WO2019198782A1 - ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法 - Google Patents

ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法 Download PDF

Info

Publication number
WO2019198782A1
WO2019198782A1 PCT/JP2019/015738 JP2019015738W WO2019198782A1 WO 2019198782 A1 WO2019198782 A1 WO 2019198782A1 JP 2019015738 W JP2019015738 W JP 2019015738W WO 2019198782 A1 WO2019198782 A1 WO 2019198782A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
amount
general formula
compound represented
amide compound
Prior art date
Application number
PCT/JP2019/015738
Other languages
English (en)
French (fr)
Inventor
法行 塩見
絵美 中野
昭文 飯田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201980022825.4A priority Critical patent/CN111936461B/zh
Priority to KR1020207029665A priority patent/KR102649173B1/ko
Priority to US17/045,897 priority patent/US11542222B2/en
Priority to EP19785144.7A priority patent/EP3778559A4/en
Priority to JP2020513444A priority patent/JP7371622B2/ja
Publication of WO2019198782A1 publication Critical patent/WO2019198782A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/18Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing at least two amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/22Preparation of carboxylic acid nitriles by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/46Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing dicyanoalkane and bis (aminomethyl) alkane.
  • Dicyanoalkane can be used as a raw material for obtaining bis (aminomethyl) alkane by hydrogenation reaction. Since bis (aminomethyl) alkane is useful as a raw material for resin, a method for efficiently producing dicyanoalkane is required.
  • Patent Document 1 describes a method for obtaining 1,4-dicyanocyclohexane from 1,4-cyclohexanedicarboxylic acid in the presence of a tin (II) oxide catalyst in a process for producing trans-bis (aminomethyl) cyclohexane. (Patent Document 1, Example 1).
  • Patent Document 1 includes a step of filtering after the cyanation reaction step to remove solids (that is, the deposited catalyst), and there is room for improvement.
  • the present invention has been made in view of the above circumstances, and by performing the cyanation reaction in a state where the precipitation of the metal catalyst is suppressed, a novel filtration step of the catalyst after the cyanation reaction step can be omitted.
  • a method for producing a dicyanoalkane can be provided.
  • the blockage risk of the transportation line and distillation column by the deposited catalyst can also be avoided.
  • the present inventors can suppress the precipitation of the catalyst by maintaining the amount of the specific compound at a predetermined amount or more with respect to the catalyst in the cyanation reaction step. As a result, the present invention has been completed.
  • a method for producing dicyanoalkane comprising: At least one selected from the group consisting of aliphatic dicarboxylic acids and salts thereof, an amide compound represented by the following general formula (1) or a derivative thereof, [Wherein R 1 represents a substituted or unsubstituted hydrocarbon group] And a cyanation reaction step of cyanating with an ammonia source in the presence of a metal oxide and / or a metal salt, A method in which, in the cyanation reaction step, the amount of the amide compound represented by the general formula (1) is maintained at 0.010 equivalent or more with respect to the total amount of the metal oxide and the metal salt.
  • the substituted or unsubstituted hydrocarbon group of R 1 is composed of a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted alicyclic hydrocarbon group, and a substituted or unsubstituted aromatic hydrocarbon group.
  • the amide compound represented by the general formula (1) is one or more selected from the group consisting of carbamoylalkanecarboxylic acid, alkanediamide, and cyanoalkanecarboxamide, according to any one of [1] to [3] the method of.
  • the metal salt is at least one selected from the group consisting of carbonates, carboxylates, sulfates, nitrates and halides and hydrates thereof. the method of.
  • the amount of the amide compound represented by the general formula (1) is reduced to the metal oxide and the metal.
  • the cyanation reaction is terminated before the amount of the amide compound represented by the general formula (1) becomes less than 0.010 equivalents with respect to the total amount of the metal oxide and the metal salt. The method according to any one of [1] to [7].
  • a novel method for producing a dicyanoalkane capable of omitting the filtration step of the catalyst after the cyanation reaction step by performing the cyanation reaction in a state where the precipitation of the metal catalyst is suppressed. Can do. Moreover, according to this invention, the blockage risk of the transportation line and distillation column by the deposited catalyst can also be avoided.
  • this embodiment a mode for carrying out the present invention (hereinafter, also simply referred to as “this embodiment”) will be described in detail, but the present invention is not limited to the following embodiment.
  • the present invention can be variously modified without departing from the gist thereof.
  • the method for producing dicyanoalkane of the present invention comprises at least one selected from the group consisting of an aliphatic dicarboxylic acid and a salt thereof, an amide compound represented by the following general formula (1) or a derivative thereof, [Wherein R 1 represents a substituted or unsubstituted hydrocarbon group] And cyanation with an ammonia source in the presence of a metal oxide and / or a metal salt (hereinafter also referred to as “cyanation reaction step of the present invention”), In the cyanation reaction step, the amount of the amide compound represented by the general formula (1) is maintained at 0.010 equivalent or more with respect to the total amount of the metal oxide and the metal salt (hereinafter referred to as “the present invention”). It is also referred to as a "manufacturing method”.
  • “equivalent” means “molar equivalent” unless otherwise specified. That is, “0.010 equivalent” means a molar ratio of 0.010 times.
  • a dicyanoalkane is an alkane (also referred to as a saturated hydrocarbon or an aliphatic hydrocarbon) having two cyano groups (represented by —CN and also referred to as a nitrile group), Either an alkane or a cyclic alkane may be used.
