2主面(42a)の側、及びカバーレイ(35)と第2シールド(45)の第2主面(42a)の側とは互いに熱圧着されており、且つ、第2導体(41)と第3導体(46)とは互いに超音波接合されており、第2導体(41)と第3導体(46)とで伝送線路導体(32)を各々囲むように配設される。

Description

伝送線路、伝送線路の製造方法及び伝送線路の製造装置
 本発明は、伝送線路、伝送線路の製造方法及び伝送線路の製造装置に関する。
 近年、電子機器における高密度実装技術の発展は著しく、銅張積層板(CCL)を用いた薄型の伝送線路の需要は益々高まっている。
 従来、液晶ポリマーから成る絶縁体層の一主面の片側領域ないし中央領域に、互いに絶縁隔離して信号配線およびグランド配線を形成する工程と、前記絶縁体層の他主面に、前記グランド配線に接続可能な導電性突起部を有する導電性箔を位置決めして積層配置する工程と、前記積層体を加圧して一体化し、前記絶縁体層を貫挿する導電性突起部をグランド配線に電気的に接続させる工程と、前記絶縁体層を前記各配線の形成領域の外側に沿って非形成領域を折り曲げ、各配線の形成領域面および非形成領域面を対向させて一体化し、前記他主面の導電性箔をシールド層化する工程と、を有するフラット型シールドケーブルの製造方法が提案されている(特許文献1:特許第3497110号公報)。
 また、可撓性を有する誘電体素体(液晶ポリマー)と、前記誘電体素体に設けられている線状の信号線と、前記誘電体素体に設けられ、かつ、前記信号線と対向しているグランド導体と、前記誘電体素体の主面の法線方向において、前記信号線に関して前記グランド導体の反対側に設けられている補助グランド導体であって、該法線方向から平面視したときに、前記信号線を挟んでいると共に、該信号線に沿って延在している2つの主要部と、該2つの主要部を接続していると共に、該信号線と交差するブリッジ部とを含んでいる補助グランド導体と、前記補助グランド導体と前記グランド導体とを電気的に接続しているビアホール導体と、を備えており、前記法線方向において、前記信号線と前記補助グランド導体との間隔が前記信号線と前記グランド導体との間隔よりも小さい構成の高周波信号線路が提案されている(特許文献2:実用新案登録第3173143号公報)。
 そして、信号導体の両側に、信号導体と同一平面上に接地導体を配置し、これら信号導体および接地導体を上下双方向から電気絶縁薄膜で被覆し、導電性接着層を設けた面同士が向き合うようにして電気絶縁薄膜の外側に金属遮蔽層で被覆した信号伝送用ケーブルが提案されている(特許文献3:特開2006-202714号公報)。
特許第3497110号公報 実用新案登録第3173143号公報 特開2006-202714号公報
 伝送線路は、外来ノイズを抑えるシールド性能を維持しつつ、省スペースに対応した薄型構造が要求される。特に、伝送線路間のクロストークの低減が課題となっている。また、伝送線路の製造メーカに対して、伝送線路またはその中間体を、携帯情報端末等の急な需要拡大に対応可能な短い生産時間で生産することが要求される。
 ここで、伝送線路の中間体は、伝送線路となる前段階の半製品であって、特に、全周に亘ってシールドする構造となっている状態の半製品を指している。
 上記の課題に対して、特許文献1の伝送線路は、銅張積層板を折り曲げる構造上、全周に亘ってシールドする場合に薄型化が困難である。また、特許文献2の伝送線路は、側面にシールドが施されていないので、全周に亘ってシールドする構造に比べてシールド性能が劣るうえ、クロストークが大きくなる。そして、特許文献2および特許文献3の伝送線路は、クリームはんだや導電性接着剤等の導電ペーストを熱硬化させてグランド導体とシールド導体とを接続しているので、導電ペーストの熱硬化時間がネックとなって、生産時間(タクトタイム)を熱硬化時間よりも短くすることができない。また、接着剤を用いて銅張積層板同士を接合する場合にも同様の問題がある。従来技術として、伝送線路間にビアを打ってクロストーク低減を図る方法も考えられるが、多数のビア加工が必要となるため、製造コストが高くなってしまう。
 本発明は、上記事情に鑑みてなされ、対向配置された銅張積層板を互いに接合する構成によって全周に亘ってシールドしてクロストークを低減した薄型の伝送線路、及び薄型の伝送線路またはその中間体を一貫した製造ラインで製造し、かつ、接着剤や導電ペーストを用いずに銅張積層板同士を接合することによって生産時間(タクトタイム)を導電ペーストや接着剤の熱硬化時間よりも短くすることができる構成の伝送線路の製造方法並びに伝送線路の製造装置を提供することを目的とする。
 一実施形態として、以下に開示するような解決手段により、前記課題を解決する。
 本発明の伝送線路は、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されたベースと、前記伝送線路導体を覆うシート状で熱可塑性樹脂からなるカバーレイと、第2導体がシート状で熱可塑性樹脂からなる第2基材の第2主面に形成された第1シールドと、第3導体がシート状で熱可塑性樹脂からなる第3基材に形成された第2シールドと、を備え、前記第1基材における前記第1主面と前記カバーレイ、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、及び前記カバーレイと前記第2シールドの前記第2主面の側とは互いに熱圧着されており、
 前記第2導体と前記第3導体とは互いに超音波接合されており、前記第2導体と前記第3導体とで前記伝送線路導体を囲むように配設されることを特徴とする。
 本発明の伝送線路は、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されるとともに前記第1導体のうち少なくとも前記伝送線路導体が所定ピッチで複数形成されたベースと、各前記伝送線路導体を覆うシート状で熱可塑性樹脂からなるカバーレイと、第2導体がシート状で熱可塑性樹脂からなる第2基材の第2主面に形成された第1シールドと、第3導体がシート状で熱可塑性樹脂からなる第3基材に形成された第2シールドと、を備え、前記第1基材における前記第1主面と前記カバーレイ、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、及び前記カバーレイと前記第2シールドの前記第2主面の側とは互いに熱圧着されており、
 対向配置された前記第2導体と前記第3導体とは互いに超音波接合されており、前記第2導体と前記第3導体とで前記伝送線路導体を各々囲むように配設されていることを特徴とする。
 この構成によれば、ベース及びカバーレイを挟んで対向配置された第1シールドの第2導体と第2シールドの第3導体とが超音波接合された状態で伝送線路導体を囲むように、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路となる。そして、接着剤や導電ペーストを用いずに、第1シールドの第2導体と第2シールドの第3導体とが超音波接合されるので、少なくとも接着剤や導電ペーストの厚みの分薄型構造にできる。
 一例として、長手方向の両側に切断面が形成されている。この構成によれば、長手方向の両側が切断されているので幅寸法が一定となる。
