WO2019244387A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019244387A1
WO2019244387A1 PCT/JP2019/002567 JP2019002567W WO2019244387A1 WO 2019244387 A1 WO2019244387 A1 WO 2019244387A1 JP 2019002567 W JP2019002567 W JP 2019002567W WO 2019244387 A1 WO2019244387 A1 WO 2019244387A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
external
resistance
electrode
terminal
Prior art date
Application number
PCT/JP2019/002567
Other languages
English (en)
French (fr)
Inventor
一磨 吉田
亮介 大河
翼 井上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/488,541 priority Critical patent/US11049856B2/en
Priority to CN202210553406.7A priority patent/CN114883323B/zh
Priority to JP2019531839A priority patent/JP6573189B1/ja
Priority to KR1020217003713A priority patent/KR102328064B1/ko
Priority to KR1020207022819A priority patent/KR102216522B1/ko
Priority to CN202210553400.XA priority patent/CN114823664A/zh
Priority to CN201980011546.8A priority patent/CN111684582B/zh
Publication of WO2019244387A1 publication Critical patent/WO2019244387A1/ja
Priority to US17/228,687 priority patent/US11282834B2/en
Priority to US17/589,923 priority patent/US11626399B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP

Definitions

  • the present disclosure relates to a semiconductor device, and more particularly, to a CSP (Chip Size Package) type semiconductor device.
  • CSP Chip Size Package
  • the heat generation portion at the time of the discharge control on the semiconductor device is only a local region where the resistance element is arranged.
  • the temperature of the local region may exceed the allowable operating temperature of the semiconductor device, and the semiconductor device may be broken. Further, in dissipating the generated heat, it is not easy to transfer the heat generated in the local area to the surrounding area, so that the heat radiation efficiency is not good.
  • a semiconductor device includes a transistor element having a first electrode, a second electrode, and a control electrode that controls a conduction state between the first electrode and the second electrode, and a plurality of first resistance elements. Wherein all one electrodes of the plurality of first resistance elements are electrically connected to the second electrode, and the other of all the plurality of first resistance elements is the other.
  • An electrode having one or more external resistance terminals contact-connected to any of the electrodes, an external first terminal electrically connected to the first electrode, and an external control terminal electrically connected to the control electrode;
  • the one or more external resistance terminals, the external first terminals, and the external control terminals are face-down mounted chip size package type semiconductor devices that are external connection terminals formed on a surface of the semiconductor device.
  • the semiconductor device According to the semiconductor device according to the present disclosure, it is possible to radiate heat of the semiconductor device more efficiently than before, while avoiding destruction of the semiconductor device during discharge control.
  • FIG. 1 is an external view of a semiconductor device according to an embodiment.
  • FIG. 2 is a circuit diagram of the semiconductor device according to the embodiment.
  • FIG. 3 is a top perspective view of the semiconductor device according to the embodiment.
  • FIG. 4 is a cross-sectional view of the semiconductor device according to the embodiment.
  • FIG. 5 is a top perspective view of the semiconductor device according to the embodiment.
  • FIG. 6 is a circuit diagram of the semiconductor device according to the embodiment.
  • FIG. 7 is a cross-sectional view of the semiconductor device according to the embodiment.
  • FIG. 8 is a cross-sectional view of the semiconductor device according to the embodiment.
  • FIG. 9 is a cross-sectional view of the semiconductor device according to the embodiment.
  • FIG. 10 is a top perspective view of the semiconductor device according to the embodiment.
  • FIG. 11 is a cross-sectional view of the semiconductor device according to the embodiment.
  • FIG. 12 is a top perspective view of the semiconductor device according to the embodiment.
  • FIG. 13 is a schematic diagram showing a state where the semiconductor device according to the embodiment is mounted.
  • FIG. 14A is a top view of the semiconductor device according to the embodiment.
  • FIG. 14B is a top view of the semiconductor device according to the embodiment.
  • FIG. 15 is a schematic diagram showing a charge / discharge circuit according to the embodiment.
  • FIG. 16 is a diagram showing a temperature simulation result of the semiconductor device according to the embodiment.
  • FIG. 17 is a diagram illustrating a relationship between the length and the volume of each side when the semiconductor device according to the embodiment satisfies a predetermined temperature condition.
  • the semiconductor device 1 is a CSP chip containing one vertical MOS (Metal Oxide Semiconductor) transistor and a plurality of resistance elements, and is a BGA (Ball Grid Array) type, an LGA (Land Grid Array) type, or another type. May be used.
  • BGA Bit Grid Array
  • LGA Land Grid Array
  • the vertical MOS transistor is a power transistor, and is a so-called trench MOS FET (Field Effect Transistor).
  • FIG. 1 is an external view of the semiconductor device 1.
  • the semiconductor device 1 has, on its surface, an external first terminal 10, an external second terminal 20, and external resistance terminals 30A to 30F (hereinafter sometimes referred to as the external resistance terminal 30). And an external control terminal 40 as an external connection terminal.
  • an external connection terminal By mounting the semiconductor device 1 face down, the external connection terminals are joined to the mounting surface of the mounting board.
  • FIG. 2 is a circuit diagram of the semiconductor device 1.
  • the semiconductor device 1 includes, in addition to the external connection terminals, a transistor element 100 that is a vertical MOS transistor and first resistance elements 110A to 110F (hereinafter, referred to as first resistance element 110). And a Zener diode 190 for ESD protection, and the transistor element 100 has a body diode BD as a parasitic element between the source and the drain.
  • All one electrodes of the first resistance element 110 are electrically connected to the external second terminal 20. All the other electrodes of the first resistance element 110 may be electrically connected to the external resistance terminals 30 corresponding to each other one by one, and may be electrically short-circuited to each other.
  • FIG. 3 is a top perspective view of the semiconductor device 1
  • FIG. 4 is a cross-sectional view of the semiconductor device 1 as viewed along a section taken along line A1-A2 in FIG.
  • the semiconductor device 1 includes a semiconductor substrate 51, a first low-concentration impurity layer 52, a high-concentration impurity layer 57, an insulating layer 61, a passivation layer 62, and a metal layer. 71, a transistor element 100, a drain external electrode 21, a resistance electrode 31, a first resistance element 110, and metal wirings 120 to 123.
  • the semiconductor substrate 51 is made of silicon containing impurities of the first conductivity type, and may be, for example, an N-type silicon substrate.
  • the first conductivity type is N-type and the second conductivity type is P-type.
  • the first low-concentration impurity layer 52 is formed in contact with the upper surface (upper main surface in FIG. 4) of the semiconductor substrate 51, and has a first conductivity type having a concentration lower than the concentration of the first conductivity type impurity of the semiconductor substrate 51. Contains type impurities.
  • the first low-concentration impurity layer 52 may be formed on the semiconductor substrate 51 by, for example, epitaxial growth.
  • the high-concentration impurity layer 57 is formed in contact with the upper surface of the semiconductor substrate 51 and includes a first conductivity-type impurity having a higher concentration than the first conductivity-type impurity of the first low-concentration impurity layer 52.
  • One low-concentration impurity layer 52 is formed in the drain pull-up region 160.
  • the high concentration impurity layer 57 may be formed by implanting a first conductivity type impurity into the drain pull-up region 160.
  • the high-concentration impurity layer 57 is not essential in the semiconductor device 1, and this portion may be the first low-concentration impurity layer 52, in which case an additional step of implanting impurities of the first conductivity type becomes unnecessary.
  • the semiconductor device 1 can be manufactured at low cost.
  • the insulating layer 61 is an insulating layer formed in contact with the upper surface of the first low-concentration impurity layer 52, and may be silicon dioxide, or may be formed by a CVD (Chemical Vapor Deposition) method.
  • the passivation layer 62 is a protective layer formed on the surface of the semiconductor device 1 and may be silicon nitride or may be formed by a CVD method.
  • the metal layer 71 is formed in contact with the lower surface (the lower main surface in FIG. 4) of the semiconductor substrate 51 and is made of a metal material.
  • the transistor element 100 is formed in the transistor element region 150 and functions as a first electrode 11 (hereinafter, sometimes referred to as a source electrode) serving as a source electrode, and a semiconductor substrate 51 (hereinafter, referred to as a drain electrode) serving as a drain electrode. And a gate conductor 55 serving as a control electrode for controlling the conduction between the first electrode 11 (source electrode) and the semiconductor substrate 51 (drain electrode).
  • a first electrode 11 hereinafter, sometimes referred to as a source electrode
  • a semiconductor substrate 51 hereinafter, referred to as a drain electrode
  • a gate conductor 55 serving as a control electrode for controlling the conduction between the first electrode 11 (source electrode) and the semiconductor substrate 51 (drain electrode).
  • a body region 53 containing an impurity of a second conductivity type different from the first conductivity type is formed in the first low-concentration impurity layer 52 of the transistor element region 150.
  • a source region 54 containing a first conductivity type impurity, a gate conductor 55, and a gate insulating film 56 are formed in the body region 53.
  • the first electrode 11 is in contact with and connected to the source region 54 and the body region 53, and its upper surface is exposed as an external first terminal 10 on the surface of the semiconductor device 1 through an opening in the passivation layer 62.
  • the drain external electrode 21 is in contact with and connected to the high-concentration impurity layer 57, and its upper surface is exposed as an external second terminal 20 on the surface of the semiconductor device 1 through an opening in the passivation layer 62.
  • the resistance electrodes 31 are connected in contact with the other electrodes of the first resistance elements 110 (110A to 110F), and the upper surface thereof is connected to an external resistance terminal on the surface of the semiconductor device 1 through an opening of the passivation layer 62. 30 (30A to 30F).
  • the resistance electrodes 31 may be electrically connected to each other through the metal wiring 122.
  • the third electrode 41 (see FIG. 3) (hereinafter sometimes referred to as a gate electrode) is electrically connected to the gate conductor 55 (see FIG. 4) through the metal wiring 121 (see FIG. 3).
  • the upper surface of the third electrode 41 is exposed as the external control terminal 40 on the surface of the semiconductor device 1 through the opening of the passivation layer 62.
  • the first resistance element 110 is formed in the insulating layer 61, is made of polysilicon doped with impurities, and may be formed by, for example, a CVD method.
  • the sheet resistance of polysilicon can be determined by the type of impurity, dose, and the like.
  • Each of the metal wirings 120 (120A to 120F) is formed on the insulating layer 61, and electrically connects the drain external electrode 21 to one of the electrodes of the first resistance element 110 (110A to 110F). ing.
  • the Zener diode 190 is illustrated in FIG. 3 as a Zener diode region 170, and one electrode is electrically connected to the first electrode 11 through the metal wiring 123, and the other electrode is electrically connected to the third electrode 41. ing.
  • the first electrode 11, the drain external electrode 21, the resistance electrode 31, the third electrode 41, the metal layer 71, and the metal wires 120 to 123 are not limited to one or more of aluminum, copper, gold, and silver. It may be constituted by a metal material containing.
  • the above-described semiconductor device 1 has a configuration in which the first conductivity type is N-type and the second conductivity type is P-type.
  • the P-type and the second conductivity type may be N-type.
  • the forward direction of the body diode existing as a parasitic element between the source and the drain is opposite to the forward direction of the body diode BD of the semiconductor device 1.
  • the first conductivity type impurity may be, for example, arsenic or phosphorus
  • the second conductivity type impurity may be, for example, boron.
  • the semiconductor device 1 has a configuration in which the same number of external resistance terminals 30 and the same number of resistance electrodes 31 are provided for the plurality of first resistance elements 110.
  • the semiconductor device according to the present embodiment is not limited to this configuration, and one or more external resistance terminals 30 and resistance electrodes 31 equal to or less than the number of external resistance terminals 30 may be provided for the plurality of first resistance elements 110.
  • the number of the first resistance elements 110 is six
  • the number of the external resistance terminals 30 is 1 to 5, or 7 or more
  • the number of the resistance electrodes 31 is the external resistance terminals 30 or less.
  • the other electrode of the first resistance element 110 may be in contact with any one of the resistance electrodes 31.
  • first resistance elements 510A to 510J (hereinafter sometimes referred to as resistance element 510) and external resistance terminals 430A to 430E (hereinafter referred to as external resistance terminal 430) may be used.
  • resistive electrodes 431A to 430C (hereinafter, sometimes referred to as resistive electrodes 431) in quantity.
  • the shape of the external connection terminal 30 is circular in plan view of the semiconductor device 1, but the semiconductor device according to the present embodiment is not limited to a circle, and the shape of the external connection terminal is The shape may be an oval, a polygon, or the like.
  • the semiconductor device 1 has an external resistance when the potential of the gate electrode is higher than or equal to the threshold with respect to the potential of the source electrode, and the transistor element 100 is turned on (hereinafter, sometimes referred to as on).
  • a conduction current can flow from the terminal 30 to the external first terminal 10.
  • the path of the conduction current is, in order from the external resistance terminal 30 to the external first terminal 10, the resistance electrode 31, the first resistance element 110, the metal wiring 120, the drain external electrode 21, the high-concentration impurity layer 57, the semiconductor substrate 51 , The first low-concentration impurity layer 52, the body region 53, the source region 54, and the first electrode 11.
  • the current flowing through the first resistance elements 110 is shunted to each of the plurality of first resistance elements 110, so that the heat-generating portion at the time of conduction is located at the position where each first resistance element 110 is arranged. Dispersed, the maximum heat generation temperature in each first resistance element decreases according to the degree of shunt of the conduction current. Therefore, according to the semiconductor device 1, the maximum heat generation temperature at the time of conduction can be reduced, and heat radiation can be performed efficiently.
  • a region where the first resistance element 110 and the metal wiring 120 are in contact with each other and a region where the first resistance element 110 and the resistance electrode 31 are in contact with each other are referred to as a contact 111.
  • the figures are shown with common hunting. Since the other electrode of the first resistance element 110 is directly connected to the resistance electrode 31 by the contact 111, heat generated in the first resistance element 110 is generated from the resistance electrode 31 made of a metal material. Through the external resistance terminal 30, the heat can be transmitted to the mounting board by a heat conduction path made of only a metal material. Therefore, according to the semiconductor device 1, heat generated during conduction can be efficiently radiated.
