WO2019225235A1 - セルスタック装置、モジュール及びモジュール収容装置 - Google Patents

セルスタック装置、モジュール及びモジュール収容装置 Download PDF

Info

Publication number
WO2019225235A1
WO2019225235A1 PCT/JP2019/016631 JP2019016631W WO2019225235A1 WO 2019225235 A1 WO2019225235 A1 WO 2019225235A1 JP 2019016631 W JP2019016631 W JP 2019016631W WO 2019225235 A1 WO2019225235 A1 WO 2019225235A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cell
support member
cell stack
cells
Prior art date
Application number
PCT/JP2019/016631
Other languages
English (en)
French (fr)
Inventor
裕明 瀬野
哲朗 藤本
真 兒井
尾崎 哲明
和也 今仲
史人 古内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP19808405.5A priority Critical patent/EP3806216A4/en
Priority to CN201980034073.3A priority patent/CN112189275B/zh
Priority to US17/057,495 priority patent/US11296349B2/en
Priority to JP2019552306A priority patent/JP6627016B1/ja
Publication of WO2019225235A1 publication Critical patent/WO2019225235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a cell stack device, a module, and a module housing device.
  • the cell stack device includes a plurality of cells such as fuel cells, a current collecting member that electrically connects the plurality of cells to each other, and a gas tank.
  • the cells arranged in a standing state and the lower ends of the current collecting members are fixed to the gas tank.
  • one end of a plurality of fuel cells is joined to a support member with a fixing material.
  • the cell stack device includes a cell stack in which a plurality of cells are stacked, and a fixing member that fixes the plurality of cells.
  • the fixing member includes a support member that supports the plurality of cells, and a fixing member that is disposed between the support member and the cells.
  • the fixing material includes a first region located on the support member side, and the cell from the first region.
  • the module of the present disclosure includes a storage container and the cell stack device described above stored in the storage container.
  • the module housing apparatus of the present disclosure includes an exterior case, the above-described module housed in the exterior case, and an auxiliary device that operates the module.
  • FIG. 1B is a bottom view of the cell of FIG. 1A.
  • FIG. 1B is a top view of the cell of FIG. 1A.
  • FIG. 2B is a sectional view taken along line iiB-iiB in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line iiiA-iiiA in FIG. 2A.
  • FIG. 3B is an enlarged view showing one example of a region A in FIG. 3A.
  • FIG. 3B is an enlarged view showing one example of a region A in FIG. 3A.
  • cell As one example of cells constituting the cell stack, a solid oxide fuel cell will be described.
  • FIG. 1A is a cross-sectional view showing one example of a cell.
  • 1B is a bottom view of FIG. 1A, that is, a view of the cell 1 as viewed from the air electrode side.
  • FIG. 1C is a top view of FIG. 1A, that is, a view of the cell 1 as viewed from the interconnector side. In these drawings, a part of each configuration of the cell 1 is shown in an enlarged manner.
  • the cell 1 shown in FIG. 1A is a hollow flat plate type and has an elongated plate shape.
  • the shape of the entire cell 1 viewed from the side is, for example, the length of the side in the length direction L is 5 cm to 50 cm, and the length in the width direction W perpendicular to the length direction L. Is a rectangle of 1 cm to 10 cm.
  • the total thickness of the cell 1 is 1 mm to 5 mm.
  • the thickness direction of the cell 1 may be referred to as T.
  • the cell 1 includes a conductive support substrate 2, an element portion, and an interconnector 6.
  • the conductive support substrate 2 may be abbreviated as the support substrate 2.
  • the support substrate 2 has a columnar shape having a pair of opposing flat surfaces n1 and n2 and a pair of arc-shaped side surfaces m that connect the flat surfaces n1 and n2.
  • the support substrate 2 has an element part on the flat surface n1.
  • the element portion has a fuel electrode 3, a solid electrolyte layer 4, and an air electrode 5.
  • the cell 1 has the interconnector 6 on the flat surface n2.
  • the air electrode 5 does not extend to the lower end of the cell 1.
  • the solid electrolyte layer 4 is exposed on the surface.
  • the interconnector 6 extends to the lower end of the cell 1.
  • the interconnector 6 and the solid electrolyte layer 4 are exposed on the surface.
  • the solid electrolyte layer 4 is exposed on the surface of the pair of arc-shaped side surfaces m of the cell 1.
  • the support substrate 2 has a gas flow path 2a inside.
  • the example shown in FIG. 1 has six gas flow paths 2a.
  • the support substrate 2 has gas permeability and allows the fuel gas to pass to the fuel electrode 3. Further, the support substrate 2 has conductivity and collects current via the interconnector 6.
  • the support substrate 2 may include, for example, an iron group metal component and an inorganic oxide.
  • the iron group metal component may be Ni and / or NiO
  • the inorganic oxide may be a specific rare earth element oxide.
  • the fuel electrode 3 may be a generally known one such as a porous conductive ceramic.
  • the porous conductive ceramic may be formed of, for example, ZrO 2 in which a rare earth element oxide is solid-dissolved and Ni and / or NiO.
  • Y 2 O 3 may be used as the rare earth element oxide.
  • ZrO 2 in which a rare earth element oxide is dissolved is sometimes referred to as stabilized zirconia. Stabilized zirconia also includes partial stabilization.
  • the solid electrolyte layer 4 is an electrolyte that bridges ions between the fuel electrode 3 and the air electrode 5.
  • the solid electrolyte layer 4 also has a gas barrier property and prevents leakage between the fuel gas and the oxygen-containing gas.
  • the solid electrolyte layer 4 may be ZrO 2 in which 3 mol% to 15 mol% of a rare earth element oxide is dissolved.
  • Y 2 O 3 may be used as the rare earth element oxide.
  • another material etc. may be used for the material of the solid electrolyte layer 4.
  • the air electrode 5 is not particularly limited as long as it is generally used.
  • the air electrode 5 may be, for example, a so-called ABO 3 type perovskite oxide conductive ceramic.
  • the perovskite oxide may be, for example, a composite oxide in which Sr and La coexist at the A site. Examples of the complex oxide Sr and La coexisting in the A site, La x Sr 1-x Co y Fe 1-y O 3, La x Sr 1-x MnO 3, La x Sr 1-x FeO 3, etc. la x Sr 1-x CoO 3 and the like. Note that x is 0 ⁇ x ⁇ 1, and y is 0 ⁇ y ⁇ 1.
  • the air electrode 5 has gas permeability.
  • the open porosity of the air electrode 5 may be, for example, 20% or more, particularly in the range of 30% to 50%.
  • the interconnector 6 may use a lanthanum chromite perovskite oxide (LaCrO 3 oxide) or a lanthanum strontium titanium perovskite oxide (LaSrTiO 3 oxide) as a material. These materials have conductivity and are not reduced or oxidized even when they come into contact with a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air.
  • a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air.
  • the interconnector 6 is dense and prevents leakage of the fuel gas flowing in the gas flow path 2 a inside the support substrate 2 and the oxygen-containing gas flowing outside the support substrate 2.
  • the interconnector 6 may have a relative density of 93% or more, particularly 95% or more.
  • FIG. 2A is a perspective view showing an example of the cell stack device of this embodiment
  • FIG. 2B is a cross-sectional view taken along line iiA-iiA in FIG. 2A.
  • the cell stack device 10 includes a cell stack 18 having a plurality of cells 1 arranged or stacked in the thickness direction T of the cells 1 and a fixing member 7.
  • the cell stack 18 includes end conductive members 9 at both ends in the arrangement direction of the plurality of cells 1.
  • the fixing member 7 includes a fixing material 7a and a support member 7b.
  • the support member 7b has an insertion hole 17 into which one end of the plurality of cells 1 is inserted. One end of the plurality of cells 1 and the inner wall of the insertion hole 17 are joined by a fixing material 7 a, and the support member 7 b supports the plurality of cells 1. One end of the support member 7 b is joined to the gas tank 19.
  • the gas tank 19 has an opening and a groove 71 disposed around the opening. One end of the support member 7 b is joined to the gas tank 19 by a joining material 72 filled in the concave groove 71.
  • the gas tank 19 supplies fuel gas to the plurality of cells 1 through the opening and the insertion hole 17 of the support member 7b.
  • the support member 7b and the gas tank 19 are made of metal and have conductivity.
  • the fuel gas is stored in the internal space formed by the support member 7b and the gas tank 19.
  • a gas circulation pipe 12 is connected to the gas tank 19.
  • Fuel gas generated in a reformer 13 described later is supplied to the gas tank 19 through the gas flow pipe 12 and then supplied from the gas tank 19 to the gas flow path 2 a inside the cell 1.
  • Hydrogen-rich fuel gas may be generated by steam reforming the raw fuel.
  • the fuel gas generated by steam reforming contains steam.
  • FIGS. 2A and 2B has two rows of cell stacks 18 in which a plurality of cells 1 are arranged and two support members 7b, and each cell stack 18 is fixed to one support member 7b.
  • the gas tank 19 has two through holes (openings) on the upper surface.
  • Each support member 7 b is arranged in each of the through holes (openings) so as to match the insertion hole 17.
  • an internal space is formed by one gas tank 19 and two support members 7b.
  • the shape of the insertion hole 17 may be, for example, an ellipse when viewed from above.
  • the insertion hole 17 is longer than the distance between the two end conductive members 9 in the arrangement direction of the cells 1.