  • the carbon number of the alkane is not particularly limited, but in the case of a chain alkane, the carbon number is preferably 1 to 20, more preferably 4 to 10, and further preferably 6 to 8, and in the case of a cyclic alkane, Preferably, it is 3 to 8, more preferably 4 to 8, and still more preferably 5 to 6.
  • the dicyanoalkane that can be produced by the production method of the present invention includes various dicyanoalkanes.
  • Examples of the chain dicyanoalkane include dicyanomethane, dicyanoethane, dicyanopropane, dicyanobutane, dicyanopentane, dicyanohexane, dicyanoheptane, dicyanooctane, dicyanononane, and dicyanodecane.
  • dicyanopentane, dicyanohexane, and dicyanooctane are preferable, and 1,6-dicyanohexane (also referred to as suberonitrile) and 1,8-dicyanooctane (also referred to as sebacononitrile) are more preferable.
  • cyclic dicyanoalkane include dicyanocyclopropane, dicyanocyclobutane, dicyanocyclopentane, dicyanocyclohexane, dicyanocycloheptane, dicyanocyclooctane, dicyanocyclononane, and dicyanocyclodecane.
  • dicyanocyclopentane, dicyanocyclohexane, and dicyanocycloheptane are preferable, and 1,2-dicyanocyclohexane, 1,3-dicyanocyclohexane, and 1,4-dicyanocyclohexane are more preferable.
  • the dicyanoalkane may further have any one or more substituents. Examples of such substituents include a halogen atom, an alkyl group having 1 to 20 carbon atoms, or a carbon atom having 6 to 12 carbon atoms. An aryl group etc. are mentioned.
  • the dicyanoalkane can be obtained by one or more cyanation reactions selected from the group consisting of aliphatic dicarboxylic acids and salts thereof.
  • aliphatic dicarboxylic acids include various aliphatic dicarboxylic acids.
  • chain aliphatic dicarboxylic acids examples include methanedicarboxylic acid, ethanedicarboxylic acid, propanedicarboxylic acid, butanedicarboxylic acid, pentanedicarboxylic acid, hexanedicarboxylic acid, heptanedicarboxylic acid, octanedicarboxylic acid, nonanedicarboxylic acid, decanedicarboxylic acid. An acid etc. are mentioned.
  • pentanedicarboxylic acid, hexanedicarboxylic acid, and octanedicarboxylic acid are preferable, and 1,6-hexanedicarboxylic acid (suberic acid) and 1,8-octanedicarboxylic acid (sebacic acid) are more preferable.
  • cyclic aliphatic dicarboxylic acid examples include cyclopropanedicarboxylic acid, cyclobutanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid, cyclononanedicarboxylic acid, and cyclodecanedicarboxylic acid.
  • cyclopropanedicarboxylic acid examples include cyclopropanedicarboxylic acid, cyclobutanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid, cyclononanedicarboxylic acid, and cyclodecanedicarboxylic acid.
  • cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, and cycloheptanedicarboxylic acid are preferable, and 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid are more preferable.
  • the aliphatic dicarboxylic acid salt include ammonium salts and metal salts of aliphatic dicarboxylic acids.
  • the aliphatic dicarboxylic acid may further have one or more arbitrary substituents.
  • the aliphatic dicarboxylic acid used as a raw material may be produced by a conventional method, or a commercially available product may be obtained.
  • the cyanation reaction step of the present invention includes an amide compound represented by the following general formula (1) or a derivative thereof, And in the presence of metal oxides and / or metal salts.
  • R 1 is a substituted or unsubstituted hydrocarbon group.
  • the substituted or unsubstituted hydrocarbon group for R 1 is preferably a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted alicyclic hydrocarbon group, and a substituted or unsubstituted aromatic hydrocarbon group.
  • aliphatic hydrocarbons include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, and the like. Among these, pentane, hexane, and octane are preferable.
  • the alicyclic hydrocarbon include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, and cyclodecane.
  • aromatic hydrocarbon examples include benzene, pyrrole, furan, thiophene, pyridine, imidazole, pyrazole, oxazole, thiazole and the like.
  • substituent examples include a cyano group, a nitro group, a carboxyl group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • Examples of the amide compound represented by the general formula (1) include one or more selected from the group consisting of carbamoylalkanecarboxylic acid, alkanediamide, and cyanoalkanecarboxamide.
  • Examples of the derivative of the amide compound represented by the general formula (1) include those in which the hydrogen of NH 2 in the amide compound represented by the general formula (1) is substituted with another hetero atom.
  • the amide compound represented by the general formula (1) is cyanoalkanecarboxamide, more preferably 4-cyanocyclohexanecarboxamide, 7-cyanoheptanamide or 9-cyanononanamide.
  • the amount of the amide compound represented by the general formula (1) is maintained at 0.010 equivalent or more with respect to the total amount of the metal oxide and metal salt.
  • “maintaining the amount of the amide compound represented by the general formula (1) at 0.010 equivalent or more with respect to the total amount of the metal oxide and the metal salt” means that the general This means that the state is maintained after the amount of the amide compound represented by the formula (1) becomes 0.010 equivalent or more with respect to the total amount of the metal oxide and the metal salt.
  • the reaction proceeds and the general formula ( It means that the state is maintained after the amount of the amide compound represented by 1) becomes 0.010 equivalent or more.
  • the amount of the amide compound represented by the general formula (1) may temporarily increase after catalyst deposition, the above 0.010 equivalent means the amount of the amide compound before catalyst deposition.
