WO2019205709A1 - 显示面板、显示装置及检测方法 - Google Patents

显示面板、显示装置及检测方法 Download PDF

Info

Publication number
WO2019205709A1
WO2019205709A1 PCT/CN2018/125194 CN2018125194W WO2019205709A1 WO 2019205709 A1 WO2019205709 A1 WO 2019205709A1 CN 2018125194 W CN2018125194 W CN 2018125194W WO 2019205709 A1 WO2019205709 A1 WO 2019205709A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
crack
display panel
reset
reset signal
Prior art date
Application number
PCT/CN2018/125194
Other languages
English (en)
French (fr)
Inventor
周炟
张陶然
莫再隆
廖文骏
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2019547966A priority Critical patent/JP7293120B2/ja
Priority to EP18889949.6A priority patent/EP3786931B1/en
Priority to US16/473,120 priority patent/US11367391B2/en
Priority to KR1020197027470A priority patent/KR102249397B1/ko
Publication of WO2019205709A1 publication Critical patent/WO2019205709A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0245Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • Embodiments of the present disclosure relate to a display panel, a display device, and a detection method.
  • the thin film packaging process (TFE) is widely used.
  • the typical package defect that may be generated by the packaging process is package leakage, which causes the organic light emitting material to contact the external water vapor. , causing the organic luminescent material to fail.
  • the root cause of the package leak is the cracking of the film layer, which causes the package film to crack.
  • At least one embodiment of the present disclosure provides a display panel including a display area and a peripheral area surrounding the display area, wherein the display area is provided with pixel units arranged in an array, and the pixel unit includes a pixel driving circuit.
  • a crack detecting line is disposed in the peripheral region, and the crack detecting line is connected to a reset signal terminal of a pixel driving circuit of at least one pixel unit.
  • the pixel driving circuit includes a reset circuit having the reset signal end and a light emitting circuit connected to the reset circuit, and the reset circuit is configured to be detachable from the The crack detecting line receives the crack detecting signal to cause the light emitting circuit to emit light.
  • the pixel driving circuit further includes a driving circuit configured to control a driving current for driving the light emitting circuit to emit light.
  • the crack detecting line is disposed around the display area.
  • the crack detecting line includes a serpentine trace portion.
  • a plurality of the crack detecting lines are disposed in different regions in the peripheral region, and the plurality of crack detecting lines are respectively connected to different pixel units.
  • the reset signal terminal of the pixel drive circuit is disposed in different regions in the peripheral region, and the plurality of crack detecting lines are respectively connected to different pixel units.
  • the reset signal ends of the pixel driving circuits of the pixel units in at least one row are connected to the first reset signal line, the first reset signal line and the crack detecting line. connection.
  • the crack detecting line includes a first portion away from the display area and a second portion close to the display area, the first portion and the second portion are mutually In parallel, the first reset signal line is connected to the second portion of the crack detecting line.
  • each row of pixel units in addition to the at least one row of pixel units electrically connected to the crack detection line, each row of pixel units is correspondingly provided with a second reset signal line. And the second reset signal line is connected to a reset signal end of the pixel driving circuit of the pixel unit of the row.
  • the crack detecting line includes a crack detecting end disposed on one side of a bonding region in the peripheral region, and the crack detecting end is configured to receive a crack detecting signal
  • the first reset signal line is closer to the crack detecting end with respect to the second reset signal line.
  • a display panel further includes a reset common line, and the reset common line and the second reset signal line are connected.
  • the reset common line and the crack detecting end are connected.
  • the crack detecting line is disposed on a gate metal layer or a source/drain metal layer of a driving transistor of the pixel driving circuit.
  • At least one embodiment of the present disclosure also provides a display device including a display panel as provided by an embodiment of the present disclosure.
  • At least one embodiment of the present disclosure further provides a method for detecting a display panel provided by an embodiment of the present disclosure, including: providing, by the crack detection line, a reset signal end of a pixel driving circuit in the at least one pixel unit a crack detection signal; and observing whether the display panel has a dark line during display.
  • the detecting method provided by an embodiment of the present disclosure further includes: providing the reset signal end of a pixel unit not connected to the first reset signal line in a case where the display panel includes a first reset signal line Crack detection signal.
  • the detecting method provided by an embodiment of the present disclosure further includes: providing a reset control signal in a case where the pixel driving circuit includes a reset circuit having the reset signal end and a light emitting circuit connected to the reset circuit The reset circuit is turned on, and the crack detection signal is supplied to the light emitting circuit through the reset circuit.
  • FIG. 1 is a schematic view of a display panel in which a crack detecting line and a part of data lines are connected;
  • FIG. 2 is a schematic diagram of a pixel driving circuit in a data writing phase
  • FIG. 3 is a schematic view showing a dark line of crack detection at the electrical detection stage
  • FIG. 4 is a schematic view 1 of a display panel according to some embodiments of the present disclosure.
  • Figure 5 is a schematic view 2 of a display panel according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of still another display panel according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of still another display panel according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of still another display panel according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of still another display panel according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic view of a pixel driving circuit at the time of crack detection
  • FIG. 12 is a schematic diagram of another pixel driving circuit
  • Figure 13 is a schematic diagram of still another pixel driving circuit
  • FIG. 14 is a simulation result of crack detection of a display panel according to some embodiments of the present disclosure.
  • FIG. 15 is a simulation result of crack detection of a display panel according to some embodiments of the present disclosure.
  • FIG. 16 is a schematic diagram of a display device according to some embodiments of the present disclosure.
  • a display area 100 and a peripheral area 200 surrounding the display area 100 are provided.
  • pixel units 110 arranged in an array are arranged, and the peripheral area is used for layout.
  • the pixel unit 110 includes a pixel driving circuit, and for example, a pixel driving circuit of various appropriate types such as 7T1C (ie, 7 transistors T1 to T7 and one storage capacitor C1) shown in FIG. 2 can be employed.
  • a crack detecting line 300 is provided in the peripheral region 200, and the crack detecting line 300 is connected to a part of the data lines DL in the display panel 10 (only exemplarily illustrated in FIG. 1) The two data lines DL and the crack detection line 300 are connected).
  • the data writing transistor T2 and the switching transistor T3 are turned on according to the scanning signal received by the scanning signal terminal GATE, and the data signal is turned on.
  • Vdata is input from the data signal terminal DATA via the data line, and then written to the first node N1 through the data writing transistor T2, the second node N2, the driving transistor T1, the third node N3, and the switching transistor T3, and stored in the storage capacitor C1.
  • the illumination control transistors T5 and T6 in this stage are in an off state according to the illumination control signals received by the illumination control terminals EM1 and EM2 to prevent the illumination element D1 from emitting light; in the illumination phase, the illumination control transistors T5 and T6 are turned on, first The first voltage Vdd supplied from the voltage terminal VDD is applied to the source of the driving transistor T1, and the driving transistor T1 drives the light emitting element D1 to perform display of the corresponding gradation according to the data signal Vdata.
  • the magnitude of the drive current I i.e., the luminance of the light-emitting element D1 is directly related to the data signal Vdata.
  • the reset transistors T5 and T7 apply reset voltages from the reset signal terminal VINT to the first node N1 and the fourth node N4, respectively, according to reset control signals received by the reset terminals RST1 and RST2, whereby the pixel drive circuit can be initialized.
  • a crack detection signal (for example, data signal Vdata) can be input from one end of the crack detecting line 300, and after passing through the crack detecting line 300, reaches a data line connected to the crack detecting line 300. DL, thereby driving the pixel unit 110 connected to the data line DL to emit light.
  • the data line DL (not shown) which is not connected to the crack detecting line 300 also receives the same data signal as the crack detecting signal, thereby driving the pixel unit 110 connected to the data line DL to emit light.
  • the data line DL can only use a single-sided switch, and the crack detection line cannot be turned off during the electrical detection phase.
  • the electrical detection all the pixel units of the display panel need to be illuminated for detection. Since the crack detection line itself has an IR drop, the pixel unit connected to the crack detection line is prone to cracking when lighting at a low gray level.
  • Detect bright lines or dark lines
  • the crack detection bright line or dark line
  • the crack detection bright line is regarded as poorly displayed, resulting in a false detection. Further, crack detection tests were performed on a plurality of display panels.
  • the resistance change amount Rs of the crack detection line in the display panel in which the risk of package leakage occurred was on the order of 10 K ⁇ , but 10 K ⁇ .
  • the difference in current caused by the amount of resistance change of the magnitude is not sufficient to achieve the difference in brightness identifiable by the human eye.
  • the display panels numbered 3, 4, and 5 in Table 1 although there is a crack, it is not detected. This will result in a missed inspection and will have an impact on subsequent process stages.
  • the display panels numbered 6 and 7 can detect cracks normally when the resistance change amount Rs of the crack detection line reaches the order of 1 M ⁇ .
  • At least one embodiment of the present disclosure provides a display panel including a display area and a peripheral area surrounding the display area, wherein the display area is provided with pixel units arranged in an array, the pixel unit includes a pixel driving circuit, and crack detection is disposed in the peripheral area. a line, and the crack detecting line is connected to a reset signal end of the pixel driving circuit of the at least one pixel unit.
  • At least one embodiment of the present disclosure also provides a display device and a detection method corresponding to the above display panel.
  • the display panel, the display device and the detection method provided by at least one embodiment of the present disclosure can reduce the influence of the voltage drop on the crack detection line on the brightness during the electrical detection phase, and can also improve the detection rate of the crack in the peripheral region.
  • At least one embodiment of the present disclosure provides a display panel 10 including a display area 100 and a peripheral area 200 surrounding the display area 100, and a pixel arranged in an array in the display area 100, as shown in FIG.
  • the unit 110 and the peripheral area are used for arranging various lead wires, bonding driving chips, and sealing of the display panel.
  • the pixel units 110 are schematically illustrated in FIG. 4, and the pixel units are arranged in a row in the horizontal direction and arranged in a row in the vertical direction.
  • a bonding area 210 is also included in the peripheral area 200 on one side of the display panel 10, and the bonding area 210 can be used, for example, for the bonding of the flexible circuit board pads.
  • the following embodiments are the same, Let me repeat.
  • the pixel unit 110 includes a pixel driving circuit (not shown).
  • the pixel driving circuit may adopt the pixel driving circuit shown in FIG. 11 or FIG.
  • the disclosed embodiments include but are not limited thereto, and the pixel driving circuit may also adopt other forms of circuit structures as long as the driving current can be supplied to the light emitting element D1.
  • the crack detecting line 300 is provided in the peripheral region 200, and the crack detecting line 300 is connected to the reset signal terminal VINT of the pixel driving circuit of the at least one pixel unit 110.
  • the crack detection line 300 may be connected to the pixel unit 110 through the first reset signal line 400.
  • each row of pixel units 110 may be provided with a reset signal line, and the reset signal line and the reset signal terminal VINT of the pixel driving circuit in the row of pixel units 110 connection.
  • the reset signal line connected to the crack detecting line 300 is referred to as a first reset signal line 400
  • the other reset signal lines other than the first reset signal line 400 are referred to as a second reset signal line 500
  • the crack detecting end PCD may be provided on the side of the crack detecting line 300 close to the bonding region 210, and the crack detecting signal may be applied to the crack detecting line 300 through the crack detecting end PCD.
  • the first reset signal line 400 may be disposed on a side of the display panel 10 away from the crack detecting end PCD such that the crack detecting signal may pass through more peripheral regions 200 before reaching the pixel unit 110 through the crack detecting line 300, thereby causing cracks
