TWI802012B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI802012B
TWI802012B TW110134893A TW110134893A TWI802012B TW I802012 B TWI802012 B TW I802012B TW 110134893 A TW110134893 A TW 110134893A TW 110134893 A TW110134893 A TW 110134893A TW I802012 B TWI802012 B TW I802012B
Authority
TW
Taiwan
Prior art keywords
length
region
source
source region
semiconductor device
Prior art date
Application number
TW110134893A
Other languages
English (en)
Other versions
TW202315127A (zh
Inventor
中村浩尚
大河亮介
井上翼
木村晃
安田英司
Original Assignee
日商新唐科技日本股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新唐科技日本股份有限公司 filed Critical 日商新唐科技日本股份有限公司
Priority to TW110134893A priority Critical patent/TWI802012B/zh
Publication of TW202315127A publication Critical patent/TW202315127A/zh
Application granted granted Critical
Publication of TWI802012B publication Critical patent/TWI802012B/zh

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

一種在第1溝延伸存在之第1方向上交互且週期性地設置第1源極區域、及連接第1體區域與第1源極電極之第1連接部的第1縱型場效電晶體,在與第1方向正交之第2方向,相鄰之第1溝與第1溝之間之距離Lxm、及第1溝之內部寬Lxr具有Lxm≤Lxr≤0.20μm之關係,第1連接部之長度是位於即便第1連接部之長度更縮短,往第1閘極導體施加規格值之電壓而使規格值之電流流動時之第1縱型場效電晶體的開電阻亦不會顯著地降低的收斂區。