  • the catalyst is in a dissolved state by forming a complex between the carboxylic acid present in the reaction system and the metal oxide or metal salt as the cyanation catalyst. Since the compound represented by the general formula (1) is present in a certain amount or more, a complex of the carboxylic acid and the metal oxide or metal salt as the cyanation catalyst can be stably present. It is considered that the dissolved state of the catalyst is maintained, and precipitation of the catalyst after the reaction can be effectively suppressed. The formation of the complex is supported in the examples of the present specification. For example, in FIG. 4 showing the results of the LC-Mass analysis in Example 1, 4-cyano is added to zinc oxide added as a catalyst.
  • 4-cyanocyclohexanecarboxylic acid which is one of the carboxylic acids generated in the reaction system
  • zinc oxide as a catalyst.
  • the complex is considered to catalyze the reaction of 4-cyanocyclohexanecarboxamide, which is one of the compounds represented by the general formula (1), to 1,4-dicyanocyclohexane. If the concentration of 4-cyanocyclohexanecarboxamide in the system decreases with the progress of the reaction, the reaction equilibrium is inclined and decomposition of the complex is promoted, leading to catalyst precipitation.
  • the present inventors have for the first time learned that the precipitation of the catalyst can be suppressed by maintaining the amount of the compound represented by the general formula (1) above a predetermined level. Further, since the precipitation of the catalyst can be suppressed by maintaining the reaction equilibrium, the compound represented by the general formula (1) is not necessarily a reaction intermediate in the cyanation step.
  • 4-cyanocyclohexanecarboxamide which is a compound represented by the above general formula (1), is an intermediate in the reaction of obtaining 1,4-dicyanocyclohexane from 1,4-cyclohexanedicarboxylic acid.
  • a compound other than 4-cyanocyclohexanecarboxamide may be used as the compound represented by the general formula (1).
  • the amount of the amide compound represented by the general formula (1) is 0.010 equivalents or more, preferably 0.10 equivalents or more, more preferably 0.000 equivalents or more based on the total amount of the metal oxide and metal salt. 50 equivalents or more.
  • the upper limit of the amount of the amide compound represented by the general formula (1) is preferably 30 equivalents or less, more preferably 25 equivalents or less.
  • the method for maintaining the amount of the amide compound represented by the general formula (1) is not particularly limited.
  • the method is represented by the general formula (1) during the cyanation reaction step.
  • Amide compounds or derivatives thereof can be added.
  • the cyanation reaction is terminated before the amount of the amide compound represented by the general formula (1) becomes less than 0.010 equivalents with respect to the total amount of the metal oxide and the metal salt. Can also be maintained.
  • the amount of the amide compound represented by the general formula (1) may be maintained by quantifying the amount of the amide compound represented by the general formula (1) in the cyanation reaction step, or may be a cyanation reaction.
  • the reduction rate of the amount of this compound in the process may be calculated and performed by simulation. For example, as in Verification Example 1 described in this specification, the reaction is allowed to proceed once until the catalyst is precipitated, and the change in the amount of the compound in the reaction system at that time is recorded, and the simulation is performed based on the record. You may go.
  • the amount of the amide compound represented by the general formula (1) is quantified in the cyanation reaction step.
  • the amount of the amide compound represented by the general formula (1) can be measured using gas chromatography, for example, the measurement method using the gas chromatography described in Example 1. can do.
  • the number and timing of quantification are not particularly limited. For example, every 10 minutes, every 15 minutes, every 20 minutes, every 30 minutes, every 40 minutes, every 50 minutes, every hour, every 2 hours, every 3 hours, or You may quantify every 4 hours.
  • the timing of quantification may be changed during the reaction. For example, quantification is performed every hour for up to 4 hours from the start of the reaction, and thereafter every 10 minutes. Also good.
  • 4-cyanocyclohexanecarboxylic acid and / or its carboxylate anion is considered to affect the dissolved state of the catalyst. Accordingly, 4-cyanocyclohexanecarboxylic acid and / or its carboxylate anion is quantified by various analytical methods (for example, ion chromatography), 0.2 equivalent or more of the total amount of the metal oxide and metal salt, .3 equivalents or more, 0.4 equivalents or more, 0.5 equivalents or more, 0.6 equivalents or more, 0.7 equivalents or more, 0.8 equivalents or more, 0.9 equivalents or more, 1.0 equivalents or more, 1.1 Equivalent or more, 1.2 equivalent or more, 1.3 equivalent or more, 1.4 equivalent or more, 1.5 equivalent or more, 1.6 equivalent or more, 1.7 equivalent or more, 1.8 equivalent or more, 1.9 equivalent or more Alternatively, maintaining 2.0 equivalents or more in the reaction system is also an effective method for reducing / suppressing the precipitation of the catalyst.
  • the upper limit of the amount of 4-cyanocyclohexanecarboxylic acid and / or its carboxylate anion is preferably 150 equivalents or less, more preferably 100 equivalents or less.
  • the number and timing of quantification are not particularly limited. For example, every 10 minutes, every 15 minutes, every 20 minutes, every 30 minutes, every 40 minutes, every 50 minutes, every hour, every 2 hours, every 3 hours, or You may quantify every 4 hours.
  • the timing of quantification may be changed during the reaction. For example, quantification is performed every hour up to 3 hours from the start of the reaction and then every 15 minutes. Also good.