  • each first resistance element 110 is electrically short-circuited to each other in the semiconductor device 1. Therefore, according to the semiconductor device 1, even when some of the external resistance terminals 30 out of the external resistance terminals 30 are in a bonding open failure state with respect to the mounting board due to a mounting failure or the like, the external first terminals 10 and the external resistance A resistance value required for discharge control set between the terminal 30 and the terminal 30 is secured.
  • each first resistance element 110 is the same. This equalizes the amount of heat generated in each first resistance element 110, and makes it possible to equalize the maximum heat generation temperature in each first resistance element to the minimum value. Therefore, according to the semiconductor device 1, the maximum heat generation temperature at the time of conduction can be reduced, and heat radiation can be performed efficiently.
  • the resistance value is the same means that the resistance value is the same within the range of the variation in the performance in the manufacturing process.
  • the external resistance terminals 30 are radially arranged around the external second terminal 20 in plan view of the semiconductor device 1.
  • “disposed radially” means a state in which the external second terminal 20 is disposed inside and the external resistance terminal 30 is disposed outside from the inside to the outside in a plan view of the semiconductor device 1.
  • heat generated in the first resistance element 110 is dispersed and radiated from the resistance electrode 31 contacted and connected to the contact 111 to the wider area of the mounting substrate through the external resistance terminal 30, so that the heat generated in the semiconductor device 1 is reduced. Suppression of heat in some places is suppressed. Therefore, according to the semiconductor device 1, heat generated during conduction can be efficiently radiated.
  • FIG. 5 described later the arrangement positional relationship between the external second terminal 420 and the external resistance terminals 430A to 430E (hereinafter, sometimes referred to as the external resistance terminal 430) is exemplified.
  • Each first resistance element 110 is radially arranged around the external second terminal 20 in plan view of the semiconductor device 1.
  • heat generated in the region of the first resistance element 110 is generated in a wider area of the semiconductor device 1, and heat is prevented from being trapped in a part of the semiconductor device 1. You. Therefore, according to the semiconductor device 1, the heat generated at the time of conduction can be suppressed more than before, and the heat can be efficiently dissipated.
  • resistance element 510 the positional relationship between an external second terminal 420 and first resistance elements 510A to 510J (hereinafter, sometimes referred to as resistance element 510) illustrated in FIG.
  • the shortest distance between the at least one external resistance terminal 30 and the outer periphery of the semiconductor device 1 is determined by the first resistance element 110 contact-connected to the resistance electrode 31 including the external resistance terminal 30.
  • the distance may be shorter than the shortest distance from the outer periphery of the semiconductor device 1. This suppresses heat from being trapped in the semiconductor device 1. Therefore, according to the semiconductor device 1, heat generated during conduction can be efficiently radiated.
  • the shortest distance between the center point of at least one external resistance terminal 30 and the outer periphery of the semiconductor device 1 is determined by the first resistance contact-connected to the resistance electrode 31 including the external resistance terminal 30.
  • the distance may be shorter than the shortest distance between the center point of the element 110 and the outer periphery of the semiconductor device 1. This suppresses heat from being trapped in the semiconductor device 1. Therefore, according to the semiconductor device 1, heat generated during conduction can be efficiently radiated.
  • the external second terminal 20 is disposed closer to the center than other external connection terminals in a plan view of the semiconductor device 1. (The four external second terminals 20 may be other external connection terminals.)
  • chip warpage of the semiconductor device 1 occurs due to heating during the mounting process. Sometimes. This chip warpage occurs because the linear expansion coefficient of the metal forming the metal layer 71 is larger than the linear expansion coefficient of the silicon forming the semiconductor substrate 51, the first low-concentration impurity layer 52, and the like. The center side of 1 warps in the direction away from the mounting board.
  • the external connection terminals arranged on the center side of the semiconductor device 1 are more likely to cause void defects at the joint with the mounting substrate than the external connection terminals arranged on the outer peripheral side.
  • the external second terminal 20 may not be used in an actual application circuit as shown in an application circuit example of FIG. 15 described later. Therefore, when the external second terminal 20 is not used in the application circuit, the external second terminal 20 is disposed closer to the center than the other external connection terminals in a plan view of the semiconductor device 1. Even if a void defect occurs at the junction of the center-side external terminal of the semiconductor device 1 in some cases, practical harm as an applied circuit can be eliminated.
  • the positional relationship between the external second terminal 420, the external first terminals 410A to 410B, the external control terminal 440, and the external resistance terminal 430 illustrated in FIG. 5 described later is exemplified.
  • the number of external resistance terminals 30 provided in the semiconductor device is The heat radiation is dependent on the number of external first terminals 10, external second terminals 20, and external control terminals 40 (hereinafter, these three external connection terminals may be collectively referred to as external non-resistance terminals). It will be decided. In other words, it can be said that the larger the number of external resistance terminals 30, which is a substantial distributed heat source, the higher the heat radiation effect.
  • the external connection terminals are arranged in a matrix on the surface of the semiconductor device, and the case of four terminals in two rows and two columns is considered as the minimum external connection terminal configuration.
  • a configuration not including the external second terminal 20 described later is applied, and the number of external resistance terminals 30 and the number of external non-resistance terminals are set to 2 (the external first terminal 10 and the external control terminal 40). it can.
  • the external resistance terminal 30 (and the adjacent first resistance element 110 at the same time) is disposed in a region that is approximately ⁇ of the area of the semiconductor device in plan view.
  • the number of external connection terminals is 4, Since the number of resistance terminals is 1, even in this case, the maximum heat generation temperature during conduction can be reduced, and heat can be efficiently dissipated.
  • the external resistance terminals 30 are arranged in a region of about ⁇ of the area of the semiconductor device 1 in plan view.
  • the maximum heat generation temperature during conduction can be reduced, and heat radiation can be performed more efficiently.
  • FIG. 5 is a top perspective view of the semiconductor device 1E according to the present embodiment
  • FIG. 6 is a circuit diagram of the semiconductor device 1E.
  • the same components as those of the semiconductor device 1 will be denoted by the same reference numerals as already described, detailed description thereof will be omitted, and differences from the semiconductor device 1 will be mainly described. .
  • the external first terminals 410A to 410B, the external second terminal 420, the external control terminal 430, and the external resistance terminal 440 are respectively the external first terminal 10 and the external second terminal 20 of the semiconductor device 1.
  • Each external resistance terminal 430 is radially arranged around the external second terminal 420 in plan view of the semiconductor device 1E.
  • Each first resistance element 510 is a resistance element similar to the first resistance element 110 of the semiconductor device 1, and is radially arranged around the external second terminal 420 in plan view of the semiconductor device 1E. .
  • the external second terminal 420 is disposed closer to the center of the semiconductor device 1E than other external connection terminals in a plan view of the semiconductor device 1E.
  • the first electrodes 411A to 411B, the drain external electrode 421, the resistance electrodes 431A to 431C, and the third electrode 441 are respectively connected to the first electrode 11, the drain external electrode 21, the resistance electrode 31, and the third electrode 41 of the semiconductor device 1. , Except for its shape.
  • the transistor element region 550, the drain pull-up region 560, and the Zener diode region 570 are the same as the transistor device region 150, the drain pull-up region 160, and the Zener diode region 170 of the semiconductor device 1, respectively.
  • the metal wirings 520A to 520B, 521, 522, and 523 are wirings similar to the metal wirings 120, 121, 122, and 123 of the semiconductor device 1, respectively, and the contact 511 is a contact similar to the contact 111 of the semiconductor device 1. is there.
  • each of the first resistance element 510, the external resistance terminal 430, and the resistance electrode 431 does not correspond one-to-one.
  • the number of external resistance terminals 430 is five, and the number of resistance electrodes 431 is three.
  • first resistance element 510A and external resistance terminal 430A are connected, first resistance elements 510B to 510D and external resistance terminal 430B are connected, and first resistance elements 510E to 510F and external resistance terminal 430C are connected.
  • the first resistance element 510G and the external resistance terminal 430D correspond to the first resistance elements 510H to 510J and the external resistance terminal 430E.
  • the relationship between the first resistance element 510 and the resistance electrode 431 is such that the resistance electrode 431A and the first resistance elements 510A to 510D are connected, and the resistance electrode 431B and the first resistance elements 510E to 510F are connected to the resistance electrode 431C. And the first resistance elements 510G to 510J are contact-connected by a contact 511.
  • the maximum heat generation temperature during conduction can be reduced, and heat can be efficiently dissipated.
  • the terminal area is larger than in the case of a circular shape, and heat can be more efficiently dissipated.
  • the semiconductor device 1 has a configuration including the transistor element 100 that is a vertical MOS transistor, the semiconductor device according to the present embodiment is not limited to a configuration in which the transistor element is a vertical MOS transistor.
  • FIG. 7 is a cross-sectional view of the semiconductor device 1A according to the present embodiment.
  • the semiconductor device 1A is configured by changing the transistor element 100, which is a vertical MOS transistor, from the semiconductor device 1 to a transistor element 100A, which is a horizontal MOS transistor.
  • the appearance of the semiconductor device 1A is the same as that of the semiconductor device 1 shown in FIG.
  • the semiconductor device 1A includes the external first terminal 10, the external second terminal 20, the external resistance terminal 30, the external control terminal 40, and the first , And a Zener diode 190 for ESD protection.
  • the semiconductor device 1A includes a semiconductor substrate 81, an insulating layer 61, a passivation layer 62, a metal layer 71, a transistor element 100A, a resistance electrode 31, a first resistance element 110, , And a metal wiring 120.
  • the semiconductor substrate 81 contains impurities of the second conductivity type and is made of silicon.
  • the semiconductor substrate 81 may be a P-type silicon substrate.
  • the first conductivity type is N-type
  • the second conductivity type is P-type. Suppose there is.
  • the transistor element 100A has the first electrode 11, the drain external electrode 21, the gate conductor 84, the source internal electrode 82, and the drain internal electrode 83.
  • the source internal electrode 82 is a diffusion layer of the first conductivity type formed inside the semiconductor substrate 81 and is contact-connected to the first electrode 11. May be formed by injecting impurities.
  • the drain internal electrode 83 is a diffusion layer of the first conductivity type formed inside the semiconductor substrate 81 and is connected to the drain external electrode 21 by contact. May be formed by injecting impurities.
  • the gate conductor 84 is in contact with the upper surface of the thin insulating layer 61 on the semiconductor substrate 81, is formed between the source internal electrode 82 and the drain internal electrode 83 in plan view of the semiconductor device 1A, and has a first conductivity type. It is made of polysilicon into which impurities are implanted, and is electrically connected to the third electrode 41 (see FIG. 3) through the metal wiring 121.
  • the gate conductor 84 is a control electrode similar to the gate conductor 55 of the semiconductor device 1.
  • the semiconductor device 1 ⁇ / b> A can flow a current from the external resistance terminal 30 to the external first terminal 10 when the transistor element 100 ⁇ / b> A is in a conductive state, similarly to the semiconductor device 1.
  • the current path at this time is, in order from the external resistance terminal 30 to the external first terminal 10, the resistance electrode 31, the first resistance element 110, the metal wiring 120, the drain external electrode 21, the drain internal electrode 83, the semiconductor substrate 81, The path passes through the source internal electrode 82 and the first electrode 11.
  • the above-described semiconductor device 1A has a configuration in which the first conductivity type is N-type and the second conductivity type is P-type.
  • the semiconductor device according to the present embodiment is not limited to the configuration, and the first conductivity type is N-type.
  • the P-type and the second conductivity type may be N-type.
  • the semiconductor device 1 has a configuration including the first resistance element in the conduction current path
  • the semiconductor device according to the present embodiment may have a configuration further including the second resistance element.
  • FIG. 8 is a cross-sectional view of a vertical MOS transistor type semiconductor device 1F according to the present embodiment.
  • the semiconductor device 1F is different from the configuration of the semiconductor device 1 in that the high-concentration impurity layer 57 is changed to a second resistance element 610.
  • the second resistance element 610 is formed in contact with the semiconductor substrate 51 or the first low-concentration impurity layer 52, and has a first conductive concentration lower than that of the first conductive type impurity of the semiconductor substrate 51. And a second low-concentration impurity layer containing a type impurity. Since the second resistance element 610 is formed below and in contact with the drain external electrode 21 below the drain external electrode 21, the area of the semiconductor device 1F does not increase due to the additional installation of the second resistance element 610. Further, second resistance element 610 may be made of polysilicon containing impurities.
  • the path of the conduction current of the semiconductor device 1F is, in order from the external resistance terminal 30 to the external first terminal 10, the resistance electrode 31, the first resistance element 110, the metal wiring 120, the drain external electrode 21, the second resistance element 610. , The semiconductor substrate 51, the first low-concentration impurity layer 52, the body region 53, the source region 54, and the first electrode 11. Since the heat-generating portions at the time of conduction are both the first resistance element 110 and the second resistance element 610, the heat-generating portions are further dispersed as compared with the semiconductor device 1, and the maximum heat generation temperature at the time of conduction is further reduced. Further, heat radiation can be performed more efficiently.
  • each first resistance element 110 is the same and that the resistance value of the second resistance element 610 is multiplied by the quantity of the first resistance element 110.
  • the amount of heat generated by the resistance value of each first resistor 110 and the amount of heat generated by second resistor 610 are equalized, and the amount of heat generated by each of first resistor 110 and second resistor 610 is equalized.
  • the highest temperature can be set to the lowest value.
  • FIG. 9 is a cross-sectional view of a lateral MOS transistor type semiconductor device 1G according to the present embodiment.
