WO2020004112A1 - ランフラットタイヤ - Google Patents

ランフラットタイヤ Download PDF

Info

Publication number
WO2020004112A1
WO2020004112A1 PCT/JP2019/023951 JP2019023951W WO2020004112A1 WO 2020004112 A1 WO2020004112 A1 WO 2020004112A1 JP 2019023951 W JP2019023951 W JP 2019023951W WO 2020004112 A1 WO2020004112 A1 WO 2020004112A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
line
intersection
radial direction
rotation axis
Prior art date
Application number
PCT/JP2019/023951
Other languages
English (en)
French (fr)
Inventor
正志 山口
慶太 弓井
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP19824979.9A priority Critical patent/EP3812180B1/en
Priority to JP2020527415A priority patent/JP7128276B2/ja
Priority to CN201980042688.0A priority patent/CN112313093B/zh
Priority to US17/255,421 priority patent/US11541690B2/en
Publication of WO2020004112A1 publication Critical patent/WO2020004112A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0036Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with high ply turn-up, i.e. folded around the bead core and terminating radially above the point of maximum section width
    • B60C15/0045Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with high ply turn-up, i.e. folded around the bead core and terminating radially above the point of maximum section width with ply turn-up up to the belt edges, i.e. folded around the bead core and extending to the belt edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0292Carcass ply curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • B60C2017/0054Physical properties or dimensions of the inserts
    • B60C2017/0072Thickness