Description

半導體裝置
發明領域
本揭示是有關於半導體裝置,尤其是有關於晶片尺寸封裝型之半導體裝置。
發明背景
習知,關於縱型場效電晶體,專利文獻1已揭示了正交型之縱型場效電晶體之構造,顯示了正交型之構造對降低開(on)電阻有效。又,專利文獻2已揭示了平行型之縱型場效電晶體之構造,顯示了平行型之構造對提升關掉(turn off)時之容許量有效。
先行技術文獻
專利文獻
專利文獻1:日本特許第3999225號
專利文獻2:美國專利第5366914號說明書
發明概要
然而,專利文獻1所揭示之正交型之構造具有專注於降低開電阻之特徵,因此,不容易提升關掉時之容許量。相反地,專利文獻2所揭示之平行型之構造具有專注於提升關掉時之容許量之特徵,因此,不容易降低開電阻。所以,難以使兩種特性皆提升。亦即,在習知之縱型場效電晶體,降低開電阻與 提升關掉時之容許量是取捨之關係。
於是,在縱型場效電晶體謀求降低開電阻,並且提升關掉時之容許量以避免在關掉時令寄生雙極電晶體開啟而導致破壞。
為了解決上述之課題,本揭示之半導體裝置是可面朝下安裝之晶片尺寸封裝型之半導體裝置,具備縱型場效電晶體,前述縱型場效電晶體具有:半導體基板,由矽構成,且包含第1導電型之不純物;低濃度不純物層,接觸前述半導體基板上而形成,且包含比前述半導體基板之前述第1導電型之不純物之濃度低之濃度之前述第1導電型之不純物;第2導電型之體(body)區域,形成在前述低濃度不純物層之表面,前述第2導電型與前述第1導電型不同;前述第1導電型之源極區域,形成在前述體區域之表面;源極電極,與前述源極區域電連接;複數個溝,朝與前述半導體基板之上表面平行之第1方向延伸存在,且以從前述低濃度不純物層之上表面貫穿前述體區域而到達前述低濃度不純物層之一部分為止的深度,在與前述第1方向正交之第2方向上等間隔地形成;閘極絕緣膜,以覆蓋前述複數個溝之表面之至少一部分的方式形成;閘極導體,形成在前述閘極絕緣膜上;及連接部,將前述體區域與前述源極電極電連接,在前述縱型場效電晶體,前述源極區域與前述連接部是於前述第1方向交互且週期性地設置,當以在前述第2方向相鄰之前述溝與溝之間的距離作為Lxm[μm],以1個前述溝之內部寬作為Lxr[μm]時,Lxm
Figure 110134893-A0305-02-0004-35
Lxr
Figure 110134893-A0305-02-0004-34
0.20μm成立,當以前述縱型場效電晶體之規格最大電壓作為Vss[V]時,前述第1方向上之1個前述源極區域之長度LS[μm]、及前述第1方向上之1個前述連接部之長度LB[μm]有如下之關係:LB<0.35μm,且LS
Figure 110134893-A0305-02-0004-36
0.12×Vss×Lxm-0.76×Lxm-0.05×Vss+1.26[μm]。
藉由本揭示,提供可兼顧降低開電阻與提升關掉時之容許量的半 導體裝置。亦即,可兼顧降低開電阻與提升關掉時之容許量,可輕易地實現近年所要求之高容許電壓且低電阻之電路規格。
1:半導體裝置
10:電晶體(第1縱型場效電晶體)
11:第1源極電極
12,13:第1源極電極之一部分
14:第1源極區域
15:第1閘極導體
16:第1閘極絕緣膜
17:第1溝
18:第1體區域
18A:第1連接部
19:第1閘極電極
20:電晶體(第2縱型場效電晶體)
21:第2源極電極
22,23:第2源極電極之一部分
24:第2源極區域
25:第2閘極導體
26:第2閘極絕緣膜
27:第2溝
28:第2體區域
28A:第2連接部
29:第2閘極電極
30:金屬層
32:半導體基板
33:低濃度不純物層或漂移層
34:層間絕緣層
35:鈍化層
40:半導體層
90C:邊界
116:第1源極電極墊
119:第1閘極電極墊
126:第2源極電極墊
129:第2閘極電極墊
141:上部側部分
142:底部側部分
A,B:圓框
A1:第1區域
A2:第2區域
IS:電流
LB,LB1,LB2,LBb1,LBt1,LS,LS1,LS2,LSb1,LSt1:長度
Lch,Lxm,Lxmb:距離
Lxr,Lxrb:寬
Rb,Rb1,Rb2:基極電阻
RSS(on),RSS(on)1~RSS(on)4:開電阻
VGS,Vss:電壓
Voff:容許電壓
x,y,z:箭頭
圖1是顯示實施形態1之半導體裝置之構造之一例的截面示意圖。
圖2A是顯示實施形態1之半導體裝置之構造之一例的平面示意圖。
圖2B是顯示在實施形態1之半導體裝置流動之主電流的截面示意圖。
圖3A是實施形態1之第1電晶體之略單位構成的平面示意圖。
圖3B是實施形態1之第1電晶體之略單位構成的立體示意圖。
圖4A是顯示實施形態1之第1電晶體之構造之一例的截面示意圖。
圖4B是顯示實施形態1之第1電晶體之構造之一例的平面示意圖。
圖4C是顯示實施形態1之第1電晶體之構造之一例的截面示意圖。
圖4D是顯示實施形態1之第1電晶體之構造之一例的平面示意圖。
圖4E是顯示實施形態1之第1電晶體之構造之一例的截面示意圖。
圖4F是顯示實施形態1之第1電晶體之構造之一例的平面示意圖。
圖5A-1是顯示用在實施形態1之第1電晶體之驅動時之電流密度之模擬之構造的圖。
圖5A-2是顯示實施形態1之第1電晶體之驅動時之電流密度之模擬結果的圖。
圖5A-3是顯示將圖5A-1與圖5A-2重疊的圖。
圖5B-1是顯示實施形態1之第1電晶體之驅動時之電流密度之模擬所使用之構造的圖。
圖5B-2是顯示實施形態1之第1電晶體之驅動時之電流密度之模擬 結果的圖。
圖5B-3是將圖5B-1與圖5B-2重疊的圖。
圖6是顯示將驅動時之來自源極區域之導通區域之擴大與往閘極導體之施加電壓之關係予以顯示之圖表的圖。
圖7是顯示將開電阻、與源極區域之長度對連接部之長度之比值之關係予以顯示之圖表的圖。
圖8是顯示將實施形態1之第1電晶體之規格所示之開電阻之一例予以顯示之表的圖。
圖9A是顯示將實施形態1之為了超過想要之關掉時容許電壓所必要之第1方向上之源極區域之最大長度、與溝和溝之間之距離之關係予以顯示之圖表的圖。
圖9B是顯示將實施形態1之為了超過想要之關掉時容許電壓所必要之第1方向上之源極區域之最大長度、與溝和溝之間之距離之線形關係之斜率予以顯示之圖表的圖。
圖9C是顯示將實施形態1之為了超過想要之關掉時容許電壓所必要之第1方向上之源極區域之最大長度、與溝和溝之間之距離之線形關係之截距予以顯示之圖表的圖。
圖10是顯示將實施形態1之為了獲得本揭示之效果所必要之第1方向上之源極區域之長度、與連接部之長度之關係之一例予以顯示之圖表的圖。
圖11A是顯示實施形態3之第1電晶體之構造之一例的截面示意圖。
圖11B是顯示實施形態3之第1電晶體之構造之一例的截面示意圖。
圖11C是顯示實施形態3之第1電晶體之構造之一例的截面示意 圖。
圖11D是顯示實施形態3之第1電晶體之構造之一例的截面示意圖。
用以實施發明之形態
(實施形態1)
[1.半導體裝置之構造]
以下是以雙構成來舉例說明本揭示之縱型場效電晶體之正交型構造。雙構成並非必要條件,亦可以是單構成之縱型場效電晶體,亦可以是三以上之構成之縱型場效電晶體。
圖1是顯示半導體裝置1之構造之一例的截面圖。圖2A是其平面圖,半導體裝置1之大小、形狀、電極墊之配置是一例。圖2B是示意地顯示在半導體裝置1流動之主電流的截面圖。圖1及圖2B是圖2A之I-I的截面。
如圖1及圖2A所示,半導體裝置1具有半導體層40、金屬層30、在半導體層40內之第1區域A1形成之第1縱型場效電晶體10(以下亦稱作「電晶體10」。)、及在半導體層40內之第2區域A2形成之第2縱型場效電晶體20(以下亦稱作「電晶體20」。)。在此,如圖2A所示,在半導體層40之平面視(亦即俯視)中,第1區域A1與第2區域A2是互相鄰接。在圖2A,第1區域A1與第2區域A2之虛擬之邊界90C是以虛線顯示。
半導體層40是將半導體基板32與低濃度不純物層33層積而構成。半導體基板32是配置在半導體層40之背面側,由包含第1導電型之不純物之矽構成。低濃度不純物層33是配置在半導體層40之表面側,接觸半導體基板32而形成,包含比半導體基板32之第1導電型之不純物之濃度低之濃度之第1導電型之不純物。低濃度不純物層33亦可以是例如藉由磊晶成長而形成在半導體基板32 上。另,低濃度不純物層33亦是電晶體10及電晶體20之漂移層,在本說明書中有時是稱作漂移層。
金屬層30是接觸半導體層40之背面側而形成,由銀(Ag)或銅(Cu)構成。另,金屬層30亦可以微量地含有在金屬材料之製造程序中作為不純物而混入之金屬以外之元素。又,金屬層30可以是形成在半導體層40之背面側之整面,亦可以不是形成在整面。
如圖1及圖2A所示,在低濃度不純物層33之第1區域A1形成有包含與第1導電型不同之第2導電型之不純物之第1體區域18。在第1體區域18形成有包含第1導電型之不純物之第1源極區域14、第1閘極導體15、及第1閘極絕緣膜16。第1閘極導體15、第1閘極絕緣膜16是在複數個第1溝17之內部分別形成,前述複數個第1溝17是朝與半導體基板32上表面平行之第1方向(Y軸方向)延伸存在,且以從半導體層40之上表面貫穿第1體區域18而到達低濃度不純物層33之一部分為止的深度,在與前述第1方向(Y方向)正交之第2方向(X方向)上等間隔地形成。第1源極電極11是由一部分12與一部分13構成,一部分12是透過一部分13來與第1源極區域14及第1體區域18連接。第1閘極導體15是埋在半導體層40之內部之埋入式閘極電極,與第1閘極電極墊119電連接。
第1源極電極11之一部分12是在面朝下安裝中之迴銲(reflow)時與焊料接合之層,作為非限定之一例,亦可以是以包含鎳、鈦、鎢、鈀中之任1者以上之金屬材料構成。亦可以在一部分12之表面施加有金等之鍍敷。
第1源極電極11之一部分13是與一部分12、半導體層40連接之層,作為非限定之一例,亦可以是以包含鋁、銅、金、銀中之任1者以上之金屬材料構成。
在低濃度不純物層33之第2區域A2形成有包含第2導電型之不純物之第2體區域28。在第2體區域28形成有包含第1導電型之不純物之第2源極區 域24、第2閘極導體25、及第2閘極絕緣膜26。第2閘極導體25、第2閘極絕緣膜26是在複數個第2溝27之內部分別形成,前述複數個第2溝27是以從半導體層40之上表面貫穿第2體區域28而到達低濃度不純物層33之一部分為止的深度形成。第2源極電極21是由一部分22與一部分23構成,一部分22是透過一部分23來與第2源極區域24及第2體區域28連接。第2閘極導體25是埋在半導體層40之內部之埋入式閘極電極,與第2閘極電極墊129電連接。