  • the semiconductor device 1G is configured by adding a second resistance element 710 to the configuration of the semiconductor device 1A.
  • the second resistance element 710 is formed between the drain internal electrode 83 inside the semiconductor substrate 81 and immediately below the gate conductor 84 and is formed on the source internal electrode 82 side in contact with the drain internal electrode 83. And a low-concentration impurity layer containing a first-conductivity-type impurity having a concentration lower than that of the first-conductivity-type impurity.
  • the path of the conduction current of the semiconductor device 1G is, in order from the external resistance terminal 30 to the external first terminal 10, the resistance electrode 31, the first resistance element 110, the metal wiring 120, the drain external electrode 21, the drain internal electrode 83, 2, the semiconductor element 81, the source internal electrode 82, and the first electrode 11. Since the heat-generating portions during conduction become both the first resistance element 110 and the second resistance element 710, the heat-generating portions are further dispersed as compared with the semiconductor device 1A, and the maximum heat generation temperature during conduction is further reduced, Further, heat radiation can be performed more efficiently.
  • each first resistance element 110 is the same, and is a value obtained by multiplying the resistance value of the second resistance element 710 by the quantity of the first resistance element 110.
  • the amount of heat generated by the resistance of each first resistor 110 and the amount of heat generated by the second resistor 710 are equalized, and the amount of heat generated by each of the first resistor 110 and the second resistor 710 is equalized.
  • the highest temperature can be set to the lowest value.
  • the semiconductor device 1 ⁇ / b> G having the above configuration has a configuration in which the second resistance element 710 is additionally formed on the side of the source internal electrode 82 in contact with the drain internal electrode 83. May be substituted for.
  • the semiconductor device 1F has a configuration including the external second terminal 20
  • the semiconductor device according to the present embodiment is not limited to a configuration including the external second terminal 20.
  • FIG. 10 is a top perspective view of the semiconductor device 1H.
  • an external first terminal 810, external resistance terminals 830A to 830G (hereinafter, sometimes referred to as external resistance terminals 830), and an external control terminal 840 are respectively connected to the external first terminal 10, the external control terminal 840 of the semiconductor device 1F.
  • This is an external connection terminal similar to the resistance terminal 30 and the external control terminal 40.
  • the first electrode 811, the resistance electrodes 831A to 831G (hereinafter sometimes referred to as a resistance electrode 831), and the third electrode 841 are the same as the first electrode 11, the resistance electrode 31, and the third electrode 41 of the semiconductor device 1F, respectively. Electrodes.
  • the transistor element region 950 and the Zener diode region 970 are the same as the transistor element region 150 and the Zener diode region 170 of the semiconductor device 1F, respectively.
  • the metal wirings 921, 922A to 922F, and 923 are the same wirings as the metal wirings 121, 122, and 123 of the semiconductor device 1F, respectively.
  • the external resistance terminal 830 is increased by one as the external second terminal 20 is eliminated from the semiconductor device 1F.
  • FIG. 11 is a cross-sectional view of the semiconductor device 1H as viewed from a section taken along line B1-B2 in FIG.
  • the semiconductor device 1H includes a semiconductor substrate 51, a first low-concentration impurity layer 52, an insulating layer 61, a passivation layer 62, a metal layer 71, a transistor element 100C, and a resistance electrode.
  • 831 from 831A to 831G, only 831A to 831B are shown in FIG. 11
  • first resistance element 910 of 910A to 910G, only 910A to 910B is shown in FIG. 11
  • second resistance element 930 Of 930A to 930G, FIG. 11 shows only 930A to 930B).
  • the transistor element 100C is different from the transistor element 100 of the semiconductor device 1F except that the first electrode 11 is changed to the first electrode 811 and the external first terminal 10 is changed to the external first terminal 810. 100 is the same transistor element.
  • the first resistance element 910 is a resistance element made of polysilicon into which impurities are implanted, like the first resistance element 110 of the semiconductor device 1F.
  • the second resistance element 930 is a resistance element including a second low-concentration impurity layer, similar to the second resistance element 610 of the semiconductor device 1F.
  • the semiconductor device 1H includes a first resistance element 910 formed below the resistance electrode 831 and the other electrode is in contact with and connected to the resistance electrode 831. Further, a second resistor formed below the first resistance element 910, the other electrode being contact-connected to one electrode of the first resistance element 910, and one electrode being contact-connected to the semiconductor substrate 51. An element 930 is provided.
  • the semiconductor device 1H includes seven resistive electrodes 831, first resistive elements 910, and second resistive elements 930, each of which has a one-to-one correspondence.
  • the path of the conduction current of the semiconductor device 1H is, in order from the external resistance terminal 830 to the external first terminal 810, the resistance electrode 831, the first resistance element 910, the second resistance element 930, the semiconductor substrate 51, and the first low terminal.
  • a path passes through the concentration impurity layer 52, the body region 53, the source region 54, and the first electrode 811.
  • the semiconductor device 1H includes one more external resistance terminal 830 instead of the external second terminal 20 with respect to the semiconductor device 1F. Therefore, the maximum heat generation temperature during conduction is further reduced, and Heat radiation can be performed more efficiently. Further, at this time, a configuration in which the external resistance terminals 830 are allocated to all the four corner positions in a plan view of the semiconductor device 1H is desirable in terms of distributed heat radiation. Furthermore, at this time, it is desirable that the external first terminal 810 be disposed closer to the center than the other external connection terminals in order to disperse and radiate heat in the semiconductor device 1H in a well-balanced manner.
  • the above-described semiconductor device 1H has a configuration including a plurality of second resistance elements 930 associated with the first resistance element 910 on a one-to-one basis.
  • the semiconductor device according to this embodiment includes the second resistance element 930.
  • the resistance element 930 is associated with the first resistance element 910 on a one-to-one basis or is not limited to a plurality of resistance elements, and one second resistance element 930 is associated with a plurality of first resistance elements 910.
  • the number of the second resistance elements 930 may be one or more, and may not be the same as the number of the first resistance elements 910.
  • the second resistance element 930 may not be provided, and instead of the second resistance element 930, the first low-concentration impurity layer 52 of the semiconductor device 1F may be used. Alternatively, the high concentration impurity layer 57 of the semiconductor device 1 may be used. Even in these cases, since the external second terminal 20 is not provided and one external resistance terminal 830 is provided, the maximum heat generation temperature during conduction can be further reduced, and the heat radiation can be performed more efficiently.
  • the above-described semiconductor devices 1, 1A, 1F, and 1G have a configuration in which the external resistance terminal 30 and the first resistance element 110 are arranged at the positions shown in FIG. 3 or FIG. Such a semiconductor device is not limited to those configurations.
  • FIG. 12 is a top perspective view of a semiconductor device 1B according to the present embodiment.
  • the external first terminal 210, the external second terminal 220, the external resistance terminals 230A to 230F (hereinafter sometimes referred to as the external resistance terminal 230), and the external control terminal 240 are respectively provided outside the semiconductor device 1. These are external connection terminals similar to the first terminal 10, the external second terminal 20, the external resistance terminal 30, and the external control terminal 40.
  • the first resistance elements 310A to 310L are the same resistance elements as the first resistance element 110 of the semiconductor device 1.
  • the first electrode 211, the drain external electrode 221, the resistance electrodes 231A to 231F, and the third electrode 241 are the same as the first electrode 11, the drain external electrode 21, the resistance electrode 31, and the third electrode 41 of the semiconductor device 1, respectively. Electrodes.
  • the transistor element region 350, the drain pull-up region 360, and the Zener diode region 370 are the same as the transistor device region 150, the drain pull-up region 160, and the Zener diode region 170 of the semiconductor device 1, respectively.
  • the metal wires 320A to 320G, 321, 322A to 322D, and 323 are the same wires as the metal wires 120, 121, 122, and 123 of the semiconductor device 1, respectively, and the contacts 311 are the same as the contacts 111 of the semiconductor device 1. Contact.
  • the external resistance terminals 230 are arranged in a matrix in a first terminal region 280 having a region of about / of the area of the semiconductor device 1B in plan view, and the external first terminal 210 and the external first terminal 210 are connected to each other.
  • the two terminals 220 and the external control terminal 240 (hereinafter, these three external connection terminals may be collectively referred to as an external non-resistance terminal 2) are arranged in a region of about 3 of the area of the semiconductor device 1B in plan view. In the second terminal region 290.
  • the external non-resistance terminal 2 is not arranged in the terminal row where the external resistance terminals 230 are arranged, and the external resistance terminal 230 is not arranged in the terminal row where the external non-resistance terminals 2 are arranged.
  • FIG. 13 is a schematic diagram showing an example of a state in which the semiconductor device 1B is face-down mounted on a mounting board on which a charge / discharge circuit shown in FIG. 15 described later is mounted.
  • the substrate wiring 300 is a wiring on the high side of the charge / discharge circuit shown in FIG. 15 described later, and is a straight wiring pattern. Generally, it is desirable that a substrate wiring through which a large current flows be a straight wiring pattern that avoids a bent shape in order to reduce conduction resistance and avoid current concentration.
  • all the external resistance terminals 230 can be joined to the substrate wiring 300 by matching the direction of the terminal row of the first terminal region 280 with the wiring direction of the substrate wiring 300.
  • FIGS. 14A and 14B are top views of the semiconductor devices 1C and 1D according to the present embodiment when the number of external resistance terminals 230 is increased with respect to the semiconductor device 1B.
  • the number of terminal rows of the external connection terminals 230 is 6 and 8, respectively, and the first terminal regions 280A and 280B each have a region of about / and 7 of a planar area.
  • Fifteen and twenty-one external resistance terminals 230 are arranged in a matrix, and external non-resistance terminals 2 are arranged in a row in second terminal regions 290A and 290B each having a region of about 1/6 and about 1/8 of a planar area.
  • the first terminal regions 280A and 280B and the second terminal regions 290A and 290B are divided into two in a plan view of the semiconductor device in parallel with one side of the semiconductor devices 1C and 1D. Are arranged so that they can be mounted on a mounting substrate having a straight wiring pattern.
  • the positional relationship between the first terminal region and the second terminal region may not be a relationship of being divided into two in a plan view of the semiconductor device in parallel with one side of the semiconductor device.
  • a relationship in which a plurality of first terminal regions and one second terminal region are divided into several parts in a plan view of the semiconductor device in parallel with one side of the semiconductor device may be employed. That is, as long as the terminal row including the external resistance terminals does not include other external terminals, all the external resistance terminals can be mounted on the mounting substrate having the straight wiring pattern.
  • the external resistance terminal 230 is arranged in the first terminal region 280, but the external second terminal 220 may be included.
  • the external second terminal 220 in an application circuit in which the external second terminal 220 is not used among the external connection terminals of the semiconductor device 1B, the external second terminal 220 only needs to be bonded to the mounting substrate when mounted on the mounting substrate.
  • FIG. 15 shows a charge / discharge circuit for a battery such as a smart phone.
  • the semiconductor device 1 instantaneously turns on the transistor element 100 and discharges the battery 1010 instantaneously according to a control signal given from the control IC 1020.
  • a control signal given from the control IC 1020 By examining the behavior of the voltage of the battery 1010 after the discharge, the degree of consumption of the battery 1010 can be estimated.
  • a temperature transition simulation of the semiconductor device 1 was performed when the semiconductor device 1 was operated under a specified power consumption condition for a period of 100 ms.
  • the peak temperature value in the temperature transition during the discharging operation was obtained under the volume conditions of the plurality of semiconductor devices 1.
  • FIG. 16 shows the simulation result
  • the vertical axis represents the peak temperature value Tjp
  • the horizontal axis represents the volume V
  • the diamond symbol represents the mounting substrate as a single-layer metal substrate
  • the power consumption condition being 6.16 W
  • the circle symbol represents the mounting substrate.
  • the triangular symbols when the three-layer metal substrate and the power consumption condition are 7.04 W are the results when the mounting substrate is the three-layer metal substrate and the power consumption condition is 9.02 W.
  • the heat generated in the semiconductor device 1 is dominated by the heat storage in the semiconductor device 1 rather than the heat radiation to the mounting board. It depends on the volume V, and it is considered that the larger the volume V is, the smaller the volume V becomes.
  • the volume V is set to 2.20 mm 3 or more. If the mounting substrate is a three-layer metal substrate and the power consumption condition is 7.04 W, the volume V may be 1.94 mm 3 or more, and the mounting substrate is a three-layer metal substrate and the power consumption condition is 9. In the case of setting to 02W, it is found that the volume V may be set to 3.05 mm 3 or more.
  • FIG. 17 shows a study of the configuration conditions of the semiconductor device 1 that suppresses the peak temperature value Tjp to an allowable junction temperature of 150 ° C. or lower using the above-described knowledge.
  • FIG. 3 is a diagram illustrating a relationship between X, Y, Z, and V, where X is the length of the other side, Y is the thickness of the semiconductor device 1, and Z is the volume of the semiconductor device 1;
  • the mounting substrate is a single-layer metal substrate, and the power consumption condition is 6.16 W.
  • the thickness of the semiconductor device 1 may be 250 ⁇ m or more.
  • the thickness of the semiconductor device 1 is 350 ⁇ m or more. Is obtained.
  • the semiconductor device 1 having the above configuration can be used as a discharge circuit for discharging a battery.
  • the semiconductor device according to the present embodiment is not limited thereto. It can also be used as In this case, the semiconductor device 1 is configured such that the first conductivity type is P type and the second conductivity type is N type, the external resistance terminal 30 is connected to the anode node of the battery 1010, and the external first terminal 10 This can be achieved by applying a voltage higher than the anode voltage of the battery.
  • the transistor element may be an NPN-type or PNP-type bipolar transistor.
  • the semiconductor device according to the present invention can be widely used as a device for controlling the conduction state of a current path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