Definitions

  • the present disclosure relates to a run flat tire.
  • the longitudinal spring constant is higher than that of a general tire, and therefore, it is also desired to improve the riding comfort during normal running.
  • the side reinforcing rubber is softened to improve the riding comfort during normal running, there is a problem that the durability during run flat running is impaired.
  • the present disclosure has been made in consideration of the above-described facts, and has as its object to provide a run-flat tire that can reduce rolling resistance and achieve both ride comfort and run-flat durability.
  • a run flat tire according to the present disclosure includes a pair of bead cores, a carcass including a main body portion that straddles the pair of bead cores, and a folded portion that folds the bead cores, and a belt provided outside the carcass in a tire radial direction.
  • a side reinforcing layer provided on the inner side of the carcass in the tire width direction and having a thickness gradually reduced toward both sides in the tire radial direction; and a tire inner surface side of the carcass located on the tire radial direction outside in the tire width direction of the belt.
  • the height dimension of the case line measured in the tire radial direction from the reference line is parallel to the tire rotation axis through the side height SH and a position 10% away from the reference line in the tire radial direction and away from the side height SH.
  • intersection point of the virtual line and the case line is set to 0.1 SHp, and a virtual line parallel to the tire rotation axis through a position 20% of the side height SH outward in the tire radial direction from the reference line.
  • An intersection point with the case line is 0.2SHp, and an imaginary line parallel to the tire rotation axis passing through a position 40% of the side height SH outward from the reference line in the tire radial direction and the case line is parallel to the case line.
  • the intersection point is 0.4SHp, the virtual line passing through a position 60% of the side height SH outward from the reference line in the tire radial direction and parallel to the tire rotation axis and the case.
  • the point of intersection with IN is 0.6SHp
  • the average radius of curvature of the case line between the intersections 0.1SHp and 0.2SHp when viewed in a cross section along the tire rotation axis is radius R1
  • the tire rotation axis is
  • the ratio R2 / R1 is larger than 0.3.
  • the inner liner of a tire is less permeable to gas than other rubbers that make up the tire.
  • butyl rubber is generally used, but this butyl rubber has a lower loss than other rubbers that make up the tire ( tan ⁇ ) is large.
  • tan ⁇ a rubber having a large loss is used in a portion of the tire where deformation is large during running, rolling resistance is deteriorated.
  • the tread portion and the side portion are compared, the side portion deforms more than the tread portion in which the belt or the like is embedded.
  • the inner liner on the tire inner surface side of the carcass located on the tire radial direction outside passes through the outermost end of the belt in the tire width direction, and is greater than a virtual line extending perpendicular to the tire inner surface. It is provided on the inner side in the tire width direction.
  • the inner liner since the inner liner is not provided on the side portion that is larger in deformation than the tread portion, the rolling resistance can be reduced as compared with a tire provided with the inner liner on the entire inner surface of the tire.
  • a thick side reinforcing layer that can support a load during run flat running is provided on the inner side of the carcass in the tire width direction, even if the inner liner is not provided on the inner side of the carcass in the tire width direction. In addition, the transmission of gas to the outside in the tire width direction can be suppressed. In other words, on the inner side in the tire width direction of the carcass, the side reinforcing layer is substituted for the inner liner.
  • the average radius of curvature of the case line between the intersections 0.1SHp and 0.2SHp is the radius R1, and the intersection 0.4SHp when viewed in a cross section along the tire rotation axis. Since the ratio R2 / R1 is set to be larger than 0.3 when the average radius of curvature of the case line between R and R is 0.6SHp, the longitudinal spring constant during normal running is reduced. In addition, the bead portion and the tire side portion during run-flat running can be prevented from excessively falling down, and both riding comfort and run-flat durability can be achieved.
  • the rolling resistance can be reduced, and the riding comfort and the run-flat durability can be compatible.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a half cross-sectional view which shows one side of the cut surface which cut
  • the arrow TW in the figure indicates the width direction of the run flat tire 10 (tire width direction), and the arrow TR indicates the radial direction of the run flat tire 10 (tire radial direction).
  • the tire width direction refers to a direction parallel to the rotation axis of the run flat tire 10, and is also referred to as a tire axial direction.
  • the tire radial direction refers to a direction perpendicular to the rotation axis of the run flat tire 10.
  • ⁇ Circle around (4) ⁇ indicates the equatorial plane (tire equatorial plane) of the run flat tire 10. Further, in the present embodiment, the rotational axis side of the run flat tire 10 is “inside in the tire radial direction” along the tire radial direction, and the opposite side of the rotational axis of the run flat tire 10 along the tire radial direction is “tire”. Radially outside ".
  • the equator plane CL side of the run flat tire 10 along the tire width direction is “inside in the tire width direction”, and the side opposite to the equatorial plane CL of the run flat tire 10 along the tire width direction is “outside in the tire width direction”. It is described.
  • the rim is a standard rim (or “Approved @ Rim” or “Recommended @ Rim”) in an application size described in the following standard.
  • Standards are determined by industry standards that are in effect in the area where the tire is manufactured or used. For example, in the United States, "The Book of the Tire and Rim Association of Inc., Inc., Year Book", in Europe, "The European, Tire and Rim, Technical, Organization, Standards of Automotive, Japan Association of motorcycles, Japan Motor Company, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan Association of motorcycles, Japan. Have been.
  • FIGS. 1 and 2 are cross-sectional views of the run flat tire 10 in a state where the internal pressure is not filled (the same atmospheric pressure as the outside air) by being assembled to the standard rim 30.
  • the run flat tire 10 according to the present embodiment has a pair of bead portions 12, a carcass 14, a belt 16, a belt reinforcing layer 18, a tread portion 20, and a tire side portion 22. And a side reinforcing rubber 24 as a side reinforcing layer, and an inner liner 32.
  • a pair of left and right bead portions 12 are provided at an interval in the tire width direction (only one bead portion 12 is shown in FIG. 1).
  • a bead core 26 is embedded in each of the pair of bead portions 12, and the carcass 14 extends between the bead cores 26.
  • the carcass 14 of the present embodiment is constituted by one carcass ply 15, and the carcass ply 15 covers a plurality of cords (not shown; for example, an organic fiber cord or a metal cord) with a covering rubber. It is formed.
  • the carcass 14 thus formed extends from one bead core 26 to the other bead core 26 in a toroidal shape, and forms a tire skeleton.
  • the run flat tire 10 of the present embodiment is a tire having a radial structure, and a cord of the carcass ply 15 extends in a tire radial direction (radial direction) on a tire side portion, and a tire equatorial plane on a tire outer peripheral portion. It extends in a direction crossing CL.
  • a portion extending from one bead core 26 to the other bead core 26 is referred to as a main body portion 14A, and a portion in which the bead core 26 is folded from the inside to the outside of the tire is referred to as a folded portion 14B.
  • the end portion 14BE of the folded portion 14B is sandwiched between the belt 16 and the main body portion 14A of the carcass 14 near the outermost end 16E in the tire width direction of the belt 16 described later.
  • the end portion 14BE of the folded portion 14B is located outside the other end portion 24B of the side reinforcing rubber 24 described later in the tire width direction, and is located radially inside the belt end of any of the belt plies 16A and 16B described later. Preferably, they are arranged.
  • case line 14CL indicates the center line of the thickness of the carcass 14.
  • the center line of the thickness of the carcass ply 15 is defined as a “case line 14CL”.
  • the center line of the thickness is referred to as “case line 14CL”.
  • a center line between the main body portion 14 and the folded portion 14B two-dot chain line in FIG. 1). are shown as “case line 14CL”.
  • the bead core 26 is made parallel to the tire rotation axis (not shown) through the tire radial outer end.
  • the maximum height SH of the case line 14CL measured outward from the reference line BL in the tire radial direction is referred to as a side height (see FIG. 1).
