WO2019208405A1 - 逆浸透膜処理方法、水系のバイオファウリング抑制方法及びそのための装置 - Google Patents
逆浸透膜処理方法、水系のバイオファウリング抑制方法及びそのための装置 Download PDFInfo
- Publication number
- WO2019208405A1 WO2019208405A1 PCT/JP2019/016730 JP2019016730W WO2019208405A1 WO 2019208405 A1 WO2019208405 A1 WO 2019208405A1 JP 2019016730 W JP2019016730 W JP 2019016730W WO 2019208405 A1 WO2019208405 A1 WO 2019208405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- halogen
- water
- reaction solution
- concentration
- stabilizer
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 104
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 263
- 239000000460 chlorine Substances 0.000 claims abstract description 217
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 216
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 216
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 200
- 150000002367 halogens Chemical class 0.000 claims abstract description 200
- 238000006243 chemical reaction Methods 0.000 claims abstract description 197
- 239000007800 oxidant agent Substances 0.000 claims abstract description 107
- 239000003381 stabilizer Substances 0.000 claims abstract description 101
- 230000001590 oxidative effect Effects 0.000 claims abstract description 58
- -1 sulfamic acid compound Chemical class 0.000 claims description 41
- 238000004519 manufacturing process Methods 0.000 claims description 37
- 238000009285 membrane fouling Methods 0.000 abstract description 9
- 239000000243 solution Substances 0.000 description 194
- 238000002156 mixing Methods 0.000 description 34
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 230000007797 corrosion Effects 0.000 description 22
- 238000005260 corrosion Methods 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 230000006866 deterioration Effects 0.000 description 15
- 230000001629 suppression Effects 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 13
- 239000000498 cooling water Substances 0.000 description 11
- 239000005708 Sodium hypochlorite Substances 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 239000012895 dilution Substances 0.000 description 10
- 238000010790 dilution Methods 0.000 description 10
- 239000013535 sea water Substances 0.000 description 10
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 244000005700 microbiome Species 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 239000003513 alkali Substances 0.000 description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 7
- 229910052794 bromium Inorganic materials 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 229920001131 Pulp (paper) Polymers 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000010612 desalination reaction Methods 0.000 description 6
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 6
- 239000008235 industrial water Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003814 drug Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- QDWYPRSFEZRKDK-UHFFFAOYSA-M sodium;sulfamate Chemical compound [Na+].NS([O-])(=O)=O QDWYPRSFEZRKDK-UHFFFAOYSA-M 0.000 description 5
- 238000004065 wastewater treatment Methods 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000010730 cutting oil Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- GTCAXTIRRLKXRU-UHFFFAOYSA-N methyl carbamate Chemical compound COC(N)=O GTCAXTIRRLKXRU-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 238000011045 prefiltration Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- RTQPZPWCYWVQCL-UHFFFAOYSA-N 1-[3-(2-methoxyethoxy)phenyl]piperazine Chemical compound COCCOC1=CC=CC(N2CCNCC2)=C1 RTQPZPWCYWVQCL-UHFFFAOYSA-N 0.000 description 1
- YCMLQMDWSXFTIF-UHFFFAOYSA-N 2-methylbenzenesulfonimidic acid Chemical compound CC1=CC=CC=C1S(N)(=O)=O YCMLQMDWSXFTIF-UHFFFAOYSA-N 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- JJKVMNNUINFIRK-UHFFFAOYSA-N 4-amino-n-(4-methoxyphenyl)benzamide Chemical compound C1=CC(OC)=CC=C1NC(=O)C1=CC=C(N)C=C1 JJKVMNNUINFIRK-UHFFFAOYSA-N 0.000 description 1
- GEHMBYLTCISYNY-UHFFFAOYSA-N Ammonium sulfamate Chemical compound [NH4+].NS([O-])(=O)=O GEHMBYLTCISYNY-UHFFFAOYSA-N 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000002353 algacidal effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- OBESRABRARNZJB-UHFFFAOYSA-N aminomethanesulfonic acid Chemical compound NCS(O)(=O)=O OBESRABRARNZJB-UHFFFAOYSA-N 0.000 description 1
- KHPLPBHMTCTCHA-UHFFFAOYSA-N ammonium chlorate Chemical compound N.OCl(=O)=O KHPLPBHMTCTCHA-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- ISFLYIRWQDJPDR-UHFFFAOYSA-L barium chlorate Chemical compound [Ba+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O ISFLYIRWQDJPDR-UHFFFAOYSA-L 0.000 description 1
- HPEWZLCIOKVLBZ-UHFFFAOYSA-N barium hypochlorite Chemical compound [Ba+2].Cl[O-].Cl[O-] HPEWZLCIOKVLBZ-UHFFFAOYSA-N 0.000 description 1
- 159000000009 barium salts Chemical class 0.000 description 1
- BEHLMOQXOSLGHN-UHFFFAOYSA-N benzenamine sulfate Chemical compound OS(=O)(=O)NC1=CC=CC=C1 BEHLMOQXOSLGHN-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- CODNYICXDISAEA-UHFFFAOYSA-N bromine monochloride Chemical compound BrCl CODNYICXDISAEA-UHFFFAOYSA-N 0.000 description 1
- YALMXYPQBUJUME-UHFFFAOYSA-L calcium chlorate Chemical compound [Ca+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O YALMXYPQBUJUME-UHFFFAOYSA-L 0.000 description 1
- RSIPQRDGPVEGLE-UHFFFAOYSA-L calcium;disulfamate Chemical compound [Ca+2].NS([O-])(=O)=O.NS([O-])(=O)=O RSIPQRDGPVEGLE-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- YGNOYUCUPMACDT-UHFFFAOYSA-N dimethylsulfamic acid Chemical compound CN(C)S(O)(=O)=O YGNOYUCUPMACDT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- SQZYOZWYVFYNFV-UHFFFAOYSA-L iron(2+);disulfamate Chemical compound [Fe+2].NS([O-])(=O)=O.NS([O-])(=O)=O SQZYOZWYVFYNFV-UHFFFAOYSA-L 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- MYMDOKBFMTVEGE-UHFFFAOYSA-N methylsulfamic acid Chemical compound CNS(O)(=O)=O MYMDOKBFMTVEGE-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- AMULHDKUJWPBKU-UHFFFAOYSA-L nickel(2+);dichlorite Chemical compound [Ni+2].[O-]Cl=O.[O-]Cl=O AMULHDKUJWPBKU-UHFFFAOYSA-L 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- VISKNDGJUCDNMS-UHFFFAOYSA-M potassium;chlorite Chemical compound [K+].[O-]Cl=O VISKNDGJUCDNMS-UHFFFAOYSA-M 0.000 description 1
- BTAAXEFROUUDIL-UHFFFAOYSA-M potassium;sulfamate Chemical compound [K+].NS([O-])(=O)=O BTAAXEFROUUDIL-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- PHUJCVAICLQULC-UHFFFAOYSA-L strontium;disulfamate Chemical compound [Sr+2].NS([O-])(=O)=O.NS([O-])(=O)=O PHUJCVAICLQULC-UHFFFAOYSA-L 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/12—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/08—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/108—Halogens or halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/40—Automatic control of cleaning processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/42—Chemical regeneration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a reverse osmosis membrane treatment method, an apparatus for producing a reaction solution containing bound halogen, an aqueous biofouling suppression method, and the like.
- RO reverse osmosis
- microorganisms contained in the water to be treated grow in the water flow piping of the reverse osmosis membrane treatment device and the membrane surface of the reverse osmosis membrane to form slime, thereby causing fouling such as a decrease in the amount of permeated water in the reverse osmosis membrane. May cause.
- an oxidizing agent such as hydrogen peroxide solution, a combined halogen agent, and a halogen agent is used to suppress the growth of microorganisms and decompose organic substances.
- a free chlorine agent and a stabilizer are added to the water to be treated to generate stabilized bound chlorine in the water to be treated.
- Water to be treated containing chlorine is supplied to the reverse osmosis membrane, or chloramine is added and water to be treated containing this is supplied to the reverse osmosis membrane.
- biofilms are generated in water systems due to microorganisms (for example, bacteria, filamentous fungi, algae, etc.). This biofilm or the like is said to cause a failure such as a decrease in thermal efficiency; blockage of water pipes, flow paths, membranes (eg, RO membranes), etc .; corrosion of pipe metal materials.
- Patent Document 1 in a method of supplying a liquid to be treated to a permeable membrane and performing membrane separation, a free chlorine agent is added to the liquid to be treated for sterilization, and then ammonium ions are added.
- a membrane separation method characterized by producing chloramine and suppressing the growth of microorganisms has been proposed.
- the concentration of free chlorine in the water to be treated is 0.2 mg ⁇ It was about Cl 2 / L.
- water to be treated containing a free chlorine concentration of about 0.2 mg-Cl 2 / L is supplied to a reverse osmosis membrane for the purpose of preventing biofouling, the reverse osmosis membrane has low chlorine resistance, so The osmotic membrane tends to deteriorate.
- free chlorine causes corrosion, and therefore, a lower free chlorine concentration in the aqueous system is preferable because corrosion of the aqueous system (for example, a water passage pipe or a channel) can be suppressed.
- attains reverse osmosis membrane processing is made as long as possible and the free chlorine density
- the concentration of free chlorine in the water to be treated hardly decreased even when the water to be treated in which about 0.2 mg-Cl 2 / L of free chlorine was generated for a certain period of time. From this, even if time passes, the effect of reducing the free chlorine concentration in the water system (for example, water to be treated) is hardly obtained.
- the effect of reducing free chlorine concentration is hardly obtained over time, even in a water system such as a circulating water system (for example, water pipes and flow paths), corrosion is caused by free chlorine present in the water system. It can happen.
- the main object of the present invention is to provide a technique for reducing the free halogen concentration in the aqueous system as much as possible even when the halogen-based oxidizing agent and stabilizer are used in the aqueous system.
- the present inventor has added a reaction solution obtained by reacting a halogen-based oxidant and a stabilizer so as to have a total residual halogen concentration of a predetermined level or more before adding to a water system (for example, water to be treated).
- Manufacturing and adding the reaction solution to an aqueous system greatly reduces the free halogen concentration (specifically, free chlorine concentration) in the aqueous system (for example, water to be treated).
- the present invention has been completed by finding out what can be done.
- a reaction solution in which bound halogen is generated by reacting a stabilizer and a halogen-based oxidant so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration is treated as treated water.
- a method of adding and treating the treated water with a reverse osmosis membrane is provided.
- the present invention also provides a reaction solution in which a combined halogen is generated by reacting a stabilizer and a halogen-based oxidant so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration.
- a method for adding and suppressing water-based biofouling is provided.
- the present invention is an apparatus for producing a reaction solution containing bound halogen, A production unit for reacting a stabilizer and a halogen-based oxidant to produce a reaction solution containing bound halogen; A control unit that adjusts the reaction solution so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration with a stabilizer and a halogen-based oxidant; The manufacturing apparatus which has this.
- the stabilizer may be a sulfamic acid compound.
- the stabilizer may be reacted at 1 mol or more with respect to 1 mol of the halogen-based oxidant.
- the free halogen ratio (%) in the reaction solution may be 10% or less of the total residual halogen.
- the total residual halogen concentration may be 125 mg-Cl 2 / L or more.
- the reaction solution containing the bound halogen may be a reaction solution for suppressing fouling of a reverse osmosis membrane or a reaction solution for suppressing aqueous biofouling.
- the present invention can provide a technique for reducing the concentration of free halogen in an aqueous system (for example, water to be treated) as much as possible even when a halogen-based oxidizing agent and a stabilizer are used in the water-treated water system.
- an aqueous system for example, water to be treated
- a halogen-based oxidizing agent and a stabilizer are used in the water-treated water system.
- a stabilizer and a halogen-based oxidizing agent are reacted so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration.
- the produced reaction solution is added to the water to be treated, and the water to be treated is subjected to a reverse osmosis membrane treatment.
- the total residual halogen concentration of the stabilizer and the halogen-based oxidant is 100 mg-Cl 2 / L or more as the total chlorine concentration.
- Biofouling in a narrow sense, means a phenomenon in which microorganisms overgrow in a membrane used for water treatment and the like, and substances derived from microorganisms such as biofilm clog the membrane. .
- Biofouling is not limited to the phenomenon of clogging the membrane, but also includes microbial soil (slime) in water systems such as cooling towers and paper pulp manufacturing processes.
- the “stabilizer” used in the present embodiment is not particularly limited as long as it can react with a halogen-based oxidizing agent described later to generate a bonded halogen described below (preferably a stabilized bonded halogen).
- a compound having an amino group is preferable.
- a monovalent functional group (—NH 2 , —NHR, —NRR ′) obtained by removing hydrogen from ammonia, a primary amine, or a secondary amine is referred to as an “amino group”.
- the stabilizer examples include sulfamic acid compounds such as sulfamic acid or derivatives thereof; hydantoin such as 5,5′-dimethylhydantoin; isocyanuric acid; urea; biuret; methyl carbamate; ethyl carbamate; Amide compounds such as amide, methanesulfonamide and toluenesulfonamide; Imide compounds such as maleimide, succinimide and phthalimide; Amino acids such as alanine, glycine, histidine, lysine, threonine, ornithine and phenylalanine; methylamine, hydroxylamine, morpholine And amines such as piperazine, imidazole and histamine, aminomethanesulfonic acid and taurine; ammonia; ammonium salts such as ammonium sulfate and the like.
- the illustration of the said stabilizer is also an illustration of the chlorine stabilize
- sulfamic acid compounds and / or organic nitride compounds are preferable. More preferably, it is a sulfamic acid compound, and free chlorine concentration can be reduced by using the sulfamic acid compound.
- the sulfamic acid compound it is possible to appropriately suppress deterioration of the reverse osmosis membrane, and it is also possible to appropriately suppress aqueous corrosion.
- Examples of the sulfamic acid compound include a compound represented by the following general formula [1] or a salt thereof.
- R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon having 1 to 8 carbon atoms.
- the hydrocarbon having 1 to 8 carbon atoms include an aromatic group that may have a substituent (more preferably, a phenyl group), an alkyl group that may have a substituent (more preferably, a methyl group), and the like. Is mentioned.
- Examples of the sulfamic acid compound represented by the general formula [1] include, in addition to sulfamic acid in which R 1 and R 2 are both hydrogen atoms, N-methylsulfamic acid, N, N-dimethylsulfamic acid, N -Phenylsulfamic acid and the like and salts thereof.
- the salt of the compound may be a general salt, and may be an inorganic salt (metal salt such as alkali metal salt, alkaline earth metal salt, iron salt, zinc salt; ammonium salt) or organic salt (carboxylate salt).
- metal salt such as alkali metal salt, alkaline earth metal salt, iron salt, zinc salt; ammonium salt
- organic salt carboxylate salt
- examples of the inorganic salt of the compound include, for example, alkali metal salts (for example, sodium salts, potassium salts, etc.), alkaline earth metal salts (for example, calcium salts, strontium salts, barium salts, etc.), other metal salts ( Manganese salt, copper salt, zinc salt, iron salt, cobalt salt, nickel salt, etc.), ammonium salt and guanidine salt.
- sulfamate examples include sodium sulfamate, potassium sulfamate, calcium sulfamate, strontium sulfamate, barium sulfamate, iron sulfamate, zinc sulfamate, ammonium sulfamate and the like.
- One or two or more types may be selected from the sulfamic acid compounds and used alone, or two or more types may be used in combination.
- the halogen-based oxidizing agent used in the present embodiment is not particularly limited, and examples thereof include chlorine-based, bromine-based, and a reaction product of a bromine compound and a chlorine-based oxidizing agent.
- the halogen-based oxidizing agent may be either chlorine-based or bromine-based, but a chlorine-based oxidizing agent is preferable from the viewpoint of easily achieving the effects of the present invention.
- chlorine gas chlorine dioxide, hypochlorous acid or its salt, chlorous acid or its salt, chloric acid or its salt, perchloric acid or its Examples thereof include a salt, chlorinated isocyanuric acid or a salt thereof.
- hypochlorite is preferable from the viewpoint of easy handling and the effect of the present invention. One or more of these may be selected and used alone or in combination of two or more.
- the salt form of the chlorinated oxidant include, for example, alkali metal hypochlorite (for example, sodium hypochlorite, potassium hypochlorite, etc.), alkaline earth metal hypochlorite (for example, , Calcium hypochlorite, barium hypochlorite, etc.), alkali metal chlorites (eg, sodium chlorite, potassium chlorite, etc.), alkaline earth metal chlorites (eg, chlorite) Barium), other metal chlorites (eg, nickel chlorite), alkali metal chlorates (eg, ammonium chlorate, sodium chlorate, potassium chlorate, etc.), alkaline earth metal chlorates (For example, calcium chlorate, barium chlorate, etc.).
- alkali metal hypochlorite for example, sodium hypochlorite, potassium hypochlorite, etc.
- alkaline earth metal hypochlorite for example, Calcium hypochlorite, barium hypochlorite, etc.
- alkali metal chlorites
- alkali metal hypochlorite and the alkaline earth metal hypochlorite may be those obtained by electrolysis of a sodium chloride-containing liquid such as seawater.
- bromine type oxidizing agent used by this embodiment, for example, liquid bromine, bromine chloride, bromic acid or its salt, hypobromite or its salt, etc. can be mentioned. One or more of these may be selected and used alone or in combination of two or more.
- the salt is not particularly limited as long as it can be generally used.
- the salt described above for example, alkali metal salt
- a bromine compound, a chlorine-based oxidizing agent, and a reactant can be used as the halogen-based oxidizing agent.
- sodium bromide, potassium bromide, lithium bromide and hydrobromic acid, particularly sodium bromide can be suitably used as the bromine compound.
- chlorine-type oxidizing agent the chlorine-type oxidizing agent mentioned above, especially sodium hypochlorite can be used suitably.