 本発明の伝送線路の製造方法は、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体が所定ピッチでシート状の第1基材の第1主面に形成されたベースと、前記伝送線路導体を覆うシート状のカバーレイと、第2導体がシート状の第2基材の第2主面に形成された第1シールドと、第3導体がシート状の第3基材に形成された第2シールドとを備えた伝送線路、または、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されるとともに前記第1導体のうち少なくとも前記伝送線路導体が所定ピッチで複数形成されたベースと、各前記伝送線路導体を覆うシート状で熱可塑性樹脂からなるカバーレイと、第2導体がシート状で熱可塑性樹脂からなる第2基材の第2主面に形成された第1シールドと、第3導体がシート状で熱可塑性樹脂からなる第3基材に形成された第2シールドとを備えた伝送線路の製造方法であって、前記第1主面に前記カバーレイを熱圧着する第1熱圧着ステップと、前記カバーレイが熱圧着された第1中間体に対し、前記伝送線路導体と前記伝送線路導体との間の不要領域を除去して前記第1中間体を貫通する貫通穴を形成する不要領域除去ステップと、前記貫通穴が形成された第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着する第2熱圧着ステップと、前記第1シールドが熱圧着された状態で、前記第2導体の露出面に前記第3導体の露出面を超音波接合する第1接合ステップと、を有することを特徴とする。
 この構成によれば、ベース、カバーレイ、第1シールド、及び第2シールドを所定ピッチで送ることで、第1熱圧着ステップ、不要領域除去ステップ、第2熱圧着ステップ、及び第1接合ステップを経て、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路またはその中間体を一貫した製造ラインで製造できる。そして、接着剤や導電ペーストを用いずに、第1シールドの第2導体と第2シールドの第3導体とを超音波接合するので、生産時間(タクトタイム)を導電ペーストや接着剤の熱硬化時間よりも短くすることができ、必要な構成部材も最小限に抑えられる。
 前記第2熱圧着ステップは、前記第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着するとともに、前記カバーレイに前記第2シールドの前記第2主面の側を熱圧着することが好ましい。この構成によれば、第2中間体に対し、ベースにおける第1主面の反対側の面に、第1シールドの第2主面の側を熱圧着すると同時に、カバーレイに第2シールドの第2主面の側を熱圧着するので、第1シールドや第2シールドの皺の発生を防止できる。
 本発明の伝送線路の製造装置は、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体が所定ピッチでシート状の第1基材の第1主面に形成されたベース、または、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されるとともに前記第1導体のうち少なくとも前記伝送線路導体が所定ピッチで複数形成されたベースを供給するベース供給機と、前記伝送線路導体を覆うシート状のカバーレイを供給するカバーレイ供給機と、第2導体がシート状の第2基材の第2主面に形成された第1シールドを供給する第1シールド供給機と、第3導体がシート状の第3基材に形成された第2シールドを供給する第2シールド供給機と、
 第1主面に前記カバーレイを熱圧着する第1熱圧着機と、前記カバーレイが熱圧着された第1中間体に対し、前記伝送線路導体と前記伝送線路導体との間の不要領域を除去して前記第1中間体を貫通する貫通穴を形成する不要領域除去機と、前記貫通穴が形成された第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着する第2熱圧着機と、前記第1シールドが熱圧着された状態で、前記第2導体の露出面に前記第3導体の露出面を超音波接合する第1接合機と、を備えることを特徴とする。
 この構成によれば、第1熱圧着機、打ち抜き機、第2熱圧着機、及び第1接合機が連係動作して、ベース及びカバーレイを挟んで対向配置された第1シールドの第2導体と第2シールドの第3導体とを貫通穴を通して超音波接合する。よって、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路またはその中間体を一貫した製造ラインで製造できる。そして、接着剤や導電ペーストを用いずに、第1シールドの第2導体と第2シールドの第3導体とを超音波接合するので、生産時間(タクトタイム)を導電ペーストや接着剤の熱硬化時間よりも短くすることができ、短時間で生産できる。
 本発明の伝送線路によれば、接着剤や導電ペーストを用いずに、第1シールドの第2導体と第2シールドの第3導体とが超音波接合されるので、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路が実現できる。また、本発明の伝送線路の製造方法並びに伝送線路の製造装置によれば、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路またはその中間体を一貫した製造ラインで製造できる。
図1は本発明の実施形態の伝送線路の製造装置の配置構成を模式的に示す構成図である。 図2Aは本実施形態に係るベースを示す概略の平面図であり、図2Bは本実施形態に係るカバーレイがベースに熱圧着された第1中間体を示す概略の平面図であり、図2Cは本実施形態に係る貫通穴が形成された第2中間体を示す概略の平面図である。 図3Aは本実施形態に係る第2シールドが超音波接合された第4中間体を示す概略の平面図であり、図3Bは本実施形態に係る窓部が形成された第6中間体を示す概略の平面図である。 図4Aは本実施形態に係る伝送線路を示す概略の平面図であり、図4Bは本実施形態に係る伝送線路を示す概略の側面図である。 図5Aは本実施形態に係るベースを示す概略の断面図であり、図5Bは本実施形態に係るカバーレイがベースに熱圧着された第1中間体を示す概略の断面図であり、図5Cは本実施形態に係る貫通穴が形成された第2中間体を示す概略の断面図である。 図6Aは本実施形態に係る第2シールドが超音波接合された第4中間体を示す概略の断面図であり、図6Bは本実施形態に係る伝送線路を示す概略の断面図である。 図7Aは本実施形態に係る伝送線路の他の例を示す概略の断面図であり、図7Bは本実施形態に係る伝送線路の他の例を示す概略の断面図である。 図8Aは本実施形態に係る第1熱圧着機を模式的に示す図であり、図8Bは本実施形態に係る不要領域除去機を模式的に示す図であり、図8Cは本実施形態に係る第2熱圧着機を模式的に示す図である。 図9Aは本実施形態に係る超音波接合機を模式的に示す図であり、図9Bは本実施形態に係るレーザ加工機を模式的に示す図であり、図9Cは本実施形態に係る検査機を模式的に示す図である。 図10は本発明の実施形態の伝送線路の製造装置の他の例の配置構成を模式的に示す構成図である。 図11は本発明の実施形態に係る伝送線路の製造手順を示すフローチャート図である。
(第1の実施形態)
 以下、図面を参照して、本発明の実施形態について詳しく説明する。図1は本実施形態の伝送線路の製造装置1の例を模式的に示す構成図であり、図中の左側が上流側であり、図中の右側が下流側である。伝送線路の製造装置1は、上流側から順に、第1熱圧着機2、不要領域除去機3、第2熱圧着機4、第1接合機5、第2接合機6、レーザ加工機7、検査機8、分割取出し機9、移載機17が配設されており、そして、これらを制御するコントローラ10を備える。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。
 第1熱圧着機2の上流側には、ベース供給機11およびテンション調節機15と、カバーレイ供給機12およびテンション調節機15とがそれぞれ配設されている。第2熱圧着機4の上流側には、第1シールド供給機13とテンション調節機15、および、第2シールド供給機14とテンション調節機15が配設されている。ここで、テンション調節機15は一例としてテンションローラを有し、当該テンションローラの位置によってシート状のワーク(ベース30、カバーレイ35、第1中間体51、第1シールド40、第2シールド45)の張力を一定範囲内に保っている。