  • the intersection of the virtual line FL1 and the case line 14CL which is parallel to the tire rotation axis through a position 10% of the side height SH outward from the reference line BL in the tire radial direction and is parallel to the tire rotation axis, is set to 0.1.
  • 1SHp the intersection of the imaginary line FL2, which is parallel to the tire rotation axis through a position 20% of the side height SH outward in the tire radial direction from the reference line BL and the case line 14CL, is 0.2SHp, the reference line BL.
  • the case line 14CL of the carcass 14 of the present embodiment is such that an arc between the intersection 0.1SHp and the intersection 0.2SHp has a center of curvature inside the tire and is convex to the outside of the tire where the average radius of curvature is R1.
  • An arc between the intersections 0.4SHp and 0.6SHp has a center of curvature on the inside of the tire and has an average radius of curvature of R2 and is convex toward the outside of the tire.
  • the case line 14CL between the intersections 0.2SHp and 0.4SHp is the arc shape between the intersections 0.1SHp and 0.2SHp, and the arc between the intersections 0.4SHp and 0.6SHp.
  • the arc shape is smoothly connected to the arc shape and is convex toward the outside of the tire.
  • the radius of curvature R1 is set to be larger than the radius of curvature R2, and the ratio R2 / R1 is set to be larger than 0.3. Further, the ratio R2 / R1 is preferably set to be larger than 0.4. Note that the ratio R2 / R1 is preferably set to be smaller than 1.3. Further, the radius of curvature R1 is preferably set within the range of 100 to 200% of the side height SH, and the radius of curvature R2 is set within the range of 50 to 150% of the side height SH. preferable.
  • the radius of curvature R1 and the radius of curvature R2 are both average values, and the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp and the case line 14CL between the intersection 0.4SHp and the intersection 0.6SHp.
  • the case line 14CL may have an arc shape having a single radius of curvature, an arc shape having a plurality of radii of curvature, or a substantially arc shape having a gradually changing radius of curvature.
  • the radius of curvature of the case line 14CL between the intersection 0.4SHp and the intersection 0.6SHp may be infinite in some cases, in other words, the case line 14CL between the intersection 0.4SHp and the intersection 0.6SHp is a straight line. It may be shaped.
  • the case line 14CL of the present embodiment has an arc shape having a single radius of curvature between the intersections 0.1SHp and 0.2SHp and between the intersections 0.4SHp and 0.6SHp.
  • a bead filler 28 extending from the bead core 26 outward in the tire radial direction is embedded in a region sandwiched between the main body portion 14A and the folded portion 14B of the carcass 14. Further, the thickness of the bead filler 28 decreases toward the outer end 28A in the tire radial direction.
  • Bead filler 28 is formed of a rubber harder than side rubber 23. Note that the shape and material of the bead filler 28 are not limited to those of the present embodiment.
  • the ratio Abf / Arr is 0.04 to 0.04. It is preferably in the range of 0.17, more preferably in the range of 0.08 to 0.15, and even more preferably in the range of 0.09 to 0.13.
  • the ratio Ari / Aro is set to 0. It is preferably in the range of 3 to 1.5, more preferably in the range of 0.3 to 1.0, and even more preferably in the range of 0.5 to 0.6.
  • the ratio Ac / Abf is preferably in the range of 0.7 to 1.1, and more preferably in the range of 0.8 to 1.8. , 0.90 to 0.95.
  • the ratio ta / G between the total gauge G and the thickness ta is preferably in the range of 0.6 to 1.0, more preferably in the range of 0.6 to 0.8, and 0.7 It is even more preferred to be within the range of -0.8.
  • the flatness of the run flat tire 10 is preferably 65% or less, more preferably 50% or less, and even more preferably 35% or less.
  • the intersection point where the virtual line FLH passing through the rim end of the standard rim 30 and parallel to the tire radial direction intersects with the body portion 14A of the carcass 14 inside the tire radial direction of the tire maximum width portion Wmax is Pa
  • an angle formed by an imaginary line FL ⁇ connecting the intersection Pa with the tire width direction inner end 26P of the bead core 26 with respect to the tire width direction is ⁇
  • the tire width direction inner end 26P of the bead core 26 is the midpoint in the longitudinal direction of the inner side of the bead core 26 in the tire width direction.
  • the imaginary line FLH is Pb at the intersection of the tire maximum width portion Wmax and the body portion 14A of the carcass 14 on the outer side in the tire radial direction, and the imaginary line FL ⁇ connecting the intersection Pb and the tire width direction inner end 26P of the bead core 26 is
  • it is preferable that 50 ° ⁇ ⁇ 80 °, more preferably 55 ° ⁇ ⁇ 70 °, and 55 ° ⁇ ⁇ 65 ° Is even more preferred.
  • the other end 24 ⁇ / b> B side of the side reinforcing rubber 24 in the tire radial direction is disposed inside the belt end of the first belt ply 16 ⁇ / b> A and the belt end of the second belt ply 16 ⁇ / b> B in the tire width direction. It is preferred that
  • the apex 34T of the rim guard 34 be disposed outside the tire width direction outer end 14max of the main body 14A of the carcass 14 in the tire width direction.
  • a belt 16 is provided outside the carcass 14 in the tire radial direction.
  • the belt 16 of the present embodiment is constituted by one or a plurality of belt plies.
  • the belt 16 of the present embodiment includes, as an example, a first belt ply 16A inside the tire radial direction, and a second belt that is arranged outside the first belt ply 16A in the tire radial direction and is narrower than the first belt ply 16A. And a ply 16B.
  • the belt plies 16A and 16B are formed by covering a plurality of cords (steel cords in this embodiment) arranged in parallel with each other with a covering rubber.
  • the cords constituting the belt plies 16A and 16B are arranged to be inclined with respect to the tire circumferential direction (as an example, inclined at an angle of 15 to 30 degrees with respect to the tire circumferential direction).
  • the cord of the belt ply 16A and the cord of the belt ply 16B are inclined in directions opposite to each other with respect to the tire equatorial plane CL. That is, the belt 16 of the present embodiment is a so-called cross belt.
  • a belt reinforcing layer 18 is disposed outside the belt 16 in the tire radial direction.
  • the belt reinforcing layer 18 includes, for example, a cord extending along the tire circumferential direction, and is disposed so as to cover the entire belt 16.
  • a tread rubber 21 constituting the tread portion 20 is disposed outside the belt 16 and the belt reinforcing layer 18 in the tire radial direction.
  • the tread portion 20 is a portion that comes into contact with the road surface during traveling, and a circumferential groove 20 ⁇ / b> A extending in the tire circumferential direction is formed on the surface of the tread portion 20.
  • the tread portion 20 has a not-shown width direction groove extending in the tire width direction. The shape and number of the circumferential grooves 20A and the width grooves are appropriately set in accordance with the required performance of the run flat tire 10, such as drainage performance and steering stability.
  • a tire side portion 22 is provided between the bead portion 12 and the tread portion 20.
  • the tire side portion 22 extends in the tire radial direction and connects the bead portion 12 and the tread portion 20.
  • a side rubber 23 is arranged outside the carcass 14 in the tire width direction.
  • the tire side portion 22 is configured as described below so as to be able to bear the load acting on the run flat tire 10 during run flat running.
  • a side reinforcing rubber 24 made of a single rubber material for reinforcing the tire side portion 22 is provided inside the carcass 14 in the tire width direction.
  • the side reinforcing rubber 24 is a reinforcing rubber for running a predetermined distance while supporting the weight of the vehicle and the occupant when the internal pressure of the run flat tire 10 decreases due to puncture or the like.
  • the side reinforcing rubber 24 mainly composed of rubber is provided as an example.
  • the present invention is not limited to this, and the side reinforcing rubber 24 may be formed of another material.
  • a thermoplastic resin or the like as a main component.
  • the side reinforcing rubber 24 is formed of one type of rubber member, but is not limited thereto, and may be formed of, for example, a plurality of rubber members having different hardnesses.
  • the side reinforcing rubber 24 may include a filler, a short fiber, a resin, and other materials as long as the rubber member is a main component.
  • the rubber member constituting the side reinforcing rubber 24 may include a rubber member having a JIS hardness of 70 to 85 measured at 20 ° C. using a durometer hardness tester. .
  • the loss coefficient tan ⁇ measured using a viscoelastic spectrometer (for example, a spectrometer manufactured by Toyo Seiki Seisakusho) at a frequency of 20 Hz, an initial strain of 10%, a dynamic strain of ⁇ 2%, and a temperature of 60 ° C. is 0.10 or less.
  • a rubber member having physical properties may be included.