- Bonded halogen is a compound produced by reaction of a halogen-based oxidant such as hypochlorous acid with ammonia or an amino compound, and is an oxidant having a weaker oxidizing power than free halogen such as free chlorine.
- the bound halogen used in the present embodiment is not particularly limited, but is a compound detected by stabilizing bound chlorine concentration and / or activated bound chlorine concentration described below, particularly detected as stabilized bound chlorine concentration. Is more preferable.
- the bound halogen detected as the stabilized bound chlorine concentration is referred to as stabilized bound chlorine.
- reaction solution obtained by reacting the stabilizer and the halogen-based oxidizing agent so that the total residual halogen concentration is a predetermined concentration of 100 mg-Cl 2 / L or more as the total chlorine concentration. It is.
- the stabilizer and the halogen-based oxidizing agent may be mixed at the same time or separately.
- the reaction solution contains bound halogen generated during the reaction.
- the concentration of free halogen in the reaction solution can be lowered while the production efficiency of bound halogen in the reaction solution can be increased. Due to the high generation efficiency of the bonded halogen, the effect due to the bonded halogen can be efficiently extracted.
- a reaction solution that is reacted so that the total residual halogen concentration is equal to or higher than a predetermined concentration is added to the aqueous system. More specifically, the reaction solution is added to aqueous water (for example, water to be treated or circulating water).
- aqueous water for example, water to be treated or circulating water.
- the free halogen concentration in the aqueous system for example, water to be treated
- the free chlorine concentration is easily reduced to less than 0.2 mg-Cl 2 / L as the free chlorine concentration.
- the free halogen concentration is set to 0.1 mg-Cl 2 / L or less as the free chlorine concentration, more preferably 0.05 mg-Cl 2 / L or less (more preferably 0.01 mg-Cl 2 / L or less).
- the free halogen concentration (for example, free chlorine concentration) in the aqueous system (for example, water to be treated) can be significantly reduced by adding the reaction solution of this embodiment to the aqueous system (for example, water to be treated). For this reason, when the reverse osmosis membrane treatment of the present embodiment is performed, deterioration of the reverse osmosis membrane to be subsequently supplied can be suppressed, and since the reaction solution of the present embodiment contains bound halogen, the reaction solution is aqueous (for example, By adding to the water to be treated, etc., fouling of the reverse osmosis membrane supplied thereafter can be suppressed.
- the free halogen concentration can be greatly reduced in this embodiment, so that when the reaction solution of this embodiment is added to an aqueous system, it is caused by free halogen in the aqueous system (for example, a water pipe or a channel). It is possible to better suppress corrosion. More specifically, the addition of the reaction solution of the present embodiment improves the corrosion of facilities and apparatuses provided for the water system (more specifically, water piping and flow paths of the facilities and apparatuses). Can be suppressed.
- the corrosion generally refers to metal corrosion, but in the present embodiment, unless otherwise specified, it also includes the deterioration of a resin such as plastic, and more preferably the metal corrosion is suppressed in the present embodiment.
- an effect caused by the combined halogen for example, a reverse osmosis membrane or other effects such as suppression of aqueous fouling.
- the combined halogen for example, a reverse osmosis membrane or other effects such as suppression of aqueous fouling.
- the stable residual concentration of the reaction solution is at least 100 mg-Cl 2 / L or more, preferably 125 mg-Cl 2 / L or more, more preferably 150 mg-Cl 2 / L or more.
- the agent is reacted with the halogen-based oxidizing agent.
- the upper limit of the total residual halogen concentration of the reaction solution is not particularly limited, but the upper limit is about 100,000 mg-Cl 2 / L from the viewpoint of the halogen-based oxidizing agent and stabilizer used.
- the free halogen ratio (%) can be suppressed to 10% or less of the total residual halogen.
- the deterioration of the reverse osmosis membrane can be appropriately suppressed as appropriate, and the aqueous corrosion can be appropriately suppressed as appropriate.
- the free halogen ratio (%) can be kept below 2% of the total residual halogen.
- the free halogen ratio (%) in the reaction solution is preferably 10% or less of the total residual halogen, more preferably 8% or less, still more preferably 3% or less, more preferably 2.5% or less. More preferably, it is 2.0% or less, more preferably 1.5% or less, more preferably 1.1% or less.
- a reaction solution with a low free chlorine ratio (%) in the aqueous system for example, water to be treated
- effects due to bound halogen for example, suppression of reverse osmosis membrane fouling, suppression of aqueous biofouling, etc.
- bound halogen for example, suppression of reverse osmosis membrane fouling, suppression of aqueous biofouling, etc.
- the stabilized bonded chlorine ratio (%) in the reaction solution is preferably 85% or more of the total residual halogen, more preferably 87% or more, still more preferably 95% or more, and still more preferably 98%. Above, more preferably 99% or more.
- a reaction solution with a high stabilized bonded chlorine ratio (%) in an aqueous system for example, water to be treated
- the deterioration of the reverse osmosis membrane can be appropriately suppressed, and the corrosion of the aqueous system can be appropriately suppressed as appropriate. it can.
- effects due to bound halogen for example, suppression of reverse osmosis membrane fouling, suppression of aqueous biofouling, etc.
- bound halogen for example, suppression of reverse osmosis membrane fouling, suppression of aqueous biofouling, etc.
- the total residual halogen concentration, free halogen concentration and free halogen ratio (%) are measured (calculated) as total chlorine concentration (total residual chlorine concentration), free chlorine concentration and free chlorine ratio (%), respectively. Residual chlorine concentration, free chlorine concentration, free chlorine ratio (%), activated bound chlorine concentration, stabilized bound chlorine concentration and stabilized bound chlorine ratio (%) are described in ⁇ Method for Measuring Total Residual Chlorine Concentration> below. Can be measured (calculated).
- the reaction solution is preferably prepared by mixing a high-concentration stabilizer and a high-concentration halogen-based oxidant so that the total residual chlorine concentration becomes the predetermined concentration.
- a reaction solution having a predetermined total residual chlorine concentration obtained by mixing both at a high concentration may be diluted with water before being added to an aqueous system (for example, water to be treated).
- the reaction solution is prepared by diluting either or both of the stabilizer and the halogen-based oxidizing agent with water, and using a diluted solution obtained by diluting either or both with water, the total residual chlorine concentration is the predetermined value. What was made to react so that it may become a density
- concentration is suitable.
- the reaction solution may be prepared by mixing a drug before water dilution with a drug after water dilution, or by mixing a drug after water dilution with a drug after water dilution. However, it may be prepared by diluting with water before adding it to an aqueous system (for example, water to be treated).
- water used for the dilution examples include demineralized water, pure water, and ultra-high pure water.
- the water is preferably subjected to impurity removal treatment (for example, ion exchange treatment, membrane treatment, etc.) from industrial water, well water, tap water, rainwater or the like.
- impurity removal treatment for example, ion exchange treatment, membrane treatment, etc.
- desalted water or pure water is preferable from the viewpoint of cost and the effect of the present technology.
- the active ingredient concentration (preferably sulfamic acid compound concentration) in the stabilizer is not particularly limited, but the lower limit is preferably 10% by mass or more from the viewpoint of further reducing the free chlorine concentration in the reaction solution. More preferably, it is 15% by mass or more, and further preferably 20% by mass or more, and the upper limit is about 30% by mass from the viewpoint of solubility.
- the effective halogen concentration in the halogen-based oxidizing agent is not particularly limited, but the lower limit is preferably 1% by mass or more, more preferably 5% by mass or more, from the viewpoint that the free halogen concentration in the reaction solution can be further reduced. More preferably, the upper limit is 10% by mass or more, and the upper limit is preferably about 12% by mass from the viewpoints of solubility and stability.
- the amount of the stabilizer used is preferably 1 mol or more, more preferably 1.1 mol or more with respect to 1 mol of the halogen-based oxidant.
- the upper limit of the amount of the stabilizer used is preferably 20 mol or less, more preferably 15 mol or less, and even more preferably 10 mol or less, with respect to 1 mol of the halogen-based oxidant, from the viewpoint of cost and stability. More preferably, it is 5 mol or less.
- the range of the use amount of the stabilizer is more preferably 1 to 10 mol, and still more preferably 1 to 3 mol with respect to 1 mol of the halogen-based oxidant.
- the stabilizer contains an alkali containing an alkali metal hydroxide and a sulfamic acid compound. It is preferable to use the stabilizer to react with the halogen-based oxidizing agent to obtain a reaction solution having a predetermined total residual halogen concentration, and to add the reaction solution to an aqueous system (for example, water to be treated). .
- the content ratio of the alkali of the stabilizer and the sulfamic acid compound is N / alkali metal (molar ratio), preferably 0.5 to 1.0, more preferably 0.5 to 0.7. .
- the N / alkali metal (molar ratio) corresponds to the number of moles of the sulfamic acid compound described above and the number of moles of alkali constituted by the alkali metal hydroxide.
- the alkali contained in the sulfamate is included.
- the amount of metal salt is added as alkali.
- the pH of the reaction solution is not particularly limited and is preferably an alkali, more preferably 11 or more, and further preferably 13 or more.
- the temperature of the reaction solution is not particularly limited, and the lower limit is preferably ⁇ 5 ° C. or higher, and the upper limit is preferably 80 ° C. or lower.
- the temperature range is more preferably 10 to 60 ° C, still more preferably 10 to 40 ° C.
- the reaction solution used in the present embodiment can be generally carried out at the temperature of the water to be treated in an apparatus for treating the water to be treated with a reverse osmosis membrane, and this is an advantage in this embodiment. This embodiment is not particularly limited to the apparatus.
- the reaction solution used in the present embodiment can be used, for example, in a circulating water system apparatus, or can be implemented by being applied to the temperature conditions of the apparatus to be applied.
- optional components other than the stabilizer and the halogen-based oxidizing agent may be used within a range not impairing the effects of the present invention.
- an arbitrary component may be mixed in the reaction solution, or an arbitrary component may be mixed in an aqueous system (for example, water to be treated) to which the reaction solution is added.
- the optional component include a pH adjuster, an alkali agent, a dispersant, a scale inhibitor, and a slime control agent that works by another mechanism.
- the alkali agent include alkali metal salts (for example, lithium salt, sodium salt, potassium salt, etc.), alkaline earth metal salts (for example, magnesium salt, calcium salt, etc.) and the like.
- ⁇ Usage method in water system in the present embodiment (for example, a method of treating a water to be treated with a reverse osmosis membrane)>
- a water treatment system which processes to-be-processed water a water treatment system of manufacture of industrial water and ultrapure water, a water treatment system of recovery and reuse of waste water, seawater kettle
- water systems selected from the group consisting of water desalination water treatment systems, plant cooling water systems, wastewater treatment water systems, steel water systems, paper pulp water systems, cutting oil water systems, etc. is there.
- the reaction solution is added to the water to be treated, and the water to be treated is treated with a reverse osmosis membrane.
- Permeated water treated water
- Permeated water can be obtained from this treated water by reverse osmosis membrane treatment.
- the reaction solution in the aqueous system of the present embodiment, can be added to the aqueous system to exert the effect due to the bound halogen. Moreover, the reaction solution of the present embodiment can appropriately suppress aqueous biofouling and / or corrosion. Further, the present embodiment can be used in plant cooling water systems, wastewater treatment water systems, steel water systems, paper pulp water systems, cutting oil water systems, and the like in various factories. Of the aqueous systems, the circulating water system is often operated while being circulated for a long time, which is preferable from the viewpoint of reducing corrosion. Furthermore, a circulating cooling water system (preferably an open circulating cooling water system) or the like is more preferable. In the present embodiment, from the viewpoint of inhibiting corrosion, it is possible to effectively add bonded halogen to a circulating cooling water system or the like over a long period of time.
- the aqueous system (for example, water to be treated) containing the reaction solution of the present embodiment can suppress the free halogen concentration to less than 0.2 mg-Cl 2 / L as the free chlorine concentration. Furthermore, according to the present embodiment, it is preferable that the free halogen concentration of the aqueous system (for example, water to be treated) containing the reaction solution is suppressed to 0.1 mg-Cl 2 / L or less as the free chlorine concentration. Preferably, it can be suppressed to about 0.00 to 0.05 mg-Cl 2 / L.
- the free chlorine concentration in the water system (for example, water to be treated) passing through the reverse osmosis membrane can be reduced as compared with the conventional method (specifically, Comparative Examples 1 and 2 described later). Deterioration of the film can be suppressed more favorably, and water-based corrosion can be suppressed better as appropriate. Furthermore, since the water system (for example, water to be treated) contains stabilized bound chlorine, fouling of the reverse osmosis membrane can be appropriately suppressed as appropriate, and the effect due to the bound halogen can be appropriately improved. Can also be demonstrated.
- a reaction solution containing the bound halogen (preferably stabilized bound chlorine) can be added to an aqueous system (for example, water to be treated) and used for an aqueous system (for example, a water-treated water system).
- an aqueous system for example, a water-treated water system.
- biofouling suppression effects and bactericidal / algicidal effects can be expected in the water system.
- the water system include water treatment water systems; circulating water systems such as cooling towers; and process water systems such as paper pulp production. It is done.
- the stabilized bound chlorine in the water system (for example, water to be treated) can be expected to have higher stability than the conventional chloramine T, and less free chlorine can be expected.
- the raw water (for example, treated water) used in the present embodiment is not particularly limited.
- industrial wastewater containing organic matter seawater / brine, fresh water (river water, lake water, etc.), industrial water / city water, etc. Is mentioned.
- the water treatment method using the reverse osmosis membrane treatment of this embodiment is for recovering and reusing wastewater containing high to low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields.
- the method of using the present embodiment for a water system is preferably applied to a plant cooling water system, a wastewater treatment water system, a steel water system, a paper pulp water system, a cutting oil water system, and the like.
- a circulating cooling water system is preferred.
- the reverse osmosis membrane (hereinafter also referred to as “RO membrane”) used in the present embodiment is not particularly limited.
- RO membrane The reverse osmosis membrane
- polyamide-based, polyethersulfone-based, polysulfone-based, polyimide-based, polyethyleneimine-based, polyethyleneoxide-based, acetic acid A cellulose type etc. are mentioned.
- the polyamide RO membrane has an advantage that it can be suitably used because it has a high blocking rate of ionic substances and a large flux.
- the aromatic polyamide RO membrane has low resistance to chlorine, when a halogen-based oxidizing agent is used, a large amount of free chlorine remains and the membrane is likely to deteriorate.
- the free chlorine concentration in the aqueous system (for example, water to be treated) can be greatly reduced, and on the other hand, the RO membrane fouling prevention effect can be obtained, so that the processing capability is excellent.
- a polyamide RO membrane having low salt resistance can be used efficiently.
- the reaction solution of the present embodiment is preferably 3 to 100 mg / L, more preferably 5 to 50 mg / L, and even more preferably 10 to 40 mg / L in an aqueous system (for example, water to be treated).
- an aqueous system for example, water to be treated.
- the addition amount is preferably in the case of water to be treated.
- the stabilized bound chlorine concentration in the aqueous system is preferably 0.05 mg-Cl as the lower limit. 2 / L or more, more preferably 0.1 mg-Cl 2 / L or more, and the upper limit is preferably 20 mg-Cl 2 / L or less, more preferably 5 mg-Cl 2 / L or less. Is preferred.
- the range of the stabilized bound chlorine concentration in the aqueous system is preferably 0.5 to 5 mg.
- the addition amount is preferably in the case of water to be treated.
- the reaction solution is added to an aqueous system (for example, water to be treated)
- it is preferable to adjust so that free halogen in the aqueous system for example, water to be treated
- the addition is preferably in the case of water to be treated.
- reaction solution of the present embodiment is not particularly limited in the case of an aqueous system in which membrane treatment is performed, as long as the membrane treatment (preferably reverse osmosis membrane treatment) is performed in an aqueous system (see, for example, FIG. 2). It is preferable that the reaction solution is added during membrane treatment (preferably reverse osmosis membrane treatment) from an aqueous (for example, water to be treated) water intake.
- the reaction solution may be added at any of, for example, a water inlet, an agglomeration process, a solid-liquid separation process, a prefilter process, a reverse osmosis membrane process, or each of these channels.
- the method for adding the reaction solution is not particularly limited, and a method generally used in a water-treated water system can be adopted, as long as both can be mixed, and an aqueous system (for example, water to be treated) can be used for the reaction. It may be added to the solution.
- the bond halogen preferably stabilized bond chlorine
- the aqueous system preferably water to be treated
- the bond halogen preferably stabilized bond chlorine
- the aqueous system preferably water to be treated
- the reaction solution can be added in the vicinity of the intake of the water to be treated (see FIG. 2) using the reaction solution of the present embodiment as an addition site.
- the concentration of free chlorine in the water to be treated can be greatly reduced, so that it can be added immediately before the reverse osmosis membrane treatment.
- the stabilization combined chlorine in the to-be-processed water just before a reverse osmosis membrane process can be made high concentration, suppressing a reverse osmosis membrane deterioration, the biofouling suppression effect can be heightened efficiently.
- the stabilized bound chlorine concentration in the for-treatment water may be adjusted immediately before the reverse osmosis membrane treatment.
- the timing or place where the reaction solution of this embodiment is added is not particularly limited, and it can be added to a place where an effect due to the bound halogen is expected.
- it is preferably applied to an open circulation type apparatus having a cooling water system, a heat storage water system, a dust collection water system, a scrubber water system, or the like.
- the bound halogen preferably stabilized bound chlorine
- the bound halogen can be made high in concentration, microorganisms adhering to the water-based water pipe or flow path downstream of the reaction solution of the present embodiment added to the water system or It is possible to prevent attachment of organisms (bio-fouling), sterilization, and algae killing.