 そして、第2熱圧着機4の上流側にはピッチ送り機16が配設されており、また、検査機8の上流側にはピッチ送り機16が配設されている。ピッチ送り機16は一例として送りローラを有し、前記送りローラの送り量によってシート状のワーク(第1中間体52、第6中間体56)の送りピッチを一定値に保っている。
 図8Aは第1熱圧着機2を模式的に示す図である。第1熱圧着機2は一例としてヒータが内蔵されたプレス板を有し、対向配置された2つの前記プレス板によって、ベース30およびカバーレイ35を上下方向から挟んで加圧するとともに加熱して第1中間体51を形成する構成である。
 図8Bは不要領域除去機3を模式的に示す図である。不要領域除去機3は一例として打ち抜き刃および打ち抜き刃を受ける受台を有し、前記打ち抜き刃によって第1中間体51の不要領域R1を打ち抜くことで当該不要領域R1を除去して第1中間体51を貫通する貫通穴U1を形成し、第2中間体52を形成する構成である。上記以外の構成として、不要領域除去機3は、レーザ照射によって不要領域R1を除去するレーザ加工機を適用可能である。
 図8Cは第2熱圧着機4を模式的に示す図である。第2熱圧着機4は一例としてヒータが内蔵されたプレス板を有し、対向配置された2つの前記プレス板によって、第1シールド40および第2中間体52を上下方向から挟んで加圧するとともに加熱する構成であり、かつ、ベース30に第1シールド40を熱圧着すると同時に、カバーレイ35に第2シールド45を熱圧着する構成である。
 ここで、第1熱圧着機2と第2熱圧着機4とは、同様の装置構成とすることができる。これにより、装置のメンテナンスがし易くなる。
 図9Aは第1接合機5(第1超音波接合機)または第2接合機6(第2超音波接合機)を模式的に示す図である。第1接合機5は一例として振動体が内蔵された本体部と当該本体部に付設されて振動体から伝達された振動で超音波振動するヘッド部(ホーン)と当該ヘッド部を受ける受け部とを有する。第1接合機5(第1超音波接合機)は、対向配置された前記ヘッド部および受け部によって、ベース30に第1シールド40が熱圧着されるとともに、カバーレイ35に第2シールド45が熱圧着された状態のワークを上下方向から挟んで挟持するとともに前記ヘッド部を超音波振動させて超音波接合によって第4中間体54を形成する構成である。
 若しくは、第1接合機5(第1超音波接合機)は、対向配置された前記ヘッド部および受け部によって、ベース30に第1シールド40が熱圧着された第3中間体53に第2シールド45が重なった状態のワークを上下方向から挟んで挟持するとともに前記ヘッド部を超音波振動させて超音波接合によって第4中間体54を形成する構成である。
 ここで、第4中間体54は、伝送線路20となる前段階の半製品であって、全周に亘ってシールドする構造となっている状態の半製品を指している。
 第2接合機6(第2超音波接合機)は一例として振動体が内蔵された本体部と当該本体部に付設されて振動体から伝達された振動で超音波振動するヘッド部(ホーン)と当該ヘッド部を受ける受け部とを有し、対向配置された前記ヘッド部および受け部によって、第4中間体54を上下方向から挟んで挟持するとともに前記ヘッド部を超音波振動させて超音波接合によって第5中間体55を形成する構成である。ここで、第1接合機5と第2接合機6とは、同様の装置構成とすることができる。これにより、装置のメンテナンスがし易くなる。または、超音波振動するヘッド部を対向配置して第1接合機5と第2接合機6の両方の機能を兼ねた構成とする場合もある。
 図9Bはレーザ加工機7を模式的に示す図である。レーザ加工機7は、レーザ照射によって所定領域を除去して第3導体46を一部露出させて第6中間体56を形成する構成である。
 図9Cは検査機8を模式的に示す図である。検査機8は、所定間隔で下向きに突出した接触ピンを伝送線路導体32に接触させて通電することで伝送線路導体32が断線していないか導通レベルが正常範囲内であるか否かを検査する構成である。上記以外の構成として、検査機8は、カメラによって伝送線路導体32の画像を撮像し画像解析することで伝送線路導体32が断線していないか導通レベルが正常範囲内であるか否かを検査する構成とする場合があり、または、検査機8は、伝送線路導体32を通電することによる電気特性検査と、伝送線路導体32を撮像し画像解析することによる外観特性検査との両方を行う構成とする場合がある。
 図1に示すように、検査機8の下流側には第6中間体56から伝送線路20を取り出す分割取出し機9が配設されている。分割取出し機9は一例として打ち抜き刃および打ち抜き刃を受ける受台を有し、前記打ち抜き刃によって、インライン検査された第6中間体56を所定のカットラインに沿って打ち抜くことで伝送線路20を分離して、伝送線路20を取り出す構成である。上記以外の構成として、分割取出し機9は、インライン検査された第6中間体56を所定のカットラインに沿ってスクライブして伝送線路20を分離して、伝送線路20を取り出す構成とする場合があり、または、分割取出し機9は、インライン検査された第6中間体56を所定のカットラインに沿ってレーザ照射して伝送線路20を分離して、伝送線路20を取り出す構成とする場合がある。
 そして、分割取出し機9の下流側には伝送線路20を収納するトレイ18が配置されている。上述の一貫した製造ラインで製造されインライン検査された伝送線路20は、移載機17によって、一例として、真空吸着された状態で搬送されてトレイ18に収納される。
 本実施形態によれば、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路20を一つの製造ラインで一貫して製造できる。そして、接着剤や導電ペーストを用いずに、熱圧着や超音波接合を行って伝送線路20を製造するので、生産時間(タクトタイム)を導電ペーストや接着剤の熱硬化時間よりも短くすることができ、必要な構成部材も最小限に抑えられる。
 上述のとおり、第2熱圧着機4は、ベース30に第1シールド40を熱圧着するとともに、第2シールド45を熱圧着する構成である。この構成によれば、第1シールド40と第2シールド45とを一括して同時に熱圧着するので、熱圧着の際に、第1シールド40や第2シールド45に皺が出来るのを防止できる。
 上記の製造装置は一例である。伝送線路の製造装置1は上記実施形態に限定されない。上記以外の構成として、例えば接合機5の下流側の製造設備や検査機器等を省く場合がある。この場合、全周に亘ってシールドする構造の第4中間体54の状態で、伝送線路の製造装置1での製造が完了する。そして、リール状態、短冊状態、個装状態等で搬送容器やトレイに収納されるなどして、第4中間体54として出荷される、または第4中間体54が別の製造ラインにて後加工される、或いは第4中間体54が電子機器の組立ラインで組み立て加工されて、伝送線路20となる。
 上記以外の構成として、例えば第2超音波接合機6に代えてはんだ接合機を配置し、はんだ接合機に対向配置されたヘッド部および受け部によって、第4中間体54を上下方向から挟んで挟持するとともにヘッド部からはんだを供給し加熱する等して、はんだ接合によって第5中間体55を形成する構成とする場合がある。または、第2超音波接合機6に代えて接着接合機を配置し、接着剤や導電ペーストを用いた接合によって第5中間体55を形成する構成とする場合がある。
 また、上記以外の構成として、例えばレーザ加工機7に代えてエッチング加工機を配置し、エッチングによって所定領域を除去して第3導体46を一部露出させて第6中間体56を形成する構成とする場合がある。
 続いて、本発明に係る伝送線路の製造装置1の他の例について、以下に説明する。