第2源極電極21之一部分22是在面朝下安裝中之迴銲時與焊料接合之層,作為非限定之一例,亦可以是以包含鎳、鈦、鎢、鈀中之任1者以上之金屬材料構成。亦可以在一部分22之表面施加有金等之鍍敷。
第2源極電極21之一部分23是與一部分22、半導體層40連接之層,作為非限定之一例,亦可以是以包含鋁、銅、金、銀中之任1者以上之金屬材料構成。
藉由電晶體10及電晶體20之上述構成,半導體基板32是作為令電晶體10之第1汲極區域及電晶體20之第2汲極區域共用化之共用汲極區域而發揮。低濃度不純物層33之接觸半導體基板32側之一部分有時亦作為共用汲極區域而發揮。又,金屬層30是作為令電晶體10之汲極電極及電晶體20之汲極電極共用化之共用汲極電極而發揮。
如圖1所示,第1體區域18是被具有開口之層間絕緣層34覆蓋,設有通過層間絕緣層34之開口來與第1源極區域14連接之第1源極電極11之一部分13。層間絕緣層34及第1源極電極之一部分13是被具有開口之鈍化層35覆蓋,設有通過鈍化層35之開口來與第1源極電極之一部分13連接之一部分12。
第2體區域28是被具有開口之層間絕緣層34覆蓋,設有通過層間絕緣層34之開口來與第2源極區域24連接之第2源極電極21之一部分23。層間絕緣層34及第2源極電極之一部分23是被具有開口之鈍化層35覆蓋,設有通過鈍化層 35之開口來與第2源極電極之一部分23連接之一部分22。
所以,複數個第1源極電極墊116及複數個第2源極電極墊126分別是指第1源極電極11及第2源極電極21在半導體裝置1之表面部分性地露出之區域,所謂端子之部分。同樣地,1個以上之第1閘極電極墊119及1個以上之第2閘極電極墊129分別是指第1閘極電極19(未在圖1、圖2A、圖2B圖示。)及第2閘極電極29(未在圖1、圖2A、圖2B圖示。)在半導體裝置1之表面部分性地露出之區域,所謂端子之部分。
在半導體裝置1,例如,亦可以令第1導電型為N型,令第2導電型為P型,第1源極區域14、第2源極區域24、半導體基板32、及低濃度不純物層33是N型半導體,且第1體區域18及第2體區域28是P型半導體。
又,在半導體裝置1,例如,亦可以令第1導電型為P型,令第2導電型為N型,第1源極區域14、第2源極區域24、半導體基板32、及低濃度不純物層33是P型半導體,且第1體區域18及第2體區域28是N型半導體。
在以下之說明是以令第1導電型為N型,令第2導電型為P型,電晶體10與電晶體20是所謂N通道型電晶體的情況,來說明半導體裝置1之導通動作。
另,在此是以電晶體10與電晶體20具備在功能、特性、構造等方面沒有任何差異之對稱性為前提來說明。雖然圖1、圖2A、圖2B亦是以對稱性為前提來描繪,但對本揭示之晶片尺寸封裝型之雙構成之縱型場效電晶體而言,對稱性並非絕對必要之條件。
[2.正交型之構成]
圖3A及圖3B分別是在半導體裝置1之X方向及Y方向反覆形成之電晶體10(或電晶體20)之略單位構成的平面圖及立體圖。在圖3A及圖3B,為了易於了解,半導體基板32、第1源極電極11(或第2源極電極21)是未圖示。另,Y方向是與半導體層40之上表面平行且第1溝17及第2溝27延伸存在之方向(第1方 向)。又,X方向是與半導體層40之上表面平行且與Y方向正交之方向(第2方向)。
如圖3A及圖3B所示,電晶體10具備將第1體區域18與第1源極電極11電連接之第1連接部18A。第1連接部18A是第1體區域18中之未形成第1源極區域14之區域,與第1體區域18同樣包含第2導電型之不純物。第1源極區域14與第1連接部18A是沿著Y方向交互且週期性地反覆配置。電晶體20亦同樣。
在半導體裝置1,若於第1源極電極11施加高電壓及於第2源極電極21施加低電壓,以第2源極電極21作為基準而於第2閘極電極29(第2閘極導體25)施加閾值以上之電壓,則在第2體區域28中之第2閘極絕緣膜26之附近形成導通通道。結果,主電流於第1源極電極11-第1連接部18A-第1體區域18-低濃度不純物層33-半導體基板32-金屬層30-半導體基板32-低濃度不純物層33-在第2體區域28形成之導通通道-第2源極區域24-第2源極電極21這樣之路徑流動,半導體裝置1成為導通狀態。另,在此導通路徑中之第2體區域28與低濃度不純物層33之接觸面有PN接面,作為體二極體(body diode)而發揮。又,由於此主電流流過金屬層30,故可藉由增厚金屬層30來擴大主電流路徑之截面積,降低半導體裝置1之開電阻。
同樣地,在半導體裝置1,若於第2源極電極21施加高電壓及於第1源極電極11施加低電壓,以第1源極電極11作為基準而於第1閘極電極19(第1閘極導體15)施加閾值以上之電壓,則在第1體區域18中之第1閘極絕緣膜16之附近形成導通通道。結果,主電流於第2源極電極21-第2連接部28A-第2體區域28-低濃度不純物層33-半導體基板32-金屬層30-半導體基板32-低濃度不純物層33-在第1體區域18形成之導通通道-第1源極區域14-第1源極電極11這樣之路徑流動,半導體裝置1成為導通狀態。另,在此導通路徑中之第1體區域18與低濃度不純物層33之接觸面有PN接面,作為體二極體而發揮。
以後,將Y方向上之第1源極區域14之長度記載成LS1,將Y方向上 之第2源極區域24之長度記載成LS2。當未區分第1源極區域14與第2源極區域24時,將源極區域之長度記載成LS。又,將Y方向上之第1連接部18A之長度記載成LB1,將Y方向上之第2連接部28A之長度記載成LB2。當未區分第1連接部18A與第2連接部28A時,將連接部之長度記載成LB。
關於單構成之縱型場效電晶體,大致上亦可以當作是只形成雙構成之縱型場效電晶體之單側(電晶體10)。不過,晶片尺寸封裝型的情況下,需要在具備第1源極電極墊116、第1閘極電極墊119之半導體層40之表面側進一步設置汲極電極墊。此情況下,需要從半導體層40之表面側形成與在半導體層40之背面側具備之汲極層電連接之汲極誘出構造。
[3.正交型構造之基極電阻]
構造上,電晶體10(或電晶體20)具備寄生雙極電晶體。寄生雙極電晶體是易於在關閉(關掉)已驅動之半導體裝置時開啟,到關閉前一瞬間為止之驅動電壓越大則越易於開啟。本申請案是將不會在關閉半導體裝置1時令寄生雙極電晶體開啟之驅動電壓中之最大的驅動電壓稱作關掉時容許電壓(Voff)。例如,當得知從10V驅動時之關閉不會令寄生雙極電晶體開啟,從11V驅動時之關閉會令寄生雙極電晶體開啟的情況下,此半導體裝置之關掉時容許電壓是10V以上且低於11V。另,當半導體裝置1是雙構成之N導電型之縱型場效電晶體的情況下,驅動電壓是源極-源極間電壓(VSS),當是單構成之縱型場效電晶體的情況下,驅動電壓是汲極-源極間電壓(VDS)。又,當半導體裝置1是雙構成之P導電型之縱型場效電晶體的情況下,驅動電壓是汲極-汲極間電壓(VDD)。驅動是指於閘極導體施加電壓而令電流在源極-源極間(或汲極-源極間,或是汲極-汲極間)導通之狀態,只要沒特別聲明,則是以線形區域之條件導通。
半導體裝置1被要求具有至少源極-源極間規格最大電壓(或汲極-源極間規格最大電壓,或是汲極-汲極間規格最大電壓,或者,有時是不予以區 分而稱作規格最大電壓)以上之關掉時容許電壓。另,規格最大電壓是該電晶體之產品規格書所記載之最大額定電壓。寄生雙極電晶體是否易於開啟,是與寄生雙極電晶體之基極電阻Rb[Ω]相關。基極電阻Rb1[Ω]是從第1連接部18A到在第1體區域18之路徑中,由第1源極電極11來看之阻抗成為最大之第1體區域18中之位置為止的阻抗(以下,有時是記載成第1阻抗),基極電阻Rb2[Ω]是從第2連接部28A到在第2體區域28之路徑中,由第2源極電極21來看之阻抗成為最大之第2體區域28中之位置為止的阻抗(以下,有時是記載成第2阻抗)。
若以第1體區域18(或第2體區域28)之薄膜電阻率作為ρ[Ω.μm],以溝與溝之間的距離作為Lxm[μm],以從第1源極區域14(或第2源極區域24)之底部到第1體區域18(或第2體區域28)與低濃度不純物層33之邊界為止的距離(導通通道長度)作為Lch[μm],則電晶體10之基極電阻Rb1是表示成Rb1=ρ×LS1/Lxm/Lch,電晶體20之基極電阻Rb2是表示成Rb2=ρ×LS2/Lxm/Lch。
在關掉電晶體10時,儲存於第1閘極絕緣膜16之附近之載子是通過第1體區域18、第1連接部18A而往第1源極電極11瞬間地擴散。此時,若基極電阻Rb1大,則由載子之通過產生之電壓下降亦大,故易於超過令寄生雙極電晶體開啟之閾值。電晶體20亦同樣。所以,想提高半導體裝置1之關掉時容許電壓,則必須抑制Rb1及Rb2。
話說,若溝與溝之間的距離Lxm變小,則可在產生之多餘之面積進一步設置溝,故可在半導體裝置1之面積維持固定之情形下降低開電阻。這是令溝及閘極導體的數量增加(溝密度之增加),而令半導體裝置1之總閘極寬變大之措施。然而,若如上述般地令溝與溝之間之距離Lxm變小,則會發生因為Rb增大而造成關掉時容許電壓下降之課題。
若薄膜電阻率ρ是不變,則關於可進行調整來使Rb不增大之參數,根據上述之關係式,可想到的是令LS縮短或令Lch變長。然而,任一者皆是 往增大開電阻之方向的變更,會抵消由溝與溝之間的距離Lxm變小而造成之降低開電阻之效果。因為有如此之關係,故降低開電阻與提升關掉時之容許量難以兼顧。
話說,雖然是在實施形態3後述,但Lxm及Lxr在Z方向(半導體裝置1之深度方向)上是以第1源極區域14之底部側部分之位置來定義。根據本申請案之定義,正確來說應該標示成Lxmb[μm]、Lxrb[μm],但在本實施形態1是為了簡明而標示成Lxm、Lxr。
[4.對驅動時之體區域之導通提供貢獻]
本發明人們發現令位於第1連接部18A之正下方之第1體區域18在電晶體10之驅動時有效率地對導通提供貢獻,來兼顧降低開電阻與提升關掉時之容許量。使用圖4A~圖4F及圖5A-1~圖5B-3進行說明。