  • the amount of 4-cyanocyclohexanecarboxylic acid and / or its carboxylate anion is quantified by ion chromatography, it can be measured using a commercially available ion chromatograph (for example, ICS2000 manufactured by Nippon Dionex).
  • the ammonia source may be brought about by a heat concentrate of ammonia (gas), urea, ammonium hydrogen carbonate, ammonium carbonate or an aqueous solution of aliphatic dicarboxylic acid ammonia.
  • the molar ratio of the ammonia source and the aliphatic dicarboxylic acid used in the cyanation step is preferably 0.1 to 5, more preferably 0.8. It is 3 to 4, particularly preferably within the range of 0.5 to 3.
  • the number of moles of the total flow rate per hour is the number of moles of the ammonia source.
  • the aqueous ammonia solution of the aliphatic dicarboxylic acid (that is, the aqueous ammonia solution containing the aliphatic dicarboxylic acid) is heated prior to the cyanation reaction step, It may have a step of obtaining the above heat concentrate by removing at least a part (hereinafter also referred to as “heat concentration step”), and may be performed continuously with the subsequent cyanation step.
  • the concentration of the aliphatic dicarboxylic acid in the aqueous ammonia solution is preferably 25 to 50 mol% with respect to 100 mol% of ammonia.
  • the initial ammonia concentration in the aqueous ammonia solution is preferably 0.1 to 10% by mass with respect to the total amount of the aqueous ammonia solution.
  • the heating temperature for obtaining the heated concentrate is preferably 100 ° C. to 200 ° C., and the pressure may be normal pressure or increased pressure.
  • the cyanation reaction step first, an aliphatic dicarboxylic acid and an ammonia source are introduced into the reactor, and a solvent and a catalyst are charged as necessary.
  • ammonia gas When ammonia gas is used, the introduction opportunity may be during heating.
  • the reactor is heated to a predetermined temperature, and the reactor is stirred while introducing an inert gas as appropriate so that the pressure in the reactor is maintained within a certain range.
  • the cyanation reaction proceeds. Further, the pressure in the system may be adjusted by introducing ammonia gas, which is a kind of ammonia source.
  • metal oxides and / or metal salts used in ordinary cyanation reactions can be employed.
  • the metal oxide include one or more selected from the group consisting of zinc oxide, tin (II) oxide, tin (IV) oxide, iron (II) oxide and iron (III) oxide. .
  • zinc oxide, tin (II) oxide, and iron (III) oxide are preferable from the viewpoint of allowing the cyanation reaction to proceed more effectively and reliably.
  • the metal salt include one or more selected from the group consisting of carbonates, carboxylates, sulfates, nitrates and halides and hydrates of zinc, tin and iron.
  • a catalyst is used individually by 1 type or in combination of 2 or more types.
  • the amount of the catalyst used is preferably 0.5 to 20% by mass with respect to 100% by mass of the aliphatic dicarboxylic acid.
  • the cyanation step may be performed without a solvent or may be performed using a solvent.
  • a solvent having a boiling point of 600 ° C. or lower more preferably a solvent having a boiling point of 500 ° C. or lower, more preferably a solvent having a boiling point of 420 ° C. or lower.
  • the boiling point of the solvent which is higher than the reaction temperature of the cyanation reaction is preferably 250 ° C. or higher, more preferably 270 ° C. or higher, and further preferably 300 ° C. or higher.
  • the boiling point is 300 ° C. or higher, the cyanation reaction proceeds smoothly, and the generation of impurities such as a trimer of dicyanocyclohexane tends to be suppressed.
  • Solvents used in the cyanation step include aliphatic alkanes such as heptadecane, nonadecane, and docosane; aliphatic alkenes such as heptadecene, nonadecene, and docosene; aliphatic alkynes such as heptadecin, nonadecene, and docosine; undecylbenzene, tridecylbenzene, Alkyl-substituted aromatics such as alkylbenzene such as tetradecylbenzene, dialkylbenzene and alkylnaphthalene; amide compounds such as undecanamide, lauric acid amide and stearic acid amide; tetradecanenitrile, hexadecanenitrile, 2-naphthylacetonitrile, stearonitrile, 1 , 6-dicyanohexane, 1,8-dicyanooc
  • Ethers such as 4-dibromophenyl ether; halogenated benzenes such as 1,2,4,5-tetrachloro-3-nitrobenzene and 4,4′-dichlorobenzophenone; ketones such as 2-phenylacetophenone and anthraquinone; Triphenylmethane; and the like.
  • alkylnaphthalene, triphenylmethane, dicyanohexane, dicyanooctane, dicyanocyclohexane and the like are preferable in that they do not hinder the progress of the cyanation reaction.
  • the final product as a solvent from the viewpoint that the step of separating the solvent and the produced aliphatic dinitrile can be omitted.
  • the amount of solvent in the cyanation step may be no solvent or an amount that allows the cyanation reaction to proceed sufficiently.
  • the amount of the solvent used is 20 times the mass of the aliphatic dicarboxylic acid and / or its salt.
  • the amount is 0.01 to 10 times, more preferably 0.05 to 5 times, and particularly preferably 0.1 to 3 times.
  • the reaction temperature in the cyanation reaction step is preferably 200 to 340 ° C., more preferably 230 to 330 ° C., and further preferably 250 to 320 ° C.
  • the reaction pressure may be negative, normal or positive, but is preferably 0.001 MPa to 10 MPa, more preferably 0.05 MPa to 5 MPa, and still more preferably.