 図10は上記実施形態の伝送線路の製造装置1の他の例の配置構成を模式的に示す構成図である。図10の例では、第2熱圧着機4の上流側に、第1シールド供給機13およびテンション調節機15が配設されている。また、第1接合機5の上流側に、第2シールド供給機14およびテンション調節機15が配設されている。この構成の場合は、第2熱圧着機4によって、ベース30に第1シールド40が熱圧着されて第3中間体53となる。そして、第1接合機5によって、第3中間体53に第2シールド45が重なった状態のワークに第2シールド45が超音波溶着されて第4中間体54となる。
 この構成によれば、例えば、第1シールド40のサイズや熱容量が第2シールド45のサイズや熱容量よりも大きい場合に、ベース30に第1シールド40を熱圧着することが容易かつ確実となり、また、ベース30に第2シールド45を超音波溶着することが容易かつ確実となる。
 伝送線路20のサイズや材質等の規格や構成部品のサイズや材質等の規格に応じて図1の構成や図10の構成を選択することができ、また、図1や図2の構成の製造設備や検査機器等を適宜追加したり省いたりすることが可能である。
 続いて、本発明に係る伝送線路20及び伝送線路20の製造方法について、以下に説明する。
 図11は、伝送線路20の製造手順を示すフローチャート図である。伝送線路20は一例として、第1熱圧着ステップS1、不要領域除去ステップS2、第2熱圧着ステップS3、第1接合ステップS4、第2接合ステップS5、レーザ加工ステップS6、検査ステップS7、分割ステップS8の順に製造される。
 上記の製造手順は一例である。伝送線路20の製造手順は、上記以外の構成として、第1接合ステップS4と第2接合ステップS5とを同時に行うことが可能であり、第2接合ステップS5を省くことが可能である。また、上記以外に、レーザ加工ステップS6を省くことが可能であり、検査ステップS7を省くことが可能であり、分割ステップS8を省くことが可能である。そして、第4中間体54、第5中間体55、第6中間体56、または伝送線路20を、一つのシートに長手方向の所定ピッチで複数配された状態で出荷し、次工程の電子機器の組立ラインにてシートを分割し、伝送線路20を取り出して使用する場合がある。
 図2Aはベース30を示す概略の平面図であり、図2Bは第1中間体51を示す概略の平面図であり、図2Cは第2中間体52を示す概略の平面図である。また、図3Aは第4中間体54を示す概略の平面図であり、図3Bは第6中間体56を示す概略の平面図である。そして、図4Aは伝送線路20を示す概略の平面図であり、図4Bは伝送線路20を示す概略の側面図である。
 図5Aはベース30を伝送線路導体32の位置にて示す概略の断面図であり、同様に、図5Bは第1中間体51を示す概略の断面図であり、図5Cは第2中間体52を示す概略の断面図である。また、図6Aは第4中間体54を示す概略の断面図であり、そして、図6Bは伝送線路20を伝送線路導体32の位置にて示す概略の断面図である。
 図2Aと図5Aとに示すように、ベース30は銅張積層板(CCL)からなり、伝送線路導体32が長手方向の所定ピッチP1でシート状の第1基材34の第1主面34aに形成されている。第1導体31は、直線状に形成された伝送線路導体32と、伝送線路導体32の入力端と出力端とにそれぞれ近接し、入力端や出力端に近接する側が「U字状」または「コ字状」に形成されたグランド導体33とからなる。一例として、グランド導体33および伝送線路導体32の入力端および出力端に、一例として、はんだや導電ペーストを介してコネクタが接合される(不図示)。上記以外の構成として、第1導体31が、伝送線路導体32の入力端と出力端とにそれぞれ一対一で近接し、「U字状」または「コ字状」に形成された複数のグランド導体33とからなる場合がある。
 ベース30は、シート状の第1基材34に、伝送線路導体32が長手方向の所定ピッチで複数配されており、図2Aの状態では、伝送線路導体32と伝送線路導体32との間に不要領域R1がある。
 第1導体31は一例として、銅箔からなる。第1基材34は一例として、熱可塑性樹脂からなる。第1基材34は一例として、液晶ポリマー(LCP)、ポリイミド(PI)、ポリアミド(PA)、またはポリエーテルエーテルケトン(PEEK)からなる。シート状のベース30は一例として、リール状態でベース供給機11に取り付けられて、連続加工可能に供給される。
 第1導体31は一例として、厚みが5[μm]以上かつ25[μm]以下の銅箔である。第1基材34は一例として、厚みが50[μm]以上かつ150[μm]以下の液晶ポリマー(LCP)である。第1導体31は一例として、銅張積層板(CCL)をパターンエッチングして形成される。
 ベース30は一例として、第1熱圧着ステップS1の前処理として、プラズマ照射装置によって、第1導体31が貼り合わさった側の面(第1主面34a)に酸素含有プラズマを照射して、有機物を除去するとともに、改質する。酸素含有プラズマを照射することで、第1熱圧着の際、密着度が向上する。上記以外に、第1熱圧着機2の上流側にプラズマ照射装置を配設して、第1主面34aに酸素含有プラズマを照射する場合がある(不図示)。
 カバーレイ35は一例として、熱可塑性樹脂からなる。カバーレイ35は一例として、液晶ポリマー(LCP)、ポリイミド(PI)、ポリアミド(PA)、またはポリエーテルエーテルケトン(PEEK)からなる。一例として、カバーレイ35は、リール状態でカバーレイ供給機12に取り付けられて、連続加工可能に供給される。
 カバーレイ35は一例として、厚みが25[μm]以上かつ125[μm]以下の液晶ポリマー(LCP)である。
 第1シールド40は一例として銅張積層板(CCL)からなり、第2導体41がシート状の第2基材42の第2主面42aに形成されている。第2導体41は、第2基材42の全面に貼り合わされている場合、若しくはメッシュ状で貼り合わされている場合がある。
 第2導体41は一例として、銅箔からなる。第2基材42は一例として、熱可塑性樹脂からなる。第2基材42は一例として、液晶ポリマー(LCP)、ポリイミド(PI)、ポリアミド(PA)、またはポリエーテルエーテルケトン(PEEK)からなる。第1シールド40は一例として、リール状態で第1シールド供給機13に取り付けられて、連続加工可能に供給される。
 第2導体41は一例として、厚みが5[μm]以上かつ25[μm]以下の銅箔である。第2基材42は一例として、厚みが5[μm]以上かつ25[μm]以下のポリイミド(PI)である。第1シールド40は一例として、銅張積層板(CCL)がそのままの状態で用いられる。
 第1シールド40は一例として、第2熱圧着ステップS3の前処理として、プラズマ照射装置によって、第2導体41が貼り合わされている側の面(第2主面42a)に酸素含有プラズマを照射して、有機物を除去するとともに、改質する。酸素含有プラズマを照射することで、第2熱圧着の際、密着度が向上する。上記以外に、第2熱圧着機4の上流側にプラズマ照射装置を配設して、第2主面42aに酸素含有プラズマを照射する場合がある(不図示)。
 第2シールド45は一例として、銅張積層板(CCL)からなり、第3導体46がシート状の第3基材47の片面に形成されている。第3導体46は、第3基材47の全面に貼り合わされている場合、若しくはメッシュ状で貼り合わされている場合がある。
 第3導体46は一例として、銅箔からなる。第3基材47は一例として、熱可塑性樹脂からなる。第3基材47は一例として、液晶ポリマー(LCP)、ポリイミド(PI)、ポリアミド(PA)、またはポリエーテルエーテルケトン(PEEK)からなる。第2シールド45は一例として、リール状態で第2シールド供給機14に取り付けられて、連続加工可能に供給される。