圖4A、圖4C、圖4E是在電晶體10之驅動時將第1溝17之附近沿著Y方向切斷之截面的示意圖。圖4B、圖4D、圖4F是在電晶體10省略第1源極電極11、層間絕緣層34、鈍化層35而顯示的平面圖。若將以第1源極電極11之電位作為基準時之對第1閘極導體15之施加電壓(閘極-源極間施加電壓)當作VGS[V],則圖4A是將VGS小時之通電狀態示意地表示。不過,由於是導通狀態,故VGS是比閾值高。圖中之虛線箭頭是示意地表示將在第1體區域18產生之反轉層當作導通通道而通過之電流之流動。若將此表示在半導體層40之平面視,則是如圖4B之粗線之部分。沿著第1溝17,只有在第1源極區域14之正下方產生之反轉層是作為導通通道來對導通提供貢獻。
雖然在位於第1連接部18A之正下方之第1體區域18中,於第1溝17之附近亦形成反轉層,但由於此部分之正上方是第1連接部18A而不是第1源極區域14,故反轉層未將汲極區域(低濃度不純物層33)與第1源極區域14在Z方向連接,不成為導通通道。然而,只有在Y方向上很靠近第1源極區域14之部分,反 轉層可將汲極區域(低濃度不純物層33)與第1源極區域14傾斜地連接而對導通提供貢獻。對導通提供貢獻之區域是VGS越大則越沿著Y方向擴大。圖4C、圖4D是VGS大時的示意圖,在圖4C中傾斜之虛線箭頭是表示此導通區域之擴大部分。此導通區域之擴大在平面視中是如圖4D般地被認識。亦即,相較於第1源極區域14之長度,導通區域是沿著Y方向朝兩側稍微擴大。
話說,若在VGS大的情況下將第1連接部18A之在Y方向上之長度LB1逐漸縮短,則由於兩側之第1源極區域14變靠近,在位於第1連接部18A之正下方之第1體區域18產生之反轉層中,可對導通提供貢獻之區域之比例是從兩側逐漸增大,從某處開始連起來,而變成全長度可實質上作為導通通道來提供貢獻。圖4E、圖4F是將此時之樣子示意地表示。若可以將位於第1連接部18A之正下方之第1體區域18亦包含在內,而使沿著第1溝17之全長度對導通提供貢獻,則對降低開電阻而言是極為有用之狀態。這是藉由縮短第1連接部18A之長度而獲得之效果,並非因為第1源極區域14之長度相對地增大之效果。
將模擬位於第1連接部18A之正下方之第1體區域18對導通提供貢獻之樣子的結果顯示在圖5A-1~圖5A-3(以下單純稱作「圖5A」)、圖5B-1~圖5B-3(以下單純稱作「圖5B」)。與圖4A、圖4C、圖4E相同,圖5A、圖5B皆是顯示將電晶體10之第1溝17之附近沿著Y方向切斷之截面。上段(圖5A-1、圖5B-1)是顯示模擬所使用之構造。雖然第1體區域18並未以第1源極區域14之正下方和第1連接部18A之正下方來劃分,但在此是為了方便而設置了邊界線。中段(圖5A-2、圖5B-2)是以濃淡來顯示以VGS大之條件進行導通時之電流密度,下段(圖5A-3、圖5B-3)是將上段與中段重疊顯示。
雖然圖5A、圖5B皆是在VGS使用相同之值,但圖5A所示之構造是第1連接部18A之長度LB1長(圖中之橫箭頭),故幾乎看不到位於第1連接部18A之正下方之第1體區域18對導通提供貢獻之樣子。不過,在第1源極區域14之附 近可看到電流密度為有限之部分。再者,如圖中以圓框A進行之顯示,可確認出在第1源極區域14之Y方向上之兩端有電流密度變高之部分,故可得知有通過位於第1連接部18A之正下方之第1體區域18而來之電流存在。
相對於此,圖5B所示之構造是第1連接部18A之長度LB1短(圖中之橫箭頭),故可得知位於第1連接部18A之正下方之第1體區域18是在大部分呈現與第1源極區域14之正下方無差異之程度之電流密度高之狀態。這是因為第1連接部18A之長度LB1短,亦即因為兩側之第1源極區域14靠近,故分離之導通通道連起來而變成沿著第1溝17之全長度可對導通提供貢獻。另,在圖5B亦可確認出,以圓框B顯示之第1源極區域14之Y方向上之兩端是因為通過位於該第1連接部18A之正下方之第1體區域18而來之電流集中,故電流密度變非常高。
在圖6顯示從第1源極區域14往位於第1連接部18A之正下方之第1體區域18擴大之導通區域的Y方向之長度之VGS依變性的計算例。本發明人們使用已實施了與實測值之匹配的N導電型雙構成之縱型場效電晶體的計算模型來進行計算。構造是圖1及圖3A~圖3B所示之正交型,半導體裝置之大小(3.40×1.96mm)、1個溝內部寬(Lxr=0.20μm)、其他之參數是使用已統一之既定項目。縱軸標繪的是從1個第1源極區域14之其中一單側擴大之導通區域的Y方向之長度。
從圖6可得知VGS越大則擴大之導通區域之長度越增大。根據圖6,作為一例,VGS=3.8V時之導通區域之擴大是0.174μm。所以,當在Y方向上被第1源極區域14從兩側包夾之1個第1連接部18A的長度LB1為0.174μm×2=0.348μm以下時,可令位於第1連接部18A之正下方之第1體區域18之Y方向之全部對導通提供貢獻。換句話說,在LB1<0.35μm之情形下,以VGS=3.8V以上之驅動條件,令Y方向之全長度對導通提供貢獻。
只要適切地選擇VGS之大小與第1連接部18A之長度LB1,即可在 想要之驅動條件下,令沿著第1溝17之全長度是實質上作為導通通道,可降低開電阻。雖然此效果是藉由令第1連接部18A之長度LB1為一定之長度以下而獲得,但此時,開電阻失去對於第1源極區域14之長度LS1之依變性是特徵。這是因為沿著第1溝之全長度成為實質上之導通通道,故不論第1源極區域14之長度LS1是長或短,驅動時之狀態皆相同。另,對使用固定之有限面積之半導體裝置1而言,無法只將第1連接部18A之長度LB1單獨改變,若縮短LB1,則大部分的情況下,第1源極區域14之長度LS1或第1源極區域14之長度LS1之合計會增加。對本業者而言,當LS1增大的情況下,開電阻降低是通常之想法,但在本揭示之範圍,即便將LS1增大之影響列入,電晶體10之開電阻亦不會顯著地降低。所以,本揭示是以電晶體10之開電阻位於收斂區作為特徵,前述收斂區是即便第1連接部18A之長度LB1更縮短,開電阻亦不依變於第1源極區域14之長度LS1,已經不會顯著降低之區域。所以,可在不讓開電阻惡化之情形下縮短第1源極區域14之長度LS1。雖然是後述,但因此,即便令基極電阻Rb1降低亦可達成兼顧。
以下之表1、表2是本發明人們使用與在圖6之計算結果之導出所使用之計算模型相同之計算模型,來進行之在VGS=3.8V之驅動時之開電阻的計算結果。溝與溝之間的距離Lxm是分別設定為0.10μm、0.14μm、0.18μm之3水準。溝內部寬Lxr是固定為0.20μm。另,如圖6所示,在VGS=3.8V之驅動是只要第1連接部18A之長度LB1低於0.35μm,則沿著Y方向之全長度可對導通提供貢獻之條件。
[表1]
Figure 110134893-A0305-02-0018-1
Figure 110134893-A0305-02-0018-2
表1是顯示將源極區域之長度LS固定在0.50μm而改變連接部之長度LB時之開電阻之結果。可看到當LB長時開電阻為高,但若LB逐漸縮短,則由於LS之合計增大,故開電阻降低之樣子。然而,在LB<0.35μm之情形下,即便LS之合計增大,亦看不到開電阻降低之樣子。
表2是顯示反過來將連接部之長度LB固定在0.30μm而改變源極區域之長度LS時之開電阻之結果。若LS增減則LS之合計亦連動而增減。然而,可得知在以LB=0.30μm固定之條件下,開電阻不隨著LS之增減而變動。這表示由於在LB<0.35μm之情形下以VGS=3.8V驅動時,Y方向之全長度已經可對導通提供貢獻,故到達LS或LS之合計不論變大或變小皆不影響開電阻之狀態。
圖7是將表1及表2之結果予以標繪。橫軸是表示LS相對於LB的比值。溝與溝之間的距離Lxm是顯示0.18μm與0.10μm之2水準。雖然開電阻之絕對值在2水準是相異,但可確認到傾向相同之樣子。亦即,圖表是由從左上到右下之隨著LS/LB之增大而開電阻降低之朝右下下降的部分、及開電阻不依變於 LS/LB之值而無變化的固定部分構成。右下下降的部分是與表1對應,是將LS維持在0.50μm而只有LB縮短(LS/LB是增大)時之樣子。相對於此,固定部分是與表2對應,是將LB維持在0.30μm而只有LS減少(LS/LB是減少)時之樣子。由於處於VGS=3.8V且LB<0.35μm之條件下,故不論Lxm之值為何,在圖表出現固定部分。亦即,本申請案所謂之電晶體10之開電阻位於即便第1連接部18A之長度LB1更縮短亦已經不會顯著地降低的收斂區,是指開電阻不但失去對於LB1之依變性,還失去對於第1源極區域14之長度LS1之依變性的狀態。
話說,電晶體10之開電阻是朝第1閘極導體15施加規格值之電壓而使規格值之電流流動時之開電阻。規格是該電晶體之產品規格,圖8顯示在N導電型之雙構成之縱型場效電晶體的規格所記載之開電阻(RSS(on)[mΩ])之一例。在圖8之例,施加在第1閘極導體15之電壓是VGS,規格值是2.5V、3.1V、3.8V、4.5V之任一者或在此範圍之任意值。又,規格值之電流是源極-源極間電流IS=6.9A。
又,VGS小是指以比規格所示之最小之VGS低之VGS來驅動。在圖8之例是指雖然比閾值高,但以VGS<2.5V驅動之條件。VGS大是指以規格所示之最小之VGS以上之VGS來驅動。在圖8之例是指以VGS
Figure 110134893-A0305-02-0019-37
2.5V驅動之條件。關於實際使用電晶體10時之條件,可想到的是在大部分的情況為VGS大之條件。另,上述說明中之規格是基於在室溫(主要為25℃)之特性。
所以,本揭示是以下述作為特徵:以電晶體10之規格所示之任一任意之VGS驅動而以規格所示之值之電流通電時之開電阻,是位於即便第1連接部18A之長度LB1更縮短,亦已經不會顯著地降低之收斂區。雖然在本實施形態1顯示之令Y方向之全長度成為實質之導通通道之條件是LB<0.35μm,但這未必限定於VGS為3.8V。只要在LB<0.35μm之情形下,在以該電晶體之產品規格所示之任意之VGS進行之驅動下顯示上述特徵,即是獲得本申請案之效果。
[5.兼顧降低開電阻與提升關掉時之容許量]
若有效地活用上述效果,則即便為了抑制基極電阻Rb1而將第1源極區域14之長度LS1縮短,只要將第1連接部18A之長度LB1縮短到一定程度,即可令驅動時之導通通道實質上擴大,令開電阻降低。所以,可兼顧降低開電阻與提升關掉時之容許量。