  • the pressure is in the range of 0.08 MPa to 0.12 MPa, for example, normal pressure (0.1 MPa).
  • the yield and selectivity of the obtained dicyanoalkane can be increased by adjusting the concentration of each raw material and the reaction conditions within the above range.
  • the reaction time is not particularly limited as long as the amount of the amide compound represented by the general formula (1) is maintained at 0.010 equivalent or more with respect to the total amount of the metal oxide and the metal salt. It can be appropriately selected depending on the scale.
  • the dicyanoalkane may be recovered by distilling the reaction solution containing the dicyanoalkane thus obtained as necessary (hereinafter, this step is also referred to as “distillation step”).
  • this step is also referred to as “distillation step”.
  • distillation step for example, in the case of 1,4-dicyanocyclohexane, the distiller is heated from the bottom so that the pressure in the distiller system is 3.0 kPa to 4.0 kPa, and the temperature is 180 to 230 ° C., and the top is cooled. By doing so, the gas-liquid contact is made in the vessel. Thereby, dicyanoalkane can be selectively extracted from the top of the distiller and recovered.
  • the production method of the present embodiment is a step of obtaining bis (aminomethyl) alkane by hydrogenation reaction on the dicyanoalkane obtained as described above (hereinafter referred to as “amination step”). May also be included).
  • the cyano group (—CN) is converted to an aminomethyl group (—CH 2 NH 2 ) by the amination step.
  • Bis (aminomethyl) alkane is an alkane having two aminomethyl groups obtained by a hydrogenation reaction of a cyano group, and has the following structure, for example.
  • amination step first, dicyanoalkane, a solvent, and a catalyst are charged into the reactor, and hydrogen gas is introduced until the pressure in the system reaches a predetermined pressure. Thereafter, the inside of the reactor is heated to a predetermined temperature, and the hydrogenation reaction proceeds while appropriately introducing hydrogen gas into the reactor so that the pressure in the reactor is maintained within a certain range.
  • a solvent used in a normal hydrogenation reaction can also be employed. Specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, and the like And aromatic hydrocarbons such as alcohol, xylene, mesitylene, and pseudocumene, liquid ammonia, and aqueous ammonia.
  • a solvent is used individually by 1 type or in combination of 2 or more types.
  • the catalyst used for normal hydrogenation reaction can also be employ
  • a catalyst in which Ni and / or Co is supported by Al 2 O 3 , SiO 2 , diatomaceous earth, SiO 2 —Al 2 O 3 , and ZrO 2 by precipitation, Raney nickel, or Raney cobalt is suitable as the catalyst. Used for. Among these, a Raney cobalt catalyst and a Raney nickel catalyst are preferred from the viewpoint of allowing the nitrile hydrogenation reaction to proceed more effectively and reliably.
  • a catalyst is used individually by 1 type or in combination of 2 or more types. Further, the amount of the catalyst used is preferably 0.1 to 150% by mass, more preferably 0.1 to 20% by mass, and 0.5 to 15% by mass with respect to 100% by mass of dicyanoalkane. More preferably. The yield and selectivity of the resulting bis (aminomethyl) alkane can be increased by using the catalyst in an amount within the above range.
  • the concentration of dicyanoalkane is preferably 1 to 50% by mass and more preferably 2 to 40% by mass with respect to the total amount of the reaction solution from the viewpoint of reaction efficiency.
  • the reaction temperature in the amination step is preferably 40 to 150 ° C.
  • the reaction pressure is preferably 0.5 to 15 MPa in terms of hydrogen partial pressure.
  • reaction time should just be time when hydrogenation reaction fully advances.
  • Example 1 In a 500 mL five-necked flask equipped with a stirring blade, a gas supply pipe with a variable supply height, a thermocouple, and a dehydrator, 100 g of 1,4-cyclohexanedicarboxylic acid (Tokyo Chemical Industry Co., Ltd.), zinc oxide (Kanto) Chemical Co., Ltd.) 1.60 g and 1,4-dicyanocyclohexane 100 g were charged. Nitrogen gas (supply rate 68 ml / min) and ammonia gas (supply rate 348 ml / min) and ammonia gas (supply rate 348 ml / min) were introduced into the flask at 170 ° C.
  • HPLC analyzer / analyzer U3000 Rapid Separation LC (Thermo Fisher Scientific column: None (flow injection) Temperature: 35 ° C Moving liquid, flow rate: acetonitrile, 0.2 ml / min Sample concentration, injection volume: 15-fold diluted 10 ⁇ L Detector: PDA (extraction wavelength 254 nm) MS analyzer / analyzer: LTQ Orbitrap Discovery (manufactured by Thermo Fisher Scientific) Ionization method: ESI negative mode
  • ICP emission analyzer manufactured by Vista-PRO Axial Agilent Technologies
  • the amount of zinc deposited (wt%) was measured by the following method. 4.0 g of the reaction product obtained in Example 1 was weighed, methanol (20 ml) was added, and ultrasonic dissolution was performed for 15 minutes. Pressure filtration was performed with a membrane filter (ADVANTEC (registered trademark) H100A047A), and after washing with methanol (30 ml), 0.1M nitric acid aqueous solution was added to the residue obtained by drying, and wet decomposition was performed. The solution diluted with ultrapure water was analyzed by ICP-AES.