  • the detection line 300 can detect more cracks present in the peripheral region 200.
  • the crack detecting line 300 in the peripheral region 200 of the display panel 10, and the crack detecting line 300 is connected to the reset signal terminal VINT of the pixel driving circuit of the pixel unit 110,
  • the crack detection signal can be applied to one end of the light-emitting element D1 (shown by a broken line with an arrow in FIG. 11) through the reset signal terminal VINT of the pixel drive circuit, so that the light-emitting element D1 can be driven.
  • the crack detection signal applied to the reset signal terminal VINT may be the reset signal Vint, and the reset signal Vint is initialized only in the reset phase, and the final driving of the light-emitting element D1 is known from the above. Since the magnitude of the current I is related to the data signal Vdata, the influence of the voltage drop on the crack detecting line 300 on the luminance of the light-emitting element D1 can be avoided in the electrical detection stage, so that the false detection rate due to the crack detecting line 300 can be reduced.
  • the crack detection signal applied to the reset signal terminal VINT can directly illuminate the light-emitting element D1 (for example, the drive transistor T1 is kept turned off at this time), which is already present at the time of crack evaluation.
  • the resistance change amount Rs of the crack detection line in the display panel of the package leakage risk is on the order of 10 K ⁇ , and the resistance change amount Rs on the order of 10 K ⁇ can make the drive current I flowing through the light-emitting element D1 significantly change with respect to the normal situation. Thereby, it is possible to detect whether or not cracks are present in the crack detecting line 300, that is, it is possible to increase the detection rate of cracks in the peripheral region.
  • crack detection may be performed in an electrical detection phase, for example, crack detection may be performed after other types of detection are completed, or may be interspersed in other types of detection.
  • the embodiments of the present disclosure do not limit this.
  • the pixel driving circuit may employ the pixel driving circuit shown in FIG. 11 or FIG. 12, for example, the pixel driving circuit includes the reset circuit 120 having the reset signal terminal VINT. And a light emitting circuit 130 coupled to the reset circuit 120, the reset circuit 120 being configured to receive the crack detection signal from the crack detecting line 300 to cause the light emitting circuit 130 to emit light.
  • the control driving circuit 140 is turned off and the reset circuit 120 is turned on, so that the crack detecting signal applied to the reset signal terminal VINT can directly drive the light emitting circuit 130 to emit light, thereby being able to be based on the brightness of the light emitting circuit 130. It is determined whether or not there is a defect such as a crack in the crack detecting line 300, that is, whether or not there is a defect such as a crack in the peripheral region 200 of the display panel 10.
  • the reset circuit 120 can be implemented as a seventh transistor T7 and a reset signal terminal VINT connected to one pole of the seventh transistor T7, and the light-emitting circuit 130 can be implemented as the light-emitting element D1.
  • the light emitting element D1 may adopt an organic light emitting diode (OLED) or a quantum dot light emitting diode (PLED), and the OLED may be of various types (bottom emission, top emission, etc.), and may emit red light and green according to requirements.
  • OLED organic light emitting diode
  • PLED quantum dot light emitting diode
  • Light, blue light, etc., embodiments of the present disclosure include, but are not limited to.
  • the pixel driving circuit further includes a driving circuit 140 configured to control a driving current I for driving the light emitting circuit 130 to emit light.
  • the control driving circuit 140 when performing electrical detection, the control driving circuit 140 is turned on, and the driving circuit 140 can drive and emit light according to the magnitude of the data signal Vdata, for example, performing low-gray and high-gray lighting tests respectively;
  • the control drive circuit 140 When the crack detection is performed, the control drive circuit 140 is turned off, so that there is no drive current from the drive circuit 140, and accordingly, the crack detection signal can directly drive the light-emitting circuit 130 to emit light through the reset circuit 120.
  • the driving circuit 140 may be implemented as the first transistor T1.
  • the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the storage capacitor C1 may be further included.
  • the gate of the second transistor T2 is connected to the scan signal terminal GATE to receive the gate scan signal;
  • the gate of the third transistor T3 is connected to the gate scan signal terminal GATE to receive the gate scan signal;
  • the first reset terminal RST1 is connected to receive the first reset control signal;
  • the gate of the fifth transistor T5 is connected to the first illumination control terminal EM1 to receive the first illumination control signal;
  • the EM2 is connected to receive a second lighting control signal;
  • the storage capacitor C1 is configured to store the data signal Vdata and the threshold voltage Vth of the first transistor T1.
  • the first reset terminal RST1 receives the first reset control signal, and controls the fourth transistor T4 to be turned on, so that the first node N1, that is, the gate of the first transistor T1 can be initialized.
  • the scan signal terminal GATE receives the gate scan signal, and controls the second transistor T2 and the third transistor T3 to be turned on, so that the data signal Vdata can be written by the second transistor T2, the first transistor T1, and the third transistor T3.
  • the first node N1 is entered and stored in the storage capacitor C1.
  • the second reset terminal RST2 receives the second reset control signal, and controls the seventh transistor T7 to be turned on, so that the fourth node N4 (ie, the anode terminal or the cathode terminal of the light-emitting element D1) can be reset.
  • the first illuminating control terminal EM1 receives the first illuminating control signal to control the fifth transistor T5 to be turned on
  • the second illuminating control terminal EM2 receives the second illuminating control signal to control the sixth transistor T6 to be turned on, thereby driving the illuminating The element D1 emits light.
  • the pixel driving circuit shown in FIG. 11 adopts a P-type transistor, and the light-emitting element D1 is located between the current output end of the driving transistor T1 and the second voltage terminal VSS (for example, the low-voltage end), and the reset circuit 120 and the light-emitting element D1 The anode terminal is connected;
  • the pixel driving circuit shown in FIG. 12 adopts an N-type transistor, and the light-emitting element D1 is located between the current input terminal of the driving transistor T1 and the first voltage terminal VDD (for example, the high voltage terminal), and the reset circuit 120 and The cathode ends of the light-emitting elements D1 are connected.
  • the pixel unit of the display panel of the embodiment of the present disclosure includes, but is not limited to, the pixel driving circuit shown in FIG. 11 and FIG. 12 , for example, the pixel driving circuit may also be mixed with a P-type transistor and an N-type transistor, may include a compensation circuit or may not include a compensation circuit or the like, comprising: a reset circuit having a reset signal terminal; and a light-emitting circuit connected to the reset circuit, the reset circuit being electrically connected to one pole of the light-emitting circuit, and the other pole of the light-emitting circuit being connected to the voltage terminal, so the reset circuit can be
  • the crack detecting line receives the crack detecting signal so that the light emitting circuit emits light, so that crack detection can be performed.
  • the crack detecting line 300 is disposed at least partially around the display area 100, for example, substantially completely around the display area 100.
  • a crack detecting line 300 may be disposed in the peripheral region 200 of the display panel 10, and the crack detecting line 300 is wound twice on the left and right sides of the display region 100.
  • a crack detecting end PCD is provided on the side of the crack detecting line 300 close to the bonding region 210, and the crack detecting signal can be applied through the crack detecting end PCD.
  • the first reset signal line 400 may be disposed on the side of the display panel 10 near the crack detecting end PCD, so that the crack detecting signal may pass through before reaching the pixel unit 110 through the crack detecting line 300.
  • the peripheral area 200 is large, so that the crack detecting line 300 can detect more cracks that may exist in the peripheral area 200, so that the detection rate of cracks in the peripheral area can be improved.
  • two crack detecting lines 300 may be disposed in the peripheral region 200 of the display panel 10, which intersect at one side of the display panel 10 but are insulated That is, each of the crack detecting lines 300 can surround the display panel 10 one turn.
  • the first reset signal line 400 may be disposed on the side of the display panel 10 near the crack detecting end PCD, so that the crack detecting signal may pass before reaching the pixel unit 110 through the crack detecting line 300. More peripheral regions 200 are formed so that the crack detecting line 300 can detect more cracks that may exist in the peripheral region 200, so that the detection rate of cracks in the peripheral region can be improved.
  • the crack detecting line 300 may further include a serpentine trace portion 310, for example, S-shaped, zigzag or bow-shaped, etc.
  • a serpentine trace portion 310 is included in each of the left and right sides of the crack detecting line 300, and embodiments of the present disclosure include but are not limited thereto.
  • more serpentine trace portions 310 may be included in the crack detection line 300, which is not limited in the present disclosure.
  • the crack detecting line 300 can pass through more peripheral regions 200 at the time of arrangement, so that the crack detecting line 300 can detect more Cracks may exist in the peripheral region 200, so that the detection rate of cracks in the peripheral region can be improved.
  • a plurality of crack detecting lines 300 are disposed in different regions in the peripheral region 200, and the plurality of crack detecting lines 300 are respectively connected to different pixel units 110.
  • the reset signal terminal VINT of the pixel driving circuit For example, in the example shown in FIG. 9, a crack detecting line 300 is respectively disposed on the left and right sides in the peripheral region 200, and the two crack detecting lines 300 are respectively connected to the reset of the pixel driving circuits of different pixel units.
  • the signal terminals VINT are, for example, connected to the reset signal terminals VINT of the pixel driving circuits of the pixel units of different rows, that is, the two crack detecting lines 300 are respectively connected to different first reset signal lines 400.
  • the pixel unit connected to the crack detecting line 300 on the left side at the time of performing crack detection is displayed as a dark line as compared with other pixel units connected to the second reset signal line 500.
  • the pixel unit connected to the crack detecting line 300 on the right side at the time of performing crack detection and other pixels connected to the second reset signal line 500 The unit is displayed as a dark line, so that the sub-area detection crack can be achieved.
  • the plurality of crack detecting lines 300 can be caused to detect whether different regions in the peripheral region 200 are respectively detected. Cracks exist so that the area where the crack is located can be located more quickly in the presence of cracks.
  • the reset signal terminal VINT of the pixel driving circuit of the pixel unit 110 in at least one row is connected to the first reset signal line 400, the first reset signal line 400 and the crack detecting line. 300 is directly connected, and the crack detection signal is applied to the first reset signal line 400 through the crack detecting line 300, so that the voltage of the first reset signal line 400 is affected by the crack detecting line 300.
  • three first reset signal lines 400 are provided, each of which is connected to the reset signal terminal VINT of the pixel driving circuit of the row of pixel units 110 (for clarity of illustration) Pixel unit 110) is not shown in 10.
  • the three first reset signal lines 400 may be adjacently disposed, that is, the three first reset signal lines 400 are respectively connected to the pixel units 110 of adjacent rows, for example, connected to the green sub-pixel units in the pixel units 110 of adjacent rows.
  • the embodiments of the present disclosure include, but are not limited to, for example, and may also be connected to sub-pixel units of other colors such as a red sub-pixel unit or a blue sub-pixel unit in the pixel unit 110 of an adjacent row.
  • the first reset signal line 400 is connected to the pixel unit 110 in at least one row, and the first reset signal line 400 is connected to the crack detecting line 300 in such a manner that when When the crack is generated in the crack detecting line 300, the pixel unit 110 connected to the crack detecting line 300 can form a dark line when the light is emitted, so that it is possible to directly detect whether or not the display panel 10 is cracked by observation.
  • first reset signal lines 400 and the plurality of first reset signal lines 400 are respectively connected to the pixel units 110 of adjacent rows, in this manner, when cracks occur in the crack detecting line 300, and cracks
  • the pixel units 110 of the plurality of adjacent rows connected to the detection line 300 may form adjacent plurality of dark lines when emitting light, thereby improving efficiency when observing whether or not the display panel has a dark line during display.
  • the first reset signal line 400 and the crack detecting line 300 are close to the display region 100.
  • the partial connection for example, is connected to the portion closest to the display area 100.