 第3導体46は一例として、厚みが5[μm]以上かつ25[μm]以下の銅箔である。第3基材47は一例として、厚みが5[μm]以上かつ25[μm]以下のポリイミド(PI)である。第2シールド45は一例として、銅張積層板(CCL)がそのままの状態で用いられる。第2シールド45は一例として、第1シールド40と同一材料構成である。
 第2シールド45は一例として、第1接合ステップS4の前処理として、プラズマ照射装置によって、第3導体46が貼り合わされている側の面に酸素含有プラズマを照射して、有機物を除去するとともに、改質する。酸素含有プラズマを照射することで、第1接合ステップS4における、密着度が向上する。上記以外に、第1接合機5の上流側にプラズマ照射装置を配設して、第3導体46が貼り合わさった側の面に酸素含有プラズマを照射する場合がある(不図示)。
 第1熱圧着ステップS1は、図2Bと図5Bとに示すように、第1基材34の第1主面34aにカバーレイ35を熱圧着する。一例として、第1基材34とカバーレイ35を同種材料として、第1基材34及びカバーレイ35の融点以下の加熱温度であり、かつ、荷重たわみ温度または荷重たわみ温度を中心としてプラスマイナス20[℃]以内の加熱温度、好ましくはプラスマイナス5[℃]以内の加熱温度、より好ましくはプラスマイナス2[℃]以内の加熱温度で、所定圧力で所定時間加圧しながら加熱して熱圧着し、第1中間体51とする。
 第1熱圧着ステップS1は一例として、180[℃]以上で280[℃]以下の加熱温度、10[MPa]以上で60[MPa]以下の加圧力、5[秒]以上で240[秒]以下の加熱・加圧時間で熱圧着する。熱圧着は一例として、大気中で行う。
 不要領域除去ステップS2は、図2Cと図5Cとに示すように、第1中間体51に対し、伝送線路導体32と伝送線路導体32との間の不要領域R1を打ち抜くことで除去して第1中間体51を貫通する貫通穴U1を形成し、第2中間体52とする。貫通穴U1は一例として、長方形状、または角丸の長方形状であり、長手方向に所定間隔P2で形成される。所定間隔P2は2.5[mm]以下が好ましい。これにより、クロストークの低減効果が高くなる。一例として、貫通穴U1の長さは伝送線路導体32の全長に対して0.2倍以上かつ1.0倍未満に設定される。
 伝送線路導体32の全長が500[mm]超の場合、一例として、所定間隔P2は1.5[mm]以上に設定される。これにより、第2導体41と第3導体46との接合が容易となる。伝送線路導体32の全長が500[mm]以下の場合、一例として、所定間隔P2は0.5[mm]未満に設定される。これにより、クロストークの低減効果がより高くなる。一例として、所定間隔P2は0.0[mm]に設定される。これにより、クロストークの低減効果が最も高くなる。
 第2熱圧着ステップS3は、図3Aと図6Aとに示すように、第2中間体52に対し、ベース30における第1主面34aと反対側の面に、第1シールド40の第2主面42aの側を熱圧着する、それと同時に、ベース30における第1主面34aに第2シールド46を熱圧着する。一例として、第1基材34と第2基材42とを異種材料として、第2基材42と第3基材47とを同一材料として、第1基材34の融点以下の加熱温度であり、かつ、第1基材34の荷重たわみ温度または第1基材34の荷重たわみ温度を中心としてプラスマイナス20[℃]以内の加熱温度、好ましくはプラスマイナス5[℃]以内の加熱温度、より好ましくはプラスマイナス2[℃]以内の加熱温度で、所定圧力で所定時間加圧しながら加熱して熱圧着する。
 若しくは、第2熱圧着ステップS3は、第2中間体52に対し、ベース30における第1主面34aの反対側の面に、第1シールド40の第2主面42aの側を熱圧着する。一例として、第1基材34と第2基材42を異種材料として、第1基材34の融点以下の加熱温度であり、かつ、第1基材34の荷重たわみ温度または第1基材34の荷重たわみ温度を中心としてプラスマイナス20[℃]以内の加熱温度、好ましくはプラスマイナス5[℃]以内の加熱温度、より好ましくはプラスマイナス2[℃]以内の加熱温度で、所定圧力で所定時間加圧しながら加熱して熱圧着する。
 第2熱圧着ステップS3は一例として、180[℃]以上で280[℃]以下の加熱温度、10[MPa]以上で60[MPa]以下の加圧力、5[秒]以上で240[秒]以下の加熱・加圧時間で熱圧着する。熱圧着は一例として、大気中で行う。
 第2熱圧着ステップS3に続いて、第1接合ステップS4は、第2導体41の露出面に第3導体46の露出面を超音波接合する。一例として、第2導体41と第3導体46を同一材料として、ホーンの押圧力が500[N]以上かつ2500[N]以下の押圧力で押圧しながら、周波数が15[kHz]以上かつ200[kHz]以下の超音波振動を加えることで超音波接合し、第4中間体54とする。
 上述のように、一貫した製造ラインで製造された第4中間体54は、全周に亘ってシールドする構造の第4中間体54として出荷される、または第4中間体54が別の製造ラインにて後加工される、或いは第4中間体54が電子機器の組立ラインで組み立て加工されて、伝送線路20となる。
 図11の例では、第1接合ステップS4に引き続いて第2接合ステップS5を行う。第2接合ステップS5は、第4中間体54に対し、グランド導体33の端部に第3導体46の端部を超音波接合する。ここで、グランド導体33の端部は、伝送線路導体32の側の各々の端部である。また、第3導体46の端部は、両方の端部である。一例として、第2導体41と第3導体46を同一材料として、ホーンの押圧力が500[N]以上かつ2500[N]以下の押圧力で押圧しながら、周波数が15[kHz]以上かつ200[kHz]以下の超音波振動を加えることで超音波接合し、第5中間体55とする。
 図11の例では、第2接合ステップS5に引き続いてレーザ加工ステップS6を行う。レーザ加工ステップS6は、図3Bに示すように、第5中間体55に対し、第3導体46におけるグランド導体33との接合面の反対側の面を、レーザ照射にて一部露出させて所定間隔で窓部V1を形成し、第6中間体56とする。窓部V1は一例として、四角形状または角丸四角形状であり、所定間隔で複数形成される。レーザ照射は、所定出力で所定時間照射する。レーザ照射は、既知の設備と既知の工法が適用可能である。なお、レーザ加工ステップS6は、省く場合がある。
 図11の例では、レーザ加工ステップS6に引き続いて検査ステップS7を行う。検査ステップS7は、第6中間体56に対し、検査機8の接触ピンを伝送線路導体32に接触させて通電することで伝送線路導体32が断線していないこと、及び導通レベルが正常範囲内であることを検査する。導通検査は、既知の設備と既知の工法が適用可能である。なお、検査ステップS7は、ここでは行わず、別の製造ラインで行う場合がある。
 図11の例では、検査ステップS7に引き続いて分割ステップS8を行う。分割ステップS8は、分割取出し機9の打ち抜き刃によって、インライン検査された第6中間体56を所定のカットラインに沿って打ち抜くことで、伝送線路20を分離して取り出す。分割取出しは、既知の設備と既知の工法が適用可能である。なお、分割ステップS8は、ここでは行わず、別の製造ラインで行う場合がある。
 そして、上述のように、一貫した製造ラインで製造されてインライン検査された伝送線路20は、移載機17によって、一例として、真空吸着された状態で搬送されてトレイ18に収納される。
 一例として、図4Aと図6Bは伝送線路導体32が2つ平行して配設されている二芯構造の伝送線路20である。上記以外の構成として、図7Aに示すように、伝送線路導体32が3つそれぞれ平行して配設されている三芯構造の伝送線路20とする場合がある。或いは、図7Bに示すように、伝送線路導体32が4つ以上それぞれ平行して配設されている多芯構造の伝送線路20とする場合がある。