  • Example 1 As in Example 1, 100 g of 1,4-cyclohexanedicarboxylic acid and 1.60 g of zinc oxide were added to a 500 mL five-necked flask equipped with a stirring blade, a gas supply pipe having a variable supply height, a thermocouple, and a dehydrator. , And 100 g of 1,4-dicyanocyclohexane were charged. Nitrogen gas (supply rate 68 ml / min) and ammonia gas (supply rate 348 ml / min) and ammonia gas (supply rate 348 ml / min) were introduced into the flask at 170 ° C. with stirring at 300 rpm from the liquid level.
  • ICP-AES analysis conditions A 0.1M nitric acid aqueous solution was added to the above residue for wet decomposition, and a solution diluted with ultrapure water was analyzed by ICP-AES.
  • Example 2 A 500 mL three-necked flask equipped with a stirring blade, a gas supply pipe with a variable supply height, a thermocouple, and a dehydrator, 100 g of 1,4-cyclohexanedicarboxylic acid, tin (II) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) 1.32 g and 100 g of 1,4-dicyanocyclohexane were charged. Nitrogen gas (supply rate 68 ml / min) and ammonia gas (supply rate 348 ml / min) and ammonia gas (supply rate 348 ml / min) were introduced into the flask at 170 ° C.
  • the reaction system was allowed to cool to room temperature, the reaction product was dissolved using methanol, and analyzed by GC.
  • the conversion of 1,4-cyclohexanedicarboxylic acid was 99.9%, and the yield of 1,4-dicyanocyclohexane was 87.3%.
  • the deposited tin was 5.1 wt% with respect to the tin contained in the added tin oxide.
  • the gas supply port was lowered into the reaction solution to start bubbling, and this time was set as the start of the cyanation reaction.
  • the temperature of the reaction system was further raised, and the reaction was terminated when the reaction temperature was stirred at 300 ° C. for 6 hours. At this time, the deposit was visually recognized in the reaction solution.
  • the reaction system was allowed to cool to room temperature, the reaction product was dissolved using methanol, and the precipitate was filtered off by pressure filtration with a membrane filter, and the filtrate was analyzed by GC.
  • the 4-cyanocyclohexanecarboxamide content was 0.08 mmol, which was 0.008 equivalent of the added tin oxide (9.8 mmol).
  • the deposited tin was 78.5 wt% with respect to the tin contained in the added tin oxide.
  • Example 3 In a 500 mL five-necked flask equipped with a stirring blade, a gas supply pipe with a variable supply height, a thermocouple, and a dehydrator, 1,4-cyclohexanedicarboxylic acid 100 g, Fe 2 O 3 (III) (Wako Pure Chemical Industries, Ltd.) 0.78 g) (manufactured by Co., Ltd.) and 100 g of 1,4-dicyanocyclohexane were charged.
  • 1,4-cyclohexanedicarboxylic acid 100 g
  • Fe 2 O 3 (III) (Wako Pure Chemical Industries, Ltd.) 0.78 g) (manufactured by Co., Ltd.)
  • 100 g of 1,4-dicyanocyclohexane were charged.
  • Nitrogen gas (supply rate 68 ml / min) and ammonia gas (supply rate 348 ml / min) and ammonia gas (supply rate 348 ml / min) were introduced into the flask at 170 ° C. with stirring at 300 rpm from the liquid level.
  • the gas supply port was lowered into the reaction solution to start bubbling, and this time was set as the start of the cyanation reaction.
  • the reaction system was further heated, and stirring was continued at a reaction temperature of 300 ° C. A trace amount of the reaction solution was appropriately collected, allowed to cool to room temperature, dissolved with methanol, and analyzed by GC.
  • the reaction system was allowed to cool to room temperature, the reaction product was dissolved using methanol, and analyzed by GC.
  • the conversion of 1,4-cyclohexanedicarboxylic acid was 99.9%, and the yield of 1,4-dicyanocyclohexane was 91.1%.
  • the precipitated iron was 54.7 wt% with respect to the iron contained in the added iron oxide.
  • the gas supply port was lowered into the reaction solution to start bubbling, and this time was set as the start of the cyanation reaction.
  • the temperature of the reaction system was further raised, and the reaction was terminated when the reaction temperature was stirred at 300 ° C. for 6 hours. At this time, the deposit was visually recognized in the reaction solution.
  • the reaction system was allowed to cool to room temperature, the reaction product was dissolved using methanol, and the precipitate was filtered off by pressure filtration with a membrane filter, and the filtrate was analyzed by GC.
  • the 4-cyanocyclohexanecarboxamide content was 0.06 mmol, which was 0.006 equivalent of the added iron ion (9.8 mmol).
  • the precipitated iron was 95.8 wt% with respect to the iron contained in the added iron oxide.
  • Example 4 (Production of bis (aminomethyl) cyclohexane) In a 300 mL SUS316 pressure vessel, 24.4 g of 1,4-dicyanocyclohexane, 37.3 g of methanol as a solvent and 28.4 g of 28% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.), and Raney cobalt as a catalyst 0.56 g of a catalyst (manufactured by Wako Pure Chemical Industries, Ltd.) was charged, and hydrogen gas was introduced until the reaction pressure reached 4.5 MPa.
  • the inside of the container is heated to a reaction temperature of 80 ° C., the temperature is kept constant, and an amination reaction (nitrile hydrogenation reaction) by hydrogenation is performed while stirring the inside of the container at 750 rpm with an electromagnetic stirring blade. Allowed to proceed for 1 minute.