  • the width of the insertion hole 17 is longer than the length of the cell 1 in the width direction W, for example.
  • the cell stack apparatus 10 has a joint portion filled with a solidified fixing material 7 a between the insertion hole 17 and one end of the cell 1. Thereby, while inserting hole 17 and the end of a plurality of cells 1 are joined and fixed, respectively, the ends of adjacent cell 1 are joined. One end of the gas flow path 2 a of each cell 1 communicates with the internal space of the fixing member 7.
  • a material having low conductivity may be used for the fixing material 7a and the bonding material 72.
  • the material include amorphous glass and crystallized glass.
  • crystallized glass include SiO 2 —CaO, MgO—B 2 O 3 , La 2 O 3 —B 2 O 3 —MgO, La 2 O 3 —B 2 O 3 —ZnO, and SiO 2 —.
  • CaO—ZnO-based and SiO 2 —MgO-based materials may be used.
  • the cell stack apparatus 10 shown in FIG. 2B has a conductive member 8 between two adjacent cells 1.
  • the conductive member 8 electrically connects the fuel electrode 3 of one cell 1 and the air electrode 5 of the other cell 1 of the adjacent cells 1 in series.
  • illustration of the conductive member 8 is omitted.
  • the end conductive member 9 is connected to the cell 1 located on the outermost side in the arrangement direction of the plurality of cells 1.
  • the end conductive member 9 has a conductive portion 11 that protrudes outside the cell stack 18.
  • the conductive part 11 collects electricity generated by the power generation of the cell 1 and draws it out.
  • FIG. 3A is one example of a cross-sectional view of the cell stack apparatus 10 and corresponds to a cross section taken along line iiiA-iiiA of FIG. 2A shows an example having two rows of cell stacks 18 and two support members 7b, but FIG. 3A shows an example having one row of cell stacks 18 and one support member 7b.
  • FIG. 3B is an enlarged view of region A in FIG. 3A.
  • FIG. 3A and FIG. 3B are cross-sectional views including the support member 7 b, the fixing material 7 a, and the cell 1.
  • the cell 1 and the support member 7b are opposed to each other through the fixing material 7a.
  • the direction in which the cell 1 and the support member 7b face each other is the first direction x
  • the direction orthogonal to the first direction x is the second direction y.
  • the first direction x is the width direction W
  • the second direction y is the length direction L.
  • the solid electrolyte layer 4 of the cell 1 is in contact with the fixing material 7a.
  • the cell 1 has a porous and conductive fuel electrode 3 inside the solid electrolyte layer 4.
  • the cell 1 may have a cell reinforcing layer between the solid electrolyte layer 4 and the fixing material 7a.
  • the cell reinforcing layer may be made of a material mainly composed of ZrO 2 in which Y 2 O 3 having a rare earth element content of, for example, 3 mol% to 5 mol% is dissolved.
  • the fixing material 7a in the cross section including the support member 7b, the fixing material 7a, and the cell 1, can be divided into a first region 7a1, a second region 7a2, or a third region 7a3.
  • the first region 7a1 is located on the support member 7b side
  • the second region 7a2 is located on the cell 1 side.
  • the third region 7a3 is located between the first region 7a1 and the second region 7a2.
  • the first region 7a1, the second region 7a2, and the third region 7a3 are defined as follows.
  • the length between the first position P1 and the second position P2 in the first direction x is divided into three equal parts, and two virtual lines extending in the second direction y from the trisection point are drawn.
  • a region located between the first imaginary line close to the support member 7b and the support member 7b is defined as a first region 7a1.
  • a region located between the second virtual line close to the cell 1 and the cell 1 is defined as a second region 7a2.
  • a region located between the first virtual line and the second virtual line is defined as a third region 7a3.
  • a fuel gas such as a high-temperature hydrogen-containing gas at 600 ° C. to 800 ° C. and a “gas containing an oxygen element such as air” are circulated. .
  • the fuel gas is introduced into the internal space of the support member 7b, and then introduced into the gas flow paths 2a of the plurality of cells 1, respectively.
  • the fuel gas that has passed through each gas flow path 2a is then discharged to the outside from the other end of each gas flow path 2a that is a free end. Air is supplied to the gap between adjacent cells 1 and flows along the longitudinal direction of the cells 1.
  • the fixing material 7a illustrated in FIG. 3B has a porosity higher than the porosity of the third region 7a3 in at least one of the first region 7a1 and the second region 7a2.
  • the cell stack device 10 can buffer the stress generated at the interface between the fixing member 7a and the member to be fixed by the porous region 7a4. As a result, cracks can hardly be generated near the interface, and the durability of the cell stack device 10 can be improved.
  • the cross section including the support member 7b, the fixing member 7a, and the cell 1 may be a cross section in the thickness direction T and the length direction L.
  • the cross section including the support member 7b, the fixing member 7a, and the cell 1 does not include a cross section in the width direction W and the thickness direction T, that is, a cross section perpendicular to the length direction L.
  • the cross section including the support member 7b, the fixing material 7a, and the cell 1 in the present disclosure is a cross section along the length direction L, and the surface that contacts the fuel gas and the surface that contacts the oxygen-containing gas of the fixing material 7a.
  • the first region 7a1 includes a first interface region in contact with the support member 7b.
  • the second region 7a2 includes a second interface region in contact with the cell. At least one of the first interface region and the second interface region may be the porous region 7a4. In the first region 7a1 shown in FIG. 3B, the first interface region and the second interface region are porous regions 7a4. With this configuration, cracks are less likely to occur at the interface between the fixing member 7a and the member to be fixed, and the durability of the cell stack device 10 can be further enhanced.
  • At least one of the first region 7a1 and the second region 7a2 may have a dense region 7a5.
  • the dense region 7a5 is adjacent to the porous region 7a4 on the third region 7a3 side and has a porosity lower than that of the third region 7a3. Even when fuel gas and oxygen-containing gas are taken into the porous region 7a4 and water vapor is generated in the porous region 7a4, at least one of the first region 7a1 and the second region 7a2 has the dense region 7a5.
  • the fixing material 7a is hardly corroded by water vapor, and the durability of the cell stack device 10 can be improved.
  • the material of the porous region 7a4 in FIG. 3B may be the same as or similar to the other regions of the fixing material 7a.
  • the porosity of the porous region 7a4 is higher than the porosity of the third region 7a3.
  • the porosity of the porous region 7a4 may be, for example, 10% to 40%.
  • the porosity of the region other than the porous region 7a4 of the fixing material 7a may be, for example, less than 15%.
  • the thickness of the porous region 7a4 in the first direction x may be 1 ⁇ m to 200 ⁇ m.
  • the thickness of the dense region 7a5 in the first direction x may be 1 ⁇ m to 200 ⁇ m.
  • the thickness in the first direction x of the porous region 7a4 may be 1 ⁇ m to 200 ⁇ m from the interface between the fixing material 7a and the member to be fixed. Good.
  • the thickness of the dense region 7a5 in the first direction x may be 1 ⁇ m to 200 ⁇ m from the porous region 7a4.
  • the porous region 7a4 may be disposed only in a portion where the crack is easily generated in the fixing material 7a.
  • the first interface region may be the porous region 7a4, and the porosity of the porous region 7a4 may be higher than the porosity of the second interface region.
  • the first interface region is particularly susceptible to cracking, but the first interface region is a porous region 7a4 having a higher porosity than the second interface region, so that cracks are less likely to occur in the first interface region.
  • the durability of the cell stack device 10 can be improved.
  • the metal element contained in the fixing material 7a causes electrons from the support member 7b having conductivity near the interface with the support member 7b. receive.
  • oxygen bonded to the metal element that is, oxygen contained in the oxide film on the metal surface is separated as oxide ions.
  • the negatively charged oxide ions move toward the cell 1 to which a positive voltage is applied.
  • the moved oxide ions reach the fuel electrode 3 which is a porous conductor, electrons and oxygen are released to the fuel electrode 3.
  • oxygen is regularly reduced near the interface between the fixing member 7a and the support member 7b.
  • the negatively charged oxide ions contained in the cell 1 move toward the support member 7b having a higher potential than the cell 1. .
  • the oxide ions that have moved from the cell 1 through the fixing material 7a reach the surface of the metal support member 7b, the oxide ions are emitted to the support member 7b, that is, the metal to increase the oxide film on the metal surface. As a result, cracks occur near the interface between the support member 7b and the fixing material 7a.
  • FIG. 4 is an enlarged view of area A in one example of the cell stack apparatus 10. 4 is also a cross section in the width direction W and the length direction L, the first direction x is the width direction W, and the second direction y is the length direction L.
  • FIG. 4 has a porous region 7a4 only in the first region 7a1.