  • the side reinforcing rubber 24 extends in the tire radial direction along the inner surface of the main body portion 14A of the carcass 14, and has a shape in which the thickness t decreases toward the bead core 26 and the tread portion 20 side, for example, a substantially crescent cross section. Have been.
  • the thickness t refers to a length of the side reinforcing rubber 24 measured perpendicularly from the tire inner surface in a state where the run flat tire 10 is mounted on the standard rim 30 and the internal pressure is set to zero.
  • One end 24 ⁇ / b> A side of the side reinforcing rubber 24 in the tire radial direction is overlapped with the bead filler 28 with the carcass 14 interposed therebetween. That is, the one end 24A side of the side reinforcing rubber 24 is disposed so as to overlap the bead filler 28 in the tire radial direction.
  • the other end 24 ⁇ / b> B of the side reinforcing rubber 24 on the outer side in the tire radial direction overlaps with the belt 16 with the carcass 14 interposed therebetween. That is, the other end 24B side of the side reinforcing rubber 24 is disposed so as to overlap the belt 16 in the tire width direction.
  • the total gauge from the tire inner surface to the tire outer surface as measured on a virtual line FLW passing through the tire maximum width portion Wmax of the run flat tire 10 and parallel to the tire rotation axis is G, from the tire inner surface to the case line 14CL.
  • the distance t is between 50% and 90% of the total gauge G between the virtual line FL1 and the virtual line FL6.
  • it is set.
  • the side reinforcing rubber maximum width portion position 24P at which the side reinforcing rubber 24 has the maximum width (tmax) is preferably within a range of 20 to 60% of the side height SH, and within a range of 30 to 50% of the side height SH. More preferably, the range of 30 to 40% of the side height SH is even more preferable.
  • an inner liner 32 is provided on the inner surface of the carcass 14 and the side reinforcing rubber 24 inside the tread portion 20 in the tire radial direction.
  • the inner liner 32 is made of, for example, rubber containing butyl rubber as a main component.
  • the rubber constituting the inner liner 32 has a lower gas permeability and a greater loss (loss coefficient tan ⁇ ) than other rubbers constituting the run flat tire 10 (for example, the tread rubber 21 and the side rubber 23). Is used.
  • the inner liner 32 has a tire width direction end 32E perpendicular to the tire inner surface (in this embodiment, the inner surface of the side reinforcing rubber 24) and the tire width direction outermost end of the belt 16 (the first belt ply 16A). It is arranged so that it does not exceed the virtual line FLE passing through the width direction end portion 16E to the outside in the tire width direction. In other words, the inner liner 32 is not arranged on the tire inner surface side of the tire side portion 22 and the bead portion 12. In the present embodiment, the end 32E in the tire width direction of the inner liner 32 is located on the virtual line FLE.
  • the distance (shortest distance) Lmin from the tire width direction end 32E of the inner liner 32 to the case line 14CL of the carcass 14 is preferably set to 1 mm or more.
  • the inner liner 32 passes through the tire width direction outermost end 16E of the belt 16 on the tire inner surface side of the carcass 14 located on the tire radial outside, and is perpendicular to the tire inner surface. Are not arranged outside the virtual line FLE extending in the tire width direction.
  • the rolling resistance is reduced as compared with a run flat tire in which the inner liner is provided on the entire inner surface of the tire. Fuel efficiency can be improved.
  • the gas to the outside of the tire (air filled in the tire) can be obtained without deteriorating the rolling resistance. ) Can be minimized. Note that, since the thick side reinforcing rubber 24 is disposed outside the virtual line FLE in the tire width direction, the permeation of gas to the outside of the tire can be sufficiently suppressed.
  • the case line 14CL between the intersection 0.1SHp and the intersection 0.2SHp is formed into an arc shape that is convex to the outside of the tire, and the average radius of curvature is a radius R1
  • the case line 14CL between the intersections 0.4SHp and 0.6SHp as viewed in a cross section along the tire rotation axis is formed into an arc shape that protrudes outward from the tire, and the average radius of curvature is defined as a radius R2.
  • the ratio R2 / R1 is set to be larger than 0.3, the longitudinal spring constant during normal running can be reduced, and the bead portion 12 and the tire side portion 22 during run-flat running have excessive Falling can be suppressed, and both ride comfort and run flat durability can be achieved.
  • the ratio R2 / R1 is more preferably set to be larger than 0.4, since the run flat durability is improved.
  • the ratio R2 / R1 is preferably set to less than 1.3. If the ratio R2 / R1 is too large, the deflection of the tire side portion during run flat running becomes too large, and the run flat durability cannot be satisfied.
  • the distance Lmin from the tire width direction end 32E of the inner liner 32 to the main body portion 14A of the carcass 14 is set to 1 mm or more, the cord of the belt 16 (as an example)
  • the distance from the tire width direction end 32E of the inner liner 32 to the cord of the belt 16 is increased so that the steel cord) does not deteriorate (such as rust) under the influence of oxygen contained in the air in the tire.
  • the thickness of the side reinforcing rubber 24 can be ensured.
  • the radius R2 of the outer case line 14CL in the tire radial direction is set within a range of 100 to 200% of the side height SH in the case line 14CL on the side of the tire.
  • the radius R1 of the case line 14CL on the inner side in the direction within the range of 50% to 150% of the side height SH, the longitudinal flat spring constant of the run flat tire 10 during normal running is reduced while the run flat tire 10 is run during run flat running. Flat durability can be ensured. If the radius R1 is less than 100% of the side height SH, the rigidity near the bead decreases, and the deformation that falls down to the rim side increases, so that the deformation concentrates on the portion, and especially the run flat durability performance is impaired.
  • the radius R1 exceeds 200% of the side height SH, the rigidity near the bead increases, which adversely affects the riding comfort under normal internal pressure.
  • the radius R2 is less than 50% of the side height SH, the rigidity near the maximum width is reduced and can be flexed flexibly, but the deformation concentrated on the side reinforcing layer during run flat running becomes large, and especially the run flat durability Performance is impaired.
  • the radius R2 exceeds 150% of the side height SH, the rigidity near the maximum width increases and the vehicle cannot flex flexibly, which adversely affects the riding comfort under normal internal pressure.
  • a tensile force acts in a tire radial direction at a portion outside the tire with respect to the neutral axis of the tire side portion 22, and the tire has a tire. It expands and deforms (extends) in the radial direction, and a compressive force acts in the tire radial direction at a portion inside the tire with respect to the neutral axis of the tire side portion 22 to be compressed in the tire radial direction. Further, as the distance from the neutral axis increases, the amount of deformation increases.
  • the neutral axis of the tire side portion 22 is set.
  • the position of the carcass ply 15 buried in the tire side portion 22 is located away from the outside in the tire width direction, that is, the carcass ply 15 is stretched compared to rubber at a portion where the amount of deformation increases when the internal pressure decreases. Since the carcass ply 15 including the difficult cord is arranged, the deformation (crushing) of the tire side portion 22 at the time of the decrease in the internal pressure can be performed without increasing the thickness of the side reinforcing rubber 24 which deteriorates the riding comfort during normal running. And the run-flat durability can be secured.
  • the carcass 14 of the above embodiment is configured by one carcass ply 15, the present invention is not limited to this, and the carcass 14 may be configured by a plurality of carcass plies 15.
  • the belt 16 in the above embodiment is a so-called intersecting belt composed of two belt plies, but may be a spiral belt. Further, the belt 16 may have a structure in which a cord is embedded in a resin layer.
  • the inner liner 32 of the above embodiment is formed of rubber containing butyl rubber as a main component, but the present invention is not limited to this, and the inner liner 32 may be made of another rubber member or a resin as a main component. Or a resin film.
  • a protruding rim guard for suppressing excessive deformation of the bead portion 12 (falling outward in the tire width direction) is provided on the outer surface of the bead portion 12.
  • a protruding rim guard for suppressing excessive deformation of the bead portion 12 (falling outward in the tire width direction) is provided on the outer surface of the bead portion 12.
  • a rim guard may be provided on the outer surface of the bead portion 12.
  • the run-flat tire for a passenger car has been described, but the present invention can be applied to a run-flat tire used for a vehicle other than a passenger car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