以下之表3及圖9A~圖9C是顯示本發明人們進行計算後之結果之一部分的圖。在意圖降低開電阻而將溝與溝之間的距離Lxm縮短的情況下,為了獲得想要之關掉時容許電壓Voff,必須將第1源極區域14之長度LS1抑制在一定以下。表3是顯示為了滿足各Voff所必要之LS1之最大值,圖9A是將此以0.08μm
Figure 110134893-A0305-02-0020-38
Lxm
Figure 110134893-A0305-02-0020-39
0.20μm之範圍予以標繪。
Figure 110134893-A0305-02-0020-3
可得知要壓抑基極電阻Rb1之情形下,Lxm與第1源極區域14之最大長度之間有線形之關係。這是起因於Rb1=ρ×LS1/Lxm/Lch之關係。例如,為了令Voff超過22V,當Lxm=0.18μm時,需要LS
Figure 110134893-A0305-02-0020-40
0.51μm。同樣地,當Lxm=0.14μm時,需要LS
Figure 110134893-A0305-02-0020-41
0.41μm,當Lxm=0.10μm時,需要LS
Figure 110134893-A0305-02-0020-42
0.36μm。由該等標繪之線形近似可得知,如圖9A所示,只要LS
Figure 110134893-A0305-02-0020-43
1.88×Lxm+0.16[μm]之關係成立即可。可同樣地為了滿足各Voff而求出在Lxm與最大LS之間成立之線形之關係,但想要之Voff越大或越縮短Lxm,則最大LS越受到限制。
關於為了滿足想要之Voff而成立之Lxm與最大LS之線形之關係, 至少在12V以上、25V以下之範圍內是分別如圖9B與圖9C所示,斜率與截距是連續性地變化。所以,若將Voff之依變性列入,把必須因應Lxm之變化來滿足之LS套入關係式,則LS
Figure 110134893-A0305-02-0021-44
0.12×Voff×Lxm-0.76×Lxm-0.05×Voff+1.26[μm]之關係成立即可。一般而言,場效電晶體被要求令關掉時容許電壓是規格最大電壓以上。因此,若以規格最大電壓作為Vss[V],則宜令LS
Figure 110134893-A0305-02-0021-45
0.12×Vss×Lxm-0.76×Lxm-0.05×Vss+1.26[μm]之關係成立。此時,若同時令連接部之長度LB亦成立LB<0.35μm之關係,則因為沿著Y方向之全長度對導通提供貢獻,故亦可兼顧降低開電阻。
本申請案是為了降低開電阻之目的而以縮短Lxm,提高溝之設置密度作為第一要旨。本申請案是以溝與溝之間的距離Lxm至少為溝之內部寬Lxr以下(Lxm
Figure 110134893-A0305-02-0021-46
Lxr)且Lxr
Figure 110134893-A0305-02-0021-48
0.20μm之區域作為檢討對象。表1及表2之計算是將Lxr=0.20μm固定而計算的結果。然而,表3及圖9A之結果並不依變於Lxr之值。這是因為,基極電阻Rb是以Lxm來決定,不受Lxr影響。因此,表3及圖9A之結果可以被視為在本申請案之前提Lxm
Figure 110134893-A0305-02-0021-49
Lxr
Figure 110134893-A0305-02-0021-50
0.20μm之情形下是普遍地成立。
圖10是基於表3之計算結果及圖9A之範圍,將為了享受本揭示之半導體裝置1之效果而宜有之LS與LB之關係,在作為一例之Lxr=0.20μm且Voff為22V的情況下,因應Lxm與Lxr之關係性來予以顯示的圖。O是在具有Lxm
Figure 110134893-A0305-02-0021-52
Lxr之關係時,可獲得本揭示之半導體裝置1之效果之LS與LB的最大值,此時LS=0.54μm且LB=0.35μm。另,LS=0.54μm是從圖9A之Voff為22V時之關係式,以Lxm=Lxr=0.20μm算出之值。所以,在具有Lxm
Figure 110134893-A0305-02-0021-53
Lxr之關係時,只要是在LS
Figure 110134893-A0305-02-0021-54
0.54μm且LB<0.35μm之範圍即可。又,△是在具有Lxm
Figure 110134893-A0305-02-0021-55
Lxr/2之關係時,可獲得本揭示之半導體裝置1之效果之LS與LB的最大值,此時LS=0.35μm且LB=0.35μm。另,LS=0.35μm是從圖9A之Voff為22V時之關係式,以Lxm=Lxr/2=0.10μm算出之值。所以,在具有Lxm
Figure 110134893-A0305-02-0021-56
Lxr/2之關係時,只要在 LS
Figure 110134893-A0305-02-0022-57
0.35μm且LB<0.35μm之範圍即可。Lxm為Lxr/2以下之情況下的物理特徵是在實施形態2敘述。
如以上,實施形態1之半導體裝置1是如下:在將第1源極區域14與連接第1體區域18、第1源極電極11之第1連接部18A,於第1溝17延伸存在之第1方向(Y方向)交互且週期性地設置之第1縱型場效電晶體10中,在與第1方向(Y方向)正交之第2方向(X方向)上,相鄰之溝17與溝17之間的距離Lxm及溝17的內部寬Lxr具有Lxm
Figure 110134893-A0305-02-0022-59
Lxr
Figure 110134893-A0305-02-0022-61
0.20μm之關係,第1連接部18A之長度是位於即便第1連接部18A之長度更縮短,在第1閘極導體15施加規格值之電壓而使規格值之電流流動時之第1縱型場效電晶體10的開電阻亦不會顯著地降低的收斂區。第2縱型場效電晶體20亦同樣。
藉由此特徵,提供可兼顧降低開電阻與提升關掉時之容許量的半導體裝置。亦即,可兼顧降低開電阻與提升關掉時之容許量,可輕易地實現近年所要求之高容許電壓且低電阻之電路規格。
(實施形態2)
在實施形態1及圖5說明了藉由控制第1連接部18A之長度LB1,令沿著第1溝17之Y方向之全長度可對導通提供貢獻。在X方向亦可期待同樣之效果。亦即,在X方向是以第1溝17與相鄰之別的第1溝17之間的距離Lxm,來代替在Y方向中成為對象之第1連接部18A。
若VGS為閾值以上,則在第1體區域18中,於第1溝17附近產生反轉層,反轉層是隨著VGS之增大而逐漸在X方向變寬、增厚。此時,若Lxm短,則在相鄰之第1溝17分別形成之反轉層變成連起來,成為第1體區域18可能可在X方向全部對導通提供貢獻之狀態。此操作是與實施形態1於實質上將第1連接部18A當作導通區域來利用之情形相同。所以,若在令沿著第1溝17之Y方向之全長度對導通提供貢獻之驅動條件時,將Lxm
Figure 110134893-A0305-02-0022-62
LB之關係亦同時滿足,則可能可令 除了第1溝17之內部以外之沿著X方向之全長度亦對導通提供貢獻而降低開電阻。
在第1溝17與相鄰之別的第1溝17之間之區域,為了將在X方向連起來之反轉層當作導通通道來有效地利用,宜在沿著第2方向之任意之位置中,在第1體區域18之正上方具備第1源極區域14。亦即,要求從汲極區域(低濃度不純物層33)往第1源極區域14是以盡量短之路徑來形成導通通道。亦即,第1源極區域14宜為如下:在以第2方向而言相鄰之第1溝17與別的第1溝17之間,不具備在Z方向上部分性地較淺之區域。
所以,宜為如下之構造:在第2方向相鄰之第1溝17與第1溝17之間的距離Lxm[μm]是第1方向上之第1連接部18A之長度LB[μm]以下,在第1方向之任意之位置中,在與第1方向、第2方向正交之第3方向(Z方向)之任意之位置沿著第2方向觀看從第1溝17到鄰接之別的第1溝17為止之間的區域時,沒有導電型相異之複數個層交互地配置的情形。當為如此之構造時,可藉由在驅動時於第1方向(Y方向)與第2方向(X方向)皆獲得廣泛之導通區域而降低開電阻。
構造上,第1溝17之內部是無論如何都不對導通提供貢獻,宜令其盡量地短,例如宜為Lxr
Figure 110134893-A0305-02-0023-64
0.20μm。因此,第1溝17宜為在深度方向不具有漸縮之盡量垂直地形成側壁之形狀。又,縮短Lxm亦在X方向中使驅動時於兩側之第1溝17附近分別形成之反轉層易於連起來,故有效。以宜為Lxm
Figure 110134893-A0305-02-0023-65
Lxr/2作為1個基準。此時,與Lxr/2<Lxm
Figure 110134893-A0305-02-0023-66
Lxr時相比,即便是以更低之VGS進行驅動,亦可有效地將X方向利用於導通,可更加享受可降低開電阻之效果。亦即,可將可稱為VGS大之條件往低VGS側擴大,可擴張半導體裝置1之使用上之自由度。另,在圖10以Voff為22V的情況作為一例而顯示當Lxm
Figure 110134893-A0305-02-0023-67
Lxr/2時,Y方向上之第1源極區域14之長度及第1連接部18A之長度之較佳範圍。
(實施形態3)
第1源極區域14(或第2源極區域24)之構造是可因應其功能而在Z方向(半導體裝置之深度方向)適切地變更。如圖11A、圖11B所示,亦可將第1源極區域14之構造製作成於Z方向分為位於半導體層40之上面側之上部側部分141、及位於與第1體區域18之邊界側之底部側部分142。
對與上部側相關之項目加上top之t來表示,對與底部側相關之項目加上bottom之b來表示。第1源極區域14之長度LS1[μm]在上部側部分141是LSt1[μm],在底部側部分142是LSb1[μm]。同樣地,第1連接部18A之長度LB1[μm]在上部側是LBt1[μm],在底部側是LBb1[μm]。雖然未圖示,但以與第1源極區域14之底部側部分142相同之深度來定義時,溝與溝之間的距離Lxm及溝的內部寬Lxr亦分別為Lxmb[μm]、Lxrb[μm]。
在實施形態1已經提到,為了在電晶體10之驅動時,將把第1體區域18亦包含在內之沿著第1溝17之全長度於實質上當作導通通道來利用,需要將第1連接部18A之長度LB1縮短成一定以下。此時,必要的是將第1連接部18A中之靠近與第1體區域18之邊界之底部側的長度LBb1縮短成一定長度以下,不需要連上部側之長度LBt1亦均一地縮短。這是因為如圖4C、圖4E所示,驅動時之導通通道之擴大是在YZ平面中從第1源極區域14之底部側來輻射狀地擴散。因此,第1源極區域14可以是底部側部分142之長度LSb1相對地長,上部側部分141之長度LSt1相對地短。這等同於第1連接部18A是底部側之長度LBb1相對地短,上部側之長度LBt1相對地長。