第1電極(11)、第2電極(21)、及び第1電極(11)と第2電極(21)との間の導通状態を制御する制御電極(55)を有するトランジスタ素子(100)と、複数の第1の抵抗素子(110)と、を有する半導体装置(1)であって、複数の第1の抵抗素子(110)の全ての一方の電極は、第2電極(21)に電気的に接続され、複数の第1の抵抗素子(110)の全ての他方の電極がいずれかに接触接続された1以上の外部抵抗端子(30)、第1電極(11)に電気的に接続された外部第1端子(10)、及び制御電極(55)に電気的に接続された外部制御端子(40)を有し、1以上の外部抵抗端子(30)、外部第1端子(10)、及び外部制御端子(40)は、半導体装置(1)の表面に形成された外部接続端子であるフェースダウン実装チップサイズパッケージ型の半導体装置(1)。

Description

半導体装置
 本開示は、半導体装置に関し、特には、CSP(Chip Size Package)型の半導体装置に関する。
 従来、1のトランジスタ素子と、放電時の電流を制限する1の抵抗素子とを有する放電制御用の半導体装置が知られている(例えば、特許文献1参照)。
国際公開第WO2015/166654号
 上記従来の半導体装置では、放電電流制御用の抵抗素子が1つしかないので、半導体装置上における、放電制御時の発熱箇所は抵抗素子が配置されている局所領域のみとなる。この場合、その局所領域の温度が半導体装置の許容動作温度を上回って半導体装置が破壊することがある。また発生した熱を放熱する上でも、局所領域で発生した熱をその周辺領域へと伝熱することは容易ではないので、放熱効率は良くない。
 そこで、本開示は、放電制御時における、抵抗素子の発熱最高温度を従来よりも低減し、また、放熱を従来よりも効率的にできる半導体装置を提供することを目的とする。
 本開示に係る半導体装置は、第1電極、第2電極、及び前記第1電極と前記第2電極との間の導通状態を制御する制御電極を有するトランジスタ素子と、複数の第1の抵抗素子と、を有する半導体装置であって、前記複数の第1の抵抗素子の全ての一方の電極は、前記第2電極に電気的に接続され、前記複数の第1の抵抗素子の全ての他方の電極がいずれかに接触接続された1以上の外部抵抗端子、前記第1電極に電気的に接続された外部第1端子、及び前記制御電極に電気的に接続された外部制御端子を有し、前記1以上の外部抵抗端子、前記外部第1端子、及び前記外部制御端子は、前記半導体装置の表面に形成された外部接続端子であるフェースダウン実装チップサイズパッケージ型の半導体装置である。
 この構成によれば、発熱源となる第1の抵抗素子を複数並列に有するので、放電制御時において、発熱箇所は複数の第1の抵抗素子が配置された位置に分散され、かつ各第1の抵抗素子における発熱最高温度は従来よりも低減することができる。よって、放電制御時の、半導体装置の破壊を回避しつつ、半導体装置の発熱を従来よりも効率的に放熱することが可能となる。
 本開示に係る半導体装置によれば、放電制御時の、半導体装置の破壊を回避しつつ、半導体装置の発熱を従来よりも効率的に放熱することが可能となる。
図1は、実施の形態に係る半導体装置の外観図である。 図2は、実施の形態に係る半導体装置の回路図である。 図3は、実施の形態に係る半導体装置の上面透視図である。 図4は、実施の形態に係る半導体装置の断面図である。 図5は、実施の形態に係る半導体装置の上面透視図である。 図6は、実施の形態に係る半導体装置の回路図である。 図7は、実施の形態に係る半導体装置の断面図である。 図8は、実施の形態に係る半導体装置の断面図である。 図9は、実施の形態に係る半導体装置の断面図である。 図10は、実施の形態に係る半導体装置の上面透視図である。 図11は、実施の形態に係る半導体装置の断面図である。 図12は、実施の形態に係る半導体装置の上面透視図である。 図13は、実施の形態に係る半導体装置が実装されている様子を示す模式図である。 図14Aは、実施の形態に係る半導体装置の上面図である。 図14Bは、実施の形態に係る半導体装置の上面図である。 図15は、実施の形態に係る充放電回路を示す模式図である。 図16は、実施の形態に係る半導体装置の温度シミュレーション結果を示す図である。 図17は、実施の形態に係る半導体装置が所定の温度条件を満たすときの各辺の長さと体積との関係を示す図である。
 以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 本開示において、「AとBとが電気的に接続される」とは、AとBとが、配線を介して直接的に接続される場合と、AとBとが配線を介さずに直接的に接続される場合と、AとBとが抵抗成分(抵抗素子、抵抗配線)を介して間接的に接続される場合と、を含む。
 (実施の形態)
  <縦型MOSトランジスタを備える構成>
 以下、本実施の形態に係る半導体装置1の構成について説明する。半導体装置1は、1つの縦型MOS(Metal Oxide Semiconductor)トランジスタと、複数の抵抗素子とを内蔵するCSPチップであり、BGA(Ball Grid Array)型の、LGA(Land Grid Array)型、または他の型のCSPチップであってもよい。
 上記縦型MOSトランジスタは、パワートランジスタであり、いわゆる、トレンチMOS型FET(Field Effect Transistor)である。
 図1は、半導体装置1の外観図である。
 図1に示されるように、半導体装置1は、その表面に、外部第1端子10と、外部第2端子20と、外部抵抗端子30A~30F(以下、外部抵抗端子30と記す場合がある)と、外部制御端子40とを、外部接続端子として備える。半導体装置1は、フェースダウン実装されることで、上記外部接続端子が実装基板の実装面に接合される。
 図2は、半導体装置1の回路図である。
 図2に示されるように、半導体装置1は、上記外部接続端子に加えて、縦型MOSトランジスタであるトランジスタ素子100と、第1の抵抗素子110A~110F(以下、第1の抵抗素子110と記す場合がある)と、ESD保護用のツェナーダイオード190とを備え、トランジスタ素子100には、ソースドレイン間に寄生素子としてボディダイオードBDが存在する。
 第1の抵抗素子110の全ての一方の電極は、外部第2端子20に電気的に接続される。第1の抵抗素子110の全ての他方の電極は、それぞれ、1対1に対応付けられた外部抵抗端子30に電気的に接続され、かつ互いに電気的に短絡されてもよい。
 図3は、半導体装置1の上面透視図であり、図4は、図3中のA1-A2線における切断面を見た、半導体装置1の断面図である。
 以下、図3、図4を用いて、半導体装置1の内部構成について説明する。
 図4および図3に示されるように、半導体装置1は、半導体基板51と、第1の低濃度不純物層52と、高濃度不純物層57と、絶縁層61と、パッシベーション層62と、金属層71と、トランジスタ素子100と、ドレイン外部電極21と、抵抗電極31と、第1の抵抗素子110と、メタル配線120~123とを含んで構成される。
 半導体基板51は、第1導電型の不純物を含むシリコンからなり、例えば、N型のシリコン基板であってもよく、ここでは、第1導電型がN型、第2導電型がP型であるとする。
 第1の低濃度不純物層52は、半導体基板51の上面(図4での上側主面)に接触して形成され、半導体基板51の第1導電型の不純物の濃度より低い濃度の第1導電型の不純物を含む。第1の低濃度不純物層52は、例えば、エピタキシャル成長により半導体基板51上に形成されてもよい。
 高濃度不純物層57は、半導体基板51の上面に接触して形成され、第1の低濃度不純物層52の第1導電型の不純物の濃度より高い濃度の第1導電型の不純物を含み、第1の低濃度不純物層52のドレイン引き上げ領域160に形成される。高濃度不純物層57は、ドレイン引き上げ領域160に、第1導電型の不純物を注入することで形成されてもよい。
 なお、高濃度不純物層57は半導体装置1において必須ではなく、この部分は第1の低濃度不純物層52であっても良く、その場合は、第1導電型の不純物の追加注入工程が不要となり、半導体装置1を低コストで製造できる。
 絶縁層61は、第1の低濃度不純物層52の上面に接触して形成される絶縁層であり、二酸化ケイ素であってもよく、CVD(Chemical Vapor Deposition)法により形成されてもよい。
 パッシベーション層62は、半導体装置1の表面に形成される保護層であり、窒化ケイ素であってもよく、CVD法により形成されてもよい。
 金属層71は、半導体基板51の下面(図4での下側主面)に接触して形成され、金属材料で構成されている。
 トランジスタ素子100は、トランジスタ素子領域150に形成され、ソース電極として働く第1電極11(以下、ソース電極と記す場合がある)と、ドレイン電極として働く半導体基板51(以下、ドレイン電極と記す場合がある)と、第1電極11(ソース電極)と半導体基板51(ドレイン電極)との間の導通状態を制御する制御電極として働くゲート導体55とを有する。
 トランジスタ素子領域150の第1の低濃度不純物層52には、第1導電型と異なる第2導電型の不純物を含むボディ領域53が形成されている。ボディ領域53には、第1導電型の不純物を含むソース領域54、ゲート導体55、及びゲート絶縁膜56が形成されている。
 第1電極11は、ソース領域54及びボディ領域53に接触接続されており、その上面は、パッシベーション層62の開口を通して、半導体装置1の表面に外部第1端子10として露出している。
 ドレイン外部電極21は、高濃度不純物層57に接触接続されており、その上面は、パッシベーション層62の開口を通して、半導体装置1の表面に外部第2端子20として露出している。
 抵抗電極31(31A~31F)は、第1の抵抗素子110(110A~110F)の他方の電極に接触接続され、その上面は、パッシベーション層62の開口を通して、半導体装置1の表面に外部抵抗端子30(30A~30F)として露出している。ここでは、抵抗電極31と、第1の抵抗素子110と、外部抵抗端子30とはそれぞれ複数あり、それぞれが1対1対応している。また、各抵抗電極31同士は、メタル配線122を通して電気的に接続されていてもよい。
 第3電極41(図3参照)(以下、ゲート電極と記す場合がある)は、メタル配線121(図3参照)を通してゲート導体55(図4参照)に電気的に接続されている。第3電極41の上面は、パッシベーション層62の開口を通して、半導体装置1の表面に外部制御端子40として露出している。
 第1の抵抗素子110は、絶縁層61内に形成され、不純物が注入されたポリシリコンからなり、例えば、CVD法により形成されてもよい。ポリシリコンのシート抵抗は、不純物の種類やドーズ量などにより定めることができる。
 メタル配線120(120A~120F)のそれぞれは、絶縁層61の上に形成され、ドレイン外部電極21と第1の抵抗素子110(110A~110F)のそれぞれの一方の電極とを電気的に接続している。
 ツェナーダイオード190は、図3において、ツェナーダイオード領域170として図示され、一方の電極がメタル配線123を通して第1電極11に電気的に接続され、他方の電極が第3電極41に電気的に接続されている。
 第1電極11、ドレイン外部電極21、抵抗電極31、第3電極41、金属層71およびメタル配線120~123は、限定されない一例として、アルミニウム、銅、金、銀のうちのいずれか1つ以上を含む金属材料で構成されてもよい。
 上述の半導体装置1は、第1導電型がN型、第2導電型がP型である構成であるが、本実施の形態に係る半導体装置はその構成に限定されず、第1導電型がP型、第2導電型がN型である構成であってもよい。その場合は、ソースドレイン間に寄生素子として存在するボディダイオードの順方向の向きは、半導体装置1のボディダイオードBDの順方向の向きと逆になる。また、第1導電型の不純物は、例えば、ヒ素、リンであってもよく、第2導電型の不純物は、例えばボロンであってもよい。