 本実施形態によれば、ベース30、カバーレイ35、第1シールド40、及び第2シールド45を所定ピッチP1で送ることで、第1熱圧着ステップS1、不要領域除去ステップS2、第2熱圧着ステップS3、および、第1接合ステップS4を経て、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路20を一貫したラインで製造できる。そして、接着剤や導電ペーストを用いずに、第1シールド40の第2導体と第2シールドの第3導体とを超音波接合するので、生産時間(タクトタイム)を導電ペーストや接着剤の熱硬化時間よりも短くすることができ、必要な構成部材も最小限に抑えられる。
 また、この構成によれば、第2導体41と第3導体46とが超音波接合された状態で、伝送線路導体32の入力端および出力端に近接配置されたグランド導体33を同時に第3導体46に超音波接合することができる。そして、第1シールド40と第2シールド45とが一体構造体となっているので、グランド導体33を同時に第3導体46に超音波接合する際の皺の発生や応力歪みを防止できる。そして、この構成によれば、第3導体46は第2シールド45と一体構造体となっているので、第3導体46におけるグランド導体33との接合面の反対側の面をレーザにて一部露出させる窓部V1を所定間隔で形成することが容易にできる。
 上述した実施形態の伝送線路の製造装置1並びに伝送線路の製造方法によって、シールド性能に優れるとともに伝送線路間のクロストークを低減した薄型で、省スペースに対応した構造の伝送線路20が製造できる。
 本実施形態の伝送線路20は、伝送線路導体32と伝送線路導体32の入力端および出力端にそれぞれ近接するグランド導体33とからなる第1導体31がシート状で熱可塑性樹脂からなる第1基材34の第1主面34aに形成されるとともに第1導体31のうち少なくとも伝送線路導体32が所定ピッチP1で複数形成されたベース30と、各伝送線路導体32を覆うシート状で熱可塑性樹脂からなるカバーレイ35と、第2導体41がシート状で熱可塑性樹脂からなる第2基材42の第2主面42aに形成された第1シールド40と、第3導体46がシート状で熱可塑性樹脂からなる第3基材47に形成された第2シールド45と、を備え、第1基材34における第1主面34aとカバーレイ35、ベース30における第1主面34aの反対側の面と第1シールド40の第2主面42aの側、ベース30における第1主面34aの反対側の面と第1シールド40の第2主面42aの側、及びカバーレイ35と第2シールド45の第2主面42aの側とは互いに熱圧着されており、且つ、対向配置された第2導体41と第3導体46とは互いに超音波接合されており、第2導体41と第3導体46とで伝送線路導体32を各々囲むように配設されている。
 図4A,図4B及び図6Bに示すように、本実施形態によれば、ベース30及びカバーレイ35を挟んで対向配置された第1シールド40の第2導体41と第2シールド45の第3導体46とが超音波接合された状態で伝送線路導体32を囲むように、全周に亘ってシールドしてクロストークを低減した薄型の伝送線路20となる。そして、接着剤や導電ペーストを用いずに、第1シールド40の第2導体41と第2シールド45の第3導体46とが超音波接合されるので、少なくとも接着剤や導電ペーストの厚みの分薄型構造にできる。また、従来技術の、伝送線路間にビアを打ってクロストーク低減を図る方法に比べて、製造コストを大幅に削減できる。
 一例として、グランド導体33の端部と第3導体46の端部とは互いに超音波接合されている。この構成によれば、伝送線路導体32の入力端および出力端へのシールド効果によって外来ノイズが防止できる。
 また、第3基材47に所定間隔で複数の窓部V1が形成されており、窓部V1によって第3導体46の一部が外部接続可能に露出している。この構成によれば、一例として、窓部V1によって露出している第3導体46の一部を携帯情報端末の筐体やグランド配線と外部接続してシールド性能を高めることが容易な構成となる。
 図6Bに示すように、長手方向の両側に切断面が形成されている。この構成によれば、長手方向の両側が切断されることで幅寸法が一定となる。
 以上、本発明は、上述した実施の形態に限定されるものではない。上述の例では、シート状のベース30をリール状態で供給する構成としたが、これに限定されず、所定サイズの枚葉状でマガジンに積み重ねて、前記マガジンから供給ローラ等によって製造ラインに供給することも可能である。カバーレイ35、第1シールド40、第2シールド45についても同様に、所定サイズの枚葉状でマガジンに積み重ねて、前記マガジンから供給ローラ等によって製造ラインに供給することも可能である。

Claims (13)

  1.  伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されたベースと、前記伝送線路導体を覆うシート状で熱可塑性樹脂からなるカバーレイと、第2導体がシート状で熱可塑性樹脂からなる第2基材の第2主面に形成された第1シールドと、第3導体がシート状で熱可塑性樹脂からなる第3基材に形成された第2シールドと、を備え、
     前記第1基材における前記第1主面と前記カバーレイ、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、及び前記カバーレイと前記第2シールドの前記第2主面の側とは互いに熱圧着されており、
     前記第2導体と前記第3導体とは互いに超音波接合されており、前記第2導体と前記第3導体とで前記伝送線路導体を囲むように配設されること
    を特徴とする伝送線路。
  2.  伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されるとともに前記第1導体のうち少なくとも前記伝送線路導体が所定ピッチで複数形成されたベースと、各前記伝送線路導体を覆うシート状で熱可塑性樹脂からなるカバーレイと、第2導体がシート状で熱可塑性樹脂からなる第2基材の第2主面に形成された第1シールドと、第3導体がシート状で熱可塑性樹脂からなる第3基材に形成された第2シールドと、を備え、
     前記第1基材における前記第1主面と前記カバーレイ、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、前記ベースにおける前記第1主面の反対側の面と前記第1シールドの前記第2主面の側、及び前記カバーレイと前記第2シールドの前記第2主面の側とは互いに熱圧着されており、
     対向配置された前記第2導体と前記第3導体とは互いに超音波接合されており、前記第2導体と前記第3導体とで前記伝送線路導体を各々囲むように配設されていること
    を特徴とする伝送線路。
  3.  長手方向の両側に切断面が形成されていること
    を特徴とする請求項1または2記載の伝送線路。
  4.  前記グランド導体の端部と前記第3導体の端部とは互いに超音波接合されていること
    を特徴とする請求項1~3のいずれか一項記載の伝送線路。
  5.  前記第3基材に所定間隔で複数の窓部が形成されており、前記窓部によって前記第3導体の一部が外部接続可能に露出していること
    を特徴とする請求項1~4のいずれか一項記載の伝送線路。
  6.  伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体が所定ピッチでシート状の第1基材の第1主面に形成されたベースと、前記伝送線路導体を覆うシート状のカバーレイと、第2導体がシート状の第2基材の第2主面に形成された第1シールドと、第3導体がシート状の第3基材に形成された第2シールドとを備えた伝送線路、または、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されるとともに前記第1導体のうち少なくとも前記伝送線路導体が所定ピッチで複数形成されたベースと、各前記伝送線路導体を覆うシート状で熱可塑性樹脂からなるカバーレイと、第2導体がシート状で熱可塑性樹脂からなる第2基材の第2主面に形成された第1シールドと、第3導体がシート状で熱可塑性樹脂からなる第3基材に形成された第2シールドとを備えた伝送線路の製造方法であって、