ランフラットタイヤは、タイヤ回転軸に沿った断面で見たときの交点(0.1SHp)と交点(0.2SHp)との間のケースラインの平均の曲率半径を半径R1、タイヤ回転軸に沿った断面で見たときの交点(0.4SHp)と交点(0.6SHp)との間のケースラインの平均の曲率半径を半径R2としたときに、比R2/R1を0.3よりも大きく設定する。

Description

ランフラットタイヤ
 本開示は、ランフラットタイヤに関する。
 タイヤの内圧が低下した状態でも一定距離を走行可能にするランフラットタイヤとして、タイヤサイド部をサイド補強ゴムで補強したサイド補強型のランフラットタイヤがある(例えば、特開2012-116212号公報参照)。
 ところで、タイヤとして、車両の燃費性能に関係する転がり抵抗を低減することが望まれており、ランフラットタイヤにおいても、転がり抵抗を低減することが望まれている。
 また、サイド補強型のランフラットタイヤでは、一般のタイヤに比較して縦ばね定数が高くなるため、通常走行時の乗り心地の改善も望まれている。しかしながら、通常走行時の乗り心地を改善するためにサイド補強ゴムを軟らかくすると、ランフラット走行時の耐久性を損なう問題がある。
 本開示は、上記事実を考慮して、転がり抵抗を低減し、乗り心地、及びランフラット耐久性を両立可能なランフラットタイヤを提供することを目的とする。
 本開示に係るランフラットタイヤは、一対のビードコアと、前記一対のビードコアを跨る本体部と前記ビードコアを折り返される折返し部とを備えたカーカスと、前記カーカスのタイヤ径方向外側に設けられたベルトと、前記カーカスのタイヤ幅方向内側に設けられ、タイヤ径方向両側に向けて厚さが漸減するサイド補強層と、タイヤ径方向外側に位置する前記カーカスのタイヤ内面側で、前記ベルトのタイヤ幅方向最外端を通り、かつタイヤ内面に対して垂直に延びる仮想線よりもタイヤ幅方向内側に設けられるインナーライナーと、を備え、前記カーカスの中心線をケースラインとし、標準リムに装着して零内圧の状態でタイヤ回転軸に沿った断面で見たときの、前記ビードコアのタイヤ径方向外側端を通って前記タイヤ回転軸に平行な基準線からタイヤ径方向へ計測した前記ケースラインの高さ寸法をサイドハイトSH、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.1SHp、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの20%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.2SHp、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの40%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.4SHp、前記基準線からタイヤ径方向外側へ前記サイドハイトSHの60%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.6SHp、タイヤ回転軸に沿った断面で見たときの前記交点0.1SHpと前記0.2SHpとの間における前記ケースラインの平均の曲率半径を半径R1、タイヤ回転軸に沿った断面で見たときの前記交点0.4SHpと前記0.6SHpとの間における前記ケースラインの平均の曲率半径を半径R2としたときに、比R2/R1を0.3よりも大きく設定した。
 タイヤのインナーライナーには、タイヤを構成する他のゴムよりも、気体が透過し難い、例えば、主にブチルゴムが一般的に用いられるが、このブチルゴムはタイヤを構成する他のゴムよりもロス(tanδ)が大きい。タイヤにおいて、走行時の変形の大きい部分にロスの大きいゴムを使用すると、転がり抵抗が悪化する。また、タイヤにおいては、トレッド部とサイド部とを比較すると、サイド部の方が、ベルト等が埋設されているトレッド部よりも変形が大きい。
 本開示に係るランフラットタイヤでは、インナーライナーをタイヤ径方向外側に位置するカーカスのタイヤ内面側で、ベルトのタイヤ幅方向最外端を通り、かつタイヤ内面に対して垂直に延びる仮想線よりもタイヤ幅方向内側に設けている。言い換えれば、インナーライナーは、トレッド部よりも変形が大きいサイド部に設けられていないので、タイヤ内面全体にインナーライナーを設けたタイヤに比較して、転がり抵抗を低減することができる。
 なお、カーカスのタイヤ幅方向内側には、ランフラット走行時に荷重を支持可能とする厚肉のサイド補強層が設けられているので、カーカスのタイヤ幅方向内側にインナーライナーが設けられていなくても、タイヤ幅方向外側への気体の透過は抑制できる。言い換えれば、カーカスのタイヤ幅方向内側において、サイド補強層がインナーライナーの代わりになっている。
 さらに、本開示に係るランフラットタイヤでは、交点0.1SHpと0.2SHpとの間におけるケースラインの平均の曲率半径を半径R1、タイヤ回転軸に沿った断面で見たときの交点0.4SHpと0.6SHpとの間におけるケースラインの平均の曲率半径を半径R2としたときに、比R2/R1を0.3よりも大きく設定しているので、通常走行時の縦ばね定数を低下させることができ、かつランフラット走行時のビード部、及びタイヤサイド部の過度の倒れ込みを抑制でき、乗り心地とランフラット耐久性とを両立することができる。
 本開示のランフラットタイヤによれば、転がり抵抗を低減し、乗り心地、及びランフラット耐久性を両立することができる。
本発明の一実施形態に係るランフラットタイヤをタイヤ軸方向に沿って切断した切断面の片側を示す半断面図である。 本発明の一実施形態に係るランフラットタイヤをタイヤ軸方向に沿って切断した切断面の片側を示す半断面図である。
(ランフラットタイヤの構成)
 以下、図を参照しながら本発明の実施形態に係るランフラットタイヤ10について説明する。なお、本実施形態では、乗用車用のランフラットタイヤ10について説明する。
 ここで、図中矢印TWはランフラットタイヤ10の幅方向(タイヤ幅方向)を示し、矢印TRはランフラットタイヤ10の径方向(タイヤ径方向)を示す。
 ここでいうタイヤ幅方向とは、ランフラットタイヤ10の回転軸と平行な方向を指し、タイヤ軸方向ともいう。また、タイヤ径方向とは、ランフラットタイヤ10の回転軸と直交する方向をいう。
 また、符号CLはランフラットタイヤ10の赤道面(タイヤ赤道面)を示している。さらに、本実施の形態では、タイヤ径方向に沿ってランフラットタイヤ10の回転軸側を「タイヤ径方向内側」、タイヤ径方向に沿ってランフラットタイヤ10の回転軸とは反対側を「タイヤ径方向外側」と記載する。
 一方、タイヤ幅方向に沿ってランフラットタイヤ10の赤道面CL側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってランフラットタイヤ10の赤道面CLとは反対側を「タイヤ幅方向外側」と記載する。
 また、以下の説明において、リムとは、下記規格に記載されている適用サイズにおける標準リム(または、”Approved Rim”、”Recommended Rim”)のことである。規格は、タイヤが生産又は使用される地域に有効な産業規格によって決められている。例えば、アメリカ合衆国では、”The Tire and Rim Association Inc.のYear Book ”で、欧州では”The European Tire and Rim Technical OrganizationのStandards Manual”で、日本では日本自動車タイヤ協会の“JATMA Year Book”にて規定されている。
 図1、及び図2は、標準リム30に組み付けて内圧を充填していない状態(外気と同じ気圧)のランフラットタイヤ10のタイヤ回転軸に沿った断面図である。
 図1に示されるように、本実施の形態に係るランフラットタイヤ10は、一対のビード部12と、カーカス14と、ベルト16と、ベルト補強層18と、トレッド部20と、タイヤサイド部22と、サイド補強層としてのサイド補強ゴム24と、インナーライナー32と、を備えている。
 ビード部12は、タイヤ幅方向に間隔を空けて左右一対設けられている(図1では、片側のビード部12のみ図示している。)。この一対のビード部12には、ビードコア26がそれぞれ埋設されており、このビードコア26の間には、カーカス14が跨っている。
(カーカス)
 本実施形態のカーカス14は、1枚のカーカスプライ15によって構成されており、カーカスプライ15は、複数本のコード(図示省略。例えば、有機繊維コードや金属コードなど。)を被覆ゴムで被覆して形成されている。このようにして形成されたカーカス14が一方のビードコア26から他方のビードコア26へトロイド状に延びてタイヤの骨格を構成している。なお、本実施形態のランフラットタイヤ10は、ラジアル構造のタイヤであり、カーカスプライ15のコードは、タイヤ側部においてタイヤ径方向(ラジアル方向)に延びており、タイヤ外周部においてはタイヤ赤道面CLに対して交差する方向に延びている。
 なお、このカーカス14において、一方のビードコア26から他方のビードコア26に跨っている部分を本体部14A、ビードコア26をタイヤ内側から外側へ折り返されている部分を折返し部14Bと呼ぶ。なお、本実施形態において、折返し部14Bの端部14BEは、後述するベルト16のタイヤ幅方向最外端16Eの近傍において、ベルト16とカーカス14の本体部14Aとの間に挟持されている。
 また、折返し部14Bの端部14BEは、後述するサイド補強ゴム24の他端部24Bよりもタイヤ幅方向外側、かつ、後述する何れのベルトプライ16A、16Bのベルト端よりもタイヤ径方向内側に配置されることが好ましい。 
 以下の説明において、「ケースライン14CL」とは、カーカス14の厚みの中心線のことを指す。例えば、カーカスプライ15が一枚の部分においては、カーカスプライ15の厚みの中心線を「ケースライン14CL」とし、カーカスプライ15が複数枚重なっている部分においては、複数枚重なったカーカスプライ15の厚みの中心線を「ケースライン14CL」とする。また、カーカス14の本体部14Aと折返し部14Bとがある部分(後述するビードフィラー28の配置されている部分)においては、本体部14と折返し部14Bとの中心線(図1における2点鎖線で図示する)を「ケースライン14CL」とする。