 上述の半導体装置1は、複数の第1の抵抗素子110に対して、同数の複数の外部抵抗端子30および同数の抵抗電極31を備える構成である。本実施の形態に係る半導体装置は、この構成に限定されず、複数の第1の抵抗素子110に対して、1以上の外部抵抗端子30および外部抵抗端子30の数以下の抵抗電極31があればよい。例えば、上述の半導体装置1(第1の抵抗素子110の数が6)の場合は、外部抵抗端子30の数は1~5、または7以上、抵抗電極31の数は外部抵抗端子30以下あればよい。この時、第1の抵抗素子110の他方の電極は、抵抗電極31のいずれかに接触接続されていればよい。この他にも、後述する図5において、第1の抵抗素子510A~510J(以下抵抗素子510と記す場合がある)と、外部抵抗端子430A~430E(以下、外部抵抗端子430と記す場合がある)と、抵抗電極431A~430C(以下、抵抗電極431と記す場合がある)の数量関係が例示される。
 上述の半導体装置1は、外部接続端子30の形状は、半導体装置1の平面視において、円形であるが、本実施の形態に係る半導体装置は円形に限定されず、外部接続端子の形状は、長円形、多角形などでもよい。
 半導体装置1は、上記構成により、ソース電極の電位に対してゲート電極の電位が閾値以上になり、トランジスタ素子100が導通状態となった時に(以下、導通時と記す場合がある)、外部抵抗端子30から外部第1端子10へと導通電流を流すことができる。この導通電流の経路は、外部抵抗端子30から外部第1端子10へと順に、抵抗電極31、第1の抵抗素子110、メタル配線120、ドレイン外部電極21、高濃度不純物層57、半導体基板51、第1の低濃度不純物層52、ボディ領域53、ソース領域54、第1電極11を通る経路となる。この時、第1の抵抗素子110に流れる電流は、複数の第1の抵抗素子110のそれぞれに分流されるため、導通時における発熱箇所は、各第1の抵抗素子110が配置された位置に分散され、各第1の抵抗素子における発熱最高温度は、導通電流の分流度合いに応じて低くなる。従って、半導体装置1によると、導通時の発熱最高温度を低減し、また放熱を効率的に行うことができる。
 また、第1の抵抗素子110とメタル配線120とが接触接続する領域、および第1の抵抗素子110と抵抗電極31とが接触接続する領域をコンタクト111と称し、図3において、それぞれに対して共通のハンチングをかけて図示している。第1の抵抗素子110の他方の電極は、コンタクト111で抵抗電極31に直接的に接触接続されているので、第1の抵抗素子110で生じる発熱を、金属材料で構成された抵抗電極31から外部抵抗端子30を通して、金属材料のみの導熱経路で実装基板に伝えることができる。従って、半導体装置1によると、導通時に生じる発熱を、効率的に放熱することができる。
 各第1の抵抗素子110の全ての他方の電極は、半導体装置1内で互いに電気的に短絡されている。従って、半導体装置1によると、外部抵抗端子30のうちの一部の外部抵抗端子30が実装不具合などにより実装基板に対して接合オープン不良状態となった場合でも、外部第1端子10と外部抵抗端子30との間に設定された放電制御に必要な抵抗値が確保される。
 各第1の抵抗素子110の抵抗値は、同一であることが望ましい。これにより、各第1の抵抗素子110で生じる発熱量が均等化され、各第1の抵抗素子における発熱最高温度を最低値に揃えることができる。従って、半導体装置1によると、導通時の発熱最高温度を低減し、また放熱を効率的に行うことができる。ここで、抵抗値が同一であるとは、製造工程における出来栄えのばらつきの範囲内において同一であることをいう。
 各外部抵抗端子30は、半導体装置1の平面視において、外部第2端子20を中心に放射状に配置されている。ここで、放射状に配置されているとは、半導体装置1の平面視において、内側から外側に向かって、内側に外部第2端子20、外側に外部抵抗端子30が配置されている状態のことを言う。この場合、第1の抵抗素子110で生じる熱は、コンタクト111で接触接続された抵抗電極31から外部抵抗端子30を通して、実装基板のより広い面積領域へ分散放熱されるので、半導体装置1内の一部の箇所に熱がこもってしまうことが抑制される。従って、半導体装置1によると、導通時に生じる発熱を、効率的に放熱することができる。この他にも、後述する図5において、外部第2端子420と外部抵抗端子430A~430E(以下、外部抵抗端子430と記す場合がある)との配置位置関係が例示される。
 なお、放射状に配置されている条件として、放射状配置対象物(ここでは、外部抵抗端子30)の半数以上が、放射配置条件を満たしていればよく、以降の放射状配置記載に関しても、これと同じ満足条件が適用される。
 各第1の抵抗素子110は、半導体装置1の平面視において、外部第2端子20を中心に放射状に配置されている。これにより、第1の抵抗素子110の領域で生じる熱は、半導体装置1のより広い面積領域で発生することになり、半導体装置1内の一部の箇所に熱がこもってしまうことが抑制される。従って、半導体装置1によると、導通時に生じる発熱を従来より抑制し、また放熱を効率的に行うことができる。この他にも、後述する図5に図示される外部第2端子420と第1の抵抗素子510A~510J(以下抵抗素子510と記す場合がある)との配置位置関係に例示される。
 半導体装置1の平面視において、少なくとも1つの外部抵抗端子30と半導体装置1の外周辺との最短距離は、その外部抵抗端子30を含む抵抗電極31に接触接続された第1の抵抗素子110と半導体装置1の外周辺との最短距離以下であってもよい。これにより、半導体装置1内に熱がこもってしまうことが抑制される。従って、半導体装置1によると、導通時に生じる発熱を、効率的に放熱することができる。
 半導体装置1の平面視において、少なくとも1つの外部抵抗端子30の中心点と半導体装置1の外周辺との最短距離は、その外部抵抗端子30を含む抵抗電極31に接触接続された第1の抵抗素子110の中心点と半導体装置1の外周辺との最短距離以下であってもよい。これにより、半導体装置1内に熱がこもってしまうことが抑制される。従って、半導体装置1によると、導通時に生じる発熱を、効率的に放熱することができる。
 外部第2端子20は、半導体装置1の平面視において、他の外部接続端子よりも中央側に配置されている。(外部第2端子20の四方が、他の外部接続端子であればよい。)半導体装置1が実装基板にリフロー実装される場合には、実装工程中の加熱によって半導体装置1のチップ反りが発生することがある。このチップ反りは、金属層71を構成する金属の線膨張係数の方が、半導体基板51や第1の低濃度不純物層52等を構成するシリコンの線膨張係数よりも大きいために生じ、半導体装置1の中央側が実装基板から離れる方向への反りとなる。この結果、半導体装置1の中央側に配置された外部接続端子の方が、外周側に配置された外部接続端子よりも、実装基板との接合部分でのボイド不良が発生する可能性が高くなる。一方で、外部第2端子20は、後述する図15の応用回路例で示されるように、実際の応用回路で使用されないことがある。従って、外部第2端子20が、半導体装置1の平面視において、他の外部接続端子よりも中央側に配置されることで、外部第2端子20が応用回路で使用されない場合には、リフロー実装時に半導体装置1の中央側外部端子の接合部分でボイド不良が発生しても、応用回路としての実害を無くすることができる。この他にも、後述する図5に図示される、外部第2端子420と、外部第1端子410A~410B、外部制御端子440、及び、外部抵抗端子430との配置位置関係に例示される。
 発熱源である、複数の第1の抵抗素子110が、それぞれ、独立の外部抵抗端子30に1対1対応して隣接配置されるとすれば、半導体装置が備える、外部抵抗端子30の数量と、外部第1端子10と外部第2端子20および外部制御端子40(以下、これらの3つの外部接続端子を併せて、外部非抵抗端子と記す場合がある)の数量との関係で放熱性が決まると考えられる。つまり、実質的な分散発熱源である、外部抵抗端子30の数量が多い方が、放熱効果が高いと言える。簡単に考察するために、外部接続端子は、半導体装置表面に行列状に配置されると仮定し、最少の外部接続端子構成として、2行2列の4端子の場合を検討する。この場合、後述の外部第2端子20を備えない構成を適用し、外部抵抗端子30の数を2、外部非抵抗端子数を2(外部第1端子10と外部制御端子40)とすれば整合できる。この場合は、外部抵抗端子30は(隣接配置される第1の抵抗素子110も同時に)、半導体装置の平面視面積の約1/2の領域に配置されることになる。(半導体装置の平面視面積における領域面積を、占有する外部接続端子数比で考えた場合)従来の半導体装置では、外部接続端子数が4、放電電流制御用の抵抗素子が隣接配置された外部抵抗端子が1なので、この場合でも、導通時の発熱最高温度を低減し、また放熱を効率的に行うことができる。
 また、上述の半導体装置1の場合は、外部接続端子数が9、外部抵抗端子30の数が6なので、半導体装置1の平面視面積の約2/3の領域に外部抵抗端子30が配置されており、さらに導通時の発熱最高温度を低減し、また放熱をさらに効率的に行うことができる。
 <第1の抵抗素子と外部抵抗端子とが1対1に対応していない構成>
 図5は、本実施の形態に係る半導体装置1Eの上面透視図であり、図6は、半導体装置1Eの回路図である。
 以下では、半導体装置1Eについて、半導体装置1と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1との相違点を中心に説明する。
 図5及び図6において、外部第1端子410A~410B、外部第2端子420、外部制御端子430、外部抵抗端子440は、それぞれ、半導体装置1の、外部第1端子10、外部第2端子20、外部抵抗端子30、外部制御端子40と、その形状を除いて同様の外部接続端子である。
 各外部抵抗端子430は、半導体装置1Eの平面視において、外部第2端子420を中心に放射状に配置されている。
 各第1の抵抗素子510は、半導体装置1の、第1の抵抗素子110と同様の抵抗素子であり、半導体装置1Eの平面視において、外部第2端子420を中心に放射状に配置されている。
 外部第2端子420は、半導体装置1Eの平面視において、他の外部接続端子よりも半導体装置1Eの中央側に配置されている。
 第1電極411A~411B、ドレイン外部電極421、抵抗電極431A~431C、第3電極441は、それぞれ、半導体装置1の、第1電極11、ドレイン外部電極21、抵抗電極31、第3電極41と、その形状を除いて同様の電極である。
 トランジスタ素子領域550、ドレイン引き上げ領域560、ツェナーダイオード領域570は、それぞれ、半導体装置1の、トランジスタ素子領域150、ドレイン引き上げ領域160、ツェナーダイオード領域170と同様の領域である。
 メタル配線520A~520B、521、522、523は、それぞれ、半導体装置1のメタル配線120、121、122、123と同様の配線であり、コンタクト511は、半導体装置1のコンタクト111と同様のコンタクトである。
 半導体装置1Eは、図6に示されるように、第1の抵抗素子510と外部抵抗端子430と抵抗電極431とのそれぞれが1対1に対応していない、第1の抵抗素子510の数が10、外部抵抗端子430の数が5、抵抗電極431の数が3の例である。具体的には、第1の抵抗素子510Aと外部抵抗端子430Aとが、第1の抵抗素子510B~510Dと外部抵抗端子430Bとが、第1の抵抗素子510E~510Fと外部抵抗端子430Cとが、第1の抵抗素子510Gと外部抵抗端子430Dとが、第1の抵抗素子510H~510Jと外部抵抗端子430Eとが、対応している。また、第1の抵抗素子510と抵抗電極431との関係は、抵抗電極431Aと第1の抵抗素子510A~510Dとが、抵抗電極431Bと第1の抵抗素子510E~510Fとが、抵抗電極431Cと第1の抵抗素子510G~510Jとが、コンタクト511で接触接続されている。