     前記第1主面に前記カバーレイを熱圧着する第1熱圧着ステップと、
     前記カバーレイが熱圧着された第1中間体に対し、前記伝送線路導体と前記伝送線路導体との間の不要領域を除去して前記第1中間体を貫通する貫通穴を形成する不要領域除去ステップと、
     前記貫通穴が形成された第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着する第2熱圧着ステップと、
     前記第1シールドが熱圧着された状態で、前記第2導体の露出面に前記第3導体の露出面を超音波接合する第1接合ステップと、を有すること
    を特徴とする伝送線路の製造方法。
  7.  前記第2熱圧着ステップは、前記第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着するとともに、前記カバーレイに前記第2シールドの前記第2主面の側を熱圧着すること
    を特徴とする請求項6記載の伝送線路の製造方法。
  8.  前記第2導体と前記第3導体とが超音波接合された状態で、前記グランド導体の端部に前記第3導体の端部を超音波接合する第2接合ステップを有すること
    を特徴とする請求項6または7記載の伝送線路の製造方法。
  9.  前記グランド導体と前記第3導体とが超音波接合された状態で、レーザ照射にて前記第3導体の一部を露出させるレーザ加工ステップを有すること
    を特徴とする請求項8記載の伝送線路の製造方法。
  10.  伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体が所定ピッチでシート状の第1基材の第1主面に形成されたベース、または、伝送線路導体と前記伝送線路導体の入力端および出力端にそれぞれ近接するグランド導体とからなる第1導体がシート状で熱可塑性樹脂からなる第1基材の第1主面に形成されるとともに前記第1導体のうち少なくとも前記伝送線路導体が所定ピッチで複数形成されたベースを供給するベース供給機と、前記伝送線路導体を覆うシート状のカバーレイを供給するカバーレイ供給機と、第2導体がシート状の第2基材の第2主面に形成された第1シールドを供給する第1シールド供給機と、第3導体がシート状の第3基材に形成された第2シールドを供給する第2シールド供給機と、
     第1主面に前記カバーレイを熱圧着する第1熱圧着機と、
     前記カバーレイが熱圧着された第1中間体に対し、前記伝送線路導体と前記伝送線路導体との間の不要領域を除去して前記第1中間体を貫通する貫通穴を形成する不要領域除去機と、
     前記貫通穴が形成された第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着する第2熱圧着機と、
     前記第1シールドが熱圧着された状態で、前記第2導体の露出面に前記第3導体の露出面を超音波接合する第1接合機と、を備えること
    を特徴とする伝送線路の製造装置。
  11.  前記第2熱圧着機は、前記第2中間体に対し、前記ベースにおける前記第1主面の反対側の面に前記第1シールドの前記第2主面の側を熱圧着するとともに、前記カバーレイに前記第2シールドの前記第2主面の側を熱圧着する構成であること
    を特徴とする請求項10記載の伝送線路の製造装置。
  12.  前記第2導体と前記第3導体とが超音波接合された状態で、前記グランド導体の端部に前記第3導体の端部を超音波接合する第2接合機を備えること
    を特徴とする請求項10または11記載の伝送線路の製造装置。
  13.  前記グランド導体と前記第3導体とが超音波接合された状態で、レーザ照射にて前記第3導体の一部を露出させるレーザ加工機を備えること
    を特徴とする請求項12記載の伝送線路の製造装置。
PCT/JP2019/019210 2018-07-06 2019-05-15 伝送線路、伝送線路の製造方法及び伝送線路の製造装置 WO2020008729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207027590A KR102369036B1 (ko) 2018-07-06 2019-05-15 전송선로, 전송선로의 제조 방법 및 전송선로의 제조 장치
CN201980022963.2A CN111971850B (zh) 2018-07-06 2019-05-15 传输线路、传输线路的制造方法以及传输线路的制造装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-128671 2018-07-06
JP2018128671 2018-07-06
JP2018195188A JP6507302B1 (ja) 2018-07-06 2018-10-16 伝送線路、伝送線路の製造方法及び伝送線路の製造装置
JP2018-195188 2018-10-16
JP2019029386A JP6611293B1 (ja) 2019-02-21 2019-02-21 伝送線路、伝送線路の製造方法及び伝送線路の製造装置
JP2019-029386 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020008729A1 true WO2020008729A1 (ja) 2020-01-09

Family

ID=69060990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019210 WO2020008729A1 (ja) 2018-07-06 2019-05-15 伝送線路、伝送線路の製造方法及び伝送線路の製造装置

Country Status (4)

Country Link
KR (1) KR102369036B1 (ja)
CN (1) CN111971850B (ja)
TW (1) TWI748191B (ja)
WO (1) WO2020008729A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500905A (ja) * 1991-06-14 1994-01-27 テレフオンアクチーボラゲツト エル エム エリクソン 可撓性の細片線導体を備えた装置及び同装置の製造方法
JPH06232217A (ja) * 1993-02-04 1994-08-19 Mitsubishi Electric Corp フィルムキャリア信号伝送線路
JPH07111114A (ja) * 1993-10-14 1995-04-25 Yazaki Corp シールド付テープ電線の製造方法
JPH11176253A (ja) * 1997-12-16 1999-07-02 Yamaichi Electron Co Ltd フラット型ケーブル
JP2001274586A (ja) * 2000-03-27 2001-10-05 Kuraray Co Ltd 電磁波シールド伝送回路およびその製造方法
WO2007133405A2 (en) * 2006-05-02 2007-11-22 Multi-Fineline Electronix, Inc. Shielded flexible circuits and methods for manufacturing same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113450B2 (ja) 1972-05-12 1976-04-28