  • the first interface region is a porous region 7a4.
  • the position between the cell 1 and the support member 7b in the first direction x is referred to as an opposing position.
  • the cell stack apparatus 10 may have a porous region 7a4 on the surface of the support member 7b other than the facing position.
  • the porous region 7a4 further extends in the second direction y from the facing position.
  • the porous region 7a4 may extend over the entire surface of the support member 7b.
  • the porous region 7a4 has an end portion 7a4E in the second direction y and a central portion 7a4C in the second direction y.
  • the thickness of the end portion 7a4E in the first direction x is larger than the thickness of the central portion 7a4C in the first direction x. In the first interface region, cracks are likely to occur from the end portion 7a4E. However, the thickness of the end portion 7a4E in the first direction x is larger than the thickness of the central portion 7a4C in the first direction x. Cracks are less likely to occur from the portion 7a4E.
  • the thickness of the end portion 7a4E in contact with the fuel gas is larger than the central portion 7a4C, but the thickness of the end portion 7a4E in contact with the oxygen-containing gas may be larger than that of the central portion 7a4C.
  • the second interface region may also have the same or similar configuration as the first interface region described above.
  • the porous region 7a4 may be insulative. This makes it difficult for electrons to be exchanged between the fixing member 7a and the support member 7b, and cracks hardly occur near the interface between the fixing member 7a and the support member 7b.
  • the material of the porous region 7a4 may be different from the material of the region of the fixing material 7a other than the porous region 7a4.
  • the material of the porous region 7a4 may have a relatively low electrical conductivity, and specifically may be forsterite, alumina, cordierite, or the like.
  • the porosity of each region of the fixing material 7a can be analyzed by the method described below.
  • SEM scanning electron microscope
  • the porosity of the third region 7a3 is calculated.
  • the calculated porosity of the third region 7a3 is taken as the reference porosity.
  • the porosity of the region having a thickness of 1 ⁇ m is calculated from the support member 7b, which is a fixed member, toward the third region 7a3.
  • the porosity is calculated with the region having a thickness of 1 ⁇ m from the first measurement region toward the third region 7a3 as the second measurement region.
  • the porosity of the second measurement region is higher than the reference porosity
  • the porosity is calculated by setting a region having a thickness of 1 ⁇ m from the second measurement region to the third region 7a3 as the third measurement region.
  • the region where the first measurement region and the second measurement region are combined that is, the region having a thickness of 2 ⁇ m from the support member 7b is the porous region 7a4.
  • the porosity is calculated by setting a region having a thickness of 1 ⁇ m from the third measurement region to the third region 7a3 as a fourth measurement region.
  • the porosity of the fourth measurement region is calculated with a region having a thickness of 1 ⁇ m from the fourth measurement region toward the third region 7a3 as the fifth measurement region.
  • a region where the third measurement region and the fourth measurement region are combined that is, a region having a thickness of 2 ⁇ m from the second measurement region is the dense region 7a5. Can be identified.
  • each cell 1 in one row is inserted into the insertion hole 17 formed only in one in the support member 7b, but the plurality of insertion holes 17 formed in the support member 7b One cell 1 may be inserted in each.
  • a film that forms the porous region 7a4 is formed on the surface of the support member 7b and the surfaces of the plurality of cells 1 using the above-described material by a general film formation method.
  • the porous region 7a4 can be provided on the surface of the support member 7b and the surfaces of the plurality of cells 1.
  • the porosity can be adjusted by forming a film using a material including a pore former.
  • the porosity can be adjusted by adjusting the density of the film.
  • a plurality of cells 1 are aligned and fixed in a stack using a predetermined jig or the like.
  • one end of the aligned cells 1 is inserted into the insertion hole 17 of the support member 7b.
  • a paste such as amorphous glass is filled in the gaps between the insertion holes 17 and one ends of the plurality of cells 1.
  • the paste filled as described above is heat-treated to crystallize the amorphous glass.
  • an amorphous material such as amorphous glass reaches the crystallization temperature by heat treatment, a crystal phase is generated inside the amorphous material, and the crystallization proceeds to form the fixing material 7a.
  • the jig is removed from the plurality of cells 1.
  • a sintering aid is applied to the surface of the support member 7b and the layer of the porous region 7a4 formed in the cell 1.
  • region 7a4 of the fixing material 7a can be made into the precise
  • the support member 7b is joined to the gas tank 19.
  • the paste for the bonding material 72 is filled into the concave groove 71 of the gas tank 19.
  • the paste may be heat treated to be crystallized. In this way, the cell stack device 10 can be manufactured.
  • FIG. 5 is an external perspective view showing one example of a module including a cell stack device.
  • the module 20 includes a storage container 14 and a cell stack device 10 stored in the storage container 14.
  • a reformer 13 is disposed above the cell stack apparatus 10.
  • the reformer 13 reforms raw fuel such as natural gas and kerosene to generate fuel gas, and supplies it to the cell 1.
  • the raw fuel is supplied to the reformer 13 through the raw fuel supply pipe.
  • the reformer 13 may include a vaporization unit 13a for vaporizing water and a reforming unit 13b.
  • the reforming unit 13b includes a reforming catalyst (not shown) and reforms raw fuel into fuel gas.
  • Such a reformer 13 can perform steam reforming, which is a highly efficient reforming reaction.
  • the fuel gas generated in the reformer 13 is supplied to the gas flow path 2a of the cell 1 through the gas flow pipe 12, the gas tank 19, and the support member 7b.
  • FIG. 5 shows a state in which the front and rear portions which are a part of the storage container 14 are removed, and the cell stack device 10 stored in the storage container 14 is taken out rearward.
  • the temperature in the module 20 during normal power generation becomes about 500 ° C. to 1000 ° C. due to gas combustion and power generation in the cell 1.
  • the fixing material 7 a is less likely to crack and has a high durability. 20 can be set.
  • FIG. 6 is an exploded perspective view showing one example of the module housing device. In FIG. 6, a part of the configuration is omitted.
  • the module housing apparatus includes an exterior case, a module housed in the exterior case, and an auxiliary machine that operates the module.
  • the partition plate 43 divides the inside of the exterior case vertically.
  • the space above the partition plate 43 in the exterior case is a module storage chamber 44 for storing the module 20, and the space below the partition plate 43 in the exterior case is an auxiliary space for storing auxiliary equipment that operates the module 20.
  • This is a machine storage chamber 45.
  • description of the auxiliary machine accommodated in the auxiliary machine storage chamber 45 was abbreviate
  • the partition plate 43 has an air circulation port 46 for flowing the air in the auxiliary machine storage chamber 45 to the module storage chamber 44 side.
  • a part of the exterior plate 42 forming the module storage chamber 44 has an exhaust port 47 for exhausting air in the module storage chamber 44.
  • the present disclosure is not limited to the so-called “vertical stripe type” in which only one power generation element portion including the fuel electrode, the solid electrolyte layer, and the air electrode is provided on the surface of the support substrate.
  • the cell stack device according to the present disclosure is a so-called “horizontal stripe type” cell in which a plurality of power generation element portions are arranged at a plurality of positions on the surface of a support substrate, and adjacent power generation element portions are electrically connected to each other. It can be applied to a horizontal stripe type cell stack apparatus in which layers are stacked.
  • the cell stack device of the present disclosure can also be applied to a flat plate cell stack device in which so-called “flat plate” cells are stacked in the thickness direction.
  • the fuel cell, the fuel cell stack device, the fuel cell module, and the fuel cell device are shown as examples of “cell”, “cell stack device”, “module”, and “module housing device”.
  • Other examples may be an electrolytic cell, an electrolytic cell stack device, an electrolytic module, and an electrolytic device, respectively.
  • cell 2 support substrate 2a: gas flow path 3: fuel electrode 4: solid electrolyte layer 5: air electrode 6: interconnector 7: fixing member 7a: fixing material 7a1: first region 7a2: second region 7a3: first Three regions 7a4: Porous region 7a5: Dense region 7b: Support member 10: Cell stack device 14: Storage container 20: Module 40: Module storage device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本開示のセルスタック装置10は、複数のセル1が積層されたセルスタック10と、複数のセル1を固定する固定部材7と、を備えている。固定部材7は、複数のセル1を支持する支持部材7bと、支持部材7bとセル1との間に配置された固定材7aと、を有する。支持部材7b、固定材7a、及び複数のセル1のうち少なくとも1つのセル1を含む断面において、固定材7aは、支持部材7b側に位置する第一領域7a1と、第一領域7a1よりもセル1側に位置する第二領域7a2と、第一領域7a1と第二領域7a2との間に位置する第三領域7a3と、を含んでいる。第一領域7a1及び第二領域7a2のうち少なくとも一方は、第三領域7a3の気孔率より高い気孔率を有する多孔質領域7a4を含む。