 上述の半導体装置1Eの構成においても、半導体装置1と同様に、導通時の発熱最高温度を低減し、また放熱を効率的に行うことができる。
 さらに、外部抵抗端子430B、430C及び430Eの平面視形状が長円型状なので、円形状の場合と比較して端子面積が大きく、より効率的に放熱することができる。
 <横型MOSトランジスタを備える構成>
 上述の半導体装置1は、縦型MOSトランジスタであるトランジスタ素子100を備える構成であるが、本実施の形態に係る半導体装置は、トランジスタ素子が縦型MOSトランジスタである構成に限定されない。
 図7は、本実施の形態に係る半導体装置1Aの断面図である。
 半導体装置1Aは、半導体装置1から、縦型MOSトランジスタであるトランジスタ素子100が、横型MOSトランジスタであるトランジスタ素子100Aに変更されて構成される。
 以下では、半導体装置1と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1との相違点を中心に説明する。
 半導体装置1Aの外観は、図1に図示される半導体装置1と同様の外観である。また、半導体装置1Aは、図3に図示される半導体装置1と同様の位置に、外部第1端子10と、外部第2端子20と、外部抵抗端子30と、外部制御端子40と、第1の抵抗素子110と、ESD保護用のツェナーダイオード190とを備える。
 図7に示されるように、半導体装置1Aは、半導体基板81と、絶縁層61と、パッシベーション層62と、金属層71と、トランジスタ素子100Aと、抵抗電極31と、第1の抵抗素子110と、メタル配線120とを含んで構成される。
 半導体基板81は、第2導電型の不純物を含み、シリコンからなり、例えば、P型のシリコン基板であってもよく、ここでは、第1導電型がN型、第2導電型がP型であるとする。
 トランジスタ素子100Aは、第1電極11と、ドレイン外部電極21と、ゲート導体84と、ソース内部電極82と、ドレイン内部電極83とを有する。
 ソース内部電極82は、半導体基板81の内部に形成される第1導電型の拡散層であり、第1電極11に接触接続され、例えば、半導体基板81の一部の領域に、第1導電型の不純物を注入することで形成されてもよい。
 ドレイン内部電極83は、半導体基板81の内部に形成される第1導電型の拡散層であり、ドレイン外部電極21に接触接続され、例えば、半導体基板81の一部の領域に、第1導電型の不純物を注入することで形成されてもよい。
 ゲート導体84は、半導体基板81の上の薄膜状の絶縁層61の上面に接し、半導体装置1Aの平面視におけるソース内部電極82とドレイン内部電極83との間に形成され、第1導電型の不純物が注入されたポリシリコンからなり、メタル配線121を通して第3電極41(図3参照)に電気的に接続されている。ゲート導体84は、半導体装置1のゲート導体55と同様の制御電極である。
 半導体装置1Aは、上記構成により、半導体装置1と同様に、トランジスタ素子100Aが導通状態である場合に、外部抵抗端子30から外部第1端子10へと電流を流すことができる。この時の電流経路は、外部抵抗端子30から外部第1端子10へと順に、抵抗電極31、第1の抵抗素子110、メタル配線120、ドレイン外部電極21、ドレイン内部電極83、半導体基板81、ソース内部電極82、第1電極11を通る経路となる。
 上述の半導体装置1Aは、第1導電型がN型、第2導電型がP型である構成であるが、本実施の形態に係る半導体装置はその構成に限定されず、第1導電型がP型、第2導電型がN型である構成であってもよい。
 <第2の抵抗素子を備える構成>
 上述の半導体装置1は、導通電流経路内に、第1の抵抗素子を備える構成であるが、本実施の形態に係る半導体装置は、さらに、第2の抵抗素子を備える構成であってもよい。
 図8は、本実施の形態に係る、縦型MOSトランジスタ型の半導体装置1Fの断面図である。
 以下では、半導体装置1Fについて、半導体装置1と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1との相違点を中心に説明する。
 図8に示されるように、半導体装置1Fは、半導体装置1の構成に対して、高濃度不純物層57が第2の抵抗素子610に変更されて構成される。
 第2の抵抗素子610は、半導体基板51、または第1の低濃度不純物層52の上に接触接続して形成され、半導体基板51の第1導電型の不純物の濃度より低い濃度の第1導電型の不純物を含む第2の低濃度不純物層からなる。第2の抵抗素子610は、ドレイン外部電極21の下方に、ドレイン外部電極21と接触接続されて形成されるので、第2の抵抗素子610の追加設置による半導体装置1Fの面積増加がない。また、第2の抵抗素子610は、不純物を含むポリシリコンからなるとしてもよい。
 半導体装置1Fの導通電流の経路は、外部抵抗端子30から外部第1端子10へと順に、抵抗電極31、第1の抵抗素子110、メタル配線120、ドレイン外部電極21、第2の抵抗素子610、半導体基板51、第1の低濃度不純物層52、ボディ領域53、ソース領域54、第1電極11を通る経路となる。導通時における発熱箇所は、第1の抵抗素子110と第2の抵抗素子610の両方になるので、半導体装置1と比べて発熱箇所がさらに分散され、導通時の発熱最高温度をさらに低減し、また放熱をさらに効率的に行うことができる。
 各第1の抵抗素子110の抵抗値は、同一であり、かつ第2の抵抗素子610の抵抗値を第1の抵抗素子110の数量倍した値であることが望ましい。これにより、各第1の抵抗素子110の抵抗値で生じる発熱量と、第2の抵抗素子610で生じる発熱量が均等化され、各第1の抵抗素子110及び第2の抵抗素子610における発熱最高温度を最低値に揃えることができる。
 図9は、本実施の形態に係る、横型MOSトランジスタ型の半導体装置1Gの断面図である。
 以下では、半導体装置1Gについて、半導体装置1Aと同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1Aとの相違点を中心に説明する。
 図9に示されるように、半導体装置1Gは、半導体装置1Aの構成に対して、第2の抵抗素子710が追加されて構成される。
 第2の抵抗素子710は、半導体基板81の内部のドレイン内部電極83とゲート導体84の直下部との間に、ドレイン内部電極83に接してソース内部電極82側に形成され、ドレイン内部電極83の第1導電型の不純物の濃度よりも低い濃度の第1導電型の不純物を含む低濃度不純物層からなる。
 半導体装置1Gの導通電流の経路は、外部抵抗端子30から外部第1端子10へと順に、抵抗電極31、第1の抵抗素子110、メタル配線120、ドレイン外部電極21、ドレイン内部電極83、第2の抵抗素子710、半導体基板81、ソース内部電極82、第1電極11を通る経路となる。導通時における発熱箇所は、第1の抵抗素子110と第2の抵抗素子710の両方になるので、半導体装置1Aと比べて発熱箇所がさらに分散され、導通時の発熱最高温度をさらに低減し、また放熱をさらに効率的に行うことができる。
 各第1の抵抗素子110の抵抗値は、同一であり、かつ第2の抵抗素子710の抵抗値を第1の抵抗素子110の数量倍した値であることが望ましい。これにより、各第1の抵抗素子110の抵抗値で生じる発熱量と、第2の抵抗素子710で生じる発熱量が均等化され、各第1の抵抗素子110及び第2の抵抗素子710における発熱最高温度を最低値に揃えることができる。
 上記構成の半導体装置1Gは、第2の抵抗素子710は、ドレイン内部電極83に接してソース内部電極82側に追加形成される構成であるが、ドレイン内部電極83の位置に、ドレイン内部電極83と置換されて構成されてもよい。
 <外部第2端子を備えない構成>
 上述の半導体装置1Fは、外部第2端子20を備える構成であるが、本実施の形態に係る半導体装置は、外部第2端子20を備える構成に限定されない。
 図10は、半導体装置1Hの上面透視図である。
 以下では、半導体装置1Hについて、半導体装置1Fと同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1Fとの相違点を中心に説明する。
 図10において、外部第1端子810、外部抵抗端子830A~830G(以下、外部抵抗端子830と記す場合がある)、外部制御端子840は、それぞれ、半導体装置1Fの、外部第1端子10、外部抵抗端子30、外部制御端子40と同様の外部接続端子である。
 第1電極811、抵抗電極831A~831G(以下抵抗電極831と記す場合がある)、第3電極841は、それぞれ、半導体装置1Fの、第1電極11、抵抗電極31、第3電極41と同様の電極である。
 トランジスタ素子領域950、ツェナーダイオード領域970は、それぞれ、半導体装置1Fの、トランジスタ素子領域150、ツェナーダイオード領域170と同様の領域である。
 メタル配線921、922A~922F、923は、それぞれ、半導体装置1Fのメタル配線121、122、123と同様の配線である。
 図10に示されるように、半導体装置1Hは、半導体装置1Fから外部第2端子20が無くなった分、外部抵抗端子830が1つ増えている。
 図11は、図10中のB1-B2線における切断面を見た、半導体装置1Hの断面図である。
 図11に示されるように、半導体装置1Hは、半導体基板51と、第1の低濃度不純物層52と、絶縁層61と、パッシベーション層62と、金属層71と、トランジスタ素子100Cと、抵抗電極831(831A~831Gのうち、図11では、831A~831Bのみ表示)と、第1の抵抗素子910(910A~910Gのうち、図11では910A~910Bのみ表示)と、第2の抵抗素子930(930A~930Gのうち、図11では、930A~930Bのみ表示)とを含んで構成される。
 トランジスタ素子100Cは、半導体装置1Fのトランジスタ素子100から、第1電極11が第1電極811に変更され、外部第1端子10が外部第1端子810に変更されている点を除いて、トランジスタ素子100と同様のトランジスタ素子である。
 第1の抵抗素子910は、半導体装置1Fの第1の抵抗素子110と同様の、不純物が注入されたポリシリコンからなる抵抗素子である。
 第2の抵抗素子930は、半導体装置1Fの第2の抵抗素子610と同様の、第2の低濃度不純物層からなる抵抗素子である。
 半導体装置1Hは、抵抗電極831の下方に形成され、他方の電極が抵抗電極831に接触接続された、第1の抵抗素子910を備える。さらに、第1の抵抗素子910の下方に形成され、他方の電極が第1の抵抗素子910の一方の電極に接触接続され、一方の電極が半導体基板51に接触接続された、第2の抵抗素子930を備える。
 半導体装置1Hは、抵抗電極831と、第1の抵抗素子910と、第2の抵抗素子930とを、それぞれ7つずつ備え、それぞれの1つずつ同士が1対1対応している。
 半導体装置1Hの導通電流の経路は、外部抵抗端子830から外部第1端子810へと順に、抵抗電極831、第1の抵抗素子910、第2の抵抗素子930、半導体基板51、第1の低濃度不純物層52、ボディ領域53、ソース領域54、第1電極811を通る経路となる。