- aqueous biofouling can be suppressed in this way, and in the present embodiment, free halogen can be reduced as much as possible. Therefore, for the purpose of suppressing corrosion, an aqueous system (for example, general communication) can be used. It can also be used for water pipes and flow paths.
- the use or use method of the reaction solution of the present embodiment can be provided.
- this embodiment can also provide the water treatment method, the biofouling suppression method, the anticorrosion method, or the scale prevention method by adding the reaction solution of this embodiment to an aqueous system.
- omits suitably.
- ⁇ Water treatment device> As another aspect of the present invention, it is possible to provide the reaction solution production apparatus, a water treatment apparatus including the reaction solution production apparatus, and the like.
- the said reaction solution manufacturing apparatus and a water treatment apparatus provided with the same can perform the method of this embodiment mentioned above (preferably the method of carrying out the reverse osmosis membrane process of to-be-processed water).
- Permeated water (treated water) can be obtained by the reverse osmosis membrane treatment method.
- the concentrated water separated from the water to be treated can be returned to the water treatment water system.
- reaction solution production apparatus and the water system apparatus preferably a circulating water apparatus
- the reaction solution production apparatus can appropriately exhibit the effects (for example, suppression of biofouling, etc.) due to bound halogen
- the corrosion of the water system preferably the circulating water system
- the reaction solution manufacturing apparatus is: An apparatus for producing a reaction solution containing bound halogen is suitable, and the reaction solution production apparatus is A production unit for reacting a stabilizer and a halogen-based oxidant to produce a reaction solution containing bound halogen; A control unit that adjusts the reaction solution so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration with a stabilizer and a halogen-based oxidant; A device having The reaction solution is preferably a reaction solution for inhibiting reverse osmosis membrane fouling or a reaction solution for inhibiting aqueous biofouling.
- the water treatment apparatus is A generating unit for generating a reaction solution containing bound halogen generated by reacting a stabilizer and a halogen-based oxidizing agent; A control unit that adjusts the stabilizer and the halogen-based oxidant so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as the total chlorine concentration; A reverse osmosis membrane treatment unit for treating a water system (preferably, water to be treated) to which a reaction solution having a total residual halogen concentration of 100 mg-Cl 2 / L or more as a total chlorine concentration is added; A device having
- the control unit 6 can adjust the blending of the stabilizer and the halogen-based oxidant so that the total residual halogen concentration in the reaction solution described above is obtained.
- the control unit 6 can obtain a measured value (data) of the total residual halogen concentration in the reaction solution from the reaction solution mixing unit 9 that reacts the stabilizer and the halogen-based oxidizing agent. Further, the control unit 6 can obtain the measured value (data) of the MF membrane processing unit and / or the RO membrane processing unit and the total residual halogen concentration immediately before or after these.
- a known measuring device may be used as a device (not shown) for measuring the total residual halogen concentration.
- a reaction solution or an aqueous system for example, water to be treated
- the measurement result may be input to the control unit 6.
- the control unit 6 Based on the measured value of the total residual halogen concentration, the control unit 6 adds the stabilizer addition amount and the halogen-based oxidizing agent addition amount so that the predetermined total residual halogen concentration described above is obtained.
- the unit 7 and the halogen-based oxidant addition unit 8 can be commanded. As a result, the stabilizer is added from the stabilizer addition unit 7 to the reaction solution mixing unit 9, and the halogen-based oxidant is added from the halogen-based oxidant addition unit 8 to the reaction solution mixing unit 9.
- the control unit 6 can add and adjust water for dilution to the stabilizer, the halogen-based oxidizing agent, or the mixed agent as necessary.
- the controller 6 can command the reaction solution mixing unit 9 to a pump, a reaction solution addition unit (not shown) or the like to add the reaction solution to an aqueous system (for example, water to be treated). This place of addition may be any place from the reverse osmosis membrane treatment unit 2 to the water intake (for example, water to be treated).
- the control unit 6 can also control the addition amount, addition timing, stirring, and the like of the reaction solution with respect to an aqueous system (for example, water to be treated).
- control unit 6 can adjust the addition amount of the stabilizer and the addition amount of the halogen-based oxidant so that the concentration in the system after the addition of the reaction solution becomes a predetermined value.
- control part 6 can be adjusted so that the said reaction solution may be added to an aqueous system (for example, to-be-processed water etc.) continuously or discontinuously (intermittently).
- the method of this embodiment is implement
- the method of the present embodiment may be stored as a program in a hardware resource including a recording medium (nonvolatile memory (USB memory, etc.), HDD, CD, network, server, etc.) and the like, and realized by the control unit. Is possible.
- Systems, circulating water systems, etc. can also be provided.
- the method of this embodiment can be executed by incorporating the manufacturing apparatus of this embodiment into a normal water treatment device or a circulating water device. .
- the reaction solution manufacturing apparatus in the present embodiment preferably includes the reaction solution generation unit 10 and the control unit 6.
- the reaction solution generation unit 10 mixes the stabilizer addition unit 7 and the halogen-based oxidant addition unit 8, and the stabilizer and the halogen-based oxidant so that the total residual halogen concentration becomes a predetermined concentration. It is preferable to provide a reaction solution mixing unit 9 to be generated.
- the reaction solution generation unit 10 may control the stabilizer addition unit 7, the halogen-based oxidant addition unit 8, and the reaction solution mixing unit 9 according to a command from the control unit 6.
- the reaction solution generation unit 10 may have a second control unit that receives a command from the control unit 6, and the second control unit provides a stabilizer addition unit 7, a halogen-based oxidant addition unit. 8 and the reaction solution mixing unit 9 may be controlled.
- the stabilizer addition part 7 and the halogen-based oxidant addition part 8 may be a tank capable of storing the stabilizer and the halogen-based oxidant, respectively, or in a flow path such as a water flow pipe. There may be.
- Each addition amount and each transfer amount of these chemicals and dilution water can be adjusted by a pump, a flow rate adjusting valve or the like.
- the reaction solution mixing part 9 should just have a place which can mix a stabilizer and a halogen-type oxidizing agent, for example, flow paths, tanks, etc., such as water flow piping.
- the reaction solution mixing unit 9 is preferably provided with a mixing device such as stirring.
- the addition amount and transfer amount of these chemicals, reaction solution, dilution water and the like can be adjusted by a pump, a flow rate adjusting valve or the like.
- a pump is provided at each discharge port of the stabilizer addition unit 7 and the halogen-based oxidant addition unit 8, and the reaction solution mixture 9 is used as a mixing line, and a catch valve is provided at the inlet of the mixing line.
- the mixing line is preferably provided with a device capable of mixing both drugs, for example, a static mixer.
- the stabilizer and the halogen-based oxidant are transferred from the respective pump discharge ports of the stabilizer-adding unit 7 and the halogen-based oxidant adding unit 8 to the mixing line.
- the flow rates of both are adjusted by the catch valve so that the total residual halogen concentration becomes a predetermined value or more.
- reaction solution containing the combined halogen having a total residual halogen concentration of a predetermined value or more.
- the reaction solution is added to an aqueous system (for example, water to be treated), and the aqueous system (for example, water to be treated) is treated with a reverse osmosis membrane.
- permeated water can be obtained.
- fouling of the reverse osmosis membrane can be suppressed while suppressing deterioration of the reverse osmosis membrane.
- an aqueous biofouling suppressing effect can be appropriately obtained.
- the said biofilm and slime are produced
- the reaction solution in which the free halogen of this embodiment is significantly reduced and containing bound halogen can be added to an aqueous system (for example, to-be-treated water), whereby a reverse osmosis membrane It is possible to obtain a reverse osmosis membrane fouling inhibitory effect, an aqueous slime inhibitory effect and the like while suppressing deterioration of the water.
- an aqueous system for example, to-be-treated water
- a reverse osmosis membrane fouling inhibitory effect, an aqueous slime inhibitory effect and the like while suppressing deterioration of the water.
- the water treatment system according to this embodiment include a pure water production system, a seawater desalination system, and a wastewater treatment system.
- the water system according to this embodiment is not particularly limited, and may be a water treatment system apparatus such as a pure water production apparatus or a seawater desalination apparatus having these exemplary systems, or a circulating water system such as a circulating cooling water apparatus.
- a water treatment system apparatus such as a pure water production apparatus or a seawater desalination apparatus having these exemplary systems
- a circulating water system such as a circulating cooling water apparatus. The apparatus which has this may be sufficient.
- the present technology can also employ the following configurations.
- [1] A reaction solution in which a stabilizer and a halogen-based oxidant are reacted so that the total residual halogen concentration becomes 100 mg-Cl 2 / L or more as a total chlorine concentration to form a combined halogen is added to the water to be treated. And treating the treated water with a reverse osmosis membrane.
- [2] A reaction solution in which a stabilizer and a halogen-based oxidant are reacted so that a total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration to form a combined halogen is added to an aqueous system, A method for suppressing biofouling in the water system.
- An apparatus for producing a reaction solution containing bound halogen A production unit for reacting a stabilizer and a halogen-based oxidant to produce a reaction solution containing bound halogen; A control unit that adjusts the reaction solution so that the total residual halogen concentration is 100 mg-Cl 2 / L or more as a total chlorine concentration with a stabilizer and a halogen-based oxidant; A manufacturing apparatus having [7] The production apparatus according to [6], wherein the reaction solution containing the bound halogen is a reaction solution for suppressing fouling of a reverse osmosis membrane or a reaction solution for suppressing aqueous biofouling.
- the manufacturing apparatus is preferably applied to a reverse osmosis membrane treatment apparatus or a circulating cooling water apparatus.
- Example 1 Free chlorine concentration in water to be treated
- the binding state of chlorine when an oxidizer and a stabilizer were mixed in advance and added to the system was evaluated on a desk.
- a sodium sulfamate solution having a sulfamic acid concentration of 20% or more was prepared.
- Sodium hypochlorite having an effective chlorine concentration of 10% or more was added thereto.
- the mixing ratio was 3 mg / L or more as sulfamic acid with respect to 1 mg-Cl 2 / L sodium hypochlorite solution.
- a reaction solution containing a stabilizer and a chlorine-based oxidizing agent was prepared.
- the total residual chlorine concentration of the reaction solution containing the stabilizer and the chlorine-based oxidant was 100 mg-Cl 2 / L or more. And 500 mg / L NaCl solution was used as to-be-processed water. The reaction solution 5 minutes after preparation was added to a 500 mg / L NaCl solution so that the concentration was 20 mg / L. The residual chlorine concentration was measured by the DPD method 5 minutes and 60 minutes after the addition of sulfamic acid.
- Total residual chlorine concentration free chlorine concentration + activated combined chlorine concentration + stabilized combined chlorine concentration.
- Free chlorine concentration Free chlorine concentration by DPD method (Pocket residual chlorine meter, manufactured by HACH) [Here, free chlorine concentration by DPD method is 5 to 30 seconds after DPD (Free) reagent which is a reagent for measuring free chlorine. Chlorine concentration measurement result (mg-Cl 2 / L)].
- Activated bound chlorine concentration From the chlorine concentration measurement result (mg-Cl 2 / L) after 300 seconds by the DPD (Free) reagent, which is a reagent for measuring free chlorine, the above-mentioned free chlorine concentration (mg-Cl 2 / L) The value obtained by subtracting the measurement result.
- Stabilized bound chlorine concentration From the chlorine concentration measurement result (mg-Cl 2 / L) after 180 seconds using the DPD (Total) reagent, which is a reagent for measuring total chlorine, using the DPD (Free) reagent, which is a reagent for measuring free chlorine A value obtained by subtracting the chlorine concentration measurement result (mg-Cl 2 / L) after 300 seconds.
- Free chlorine ratio (%) (Free chlorine concentration / Total residual chlorine concentration) ⁇ 100
- Stabilized bound chlorine ratio (%) (stabilized bound chlorine concentration / total residual chlorine concentration) x 100 The temperature of the test environment was 25 ° C.
- reaction solution containing a stabilizer and a chlorine-based oxidizing agent was prepared so that the total residual chlorine concentration was 48000 mg / L or more.
- This reaction solution was added to and mixed with a 500 mg / L NaCl solution (water to be treated) having a water temperature of 5 ° C., 20 ° C., 40 ° C., and 50 ° C.
- free chlorine concentration in the 500 mg / L NaCl solution at each water temperature to which the reaction solution was added free chlorine was not detected within 30 seconds. For this reason, residual chlorine is not detected in a short time by using the reaction solution as in Example 1 even at the water temperature that is normally treated by the reverse osmosis membrane treatment apparatus. Therefore, the reaction solution of the present invention can be used without any problem at a water temperature that is usually treated with a reverse osmosis membrane.
- a sodium hypochlorite solution and a sodium sulfamate solution were added separately in this order so that the total residual chlorine concentration was 1 mg-Cl 2 / L and the sulfamic acid concentration was 3 mg / L or more.
- the residual chlorine concentration after 5 minutes and 60 minutes was measured by the DPD method (the calculation method is the same as in Example 1).
- the temperature of the test environment was 25 ° C.
- Example 2 Total residual chlorine concentration of reaction solution
- Pure water was prepared in a beaker. The temperature of the test environment was 25 ° C.
- a sodium sulfamate solution prepared so that the sulfamic acid concentration was 20% or more was added to pure water.
- Sodium hypochlorite having an effective chlorine concentration of 10% or more was added to the aqueous solution containing sulfamic acid.
- the mixing ratio was set to 3 mg / L or more as sulfamic acid with respect to a sodium hypochlorite 1 mg / L solution.
- a reaction solution containing a stabilizer and a chlorine-based oxidizing agent was prepared.
- the residual chlorine concentration after mixing the prepared reaction solution for 30 seconds was measured by the DPD method (the calculation method is the same as in Example 1). This operation was repeated while changing the amount of pure water. Thereby, the bonding state of chlorine at the time of dilution mixing was adjusted, and reaction solutions having different total residual chlorine concentrations in the reaction solution containing the stabilizer and the chlorine-based oxidizing agent were prepared (see Table 1 and FIG. 1).
- Table 1 and FIG. 1 show the results of summarizing the abundance ratios of stabilized bonded chlorine and free chlorine in the total residual chlorine for each total residual chlorine concentration after mixing.
- FIG. 1 shows only the low concentration side. From the results, if the total residual chlorine concentration after mixing is 100 mg-Cl 2 / L or more, free chlorine can be suppressed to within 10% of the total residual chlorine. Therefore, when either or both of sodium hypochlorite and stabilizer are diluted and used, the total residual chlorine concentration after mixing needs to be 100 mg-Cl 2 / L or more, preferably It is desirable that it is 125 mg-Cl 2 / L or more, more preferably 150 mg-Cl 2 / L or more. When the reaction solution of Example 2 was added to the water to be treated so that the reaction solution after 5 minutes had been prepared so as to have a concentration of 20 mg / L, the free chlorine concentration was 0.00 to 0.05 mg / L. About L.
- reaction solution containing stabilized bonded chlorine produced by reacting a stabilizer and a chlorine-based oxidant so that the total residual chlorine concentration is 100 mg-Cl 2 / L or more is used, the reaction time is reduced. The residual chlorine will not be detected. Therefore, since the residual chlorine in the reaction solution of the present invention has sufficiently reached a level that does not deteriorate the reverse osmosis membrane, the reaction solution can suppress the reverse osmosis membrane deterioration. Furthermore, since the reaction solution contains stabilized bonded chlorine, slime in the reverse osmosis membrane system can be suppressed and fouling of the reverse osmosis membrane can be prevented.
- Example 3 Use ratio of stabilizer
- Pure water was prepared in a beaker.
- the temperature of the test environment was 25 ° C.
- a sodium sulfamate solution prepared so that the sulfamic acid concentration was 20% or more was added to pure water.
- Sodium hypochlorite having an effective chlorine concentration of 10% or more was added to the aqueous solution containing sulfamic acid. Thereby, a reaction solution containing a stabilizer and a chlorine-based oxidizing agent was prepared.
- the residual chlorine concentration after mixing the prepared reaction solution for 30 seconds was measured by the DPD method (the calculation method is the same as in Example 1). This operation was repeated while changing the amount of sulfamic acid at the same residual chlorine concentration (450 mg-Cl 2 / L). As a result, the chlorine state at the time of changing the use ratio of the chlorine-based oxidant and the stabilizer is adjusted, and the reaction ratio of the chlorine-based oxidant and the stabilizer in the reaction solution containing the stabilizer and the chlorine-based oxidant is different.
- a solution was prepared (see Table 2).
- Table 2 shows the amount [mol] of sulfamic acid added to 1 mol of hypochlorous acid. From the results, if 1.1 mol or more of sulfamic acid is added to 1 mol of hypochlorous acid, 95% or more of the total residual chlorine becomes stabilized bound chlorine, and free chlorine is 2.0% in the water to be treated. It turns out that it can be suppressed to less than. Therefore, even when a small amount of stabilizer is added relative to sodium hypochlorite, if the sulfamic acid is added 1.1 mol times or more relative to hypochlorous acid, almost the total amount is A stable component that has become stabilized bonded chlorine can be obtained.