  • the crack detecting lines 300 are wound twice on the left and right sides of the display region 100, and the crack detecting line 300 includes the first portion (301) on the outer side away from the display region and On the inner side of the second portion 302 (see FIG.
  • the first portion 301 and the second portion 302 are parallel to each other, and the first reset signal line 400 and the crack detection line 300 are adjacent to the second portion of the display area 100. connection. Since the first reset signal line 400 and the crack detecting line 300 may need to be punctured when connected, the first portion of the crack detecting line 300 remote from the display area 100 is closer to the edge of the display panel 10, if the first reset signal line 400 and the crack detecting line The connection of the first portion away from the display area 100 in 300 is prone to cracks at the connected position, thereby affecting the yield of the display panel 10, and thus the first reset signal line 400 and the crack detection line 300 are close to the display area 100.
  • the two-part connection can improve the connection quality between the two and improve the detection accuracy.
  • each row of pixel units is correspondingly provided with a second reset signal line 500,
  • the second reset signal line 500 receives the reset signal Vint, and the second reset signal line 500 is connected to the reset signal terminal VINT of the pixel driving circuit of the row pixel unit 110 for resetting the light emitting elements in the pixel driving circuit during the display operation.
  • a voltage signal identical to the crack detection signal is applied to the reset signal terminal of the pixel drive circuit connected thereto, thereby driving the light-emitting element therein to emit light.
  • a reset common line 600 may be further included, the reset common line 600 and the second reset signal line 500 are connected, and the common line 600 and the crack detecting end PCD are reset. connection.
  • the crack detecting signal when the crack detecting signal is applied to the crack detecting line 300 through the crack detecting end PCD, the crack detecting signal can also be transmitted to the second reset signal line 500 through the reset common line 600 and the second reset signal line 500.
  • Pixel unit 110 when the crack detecting signal is applied to the crack detecting line 300 through the crack detecting end PCD, the crack detecting signal can also be transmitted to the second reset signal line 500 through the reset common line 600 and the second reset signal line 500.
  • the crack detecting line 300 includes a crack detecting end PCD disposed on one side of the bonding region 210 in the peripheral region 200, and the crack detecting end PCD is configured to receive a crack detecting signal, and the first reset signal line 400
  • the crack detection signal is applied to the crack detecting end PCD with respect to the second reset signal line 500, for example, by the probe contacting the crack detecting end PCD.
  • the crack detection signal can pass through more peripheral regions 200 before reaching the pixel unit 110 through the crack detecting line 300, so that the crack detecting line 300 can detect more cracks that may exist in the peripheral region 200, Thereby, the detection rate of cracks in the peripheral region can be improved.
  • the reset common line 600 and the second reset signal line 500 are connected, but are not connected to the crack detecting terminal PCD, but are connected to a separately provided common voltage signal terminal (not shown).
  • the crack detection signal applied from the crack detecting end PCD and the common voltage signal terminal apply the same signal.
  • the crack detecting line 300 is disposed in a certain metal layer in the circuit structure layer of the display panel, such as a gate metal layer of a driving transistor disposed in the pixel driving circuit (ie, The metal pattern layer where the gate is located) or the source/drain metal layer (ie, the metal pattern layer where the source and drain are located), etc., that is, formed by the same metal film and the same patterning process as the gate or source and drain of the driving transistor, for example, a crack
  • the material of the detection line 300 may be a metal such as a metal Mo or Mo alloy, a metal aluminum or an aluminum alloy or the like. Embodiments of the present disclosure are not limited to being formed in the above layers or formed using the above materials.
  • all of the pixel units 110 in the display panel 10 need to be illuminated for testing, for example, under the driving of the low grayscale and high grayscale data signals Vdata.
  • a reset signal Vint is applied through the crack detecting terminal PCD, and the reset signal Vint is transmitted to the first reset signal line 400 and the second reset signal line 500 through the crack detecting line 300 and the reset common line 600, respectively, and then passes through A reset signal line 400 and a second reset signal line 500 are transmitted to the pixel unit 110 of the corresponding row.
  • the pixel driving circuit in each of the pixel units 110 for example, as shown in FIG.
  • the reset signal Vint is applied to the pixel driving circuit through the reset signal terminal VINT, thereby completing the corresponding reset operation.
  • the data signal Vdata is input from the data signal terminal DATA, passes through the second transistor T2, the driving transistor T1, and the switching transistor T3, and is written into the first node N1, and stored in the storage capacitor C1;
  • the first voltage Vdd supplied from the first voltage terminal VDD is applied to the source of the driving transistor T1, and the driving transistor T1 drives the light emitting element D1 to perform display of the corresponding gray scale according to the data signal Vdata.
  • the magnitude of the drive current I is directly related to the data signal Vdata.
  • the reset signal Vint initializes the pixel driving circuit only in the reset phase, and it can be seen from the above that the magnitude of the final driving current I of the light-emitting element D1 is related to the data signal Vdata, the crack detecting line can be avoided in the electrical detection phase.
  • the influence of the voltage drop on 300 on the luminance of the light-emitting element D1 can reduce the false detection rate due to the crack detection line. For example, in the simulation result diagram shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the drive current I flowing through the light-emitting element D1
  • the solid line in the figure represents the drive of the low-gray data signal Vdata
  • crack detection The resistance change amount Rs of the line 300 is the drive current I at 1 ⁇ and 1 M ⁇
  • the broken line in the figure indicates the drive current when the resistance change amount Rs of the crack detection line 300 is 1 ⁇ and 1 M ⁇ driven by the high gray scale data signal Vdata. I. As can be seen from FIG.
  • the crack detecting line 300 flows through the light-emitting element D1 even if the resistance change amount Rs is 1 M ⁇ due to the presence of a voltage drop or a crack, regardless of whether the data signal Vdata of the low gray level or the high gray level is driven.
  • the variation of the drive current I is less than 1 nA, that is, the luminance of the light-emitting element D1 is hardly affected, so that the false detection rate due to the crack detection line can be reduced.
  • a crack detection signal is applied through the crack detecting end PCD, and the crack detecting signal is transmitted to the first reset signal line 400 and the second reset signal line 500 through the crack detecting line 300 and the reset common line 600, respectively, and then passes through A reset signal line 400 and a second reset signal line 500 are transmitted to the pixel unit 110 of the corresponding row.
  • the pixel driving circuit in each of the pixel units 110 for example, as shown in FIG.
  • the driving circuit 140 is turned off, the reset circuit 120 is turned on, and in this embodiment, the crack detecting signal is a high level signal (higher than The second voltage terminal VSS) establishes a forward voltage difference across the light-emitting circuit 130, so that the crack detection signal applied to the reset signal terminal VINT can directly drive the light-emitting circuit 130 to emit light, thereby being able to determine according to the brightness of the light-emitting circuit 130.
  • the crack detecting line 300 that is, whether or not cracks are present in the peripheral region 200 of the display panel 10.
  • the high level signal may be selected such that the light emitting element D1 emits a voltage signal of light having a gray scale of 127 (gray scale range of 0 to 255).
  • the horizontal axis represents time
  • the vertical axis represents the drive current I flowing through the light-emitting element D1
  • FIG. 15 shows that the resistance change amount Rs of the crack detection line 300 is 1 ⁇ , 10 k ⁇ , respectively.
  • drive current I at 50K ⁇ As can be seen from FIG.
  • the driving current I changes significantly, and the magnitude of the change is 1 ⁇ A, and the variation of the driving current I can be
  • the brightness of the light-emitting element D1 is significantly changed, so that the pixel unit row connected to the first reset signal line 400 is, for example, a dark line compared to other pixel unit lines connected to the second reset signal line 500, thereby completing Crack detection.
  • the potential of the crack detection signal applied to the reset signal terminal VINT is 4.5 V, applied to the scan signal terminal GATE, the first reset terminal RST1, the second reset terminal RST2, and the first The potentials of the light emission control terminal EM1 and the second light emission control terminal EM2 are both -7V, and the potentials applied to the first voltage terminal VDD, the second voltage terminal VSS, and the data signal terminal DATA are both 0V. Since the potential applied to the second reset terminal RST2 is -7V, the reset circuit 120 is turned on; the fourth transistor T4 is turned on due to the potential -7V applied to the first reset terminal RST1, and the crack detection signal passes through the reset signal terminal. VINT is applied, so the potential of the first node N1 is 4.5V, and the first transistor T1, that is, the driving circuit 140 is turned off.
  • the crack detecting signal when crack detection is performed, is a low level signal (below the first voltage terminal VDD), and is applied to the reset signal terminal VINT.
  • the potential of the crack detection signal is 0V, and the potential applied to the scanning signal terminal GATE, the first reset terminal RST1, the second reset terminal RST2, the light-emitting control terminal EM1, and the light-emitting control terminal EM2 is 7V, and is applied to the first voltage terminal VDD.
  • the potential is 4.5 volts, and the potential applied to the second voltage terminal VSS and the data signal terminal DATA is -4 V, whereby a forward voltage difference is established at both ends of the light-emitting element D1, so that the light-emitting element D1 can emit light.
  • the fourth transistor T4 may also be made when crack detection is performed.
  • T6 is turned on, so that the crack detecting signal can be applied to the light-emitting element D1 through the conductive path indicated by the dotted line with an arrow in Fig. 13, thereby completing the crack detection.
  • Some embodiments of the present disclosure also provide a display device 1 including a display panel 10 provided by an embodiment of the present disclosure, as shown in FIG.
  • the pixel unit 110 arranged in an array is disposed in the display area of the display panel 10.
  • the display device 1 further includes a gate driving circuit 20 electrically connected to the pixel unit 110 through a gate line GL for providing a gate scan signal to the pixel array.
  • the display device 1 further includes a data driving circuit 30 electrically connected to the pixel unit 110 through the data line DL for providing a data signal to the pixel array.
  • the display device 1 may be any product or component having a display function, such as a display, an OLED panel, an OLED TV, a mobile phone, a tablet, a notebook computer, a digital photo frame, a navigator, and the like.
  • Some embodiments of the present disclosure also provide a detection method that can be used for the display panel 10 provided by the embodiment of the present disclosure and the display device 1 including the display panel 10.
  • the detection method includes the following operations.
  • Step S100 providing a crack detection signal to the reset signal terminal VINT of the pixel driving circuit connected to the crack detecting line in the pixel unit 110 through the crack detecting line;
  • Step S200 Observe whether the display panel 10 has a dark line during the display.
  • a crack detection signal may be provided through the crack detection line 300.
  • the crack detection line 300 may pass through the first reset signal line 400 and the pixel unit 110.
  • the reset signal terminal VINT of the pixel drive circuit connected to the crack detection line is connected.
  • the above detection method further includes the following operations.
  • Step S300 providing a crack detection signal to the reset signal terminal VINT of the pixel unit 110 not connected to the first reset signal line 400.
  • step S300 is to supply a crack detection signal to the reset signal terminal VINT of the pixel unit 110 connected to the second reset signal line 500.
  • the second reset signal line 500 is connected to the reset common line 600 so that the crack detection signal can be supplied through the reset common line 600.
  • the above-described detecting method further includes the following operations.
  • Step S400 providing a reset control signal to turn on the reset circuit, and providing a crack detection signal to the light emitting circuit through the reset circuit.
  • step S400 a reset control signal is provided to turn on the reset circuit 120, the reset control signal can be applied to the second reset terminal RST2, and then the crack detection signal is turned on.
  • the reset circuit 120 is provided to the light emitting circuit 130.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种显示面板(10)、显示装置(1)及检测方法。显示面板(10)包括显示区域(100)和围绕显示区域(100)的周边区域(200),显示区域(100)中设置有呈阵列排布的像素单元(110),像素单元(110)包括像素驱动电路,周边区域(200)中设置有裂纹检测线(300),且裂纹检测线(300)和至少一个像素单元(110)的像素驱动电路的复位信号端(VINT)连接。显示面板(10)在电学检测阶段可以降低裂纹检测线(300)上的压降对亮度的影响,同时还可以提高周边区域(200)裂纹的检出率。