US20020130739A1 (en) * 1998-09-10 2002-09-19 Cotton Martin A. Embedded waveguide and embedded electromagnetic shielding
JP3497110B2 (ja) * 1999-11-09 2004-02-16 山一電機株式会社 フラット型シールドケーブル
JP2003022714A (ja) * 2001-07-09 2003-01-24 Sumitomo Wiring Syst Ltd アース接続部を備えたシールド付きフラットケーブル
JP2003031035A (ja) * 2001-07-17 2003-01-31 Dainippon Printing Co Ltd 電磁波シールド材および電磁波シールド付きフラットケーブル
EP1698217A1 (en) * 2003-12-24 2006-09-06 Molex Incorporated Electromagnetically shielded slot transmission line
JP2006202714A (ja) 2005-01-19 2006-08-03 Techno Core:Kk 信号伝送用ケーブルおよびアンテナ装置
CN101433132B (zh) * 2006-05-02 2012-07-04 富多电子公司 一种屏蔽的柔性电路及其形成方法、柔性电缆
JP2008300343A (ja) * 2007-06-01 2008-12-11 Techno Core:Kk 信号伝送用ケーブル
CN101932188B (zh) * 2009-06-18 2013-05-08 宏达国际电子股份有限公司 柔性印刷电路板及其组成方法
JP3173143U (ja) 2010-12-03 2012-01-26 株式会社村田製作所 高周波信号線路
JP5704144B2 (ja) * 2012-10-10 2015-04-22 株式会社村田製作所 高周波信号線路及びその製造方法
US9462684B2 (en) * 2012-11-14 2016-10-04 Hitachi Metals, Ltd. Wiring material, method for fabricating the same, and secondary battery device and electronic equipment using the same
CN204885387U (zh) * 2013-04-30 2015-12-16 株式会社村田制作所 高频传输线路
JP6641079B2 (ja) * 2014-10-29 2020-02-05 タツタ電線株式会社 プリント基板の製造方法及び導電性部材の接合方法
JP6369314B2 (ja) * 2014-12-12 2018-08-08 株式会社村田製作所 伝送線路
WO2018037871A1 (ja) * 2016-08-26 2018-03-01 株式会社村田製作所 樹脂多層基板、伝送線路、モジュールおよびモジュールの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500905A (ja) * 1991-06-14 1994-01-27 テレフオンアクチーボラゲツト エル エム エリクソン 可撓性の細片線導体を備えた装置及び同装置の製造方法
JPH06232217A (ja) * 1993-02-04 1994-08-19 Mitsubishi Electric Corp フィルムキャリア信号伝送線路
JPH07111114A (ja) * 1993-10-14 1995-04-25 Yazaki Corp シールド付テープ電線の製造方法
JPH11176253A (ja) * 1997-12-16 1999-07-02 Yamaichi Electron Co Ltd フラット型ケーブル
JP2001274586A (ja) * 2000-03-27 2001-10-05 Kuraray Co Ltd 電磁波シールド伝送回路およびその製造方法
WO2007133405A2 (en) * 2006-05-02 2007-11-22 Multi-Fineline Electronix, Inc. Shielded flexible circuits and methods for manufacturing same

Also Published As

Publication number Publication date
KR20200121889A (ko) 2020-10-26
TWI748191B (zh) 2021-12-01
TW202019010A (zh) 2020-05-16
KR102369036B1 (ko) 2022-03-02
CN111971850B (zh) 2021-09-21
CN111971850A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
US5672414A (en) Multilayered printed board structure
JP6368431B2 (ja) フレキシブルプリント配線板のはんだ接合構造
JP2001007511A (ja) 配線基板同士の接合方法、データキャリアの製造方法、及び電子部品モジュールの実装装置
JPH1056099A (ja) 多層回路基板およびその製造方法
WO2007013595A1 (ja) 屈曲式リジットプリント配線板およびその製造方法
JP2012094597A (ja) 配線基板の製造方法
WO2019235558A1 (ja) 多層基板、電子機器および多層基板の製造方法
WO2018101051A1 (ja) 多層基板接続体および伝送線路デバイス
JP6507302B1 (ja) 伝送線路、伝送線路の製造方法及び伝送線路の製造装置
WO2020122180A1 (ja) 樹脂多層基板および電子機器
JP6850501B1 (ja) 伝送線路
CN212752742U (zh) 基板接合构造
JP5782013B2 (ja) フレキシブルプリント基板の接合方法
JP6611293B1 (ja) 伝送線路、伝送線路の製造方法及び伝送線路の製造装置
JP2010212375A (ja) Ic搭載基板、プリント配線板、及び製造方法
JP4675178B2 (ja) 圧着方法
WO2019131647A1 (ja) 基板、および基板接合構造
KR20100095031A (ko) 전자부품 모듈의 제조 방법
WO2018097112A1 (ja) 多層基板、多層基板の回路基板への実装構造、多層基板の実装方法および多層基板の製造方法
WO2020008729A1 (ja) 伝送線路、伝送線路の製造方法及び伝送線路の製造装置
WO2019230524A1 (ja) 樹脂多層基板および電子機器
WO2019159521A1 (ja) 多層基板および電気素子
JP2020088197A (ja) 樹脂多層基板および電子機器
JP2008016690A (ja) 基板の電極の接続構造体及び接続方法
JP2003168873A (ja) 中空多層プリント配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207027590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830732

Country of ref document: EP

Kind code of ref document: A1