  • amination reaction nitrogen hydrogenation reaction
  • the conversion of 1,4-dicyanocyclohexane was 100%
  • the selectivity of 1,4-bis (aminomethyl) cyclohexane was 97.0%
  • the yield was 97.0%.
  • Example 5 Manufacture of suberonitrile
  • 20 g of suberic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • 317 mg of zinc oxide 20 g of suberonitrile (Tokyo Chemical Industry Co., Ltd.)
  • Nitrogen gas supplied by 20 ml / min
  • ammonia gas supplied by 70 ml / min
  • ammonia gas supplied from the flask at 170 ° C.
  • the reaction system was allowed to cool to room temperature, the reaction product was dissolved using methanol, and analyzed by GC. As a result, the yield of suberonitrile excluding the charged suberonitrile was 49.7%. Moreover, as a result of conducting the ICP analysis of the reaction liquid in the same procedure as Example 1, the deposited zinc was 58.5 wt% with respect to the zinc contained in the added zinc oxide.
  • the gas supply port was lowered into the reaction solution to start bubbling, and this time was set as the start of the cyanation reaction.
  • the temperature of the reaction system was further raised, and stirring was continued for 7 hours at a reaction temperature of 300 ° C. At this time, the deposit was visually recognized in the reaction solution.
  • the reaction system was allowed to cool to room temperature, the reaction product was dissolved using methanol, the precipitate was filtered by pressure filtration with a membrane filter, and the filtrate was analyzed by GC. As a result, the yield of suberonitrile excluding the charged suberonitrile was 39.4%. In addition, 7-cyanoheptanamide was not detected by GC analysis. As a result of subjecting the residue during pressure filtration to the same treatment as in Comparative Example 1 and performing ICP analysis, the deposited zinc was 73.0 wt% with respect to zinc contained in the added zinc oxide.
  • Example 6 (Production of 1,8-diaminooctane)
  • a stirrer, 1.0 g of suberonitrile, 1.6 g of methanol, 1.1 g of 28% ammonia water, and 0.1 g of Raney cobalt catalyst as a catalyst were charged in a 30 mL pressure vessel made of SUS316, and the reaction pressure of hydrogen gas was 8.7 MPa. Introduced until. Next, the inside of the container was heated to a reaction temperature of 80 ° C., the temperature was kept constant, and the amination reaction by hydrogenation was allowed to proceed for 60 minutes while stirring the inside of the container at 600 rpm with a magnetic stirrer. As a result, the conversion rate of suberonitrile was 100%, and the yield of 1,8-diaminooctane was 90.2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本発明は、金属触媒の析出を抑えた状態でシアノ化反応を行うことにより、シアノ化反応工程後の触媒の濾過工程を省略することができる新規なジシアノアルカンの製造方法を提供する。本発明の一態様によれば、ジシアノアルカンの製造方法であって、脂肪族ジカルボン酸およびその塩からなる群から選択される1種以上を、所定の化合物ならびに触媒の存在下、アンモニア源とシアノ化する、シアノ化反応工程を含み、シアノ化反応工程において、当該所定の化合物の量を触媒に対して所定の量以上に維持する方法が提供される。

Description

ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法
 本発明はジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法に関する。
 ジシアノアルカンは、水添反応によりビス(アミノメチル)アルカンを得るための原料として用いることができる。ビス(アミノメチル)アルカンは、樹脂の原料として有用であるため、効率的にジシアノアルカンを製造する方法が求められている。
 ジシアノアルカンからビス(アミノメチル)アルカンを製造する際の前工程として、アルカンジカルボン酸のシアノ化反応工程がある。このシアノ化反応工程について一般的に金属触媒を用いた反応が知られている。例えば特許文献1には、トランス-ビス(アミノメチル)シクロヘキサンの製造方法において、酸化スズ(II)触媒存在下で1,4-シクロヘキサンジカルボン酸から1,4-ジシアノシクロヘキサンを得る方法が記載されている(特許文献1、実施例1)。