 上述したように、半導体装置1Hは、半導体装置1Fに対して、外部第2端子20を備えない代わりに外部抵抗端子830を1つ多く備えるので、導通時の発熱最高温度をさらに低減し、また放熱をさらに効率的に行うことができる。さらにこの時、外部抵抗端子830を半導体装置1Hの平面視における四隅の位置全てに割り付ける構成が、分散放熱的に望ましい。さらにこの時、外部第1端子810は、他の外部接続端子よりも中央側に配置されることが、半導体装置1H内でバランス良く分散放熱をする上で望ましい。
 上述の半導体装置1Hは、第1の抵抗素子910と1対1で対応付けられた複数の第2の抵抗素子930を備える構成であるが、本実施の形態に係る半導体装置は、第2の抵抗素子930は、第1の抵抗素子910と1対1で対応付けられたり、複数である構成に限定されず、1つの第2の抵抗素子930が複数の第1の抵抗素子910と対応付けられてもよく、また第2の抵抗素子930は1以上であればよく、第1の抵抗素子910の数と同数でなくてもよい。
 また、本実施の形態に係る半導体装置は、第2の抵抗素子930は無くてもよく、第2の抵抗素子930の代わりに、半導体装置1Fの第1の低濃度不純物層52であっても、半導体装置1の高濃度不純物層57であってもよい。これらの場合でも、外部第2端子20を備えず、外部抵抗端子830を1つ多く備えるので、導通時の発熱最高温度をさらに低減し、また放熱をさらに効率的に行うことができる。
 <抵抗電極、第1の抵抗素子のバリエーション>
 上述の半導体装置1、1A、1F、および1Gは、外部抵抗端子30および第1の抵抗素子110が、図3または図5に示される位置に配置された構成であるが、本実施の形態に係る半導体装置は、それらの構成に限定されない。
 図12は、本実施の形態に係る半導体装置1Bの上面透視図である。
 以下では、半導体装置1と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、半導体装置1との相違点を中心に説明する。
 図12において、外部第1端子210、外部第2端子220、外部抵抗端子230A~230F(以下、外部抵抗端子230と記す場合がある)、外部制御端子240は、それぞれ、半導体装置1の、外部第1端子10、外部第2端子20、外部抵抗端子30、外部制御端子40と同様の外部接続端子である。
 第1の抵抗素子310A~310Lは、半導体装置1の第1の抵抗素子110と同様の抵抗素子である。
 第1電極211、ドレイン外部電極221、抵抗電極231A~231F、第3電極241は、それぞれ、半導体装置1の、第1電極11、ドレイン外部電極21、抵抗電極31、第3電極41と同様の電極である。
 トランジスタ素子領域350、ドレイン引き上げ領域360、ツェナーダイオード領域370は、それぞれ、半導体装置1の、トランジスタ素子領域150、ドレイン引き上げ領域160、ツェナーダイオード領域170と同様の領域である。
 メタル配線320A~320G、321、322A~322D、323は、それぞれ、半導体装置1のメタル配線120、121、122、123と同様の配線であり、コンタクト311は、半導体装置1のコンタクト111と同様のコンタクトである。
 図12に示されるように、外部抵抗端子230は、半導体装置1Bの平面視面積の約2/3の領域からなる第1端子領域280に行列状に配置され、外部第1端子210と外部第2端子220および外部制御端子240(以下、これらの3つの外部接続端子をまとめて、外部非抵抗端子2と記す場合がある)は、半導体装置1Bの平面視面積の約1/3の領域からなる第2端子領域290に一列に配置されている。言い換えると、外部抵抗端子230が配置された端子列には外部非抵抗端子2は配置されず、外部非抵抗端子2が配置された端子列には外部抵抗端子230が配置されない。
 図13は、半導体装置1Bが、後述する図15に示された充放電回路が実装される実装基板に、フェースダウン実装されている様子の一例を示す模式図である。
 基板配線300は、後述する図15に示された充放電回路のハイサイド側の配線であって、ストレート型の配線パターンである。一般的に、大電流が流れる基板配線は、導通抵抗低減や電流集中回避のために、屈曲形状を避けた、ストレート型の配線パターンが望ましい。上述の半導体装置1Bは、第1端子領域280の端子列の向きと基板配線300の配線方向とを合わせることで、全ての外部抵抗端子230を基板配線300に接合できる。
 図14A、図14Bは、半導体装置1Bに対して、外部抵抗端子230の数量が増加した場合の、本実施の形態に係る半導体装置1C、1Dの上面図である。
 半導体装置1C、1Dは、それぞれ、外部接続端子230の端子列数が6、8であり、平面視面積の約5/6、約7/8の領域からなる第1端子領域280A、280Bに、15個、21個の外部抵抗端子230が行列状に配置され、平面視面積の約1/6、約1/8の領域からなる第2端子領域290A、290Bに、外部非抵抗端子2が一列に配置されている。充放電回路の電池1010の容量が大きい場合は、半導体装置による放電電流が多くなるが、半導体装置の許容動作温度を越えないように、外部抵抗端子230の数量を増やして分散発熱度を大きくする必要がある。この時でも、上述の半導体装置1C、1Dは、第1端子領域280A、280Bと第2端子領域290A、290Bとが、半導体装置1C、1Dの一辺と平行に、半導体装置の平面視で2分割されるように配置されているので、ストレート型配線パターンの実装基板に実装できる。
 また、第1端子領域と第2端子領域の配置位置関係は、半導体装置の一辺と平行に、半導体装置の平面視で2分割される関係でなくてもよい。例えば、複数の第1端子領域と1つの第2端子領域とで、半導体装置の一辺と平行に、半導体装置の平面視で数分割される関係でも良い。つまり、外部抵抗端子を含む端子列に他の外部端子が含まれない構成であれば、全ての外部抵抗端子を、ストレート型の配線パターンの実装基板に実装できる。
 また、上述の半導体装置1Bでは、第1端子領域280には、外部抵抗端子230のみが配置されるとしたが、外部第2端子220が含まれても良い。この場合は、半導体装置1Bの外部接続端子の中で外部第2端子220が使用されない応用回路においては、実装基板への実装時に、外部第2端子220は実装基板へ接合しなければよい。
 <応用例>
 図15は、スマートホンなどの電池の充放電回路であり、半導体装置1をこの充放電回路のハイサイド側に設置して、電池1010を瞬時的に放電させる放電回路として使用する場合を一応用例として示している。
 半導体装置1は、制御IC1020から与えられる制御信号に応じて、トランジスタ素子100を瞬時的に導通状態にして、電池1010を瞬時的に放電させる。放電後の電池1010の電圧の挙動を調べることで、電池1010の消耗度合などを推定できる。この瞬時放電時には、半導体装置1には、例えば1A以上の比較的大きな電流が流れる。
 発明者は、図15に示される充放電回路を仮想して、半導体装置1をスマートホンのバッテリーモジュール基板の大きさ相当である34mm×2.5mm×0.4mmのガラスエポキシ基板に実装した状態として、半導体装置1を規定の消費電力条件で100msの期間動作させた場合の、半導体装置1の温度推移シミュレーションを行った。具体的には、複数の半導体装置1の体積条件で、放電動作時の温度推移におけるピーク温度値を求めた。
 図16に、そのシミュレーション結果を示す。
 図16において、縦軸はピーク温度値Tjp、横軸は体積Vであり、菱形記号は実装基板を1層金属基板、消費電力条件を6.16Wとした場合の、丸記号は、実装基板を3層金属基板、消費電力条件を7.04Wとした場合の、三角記号は、実装基板を3層金属基板、消費電力条件を9.02Wとした場合の結果である。
 この結果から、トランジスタ素子100の導通動作開始時においては、半導体装置1で発生した熱は、実装基板への放熱よりも半導体装置1での蓄熱が支配的となるため、ピーク温度値Tjpは、体積Vに依存し、体積Vが大きい方が小さくなると考えられる。
 また、この結果から、ピーク温度値Tjpを許容ジャンクション温度150℃以下に抑えるには、実装基板を1層金属基板、消費電力条件を6.16Wとする場合は体積Vを2.20mm以上にすればよく、実装基板を3層金属基板、消費電力条件を7.04Wとする場合は体積Vを1.94mm以上にすればよく、実装基板を3層金属基板、消費電力条件を9.02Wとする場合は体積Vを3.05mm以上にすればよいという知見が得られる。
 図17は、上述の知見を用いて、ピーク温度値Tjpを許容ジャンクション温度150℃以下に抑える半導体装置1の構成条件を検討したもので、半導体装置1の平面視における一方の辺の長さをX、他方の辺の長さをY、半導体装置1の厚さをZ、半導体装置1の体積をVとして、XとYとZとVとの関係を示した図である。
 図17から、Xが4.4mm、Yが2.0mmの場合は、ピーク温度値Tjpを許容ジャンクション温度150℃以下に抑えるには、実装基板を1層金属基板、消費電力条件を6.16Wとした場合には、半導体装置1の厚さを250μm以上にすればよく、実装基板を3層金属基板、消費電力条件を9.02Wとした場合には、半導体装置1の厚さを350μm以上にすればよいという知見が得られる。
 図15に示されるように、上記構成の半導体装置1は、電池を放電する放電回路として利用できるが、本実施の形態に係る半導体装置は、それに限定されず、例えば、電池を充電する充電回路としても利用することもできる。この場合は、半導体装置1を、第1導電型をP型、第2導電型をN型として構成し、外部抵抗端子30を、電池1010の陽極側ノードに接続し、外部第1端子10に電池の陽極電圧よりも高い電圧を与えることで実現できる。
 以上、本実施の形態に係る半導体装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、例示した異なる半導体装置おける構成要素を組み合わせて構築される形態も、本実施の形態の範囲内に含まれてもよい。
 例えば、トランジスタ素子はNPN型やPNP型のバイポーラトランジスタでも良い。
 本願発明に係る半導体装置は、電流経路の導通状態を制御する装置として広く利用できる。
1、1A~1H 半導体装置
10、210、410A、410B、810 外部第1端子
11、211、411A、411B、811 第1電極
20、220、420 外部第2端子
21、221、421 ドレイン外部電極
30、30A~30F、230、230A~230F、430、430A~430E、830、830A~830G 外部抵抗端子
31、31A~31F、231A~231F、431A~431C、831、831A~831G 抵抗電極
40、240、440、840 外部制御端子
41、241、441、841 第3電極
51、81 半導体基板
52 第1の低濃度不純物層
53 ボディ領域
54 ソース領域
55、84 ゲート導体
56 ゲート絶縁膜
57 高濃度不純物層
61 絶縁層
62 パッシベーション層
71 金属層
82 ソース内部電極
83 ドレイン内部電極
100、100A~100C トランジスタ素子
110、110A~110F、310A~310L、510、510A~510J、910、910A、910B 第1の抵抗素子
111、311、511 コンタクト
120、120A~120F、121、122、123、320A~320G、321、322A~322D、520A、520B、521、522、523、921、922A~922G、923 メタル配線
150、350、550、950 トランジスタ素子領域
160、360、560 ドレイン引き上げ領域
170、370、570、970 ツェナーダイオード領域
190 ツェナーダイオード
280、280A、280B 第1端子領域
290、290A、290B 第2端子領域
300 基板配線
610、710、930、930A、930B 第2の抵抗素子
1010 電池
1020 制御IC