- the reaction solution of this invention can suppress reverse osmosis membrane deterioration more favorably. Furthermore, since the reaction solution can contain the stabilized bound chlorine better, it is possible to suppress fouling of the reverse osmosis membrane by suppressing slime in the reverse osmosis membrane system.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
ハロゲン系酸化剤及び安定化剤を水処理水系に使用した場合でも、被処理水中の遊離ハロゲン濃度をできるだけ少なくする技術を提供すること。 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、被処理水に添加し、当該被処理水を逆浸透膜処理する方法;結合ハロゲンを含む反応溶液を製造する装置であり、安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、を有する製造装置;好適には、前記反応溶液が、逆浸透膜のファウリングを抑制するための反応溶液、又は水系のバイオファウリングを抑制するための反応溶液である。
Description
本発明は、逆浸透膜処理方法、及び結合ハロゲンを含む反応溶液を製造する装置、水系のバイオファウリング抑制方法などに関する。
水処理水系において、工業用水及び超純水の製造、排水の回収・再利用、海水やかん水の淡水化等を目的として、被処理水を逆浸透(RO)膜で処理することがよく行われている。
しかし、被処理水中に含まれる微生物が逆浸透膜処理装置の通水配管内や逆浸透膜の膜面で増殖してスライムを形成し、これによって逆浸透膜における透過水量低下等のファウリングを引き起こすことがある。この対策として、過酸化水素水、結合ハロゲン剤、ハロゲン剤等の酸化剤が、微生物の増殖抑制や有機物の分解に用いられている。
例えば、微生物の増殖による逆浸透膜のファウリングの防止のために、遊離塩素剤及び安定化剤をそれぞれ被処理水に添加して被処理水中に安定化結合塩素を生成させ、当該安定化結合塩素を含む被処理水を逆浸透膜に給水したり、又はクロラミンを添加しこれを含む被処理水を逆浸透膜に給水したりしている。
しかし、被処理水中に含まれる微生物が逆浸透膜処理装置の通水配管内や逆浸透膜の膜面で増殖してスライムを形成し、これによって逆浸透膜における透過水量低下等のファウリングを引き起こすことがある。この対策として、過酸化水素水、結合ハロゲン剤、ハロゲン剤等の酸化剤が、微生物の増殖抑制や有機物の分解に用いられている。
例えば、微生物の増殖による逆浸透膜のファウリングの防止のために、遊離塩素剤及び安定化剤をそれぞれ被処理水に添加して被処理水中に安定化結合塩素を生成させ、当該安定化結合塩素を含む被処理水を逆浸透膜に給水したり、又はクロラミンを添加しこれを含む被処理水を逆浸透膜に給水したりしている。
また、各種工場のプラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系などでも、微生物(例えば、細菌や糸状菌や藻類など)が原因となりバイオフィルム等が水系に発生する。このバイオフィルム等は、熱効率の低下;通水配管、流路、膜(例えば、RO膜など)などの閉塞;配管金属材質の腐食等の障害を引き起こすといわれている。
さらに、例えば、特許文献1には、被処理液を透過膜に供給して膜分離を行う方法において、被処理液に遊離塩素剤を添加して殺菌を行った後、アンモニウムイオンを添加してクロラミンを生成させ、微生物の増殖を抑制することを特徴とする膜分離方法が提案されている。
ここで、後述する比較例1に示すように、塩素系酸化剤及び安定化剤を被処理水に添加して結合塩素を生成させた場合、この被処理水中の遊離塩素濃度は0.2mg-Cl2/L程度であった。例えば、遊離塩素濃度が0.2mg-Cl2/L程度含む被処理水を、バイオファウリングを防止する目的のために、逆浸透膜に給水すると、逆浸透膜は耐塩素性が低いため逆浸透膜が劣化しやすい。また、例えば、遊離塩素は腐食の原因となるため、水系中の遊離塩素濃度が小さい方が、水系(例えば、通水配管や流路など)の腐食が抑制できるため、好ましい。
また、遊離塩素を含む被処理水が逆浸透膜処理に到達するまでの時間をできるだけ長くして、当該被処理水中の遊離塩素濃度を減らす方法が考えられる。しかし、比較例1のように、遊離塩素が0.2mg-Cl2/L程度生成された被処理水を一定時間経過させた場合でも、被処理水中の遊離塩素濃度はほとんど減少しなかった。このことから、時間を経過させても、水系(例えば、被処理水など)中の遊離塩素濃度の減少効果はほとんど得られない。また、時間を経過させても遊離塩素濃度の減少効果がほとんど得られない場合、循環水系などの水系(例えば、通水配管や流路など)でも、水系に存在する遊離塩素のために腐食が生じる可能性がある。
また、安定化剤のスルファミン酸添加量を大幅に上げて遊離塩素を減少させる方法が考えられる。しかし、比較例2のように、安定化剤濃度を1オーダー上げても被処理水中の遊離塩素濃度は0.2mg-Cl2/L程度のままであった。このことから、安定化剤の添加量を大幅に上げても、水系(例えば、被処理水)中の遊離塩素濃度の減少効果は限定的である。
そこで、本発明は、ハロゲン系酸化剤及び安定化剤を水系に使用した場合でも、水系中の遊離ハロゲン濃度をできるだけ少なくする技術を提供することを主な目的とする。
本発明者は、鋭意検討した結果、ハロゲン系酸化剤及び安定化剤を所定以上の全残留ハロゲン濃度になるように反応させた反応溶液を水系(例えば、被処理水など)に添加する前に製造し、当該反応溶液を水系(例えば、被処理水など)に添加することで、当該水系(例えば、被処理水など)中の遊離ハロゲン濃度(具体的には遊離塩素濃度)が大幅に低減できることを見出し、本発明を完成させた。
本発明は、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、被処理水に添加し、当該被処理水を逆浸透膜処理する方法を提供するものである。
また、本発明は、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加し、水系のバイオファウリングを抑制する方法を提供するものである。
本発明は、結合ハロゲンを含む反応溶液を製造する装置であり、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する製造装置を提供するものである。
前記安定化剤が、スルファミン酸化合物であってもよい。
前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させてもよい。
前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下であってもよい。
前記全残留ハロゲン濃度が125mg-Cl2/L以上であってもよい。
前記結合ハロゲンを含む反応溶液が、逆浸透膜のファウリングを抑制するための反応溶液、又は水系のバイオファウリングを抑制するための反応溶液であってもよい。
また、本発明は、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加し、水系のバイオファウリングを抑制する方法を提供するものである。
本発明は、結合ハロゲンを含む反応溶液を製造する装置であり、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する製造装置を提供するものである。
前記安定化剤が、スルファミン酸化合物であってもよい。
前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させてもよい。
前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下であってもよい。
前記全残留ハロゲン濃度が125mg-Cl2/L以上であってもよい。
前記結合ハロゲンを含む反応溶液が、逆浸透膜のファウリングを抑制するための反応溶液、又は水系のバイオファウリングを抑制するための反応溶液であってもよい。
本発明は、ハロゲン系酸化剤及び安定化剤を水処理水系に使用した場合でも、水系(例えば、被処理水など)中の遊離ハロゲン濃度をできるだけ少なくする技術を提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。
本発明の好ましい実施形態について説明する。ただし、本発明は以下の好ましい実施形態に限定されず、本発明の範囲内で自由に変更することができるものである。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が限定されて解釈されることはない。また、各数値範囲の上限値と下限値は、所望により、任意に組み合わせることができる。
本発明の実施形態に係る逆浸透膜処理する方法は、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、被処理水に添加し、当該被処理水を逆浸透膜処理するものである。
また、本発明の別の実施形態に係る水系のバイオファウリングを抑制する方法は、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加するものである。
なお、「バイオファウリング(Biofouling)」とは、狭義には、水処理などに用いられる膜に微生物が繁茂し、バイオフィルムなどの微生物に由来する物質が、膜を目詰まりさせる現象を意味する。しかし、本発明において「バイオファウリング(Biofouling)」とは、膜を目詰まりさせる現象にとどまらず、冷却塔や紙パルプ製造工程などの水系における微生物汚れ(スライム)も含むものである。
また、本発明の別の実施形態に係る水系のバイオファウリングを抑制する方法は、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加するものである。
なお、「バイオファウリング(Biofouling)」とは、狭義には、水処理などに用いられる膜に微生物が繁茂し、バイオフィルムなどの微生物に由来する物質が、膜を目詰まりさせる現象を意味する。しかし、本発明において「バイオファウリング(Biofouling)」とは、膜を目詰まりさせる現象にとどまらず、冷却塔や紙パルプ製造工程などの水系における微生物汚れ(スライム)も含むものである。
<安定化剤>
本実施形態で用いる「安定化剤」は、後述するハロゲン系酸化剤と反応して、後述する結合ハロゲン(好適には、安定化結合ハロゲン)を生成できるものであれば、特に限定されず、好ましくは、アミノ基を有する化合物である。なお、本明細書において、アンモニア、第一級アミン又は第二級アミンから水素を除いた1価の官能基(-NH2、-NHR、-NRR’)を「アミノ基」という。
本実施形態で用いる「安定化剤」は、後述するハロゲン系酸化剤と反応して、後述する結合ハロゲン(好適には、安定化結合ハロゲン)を生成できるものであれば、特に限定されず、好ましくは、アミノ基を有する化合物である。なお、本明細書において、アンモニア、第一級アミン又は第二級アミンから水素を除いた1価の官能基(-NH2、-NHR、-NRR’)を「アミノ基」という。
前記安定化剤として、例えば、スルファミン酸又はその誘導体等のスルファミン酸化合物;5,5’-ジメチルヒダントイン等のヒダントイン;イソシアヌル酸;尿素;ビウレット;カルバミン酸メチル;カルバミン酸エチル;、アセトアミド、ニコチン酸アミド、メタンスルホンアミド及びトルエンスルホンアミド等のアミド化合物;マレイミド、コハク酸イミド及びフタルイミド等のイミド化合物;アラニン、グリシン、ヒスチジン、リシン、トレオニン、オルニチン、フェニルアラニン等のアミノ酸;メチルアミン、ヒドロキシルアミン、モルホリン、ピペラジン、イミダゾール及びヒスタミン、アミノメタンスルホン酸、タウリン等のアミン;アンモニア;硫酸アンモニウム等のアンモニウム塩等が挙げられる。当該安定化剤の例示は、安定化結合塩素を生成し易い塩素安定化剤の例示でもある。
これらから1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらから1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
前記安定化剤のうち、スルファミン酸化合物及び/又は有機窒化化合物(例えば、アミノ酸、アミド化合物等)が好ましい。より好ましくはスルファミン酸化合物であり、当該スルファミン酸化合物を用いることで、遊離塩素濃度を低減できる。当該スルファミン酸化合物を用いることより、適宜、逆浸透膜の劣化をより良好に抑制できること、また、適宜、水系の腐食をより良好に抑制することもできる。さらに、本実施形態であれば、適宜、結合ハロゲンに起因する効果をより良好に発揮させること(例えば、逆浸透膜のファウリングをより良好に防止できることなど)もできる。
前記スルファミン酸化合物としては、下記一般式[1]で表される化合物又はその塩が挙げられる。
R1R2NSO3H・・・[1]
(ただし、一般式[1]において、R1及びR2は、各々独立に、水素原子又は炭素数1~8の炭化水素である。)
前記炭素数1~8の炭化水素として、例えば置換基を有してもよい芳香族(より好適にはフェニル基)、置換基を有してもよいアルキル基(より好適にはメチル基)等が挙げられる。
(ただし、一般式[1]において、R1及びR2は、各々独立に、水素原子又は炭素数1~8の炭化水素である。)
前記炭素数1~8の炭化水素として、例えば置換基を有してもよい芳香族(より好適にはフェニル基)、置換基を有してもよいアルキル基(より好適にはメチル基)等が挙げられる。
前記一般式[1]で表されるスルファミン酸化合物としては、例えば、R1とR2がともに水素原子であるスルファミン酸のほかに、N-メチルスルファミン酸、N,N-ジメチルスルファミン酸、N-フェニルスルファミン酸等及びこれらの塩等が挙げられる。
前記化合物の塩は、一般的なものでよく、無機塩(アルカリ金属塩、アルカリ土類金属塩、鉄塩、亜鉛塩等の金属塩;アンモニウム塩等)又は有機塩(カルボン酸塩等)を挙げることができる。
前記化合物の無機塩の例示としては、例えば、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えば、カルシウム塩、ストロンチウム塩、バリウム塩等)、他の金属塩(マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等)、アンモニウム塩及びグアニジン塩等を挙げることができる。
前記化合物の無機塩の例示としては、例えば、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えば、カルシウム塩、ストロンチウム塩、バリウム塩等)、他の金属塩(マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等)、アンモニウム塩及びグアニジン塩等を挙げることができる。
前記スルファミン酸塩の具体例としては、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸カルシウム、スルファミン酸ストロンチウム、スルファミン酸バリウム、スルファミン酸鉄、スルファミン酸亜鉛、スルファミン酸アンモニウム等が挙げられる。
前記スルファミン酸化合物から1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
前記スルファミン酸化合物から1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<ハロゲン系酸化剤>
本実施形態で用いるハロゲン系酸化剤は、特に限定されないが、例えば塩素系、臭素系、及び臭素化合物と塩素系酸化剤との反応物等が挙げられる。当該ハロゲン系酸化剤は、塩素系又は臭素系等のいずれでもよいが、塩素系酸化剤が、本発明の効果を奏しやすい観点から、好ましい。
本実施形態で用いるハロゲン系酸化剤は、特に限定されないが、例えば塩素系、臭素系、及び臭素化合物と塩素系酸化剤との反応物等が挙げられる。当該ハロゲン系酸化剤は、塩素系又は臭素系等のいずれでもよいが、塩素系酸化剤が、本発明の効果を奏しやすい観点から、好ましい。
本実施形態で用いる塩素系酸化剤として、特に限定されないが、例えば、塩素ガス、二酸化塩素、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、過塩素酸又はその塩、塩素化イソシアヌル酸又はその塩等を挙げることができる。このうち、次亜塩素酸塩が、取り扱いが容易な観点及び本発明の効果を奏しやすい観点から、好ましい。これらから1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
塩素系酸化剤の塩形の具体例としては、例えば、次亜塩素酸アルカリ金属塩(例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等)、次亜塩素酸アルカリ土類金属塩(例えば、次亜塩素酸カルシウム、次亜塩素酸バリウム等)、亜塩素酸アルカリ金属塩(例えば、亜塩素酸ナトリウム、亜塩素酸カリウム等)、亜塩素酸アルカリ土類金属塩(例えば、亜塩素酸バリウム等)、他の亜塩素酸金属塩(例えば、亜塩素酸ニッケル等)、塩素酸アルカリ金属塩(例えば、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等)、塩素酸アルカリ土類金属塩(例えば、塩素酸カルシウム、塩素酸バリウム等)等を挙げることができる。
これらから1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、次亜塩素酸アルカリ金属塩、次亜塩素酸アルカリ土類金属塩は、海水等の塩化ナトリウム含有液を電解によって発生させたものであってもよい。
これらから1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、次亜塩素酸アルカリ金属塩、次亜塩素酸アルカリ土類金属塩は、海水等の塩化ナトリウム含有液を電解によって発生させたものであってもよい。
本実施形態で用いる臭素系酸化剤として、特に制限はないが、例えば、液体臭素、塩化臭素、臭素酸又はその塩、次亜臭素酸又はその塩などを挙げることができる。これらから1種又は2種以上選択して、単独で用いてもよく、2種以上を組み合わせて用いてもよい。当該塩は、一般的に用いることができるものであればよく、例えば、上述した塩(例えば、アルカリ金属塩など)を用いてもよい。
本実施形態では、ハロゲン系酸化剤としては、臭素化合物と塩素系酸化剤と反応物を用いることができる。ここで、臭素化合物としては臭化ナトリウム、臭化カリウム、臭化リチウム及び臭化水素酸、特に臭化ナトリウムを好適に用いることできる。そして、塩素系酸化剤としては上述した塩素系酸化剤、特に次亜塩素酸ナトリウムを好適に用いることができる。