Description

セルスタック装置、モジュール及びモジュール収容装置
 本開示は、セルスタック装置、モジュール及びモジュール収容装置に関する。
 近年、次世代エネルギーとして、セルスタック装置を収納容器に収納した燃料電池装置が提案されている。セルスタック装置は、燃料電池セル等の複数のセル、当該複数のセルを互いに電気的に接続する集電部材、及びガスタンクを備えている。立設された状態で配列されたセル及び集電部材の下端部は、ガスタンクに固定されている。
 例えば、特許文献1の燃料電池セルスタック装置では、複数の燃料電池セルの一端部が固定材で支持部材に接合されている。
特開2013-157191号公報
 本開示のセルスタック装置は、複数のセルが積層されたセルスタックと、前記複数のセルを固定する固定部材と、を備えている。前記固定部材は、前記複数のセルを支持する支持部材と、該支持部材と前記セルとの間に配置された固定材と、を有する。前記支持部材、前記固定材、及び前記複数のセルのうち少なとも1つのセルを含む断面において、前記固定材は、前記支持部材側に位置する第一領域と、該第一領域よりも前記セル側に位置する第二領域と、前記第一領域と前記第二領域との間に位置する第三領域と、を含んでいる。前記第一領域及び前記第二領域のうち少なくとも一方は、前記第三領域の気孔率より高い気孔率を有する多孔質領域を含む。
 本開示のモジュールは、収納容器、及び該収納容器内に収納された上記のセルスタック装置を備える。
 本開示のモジュール収容装置は、外装ケースと、該外装ケース内に収納された、上記のモジュール及び該モジュールを運転する補機と、を備える。
セルの例の1つを示す横断面図である。 図1Aのセルの下面図である。 図1Aのセルの上面図である。 セルスタック装置の例の1つを示す斜視図である。 図2AのiiB-iiB線断面図である。 図2AのiiiA-iiiA線断面図である。 図3AのA領域の例の1つを示す拡大図である。 図3AのA領域の例の1つを示す拡大図である。 モジュールの例の1つを示す外観斜視図である。 モジュール収容装置の例の1つを概略的に示す分解斜視図である。
 (セル)
 セルスタックを構成するセルの例の1つとして、固体酸化物形の燃料電池セルについて説明する。
 図1Aはセルの例の1つを示す横断面図である。図1Bは図1Aの下面図、すなわちセル1を空気極側から見た図である。図1Cは図1Aの上面図、すなわちセル1をインターコネクタ側から見た図である。なお、これらの図面では、セル1の各構成の一部を拡大して示している。
 図1Aに示すセル1は中空平板型で、細長い板状である。図1Bに示すように、セル1の全体を側面から見た形状は、例えば、長さ方向Lの辺の長さが5cm~50cmで、この長さ方向Lに直交する幅方向Wの長さが1cm~10cmの長方形である。このセル1の全体の厚さは1mm~5mmである。以下、セル1の厚み方向をTという場合がある。
 図1Aに示すように、セル1は、導電性支持基板2、素子部、及びインターコネクタ6を有している。以下、導電性支持基板2を支持基板2と略す場合がある。支持基板2は、一対の対向する平坦面n1、n2及び平坦面n1とn2とを接続する一対の円弧状の側面mを有する柱状である。支持基板2は、平坦面n1上に素子部を有している。素子部は、燃料極3、固体電解質層4及び空気極5を有している。また、図1に示す例においては、セル1は平坦面n2上にインターコネクタ6を有している。
 図1Bに示す例のように、空気極5はセル1の下端まで延びていない。セル1の下端部では、固体電解質層4のみが表面に露出している。また、図1Cに示す例のように、インターコネクタ6がセル1の下端まで延びている。セル1の下端部では、インターコネクタ6及び固体電解質層4が表面に露出している。なお、セル1の一対の円弧状の側面mにおける表面には固体電解質層4が露出している。
 以下、セル1を構成する各構成部材について説明する。
 支持基板2は、ガス流路2aを内部に有している。図1に示す例は、6つのガス流路2aを有ししている。支持基板2は、ガス透過性を有し、燃料ガスを燃料極3まで透過する。さらに支持基板2は導電性を有し、インターコネクタ6を介して集電する。支持基板2は、例えば、鉄族金属成分と無機酸化物を含んでもよい。例えば、鉄族金属成分はNi及び/またはNiOであって、無機酸化物は特定の希土類元素酸化物であってもよい。
 燃料極3は、多孔質の導電性セラミックスなど、一般的に公知のものを使用してもよい。多孔質の導電性セラミックスは、例えば希土類元素酸化物が固溶しているZrO2とNi及び/またはNiOとから形成してもよい。希土類元素酸化物として、例えばY23等を用いてもよい。以下、希土類元素酸化物が固溶しているZrO2を安定化ジルコニアと称する場合がある。安定化ジルコニアは、部分安定化も含む。
 固体電解質層4は、燃料極3、空気極5間のイオンの橋渡しをする電解質である。固体電解質層4は、ガス遮断性も有しており、燃料ガスと酸素含有ガスとのリークを防止する。固体電解質層4は、3モル%~15モル%の希土類元素酸化物が固溶したZrO2であってもよい。希土類元素酸化物としては、例えばY23等を用いてもよい。なお、固体電解質層4の材料は、上記特性を有する限りにおいては、他の材料等を用いてもよい。
 空気極5は、一般的に用いられるものであれば特に制限はない。空気極5は、例えば、いわゆるABO3型のペロブスカイト型酸化物の導電性セラミックスであってもよい。ペロブスカイト型酸化物は、例えば、AサイトにSrとLaが共存する複合酸化物であってもよい。AサイトにSrとLaが共存する複合酸化物の例としては、LaxSr1-xCoyFe1-y3、LaxSr1-xMnO3、LaxSr1-xFeO3、LaxSr1-xCoO3等が挙げられる。なお、xは0<x<1、yは0<y<1である。空気極5はガス透過性を有している。空気極5の開気孔率は、例えば20%以上、特に30%~50%の範囲であってもよい。
 インターコネクタ6は、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO3系酸化物)、又はランタンストロンチウムチタン系のペロブスカイト型酸化物(LaSrTiO3系酸化物)を材料として用いてもよい。これらの材料は、導電性を有し、かつ水素含有ガスなどの燃料ガス、及び空気等の酸素含有ガスと接触しても、還元も酸化もされない。
 インターコネクタ6は緻密質であり、支持基板2の内部のガス流路2a内を流通する燃料ガス、及び支持基板2の外側を流通する酸素含有ガスのリークを防止している。インターコネクタ6は、93%以上、特に95%以上の相対密度を有していてもよい。
 (セルスタック装置)
 図2Aは本実施形態のセルスタック装置の一例を示す斜視図であり、図2Bは図2AのiiA-iiA線断面図である。
 セルスタック装置10は、セル1の厚み方向Tに配列又は積層された複数のセル1を有するセルスタック18と、固定部材7とを備える。セルスタック18は、複数のセル1の配列方向における両端に端部導電部材9を備えている。