在實施形態1(圖4A),第1源極區域14之長度LS1是以在Z方向上大致不變動作為前提。在實施形態3(圖11A),雖然上部側部分141之長度亦可以是固定,但底部側部分142之長度亦可以變動。底部側部分142之長度LSb1是指在Z方向中,底部側部分142之Y方向之長度成為最大之處的長度。雖然LSb1宜比上部側部分141之長度LSt1長,但如上述,這是為了在驅動時令往Y方向之導通區 域之擴大是即便只有少許亦更有效率地進行。為了獲得此效果,定義底部側部分142之長度LSb1之位置是比第1源極區域14之在Z方向之中央還底部側即可,更宜是第1源極區域14之在Z方向之最底部之位置。
亦即,在與第1方向(Y方向)、第2方向(X方向)正交之第3方向(Z方向),第1源極區域14具有:上部側部分141,位於半導體層40之上表面側,在第1方向之長度為固定;及底部側部分142,位於與第1體區域18之邊界側,在第1方向之長度可改變,當以第1方向上之上部側部分141之長度作為上部源極長度LSt1,以第1方向上之底部側部分142之長度成為最大之長度作為底部源極長度LSb1時,底部源極長度LSb1之發生位置是比第1源極區域14之在第3方向之中央還底部側,底部源極長度LSb1是比上部源極長度LSt1長(LSt1<LSb1),第1源極區域14之長度亦可以是以底部源極長度LSb1來定義(亦即一致)(LS1=LSb1)。
在本申請案之實施形態1或實施形態2中,第1源極區域14之在Z方向之長度LS1並不需要是固定,只要第1源極區域14是由上部側部分141與底部側部分142構成即可。如此之情況下,亦可以將在實施形態1或實施形態2之記載內容中標示成LS1、LB1(LS2、LB2)之部位分別替換解釋成LSb1、LBb1(LSb2、LBb2)。
將實施形態1(圖4E)與實施形態3(圖11C)重新比較。實施形態3(圖11C)之第1源極區域14之長度是在底部側成為與實施形態1(圖4E)之LS1相同之長度(LS1=LSb1)。因此,不依變於VGS之大小,導通通道之寬度是兩者相同,導通特性無顯著之差異。
然而,由於在實施形態3(圖11A)中是LSt1短,故與實施形態1相比,第1連接部18A之上部側之長度LBt1是變長。如此之構造是有利於提高對第1連接部18A之P導電型不純物的注入量,降低第1體區域18與第1源極電極11之接觸電阻。這是因為當想要使鄰接之第1源極區域14之Y方向之長度LS增長的情況 下,必須抑制對第1連接部18A之P導電型不純物的注入量。所以,如果是LSt1原本就短之構造,則可增加對鄰接之第1連接部18A之P導電型不純物的注入量,故易於降低第1體區域18與第1源極電極11之接觸電阻。又,關於儲存於第1閘極絕緣膜16之附近之載體在關掉電晶體10時通過第1體區域18及第1連接部18A而往第1源極電極11瞬間地擴散之行程,與實施形態1相比,第1連接部18A之上部側之長度是變長(LB1<LBt1)。所以,因為此不同之處而造成基極電阻Rb1降低,可獲得提升關掉時之容許量之效果。
本申請案之中心思考是令驅動時之導通通道往沿著第1溝17之全長度實質地擴大,因此,必須將第1連接部18A之長度縮短到一定以下。縮短是對低於0.50μm之長度之控制,如果因為製造上之好壞參差等而將第1連接部18A之長度過分地縮短,則可能有關閉時之第1連接部18A之功能下降之虞。然而,由於實施形態3可以只有LBt1變長,故可提高製造上之好壞參差之裕度,有穩定地獲得關閉時之第1連接部18A之功能之效果且不損害驅動時之導通特性。
圖11A所顯示的是在第1源極區域14中,底部側部分142之長度LSb1相對地長,上部側部分141之長度LSt1相對地短之構造之例。雖然並非限定於在此圖示之例,但在上部側部分141,Y方向之長度是不管在Z方向之哪個位置皆幾乎固定,相對於此,在底部側部分142,Y方向之長度是在Z方向中變動。如圖11A所示,底部側部分142採用如下之形狀:令Y方向之長度是在比第1源極區域14之在Z方向之中央還底部側之任意之位置成為最大。或者,如圖11D所示,亦可以採用如下之形狀:令Y方向之長度是在作為與第1體區域18之邊界的最底部成為最長,且隨著靠近上部側部分141而單調地縮短長度。
相較於上部側部分141之長度LSt1,底部側部分142之長度LSb1宜為在Y方向朝兩側對稱地變長。亦即,第1源極區域14之上部側部分141與底部側部分142亦可以是在第1方向中,有相同之中央之位置。如果是如此之形狀,則 從在Y方向相鄰之第1源極區域14往第1體區域18輻射狀地擴大之導通區域亦為對稱,可均等地獲得從相鄰之第1源極區域14提供之貢獻,用來在驅動時令第1體區域18成為實質上之導通通道。
又,亦可以令底部側部分142是在Y方向上於兩側相等地比上部側部分141分別長約0.05μm為止。亦即,宜為LSt1<LSb1且更進一步具有LSb1
Figure 110134893-A0305-02-0027-68
LSt1+0.10[μm]之關係。如果是如此之形狀,則即便將製造上之好壞參差列入考量,亦可防止相鄰之第1源極區域14過剩地靠近而使關閉時之第1連接部18A之功能下降之情形。
在實施形態3(圖11A),由於LSt1變短,故對構造進行平面視之情況下之Y方向上之第1源極區域14之長度(嚴密而言是上部側部分141之長度)與第1連接部18A之長度(嚴密而言是其上部側之長度)的比是不同於底部側之長度的比。如上述,為了提高導通特性,在底部側是宜令源極區域為長(連接部為短),為了提高關掉時之容許量,在上部側是宜令連接部為長(源極區域為短)。所以,宜控制城在底部側為LSb1
Figure 110134893-A0305-02-0027-69
LBb1,在上部側為LSt1<LBt1。換句話說,亦可以令在上部側之第1源極區域14之長度/第1連接部18A之長度的比值是低於1(LSt1/LBt1<1),在底部側之第1源極區域14之長度/第1連接部18A之長度的比值是1以上(LSb1/LBt1
Figure 110134893-A0305-02-0027-70
1)。另,為了兼顧LSb1≒LSt1+0.10[μm]之關係,更宜具有LBt1-LSt1
Figure 110134893-A0305-02-0027-74
0.20[μm]之關係。
話說,雖然在圖5B提到了在第1源極區域14之Y方向之兩端出現電流集中之部位(圓框B),但若第1源極區域14之上部側部分141之長度變短(LSt1<LSb1),則可能有電流更易於集中,上部側部分141成為在驅動時令開電阻增大之因素之情形。亦可以為了防止此情形,採用令上部側部分141相較於底部側部分142是提高N導電型不純物濃度而降低導通電阻之措施。亦即,亦可以令第1源極區域14之上部側部分141之不純物濃度是比底部側部分142之不純物濃 度高。
如圖11A或圖11D所示,製造在第1源極區域14成為LSt1<LSb1之構造的方法有各式各樣。例如,首先,在對第1源極區域14之N導電型之不純物注入中,對底部側部分142之注入是以高加速能量來進行,接著,對上部側部分141之不純物注入是改變條件。若以相較於對底部側部分142之條件而言低之加速能量來對上部側部分141進行,則不純物是僅止步於淺處之限定之部分(上部側部分),故在底部側部分142是相對地於Y方向亦擴大而可令注入不純物擴散。
又,亦可以在進行了對第1源極區域14之不純物注入後,實施退火等之熱處理,藉此利用底部側部分142之往Y方向之不純物擴散之進行。再者,亦可以是如下之製造方法:在暫且形成第1源極區域14後,只在限定於要形成第1連接部18A之Y方向的一定區域淺淺地注入P導電型不純物,藉此,就結果而言形成第1源極區域14之底部側部分142。
測定第1源極區域之長度LS1之尺寸的方法有各式各樣,在以下敘述一例。首先,將電晶體10沿著與第1溝17平行之Y方向來切斷,以掃描式電容顯微術(SCM=Scanning Capacitance Microscopy)來對截面之一定範圍進行測定。雖然SCM難以測定觀察表面之半導體之不純物濃度,但可高精度地測定導電型,故可映射截面之半導體之導電型。SCM通常是以依變於載體濃度之電容變動來表示N型P型之不同,在每個測定之單位部位獲得以絕對值表示此極性之訊號強度的數值資料。SCM測定之一定範圍是以將第1源極區域14與第1連接部18A交互地包含複數次的方式來選擇。
接著,俯瞰獲得之數值資料,識別出第1源極區域14之Y方向上之長度被認為是最大或最大附近的Z方向之位置。若將此Z位置之Y方向之數值資料圖表化,可獲得在橫軸顯示Y方向之位置,在縱軸顯示導電型及極性之訊號強度的曲線(profile)。由於可將縱軸成為0之處解釋成相當於N型與P型之邊界之位 置,故把縱軸交互地成為0之處當作第1源極區域14與第1連接部18A之邊界交互地出現之部位亦無妨。所以,可在測定之一定範圍所包含之各第1源極區域14或各第1連接部18A,分別量出長度LS、LB。只要在一定範圍中包含有複數個第1源極區域14與第1連接部18A,則分別以其平均值來識別出LS、LB是適切。
雖然以上是基於實施形態1~3來說明本揭示之半導體裝置,但本揭示並非限定於該等實施形態。只要未超脫本揭示之主旨,則對各實施形態施加所屬技術領域中具有通常知識者能想到之各種變形,或將各實施形態之一部分之構成要件組合而建構之別的形態亦包含於本揭示之範圍內。
[產業利用性]
本揭示之具備縱型場效電晶體之半導體裝置可作為控制電流路徑之導通狀態之裝置來廣泛地利用。
1:半導體裝置 10:電晶體(第1縱型場效電晶體) 11:第1源極電極 12,13:第1源極電極之一部分 14:第1源極區域 15:第1閘極導體 16:第1閘極絕緣膜 17:第1溝 18:第1體區域 20:電晶體(第2縱型場效電晶體) 21:第2源極電極 22,23:第2源極電極之一部分 24:第2源極區域 25:第2閘極導體 26:第2閘極絕緣膜 27:第2溝 28:第2體區域 30:金屬層 32:半導體基板 33:低濃度不純物層或漂移層 34:層間絕緣層 35:鈍化層 40:半導體層 x,y,z:箭頭