Description

显示面板、显示装置及检测方法
本申请要求于2018年4月26日递交的中国专利申请第201810385999.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示面板、显示装置及检测方法。
背景技术
在有机发光二极管(Organic Light Emitting Diode,OLED)显示产品中,广泛采用的是薄膜封装工艺(TFE),该封装工艺可能产生的典型的封装不良是封装漏气,其导致有机发光材料接触外界水汽,从而导致有机发光材料失效。封装漏气的根本原因是膜层出现裂纹,从而导致封装薄膜发生破裂。
在电学检测阶段,如果只是出现轻微膜层裂纹而未导致封装薄膜出现明显裂缝,那么在显示面板点亮时不会出现显示不良。但是,在经过长期使用或高温信赖性试验后,轻微的膜层裂纹可能会生长、发生恶化,从而可能出现有机发光材料失效甚至显示面板报废的风险,所以在电学检测阶段就需要将存在膜层裂纹的产品及时地甄选出来,以避免后续更大的材料浪费。
发明内容
本公开至少一实施例提供一种显示面板,包括显示区域和围绕所述显示区域的周边区域,所述显示区域中设置有呈阵列排布的像素单元,所述像素单元包括像素驱动电路,所述周边区域中设置有裂纹检测线,且所述裂纹检测线和至少一个像素单元的像素驱动电路的复位信号端连接。
例如,在本公开一实施例提供的显示面板中,所述像素驱动电路包括具有所述复位信号端的复位电路以及与所述复位电路连接的发光电路,所述复位电路被配置为可从所述裂纹检测线接收裂纹检测信号以使得所述发光电路发光。
例如,在本公开一实施例提供的显示面板中,所述像素驱动电路还包括驱动电路,所述驱动电路被配置为控制用于驱动所述发光电路发光的驱动电流。
例如,在本公开一实施例提供的显示面板中,所述裂纹检测线围绕所述显示区域设置。
例如,在本公开一实施例提供的显示面板中,所述裂纹检测线包括蛇形走线部分。
例如,在本公开一实施例提供的显示面板中,在所述周边区域中的不同区域中设置有多条所述裂纹检测线,且多条所述裂纹检测线分别连接至不同的像素单元的像素驱动电路的复位信号端。
例如,在本公开一实施例提供的显示面板中,至少一行中的像素单元的像素驱动电路的复位信号端都与第一复位信号线连接,所述第一复位信号线与所述裂纹检测线连接。
例如,在本公开一实施例提供的显示面板中,所述裂纹检测线包括远离所述显示区域的第一部分和接近所述显示区域的第二部分,所述第一部分和所述第二部分彼此平行,所述第一复位信号线和所述裂纹检测线的第二部分连接。
例如,在本公开一实施例提供的显示面板中,所述显示区域中,除与所述裂纹检测线电连接的所述至少一行像素单元外,每一行像素单元对应设置有第二复位信号线,且所述第二复位信号线和本行像素单元的像素驱动电路的复位信号端连接。
例如,在本公开一实施例提供的显示面板中,所述裂纹检测线包括设置在所述周边区域中的邦定区域一侧的裂纹检测端,所述裂纹检测端被配置为接收裂纹检测信号,所述第一复位信号线相对于所述第二复位信号线更接近于所述裂纹检测端。
例如,本公开一实施例提供的显示面板还包括复位公共线,所述复位公共线和所述第二复位信号线连接。
例如,在本公开一实施例提供的显示面板中,所述复位公共线和所述裂纹检测端连接。
例如,在本公开一实施例提供的显示面板中,所述裂纹检测线设置在所 述像素驱动电路的驱动晶体管的栅极金属层或源漏金属层。
本公开至少一实施例还提供一种显示装置,包括如本公开的实施例提供的显示面板。
本公开至少一实施例还提供一种用于本公开的实施例提供的显示面板的检测方法,包括:通过所述裂纹检测线向所述至少一个像素单元中的像素驱动电路的复位信号端提供裂纹检测信号;以及观察所述显示面板在显示过程中是否存在暗线。
例如,本公开一实施例提供的检测方法还包括:在所述显示面板包括第一复位信号线的情形下,向非连接到所述第一复位信号线的像素单元的复位信号端提供所述裂纹检测信号。
例如,本公开一实施例提供的检测方法还包括:在所述像素驱动电路包括具有所述复位信号端的复位电路以及与所述复位电路连接的发光电路的情形下,提供复位控制信号使所述复位电路导通,通过所述复位电路向所述发光电路提供所述裂纹检测信号。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种裂纹检测线和部分数据线连接的显示面板的示意图;
图2为一种像素驱动电路在数据写入阶段时的示意图;
图3为在电学检测阶段出现裂纹检测暗线的示意图;
图4为本公开的一些实施例提供的一种显示面板的示意图1;
图5为本公开的一些实施例提供的一种显示面板的示意图2;
图6为本公开的一些实施例提供的另一种显示面板的示意图;
图7为本公开的一些实施例提供的再一种显示面板的示意图;
图8为本公开的一些实施例提供的再一种显示面板的示意图;
图9为本公开的一些实施例提供的再一种显示面板的示意图;
图10为本公开的一些实施例提供的又一种显示面板的示意图;
图11为一种像素驱动电路在裂纹检测时的示意图;
图12为另一种像素驱动电路的示意图;
图13为又一种像素驱动电路的示意图;
图14为本公开的一些实施例提供的显示面板进行裂纹检测的仿真结果图1;
图15为本公开的一些实施例提供的显示面板进行裂纹检测的仿真结果图2;以及
图16为本公开的一些实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如图1所示,在一种显示面板10中,包括显示区域100和围绕显示区域100的周边区域200,在显示区域100中设置有呈阵列排布的像素单元110,周边区域则用于布设各种引线、邦定驱动芯片以及实现显示面板的密封等。像素单元110包括像素驱动电路,例如可以采用各种适当类型,例如图2中所示的7T1C(即7个晶体管T1~T7和1个存储电容C1)的像素驱动电路。
在图1所示的显示面板10中,在周边区域200中设置有裂纹检测线300,该裂纹检测线300与显示面板10中的部分数据线DL连接(图1中仅示例性地示意出了两条数据线DL和裂纹检测线300连接)。以图2所示的像素驱动电路为例,在进行显示驱动时,例如在数据写入阶段中,数据写入晶体管T2和开关晶体管T3根据扫描信号端GATE接收的扫描信号而导通,数据信号Vdata经数据线从数据信号端DATA输入,再经过数据写入晶体管T2、第二节点N2、驱动晶体管T1、第三节点N3和开关晶体管T3后写入第一节点N1,存储在存储电容C1中,并且此阶段中发光控制晶体管T5和T6根据发光控制端EM1和EM2接收的发光控制信号处于截止状态,以避免发光元件D1发光;在发光阶段中,发光控制晶体管T5和T6导通,第一电压端VDD提供的第一电压Vdd被施加至驱动晶体管T1的源极,并且驱动晶体管T1根据数据信号Vdata驱动发光元件D1进行相应灰度的显示。具体地,从第一电压端VDD至第二电压端VSS,并且流经驱动晶体管T1和发光元件D1的驱动电流为I=K*(Vdata-Vdd) 2,这里K为一常数值,可以看出在第一电压Vdd不变的情况下,驱动电流I的大小(即发光元件D1的亮度)和数据信号Vdata直接相关。此外,复位晶体管T5和T7根据复位端RST1和RST2接收的复位控制信号,从复位信号端VINT将复位电压分别施加至第一节点N1和第四节点N4,由此可将像素驱动电路初始化。
如图1所示,在进行裂纹检测时,裂纹检测信号(例如数据信号Vdata)可以从裂纹检测线300的一端输入,经过裂纹检测线300的传输后到达与该裂纹检测线300连接的数据线DL,从而驱动与该数据线DL连接的像素单元110进行发光。同时,没有与裂纹检测线300连接的数据线DL(图中未示出)也接收与该裂纹检测信号相同的数据信号,从而驱动与该数据线DL连接的像素单元110进行发光。当周边区域200中出现膜层裂纹并导致裂纹检测线300出现裂纹时,会增加裂纹检测线300的电阻,从而使与裂纹检测线300连接的数据线DL上的数据信号Vdata写入不足,例如没有信号写入或者数据信号的电压幅值降低,从而与裂纹检测线300连接的两列像素单元110在发光时与其余列的像素单元相比会呈现出数条亮线或暗线,从而可以实现裂纹检测。
但随着显示产品的不断更新换代,其分辨率越来越高,对窄边框的要求 也越来越高。在窄边框的显示产品中,数据线DL只能使用单侧开关,在电学检测阶段无法将裂纹检测线关断。在电学检测时需要将显示面板的全部像素单元点亮进行检测,由于裂纹检测线本身即存在压降(IR Drop),所以与裂纹检测线连接的像素单元在低灰阶点亮时容易出现裂纹检测亮线(或暗线)(PCD-X-Line)。如图3所示,该裂纹检测亮线(或暗线)会被当作显示不良,从而出现误检。另外,针对多个显示面板进行裂纹检测试验,结果如表1所示,在裂纹评价时,已存在封装漏气风险的显示面板中的裂纹检测线的电阻变化量Rs在10KΩ量级,但10KΩ量级的电阻变化量造成的电流差异不足以达到人眼可识别的亮度差异,例如,如表1中编号为3、4、5的显示面板所示,虽然存在裂纹但并没有被检出,这将会造成漏检,从而会对后续的工艺阶段造成影响。例如,如表1中编号为6、7的显示面板,当裂纹检测线的电阻变化量Rs达到1MΩ的量级时,可以正常检出裂纹。
表1
显示面板编号 是否存在裂纹 是否检出裂纹 裂纹检测线电阻变化量Rs
1 无裂纹 22.1KΩ
2 无裂纹 28.2KΩ
3 有裂纹 21.1KΩ
4 有裂纹 27.8KΩ
5 有裂纹 29.8KΩ
6 有裂纹 239.3MΩ
7 有裂纹 1035MΩ
本公开至少一实施例提供一种显示面板,包括显示区域和围绕显示区域的周边区域,显示区域中设置有呈阵列排布的像素单元,像素单元包括像素驱动电路,周边区域中设置有裂纹检测线,且裂纹检测线和至少一个像素单元的像素驱动电路的复位信号端连接。
本公开至少一实施例还提供对应于上述显示面板的显示装置以及检测方法。