 図2Aおよび図2Bに示すように、固定部材7は、固定材7a及び支持部材7bを有する。
 支持部材7bは、複数のセル1の一端が挿入される挿入孔17を有している。複数のセル1の一端と挿入孔17の内壁とは、固定材7aで接合され、支持部材7bは複数のセル1を支持している。支持部材7bの一端部は、ガスタンク19と接合されている。
 ガスタンク19は、開口部及び開口部の周囲に配置された凹溝71を有する。支持部材7bの一端部は、凹溝71に充填された接合材72によりガスタンク19と接合されている。ガスタンク19は、開口部および支持部材7bの挿入孔17を通じて複数のセル1に燃料ガスを供給する。
 支持部材7b及びガスタンク19は金属製であり導電性を有している。
 図2Aおよび図2Bに示す例においては、支持部材7bと、ガスタンク19とで形成される内部空間に燃料ガスが貯留される。ガスタンク19にはガス流通管12が接続されている。後述する改質器13で生成された燃料ガスは、このガス流通管12を通じてガスタンク19に供給され、その後ガスタンク19よりセル1の内部のガス流路2aに供給される。
 水素リッチな燃料ガスは、原燃料を水蒸気改質等することにより生成してもよい。水蒸気改質により生成された燃料ガスは、水蒸気を含む。
 図2Aおよび図2Bに示す例は、複数のセル1を配列させたセルスタック18を2列と2つの支持部材7bと有しており、1つのセルスタック18がそれぞれ1つの支持部材7bに固定されている。この場合、ガスタンク19は上面に2つの貫通孔(開口部)を有している。この貫通孔(開口部)のそれぞれに、挿入孔17に合わせるように各支持部材7bが配置される。結果、1つのガスタンク19と、2つの支持部材7bとで内部空間が形成される。
 挿入孔17の形状は、例えば、上面視で長円形状であってもよい。挿入孔17は、例えば、セル1の配列方向において、2つの端部導電部材9の間の距離よりも長い。また、この挿入孔17の幅は、例えば、セル1の幅方向Wの長さよりも長い。
 図2Aおよび図2Bに示すように、セルスタック装置10は、挿入孔17とセル1の一端と間に固化された固定材7aが充填された接合部を有している。これにより、挿入孔17と複数のセル1の一端とがそれぞれ接合され固定されるとともに、隣接するセル1の一端同士が接合されている。各セル1のガス流路2aの一端は、固定部材7の内部空間と連通している。
 固定材7a、及び接合材72には、導電性が低い材料を用いてもよい。具体的な材料としては、非晶質ガラス等、結晶化ガラス等が挙げられる。結晶化ガラスとして、例えば、SiO2-CaO系、MgO-B23系、La23-B23-MgO系、La23-B23-ZnO系、SiO2-CaO-ZnO系、及びSiO2-MgO系の材料を用いてもよい。
 また、図2Bに示すセルスタック装置10は、隣接する2つのセル1の間に導電部材8を有している。導電部材8は、隣接するセル1のうち一方のセル1の燃料極3と他方のセル1の空気極5とを電気的に直列に接続している。なお、図2Aでは、導電部材8の図示を省略している。
 また、図2Bに示すセルスタック装置10では、複数のセル1の配列方向における最も外側に位置するセル1に、端部導電部材9が接続されている。この端部導電部材9は、セルスタック18の外側に突出する導電部11を有している。導電部11は、セル1の発電により生じた電気を集電して外部に引き出す。
 図3Aはセルスタック装置10の断面図の例の1つであり、図2AのiiiA-iiiA線断面に相当する。ただし、図2Aには2列のセルスタック18と2つの支持部材7bを有する例を示したが、図3Aには1列のセルスタック18と1つの支持部材7bを有する例を示している。図3Bは図3AのA領域の拡大図である。言い換えれば図3Aおよび図3Bは、支持部材7bと固定材7aとセル1とを含む断面図である。
 図3Aおよび図3Bにおいて、セル1と支持部材7bは固定材7aを介して対向している。支持部材7bと固定材7aとセル1とを含む任意の断面において、セル1と支持部材7bとが対向する方向を第一方向xとし、第一方向xと直交する方向を第二方向yとする。図3Aにおいては、第一方向xとは幅方向Wであり、第二方向yとは長さ方向Lである。
 図3Bで示すように、セル1の固体電解質層4と固定材7aとが当接している。セル1は、固体電解質層4の内側に多孔質かつ導電性を有する燃料極3を有している。セル1は、固体電解質層4と固定材7aとの間にセル補強層を有していてもよい。セル補強層は、例えば希土類元素の含有量が、例えば、3モル%~5モル%のY23が固溶したZrO2を主成分とする材料であってもよい。
 図3Bで示すように、支持部材7bと固定材7aとセル1とを含む断面において、固定材7aは、第一領域7a1、第二領域7a2または第三領域7a3に分けることができる。第一領域7a1は支持部材7b側に位置し、第二領域7a2はセル1側に位置している。第三領域7a3は第一領域7a1と第二領域7a2の間に位置している。
 具体的には、支持部材7bと固定材7aとセル1とを含む断面において、第一領域7a1、第二領域7a2、及び第三領域7a3を以下の通りに定義する。固定材7aのうち支持部材7bとの界面の第二方向yにおける中央の位置を第一位置P1とする。固定材7aのうちセル1との界面の第二方向yにおける中央の位置を第二位置P2とする。第一方向xにおける第一位置P1と第二位置P2との間の長さを三等分し、三等分点から第二方向yに延びる仮想線を二本引く。二本の仮想線のうち支持部材7bに近い第1仮想線と支持部材7bとの間に位置する領域を第一領域7a1とする。二本の仮想線のうち、セル1に近い第2仮想線とセル1との間に位置する領域を第二領域7a2とする。第1仮想線と第2仮想線との間に位置する領域を第三領域7a3とする。
 上述したような燃料電池のセルスタック装置10を稼働させる際には、例えば、600℃~800℃の高温の水素含有ガス等の燃料ガス、及び「空気等の酸素元素を含むガス」を流通させる。燃料ガスは、支持部材7bの内部空間へ導入され、その後、複数のセル1のガス流路2aにそれぞれ導入される。各ガス流路2aを通過した燃料ガスは、その後、自由端となっている各ガス流路2aの他端から外部に排出される。空気は、隣接するセル1間の隙間に供給され、セル1の長手方向に沿って流れる。
 このようなセルスタック装置10において、固定材7aと、被固定部材であるセル1又は支持部材7bとの界面付近にクラックが発生し易かった。
 本開示のセルスタック装置10の例の1つでは、図3Bに示す固定材7aが、第一領域7a1及び第二領域7a2のうち少なくとも一方に、第三領域7a3の気孔率より高い気孔率を有する多孔質領域7a4を含む。
 このセルスタック装置10は、固定材7aと被固定部材との界面に発生する応力を多孔質領域7a4により緩衝することができる。その結果、界面付近にクラックを発生し難くすることができ、セルスタック装置10の耐久性を高めることができる。