 また、本実施形態では、標準リム30に組み付けて内圧を充填していない状態のランフラットタイヤ10において、ビードコア26のタイヤ径方向外側端を通ってタイヤ回転軸(図示せず)に平行とされた基準線BLからタイヤ径方向外側へ向けて計測するケースライン14CLの最大高さSHをサイドハイトと呼ぶ(図1参照。)。
 さらに、本実施形態では、基準線BLからタイヤ径方向外側へサイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL1とケースライン14CLとの交点を0.1SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの20%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL2とケースライン14CLとの交点を0.2SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの40%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL4とケースライン14CLとの交点を0.4SHp、基準線BLからタイヤ径方向外側へサイドハイトSHの60%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線FL6とケースライン14CLとの交点を0.6SHpと呼ぶ。
 本実施形態のカーカス14のケースライン14CLは、交点0.1SHpと交点0.2SHpとの間が、タイヤ内側に曲率中心を有し平均の曲率半径がR1とされたタイヤ外側へ凸となる円弧形状とされ、交点0.4SHpと交点0.6SHpとの間が、タイヤ内側に曲率中心を有し平均の曲率半径がR2とされたタイヤ外側へ凸となる円弧形状とされている。なお、交点0.2SHpと交点0.4SHpとの間のケースライン14CLは、交点0.1SHpと交点0.2SHpとの間の円弧形状、及び交点0.4SHpと交点0.6SHpとの間の円弧形状に対して滑らかに繋がるタイヤ外側へ凸となる円弧形状とされている。
 本実施形態では、曲率半径R1は、曲率半径R2よりも大きく設定されており、比R2/R1は0.3よりも大きく設定されている。また、比R2/R1は、0.4よりも大きく設定することが好ましい。なお、比R2/R1は、1.3よりも小さく設定することが好ましい。
 さらに、曲率半径R1は、サイドハイトSHの100~200%の範囲内に設定されている事が好ましく、曲率半径R2は、サイドハイトSHの50~150%の範囲内に設定されている事が好ましい。
 ここで、曲率半径R1、及び曲率半径R2は、共に平均値であり、交点0.1SHpと交点0.2SHpとの間のケースライン14CL、及び交点0.4SHpと交点0.6SHpとの間のケースライン14CLは、単一の曲率半径を持つ円弧形状であってもよく、複数の曲率半径からなる円弧形状であってもよく、曲率半径が徐々に変化する略円弧形状であってもよい。また、交点0.4SHpと交点0.6SHpとの間のケースライン14CLの曲率半径は、場合によっては無限大、言い換えれば、交点0.4SHpと交点0.6SHpとの間のケースライン14CLは直線形状であってもよい。
 本実施形態のケースライン14CLは、交点0.1SHpと交点0.2SHpとの間、及び交点0.4SHpと交点0.6SHpとの間共に、単一の曲率半径を持つ円弧形状である。
 ビード部12において、カーカス14の本体部14Aと折返し部14Bとで挟まれた領域には、ビードコア26からタイヤ径方向外側へ延びるビードフィラー28が埋設されている。また、ビードフィラー28は、タイヤ径方向外側の端部28Aに向けて厚みが減少している。ビードフィラー28は、サイドゴム23よりも硬いゴムで形成されている。なお、ビードフィラー28の形状、及び材質は、本実施形態のものに限定されない。
 なお、ランフラットタイヤ10をタイヤ回転軸に沿って断面にしたときのビードフィラー28の断面積をAbf、サイド補強ゴム24の断面積をArrとしたときに、比Abf/Arrは0.04~0.17の範囲内とすることが好ましく、0.08~0.15の範囲内とすることがより好ましく、0.09~0.13の範囲内とすることがより一層好ましい。
 仮想線FLWよりタイヤ径方向内側のサイド補強ゴム24の断面積をArri、仮想線FLWよりタイヤ径方向外側のサイド補強ゴム24の断面積をArroとしたときに、比Arri/Arroを、0.3~1.5の範囲内とすることが好ましく、0.3~1.0の範囲内とすることがより好ましく、0.5~0.6の範囲内とすることがより一層好ましい。
 ビードコア26の断面積をAcとしたときに、比Ac /Abfを、0.7~1.1の範囲内とすることが好ましく、0.8~1.8の範囲内とすることがより好ましく、0.90~0.95の範囲内とすることがより一層好ましい。
 総ゲージGと厚みtaとの比ta/Gは、0.6~1.0の範囲内とすることが好ましく、0.6~0.8の範囲内とすることがより好ましく、0.7~0.8の範囲内とすることがより一層好ましい。
 ランフラットタイヤ10の偏平率は、65%以下が好ましく、50%以下がより好ましく、35%以下がより一層好ましい。
 図2に示すように、標準リム30のリム端を通りタイヤ径方向に平行な仮想線FLHが、タイヤ最大幅部Wmaxのタイヤ径方向内側のカーカス14の本体部14Aと交わる交点をPa、該交点Paとビードコア26のタイヤ幅方向内側端26Pとを結ぶ仮想線FLαがタイヤ幅方向に対してなす角度をαとしたきに、30°<α<70°とすることが好ましく、35°<α<60°とすることがより好ましく、35°<α<45°とすることがより一層好ましい。
 なお、本実施形態の様にビードコア26の断面形状が矩形の場合、ビードコア26のタイヤ幅方向内側端26Pは、ビードコア26のタイヤ幅方向内側の辺の長手方向の中点になる。
 上記仮想線FLHが、タイヤ最大幅部Wmaxのタイヤ径方向外側のカーカス14の本体部14Aと交わる交点をPb、該交点Pbとビードコア26のタイヤ幅方向内側端26Pとを結ぶ仮想線FLβが、タイヤ幅方向に対してなす角度をβとしたときに、50°<β<80°とすることが好ましく、55°<β<70°とすることがより好ましく、55°<β<65°とすることがより一層好ましい。
 図1に示すように、サイド補強ゴム24のタイヤ径方向外側の他端部24B側は、第1ベルトプライ16Aのベルト端、及び第2ベルトプライ16Bのベルト端よりもタイヤ幅方向内側に配置されていることが好ましい。
 リムガード34の頂点34Tは、カーカス14の本体部14Aのタイヤ幅方向外端14maxよりもタイヤ幅方向外側に配置されていることが好ましい。
(ベルト)
 カーカス14のタイヤ径方向外側には、ベルト16が配設されている。本実施形態のベルト16は、1枚又は複数枚のベルトプライによって構成されている。本実施形態のベルト16は、一例として、タイヤ径方向内側の第1ベルトプライ16A、及び第1ベルトプライ16Aのタイヤ径方向外側に配置されて第1ベルトプライ16Aよりも幅狭の第2ベルトプライ16Bとを含んで構成されている。
 ベルトプライ16A、16Bは、互いに平行に並列された複数本のコード(本実施形態では、スチールコード)を被覆ゴムで被覆して形成されている。ベルトプライ16A、16Bを構成するコードは、タイヤ周方向に対して傾斜して配設されており(一例として、タイヤ周方向に対し15度~30度の傾斜角度で傾斜している。)。なお、ベルトプライ16Aのコードと、ベルトプライ16Bのコードとは、タイヤ赤道面CLに対して互いに反対方向に傾斜している。即ち、本実施形態のベルト16は、いわゆる交差ベルトである。
 ベルト16のタイヤ径方向外側には、ベルト補強層18が配設されている。ベルト補強層18は、一例としてタイヤ周方向に沿って延びるコードを含んで構成され、ベルト16の全体を覆うように配設されている。
 ベルト16及びベルト補強層18のタイヤ径方向外側には、トレッド部20を構成するトレッドゴム21が配置されている。トレッド部20は、走行中に路面に接地する部位であり、トレッド部20の表面には、タイヤ周方向に延びる周方向溝20Aが形成されている。また、トレッド部20には、タイヤ幅方向に延びる図示しない幅方向溝が形成されている。なお、周方向溝20A及び幅方向溝の形状や本数は、ランフラットタイヤ10に要求される排水性や操縦安定性等の性能に応じて適宜設定される。
 ビード部12とトレッド部20との間には、タイヤサイド部22が設けられている。タイヤサイド部22は、タイヤ径方向に延びてビード部12とトレッド部20とを連結している。タイヤサイド部22、及びビード部12において、カーカス14のタイヤ幅方向外側に、サイドゴム23が配置されている。
(サイド補強ゴム)
 タイヤサイド部22は、ランフラット走行時にランフラットタイヤ10に作用する荷重を負担できるように以下に説明するように構成されている。
 タイヤサイド部22には、カーカス14のタイヤ幅方向内側にタイヤサイド部22を補強する単一のゴム材料からなるサイド補強ゴム24が配設されている。サイド補強ゴム24は、パンクなどでランフラットタイヤ10の内圧が減少した場合に車両及び乗員の重量を支えた状態で所定の距離を走行させるための補強ゴムである。なお、本実施形態では一例としてゴムを主成分とするサイド補強ゴム24を配設しているが、本発明はこれに限らず、サイド補強ゴム24は他の材料で形成してもよく、例えば、熱可塑性樹脂等を主成分として形成されていてもよい。