本公开至少一实施例提供的显示面板、显示装置及检测方法,在电学检测阶段可以降低裂纹检测线上的压降对亮度的影响,同时还可以提高周边区域裂纹的检出率。
下面结合附图对本公开的实施例及其示例进行详细说明。
本公开的至少一个实施例提供一种显示面板10,如图4所示,该显示面板10包括显示区域100和围绕显示区域100的周边区域200,显示区域100中设置有呈阵列排布的像素单元110,周边区域则用于布设各种引线、邦定驱动芯片以及实现显示面板的密封等。需要说明的是,图4中仅示意性地示出了部分像素单元110,图中像素单元在水平方向上排布成行,在竖直方向上排布成列。例如,在位于显示面板10的一侧的周边区域200中还包括邦定区域210,该邦定区域210例如可以用于柔性电路板焊盘的邦定,以下各实施例均与此相同,不再赘述。
例如,如图5所示,在该显示面板10中,像素单元110包括像素驱动电路(图中未示出),例如像素驱动电路可以采用图11或图12中所示的像素驱动电路,本公开的实施例包括但不限于此,像素驱动电路还可以采用其它形式的电路结构,只要是可以给发光元件D1提供驱动电流即可。例如,在周边区域200中设置有裂纹检测线300,且裂纹检测线300和至少一个像素单元110的像素驱动电路的复位信号端VINT连接。
例如,在一个示例中,裂纹检测线300可以通过第一复位信号线400与像素单元110连接。在本公开的一些实施例提供的显示面板10中,例如对应于每一行像素单元110均可以设置一条复位信号线,该复位信号线与该行像素单元110中的像素驱动电路的复位信号端VINT连接。在下面的描述中,将与裂纹检测线300连接的复位信号线称作第一复位信号线400,而将除了第一复位信号线400外的其他复位信号线称作第二复位信号线500,以下各实施例与此相同,不再赘述。
例如,在如图5所示的显示面板10中,在裂纹检测线300靠近邦定区域210的一侧可以设置裂纹检测端PCD,通过裂纹检测端PCD为裂纹检测线300施加裂纹检测信号。例如,第一复位信号线400可以设置在显示面板10远离裂纹检测端PCD的一侧,使得裂纹检测信号在通过裂纹检测线300到达像素单元110前可以经过更多的周边区域200,从而使得裂纹检测线300可以检测到更多的周边区域200中存在的裂纹。
在本公开的一些实施例提供的显示面板10中,通过在显示面板10的周边区域200中设置裂纹检测线300,且裂纹检测线300和像素单元110的像素驱动电路的复位信号端VINT连接,使得裂纹检测信号可以通过像素驱动 电路的复位信号端VINT施加至发光元件D1(如图11中带箭头的虚线所示)的一端,从而可以驱动发光元件D1。
采用上述方式例如在电学检测阶段,施加至复位信号端VINT的裂纹检测信号可以是复位信号Vint,该复位信号Vint只在复位阶段对像素驱动电路进行初始化,而由上述可知发光元件D1最终的驱动电流I的大小和数据信号Vdata相关,所以在电学检测阶段可以避免裂纹检测线300上的压降对发光元件D1亮度的影响,从而可以降低由于裂纹检测线300导致的误检率。另外,采用上述方式例如在进行裂纹检测时,施加至复位信号端VINT的裂纹检测信号可以对发光元件D1直接进行点亮(例如此时使驱动晶体管T1保持截止),在裂纹评价时,已存在封装漏气风险的显示面板中的裂纹检测线的电阻变化量Rs在10KΩ量级,而10KΩ量级的电阻变化量Rs已经可以使流经发光元件D1的驱动电流I相对于正常情形发生明显变化,从而借此可以检测出裂纹检测线300是否存在裂纹,即可以提高周边区域裂纹的检出率。
需要说明的是,在本公开的一些实施例中,可以在电学检测阶段中进行裂纹检测,例如可以在其它类型的检测都完成以后再进行裂纹检测,也可以穿插在其它类型的检测中进行,本公开的实施例对此不作限定。
例如,在本公开的一些实施例提供的显示面板10中,像素驱动电路可以采用图11或图12中所示的像素驱动电路,例如,该像素驱动电路包括具有复位信号端VINT的复位电路120以及与复位电路120连接的发光电路130,复位电路120被配置为可从裂纹检测线300接收裂纹检测信号以使得发光电路130发光。例如,在进行裂纹检测时,控制驱动电路140截止而复位电路120导通,从而使施加至复位信号端VINT的裂纹检测信号可以直接驱动发光电路130进行发光,由此可以根据发光电路130的亮度判断裂纹检测线300是否存在裂纹等不良,即显示面板10的周边区域200中是否存在裂纹等不良。
例如,如图11和图12所示,复位电路120可以实现为第七晶体管T7以及与第七晶体管T7的一极连接的复位信号端VINT,发光电路130可以实现为发光元件D1。需要说明的是,发光元件D1可以采用有机发光二极管(OLED)或量子点发光二极管(PLED),并且该OLED可以为各种类型(底发射、顶发射等),可以根据需要发红光、绿光、蓝光等,本公开的实施例包括但不限于此。
例如,如图11和图12所示,像素驱动电路还包括驱动电路140,该驱动电路140被配置为控制用于驱动发光电路130发光的驱动电流I。例如,在进行电学检测时,控制驱动电路140导通,驱动电路140可以根据数据信号Vdata的大小对发光电路130进行驱动发光,例如分别进行低灰阶和高灰阶的点亮测试;而在进行裂纹检测时,控制驱动电路140截止,从而没有来自驱动电路140的驱动电流,相应地裂纹检测信号可以直接通过复位电路120驱动发光电路130进行发光。例如,如图11和图12所示,驱动电路140可以实现为第一晶体管T1。
例如,在如图11和图12所示的像素驱动电路中,还可以包括:第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6和存储电容C1。第二晶体管T2的栅极和扫描信号端GATE连接以接收栅极扫描信号;第三晶体管T3的栅极和栅极扫描信号端GATE连接以接收栅极扫描信号;第四晶体管T4的栅极和第一复位端RST1连接以接收第一复位控制信号;第五晶体管T5的栅极和第一发光控制端EM1连接以接收第一发光控制信号;第六晶体管T6的栅极和第二发光控制端EM2连接以接收第二发光控制信号;存储电容C1被配置为存储数据信号Vdata和第一晶体管T1的阈值电压Vth。需要说明的是,图11和图12所示的第一节点N1、第二节点N2、第三节点N3以及第四节点N4并非表示实际存在的部件,而是表示电路图中相关电连接的汇合点。
例如,在初始化阶段,第一复位端RST1接收第一复位控制信号,控制第四晶体管T4导通,从而可以对第一节点N1即第一晶体管T1的栅极进行初始化。在数据写入阶段,扫描信号端GATE接收栅极扫描信号,控制第二晶体管T2和第三晶体管T3导通,从而数据信号Vdata可以通过第二晶体管T2、第一晶体管T1和第三晶体管T3写入第一节点N1,并存储在存储电容C1之中。在复位阶段,第二复位端RST2接收第二复位控制信号,控制第七晶体管T7导通,从而可以对第四节点N4(即发光元件D1的阳极端或阴极端)进行复位。在发光阶段,第一发光控制端EM1接收第一发光控制信号以控制第五晶体管T5导通,第二发光控制端EM2接收第二发光控制信号以控制第六晶体管T6导通,从而可以驱动发光元件D1进行发光。
另外,图11中所示的像素驱动电路均采用P型晶体管,发光元件D1位 于驱动晶体管T1的电流输出端与第二电压端VSS(例如,低压端)之间,复位电路120与发光元件D1的阳极端连接;图12中所示的像素驱动电路均采用N型晶体管,发光元件D1位于驱动晶体管T1的电流输入端与第一电压端VDD(例如,高压端)之间,复位电路120与发光元件D1的阴极端连接。
本公开的实施例的显示面板的像素单元包括但不限于图11和图12所示的像素驱动电路,例如像素驱动电路还可以混合采用P型晶体管和N型晶体管,可以包括补偿电路或不包括补偿电路等,其包括具有复位信号端的复位电路以及与复位电路连接的发光电路,该复位电路与发光电路的一极电连接,发光电路的另一极与电压端连接,因此该复位电路可从例如裂纹检测线接收裂纹检测信号以使得来使得该发光电路发光,从而可以进行裂纹检测。
在本公开的实施例提供的显示面板10中,裂纹检测线300至少部分围绕显示区域100设置,例如基本完全围绕显示区域100设置。
例如,在一个示例中,如图6所示,在显示面板10的周边区域200中可以设置一条裂纹检测线300,该裂纹检测线300在显示区域100的左右两侧各绕两次。例如,在裂纹检测线300靠近邦定区域210的一侧设置裂纹检测端PCD,裂纹检测信号可以通过裂纹检测端PCD进行施加。例如,在图6所示的示例中,第一复位信号线400可以设置在显示面板10靠近裂纹检测端PCD的一侧,使得裂纹检测信号在通过裂纹检测线300到达像素单元110前可以经过更多的周边区域200,从而使得裂纹检测线300可以检测到更多的周边区域200中可能存在的裂纹,从而可以提高周边区域裂纹的检出率。
例如,在另一个示例中,如图7所示,在显示面板10的周边区域200中还可以设置两条裂纹检测线300,该两条裂纹检测线300在显示面板10的一侧相交但绝缘,使得每一条裂纹检测线300均可以围绕显示面板10一圈。同样地,在图7所示的示例中,第一复位信号线400可以设置在显示面板10靠近裂纹检测端PCD的一侧,使得裂纹检测信号在通过裂纹检测线300到达像素单元110前可以经过更多的周边区域200,从而使得裂纹检测线300可以检测到更多的周边区域200中可能存在的裂纹,从而可以提高周边区域裂纹的检出率。
例如,在另一个示例中,如图8所示,在本公开的实施例提供的显示面 板10中,裂纹检测线300还可以包括蛇形走线部分310,该蛇形走线部分310例如为S字形、Z字形或弓字形等。例如,在图8所示的示例中,在裂纹检测线300的左右两侧中各包括了一个蛇形走线部分310,本公开的实施例包括但不限于此。例如,在裂纹检测线300中还可以包括更多个蛇形走线部分310,本公开对此不作限制。