 図3Aはセルスタック装置10の幅方向W及び長さ方向Lにおける断面図である。本開示において、支持部材7bと固定材7aとセル1とを含む断面は、厚み方向T及び長さ方向Lにおける断面であってもよい。しかし、支持部材7bと固定材7aとセル1とを含む断面は、幅方向Wかつ厚み方向Tにおける断面、すなわち長さ方向Lに垂直な断面は含まないものとする。換言すれば、本開示における支持部材7bと固定材7aとセル1とを含む断面は、長さ方向Lに沿う断面であり、固定材7aの燃料ガスに接する面と、酸素含有ガスに接する面と、を同時に含む断面である。
 第一領域7a1は、支持部材7bと接する第一界面領域を含んでいる。第二領域7a2はセルと接する第二界面領域を含んでいる。第一界面領域及び第二界面領域のうち少なくとも一方が、多孔質領域7a4であってもよい。図3Bに示す第一領域7a1においては、第一界面領域及び第二界面領域が多孔質領域7a4である。この構成により、固定材7aと被固定部材との界面にさらにクラックが発生し難くなり、セルスタック装置10の耐久性をさらに高めることができる。
 第一領域7a1及び第二領域7a2のうち少なくとも一方は、緻密領域7a5を有していてもよい。緻密領域7a5は、多孔質領域7a4の第三領域7a3側に隣接し、第三領域7a3の気孔率より低い気孔率を有している。多孔質領域7a4に燃料ガスと酸素含有ガスとが取り込まれ、多孔質領域7a4で水蒸気が生成された場合であっても、第一領域7a1及び第二領域7a2のうち少なくとも一方が緻密領域7a5を有することにより、水蒸気が多孔質領域7a4から第三領域7a3に取り込まれにくくなる。その結果、水蒸気による固定材7aの腐食が起こり難くなり、セルスタック装置10の耐久性を高めることができる。
 図3Bの多孔質領域7a4の材料は固定材7aの他の領域と同じ、または類似した材料でもよい。
 多孔質領域7a4の気孔率は、第三領域7a3の気孔率より高い。多孔質領域7a4の気孔率は、例えば10%~40%であってもよい。固定材7aの多孔質領域7a4以外の領域の気孔率は、例えば15%未満であってもよい。
 多孔質領域7a4の第一方向xの厚みは、1μm~200μmであってもよい。緻密領域7a5の第一方向xの厚みは、1μm~200μmであってもよい。
 第一界面領域又は第二界面領域が多孔質領域7a4である場合には、多孔質領域7a4の第一方向xの厚みは、固定材7aと被固定部材の界面から1μm~200μmであってもよい。緻密領域7a5の第一方向xの厚みは、多孔質領域7a4から1μm~200μmであってもよい。
 多孔質領域7a4は、固定材7aのうち特にクラックが発生しやすい部位にのみ配置されていてもよい。
 第一界面領域が多孔質領域7a4であり、かつ多孔質領域7a4の気孔率が第二界面領域の気孔率より高くてもよい。第一界面領域は特にクラックが発生し易いが、第一界面領域が第二界面領域よりも高い気孔率を有する多孔質領域7a4であることにより、第一界面領域においてさらにクラックが発生し難くなり、セルスタック装置10の耐久性を高めることができる。
 第一界面領域にクラックが発生しやすい理由の詳細は不明であるが、以下のように考えられる。
 例えば、支持部材7bに対してセル1に正の電圧が印加されると、固定材7aに含有される金属元素は、支持部材7bとの界面付近で、導電性を有する支持部材7bから電子を受け取る。これに伴って、金属元素に結合していた酸素、すなわち金属表面の酸化膜に含まれる酸素が、酸化物イオンとして分離される。この負に帯電した酸化物イオンは、正の電圧が印加されたセル1に向かって移動する。移動した酸化物イオンは、多孔質の導電体である燃料極3まで到達すると、燃料極3に電子及び酸素を放出する。その結果、固定材7aと支持部材7bとの界面付近において、酸素が経常的に減少する。
 固定材7aの支持部材7bとの界面付近において、固定材7aに含まれる酸素が減少する、すなわち固定材7aの支持部材7bとの界面付近が還元される。その結果、固定材7aに酸素欠陥が生じて空隙が発生し、固定材7aの支持部材7bとの界面付近にクラックが発生すると考えられる。
 一方、支持部材7bに対してセル1に負の電圧が印加されると、セル1に含有されている負に帯電した酸化物イオンが、セル1より電位の高い支持部材7bに向かって移動する。セル1から固定材7a中を移動した酸化物イオンは、金属製の支持部材7bの表面まで到達すると、支持部材7bすなわち金属に電子を放出して金属表面の酸化膜を増大させる。その結果、支持部材7bと固定材7aと界面付近にクラックが発生する。
 図4は、セルスタック装置10の例の1つにおけるA領域の拡大図である。図4においても幅方向Wかつ長さ方向Lにおける断面であり、第一方向xとは幅方向Wであり、第二方向yとは長さ方向Lである。
 図4は、第一領域7a1にのみ多孔質領域7a4を有している。図4の例では、第一界面領域が多孔質領域7a4である。
 第一方向xにおいてセル1と支持部材7bとの間の位置を対向位置と称する。セルスタック装置10は、図4に示すように対向位置以外の支持部材7bの表面に、多孔質領域7a4を有してもよい。図4の例において、多孔質領域7a4は、対向位置からさらに第二方向yに延びている。多孔質領域7a4は、支持部材7bの表面全体に延びていてもよい。
 図4の例において、多孔質領域7a4は、第二方向yにおける端部7a4Eと、第二方向yにおける中央部7a4Cと、を有している。端部7a4Eの第一方向xの厚みは、中央部7a4Cの第一方向xの厚みより大きい。第一界面領域においては、端部7a4Eからクラックが発生し易いが、端部7a4Eの第一方向xの厚みが中央部7a4Cの第一方向xの厚みより大きいことにより、第一界面領域の端部7a4Eからクラックが発生し難くなる。図4においては、燃料ガスと接する端部7a4Eの厚みが中央部7a4Cより大きいが、酸素含有ガスと接する端部7a4Eの厚みが中央部7a4Cより大きくてもよい。第二界面領域も、上述の第一界面領域と同じまたは類似の構成としてもよい。
 多孔質領域7a4は絶縁性であってもよい。これにより、固定材7aと支持部材7bとの間で電子を授受し難くなり、固定材7aと支持部材7bとの界面付近でクラックが発生し難くなる。
 多孔質領域7a4の材料は、多孔質領域7a4以外の固定材7aの領域の材料と異なっていてもよい。多孔質領域7a4の材料は比較的導電率が低いものでもよく、具体的には、フォルステライト、アルミナ、コージェライト等でもよい。
 固定材7aの各領域の気孔率は、次に記載する方法で分析できる。まず、図3Bのように、セル1と固定材7aと支持部材7bとを含む断面の画像を走査型電子顕微鏡(SEM)にて取得する。取得した画像に二値化処理を行い、気孔を判別する。二値化処理した画像から、各領域における気孔が占める割合すなわち気孔率を算出できる。