本実施形態では、ハロゲン系酸化剤としては、臭素化合物と塩素系酸化剤と反応物を用いることができる。ここで、臭素化合物としては臭化ナトリウム、臭化カリウム、臭化リチウム及び臭化水素酸、特に臭化ナトリウムを好適に用いることできる。そして、塩素系酸化剤としては上述した塩素系酸化剤、特に次亜塩素酸ナトリウムを好適に用いることができる。
<結合ハロゲン>
結合ハロゲンは、次亜塩素酸などのハロゲン系酸化剤が、アンモニアやアミノ化合物と反応して生成した化合物で、遊離塩素などの遊離ハロゲンと比べ酸化力の弱い酸化剤である。
本実施形態で用いる結合ハロゲンは特に限定されるものでないが、後述する安定化結合塩素濃度及び/又は活性化結合塩素濃度して検出される化合物で、特に安定化結合塩素濃度として検出されるものがより好ましい。
なお、本実施形態においては、安定化結合塩素濃度として検出される結合ハロゲンを安定化結合塩素と記載する。
結合ハロゲンは、次亜塩素酸などのハロゲン系酸化剤が、アンモニアやアミノ化合物と反応して生成した化合物で、遊離塩素などの遊離ハロゲンと比べ酸化力の弱い酸化剤である。
本実施形態で用いる結合ハロゲンは特に限定されるものでないが、後述する安定化結合塩素濃度及び/又は活性化結合塩素濃度して検出される化合物で、特に安定化結合塩素濃度として検出されるものがより好ましい。
なお、本実施形態においては、安定化結合塩素濃度として検出される結合ハロゲンを安定化結合塩素と記載する。
<反応溶液>
本実施形態では、前記安定化剤と前記ハロゲン系酸化剤とを全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上の所定濃度になるように反応させた反応溶液を用いることが好適である。当該反応溶液は、前記安定化剤と前記ハロゲン系酸化剤とを、同時期に又は別々に、混合してもよい。当該反応溶液には、反応の際に生成された結合ハロゲンが含まれる。
本実施形態では、反応溶液中の遊離ハロゲン濃度を低くし、一方で反応溶液中の結合ハロゲンの生成効率を高くすることができる。結合ハロゲンの生成効率が高いことにより、結合ハロゲンに起因する効果を効率的に引き出すことができる。また、遊離ハロゲンは水系の還元物質によって分解されやすいため、結合ハロゲンを効果的に発揮させるためには、結合ハロゲンの生成効率を高くすることが好ましいので、本実施形態はこの観点からも有利な利点を有する。
本実施形態では、前記安定化剤と前記ハロゲン系酸化剤とを全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上の所定濃度になるように反応させた反応溶液を用いることが好適である。当該反応溶液は、前記安定化剤と前記ハロゲン系酸化剤とを、同時期に又は別々に、混合してもよい。当該反応溶液には、反応の際に生成された結合ハロゲンが含まれる。
本実施形態では、反応溶液中の遊離ハロゲン濃度を低くし、一方で反応溶液中の結合ハロゲンの生成効率を高くすることができる。結合ハロゲンの生成効率が高いことにより、結合ハロゲンに起因する効果を効率的に引き出すことができる。また、遊離ハロゲンは水系の還元物質によって分解されやすいため、結合ハロゲンを効果的に発揮させるためには、結合ハロゲンの生成効率を高くすることが好ましいので、本実施形態はこの観点からも有利な利点を有する。
本実施形態では、この全残留ハロゲン濃度が所定濃度以上になるように反応させた反応溶液を、水系に添加する。より具体的には、当該反応溶液を、水系の水(例えば、被処理水や循環水など)に添加する。当該反応溶液を水系(例えば、被処理水など)に添加した場合、当該水系(例えば、被処理水など)中の遊離ハロゲン濃度を遊離塩素濃度として0.2mg-Cl2/L未満に容易にすることができ、さらに遊離塩素濃度として当該遊離ハロゲン濃度を0.1mg-Cl2/L以下にすること、よりさらに0.05mg-Cl2/L以下(より好適には0.01mg-Cl2/L以下)にすることも可能である。また、反応溶液を水系(例えば、被処理水など)に添加し反応時間5分後に、当該水系(例えば、被処理水など)中の遊離塩素がDPD法にて検出されなくなることが望ましい。
本実施形態の反応溶液を水系(例えば、被処理水など)に添加することで水系(例えば、被処理水など)中の遊離ハロゲン濃度(例えば、遊離塩素濃度)が大幅に低減できる。このため、本実施形態の逆浸透膜処理を行う場合、その後給水される逆浸透膜の劣化を抑制でき、また、本実施形態の反応溶液は結合ハロゲンを含むため、当該反応溶液を水系(例えば、被処理水など)に添加することでその後給水される逆浸透膜のファウリングを抑制できる。また、このように本実施形態では遊離ハロゲン濃度が大幅に低減できることで、本実施形態の反応溶液を水系に添加した場合、水系(例えば、通水配管や流路など)の遊離ハロゲンを原因とする腐食をより良好に抑制することができる。より具体的には、本実施形態の反応溶液の添加によって、水系に備える設備や装置など(より具体的には、当該設備や装置などの通水配管や流路など)の腐食をより良好に抑制することができる。当該腐食は一般的に金属の腐食をいうが、本実施形態において、特に言及しない場合プラスチックなどの樹脂の劣化も含める意味であり、より好適には本実施形態において金属腐食の抑制である。また、本実施形態の反応溶液であれば、水系(例えば、通水配管や流路など)において、適宜、結合ハロゲンに起因する効果(例えば、逆浸透膜やその他水系のファウリング抑制などの効果)をより良好に発揮させることができる。
本実施形態において、前記反応溶液の全残留ハロゲン濃度が、少なくとも100mg-Cl2/L以上、好ましくは125mg-Cl2/L以上、より好ましくは150mg-Cl2/L以上になるように前記安定化剤と前記ハロゲン系酸化剤とを反応させる。当該反応溶液を水系(例えば、被処理水など)に添加することにより、適宜、逆浸透膜の劣化をより良好に抑制できる。また、本実施形態であれば、適宜、水系の腐食をより良好に抑制することもできる。また、本実施形態であれば、適宜、結合ハロゲンに起因する効果(例えば、逆浸透膜のファウリング抑制、水系のバイオファウリング抑制など)もより良好に発揮させることができる。
また、前記反応溶液の全残留ハロゲン濃度の上限値は特に限定されないが、使用するハロゲン系酸化剤や安定化剤の観点から、上限は100000mg-Cl2/L程度である。
また、前記反応溶液の全残留ハロゲン濃度の上限値は特に限定されないが、使用するハロゲン系酸化剤や安定化剤の観点から、上限は100000mg-Cl2/L程度である。
前記反応溶液の全残留ハロゲン濃度が100mg-Cl2/L以上になるように反応させることで、遊離ハロゲン比率(%)を全残留ハロゲンの10%以下に抑えることができる。これにより、適宜、逆浸透膜の劣化をより良好に抑制でき、また、適宜、水系の腐食をより良好に抑制できる。
さらに前記反応溶液の全残留ハロゲン濃度が150mg-Cl2/L以上になるように反応させることで、反応溶液中の全残留ハロゲンの95%以上を安定化結合塩素にすることができ、反応溶液中の遊離ハロゲン比率(%)は全残留ハロゲンの2%未満に抑えることができる。これにより、適宜、逆浸透膜の劣化をより良好に抑制できること、また、適宜、水系の腐食を良好に抑制することもできる。さらに、本実施形態であれば、適宜、結合ハロゲンに起因する効果(例えば、逆浸透膜のファウリング抑制、水系のバイオファウリング抑制など)をより良好に発揮させることができる。
さらに前記反応溶液の全残留ハロゲン濃度が150mg-Cl2/L以上になるように反応させることで、反応溶液中の全残留ハロゲンの95%以上を安定化結合塩素にすることができ、反応溶液中の遊離ハロゲン比率(%)は全残留ハロゲンの2%未満に抑えることができる。これにより、適宜、逆浸透膜の劣化をより良好に抑制できること、また、適宜、水系の腐食を良好に抑制することもできる。さらに、本実施形態であれば、適宜、結合ハロゲンに起因する効果(例えば、逆浸透膜のファウリング抑制、水系のバイオファウリング抑制など)をより良好に発揮させることができる。
本実施形態において、前記反応溶液中の遊離ハロゲン比率(%)は、全残留ハロゲンの10%以下が好ましく、より好ましくは8%以下、さらに好ましくは3%以下、より好ましくは2.5%以下、より好ましくは2.0%以下、より好ましくは1.5%以下、より好ましくは1.1%以下である。遊離塩素比率(%)の少ない反応溶液を水系(例えば、被処理水など)に用いることにより、適宜、逆浸透膜の劣化をより良好に抑制でき、また、適宜、水系の腐食をより良好に抑制できる。また、本実施形態によれば、適宜、結合ハロゲンに起因する効果(例えば、逆浸透膜のファウリング抑制、水系のバイオファウリング抑制など)をより良好に発揮させることができる。
本実施形態において、前記反応溶液中の安定化結合塩素比率(%)は、全残留ハロゲンの85%以上が好ましく、より好ましくは87%以上、さらに好ましくは95%以上、よりさらに好ましくは98%以上、より好ましくは99%以上である。当該安定化結合塩素比率(%)の高い反応溶液を水系(例えば、被処理水など)に用いることにより、適宜、逆浸透膜の劣化を抑制でき、また適宜、水系の腐食をより良好に抑制できる。また、本実施形態によれば、適宜、結合ハロゲンに起因する効果(例えば、逆浸透膜のファウリング抑制、水系のバイオファウリング抑制など)をより良好に発揮させることができる。
なお、全残留ハロゲン濃度、遊離ハロゲン濃度及び遊離ハロゲン比率(%)はそれぞれ全塩素濃度(全残留塩素濃度)、遊離塩素濃度、遊離塩素比率(%)として測定(算出)されるが、これら全残留塩素濃度、遊離塩素濃度、遊離塩素比率(%)と、活性化結合塩素濃度、安定化結合塩素濃度及び安定化結合塩素比率(%)とは、後述の<全残留塩素濃度測定方法>にて測定(算出)することができる。
前記反応溶液は、高濃度の安定化剤及び高濃度のハロゲン系酸化剤を混合して全残留塩素濃度が前記所定濃度となるように反応させたものが好適である。この両者を高濃度で混合させて得られた所定の全残留塩素濃度の反応溶液を、水系(例えば、被処理水など)に添加する前に水で希釈してもよい。
また、前記反応溶液は、前記安定化剤及び前記ハロゲン系酸化剤のいずれか又は両方を水で希釈し、当該いずれか又は両方を水で希釈した希釈液を用いて全残留塩素濃度が前記所定濃度となるように反応させたものが好適である。
また、前記反応溶液は、水希釈前の薬剤と水希釈後の薬剤とを混合して調製してもよいし、水希釈後の薬剤と水希釈後の薬剤とを混合して調製してもよし、水系(例えば、被処理水など)に添加する前に水希釈で調製してもよい。
また、前記反応溶液は、水希釈前の薬剤と水希釈後の薬剤とを混合して調製してもよいし、水希釈後の薬剤と水希釈後の薬剤とを混合して調製してもよし、水系(例えば、被処理水など)に添加する前に水希釈で調製してもよい。
前記希釈に用いる水として、例えば、脱塩水、純水、超高純水等が挙げられる。当該水は、工業用水、井水、水道水、雨水等から不純物除去処理(例えば、イオン交換処理、膜処理等)を行ったものが好ましい。このうち、脱塩水又は純水が、コスト及び本技術の効果の観点から、好ましい。
前記安定化剤中の有効成分濃度(好適にはスルファミン酸化合物濃度)は、特に限定されないが、その下限値は、反応溶液中の遊離塩素濃度をより減少できる観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、その上限値は、溶解度の観点から、30質量%程度である。
前記ハロゲン系酸化剤中の有効ハロゲン濃度は、特に限定されないが、その下限値は、反応溶液中の遊離ハロゲン濃度をより減少できる観点から、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上であり、その上限値は、溶解度・安定性などの観点から、好ましくは12質量%程度である。
前記安定化剤の使用量は、前記ハロゲン系酸化剤1molに対して、好ましくは1mol以上、より好ましくは1.1mol以上で反応させることである。前記安定化剤の使用量の上限値は、安定的に反応しやすくコストの観点から、前記ハロゲン系酸化剤1molに対して、好ましくは20mol以下、より好ましくは15mol以下、さらに好ましくは10mol以下、よりさらに好ましくは5mol以下である。当該安定化剤の使用量の範囲として、前記ハロゲン系酸化剤1molに対して、さらに好ましくは1~10molであり、よりさらに好ましくは1~3molである。
本実施形態において、前記安定化剤が、アルカリ金属水酸化物を含むアルカリとスルファミン酸化合物とを含むものであることが好ましい。この安定化剤を用いて前記ハロゲン系酸化剤と反応させて所定の全残留ハロゲン濃度にした反応溶液を得、この反応溶液を水系(例えば、被処理水など)に添加することが好適である。
前記安定化剤のアルカリとスルファミン酸化合物との含有割合が、N/アルカリ金属(モル比)で、好ましくは0.5~1.0であり、より好ましくは0.5~0.7である。なお、前記N/アルカリ金属(モル比)は、上述のスルファミン酸化合物のモル数と、アルカリ金属水酸化物により構成されるアルカリのモル数とに相当し、ここでスルファミン酸塩に含まれるアルカリ金属塩の量はアルカリとして加算される。
前記反応溶液のpHは、特に限定されず、アルカリであることが好ましく、より好ましくは11以上であり、さらに好ましくは13以上である。
前記反応溶液の温度は、特に限定されず、この下限値として好ましくは-5℃以上であり、また、この上限値として好ましくは80℃以下である。当該温度の範囲として、より好ましくは10~60℃、さらに好ましくは10~40℃である。本実施形態で用いる反応溶液は、一般的に被処理水を逆浸透膜処理する装置における被処理水の温度で実施することが可能であり、このことは本実施形態における利点であるが、この装置に本実施形態は特に限定されない。また、本実施形態で用いる反応溶液は、例えば、循環水系の装置に使用することも可能であり、また、適用する装置の温度条件に適用させて実施することも可能である。
なお、本実施形態では、本発明の効果を損なわない範囲で、前記安定化剤と前記ハロゲン系酸化剤以外に任意成分を使用してもよい。例えば、反応溶液に任意成分を混合してもよいし、反応溶液を添加した水系(例えば、被処理水など)に任意成分を混合してもよい。任意成分として、例えば、pH調整剤、アルカリ剤、分散剤、スケール防止剤、他の作用機構で働くスライムコントロール剤等が挙げられる。
前記アルカリ剤として、アルカリ金属塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩等)等が挙げられる。
前記アルカリ剤として、アルカリ金属塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩等)等が挙げられる。
<本実施形態における水系での使用方法:(例えば、被処理水を逆浸透膜処理する方法など)>
本実施形態における水系として、特に限定されないが、例えば、被処理水を処理する水処理水系、工業用水及び超純水の製造の水処理系、排水の回収・再利用の水処理系、海水やかん水の淡水化の水処理系、プラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系などからなる群より選択される1種又は2種以上の水系に適用させることも可能である。
本実施形態における水系として、特に限定されないが、例えば、被処理水を処理する水処理水系、工業用水及び超純水の製造の水処理系、排水の回収・再利用の水処理系、海水やかん水の淡水化の水処理系、プラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系などからなる群より選択される1種又は2種以上の水系に適用させることも可能である。
本実施形態の一例として、本実施形態の水系(より好適には水処理水系)では、前記反応溶液を被処理水に添加し、当該被処理水を逆浸透膜で処理する。この被処理水から逆浸透膜処理によって透過水(処理水)を得ることができる。これにより、工業用水及び超純水の製造、排水の回収・再利用、海水やかん水の淡水化等を行うことができる。
また、本実施形態の一例として、本実施形態の水系では、前記反応溶液を水系に添加し、結合ハロゲンに起因する効果を発揮させることができる。また、本実施形態の反応溶液は、適宜、水系のバイオファウリング及び/又は腐食を抑制することができる。また、本実施形態は、各種工場のプラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系等で用いることができる。
また、水系のうち、循環水系が、長時間にわたり循環させながら運転させることが多いことから、腐食の低減の観点からも、好適である。さらには、循環冷却水系(好適には開放循環冷却水系)等がより好適である。本実施形態は、腐食抑制の観点から、とりわけ、循環冷却水系等に対して、結合ハロゲンを効果的かつ長期にわたり添加することができる。
また、水系のうち、循環水系が、長時間にわたり循環させながら運転させることが多いことから、腐食の低減の観点からも、好適である。さらには、循環冷却水系(好適には開放循環冷却水系)等がより好適である。本実施形態は、腐食抑制の観点から、とりわけ、循環冷却水系等に対して、結合ハロゲンを効果的かつ長期にわたり添加することができる。
本実施形態の反応溶液を含む水系(例えば、被処理水など)は、遊離ハロゲン濃度を遊離塩素濃度として0.2mg-Cl2/L未満に抑えることができる。さらに、本実施形態によれば、前記反応溶液を含む水系(例えば、被処理水など)の遊離ハロゲン濃度を遊離塩素濃度として0.1mg-Cl2/L以下に抑えることが好適であり、より好適には0.00~0.05mg-Cl2/L程度に抑えることができる。
このように逆浸透膜を通過させる水系(例えば、被処理水など)中の遊離塩素濃度を従来の方法(具体的には後述する比較例1~2)よりも低減できるので、適宜、逆浸透膜の劣化をより良好に抑制でき、また、適宜、水系の腐食をより良好に抑制できる。さらに当該水系(例えば、被処理水など)中には安定化結合塩素を含むので、適宜、逆浸透膜のファウリングをより良好に抑制でき、また、適宜、結合ハロゲンに起因する効果をより良好に発揮させることもできる。また、当該結合ハロゲン(好適には安定化結合塩素)を含む反応溶液を水系(例えば、被処理水など)に添加して、水系(例えば、水処理水系など)に使用することも可能である。これによって、水系におけるバイオファウリングを抑制する効果及び殺菌・殺藻効果なども期待でき、当該水系として、例えば、水処理水系;冷却塔などの循環水系;紙パルプ製造などのプロセス水系などが挙げられる。また、当該水系(例えば、被処理水)中の安定化結合塩素は、従来のクロラミンTと比較して高い安定性が期待でき、また遊離塩素発生も少ないことが期待できる。
本実施形態で用いられる原水(例えば、被処理水)は、特に限定されず、例えば、有機物を含んだ産業用排水、海水・かん水、淡水(河川水、湖水等)、工業用水・市水等が挙げられる。
従って、本実施形態の逆浸透膜処理を用いる水処理方法は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度~低濃度TOC含有排水の回収・再利用のための水処理;海水・かん水の淡水化;工業用水や市水からの純水又は超純水製造;その他の分野の水処理に有効に適用することが可能である。本実施形態は、逆浸透膜をより劣化させやすい海水・かん水中の遊離臭素の生成も抑制できることから、海水・かん水の淡水化に適用することが好適である。