 本実施形態では、サイド補強ゴム24を1種類のゴム部材で形成しているが、これに限らず、例えば、硬さの異なる複数のゴム部材で形成してもよい。また、サイド補強ゴム24は、ゴム部材が主成分であれば、他にフィラー、短繊維、樹脂等の材料を含んでもよい。さらに、ランフラット走行時の耐久力を高めるため、サイド補強ゴム24を構成するゴム部材として、デュロメータ硬さ試験機を用いて20℃で測定したJIS硬度が70~85のゴム部材を含んでもよい。さらに、粘弾性スペクトロメータ(例えば、東洋精機製作所製スペクトロメータ)を用いて周波数20Hz、初期歪み10%、動歪み±2%、温度60℃の条件で測定した損失係数tanδが0.10以下の物性を有するゴム部材を含んでもよい。
 サイド補強ゴム24は、カーカス14の本体部14Aの内面に沿ってタイヤ径方向に延びており、ビードコア26側及びトレッド部20側に向かうにつれて厚みtが減少する形状、例えば、断面略三日月形状とされている。なお、ここでいう厚みtとは、ランフラットタイヤ10を標準リム30に組み付けて内圧を零とした状態において、サイド補強ゴム24のタイヤ内面から垂直に測定した長さを指している。
 サイド補強ゴム24のタイヤ径方向内側の一端部24A側は、カーカス14を挟んでビードフィラー28と重なっている。すなわち、サイド補強ゴム24の一端部24A側は、ビードフィラー28とタイヤ径方向にオーバーラップするように配設されている。
 一方、サイド補強ゴム24のタイヤ径方向外側の他端部24B側は、カーカス14を挟んでベルト16と重なっている。すなわち、サイド補強ゴム24の他端部24B側は、ベルト16とタイヤ幅方向にオーバーラップするように配設されている。
 さらに、ランフラットタイヤ10のタイヤ最大幅部Wmaxを通り、かつタイヤ回転軸に平行な仮想線FLW上で計測したときのタイヤ内面からタイヤ外面までの総ゲージをG、タイヤ内面からケースライン14CLまでをタイヤ内面に対して垂直な方向で計測したときの距離をtとしたときに、仮想線FL1と仮想線FL6との間において、距離tは、総ゲージGの50~90%の範囲内に設定されていることが好ましい。
 また、サイド補強ゴム24が最大幅(tmax)となるサイド補強ゴム最大幅部位置24Pは、サイドハイトSHの20~60%の範囲内が好ましく、サイドハイトSHの30~50%の範囲内がより好ましく、サイドハイトSHの30~40%の範囲内がより一層好ましい。
(インナーライナー)
 本実施形態では、トレッド部20のタイヤ径方向内側におけるカーカス14、及びサイド補強ゴム24の内面に、インナーライナー32が配設されている。インナーライナー32は、一例として、ブチルゴムを主成分とするゴムで構成されている。インナーライナー32を構成するゴムは、ランフラットタイヤ10を構成する他のゴム(一例として、トレッドゴム21、サイドゴム23等)よりも、気体が透過し難く、かつロス(損失係数tanδ)が大きいものが用いられている。
 インナーライナー32は、タイヤ幅方向端32Eが、タイヤ内面(本実施形態では、サイド補強ゴム24の内面)に対して垂直で、かつベルト16のタイヤ幅方向最外端(第1ベルトプライ16Aの幅方向端部)16Eを通る仮想線FLEよりもタイヤ幅方向外側へ越えることのないように配置される。言い換えれば、インナーライナー32は、タイヤサイド部22、及びビード部12のタイヤ内面側に配置されない。本実施形態では、インナーライナー32のタイヤ幅方向端32Eが、仮想線FLE上に位置している。
 ここで、インナーライナー32のタイヤ幅方向端32Eからカーカス14のケースライン14CLまでの距離(最短距離)Lminは、1mm以上に設定することが好ましい。
(作用、効果)
 次に、本実施形態のランフラットタイヤ10の作用について説明する。
本実施形態のランフラットタイヤ10は、インナーライナー32が、タイヤ径方向外側に位置するカーカス14のタイヤ内面側で、ベルト16のタイヤ幅方向最外端16Eを通り、かつタイヤ内面に対して垂直に延びる仮想線FLEよりもタイヤ幅方向外側に配置されていない。言い換えれば、本実施形態のランフラットタイヤ10は、インナーライナー32がタイヤサイド部22に設けられていないので、タイヤ内面全体にインナーライナーを設けたランフラットタイヤに比較して、転がり抵抗を低減することができ、燃費性能を向上させることができる。
 さらに、本実施形態のように、インナーライナー32のタイヤ幅方向端32Eを、仮想線FLE上に配置することで、転がり抵抗を悪化させることなく、タイヤ外側への気体(タイヤ内に充填した空気)の透過を最大限に抑制することができる。なお、仮想線FLEよりもタイヤ幅方向外側では、厚いサイド補強ゴム24が配置されているので、タイヤ外側への気体の透過は十分に抑制できる。
 また、本実施形態のランフラットタイヤ10では、交点0.1SHpと交点0.2SHpとの間のケースライン14CLをタイヤ外側へ凸となる円弧形状とすると共に、その平均の曲率半径を半径R1、タイヤ回転軸に沿った断面で見たときの交点0.4SHpと0.6SHpとの間のケースライン14CLをタイヤ外側へ凸となる円弧形状とすると共に、その平均の曲率半径を半径R2としたときに、比R2/R1を0.3よりも大きく設定したので、通常走行時の縦ばね定数を低下させることができ、かつランフラット走行時のビード部12、及びタイヤサイド部22の過度の倒れ込みを抑制でき、乗り心地とランフラット耐久性とを両立することができる。なお、ランフラット耐久性が良くなるため、比R2/R1は0.4よりも大きく設定することが更に好ましい。
 但し、比R2/R1は、1.3未満に設定することが好ましい。比R2/R1が大きくなり過ぎると、タイヤサイド部のランフラット走行時のたわみが大きくなり過ぎ、ランフラット耐久性を満足できない。
 また、本実施形態のランフラットタイヤ10では、インナーライナー32のタイヤ幅方向端32Eからカーカス14の本体部14Aまでの距離Lminを、1mm以上に設定しているので、ベルト16のコード(一例としてスチールコード)がタイヤ内の空気中に含まれる酸素の影響を受けて劣化(錆の発生等)しないように、インナーライナー32のタイヤ幅方向端32Eからベルト16のコードまでの距離を長くとってサイド補強ゴム24の厚さを確保することができる。
 また、本実施形態のランフラットタイヤ10では、タイヤ側方のケースライン14CLにおいて、タイヤ径方向外側のケースライン14CLの半径R2をサイドハイトSHの100~200%の範囲内に設定し、タイヤ径方向内側のケースライン14CLの半径R1をサイドハイトSHの50~150%の範囲内に設定することで、ランフラットタイヤ10の通常走行時の縦ばね定数を低減しつつ、ランフラット走行時のランフラット耐久性を確保することができる。
 半径R1がサイドハイトSHの100%未満になると、ビード付近の剛性が低くなり、リム側に倒れこむ変形が増加する事で該箇所に変形が集中するため、特にランフラット耐久性能が損なわれる。
 半径R1がサイドハイトSHの200%を超えるになると、ビード付近の剛性が高くなり、通常内圧時の乗り心地性に悪影響を及ぼす。
 半径R2がサイドハイトSHの50%未満になると、最大幅付近の剛性が低くなり、しなやかに撓むことはできるが、ランフラット走行時にサイド補強層に集中する変形が大きくなり、特にランフラット耐久性能が損なわれる。
 半径R2がサイドハイトSHの150%を超えるとになると、最大幅付近の剛性が高くなりしなやかに撓むことができないため、通常内圧時の乗り心地性に悪影響を及ぼす。
 ところで、タイヤ幅方向外側へ突出する略円弧形状のタイヤサイド部22が、内圧低下により潰れると、タイヤサイド部22の中立軸よりもタイヤ外側の部分ではタイヤ径方向に引張力が作用してタイヤ径方向に伸張変形し(伸びる)、タイヤサイド部22の中立軸よりもタイヤ内側の部分ではタイヤ径方向に圧縮力が作用してタイヤ径方向に圧縮される。また、中立軸から離れるにしたがって、変形量は増大する。
 本実施形態のランフラットタイヤ10では、仮想線FL1と仮想線FL6との間において、t/Gが0.5~0.8の範囲内に設定されているので、タイヤサイド部22における中立軸に対して、タイヤサイド部22の中に埋設されるカーカスプライ15の位置がタイヤ幅方向外側へ離れて配置される、即ち、内圧低下時に変形量が大きくなる部位に、ゴムに比較して伸び難いコードを含むカーカスプライ15が配置されるため、通常走行時の乗り心地を悪化させるサイド補強ゴム24を厚くせずとも内圧低下時のタイヤサイド部22の変形(潰れ)をカーカスプライ15のコードの張力負担により抑制し、ランフラット耐久性を確保することができる。
[その他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 上記実施形態のカーカス14は、1枚のカーカスプライ15によって構成されていたが、本発明はこれに限らず、カーカス14は複数枚のカーカスプライ15によって構成されていてもよい。
 上記実施形態のベルト16は、2枚のベルトプライによって構成された所謂交錯ベルトであったが、スパイラルベルトであってもよい。また、ベルト16は、樹脂層内にコードを埋設した構造のものであってもよい。
 上記実施形態のインナーライナー32は、一例として、ブチルゴムを主成分としたゴムで形成されているが、本発明はこれに限らず、インナーライナー32は、他のゴム部材や、樹脂を主成分としたものであってもよく、樹脂フィルムであってもよい。
 上記実施形態のランフラットタイヤ10では、ビード部12の外側面に、ビード部12の過度の変形(タイヤ幅方向外側への倒れ)を抑制するための突起状のリムガード(リムプロテクション)を設けていないが、本発明はこれに限らず、ビード部12の外側面にリムガードが設けられていてもよい。
 上記実施形態では、乗用車用のランフラットタイヤについて説明したが、本発明は乗用車用以外の車両に用いるランフラットタイヤについても適用できる。
 2018年6月25日に出願された日本国特許出願2018-120306号の開示は、その全体が参照される。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照されることが具体的かつ個々に記された場合と同程度に、本明細書中に参照される。