 具体的な分析手順の例の1つを説明する。まず、第三領域7a3の気孔率を算出する。算出した第三領域7a3の気孔率を基準気孔率とする。次いで、被固定部材である支持部材7bから第三領域7a3に向けて厚み1μmの領域その気孔率を算出する。第一測定領域の気孔率が基準気孔率より高い場合は、第一測定領域から第三領域7a3に向けて厚み1μmの領域を第二測定領域として、その気孔率を算出する。第二測定領域の気孔率が基準気孔率より高い場合は、さらに第二測定領域から第三領域7a3に向けて厚み1μmの領域を第三測定領域として、その気孔率を算出する。第三測定領域の気孔率が基準気孔率以下であった場合には、第一測定領域と第二測定領域とを合わせた領域、すなわち支持部材7bから厚み2μmの領域が多孔質領域7a4であると特定できる。さらに、第三測定領域から第三領域7a3に向けて厚み1μmの領域を第四測定領域として、その気孔率を算出する。第四測定領域の気孔率が基準気孔率より低い場合は、第四測定領域から第三領域7a3に向けて厚み1μmの領域を第五測定領域として、その気孔率を算出する。第五測定領域の気孔率が基準気孔率以上である場合には、第三測定領域と第四測定領域とを合わせた領域、すなわち第二測定領域から厚み2μmの領域が緻密領域7a5であると特定できる。
 なお、上記の例では、支持部材7bに1つのみ形成された挿入孔17に、1列全てのセル1の一端が挿入されているが、支持部材7bに形成された複数の挿入孔17のそれぞれに、セル1が1つずつ挿入されていてもよい。
 図3Bに示すセルスタック装置10を製造する方法を説明する。始めに、一般的な成膜法にて、支持部材7b表面及び複数のセル1の表面に、上述した材料を用いて多孔質領域7a4を構成する膜を成膜する。成膜した膜を焼結することで、多孔質領域7a4を支持部材7bの表面及び複数のセル1の表面に設けることができる。成膜法として、例えば、ディッピング法を用いる場合には、造孔材を含む材料を用いて成膜することで、気孔率を調整できる。また、蒸着法、電着法、スパッタリング法等を用いる場合には、膜の密度を調整することで気孔率を調整できる。
 次に、所定の治具等を用いて、複数のセル1をスタック状に整列させ固定する。次に、整列した状態の複数のセル1の一端を、支持部材7bの挿入孔17に挿入する。次いで、非晶質ガラス等のペーストを、挿入孔17と複数のセル1の一端との隙間に充填する。
 次に、上記のように充填されたペーストを熱処理して非晶質ガラスを結晶化させる。非晶質ガラス等の非晶質材料が熱処理により結晶化温度まで到達すると、非晶質材料の内部で結晶相が生成されて結晶化が進行し、固定材7aが形成される。熱処理後、治具を複数のセル1から取り外す。
 なお、挿入孔17とセル1の一端との隙間に結晶質ガラス等のペーストを充填する前に、支持部材7b及びセル1に形成された多孔質領域7a4の層の表面に焼結助剤を塗布しておくことで、固定材7aの多孔質領域7a4と隣り合う領域を緻密領域7a5とすることができる。
 最後に、支持部材7bをガスタンク19に接合する。この工程においては、まずガスタンク19の凹溝71内に接合材72用のペーストを充填する。ペーストを充填した凹溝71に支持部材7bを配置した後、ペーストを熱処理して結晶化させればよい。このようにして、セルスタック装置10を製造することができる。
 (モジュール)
 図5は、セルスタック装置を備えるモジュールの例の1つを示す外観斜視図である。
 モジュール20は、収納容器14、及び収納容器14内に収納されたセルスタック装置10を備えている。セルスタック装置10の上方には、改質器13が配置されている。
 改質器13は、天然ガス、灯油等の原燃料を改質して燃料ガスを生成し、セル1に供給する。原燃料は、原燃料供給管を通じて改質器13に供給される。改質器13は、水を気化させるための気化部13aと、改質部13bとを備えていてもよい。改質部13bは、図示しない改質触媒を備えており、原燃料を燃料ガスに改質する。このような改質器13は、効率の高い改質反応である水蒸気改質を行うことができる。
 改質器13で生成された燃料ガスは、ガス流通管12、ガスタンク19、および支持部材7bを通じて、セル1のガス流路2aに供給される。
 図5では、収納容器14の一部である前面部及び後面部を取り外し、収納容器14の内部に収納されているセルスタック装置10を後方に取り出した状態を示している。
 上述のモジュール20では、ガスの燃焼及びセル1の発電に伴い、通常発電時におけるモジュール20内の温度が500℃~1000℃程度となる。
 モジュール20のセルスタック装置10として、上述の多孔質領域7a4を有する固定材7aを備えたセルスタック装置10を用いることで、固定材7aにクラックが発生し難くなり、高い耐久性を備えたモジュール20とすることができる。
 (モジュール収容装置)
 図6は、モジュール収容装置の例の1つを示す分解斜視図である。なお、図6においては一部の構成を省略して示している。モジュール収容装置は、外装ケースと、外装ケース内に収容されたモジュール及びモジュールを運転する補機とを備えている。
 図6に示すモジュール収容装置40の外装ケースは、支柱41及び外装板42を有する。仕切板43は、外装ケース内を上下に区画している。外装ケース内の仕切板43より上側の空間は、モジュール20を収納するモジュール収納室44であり、外装ケース内の仕切板43より下側の空間は、モジュール20を運転する補機を収納する補機収納室45である。なお、補機収納室45に収納する補機をの記載は省略した。
 仕切板43は、補機収納室45の空気をモジュール収納室44側に流すための空気流通口46を有している。モジュール収納室44を形成する外装板42の一部は、モジュール収納室44内の空気を排気するための排気口47を有している。
 このようなモジュール収容装置40のモジュール収納室44に、上述の高い耐久性を有するモジュール20を収納することで、高い耐久性を備えたモジュール収容装置40とすることができる。
 以上、本開示について詳細に説明したが、本開示は上述の実施の形態に限定されない。本開示のセルスタック装置、モジュール、モジュール収容装置は、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
 また、本開示は、上述の支持基板の表面に燃料極、固体電解質層及び空気極を備えた発電素子部が1つのみ設けられた所謂「縦縞型」に限定されない。本開示のセルスタック装置は、支持基板の表面の互いに離れた複数個所に、複数の発電素子部がそれぞれ配置され、隣り合う発電素子部同士が電気的に接続された所謂「横縞型」のセルを積層した横縞型セルスタック装置に適用することができる。また、本開示のセルスタック装置は、所謂「平板型」のセルを厚み方向に積層した平板型セルスタック装置に適用することもできる。
 また、上記実施形態では、「セル」、「セルスタック装置」、「モジュール」及び「モジュール収容装置」の一例として燃料電池セル、燃料電池セルスタック装置、燃料電池モジュール及び燃料電池装置を示したが、他の例としてはそれぞれ、電解セル、電解セルスタック装置、電解モジュール及び電解装置であってもよい。
1:セル
2:支持基板
 2a:ガス流路
3:燃料極
4:固体電解質層
5:空気極
6:インターコネクタ
7:固定部材
 7a:固定材
  7a1:第一領域
  7a2:第二領域
  7a3:第三領域
  7a4:多孔質領域
  7a5:緻密領域
 7b:支持部材
10:セルスタック装置
14:収納容器
20:モジュール
40:モジュール収容装置