また、本実施形態の別の側面として、本実施形態を水系に用いる方法は、プラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系などに適用することが好適であり、より好適には循環冷却水系である。これにより、この水系の腐食を抑制することができ、また、適宜、本実施形態の反応溶液中の結合ハロゲンに起因する効果を水系にて発揮させることもできる。
また、本実施形態の別の側面として、本実施形態を水系に用いる方法は、プラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系などに適用することが好適であり、より好適には循環冷却水系である。これにより、この水系の腐食を抑制することができ、また、適宜、本実施形態の反応溶液中の結合ハロゲンに起因する効果を水系にて発揮させることもできる。
<逆浸透膜>
本実施形態に用いる逆浸透膜(以下、「RO膜」ともいう)は、特に限定されず、例えば、ポリアミド系、ポリエーテルスルホン系、ポリスルホン系、ポリイミド系、ポリエチレンイミン系、ポリエチレンオキシド系、酢酸セルロース系等が挙げられる。
このなかで、ポリアミド系RO膜は、イオン性物質の阻止率が高く、流束が大きいので好適に用いることができる利点を有する。特に芳香族ポリアミド系RO膜は、塩素に対する耐性が低いため、ハロゲン系酸化剤を用いた場合、遊離塩素が多く残存し膜劣化が生じやすい。本実施形態であれば、水系(例えば、被処理水など)中の遊離塩素濃度を非常に低減することができ、一方でRO膜のファウリング防止効果も得ることができるので、処理能力に優れているが耐塩性の低いポリアミド系RO膜を効率よく用いることができる。
本実施形態に用いる逆浸透膜(以下、「RO膜」ともいう)は、特に限定されず、例えば、ポリアミド系、ポリエーテルスルホン系、ポリスルホン系、ポリイミド系、ポリエチレンイミン系、ポリエチレンオキシド系、酢酸セルロース系等が挙げられる。
このなかで、ポリアミド系RO膜は、イオン性物質の阻止率が高く、流束が大きいので好適に用いることができる利点を有する。特に芳香族ポリアミド系RO膜は、塩素に対する耐性が低いため、ハロゲン系酸化剤を用いた場合、遊離塩素が多く残存し膜劣化が生じやすい。本実施形態であれば、水系(例えば、被処理水など)中の遊離塩素濃度を非常に低減することができ、一方でRO膜のファウリング防止効果も得ることができるので、処理能力に優れているが耐塩性の低いポリアミド系RO膜を効率よく用いることができる。
<反応溶液の用量及び用法>
本実施形態の反応溶液は、水系(例えば、被処理水など)中、好ましくは3~100mg/L、より好ましくは5~50mg/L、さらに好ましくは10~40mg/Lになるように水系(例えば、被処理水など)に添加することが好適である。当該添加量は、被処理水の場合が好適である。
本実施形態の反応溶液は、水系(例えば、被処理水など)中、好ましくは3~100mg/L、より好ましくは5~50mg/L、さらに好ましくは10~40mg/Lになるように水系(例えば、被処理水など)に添加することが好適である。当該添加量は、被処理水の場合が好適である。
本実施形態において前記反応溶液を水系(例えば、被処理水など)に添加する場合、水系(例えば、被処理水など)中の安定化結合塩素濃度が、下限値として好ましくは0.05mg-Cl2/L以上、より好ましくは0.1mg-Cl2/L以上、また上限値として好ましくは20mg-Cl2/L以下、より好ましくは5mg-Cl2/L以下になるように調整することが好適である。
本実施形態において前記反応溶液を水系(例えば、被処理水など)に添加する場合、当該水系(例えば、被処理水など)中の安定化結合塩素濃度の範囲が、好ましくは0.5~5mg-Cl2/L、より好ましくは1~2mg-Cl2/Lになるように調整することが好適である。当該添加量は、被処理水の場合が好適である。
また、本実施形態において前記反応溶液を水系(例えば、被処理水など)に添加した場合、当該水系(例えば、被処理水など)中の遊離ハロゲンが検出されないように調整することが好適である。当該添加は、被処理水の場合が好適である。
本実施形態において前記反応溶液を水系(例えば、被処理水など)に添加する場合、当該水系(例えば、被処理水など)中の安定化結合塩素濃度の範囲が、好ましくは0.5~5mg-Cl2/L、より好ましくは1~2mg-Cl2/Lになるように調整することが好適である。当該添加量は、被処理水の場合が好適である。
また、本実施形態において前記反応溶液を水系(例えば、被処理水など)に添加した場合、当該水系(例えば、被処理水など)中の遊離ハロゲンが検出されないように調整することが好適である。当該添加は、被処理水の場合が好適である。
本実施形態の反応溶液の添加は、膜処理を行う水系の場合、水系で膜処理(好適には逆浸透膜処理)を行う前であれば、特に限定されない(例えば、図2参照)。当該反応溶液は、水系(例えば、被処理水など)の取水口から膜処理(好適には逆浸透膜処理)の間に添加することが好ましい。当該反応溶液の添加場所として、例えば、取水口、凝集処理、固液分離処理、プレフィルター処理、逆浸透膜処理又はこれら各流路のいずれでもよい。
なお、前記反応溶液の添加方法は、特に限定されず、一般的に水処理水系で用いられる方法を採用することができ、両者が混合できればよく、水系(例えば、被処理水など)を前記反応溶液に添加してもよい。
より具体的な一例として、例えば、本実施形態であれば、水系(好適には、被処理水)中の結合ハロゲン(好適には安定化結合塩素)を高濃度にできるため、逆浸透膜処理よりも上流付近で前記反応溶液を添加でき、これより下流にて結合ハロゲンに起因する効果を発揮させることも可能である。
なお、前記反応溶液の添加方法は、特に限定されず、一般的に水処理水系で用いられる方法を採用することができ、両者が混合できればよく、水系(例えば、被処理水など)を前記反応溶液に添加してもよい。
より具体的な一例として、例えば、本実施形態であれば、水系(好適には、被処理水)中の結合ハロゲン(好適には安定化結合塩素)を高濃度にできるため、逆浸透膜処理よりも上流付近で前記反応溶液を添加でき、これより下流にて結合ハロゲンに起因する効果を発揮させることも可能である。
また、本実施形態の反応溶液を添加場所として、例えば、被処理水の取水口付近で前記反応溶液を添加することができる(図2参照)。
また、一例として、本実施形態であれば、被処理水中の遊離塩素濃度を大幅に低減できたため逆浸透膜処理の直前に添加することができる。これにより、逆浸透膜劣化を抑制しつつ、逆浸透膜処理直前の被処理水中の安定化結合塩素を高濃度にできるため、バイオファウリング抑制効果を効率よく高めることができる。この効果を得るため、逆浸透膜処理直前で、被処理水中の安定化結合塩素濃度を調整してもよい。
また、一例として、本実施形態であれば、被処理水中の遊離塩素濃度を大幅に低減できたため逆浸透膜処理の直前に添加することができる。これにより、逆浸透膜劣化を抑制しつつ、逆浸透膜処理直前の被処理水中の安定化結合塩素を高濃度にできるため、バイオファウリング抑制効果を効率よく高めることができる。この効果を得るため、逆浸透膜処理直前で、被処理水中の安定化結合塩素濃度を調整してもよい。
また、本実施形態の水系が循環水系の場合、本実施形態の反応溶液を添加する時期又は場所は、特に限定されず、結合ハロゲンに起因する効果を期待する場所に添加することができる。本実施形態において、好適には、冷却水系や蓄熱水系、集塵水系、スクラバー水系等を有する開放循環式装置等に適用することである。
本実施形態は、結合ハロゲン(好適には安定化結合塩素)を高濃度にできるので、本実施形態の反応溶液を水系に添加した下流では、水系の通水配管又は流路に付着する微生物又は生物等の付着(バイオファウリング)を防止することや殺菌・殺藻なども可能である。本実施形態であればこのように水系のバイオファウリングが抑制でき、さらに本実施形態であれば遊離ハロゲンをできるだけ少なくすることができるので、腐食を抑制することを目的として、水系(例えば、通水配管や流路など)に使用することもできる。
本実施形態の別の側面として、本実施形態の前記反応溶液の使用又は使用方法を提供することができ、当該使用目的として、例えば、水系のバイオファウリング抑制方法、水系の防食方法、又は水系の膜スケール防止方法等が挙げられる。また、本実施形態は、本実施形態の前記反応溶液を水系に添加することによって、水処理方法、バイオファウリング抑制方法、防食方法、又はスケール防止方法を提供することもできる。なお、上述した構成と重複する構成については適宜省略する。
<水処理装置>
本発明は、別の態様として、前記反応溶液製造装置、及びこれを備える水処理装置等を提供することも可能である。当該反応溶液製造装置及びこれを備える水処理装置は、上述した本実施形態の方法(好適には被処理水を逆浸透膜処理する方法)を行うことができるものである。当該逆浸透膜処理方法により、透過水(処理水)を得ることができる。なお、被処理水から分けられた濃縮水は水処理水系に戻すことも可能である。
また、当該反応溶液製造装置及びこれを備える水系装置(好適には循環水装置)は、適宜、結合ハロゲンに起因する効果(例えば、バイオファウリングの抑制など)を発揮させることができ、また、適宜、水系(好適は循環水系)の腐食を抑制することもできる。
本発明は、別の態様として、前記反応溶液製造装置、及びこれを備える水処理装置等を提供することも可能である。当該反応溶液製造装置及びこれを備える水処理装置は、上述した本実施形態の方法(好適には被処理水を逆浸透膜処理する方法)を行うことができるものである。当該逆浸透膜処理方法により、透過水(処理水)を得ることができる。なお、被処理水から分けられた濃縮水は水処理水系に戻すことも可能である。
また、当該反応溶液製造装置及びこれを備える水系装置(好適には循環水装置)は、適宜、結合ハロゲンに起因する効果(例えば、バイオファウリングの抑制など)を発揮させることができ、また、適宜、水系(好適は循環水系)の腐食を抑制することもできる。
本発明の実施形態に係る反応溶液製造装置は、
結合ハロゲンを含む反応溶液を製造する装置が好適であり、当該反応溶液製造装置は、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する装置がより好適である。
前記反応溶液は、逆浸透膜のファウリングを抑制するための反応溶液、又は、水系のバイオファウリングを抑制するための反応溶液が好適である。
結合ハロゲンを含む反応溶液を製造する装置が好適であり、当該反応溶液製造装置は、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する装置がより好適である。
前記反応溶液は、逆浸透膜のファウリングを抑制するための反応溶液、又は、水系のバイオファウリングを抑制するための反応溶液が好適である。
本発明の実施形態に係る水処理装置は、
安定化剤及びハロゲン系酸化剤を反応させて生成させた結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
前記全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上の反応溶液を添加した水系(好適には、被処理水)を逆浸透膜処理する逆浸透膜処理部と、
を有する装置が好適である。
安定化剤及びハロゲン系酸化剤を反応させて生成させた結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が、安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
前記全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上の反応溶液を添加した水系(好適には、被処理水)を逆浸透膜処理する逆浸透膜処理部と、
を有する装置が好適である。
本実施形態の一例を示し、図2を参照して、本発明を説明するが、本実施形態が、これに限定されるものではない。
前記制御部6は、上述した反応溶液中の全残留ハロゲン濃度になるように安定化剤及びハロゲン系酸化剤の配合を調整することが可能である。前記制御部6は、安定化剤とハロゲン系酸化剤とを反応させる反応溶液混合部9から、反応溶液中の全残留ハロゲン濃度の測定値(データ)を得ることができる。また、前記制御部6は、MF膜処理部及び/又はRO膜処理部、これらの直前又は直後の全残留ハロゲン濃度の測定値(データ)を得ることができる。当該全残留ハロゲン濃度を測定する装置(図示せず)は、公知の測定装置を用いてもよい。また、反応溶液混合部9から反応溶液又は水系(例えば、被処理水など)を採取して全残留ハロゲン濃度を測定し、その測定結果を制御部6に入力してもよい。
前記制御部6は、この全残留ハロゲン濃度の測定値に基づき、上述した所定の全残留ハロゲン濃度になるように、安定化剤の添加量及びハロゲン系酸化剤の添加量をそれぞれ安定化剤添加部7及びハロゲン系酸化剤添加部8に指令することができる。これにより、前記安定化剤添加部7から安定化剤が反応溶液混合部9に添加され、また前記ハロゲン系酸化剤添加部8からハロゲン系酸化剤が反応溶液混合部9に添加される。
前記制御部6は、必要に応じて、希釈するための水を、安定化剤、ハロゲン系酸化剤、又はこれら混合薬剤に、添加し調整することができる。
前記制御部6は、反応溶液混合部9から、前記反応溶液を水系(例えば、被処理水など)に添加するようにポンプや反応溶液添加部(図示せず)等に指令することができる。この添加場所は、逆浸透膜処理部2から水系(例えば、被処理水など)の取水口のいずれの場所であってもよい。また、前記制御部6は、水系(例えば、被処理水など)に対する前記反応溶液の添加量、添加タイミング、撹拌等を制御することも可能である。また、前記制御部6は、反応溶液添加後の系内の濃度が所定値になるように安定化剤の添加量及びハロゲン系酸化剤の添加量を調整することができる。また、前記制御部6は、前記反応溶液を水系(例えば、被処理水など)に連続的に又は非連続的(間欠的)に添加するように調整することができる。
前記制御部6は、反応溶液混合部9から、前記反応溶液を水系(例えば、被処理水など)に添加するようにポンプや反応溶液添加部(図示せず)等に指令することができる。この添加場所は、逆浸透膜処理部2から水系(例えば、被処理水など)の取水口のいずれの場所であってもよい。また、前記制御部6は、水系(例えば、被処理水など)に対する前記反応溶液の添加量、添加タイミング、撹拌等を制御することも可能である。また、前記制御部6は、反応溶液添加後の系内の濃度が所定値になるように安定化剤の添加量及びハロゲン系酸化剤の添加量を調整することができる。また、前記制御部6は、前記反応溶液を水系(例えば、被処理水など)に連続的に又は非連続的(間欠的)に添加するように調整することができる。
なお、本実施形態の方法を、前記反応溶液を製造する装置又は被処理水を逆浸透膜処理等を行うための装置(例えば、パーソナルコンピュータ、PLC等)におけるCPU等を含む制御部によって実現させることも可能である。また、本実施形態の方法を、記録媒体(不揮発性メモリ(USBメモリ等)、HDD、CD、ネットワーク、サーバ等)等を備えるハードウェア資源にプログラムとして格納し、前記制御部によって実現させることも可能である。
前記制御部によって、前記反応溶液を製造するシステム、又は前記反応溶液を製造し水系(例えば、被処理水など)に添加するように制御する逆浸透膜分離処理システム若しくは水系システム(例えば、水処理システムや循環水システムなど)を提供することも可能である。
なお、本実施形態を水系システムや循環水システムに適用する場合、通常の水処理装置や循環水装置に、本実施形態の製造装置を組み込むことで、本実施形態の方法を実行することができる。
前記制御部によって、前記反応溶液を製造するシステム、又は前記反応溶液を製造し水系(例えば、被処理水など)に添加するように制御する逆浸透膜分離処理システム若しくは水系システム(例えば、水処理システムや循環水システムなど)を提供することも可能である。
なお、本実施形態を水系システムや循環水システムに適用する場合、通常の水処理装置や循環水装置に、本実施形態の製造装置を組み込むことで、本実施形態の方法を実行することができる。
本実施形態における反応溶液製造装置は、反応溶液生成部10及び制御部6を備えることが好適である。
反応溶液生成部10は、安定化剤添加部7及びハロゲン系酸化剤添加部8、並びに、安定化剤及びハロゲン系酸化剤を混合して全残留ハロゲン濃度が所定濃度になるように反応溶液を生成する反応溶液混合部9を備えることが好適である。
前記反応溶液生成部10は、これら安定化剤添加部7、ハロゲン系酸化剤添加部8及び反応溶液混合部9を、前記制御部6からの指令によって制御してもよい。また前記反応溶液生成部10には、前記制御部6の指令を受ける第二制御部を有していてもよく、この第二制御部によって、安定化剤添加部7、ハロゲン系酸化剤添加部8及び反応溶液混合部9が制御されてもよい。
反応溶液生成部10は、安定化剤添加部7及びハロゲン系酸化剤添加部8、並びに、安定化剤及びハロゲン系酸化剤を混合して全残留ハロゲン濃度が所定濃度になるように反応溶液を生成する反応溶液混合部9を備えることが好適である。
前記反応溶液生成部10は、これら安定化剤添加部7、ハロゲン系酸化剤添加部8及び反応溶液混合部9を、前記制御部6からの指令によって制御してもよい。また前記反応溶液生成部10には、前記制御部6の指令を受ける第二制御部を有していてもよく、この第二制御部によって、安定化剤添加部7、ハロゲン系酸化剤添加部8及び反応溶液混合部9が制御されてもよい。
また、安定化剤添加部7及びハロゲン系酸化剤添加部8は、それぞれ安定化剤及びハロゲン系酸化剤を保存することが可能な槽であってもよく、又は通水配管等の流路であってもよい。これら薬剤、希釈水の各添加量及び各移送量は、ポンプや流量調整弁等で調整することができる。
また、反応溶液混合部9は、安定化剤及びハロゲン系酸化剤が混合可能な場所があればよく、例えば、通水配管等の流路や槽等が挙げられる。また、反応溶液混合部9には、撹拌等の混合装置を備えることが好ましい。これら薬剤、反応溶液、希釈水等の添加量及び移送量は、ポンプや流量調整弁等で調整することができる。
また、反応溶液混合部9は、安定化剤及びハロゲン系酸化剤が混合可能な場所があればよく、例えば、通水配管等の流路や槽等が挙げられる。また、反応溶液混合部9には、撹拌等の混合装置を備えることが好ましい。これら薬剤、反応溶液、希釈水等の添加量及び移送量は、ポンプや流量調整弁等で調整することができる。
本実施形態の別の態様として、安定化剤添加部7及びハロゲン系酸化剤添加部8のそれぞれの吐出口にポンプを設け、反応溶液混合物9を混合ラインとし当該混合ラインの入り口にキャッチ弁を備える。当該混合ラインには、両薬剤を混合できる装置が設けられていることが好適であり、例えばスタティックミキサー等が挙げられる。
前記制御部10の指令により、安定化剤添加部7及びハロゲン系酸化剤添加部8のそれぞれのポンプ吐出口から混合ラインに安定化剤及びハロゲン系酸化剤を移送する。前記制御部10の指令により、全残留ハロゲン濃度が所定以上になるように、キャッチ弁で両者の流量を調整する。両者が合流する混合ラインで両者を反応させて全残留ハロゲン濃度が所定以上で結合ハロゲンを含む反応溶液を生成する。そして、当該反応溶液を水系(例えば、被処理水など)に添加し、当該水系(例えば、被処理水など)を逆浸透膜にて処理する。これにより、透過水を得ることができる。当該反応溶液を用いることで、逆浸透膜の劣化を抑制しつつ、逆浸透膜のファウリングを抑制することができる。さらに、当該反応溶液を用いることで、適宜、水系のバイオファウリング抑制効果を得ることもできる。なお、当該バイオフィルムやスライムは、微生物(細菌、藻等)等によって生成されるものである。