Claims (4)

  1.  一対のビードコアと、
     前記一対のビードコアを跨る本体部と前記ビードコアを折り返される折返し部とを備えたカーカスと、
     前記カーカスのタイヤ径方向外側に設けられたベルトと、
     前記カーカスのタイヤ幅方向内側に設けられ、タイヤ径方向両側に向けて厚さが漸減するサイド補強層と、
     タイヤ径方向外側に位置する前記カーカスのタイヤ内面側で、前記ベルトのタイヤ幅方向最外端を通り、かつタイヤ内面に対して垂直に延びる仮想線よりもタイヤ幅方向内側に設けられるインナーライナーと、
     を備え、
     前記カーカスの中心線をケースラインとし、
     標準リムに装着して零内圧の状態でタイヤ回転軸に沿った断面で見たときの、前記ビードコアのタイヤ径方向外側端を通って前記タイヤ回転軸に平行な基準線からタイヤ径方向へ計測した前記ケースラインの高さ寸法をサイドハイトSH、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの10%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.1SHp、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの20%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.2SHp、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの40%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.4SHp、
     前記基準線からタイヤ径方向外側へ前記サイドハイトSHの60%離れた位置を通りタイヤ回転軸に沿って平行とされた仮想線と前記ケースラインとの交点を0.6SHp、
     タイヤ回転軸に沿った断面で見たときの前記交点0.1SHpと前記0.2SHpとの間における前記ケースラインの平均の曲率半径を半径R1、
     タイヤ回転軸に沿った断面で見たときの前記交点0.4SHpと前記0.6SHpとの間における前記ケースラインの平均の曲率半径を半径R2としたときに、
     比R2/R1を0.3よりも大きく設定した、ランフラットタイヤ。
  2.  タイヤ回転軸に沿った断面で見たときに、前記インナーライナーのタイヤ幅方向端が、前記ベルトのタイヤ最外幅端を通ってタイヤ内面に対して垂直に延びる仮想線上に位置している、請求項1に記載のランフラットタイヤ。
  3.  前記半径R1が前記サイドハイトSHの100~200%の範囲内に設定され、
     前記半径R2が前記サイドハイトSHの50~150%の範囲内に設定されている、請求項1または請求項2に記載のランフラットタイヤ。
  4.  タイヤ最大幅部を通りタイヤ回転軸に平行な仮想線上で計測するタイヤ総ゲージをG、
     前記交点0.1SHpを通りタイヤ内面に対して垂直に延びる仮想線と前記交点0.6SHpを通りタイヤ内面に対して垂直に延びる仮想線との間において、タイヤ内面に対して垂直な方向に沿って計測するタイヤ内面から前記ケースラインまでの距離をt、
     としたきに、
     t/Gを0.5~0.8の範囲内に設定した、請求項1~請求項3の何れか1項に記載のランフラットタイヤ。
PCT/JP2019/023951 2018-06-25 2019-06-17 ランフラットタイヤ WO2020004112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19824979.9A EP3812180B1 (en) 2018-06-25 2019-06-17 Run-flat tire
JP2020527415A JP7128276B2 (ja) 2018-06-25 2019-06-17 ランフラットタイヤ
CN201980042688.0A CN112313093B (zh) 2018-06-25 2019-06-17 缺气保用轮胎
US17/255,421 US11541690B2 (en) 2018-06-25 2019-06-17 Run-flat tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-120306 2018-06-25
JP2018120306 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020004112A1 true WO2020004112A1 (ja) 2020-01-02

Family

ID=68986486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023951 WO2020004112A1 (ja) 2018-06-25 2019-06-17 ランフラットタイヤ

Country Status (5)

Country Link
US (1) US11541690B2 (ja)
EP (1) EP3812180B1 (ja)
JP (1) JP7128276B2 (ja)
CN (1) CN112313093B (ja)
WO (1) WO2020004112A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022200392A1 (de) * 2022-01-14 2023-07-20 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268507A (ja) * 1998-03-24 1999-10-05 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2002301914A (ja) * 2001-04-03 2002-10-15 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2004182164A (ja) * 2002-12-05 2004-07-02 Toyo Tire & Rubber Co Ltd ランフラットタイヤ
JP2006035900A (ja) * 2004-07-22 2006-02-09 Nissan Motor Co Ltd 空気入りタイヤ
JP2009018771A (ja) * 2007-07-13 2009-01-29 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2012116212A (ja) 2010-11-29 2012-06-21 Yokohama Rubber Co Ltd:The ランフラットタイヤ
JP2013177115A (ja) * 2012-02-08 2013-09-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2014031147A (ja) * 2012-08-06 2014-02-20 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2014037214A (ja) * 2012-08-20 2014-02-27 Sumitomo Rubber Ind Ltd ランフラットタイヤ
WO2017043205A1 (ja) * 2015-09-10 2017-03-16 横浜ゴム株式会社 空気入りタイヤ
JP2018120306A (ja) 2017-01-23 2018-08-02 セイコーエプソン株式会社 エンコーダー、ロボットおよびプリンター

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747203A (en) * 1980-09-05 1982-03-18 Bridgestone Corp Pneumatic flat radial tire for heavy load
JP2579309B2 (ja) * 1987-02-10 1997-02-05 住友ゴム工業 株式会社 ラジアルタイヤ
GB2224703B (en) * 1988-11-11 1992-09-30 Sumitomo Rubber Ind Tyre for commercial vehicles
JPH02293202A (ja) * 1989-05-06 1990-12-04 Sumitomo Rubber Ind Ltd ラジアルタイヤ
JPH06316206A (ja) * 1993-05-07 1994-11-15 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP3053390B2 (ja) * 1998-08-04 2000-06-19 住友ゴム工業株式会社 ランフラットタイヤ
FR2809054A1 (fr) * 2000-05-22 2001-11-23 Michelin Soc Tech Pneumatique, ensemble pneumatique et jante
EP1568512A1 (de) * 2004-02-26 2005-08-31 Continental Aktiengesellschaft Fahrzeugluftreifen
JP5174502B2 (ja) * 2008-03-26 2013-04-03 株式会社ブリヂストン ランフラットタイヤ
JP5366629B2 (ja) 2009-04-16 2013-12-11 株式会社ブリヂストン 空気入りタイヤ
JP2011116319A (ja) * 2009-12-07 2011-06-16 Bridgestone Corp 空気入りタイヤ
JP5530413B2 (ja) 2011-09-26 2014-06-25 住友ゴム工業株式会社 ランフラットタイヤ
JP6312543B2 (ja) 2014-07-15 2018-04-18 住友ゴム工業株式会社 ランフラットタイヤ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268507A (ja) * 1998-03-24 1999-10-05 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2002301914A (ja) * 2001-04-03 2002-10-15 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2004182164A (ja) * 2002-12-05 2004-07-02 Toyo Tire & Rubber Co Ltd ランフラットタイヤ
JP2006035900A (ja) * 2004-07-22 2006-02-09 Nissan Motor Co Ltd 空気入りタイヤ
JP2009018771A (ja) * 2007-07-13 2009-01-29 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2012116212A (ja) 2010-11-29 2012-06-21 Yokohama Rubber Co Ltd:The ランフラットタイヤ
JP2013177115A (ja) * 2012-02-08 2013-09-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2014031147A (ja) * 2012-08-06 2014-02-20 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2014037214A (ja) * 2012-08-20 2014-02-27 Sumitomo Rubber Ind Ltd ランフラットタイヤ
WO2017043205A1 (ja) * 2015-09-10 2017-03-16 横浜ゴム株式会社 空気入りタイヤ
JP2018120306A (ja) 2017-01-23 2018-08-02 セイコーエプソン株式会社 エンコーダー、ロボットおよびプリンター

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812180A4

Also Published As

Publication number Publication date
EP3812180B1 (en) 2023-12-13
US20210252913A1 (en) 2021-08-19
JPWO2020004112A1 (ja) 2021-07-08
JP7128276B2 (ja) 2022-08-30
US11541690B2 (en) 2023-01-03
CN112313093A (zh) 2021-02-02
CN112313093B (zh) 2022-10-25
EP3812180A4 (en) 2022-03-09
EP3812180A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP4295795B2 (ja) 空気入りタイヤ
EP2246202B1 (en) Floating two-ply tire
WO2014084370A1 (ja) 空気入りタイヤ
WO2015151634A1 (ja) ランフラットラジアルタイヤ
WO2015115162A1 (ja) ランフラットラジアルタイヤ
WO2015115163A1 (ja) ランフラットラジアルタイヤ
WO2015162969A1 (ja) サイド補強型ランフラットラジアルタイヤ
WO2015159576A1 (ja) サイド補強型ランフラットラジアルタイヤ
WO2020004112A1 (ja) ランフラットタイヤ
WO2015012026A1 (ja) ランフラットタイヤ
JP2007022374A (ja) 自動二輪車用空気入りラジアルタイヤ
JP2010163108A (ja) 空気入りランフラットタイヤ
WO2021095884A1 (ja) ランフラットタイヤ
JP2008296865A (ja) 空気入りタイヤ
WO2017188409A1 (ja) ランフラットラジアルタイヤ
WO2020004109A1 (ja) ランフラットタイヤ
WO2020004111A1 (ja) ランフラットタイヤ
US20100051162A1 (en) Modular two-ply tire with directional side plies
JP7128274B2 (ja) ランフラットタイヤ
JP2004306771A (ja) ランフラットタイヤ
JP4340466B2 (ja) ランフラットタイヤ
JP2013169847A (ja) 空気入りタイヤ
JP2006199223A (ja) 空気入りタイヤ
JP2022120448A (ja) タイヤ
JP2015217853A (ja) ランフラットラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019824979

Country of ref document: EP

Effective date: 20210125