Claims (8)

  1.  複数のセルが積層されたセルスタックと、前記複数のセルを固定する固定部材と、を備え、
     該固定部材は、前記複数のセルを支持する支持部材と、該支持部材と前記複数のセルとの間に配置された固定材と、を有し、
     前記支持部材、前記固定材、及び前記複数のセルのうち少なくとも1つのセルを含む断面において、
     前記固定材は、前記支持部材側に位置する第一領域と、該第一領域よりも前記セル側に位置する第二領域と、前記第一領域と前記第二領域との間に位置する第三領域と、を含み、
     前記第一領域及び前記第二領域のうち少なくとも一方は、前記第三領域の気孔率より高い気孔率を有する多孔質領域を含む、セルスタック装置。
  2.  前記第一領域は、前記支持部材と接する第一界面領域を含み、
     前記第二領域は、前記セルと接する第二界面領域を含み、
     前記第一界面領域及び前記第二界面領域のうち少なくとも一方の領域が、前記多孔質領域である、請求項1に記載のセルスタック装置。
  3.  前記支持部材は導電性を有し、
     前記第一界面領域が前記多孔質領域であり、かつ絶縁性を有する、請求項2に記載のセルスタック装置。
  4.  前記支持部材は導電性であり、
     前記第一界面領域が前記多孔質領域であり、かつ前記多孔質領域の気孔率は前記第二界面領域の気孔率より高い、請求項2又は3に記載のセルスタック装置。
  5.  前記セルと前記支持部材は前記固定材を介して対向しており、
     前記支持部材と、前記固定材と、前記セルと、を含む断面において、
     前記多孔質領域は、前記セルと前記支持部材とが対向する第一方向と直交する第二方向における端部と、第二方向における中央部と、を含み、
     前記第一方向における、前記端部の厚みは、前記中央部の厚みより大きい、請求項3または4に記載のセルスタック装置。
  6.  前記第一領域及び前記第二領域のうち少なくとも一方は、
     前記多孔質領域と前記第三領域側で隣り合い、前記第三領域の気孔率より低い気孔率を有する緻密領域を含む、請求項1~5のいずれかに記載のセルスタック装置。
  7.  収納容器、及び該収納容器内に収納された請求項1乃至6のうちいずれかに記載のセルスタック装置を備える、モジュール。
  8.  外装ケースと、該外装ケース内に収納された、請求項7に記載のモジュール及び該モジュールを運転する補機と、を備える、モジュール収容装置。
PCT/JP2019/016631 2018-05-25 2019-04-18 セルスタック装置、モジュール及びモジュール収容装置 WO2019225235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19808405.5A EP3806216A4 (en) 2018-05-25 2019-04-18 CELL STACK, MODULE AND MODULE HOLDER
CN201980034073.3A CN112189275B (zh) 2018-05-25 2019-04-18 电池堆装置、模块及模块收容装置
US17/057,495 US11296349B2 (en) 2018-05-25 2019-04-18 Cell stack device, module, and module housing device
JP2019552306A JP6627016B1 (ja) 2018-05-25 2019-04-18 セルスタック装置、モジュール及びモジュール収容装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100674 2018-05-25
JP2018100674 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225235A1 true WO2019225235A1 (ja) 2019-11-28

Family

ID=68616370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016631 WO2019225235A1 (ja) 2018-05-25 2019-04-18 セルスタック装置、モジュール及びモジュール収容装置

Country Status (5)

Country Link
US (1) US11296349B2 (ja)
EP (1) EP3806216A4 (ja)
JP (2) JP6627016B1 (ja)
CN (1) CN112189275B (ja)
WO (1) WO2019225235A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627016B1 (ja) * 2018-05-25 2019-12-25 京セラ株式会社 セルスタック装置、モジュール及びモジュール収容装置
JP7004870B1 (ja) * 2020-04-09 2022-02-04 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157191A (ja) 2012-01-30 2013-08-15 Kyocera Corp セルスタック装置および燃料電池装置
JP2014006962A (ja) * 2011-10-14 2014-01-16 Ngk Insulators Ltd 燃料電池のスタック構造体
JP2015144113A (ja) * 2013-12-26 2015-08-06 日本碍子株式会社 燃料電池の構造体、及び、燃料電池のスタック構造体
JP2016146330A (ja) * 2015-02-03 2016-08-12 日本碍子株式会社 燃料電池のスタック構造体
JP2016171064A (ja) * 2015-03-10 2016-09-23 日本碍子株式会社 燃料電池のスタック構造体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469541A3 (en) * 2003-04-15 2005-07-20 Nec Tokin Corporation Unit cell for fuel cell and fuel cell therewith
JP5137361B2 (ja) * 2006-09-07 2013-02-06 京セラ株式会社 セルスタック装置及び燃料電池モジュール
JP5542568B2 (ja) * 2009-12-24 2014-07-09 京セラ株式会社 セルスタック装置および燃料電池モジュールならびに燃料電池装置
KR20130096890A (ko) * 2012-02-23 2013-09-02 삼성에스디아이 주식회사 고체산화물 연료전지 및 그 제조 방법
KR101869305B1 (ko) * 2013-06-27 2018-06-20 쿄세라 코포레이션 셀, 셀 스택 장치, 모듈 및 모듈 수납 장치
EP3200266B1 (en) * 2014-09-26 2019-08-21 Kyocera Corporation Cell, cell stack device, module and module-containing device
JP6401115B2 (ja) * 2015-05-27 2018-10-03 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置
CN107851817B (zh) * 2015-07-29 2021-04-27 京瓷株式会社 单元堆装置、模块以及模块收容装置
JP6627016B1 (ja) * 2018-05-25 2019-12-25 京セラ株式会社 セルスタック装置、モジュール及びモジュール収容装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006962A (ja) * 2011-10-14 2014-01-16 Ngk Insulators Ltd 燃料電池のスタック構造体
JP2013157191A (ja) 2012-01-30 2013-08-15 Kyocera Corp セルスタック装置および燃料電池装置
JP2015144113A (ja) * 2013-12-26 2015-08-06 日本碍子株式会社 燃料電池の構造体、及び、燃料電池のスタック構造体
JP2016146330A (ja) * 2015-02-03 2016-08-12 日本碍子株式会社 燃料電池のスタック構造体
JP2016171064A (ja) * 2015-03-10 2016-09-23 日本碍子株式会社 燃料電池のスタック構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806216A4

Also Published As

Publication number Publication date
EP3806216A1 (en) 2021-04-14
EP3806216A4 (en) 2022-03-09
JP6627016B1 (ja) 2019-12-25
JPWO2019225235A1 (ja) 2020-05-28
CN112189275B (zh) 2024-04-05
US20210218046A1 (en) 2021-07-15
CN112189275A (zh) 2021-01-05
US11296349B2 (en) 2022-04-05
JP2020043086A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
JP6835572B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP5175527B2 (ja) セルスタック及び燃料電池
WO2019225235A1 (ja) セルスタック装置、モジュール及びモジュール収容装置
JP7546112B2 (ja) セルスタック装置、モジュール及びモジュール収容装置
WO2023200016A1 (ja) 導電部材、電気化学セル装置、モジュールおよびモジュール収容装置
JP7311728B1 (ja) 電気化学セル装置、モジュールおよびモジュール収容装置
US20230327162A1 (en) Cell, cell stack device, module, and module housing device
JP2024013791A (ja) 電気化学セル装置、モジュールおよびモジュール収容装置
US20230163324A1 (en) Cell, cell stack device, module, and module housing device
JP6599696B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6207420B2 (ja) 燃料電池のスタック構造体、及び、燃料電池のスタック構造体の製造方法
JP6853063B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
WO2024004361A1 (ja) 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
US20230163338A1 (en) Cell, module and module housing device
JP2015191693A5 (ja)
JP6749050B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
WO2024117052A1 (ja) 複合部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023127813A1 (ja) 電気化学セル装置、モジュールおよびモジュール収容装置
JP7453485B1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023145903A1 (ja) 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023190754A1 (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
JP7445097B1 (ja) 電気化学セル装置、モジュールおよびモジュール収容装置
CN111886737B (zh) 单电池堆装置、模块以及模块收容装置
WO2023074807A1 (ja) 導電部材、電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
JP2023109462A (ja) 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019552306

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808405

Country of ref document: EP

Effective date: 20210111