前記制御部10の指令により、安定化剤添加部7及びハロゲン系酸化剤添加部8のそれぞれのポンプ吐出口から混合ラインに安定化剤及びハロゲン系酸化剤を移送する。前記制御部10の指令により、全残留ハロゲン濃度が所定以上になるように、キャッチ弁で両者の流量を調整する。両者が合流する混合ラインで両者を反応させて全残留ハロゲン濃度が所定以上で結合ハロゲンを含む反応溶液を生成する。そして、当該反応溶液を水系(例えば、被処理水など)に添加し、当該水系(例えば、被処理水など)を逆浸透膜にて処理する。これにより、透過水を得ることができる。当該反応溶液を用いることで、逆浸透膜の劣化を抑制しつつ、逆浸透膜のファウリングを抑制することができる。さらに、当該反応溶液を用いることで、適宜、水系のバイオファウリング抑制効果を得ることもできる。なお、当該バイオフィルムやスライムは、微生物(細菌、藻等)等によって生成されるものである。
本実施形態の装置又はシステムにより、本実施形態の遊離ハロゲンが大幅に低減されかつ結合ハロゲンを含む反応溶液を、水系(例えば、被処理水など)に添加することができ、これにより逆浸透膜の劣化を抑制しつつ、逆浸透膜のファウリング抑制効果、水系のスライム抑制効果などを得ることができる。
また、本実施形態に係る水処理システムは、純水製造システム、海水淡水化システム、排水処理システム等が挙げられる。また、本実施形態に係る水系装置は、特に限定されず、これら例示システムを有する純水製造装置や海水淡水化装置等の水処理系装置であってもよく、循環冷却水装置などの循環水系を有する装置であってもよい。
また、本実施形態に係る水処理システムは、純水製造システム、海水淡水化システム、排水処理システム等が挙げられる。また、本実施形態に係る水系装置は、特に限定されず、これら例示システムを有する純水製造装置や海水淡水化装置等の水処理系装置であってもよく、循環冷却水装置などの循環水系を有する装置であってもよい。
また、本技術は、以下の構成を採用することも可能である。
〔1〕 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、被処理水に添加し、当該被処理水を逆浸透膜処理する方法。
〔2〕 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加し、当該水系のバイオファウリングを抑制する方法。
〔3〕
前記安定化剤が、スルファミン酸化合物である、前記〔1〕又は〔2〕記載の方法。
〔4〕
前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させる、前記〔1〕~〔3〕記載の方法。
〔5〕
前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下である、前記〔1〕~〔4〕のいずれか記載の方法。
〔6〕
前記全残留ハロゲン濃度が125mg-Cl2/L以上である、前記〔1〕~〔5〕のいずれか記載の方法。
〔1〕 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、被処理水に添加し、当該被処理水を逆浸透膜処理する方法。
〔2〕 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加し、当該水系のバイオファウリングを抑制する方法。
〔3〕
前記安定化剤が、スルファミン酸化合物である、前記〔1〕又は〔2〕記載の方法。
〔4〕
前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させる、前記〔1〕~〔3〕記載の方法。
〔5〕
前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下である、前記〔1〕~〔4〕のいずれか記載の方法。
〔6〕
前記全残留ハロゲン濃度が125mg-Cl2/L以上である、前記〔1〕~〔5〕のいずれか記載の方法。
〔6〕
結合ハロゲンを含む反応溶液を製造する装置であり、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する製造装置。
〔7〕
前記結合ハロゲンを含む反応溶液が、逆浸透膜のファウリングを抑制するための反応溶液、又は水系のバイオファウリングを抑制するための反応溶液である、前記〔6〕記載の製造装置。前記製造装置は、逆浸透膜処理装置、又は循環冷却水装置に適用することが好適である。
〔8〕
前記安定化剤が、スルファミン酸化合物である、前記〔6〕又は〔7〕のいずれか記載の製造装置。
〔9〕
前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させる、前記〔6〕~〔8〕のいずれか記載の製造装置。
〔10〕
前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下である、前記〔6〕~〔9〕のいずれか記載の製造装置。
〔11〕
前記全残留ハロゲン濃度が125mg-Cl2/L以上である、前記〔6〕~〔10〕のいずれか記載の製造装置。
結合ハロゲンを含む反応溶液を製造する装置であり、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する製造装置。
〔7〕
前記結合ハロゲンを含む反応溶液が、逆浸透膜のファウリングを抑制するための反応溶液、又は水系のバイオファウリングを抑制するための反応溶液である、前記〔6〕記載の製造装置。前記製造装置は、逆浸透膜処理装置、又は循環冷却水装置に適用することが好適である。
〔8〕
前記安定化剤が、スルファミン酸化合物である、前記〔6〕又は〔7〕のいずれか記載の製造装置。
〔9〕
前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させる、前記〔6〕~〔8〕のいずれか記載の製造装置。
〔10〕
前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下である、前記〔6〕~〔9〕のいずれか記載の製造装置。
〔11〕
前記全残留ハロゲン濃度が125mg-Cl2/L以上である、前記〔6〕~〔10〕のいずれか記載の製造装置。
以下の実施例及び比較例等を挙げて、本発明の実施形態について説明をする。なお、本発明の範囲は実施例に限定されるものではない。
[実施例1:被処理水中の遊離塩素濃度]
酸化剤系薬剤と安定化剤を事前に混合してから系内に添加した際の塩素の結合状態を机上にて評価した。
<手順>
スルファミン酸濃度が20%以上であるスルファミン酸ナトリウム溶液を調製した。そこへ有効塩素濃度10%以上の次亜塩素酸ナトリウムを添加した。混合比は次亜塩素酸ナトリウム1mg-Cl2/L溶液に対してスルファミン酸として3mg/L以上とした。
これにより、安定化剤及び塩素系酸化剤を含む反応溶液を調製した。この安定化剤及び塩素系酸化剤を含む反応溶液の全残留塩素濃度は100mg-Cl2/L以上であった。そして、被処理水として500mg/L NaCl溶液を用いた。
500mg/L NaCl溶液に、調製5分後の上記反応溶液を濃度が20mg/Lとなるように添加した。スルファミン酸を添加してから5分後、及び60分後の残留塩素濃度をDPD法により測定した。
酸化剤系薬剤と安定化剤を事前に混合してから系内に添加した際の塩素の結合状態を机上にて評価した。
<手順>
スルファミン酸濃度が20%以上であるスルファミン酸ナトリウム溶液を調製した。そこへ有効塩素濃度10%以上の次亜塩素酸ナトリウムを添加した。混合比は次亜塩素酸ナトリウム1mg-Cl2/L溶液に対してスルファミン酸として3mg/L以上とした。
これにより、安定化剤及び塩素系酸化剤を含む反応溶液を調製した。この安定化剤及び塩素系酸化剤を含む反応溶液の全残留塩素濃度は100mg-Cl2/L以上であった。そして、被処理水として500mg/L NaCl溶液を用いた。
500mg/L NaCl溶液に、調製5分後の上記反応溶液を濃度が20mg/Lとなるように添加した。スルファミン酸を添加してから5分後、及び60分後の残留塩素濃度をDPD法により測定した。
<全残留塩素濃度の算出方法>
なお、全残留塩素濃度は以下の方法をもとに算出した。
全残留塩素濃度=遊離塩素濃度+活性化結合塩素濃度+安定化結合塩素濃度。
遊離塩素濃度:DPD法(ポケット残留塩素計、HACH社製)による遊離塩素濃度[ここで、DPD法による遊離塩素濃度は、遊離塩素測定用試薬であるDPD(Free)試薬による5~30秒後の塩素濃度測定結果(mg-Cl2/L)]。
活性化結合塩素濃度:遊離塩素測定用試薬であるDPD(Free)試薬による300秒後の塩素濃度測定結果(mg-Cl2/L)から、上記遊離塩素濃度(mg-Cl2/L)の測定結果を差し引いた値。
安定化結合塩素濃度:全塩素測定用試薬であるDPD(Total)試薬による180秒後の塩素濃度測定結果(mg-Cl2/L)から、遊離塩素測定用試薬であるDPD(Free)試薬による300秒後の塩素濃度測定結果(mg-Cl2/L)を差し引いた値。
遊離塩素比率(%)=(遊離塩素濃度/全残留塩素濃度)×100
安定化結合塩素比率(%)=(安定化結合塩素濃度/全残留塩素濃度)×100
なお、試験環境の温度は25℃とした。
なお、全残留塩素濃度は以下の方法をもとに算出した。
全残留塩素濃度=遊離塩素濃度+活性化結合塩素濃度+安定化結合塩素濃度。
遊離塩素濃度:DPD法(ポケット残留塩素計、HACH社製)による遊離塩素濃度[ここで、DPD法による遊離塩素濃度は、遊離塩素測定用試薬であるDPD(Free)試薬による5~30秒後の塩素濃度測定結果(mg-Cl2/L)]。
活性化結合塩素濃度:遊離塩素測定用試薬であるDPD(Free)試薬による300秒後の塩素濃度測定結果(mg-Cl2/L)から、上記遊離塩素濃度(mg-Cl2/L)の測定結果を差し引いた値。
安定化結合塩素濃度:全塩素測定用試薬であるDPD(Total)試薬による180秒後の塩素濃度測定結果(mg-Cl2/L)から、遊離塩素測定用試薬であるDPD(Free)試薬による300秒後の塩素濃度測定結果(mg-Cl2/L)を差し引いた値。
遊離塩素比率(%)=(遊離塩素濃度/全残留塩素濃度)×100
安定化結合塩素比率(%)=(安定化結合塩素濃度/全残留塩素濃度)×100
なお、試験環境の温度は25℃とした。
<結果・考察>
[被処理水に薬剤(反応溶液)添加した直後の残留塩素濃度結果(反応溶液添加後の被処理水)]
・遊離塩素濃度=0.01mg-Cl2/L
・活性化結合塩素濃度=0.00mg-Cl2/L
・安定化結合塩素濃度=1.26mg-Cl2/L
[被処理水に薬剤(反応溶液)添加した直後の残留塩素濃度結果(反応溶液添加後の被処理水)]
・遊離塩素濃度=0.01mg-Cl2/L
・活性化結合塩素濃度=0.00mg-Cl2/L
・安定化結合塩素濃度=1.26mg-Cl2/L
安定化剤及び塩素系酸化剤をそれぞれ高濃度で反応させたため、反応時間5分で反応溶液中の遊離塩素が検出されなくなった。
このことから、安定化剤と塩素系酸化剤とを全残留塩素濃度が100mg-Cl2/L以上になるように反応させて生成させた安定化結合塩素を含む反応溶液を用いれば、短時間で残留塩素が検出されることがなくなる。
よって、本発明の反応溶液の残留塩素は逆浸透膜を劣化させないレベルに十分に達していることから、当該反応溶液は、逆浸透膜劣化を抑制できる。さらに、当該反応溶液は安定化結合塩素を含むものであるから、逆浸透膜システムにおけるスライムを抑制して逆浸透膜のファウリングを防止することができる。
このことから、安定化剤と塩素系酸化剤とを全残留塩素濃度が100mg-Cl2/L以上になるように反応させて生成させた安定化結合塩素を含む反応溶液を用いれば、短時間で残留塩素が検出されることがなくなる。
よって、本発明の反応溶液の残留塩素は逆浸透膜を劣化させないレベルに十分に達していることから、当該反応溶液は、逆浸透膜劣化を抑制できる。さらに、当該反応溶液は安定化結合塩素を含むものであるから、逆浸透膜システムにおけるスライムを抑制して逆浸透膜のファウリングを防止することができる。
さらに、全残留塩素濃度48000mg/L以上になるように安定化剤及び塩素系酸化剤を含む反応溶液を調製した。この反応溶液を、水温5℃、20℃、40℃、50℃の500mg/L NaCl溶液(被処理水)に添加し混合した。反応溶液を添加した各水温の500mg/L NaCl溶液における遊離塩素濃度は、いずれも30秒以内に遊離塩素が検出されなくなった。
このことから、逆浸透膜処理装置で通常処理する水温においても、実施例1のような反応溶液を用いることで、短時間で残留塩素が検出されることがなくなる。よって、本発明の反応溶液は、通常逆浸透膜処理する水温において、問題なく利用することができる。
このことから、逆浸透膜処理装置で通常処理する水温においても、実施例1のような反応溶液を用いることで、短時間で残留塩素が検出されることがなくなる。よって、本発明の反応溶液は、通常逆浸透膜処理する水温において、問題なく利用することができる。
[比較例1及び2]
酸化剤系薬剤と安定化剤を別々で系内に添加した際の塩素の結合状態を机上にて評価した。
<手順>
ビーカーに、被処理水として、500mg/L NaCl溶液を用意した。
上記[実施例1]のような、予め安定化剤及び塩素系酸化剤を混合した混合溶液を用いずに、ぞれぞれ別々にNaCl溶液に添加し、安定化剤及び塩素系酸化剤をNaCl溶液に添加しながら全残留塩素濃度及びスルファミン酸濃度を調整した。
上記NaCl溶液に、次亜塩素酸ナトリウム溶液及びスルファミン酸ナトリウム溶液をこの順番で別々に、全残留塩素濃度が1mg-Cl2/L、スルファミン酸濃度が3mg/L以上となるように添加した。
スルファミン酸を添加してから、5分後及び60分後の残留塩素濃度をDPD法により測定した(計算法は実施例1と同様)。
試験環境の温度は25℃とした。
酸化剤系薬剤と安定化剤を別々で系内に添加した際の塩素の結合状態を机上にて評価した。
<手順>
ビーカーに、被処理水として、500mg/L NaCl溶液を用意した。
上記[実施例1]のような、予め安定化剤及び塩素系酸化剤を混合した混合溶液を用いずに、ぞれぞれ別々にNaCl溶液に添加し、安定化剤及び塩素系酸化剤をNaCl溶液に添加しながら全残留塩素濃度及びスルファミン酸濃度を調整した。
上記NaCl溶液に、次亜塩素酸ナトリウム溶液及びスルファミン酸ナトリウム溶液をこの順番で別々に、全残留塩素濃度が1mg-Cl2/L、スルファミン酸濃度が3mg/L以上となるように添加した。
スルファミン酸を添加してから、5分後及び60分後の残留塩素濃度をDPD法により測定した(計算法は実施例1と同様)。
試験環境の温度は25℃とした。
<結果・考察>
[比較例1:塩素系酸化剤添加次いでスルファミン酸添加の被処理水]
(1)塩素系酸化剤添加の被処理水にスルファミン酸添加から「5分後」の残留塩素濃度結果
・遊離塩素濃度=0.20mg-Cl2/L
・活性化結合塩素濃度=0.47mg-Cl2/L
・安定化結合塩素濃度=0.37mg-Cl2/L
(2)塩素系酸化剤添加の被処理水にスルファミン酸添加から「60分後」の残留塩素濃度結果
・遊離塩素濃度=0.20mg-Cl2/L
・活性化結合塩素濃度=0.29 mg-Cl2/L
・安定化結合塩素濃度=0.53 mg-Cl2/L
[比較例1:塩素系酸化剤添加次いでスルファミン酸添加の被処理水]
(1)塩素系酸化剤添加の被処理水にスルファミン酸添加から「5分後」の残留塩素濃度結果
・遊離塩素濃度=0.20mg-Cl2/L
・活性化結合塩素濃度=0.47mg-Cl2/L
・安定化結合塩素濃度=0.37mg-Cl2/L
(2)塩素系酸化剤添加の被処理水にスルファミン酸添加から「60分後」の残留塩素濃度結果
・遊離塩素濃度=0.20mg-Cl2/L
・活性化結合塩素濃度=0.29 mg-Cl2/L
・安定化結合塩素濃度=0.53 mg-Cl2/L
[比較例2:塩素系酸化剤添加次いで高濃度スルファミン酸添加の被処理水]
スルファミン酸濃度を、さらに1オーダー上げた「スルファミン酸27mg/L」を添加した際の残留塩素濃度結果(60分後)
・遊離塩素濃度=0.19mg-Cl2/L
・活性化結合塩素濃度=0.28mg-Cl2/L
・安定化結合塩素濃度=0.55mg-Cl2/L
スルファミン酸濃度を、さらに1オーダー上げた「スルファミン酸27mg/L」を添加した際の残留塩素濃度結果(60分後)
・遊離塩素濃度=0.19mg-Cl2/L
・活性化結合塩素濃度=0.28mg-Cl2/L
・安定化結合塩素濃度=0.55mg-Cl2/L
上記結果より、比較例1は遊離塩素0.2mg-Cl2/L程度が残留しており、RO膜を劣化させる恐れがあった。時間の経過によっても減少しきらず、系内で安定化剤を反応させることにより遊離塩素を低減することは難しい。スルファミン酸の濃度を大幅に上げても効果は限定的だった。
[実施例2:反応溶液の全残留塩素濃度]
安定化剤と塩素系酸化剤とを反応させて生成させた安定化結合塩素を含む反応溶液において、酸化剤系薬剤とその安定化剤を混合する際の全残留塩素濃度を変えた場合の塩素の結合状態を机上にて評価した。
<手順>
純水をビーカーに用意した。試験環境の温度は25℃とした。純水にスルファミン酸濃度が20%以上となるように調製したスルファミン酸ナトリウム溶液を添加した。このスルファミン酸を含む水溶液に有効塩素濃度10%以上の次亜塩素酸ナトリウムを添加した。混合比は次亜塩素酸ナトリウム1mg/L溶液に対してスルファミン酸として3mg/L以上となるようにした。これにより、安定化剤及び塩素系酸化剤を含む反応溶液を調製した。
調製した反応溶液を30秒混合後の残留塩素濃度をDPD法により測定した(計算法は実施例1と同様)。この操作を、純水量を変えながら繰り返し行った。これにより、希釈混合時の塩素の結合状態を調整し、安定化剤及び塩素系酸化剤を含む反応溶液の全残留塩素濃度が異なる反応溶液を調製した(表1及び図1参照)。
安定化剤と塩素系酸化剤とを反応させて生成させた安定化結合塩素を含む反応溶液において、酸化剤系薬剤とその安定化剤を混合する際の全残留塩素濃度を変えた場合の塩素の結合状態を机上にて評価した。
<手順>
純水をビーカーに用意した。試験環境の温度は25℃とした。純水にスルファミン酸濃度が20%以上となるように調製したスルファミン酸ナトリウム溶液を添加した。このスルファミン酸を含む水溶液に有効塩素濃度10%以上の次亜塩素酸ナトリウムを添加した。混合比は次亜塩素酸ナトリウム1mg/L溶液に対してスルファミン酸として3mg/L以上となるようにした。これにより、安定化剤及び塩素系酸化剤を含む反応溶液を調製した。
調製した反応溶液を30秒混合後の残留塩素濃度をDPD法により測定した(計算法は実施例1と同様)。この操作を、純水量を変えながら繰り返し行った。これにより、希釈混合時の塩素の結合状態を調整し、安定化剤及び塩素系酸化剤を含む反応溶液の全残留塩素濃度が異なる反応溶液を調製した(表1及び図1参照)。
<結果>
混合後の全残留塩素濃度ごとに、全残留塩素に占める安定化結合塩素及び遊離塩素の存在比率をまとめた結果を表1及び図1に示す。図1に示すのは、特に低濃度側のみである。