Claims (10)

  1. 一種半導體裝置,是可面朝下安裝之晶片尺寸封裝型之半導體裝置,具備縱型場效電晶體,前述縱型場效電晶體具有:半導體基板,由矽構成,且包含第1導電型之不純物;低濃度不純物層,接觸前述半導體基板上而形成,且包含比前述半導體基板之前述第1導電型之不純物之濃度低之濃度之前述第1導電型之不純物;第2導電型之體區域,形成在前述低濃度不純物層之表面,前述第2導電型與前述第1導電型不同;前述第1導電型之源極區域,形成在前述體區域之表面;源極電極,與前述源極區域電連接;複數個溝,朝與前述半導體基板之上表面平行之第1方向延伸存在,且以從前述低濃度不純物層之上表面貫穿前述體區域而到達前述低濃度不純物層之一部分為止的深度,在與前述第1方向正交之第2方向上等間隔地形成;閘極絕緣膜,以覆蓋前述複數個溝之表面之至少一部分的方式形成;閘極導體,形成在前述閘極絕緣膜上;及連接部,將前述體區域與前述源極電極電連接,在前述縱型場效電晶體,前述源極區域與前述連接部是於前述第1方向交互且週期性地設置,當以在前述第2方向相鄰之前述溝與溝之間的距離作為Lxm[μm],以1個前述溝之內部寬作為Lxr[μm]時,Lxm
    Figure 110134893-A0305-02-0032-75
    Lxr
    Figure 110134893-A0305-02-0032-76
    0.20μm成立,當以前述縱型場效電晶體之規格最大電壓作為Vss[V]時,前述第1方向上之1個前述源極區域之長度LS[μm]、及前述第1方向上之1個 前述連接部之長度LB[μm]有如下之關係:LB<0.35μm,且LS
    Figure 110134893-A0305-02-0033-77
    0.12×Vss×Lxm-0.76×Lxm-0.05×Vss+1.26[μm]。
  2. 如請求項1之半導體裝置,其中LB<0.30μm。
  3. 如請求項1之半導體裝置,其中在前述第2方向相鄰之前述溝與溝之間的距離Lxm[μm]是前述第1方向上之前述連接部之長度LB[μm]以下,在前述第1方向之任意之位置中,在與前述第1方向、前述第2方向正交之第3方向之任意之位置沿著前述第2方向觀看從前述溝到鄰接之別的前述溝為止之間的區域時,沒有導電型相異之複數個層交互地配置的情形。
  4. 如請求項3之半導體裝置,其中前述縱型場效電晶體之前述連接部之在前述第1方向的長度是位於即便前述連接部之長度更縮短,往前述閘極導體施加規格值之電壓而使規格值之電流在前述縱型場效電晶體流動時之前述縱型場效電晶體的開電阻亦不會顯著地降低的收斂區。
  5. 如請求項3之半導體裝置,其中Lxm
    Figure 110134893-A0305-02-0033-79
    Lxr/2成立。
  6. 如請求項1之半導體裝置,其中在與前述第1方向、前述第2方向正交之第3方向,前述源極區域具有:上部側部分,位於前述低濃度不純物層之上表面側,在前述第1方向之長度為固定;及底部側部分,位於與前述體區域之邊界側,在前述第1方向之長度可改變,當以前述第1方向上之前述上部側部分之長度作為上部源極長度,以前述第1方向上之前述底部側部分之長度成為最大之長度作為底部源極長度時,前述底部源極長度是比前述源極區域之在前述第3方向之中央還底部側之前述底部側部分的長度,前述底部源極長度是比前述上部源極長度長,前述源極區域之長度是與前 述底部源極長度一致。
  7. 如請求項6之半導體裝置,其中1個前述源極區域之前述上部側部分與前述底部側部分在前述第1方向上是中央之位置相同。
  8. 如請求項6之半導體裝置,其中關於前述第1方向上之1個前述源極區域之長度對1個前述連接部之長度的比值,在前述上部側是低於1,在前述底部側是1以上。
  9. 如請求項8之半導體裝置,其中在前述上部側,前述第1方向上之1個前述源極區域之長度與1個前述連接部之長度的差是0.20μm以下。
  10. 如請求項6之半導體裝置,其中前述源極區域之前述上部側部分之不純物濃度是比該源極區域之前述底部側部分之不純物濃度高。
TW110134893A 2021-09-17 2021-09-17 半導體裝置 TWI802012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110134893A TWI802012B (zh) 2021-09-17 2021-09-17 半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134893A TWI802012B (zh) 2021-09-17 2021-09-17 半導體裝置