在本公开的一些实施例提供的显示面板10中,通过设置蛇形走线部分310,使得裂纹检测线300在布置时可以经过更多的周边区域200,从而使得裂纹检测线300可以检测更多的周边区域200中可能存在的裂纹,从而可以提高周边区域裂纹的检出率。
例如,在本公开的一些实施例提供的显示面板10中,在周边区域200中的不同区域中设置有多条裂纹检测线300,且多条裂纹检测线300分别连接至不同的像素单元110的像素驱动电路的复位信号端VINT。例如,在图9所示的示例中,在周边区域200中的左右两侧分别设置有一条裂纹检测线300,且这两条裂纹检测线300分别连接至不同的像素单元的像素驱动电路的复位信号端VINT,例如分别连接至不同行的像素单元的像素驱动电路的复位信号端VINT,即这两条裂纹检测线300分别连接至不同的第一复位信号线400。例如,当左侧的裂纹检测线300存在裂纹时,在进行裂纹检测时和左侧的裂纹检测线300连接的像素单元与其他与第二复位信号线500相连的像素单元相比会显示为暗线(如下所述);同样地,当右侧的裂纹检测线300存在裂纹时,在进行裂纹检测时和右侧的裂纹检测线300连接的像素单元与其他与第二复位信号线500相连的像素单元相比会显示为暗线,从而可以实现分区域检测裂纹。
在本公开的一些实施例提供的显示面板10中,通过在周边区域200中的不同区域设置多条裂纹检测线300,可以使得该多条裂纹检测线300分别检测周边区域200中的不同区域是否存在裂纹,从而在存在裂纹时可以更快捷的定位裂纹所在的区域。
在本公开的一些实施例提供的显示面板10中,至少一行中的像素单元110的像素驱动电路的复位信号端VINT都与第一复位信号线400连接,第一复位信号线400与裂纹检测线300直接连接,裂纹检测信号经过裂纹检测线300才施加至第一复位信号线400,使得第一复位信号线400的电压受到 裂纹检测线300的影响。例如,在图10所示的示例中,设置了三条第一复位信号线400,每一条复位信号线400都与该行像素单元110的像素驱动电路的复位信号端VINT连接(为了示意清楚,图10中未示出像素单元110)。例如,这三条第一复位信号线400可以相邻设置,即这三条第一复位信号线400分别连接相邻行的像素单元110,例如和相邻行的像素单元110中的绿色子像素单元连接,本公开的实施例包括但不限于此,例如还可以和相邻行的像素单元110中的红色子像素单元或蓝色子像素单元等其他颜色的子像素单元连接。
在本公开的一些实施例提供的显示面板10中,第一复位信号线400和至少一行中的像素单元110连接,且第一复位信号线400与裂纹检测线300连接,采用这种方式使得当裂纹检测线300发生裂纹时,和裂纹检测线300连接的像素单元110在发光时可以形成一条暗线,从而可以直接用观察的方式检测出该显示面板10是否存在裂纹。另外,通过设置多条第一复位信号线400,且该多条第一复位信号线400分别连接相邻行的像素单元110,采用这种方式可以使得当裂纹检测线300发生裂纹时,和裂纹检测线300连接的多个相邻行的像素单元110在发光时可以形成相邻的多条暗线,从而在观察显示面板在显示过程中是否存在暗线时可以提高效率。
在本公开的一些实施例提供的显示面板10中,例如在如图6、7、8、9和10所示的示例中,第一复位信号线400和裂纹检测线300中接近显示区域100的部分连接,例如与最接近显示区域100的部分连接。例如,在如图10所示的显示面板10中,裂纹检测线300在显示区域100的左右两侧各绕两次,则裂纹检测线300包括在外侧的远离显示区域的第一部分(301)和在内侧的接近显示区域100的第二部分302(参见图7),该第一部分301和第二部分302彼此平行,第一复位信号线400和裂纹检测线300中接近显示区域100的第二部分连接。由于第一复位信号线400和裂纹检测线300连接时可能需要打孔,裂纹检测线300中远离显示区域100的第一部分更靠近显示面板10的边缘,如果第一复位信号线400和裂纹检测线300中远离显示区域100的第一部分连接,则在连接的位置处易于产生裂纹,从而会影响显示面板10的良率,因此第一复位信号线400和裂纹检测线300中接近显示区域100的第二部分连接,可以改善二者之间的连接质量,提高检测准确性。
在本公开的一些实施例提供的显示面板10中,如图10所示,除与裂纹检测线300电连接的至少一行像素单元外,每一行像素单元对应设置有第二复位信号线500,第二复位信号线500接收复位信号Vint,且第二复位信号线500和本行像素单元110的像素驱动电路的复位信号端VINT连接,用于在显示操作时对像素驱动电路中的发光元件进行复位,以及在进行裂纹检测时,将与裂纹检测信号相同的电压信号施加至与之连接的像素驱动电路的复位信号端,从而驱动其中的发光元件发光。
在本公开的一些实施例提供的显示面板10中,如图10所示,还可以包括复位公共线600,复位公共线600和第二复位信号线500连接,复位公共线600和裂纹检测端PCD连接。采用这种方式,在通过裂纹检测端PCD向裂纹检测线300施加裂纹检测信号时,该裂纹检测信号还可以通过复位公共线600以及第二复位信号线500传输至和第二复位信号线500连接的像素单元110。
例如,如图10所示,裂纹检测线300包括设置在周边区域200中的邦定区域210一侧的裂纹检测端PCD,裂纹检测端PCD被配置为接收裂纹检测信号,第一复位信号线400相对于第二复位信号线500更接近于裂纹检测端PCD,例如可以通过探针接触裂纹检测端PCD的方式施加裂纹检测信号。采用这种方式可以使得裂纹检测信号在通过裂纹检测线300到达像素单元110前可以经过更多的周边区域200,从而使得裂纹检测线300可以检测到更多的周边区域200中可能存在的裂纹,从而可以提高周边区域裂纹的检出率。
在另一个示例中,复位公共线600和第二复位信号线500连接,但不与裂纹检测端PCD连接,而是与单独设置的公共电压信号端(图中未示出)连接。在进行裂纹检测时,裂纹检测端PCD施加的裂纹检测信号和该公共电压信号端施加相同的信号。
在本公开的一些实施例提供的显示面板10中,裂纹检测线300设置在显示面板的电路结构层中的某一金属层,例如设置在像素驱动电路中的驱动晶体管的栅极金属层(即栅极所在的金属图案层)或源漏金属层(即源漏极所在的金属图案层)等,即与驱动晶体管的栅极或源漏极经同一金属薄膜和同一构图工艺形成,例如,裂纹检测线300的材料可以采用金属,例如金属Mo或Mo合金、金属铝或铝合金等。本公开的实施例不限于形成在上述层 中或采用上述材料形成。
下面以图10中所示的显示面板10为例,并结合图11所示的像素驱动电路来说明裂纹检测的工作过程。
在电学检测阶段,需要将显示面板10中的像素单元110全部点亮进行测试,例如分别在低灰阶和高灰阶的数据信号Vdata驱动下进行点亮测试。例如,在复位阶段,通过裂纹检测端PCD施加复位信号Vint,该复位信号Vint通过裂纹检测线300和复位公共线600分别传输至第一复位信号线400和第二复位信号线500,然后通过第一复位信号线400和第二复位信号线500传输至对应行的像素单元110中。在每个像素单元110中的像素驱动电路中,例如如图11所示,复位信号Vint通过复位信号端VINT施加至像素驱动电路,从而完成相应地复位操作。例如,在数据写入阶段,数据信号Vdata从数据信号端DATA输入,经过第二晶体管T2、驱动晶体管T1和开关晶体管T3后写入第一节点N1,并存储在存储电容C1之中;在发光阶段,第一电压端VDD提供的第一电压Vdd被施加至驱动晶体管T1的源极,并且驱动晶体管T1根据数据信号Vdata驱动发光元件D1进行相应灰度的显示。具体地,从第一电压端VDD至第二电压端VSS,并且流经驱动晶体管T1和发光元件D1的驱动电流为I=K*(Vdata-Vdd) 2,K为一常数值,在第一电压Vdd不变的情况下,驱动电流I的大小和数据信号Vdata直接相关。
由于在电学检测阶段,复位信号Vint只在复位阶段对像素驱动电路进行初始化,而由上述可知发光元件D1最终的驱动电流I的大小和数据信号Vdata相关,所以在电学检测阶段可以避免裂纹检测线300上的压降对发光元件D1亮度的影响,从而可以降低由于裂纹检测线导致的误检率。例如,在图14所示的仿真结果图中,横轴表示时间,纵轴表示流经发光元件D1的驱动电流I,图中实线表示在低灰阶的数据信号Vdata驱动下,且裂纹检测线300的电阻变化量Rs为1Ω和1MΩ时的驱动电流I,图中虚线表示在高灰阶的数据信号Vdata驱动下,且裂纹检测线300的电阻变化量Rs为1Ω和1MΩ时的驱动电流I。从图14可以看出,不管是在低灰阶还是高灰阶的数据信号Vdata驱动下,即使裂纹检测线300由于存在压降或者裂纹而使得电阻变化量Rs为1MΩ时,流经发光元件D1的驱动电流I的变化小于1nA,即发光元件D1的亮度几乎不受到影响,从而可以降低由于裂纹检测线导致的误 检率。
在进行裂纹检测时,通过裂纹检测端PCD施加裂纹检测信号,该裂纹检测信号通过裂纹检测线300和复位公共线600分别传输至第一复位信号线400和第二复位信号线500,然后通过第一复位信号线400和第二复位信号线500传输至对应行的像素单元110中。在每个像素单元110中的像素驱动电路中,例如如图11所述,使得驱动电路140截止、复位电路120导通,并且在该实施例中,裂纹检测信号为高电平信号(高于第二电压端VSS),在发光电路130两端建立了正向电压差,从而使施加至复位信号端VINT的裂纹检测信号可以直接驱动发光电路130进行发光,从而可以根据发光电路130的亮度判断裂纹检测线300是否存在裂纹,即显示面板10的周边区域200中是否存在裂纹。例如,该高电平信号可以选择为使得发光元件D1发出灰阶为127(灰阶范围为0~255)的光的电压信号。例如,在图15所示的仿真结果图中,横轴表示时间,纵轴表示流经发光元件D1的驱动电流I,图15示出了裂纹检测线300的电阻变化量Rs分别为1Ω、10KΩ和50KΩ时的驱动电流I。从图15可以看出,当裂纹检测线300的电阻变化量Rs从1Ω变化到10KΩ或者变化到50KΩ时,驱动电流I会发生明显变化,变化的量级在1μA,该驱动电流I的变化可以导致发光元件D1的亮度发生明显变化,从而与第一复位信号线400相连的像素单元行与其他与第二复位信号线500相连的像素单元行相比而言,例如表现为暗线,从而可以完成裂纹检测。