結果から、混合後の全残留塩素濃度が100mg-Cl2/L以上であれば、遊離塩素を全残留塩素の10%以内に抑えることができる。
よって、次亜塩素酸ナトリウムと安定化剤のどちらか若しくは両方が希釈して使用された際には、混合後の全残留塩素濃度が100mg-Cl2/L以上である必要があり、好ましくは125mg-Cl2/L以上、さらに好ましくは150mg-Cl2/L以上であることが望ましい。
なお、実施例2の反応溶液を、被処理水に対して調製5分後の上記反応溶液を濃度が20mg/Lとなるように添加した場合、遊離塩素濃度は0.00~0.05mg/L程度である。
混合後の全残留塩素濃度ごとに、全残留塩素に占める安定化結合塩素及び遊離塩素の存在比率をまとめた結果を表1及び図1に示す。図1に示すのは、特に低濃度側のみである。
結果から、混合後の全残留塩素濃度が100mg-Cl2/L以上であれば、遊離塩素を全残留塩素の10%以内に抑えることができる。
よって、次亜塩素酸ナトリウムと安定化剤のどちらか若しくは両方が希釈して使用された際には、混合後の全残留塩素濃度が100mg-Cl2/L以上である必要があり、好ましくは125mg-Cl2/L以上、さらに好ましくは150mg-Cl2/L以上であることが望ましい。
なお、実施例2の反応溶液を、被処理水に対して調製5分後の上記反応溶液を濃度が20mg/Lとなるように添加した場合、遊離塩素濃度は0.00~0.05mg/L程度である。
このことから、安定化剤と塩素系酸化剤とを全残留塩素濃度が100mg-Cl2/L以上になるように反応させて生成させた安定化結合塩素を含む反応溶液を用いれば、短時間で残留塩素が検出されることがなくなる。
よって、本発明の反応溶液の残留塩素は逆浸透膜を劣化させないレベルに十分に達していることから、当該反応溶液は、逆浸透膜劣化を抑制できる。さらに、当該反応溶液は安定化結合塩素を含むものであるから、逆浸透膜システムにおけるスライムを抑制して逆浸透膜のファウリングを防止することができる。
よって、本発明の反応溶液の残留塩素は逆浸透膜を劣化させないレベルに十分に達していることから、当該反応溶液は、逆浸透膜劣化を抑制できる。さらに、当該反応溶液は安定化結合塩素を含むものであるから、逆浸透膜システムにおけるスライムを抑制して逆浸透膜のファウリングを防止することができる。
[実施例3:安定化剤の使用割合]
酸化剤系薬剤と安定化剤の混合比率を変えた際の塩素の結合状態を机上にて評価した。
<手順>
純水をビーカーに用意した。試験環境の温度は25℃とした。純水にスルファミン酸濃度が20%以上となるように調製したスルファミン酸ナトリウム溶液を添加した。このスルファミン酸を含む水溶液に有効塩素濃度10%以上の次亜塩素酸ナトリウムを添加した。これにより、安定化剤及び塩素系酸化剤を含む反応溶液を調製した。
調製した反応溶液を30秒混合後の残留塩素濃度をDPD法により測定した(計算法は実施例1と同様)。この操作を、同残留塩素濃度(450mg-Cl2/L)でスルファミン酸量を変えながら繰り返し行った。これにより、塩素系酸化剤及び安定化剤の使用割合変更時の塩素状態を調整し、安定化剤及び塩素系酸化剤を含む反応溶液における塩素系酸化剤及び安定化剤の使用割合が異なる反応溶液を調製した(表2参照)。
酸化剤系薬剤と安定化剤の混合比率を変えた際の塩素の結合状態を机上にて評価した。
<手順>
純水をビーカーに用意した。試験環境の温度は25℃とした。純水にスルファミン酸濃度が20%以上となるように調製したスルファミン酸ナトリウム溶液を添加した。このスルファミン酸を含む水溶液に有効塩素濃度10%以上の次亜塩素酸ナトリウムを添加した。これにより、安定化剤及び塩素系酸化剤を含む反応溶液を調製した。
調製した反応溶液を30秒混合後の残留塩素濃度をDPD法により測定した(計算法は実施例1と同様)。この操作を、同残留塩素濃度(450mg-Cl2/L)でスルファミン酸量を変えながら繰り返し行った。これにより、塩素系酸化剤及び安定化剤の使用割合変更時の塩素状態を調整し、安定化剤及び塩素系酸化剤を含む反応溶液における塩素系酸化剤及び安定化剤の使用割合が異なる反応溶液を調製した(表2参照)。
<結果>
次亜塩素酸1molに対するスルファミン酸の添加量[mol]を表2に示す。結果から、次亜塩素酸1molに対して1.1mol以上のスルファミン酸が添加されていれば、全残留塩素の95%以上が安定化結合塩素となり、遊離塩素は被処理水中の2.0%未満に抑えることができていることがわかる。
よって、次亜塩素酸ナトリウムに対して安定化剤の添加量が少なく添加された際にも、次亜塩素酸に対してスルファミン酸を1.1モル倍以上添加されていれば、ほぼ全量が安定化結合塩素となった安定な成分を得ることができる。
次亜塩素酸1molに対するスルファミン酸の添加量[mol]を表2に示す。結果から、次亜塩素酸1molに対して1.1mol以上のスルファミン酸が添加されていれば、全残留塩素の95%以上が安定化結合塩素となり、遊離塩素は被処理水中の2.0%未満に抑えることができていることがわかる。
よって、次亜塩素酸ナトリウムに対して安定化剤の添加量が少なく添加された際にも、次亜塩素酸に対してスルファミン酸を1.1モル倍以上添加されていれば、ほぼ全量が安定化結合塩素となった安定な成分を得ることができる。
このことから、安定化剤と塩素系酸化剤とを全残留塩素濃度が100mg-Cl2/L以上になるように反応させて生成させた安定化結合塩素を含む反応溶液を調製する場合、安定化剤と塩素系酸化剤との使用割合を、塩素系酸化剤1モルに対して安定化剤と1.1モル倍以上にすることが、より好適である。
これにより、本発明の反応溶液は、逆浸透膜劣化をより良好に抑制できる。さらに、当該反応溶液はより良好に安定化結合塩素を含むことができるので、逆浸透膜システムにおけるスライムを抑制して逆浸透膜のファウリングをより良好に防止することができる。
これにより、本発明の反応溶液は、逆浸透膜劣化をより良好に抑制できる。さらに、当該反応溶液はより良好に安定化結合塩素を含むことができるので、逆浸透膜システムにおけるスライムを抑制して逆浸透膜のファウリングをより良好に防止することができる。
1 水処理水系;2 RO膜処理部(RO膜処理);3 凝集処理部(凝集処理);4 固液分離処理部(固液分離処理);5 MF膜処理部(プレフィルター処理);6 制御部;7 安定化剤添加部;8 ハロゲン系酸化剤添加部;9 反応溶液混合部;10 反応溶液生成部
Claims (8)
- 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、被処理水に添加し、当該被処理水を逆浸透膜処理する方法。
- 前記安定化剤が、スルファミン酸化合物である、請求項1記載の逆浸透膜処理方法。
- 前記安定化剤が、前記ハロゲン系酸化剤1molに対して1mol以上で反応させる、請求項1又は2記載の逆浸透膜処理方法。
- 前記反応溶液中の遊離ハロゲン比率(%)が、全残留ハロゲンの10%以下である、請求項1~3のいずれか1項記載の逆浸透膜処理方法。
- 前記全残留ハロゲン濃度が125mg-Cl2/L以上である、請求項1~4のいずれか1項記載の逆浸透膜処理方法。
- 結合ハロゲンを含む反応溶液を製造する装置であり、
安定化剤及びハロゲン系酸化剤を反応させて結合ハロゲンを含む反応溶液を生成させる生成部と、
前記反応溶液が安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上になるように調整する制御部と、
を有する製造装置。 - 前記結合ハロゲンを含む反応溶液が、逆浸透膜のファウリングを抑制するための反応溶液、又は水系のバイオファウリングを抑制するための反応溶液である、請求項6記載の製造装置。
- 安定化剤及びハロゲン系酸化剤を全残留ハロゲン濃度が全塩素濃度として100mg-Cl2/L以上となるように反応させて結合ハロゲンを生成させた反応溶液を、水系に添加し、水系のバイオファウリングを抑制する方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207029110A KR102494388B1 (ko) | 2018-04-26 | 2019-04-19 | 역침투막 처리 방법, 수계의 바이오파울링 억제 방법 및 그를 위한 장치 |
JP2019521865A JP6819781B2 (ja) | 2018-04-26 | 2019-04-19 | 逆浸透膜処理方法、水系のバイオファウリング抑制方法及びそのための装置 |
CN201980025782.5A CN111989298A (zh) | 2018-04-26 | 2019-04-19 | 反渗透膜处理方法、水系统的生物污染抑制方法及用于其的装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018085219 | 2018-04-26 | ||
JP2018-085219 | 2018-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208405A1 true WO2019208405A1 (ja) | 2019-10-31 |
Family
ID=68294648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016730 WO2019208405A1 (ja) | 2018-04-26 | 2019-04-19 | 逆浸透膜処理方法、水系のバイオファウリング抑制方法及びそのための装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6819781B2 (ja) |
KR (1) | KR102494388B1 (ja) |
CN (1) | CN111989298A (ja) |
TW (1) | TWI795558B (ja) |
WO (1) | WO2019208405A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7156572B1 (ja) * | 2021-06-03 | 2022-10-19 | 栗田工業株式会社 | 安定化ハロゲン製造装置及び安定化ハロゲン製造方法 |
WO2022254877A1 (ja) * | 2021-06-03 | 2022-12-08 | 栗田工業株式会社 | 安定化ハロゲン製造装置及び安定化ハロゲン製造方法 |
EP4282515A4 (en) * | 2021-01-20 | 2024-06-12 | Kurita Water Industries Ltd. | MEMBRANE SEPARATION PROCESS |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240001500A (ko) | 2022-06-27 | 2024-01-03 | 황수진 | 역삼투압 필터의 스케일 제거제 및 이를 이용한 세정방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003146817A (ja) * | 2001-08-28 | 2003-05-21 | Kurita Water Ind Ltd | 殺菌殺藻剤組成物、水系の殺菌殺藻方法及び殺菌殺藻剤組成物の製造方法 |
JP2003267811A (ja) * | 2002-03-14 | 2003-09-25 | Kurita Water Ind Ltd | スライム剥離剤、スライム剥離剤組成物およびスライム剥離方法 |
JP2006263510A (ja) * | 2005-03-22 | 2006-10-05 | Kurita Water Ind Ltd | 膜分離用スライム防止剤及び膜分離方法 |
JP2013010718A (ja) * | 2011-06-29 | 2013-01-17 | Hakuto Co Ltd | スライム剥離剤およびスライム剥離方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0698277B2 (ja) | 1987-10-14 | 1994-12-07 | 栗田工業株式会社 | 膜分離方法 |
KR101653230B1 (ko) * | 2010-03-31 | 2016-09-01 | 쿠리타 고교 가부시키가이샤 | 결합 염소제, 그 제조 및 사용 방법 |
TWI537046B (zh) * | 2011-07-06 | 2016-06-11 | 栗田工業股份有限公司 | 膜分離方法 |
CN104624055A (zh) * | 2013-11-12 | 2015-05-20 | 艺康美国股份有限公司 | 膜分离装置的生物粘泥抑制剂和抑制方法 |
WO2015170495A1 (ja) * | 2014-05-08 | 2015-11-12 | オルガノ株式会社 | ろ過処理システムおよびろ過処理方法 |
WO2016104356A1 (ja) * | 2014-12-25 | 2016-06-30 | オルガノ株式会社 | 分離膜のスライム抑制方法 |
-
2019
- 2019-04-19 CN CN201980025782.5A patent/CN111989298A/zh active Pending
- 2019-04-19 KR KR1020207029110A patent/KR102494388B1/ko active IP Right Grant
- 2019-04-19 JP JP2019521865A patent/JP6819781B2/ja active Active
- 2019-04-19 WO PCT/JP2019/016730 patent/WO2019208405A1/ja active Application Filing
- 2019-04-24 TW TW108114358A patent/TWI795558B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003146817A (ja) * | 2001-08-28 | 2003-05-21 | Kurita Water Ind Ltd | 殺菌殺藻剤組成物、水系の殺菌殺藻方法及び殺菌殺藻剤組成物の製造方法 |
JP2003267811A (ja) * | 2002-03-14 | 2003-09-25 | Kurita Water Ind Ltd | スライム剥離剤、スライム剥離剤組成物およびスライム剥離方法 |
JP2006263510A (ja) * | 2005-03-22 | 2006-10-05 | Kurita Water Ind Ltd | 膜分離用スライム防止剤及び膜分離方法 |
JP2013010718A (ja) * | 2011-06-29 | 2013-01-17 | Hakuto Co Ltd | スライム剥離剤およびスライム剥離方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4282515A4 (en) * | 2021-01-20 | 2024-06-12 | Kurita Water Industries Ltd. | MEMBRANE SEPARATION PROCESS |
JP7156572B1 (ja) * | 2021-06-03 | 2022-10-19 | 栗田工業株式会社 | 安定化ハロゲン製造装置及び安定化ハロゲン製造方法 |
WO2022254877A1 (ja) * | 2021-06-03 | 2022-12-08 | 栗田工業株式会社 | 安定化ハロゲン製造装置及び安定化ハロゲン製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6819781B2 (ja) | 2021-01-27 |
TW201945067A (zh) | 2019-12-01 |
TWI795558B (zh) | 2023-03-11 |
KR102494388B1 (ko) | 2023-02-06 |
JPWO2019208405A1 (ja) | 2020-04-30 |
KR20210005853A (ko) | 2021-01-15 |
CN111989298A (zh) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019208405A1 (ja) | 逆浸透膜処理方法、水系のバイオファウリング抑制方法及びそのための装置 | |
TWI597235B (zh) | Production method of hypobromous acid stabilized composition, hypobromous acid stabilized composition, and slime inhibition method of separation membrane | |
JP6533056B2 (ja) | ろ過処理システムおよびろ過処理方法 | |
JPWO2011125762A1 (ja) | 結合塩素剤、その製造および使用方法 | |
WO2016104356A1 (ja) | 分離膜のスライム抑制方法 | |
JP2016120457A (ja) | ろ過処理システムおよびろ過処理方法 | |
TW201827347A (zh) | 利用逆滲透膜的水處理方法及水處理裝置 | |
JP2023021278A (ja) | 逆浸透膜装置の運転方法 | |
JP6823401B2 (ja) | 低分子有機物含有水の処理方法および逆浸透膜の改質方法 | |
JP6682401B2 (ja) | 逆浸透膜を用いる水処理方法 | |
JP2015186773A (ja) | 造水方法および造水装置 | |
JP7250612B2 (ja) | 水系の殺菌方法、および水系のニトロソアミン化合物の除去方法 | |
JP7008470B2 (ja) | 逆浸透膜処理方法および逆浸透膜処理システム | |
JP2019063726A (ja) | 安定化ハロゲンを含む海水の生成方法 | |
WO2020136963A1 (ja) | 水系の殺菌方法、水系のニトロソアミン化合物の除去方法、および飲料水の製造方法 | |
JP7050414B2 (ja) | 逆浸透膜を用いる水処理方法 | |
JP7552938B2 (ja) | 水系の微生物汚染抑制方法 | |
JP7471143B2 (ja) | 水処理方法および水処理装置 | |
JP7141919B2 (ja) | 逆浸透膜処理方法、逆浸透膜処理システム、水処理方法、および水処理システム | |
JP6787429B2 (ja) | 水処理剤 | |
WO2015174136A1 (ja) | 遊離塩素含有排水の処理方法 | |
TW202333806A (zh) | 水系統的微生物污染抑制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019521865 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19793632 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19793632 Country of ref document: EP Kind code of ref document: A1 |