Publications (2)

Publication Number Publication Date
TW202315127A TW202315127A (zh) 2023-04-01
TWI802012B true TWI802012B (zh) 2023-05-11

Family

ID=86943041

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134893A TWI802012B (zh) 2021-09-17 2021-09-17 半導體裝置

Country Status (1)

Country Link
TW (1) TWI802012B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201921686A (zh) * 2017-09-28 2019-06-01 日商瑞薩電子股份有限公司 半導體裝置及其製造方法
TW202133361A (zh) * 2018-06-19 2021-09-01 日商新唐科技日本股份有限公司 半導體裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201921686A (zh) * 2017-09-28 2019-06-01 日商瑞薩電子股份有限公司 半導體裝置及其製造方法
TW202133361A (zh) * 2018-06-19 2021-09-01 日商新唐科技日本股份有限公司 半導體裝置

Also Published As

Publication number Publication date
TW202315127A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
US11069805B2 (en) Embedded JFETs for high voltage applications
JP7428211B2 (ja) 半導体装置
CN110190125A (zh) 碳化硅半导体器件
DE112014006692B4 (de) Halbleiteranordnung
US8841175B2 (en) Vertical trench IGBT and method for manufacturing the same
JP7394038B2 (ja) 半導体装置
JP2009164460A (ja) 半導体装置
JP7114824B1 (ja) 半導体装置
TWI802012B (zh) 半導體裝置
US11018251B2 (en) Semiconductor device
JP6578724B2 (ja) 半導体装置
US20180337172A1 (en) Semiconductor Device
TW201535678A (zh) 半導體裝置
CN107104100A (zh) 双极性晶体管装置
JP7393593B1 (ja) 半導体装置
US11735655B2 (en) Semiconductor device
JP2005332886A (ja) 半導体装置
TWI467765B (zh) 半導體裝置及其製造方法
JP7340726B1 (ja) 半導体装置
WO2023171137A1 (ja) 半導体装置
US11342412B2 (en) Semiconductor integrated circuit device
TWI838119B (zh) 半導體裝置
JPS63254769A (ja) 縦型絶縁ゲ−ト電界効果トランジスタ
US20150263146A1 (en) Semiconductor device
JP2007242873A (ja) 半導体装置