例如,在一个示例中,在进行裂纹检测时,施加至复位信号端VINT的裂纹检测信号的电位为4.5V,施加至扫描信号端GATE、第一复位端RST1、第二复位端RST2、第一发光控制端EM1以及第二发光控制端EM2的电位均为-7V,施加至第一电压端VDD、第二电压端VSS以及数据信号端DATA的电位均为0V。由于施加至第二复位端RST2的电位为-7V,所以复位电路120导通;由于施加至第一复位端RST1的电位-7V,所以第四晶体管T4导通,同时裂纹检测信号通过复位信号端VINT施加,所以第一节点N1的电位为4.5V,第一晶体管T1即驱动电路140截止。
例如,在另一个示例中,在图12所示的像素驱动电路中,在进行裂纹检测时,裂纹检测信号为低电平信号(低于第一电压端VDD),施加至复位信号端VINT的裂纹检测信号的电位为0V,施加至扫描信号端GATE、第一复 位端RST1、第二复位端RST2、发光控制端EM1以及发光控制端EM2的电位均为7V,施加至第一电压端VDD的电位为4.5伏,施加至第二电压端VSS以及数据信号端DATA的电位均为-4V,由此在发光元件D1的两端建立了正向电压差,从而发光元件D1可以发光。
例如,在另一个示例中,如图13所示,在像素驱动电路不包括第七晶体管T7的情形下,在进行裂纹检测时,也可以使得第四晶体管T4、第三晶体管T3和第六晶体管T6导通,从而裂纹检测信号可以通过图13中带箭头的虚线所示的导电路径施加至发光元件D1,从而完成裂纹检测。
需要说明的是,上面所描述的施加信号的电位只是示意性的,本公开的实施例包括但不限于此,只要可以使像素驱动电路中的复位电路120导通且驱动电路140截止即可。
本公开的一些实施例还提供一种显示装置1,如图16所示,该显示装置1包括本公开的实施例提供的显示面板10。显示面板10的显示区域中设置有呈阵列排布的像素单元110。
例如,如图16所示,该显示装置1还包括栅极驱动电路20,栅极驱动电路20通过栅线GL与像素单元110电连接,用于提供栅极扫描信号给像素阵列。例如,该显示装置1还包括数据驱动电路30,数据驱动电路30通过数据线DL与像素单元110电连接,用于提供数据信号给像素阵列。
需要说明的是,本公开的一些实施例提供的显示装置1可以为显示器、OLED面板、OLED电视、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开的一些实施例提供的显示装置1的技术效果可以参考上述实施例中关于显示面板10的相应描述,这里不再赘述。
本公开的一些实施例还提供一种检测方法,该检测方法可以用于本公开的实施例提供的显示面板10以及包括显示面板10的显示装置1。例如,该检测方法包括如下操作。
步骤S100:通过裂纹检测线向像素单元110中与所述裂纹检测线连接的像素驱动电路的复位信号端VINT提供裂纹检测信号;以及
步骤S200:观察显示面板10在显示过程中是否存在暗线。
例如,以图10所示的显示面板10为例,在步骤S100中,可以通过裂 纹检测线300提供裂纹检测信号,例如裂纹检测线300可以通过第一复位信号线400与像素单元110中与所述裂纹检测线连接的像素驱动电路的复位信号端VINT连接。
例如,在显示面板10包括第一复位信号线400的情形下,上述检测方法还包括如下操作。
步骤S300:向非连接到第一复位信号线400的像素单元110的复位信号端VINT提供裂纹检测信号。
例如,以图10所示的显示面板10为例,步骤S300的操作也就是向连接到第二复位信号线500的像素单元110的复位信号端VINT提供裂纹检测信号。例如,第二复位信号线500与复位公共线600连接,从而可以通过复位公共线600提供裂纹检测信号。
例如,在像素驱动电路包括具有复位信号端VINT的复位电路120以及与复位电路120连接的发光电路130的情形下,上述检测方法还包括如下操作。
步骤S400:提供复位控制信号使复位电路导通,通过复位电路向发光电路提供裂纹检测信号。
例如,以图11所示的像素驱动电路为例,在步骤S400中,提供复位控制信号使复位电路120导通,该复位控制信号可以施加至第二复位端RST2,然后裂纹检测信号通过导通的复位电路120提供至发光电路130。
需要说明的是,关于检测方法的详细描述以及技术效果可以参考上述实施例中关于裂纹检测的工作过程的相应描述,这里不再赘述。
以上仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种显示面板,包括显示区域和围绕所述显示区域的周边区域,其中,
    所述显示区域中设置有呈阵列排布的像素单元,
    所述像素单元包括像素驱动电路,
    所述周边区域中设置有裂纹检测线,且所述裂纹检测线和至少一个像素单元的像素驱动电路的复位信号端连接。
  2. 根据权利要求1所述的显示面板,其中,
    所述像素驱动电路包括具有所述复位信号端的复位电路以及与所述复位电路连接的发光电路,
    所述复位电路被配置为可从所述裂纹检测线接收裂纹检测信号以使得所述发光电路发光。
  3. 根据权利要求2所述的显示面板,其中,
    所述像素驱动电路还包括驱动电路,所述驱动电路被配置为控制用于驱动所述发光电路发光的驱动电流。
  4. 根据权利要求1-3任一所述的显示面板,其中,
    所述裂纹检测线围绕所述显示区域设置。
  5. 根据权利要求4所述的显示面板,其中,
    所述裂纹检测线包括蛇形走线部分。
  6. 根据权利要求4所述的显示面板,其中,
    在所述周边区域中的不同区域中设置有多条所述裂纹检测线,且多条所述裂纹检测线分别连接至不同的像素单元的像素驱动电路的复位信号端。
  7. 根据权利要求1-6任一所述的显示面板,其中,
    至少一行中的像素单元的像素驱动电路的复位信号端都与第一复位信号线连接,所述第一复位信号线与所述裂纹检测线连接。
  8. 根据权利要求7所述的显示面板,其中,所述裂纹检测线包括远离所述显示区域的第一部分和接近所述显示区域的第二部分,所述第一部分和所述第二部分彼此平行,所述第一复位信号线和所述裂纹检测线的第二部分连接。
  9. 根据权利要求7所述的显示面板,其中,
    所述显示区域中,除与所述裂纹检测线电连接的所述至少一行像素单元外,每一行像素单元对应设置有第二复位信号线,且所述第二复位信号线和本行像素单元的像素驱动电路的复位信号端连接。
  10. 根据权利要求9所述的显示面板,其中,
    所述裂纹检测线包括设置在所述周边区域中的邦定区域一侧的裂纹检测端,所述裂纹检测端被配置为接收裂纹检测信号,
    所述第一复位信号线相对于所述第二复位信号线更接近于所述裂纹检测端。
  11. 根据权利要求10所述的显示面板,还包括复位公共线,其中,所述复位公共线和所述第二复位信号线连接。
  12. 根据权利要求11所述的显示面板,其中,所述复位公共线和所述裂纹检测端连接。
  13. 根据权利要求1-12任一所述的显示面板,其中,所述裂纹检测线设置在所述像素驱动电路的驱动晶体管的栅极金属层或源漏金属层。
  14. 一种显示装置,包括如权利要求1-13任一所述的显示面板。
  15. 一种用于权利要求1-13任一所述的显示面板的检测方法,包括:
    通过所述裂纹检测线向所述至少一个像素单元中的像素驱动电路的复位信号端提供裂纹检测信号;以及
    观察所述显示面板在显示过程中是否存在暗线。
  16. 根据权利要求15所述的检测方法,还包括:
    在所述显示面板包括第一复位信号线的情形下,向非连接到所述第一复位信号线的像素单元的复位信号端提供所述裂纹检测信号。
  17. 根据权利要求15所述的检测方法,还包括:
    在所述像素驱动电路包括具有所述复位信号端的复位电路以及与所述复位电路连接的发光电路的情形下,提供复位控制信号使所述复位电路导通,通过所述复位电路向所述发光电路提供所述裂纹检测信号。
PCT/CN2018/125194 2018-04-26 2018-12-29 显示面板、显示装置及检测方法 WO2019205709A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019547966A JP7293120B2 (ja) 2018-04-26 2018-12-29 表示パネル、表示装置及び検出方法
EP18889949.6A EP3786931B1 (en) 2018-04-26 2018-12-29 Display panel, display device, and test method
US16/473,120 US11367391B2 (en) 2018-04-26 2018-12-29 Display panel, display device and detection method
KR1020197027470A KR102249397B1 (ko) 2018-04-26 2018-12-29 디스플레이 패널, 디스플레이 디바이스 및 검출 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810385999.4 2018-04-26
CN201810385999.4A CN110415631B (zh) 2018-04-26 2018-04-26 显示面板、显示装置及检测方法