Claims (22)

  1.  第1電極、第2電極、及び前記第1電極と前記第2電極との間の導通状態を制御する制御電極を有するトランジスタ素子と、複数の第1の抵抗素子と、を有する半導体装置であって、
     前記複数の第1の抵抗素子の全ての一方の電極は、前記第2電極に電気的に接続され、
     前記複数の第1の抵抗素子の全ての他方の電極がいずれかに接触接続された1以上の外部抵抗端子、前記第1電極に電気的に接続された外部第1端子、及び前記制御電極に電気的に接続された外部制御端子を有し、
     前記1以上の外部抵抗端子、前記外部第1端子、及び前記外部制御端子は、前記半導体装置の表面に形成された外部接続端子である
     フェースダウン実装チップサイズパッケージ型の半導体装置。
  2.  前記1以上の外部抵抗端子は、複数であり、前記半導体装置の平面視において、前記半導体装置の平面視面積の半分以上の領域に配置されている
     請求項1に記載の半導体装置。
  3.  前記複数の第1の抵抗素子の全ての他方の電極は、前記半導体装置内で互いに電気的に短絡されている
     請求項1に記載の半導体装置。
  4.  前記複数の第1の抵抗素子の抵抗値は、全て同一である
     請求項1に記載の半導体装置。
  5.  前記第2電極に電気的に接続され、前記半導体装置の表面に形成された外部第2端子を有し、
     前記1以上の外部抵抗端子は、複数であり、前記半導体装置の平面視において、前記外部第2端子を中心に放射状に配置されている
     請求項1に記載の半導体装置。
  6.  前記第2電極に電気的に接続され、前記半導体装置の表面に形成された外部第2端子を有し、
     前記複数の第1の抵抗素子は、前記半導体装置の平面視において、前記外部第2端子を中心に放射状に配置されている
     請求項1に記載の半導体装置。
  7.  前記第2電極に電気的に接続され、前記半導体装置の表面に形成された外部第2端子を有し、
     前記外部第2端子と前記第1電極との電流経路内に形成された第2の抵抗素子を有する
     請求項1に記載の半導体装置。
  8.  前記トランジスタ素子は、第1導電型の不純物を含むシリコンからなる半導体基板と、前記半導体基板の上面に接触して形成され、前記半導体基板の前記第1導電型の不純物の濃度より低い濃度の前記第1導電型の不純物を含む第1の低濃度不純物層と、を有する縦型トランジスタであり、
     前記半導体基板は、前記第2電極として働き、
     前記第2の抵抗素子は、
      前記第1の低濃度不純物層の上面より下方に埋め込まれ、
      一方の電極は前記第2電極に電気的に接続され、
      他方の電極は前記外部第2端子に電気的に接続されている
     請求項7に記載の半導体装置。
  9.  前記トランジスタ素子は、第1導電型の不純物を含むシリコンからなる半導体基板と、前記半導体基板の上面に接触して形成され、前記半導体基板の前記第1導電型の不純物の濃度より低い濃度の前記第1導電型の不純物を含む第1の低濃度不純物層と、を有する縦型トランジスタであり、
     前記半導体基板は、前記第2電極として働き、
     前記第1の低濃度不純物層の上面より下方に埋め込まれ、一方の電極は前記第2電極に電気的に接続され、他方の電極は前記複数の第1の抵抗素子のうちの少なくとも1つの第1の抵抗素子の前記一方の電極に電気的に接続された1以上の第2の抵抗素子を有する
     請求項1に記載の半導体装置。
  10.  前記1以上の第2の抵抗素子は、前記複数の第1の抵抗素子と同数、かつ複数であり、
     前記1以上の第2の抵抗素子は、前記複数の第1の抵抗素子と1対1に対応付けられており、
     前記1以上の第2の抵抗素子のそれぞれの前記他方の電極は、当該第2の抵抗素子に対応付けられた前記複数の第1の抵抗素子の前記一方の電極に電気的に接続されている 
     請求項9に記載の半導体装置。
  11.  前記第2の抵抗素子は、不純物を含む半導体層からなる
     請求項7に記載の半導体装置。
  12.  前記第2の抵抗素子は、ポリシリコン層からなる
     請求項7に記載の半導体装置。
  13.  前記半導体装置の平面視における前記外部接続端子の配列において、
     前記外部第1端子及び前記外部制御端子を含む端子列には前記1以上の外部抵抗端子を含まず、
     前記1以上の外部抵抗端子を含む端子列には前記外部第1端子及び前記1以上の外部制御端子を含まない
     請求項1に記載の半導体装置。
  14.  前記第2電極に電気的に接続され、前記半導体装置の表面に形成された外部第2端子を有し、
     前記外部第2端子は、前記半導体装置の平面視において、他の前記外部接続端子よりも前記半導体装置の中央側に配置されている
     請求項1に記載の半導体装置。
  15.  前記半導体装置の平面視における少なくとも1つの前記1以上の外部抵抗端子において、当該外部抵抗端子と前記半導体装置の外周辺との最近接距離は、当該外部抵抗端子に電気的に接続された前記複数の第1の抵抗素子と前記半導体装置の外周辺との最近接距離以下である
     請求項1に記載の半導体装置。
  16.  前記半導体装置の平面視における少なくとも1つの前記1以上の外部抵抗端子において、当該外部抵抗端子の中心点と前記半導体装置の外周辺との最近接距離は、当該外部抵抗端子に電気的に接続された前記複数の第1の抵抗素子の中心点と前記半導体装置の外周辺との最近接距離以下である
     請求項1に記載の半導体装置。
  17.  前記半導体装置の主材料はシリコンであり、前記半導体装置の厚さは250μm以上である
     請求項1に記載の半導体装置。
  18.  前記半導体装置の厚さは350μm以上である
     請求項17に記載の半導体装置。
  19.  前記半導体装置の主材料はシリコンであり、
     前記半導体装置の体積は1.94mm以上である
     請求項1に記載の半導体装置。
  20.  前記半導体装置の体積は2.20mm以上である
     請求項19に記載の半導体装置。
  21.  前記半導体装置の体積は3.05mm以上である
     請求項20に記載の半導体装置。
  22.  前記半導体装置の表面に、前記第2電極と同電位の外部端子が形成されていない
     請求項1に記載の半導体装置。
PCT/JP2019/002567 2018-06-19 2019-01-25 半導体装置 WO2019244387A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/488,541 US11049856B2 (en) 2018-06-19 2019-01-25 Semiconductor device
CN202210553406.7A CN114883323B (zh) 2018-06-19 2019-01-25 半导体装置
JP2019531839A JP6573189B1 (ja) 2018-06-19 2019-01-25 半導体装置
KR1020217003713A KR102328064B1 (ko) 2018-06-19 2019-01-25 반도체 장치
KR1020207022819A KR102216522B1 (ko) 2018-06-19 2019-01-25 반도체 장치
CN202210553400.XA CN114823664A (zh) 2018-06-19 2019-01-25 半导体装置
CN201980011546.8A CN111684582B (zh) 2018-06-19 2019-01-25 半导体装置
US17/228,687 US11282834B2 (en) 2018-06-19 2021-04-12 Semiconductor device
US17/589,923 US11626399B2 (en) 2018-06-19 2022-02-01 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862687035P 2018-06-19 2018-06-19
US62/687,035 2018-06-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/488,541 A-371-Of-International US11049856B2 (en) 2018-06-19 2019-01-25 Semiconductor device
US17/228,687 Continuation US11282834B2 (en) 2018-06-19 2021-04-12 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019244387A1 true WO2019244387A1 (ja) 2019-12-26

Family

ID=68983283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002567 WO2019244387A1 (ja) 2018-06-19 2019-01-25 半導体装置

Country Status (4)

Country Link
US (1) US11049856B2 (ja)
KR (2) KR102328064B1 (ja)
TW (3) TWI733620B (ja)
WO (1) WO2019244387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085765A1 (ja) * 2020-10-23 2022-04-28 ヌヴォトンテクノロジージャパン株式会社 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114667629B (zh) * 2020-05-13 2022-11-29 新唐科技日本株式会社 半导体装置
TWI802012B (zh) * 2021-09-17 2023-05-11 日商新唐科技日本股份有限公司 半導體裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277365A (ja) * 2007-04-26 2008-11-13 Nec Electronics Corp 半導体装置およびその製造方法
JP2012119577A (ja) * 2010-12-02 2012-06-21 Renesas Electronics Corp 半導体チップ、半導体装置、及び半導体チップの製造方法
WO2015166654A1 (ja) * 2014-05-01 2015-11-05 パナソニックIpマネジメント株式会社 半導体装置および半導体モジュール

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564306B1 (ko) * 2004-07-01 2006-03-29 주식회사 에이스테크놀로지 N경로 전력 분배기/합성기
US7279375B2 (en) * 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
JP2007116007A (ja) * 2005-10-21 2007-05-10 Matsushita Electric Ind Co Ltd 半導体電力増幅器及びその製造方法
JP5138274B2 (ja) * 2007-05-25 2013-02-06 三菱電機株式会社 半導体装置
CN101952955B (zh) * 2007-12-14 2014-03-05 富士电机株式会社 集成电路和半导体器件
JP2009177066A (ja) * 2008-01-28 2009-08-06 Sanken Electric Co Ltd トランジスタ構造および半導体装置
WO2009096412A1 (ja) * 2008-01-29 2009-08-06 Fuji Electric Device Technology Co., Ltd. 半導体装置
JP2009182304A (ja) * 2008-02-01 2009-08-13 Sanyo Electric Co Ltd 半導体装置
JP5458907B2 (ja) * 2010-01-22 2014-04-02 株式会社デンソー 半導体装置
CN105185781B (zh) * 2010-11-29 2018-06-22 瑞萨电子株式会社 半导体器件
JP5554736B2 (ja) * 2011-03-09 2014-07-23 ルネサスエレクトロニクス株式会社 半導体装置
US8859386B2 (en) * 2012-06-08 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices, methods of manufacture thereof, and methods of forming resistors
JP6238567B2 (ja) * 2012-08-01 2017-11-29 キヤノン株式会社 放電回路、電源装置及び画像形成装置
US9276421B2 (en) * 2012-10-31 2016-03-01 Motorola Solutions, Inc. Portable rechargeable battery pack and external adapter for same
JP2015232500A (ja) * 2014-06-10 2015-12-24 マイクロン テクノロジー, インク. 半導体装置
US20170330876A1 (en) * 2014-12-02 2017-11-16 Glenn J. Leedy Vertical system integration
TWI612630B (zh) * 2015-01-08 2018-01-21 聯華電子股份有限公司 半導體元件結構
JP7042217B2 (ja) * 2016-12-27 2022-03-25 ヌヴォトンテクノロジージャパン株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277365A (ja) * 2007-04-26 2008-11-13 Nec Electronics Corp 半導体装置およびその製造方法
JP2012119577A (ja) * 2010-12-02 2012-06-21 Renesas Electronics Corp 半導体チップ、半導体装置、及び半導体チップの製造方法
WO2015166654A1 (ja) * 2014-05-01 2015-11-05 パナソニックIpマネジメント株式会社 半導体装置および半導体モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085765A1 (ja) * 2020-10-23 2022-04-28 ヌヴォトンテクノロジージャパン株式会社 半導体装置
JPWO2022085765A1 (ja) * 2020-10-23 2022-04-28
JP7179236B2 (ja) 2020-10-23 2022-11-28 ヌヴォトンテクノロジージャパン株式会社 半導体装置
CN115956297A (zh) * 2020-10-23 2023-04-11 新唐科技日本株式会社 半导体装置
US11735655B2 (en) 2020-10-23 2023-08-22 Nuvoton Technology Corporation Japan Semiconductor device
CN115956297B (zh) * 2020-10-23 2023-09-08 新唐科技日本株式会社 半导体装置
EP4187617A4 (en) * 2020-10-23 2024-02-14 Nuvoton Tech Corporation Japan SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
KR20200097812A (ko) 2020-08-19
TW202133361A (zh) 2021-09-01
TW202115844A (zh) 2021-04-16
TWI733620B (zh) 2021-07-11
KR102216522B1 (ko) 2021-02-17
US11049856B2 (en) 2021-06-29
KR20210018538A (ko) 2021-02-17
TW202002200A (zh) 2020-01-01
TWI759207B (zh) 2022-03-21
KR102328064B1 (ko) 2021-11-17
TWI712120B (zh) 2020-12-01
US20200388609A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2019244387A1 (ja) 半導体装置
JP5190913B2 (ja) 半導体集積回路装置
US11626399B2 (en) Semiconductor device
US20170062412A1 (en) Transistor element and semiconductor device
US8664726B2 (en) Electrostatic discharge (ESD) protection device, method of fabricating the device, and electronic apparatus including the device
US11139288B2 (en) Silicon-controlled-rectifier electrostatic protection structure and fabrication method thereof
US10580907B2 (en) Semiconductor device and semiconductor module
JP7055534B2 (ja) 半導体装置の製造方法
JP5023254B2 (ja) 集積回路の静電荷放電保護
JP7471974B2 (ja) 半導体装置
TWI578576B (zh) 發光二極體晶片
CN105938823A (zh) 半导体装置
JP4326500B2 (ja) 半導体装置
JPH03139877A (ja) 半導体装置
TW201916314A (zh) 具有靜電放電保護的積體電路裝置
JP2008166628A (ja) 半導体装置の保護回路
US20130075865A1 (en) Semiconductor device
JP2005223026A (ja) 半導体装置
KR20120111604A (ko) 다이오드 및 그 제조방법
JPH04171983A (ja) 半導体装置
JP2009152294A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531839

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207022819

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822896

Country of ref document: EP

Kind code of ref document: A1