Publications (1)

Publication Number Publication Date
WO2019205709A1 true WO2019205709A1 (zh) 2019-10-31

Family

ID=68294805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125194 WO2019205709A1 (zh) 2018-04-26 2018-12-29 显示面板、显示装置及检测方法

Country Status (6)

Country Link
US (1) US11367391B2 (zh)
EP (1) EP3786931B1 (zh)
JP (1) JP7293120B2 (zh)
KR (1) KR102249397B1 (zh)
CN (1) CN110415631B (zh)
WO (1) WO2019205709A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048021A (zh) * 2020-01-02 2020-04-21 京东方科技集团股份有限公司 显示装置、显示面板及其检测方法
US20220320851A1 (en) * 2020-07-29 2022-10-06 Chengdu Boe Optoelectronics Technology Co., Ltd. Electrostatic protection circuit, display substrate and display apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200094873A (ko) * 2019-01-30 2020-08-10 삼성디스플레이 주식회사 표시 장치
KR20210044356A (ko) * 2019-10-14 2021-04-23 삼성디스플레이 주식회사 표시 장치
CN111192543B (zh) * 2020-02-28 2022-05-17 武汉天马微电子有限公司 显示面板及显示装置、裂纹检测方法
CN111509026B (zh) 2020-05-27 2023-02-07 京东方科技集团股份有限公司 显示面板及其裂纹检测方法、显示装置
CN116134328A (zh) * 2020-07-23 2023-05-16 应用材料公司 用于识别基板上的线缺陷的方法和用于识别基板上的线缺陷的设备
CN111833786A (zh) * 2020-07-29 2020-10-27 云谷(固安)科技有限公司 显示面板及其裂纹检测方法和显示装置
CN112116897B (zh) * 2020-10-15 2024-08-02 厦门天马微电子有限公司 一种像素驱动电路、显示面板以及驱动方法
CN113205758A (zh) * 2021-04-29 2021-08-03 京东方科技集团股份有限公司 显示模组、裂纹检测方法及显示装置
CN113487990B (zh) * 2021-06-30 2022-09-09 云谷(固安)科技有限公司 裂纹检测电路、显示面板、终端设备和裂纹检测方法
KR20230123577A (ko) * 2022-02-16 2023-08-24 삼성디스플레이 주식회사 표시 장치
CN115763431A (zh) * 2022-11-17 2023-03-07 武汉天马微电子有限公司 显示面板及其裂纹检测方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900903A (zh) * 2009-05-29 2010-12-01 卡西欧计算机株式会社 液晶显示面板及液晶显示装置
US20110025678A1 (en) * 2009-07-29 2011-02-03 Samsung Mobile Display Co., Ltd. Organic light emitting display device and driving method thereof
US20110080173A1 (en) * 2009-10-07 2011-04-07 Kwang-Min Kim Mother substrate of organic light emitting displays capable of sheet unit testing and method of sheet unit testing
CN102388414A (zh) * 2009-05-22 2012-03-21 松下电器产业株式会社 显示装置及其驱动方法
CN106257571A (zh) * 2015-06-16 2016-12-28 三星显示有限公司 显示设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138773A (ja) * 2002-10-17 2004-05-13 Tohoku Pioneer Corp アクティブ型発光表示装置
JP2007164087A (ja) * 2005-12-16 2007-06-28 Seiko Epson Corp 半導体集積回路及びそれを用いた表示モジュール
KR101336851B1 (ko) 2010-05-03 2013-12-04 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
JP6138480B2 (ja) * 2012-12-20 2017-05-31 株式会社ジャパンディスプレイ 表示装置
KR102313063B1 (ko) 2014-07-29 2021-10-15 삼성디스플레이 주식회사 표시 장치
CN105679215B (zh) * 2014-11-19 2018-12-11 昆山国显光电有限公司 显示屏及其裂纹检测方法
KR102409454B1 (ko) * 2015-02-02 2022-06-15 삼성디스플레이 주식회사 표시 패널
KR102356028B1 (ko) * 2015-02-06 2022-01-26 삼성디스플레이 주식회사 표시 장치
KR102343654B1 (ko) * 2015-03-31 2021-12-27 삼성디스플레이 주식회사 표시 장치
KR102559370B1 (ko) * 2015-12-30 2023-07-26 삼성디스플레이 주식회사 크랙 검출 장치 및 크랙 검출 장치의 구동 방법
KR102469735B1 (ko) * 2016-04-12 2022-11-23 삼성디스플레이 주식회사 표시 장치
KR102561277B1 (ko) * 2016-08-01 2023-07-28 삼성디스플레이 주식회사 표시 장치
KR20180021965A (ko) * 2016-08-22 2018-03-06 삼성디스플레이 주식회사 표시 장치
KR102555323B1 (ko) * 2016-09-28 2023-07-13 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388414A (zh) * 2009-05-22 2012-03-21 松下电器产业株式会社 显示装置及其驱动方法
CN101900903A (zh) * 2009-05-29 2010-12-01 卡西欧计算机株式会社 液晶显示面板及液晶显示装置
US20110025678A1 (en) * 2009-07-29 2011-02-03 Samsung Mobile Display Co., Ltd. Organic light emitting display device and driving method thereof
US20110080173A1 (en) * 2009-10-07 2011-04-07 Kwang-Min Kim Mother substrate of organic light emitting displays capable of sheet unit testing and method of sheet unit testing
CN106257571A (zh) * 2015-06-16 2016-12-28 三星显示有限公司 显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786931A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048021A (zh) * 2020-01-02 2020-04-21 京东方科技集团股份有限公司 显示装置、显示面板及其检测方法
CN111048021B (zh) * 2020-01-02 2023-06-30 京东方科技集团股份有限公司 显示装置、显示面板及其检测方法
US20220320851A1 (en) * 2020-07-29 2022-10-06 Chengdu Boe Optoelectronics Technology Co., Ltd. Electrostatic protection circuit, display substrate and display apparatus
US12003093B2 (en) * 2020-07-29 2024-06-04 Chengdu Boe Optoelectronics Technology Co., Ltd. Electrostatic protection circuit, display substrate and display apparatus

Also Published As

Publication number Publication date
US20210335974A1 (en) 2021-10-28
EP3786931A1 (en) 2021-03-03
KR102249397B1 (ko) 2021-05-07
EP3786931B1 (en) 2024-06-19
CN110415631B (zh) 2021-01-15
KR20190125352A (ko) 2019-11-06
EP3786931A4 (en) 2022-01-05
US11367391B2 (en) 2022-06-21
JP2021518920A (ja) 2021-08-05
CN110415631A (zh) 2019-11-05
JP7293120B2 (ja) 2023-06-19

Similar Documents

Publication Publication Date Title
WO2019205709A1 (zh) 显示面板、显示装置及检测方法
KR102628756B1 (ko) 표시 패널 및 표시 패널 크랙 검출 방법
TWI585425B (zh) 線路與解多工器之缺陷檢測方法、缺陷檢測裝置、以及包含該缺陷檢測裝置之顯示面板
TWI597707B (zh) 顯示面板、顯示裝置及電子設備
CN105225632B (zh) 有机发光显示装置和像素修复方法
US11605355B2 (en) Organic light emitting display device and method of testing the same
TWI546792B (zh) 能夠片單元測試的有機發光顯示器之母基板及片單元測試之方法
WO2017118212A1 (zh) 显示面板测试方法及测试装置
KR102058611B1 (ko) 검사 장치와, 이를 이용한 배선 및 원장 검사 방법
TW201448077A (zh) 有機發光顯示面板
CN102549641A (zh) 针对电致发光显示器的缺陷发射体检测
KR102391454B1 (ko) 유기발광표시장치 및 그 구동 방법
US20210020729A1 (en) Display device and defective pixel repairing method thereof
KR102147401B1 (ko) 마이크로 표시장치 및 그의 검사 방법
US11138931B2 (en) Display device and manufacturing method therefor
KR102684692B1 (ko) 표시 패널 및 표시 패널의 검사 방법
KR102089336B1 (ko) 유기전계발광표시장치
JP5842212B2 (ja) 有機el表示パネルの検査方法及び検査システム
JP2021157060A (ja) アレイ基板の検査方法及び表示装置
KR100648672B1 (ko) 발광 표시 장치 및 그의 검사 방법
CN114333688B (zh) 具有像素驱动电路的电致发光显示面板
CN116092415B (zh) 具有像素驱动电路的电致发光显示装置
KR20200120781A (ko) 표시 장치 및 그 검사 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547966

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027470

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018889949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018889949

Country of ref document: EP

Effective date: 20201126