特許第6078158号
 しかしながら、特許文献1に記載の製造方法では、シアノ化反応工程後に濾過をして固形物(すなわち析出した触媒)を除去する工程が含まれており、改善の余地があった。
 本発明は、上記事情に鑑みてなされたものであり、金属触媒の析出を抑えた状態でシアノ化反応を行うことにより、シアノ化反応工程後の触媒の濾過工程を省略することができる新規なジシアノアルカンの製造方法を提供することができる。また、本発明によれば、析出した触媒による輸送ラインや蒸留塔の閉塞リスクも回避することができる。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、シアノ化反応工程において特定の化合物の量を触媒に対して所定量以上に維持することで触媒の析出を抑えることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
[1]
 ジシアノアルカンの製造方法であって、
 脂肪族ジカルボン酸およびその塩からなる群から選択される1種以上を、下記一般式(1)で表されるアミド化合物またはその誘導体、
Figure JPOXMLDOC01-appb-C000002
 
[式中、Rは、置換または無置換の炭化水素基である]
 ならびに金属酸化物および/または金属塩の存在下、アンモニア源とシアノ化する、シアノ化反応工程を含み、
 前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する、方法。
[2]
 前記アンモニア源が、アンモニア、尿素、炭酸水素アンモニウム、炭酸アンモニウムまたは脂肪族ジカルボン酸アンモニア水溶液の加熱濃縮物によってもたらされる、[1]に記載の方法。
[3]
 前記Rの置換または無置換の炭化水素基が、置換または無置換の脂肪族炭化水素基、置換または無置換の脂環族炭化水素基、および置換または無置換の芳香族炭化水素基からなる群から選択される1価の基から選択される、[1]または[2]に記載の方法。
[4]
  前記一般式(1)で表されるアミド化合物が、カルバモイルアルカンカルボン酸、アルカンジアミドおよびシアノアルカンカルボキサミドからなる群から選択される1種以上である、[1]~[3]のいずれかに記載の方法。
[5]
 前記金属酸化物が、酸化亜鉛、酸化スズおよび酸化鉄からなる群から選択される1種以上である、[1]~[4]のいずれかに記載の方法。
[6]
 前記金属塩が、炭酸塩、カルボン酸塩、硫酸塩、硝酸塩およびハロゲン化物ならびにそれらの水和物からなる群から選択される1種以上である、[1]~[5]のいずれかに記載の方法。
[7]
 前記シアノ化反応工程中に前記一般式(1)で表されるアミド化合物またはその誘導体の追加を行うことで、前記一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する、[1]~[6]のいずれかに記載の方法。
[8]
 前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量が前記金属酸化物および金属塩の総量に対して0.010当量未満となる前に、前記シアノ化反応を終了させる、[1]~[7]のいずれかに記載の方法。
[9]
 前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量を定量する、[1]~[8]のいずれかに記載の方法。
[10]
 [1]~[9]のいずれかに記載の方法により得られたジシアノアルカンに対する水素添加反応により、ビス(アミノメチル)アルカンを得るアミノ化工程を有する、ジアミノアルカンの製造方法。
 本発明によれば、金属触媒の析出を抑えた状態でシアノ化反応を行うことにより、シアノ化反応工程後の触媒の濾過工程を省略することができる新規なジシアノアルカンの製造方法を提供することができる。また、本発明によれば、析出した触媒による輸送ラインや蒸留塔の閉塞リスクも回避することができる。
触媒析出前後の1,4-ジシアノシクロヘキサンおよび4-シアノシクロヘキサンカルボキサミドの組成比の変化をガスクロマトグラフィー(以下、GCとも称する)を用いて測定した結果である。 実施例1における反応終了時の反応液の状態を示す写真である。 比較例1における反応終了時の反応液の状態を示す写真である。 触媒と中間体との複合体の構造を示す、実施例1におけるLC-Mass分析の結果である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」ともいう。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
1.ジシアノアルカンの製造方法
 本発明のジシアノアルカンの製造方法は、脂肪族ジカルボン酸およびその塩からなる群から選択される1種以上を、下記一般式(1)で表されるアミド化合物またはその誘導体、
Figure JPOXMLDOC01-appb-C000003
 
[式中、Rは、置換または無置換の炭化水素基である]
 ならびに金属酸化物および/または金属塩の存在下、アンモニア源とシアノ化する、シアノ化反応工程(以下、「本発明のシアノ化反応工程」とも称する)を含み、
 前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する、方法(以下、「本発明の製造方法」とも称する)である。本明細書において「当量」とは、特に明記がない限り「モル当量」を意味する。すなわち、「0.010当量」とは0.010倍のモル比を意味する。
 本明細書において、ジシアノアルカンとは2つのシアノ基(-CNで表され、ニトリル基とも称される)を有するアルカン(飽和炭化水素や脂肪族炭化水素とも称される)であり、鎖状のアルカンと環状のアルカンのいずれであってもよい。アルカンの炭素数としては、特に限定されないが、鎖状のアルカンの場合、好ましくは炭素数は1~20、より好ましくは4~10、さらに好ましくは6~8であり、環状のアルカンの場合は、好ましくは3~8、より好ましくは4~8、さらに好ましくは、5~6である。
 本発明の製造方法で製造し得るジシアノアルカンとしては、種々のジシアノアルカンが含まれる。鎖状のジシアノアルカンとしては、例えば、ジシアノメタン、ジシアノエタン、ジシアノプロパン、ジシアノブタン、ジシアノペンタン、ジシアノヘキサン、ジシアノヘプタン、ジシアノオクタン、ジシアノノナン、ジシアノデカン等が挙げられる。これらの中でもジシアノペンタン、ジシアノヘキサン、ジシアノオクタンが好ましく、1,6-ジシアノヘキサン(スベロニトリルとも称される)や1,8-ジシアノオクタン(セバコニトリルとも称される)がさらに好ましい。環状のジシアノアルカンとしては、例えば、ジシアノシクロプロパン、ジシアノシクロブタン、ジシアノシクロペンタン、ジシアノシクロヘキサン、ジシアノシクロヘプタン、ジシアノシクロオクタン、ジシアノシクロノナン、ジシアノシクロデカン等が挙げられる。これらの中でもジシアノシクロペンタン、ジシアノシクロヘキサン、ジシアノシクロヘプタンが好ましく、1,2-ジシアノシクロヘキサン、1,3-ジシアノシクロヘキサン、1,4-ジシアノシクロヘキサンがさらに好ましい。ジシアノアルカンは、さらに任意の1つ以上の置換基を有していてもよく、そのような置換基としては、例えば、ハロゲン原子、炭素数1~20のアルキル基、または炭素数6~12のアリール基等が挙げられる。
 本発明の製造方法において、ジシアノアルカンは脂肪族ジカルボン酸およびその塩からなる群から選択される1種以上のシアノ化反応によって得ることができる。そのような脂肪族ジカルボン酸としては、種々の脂肪族ジカルボン酸が含まれる。鎖状の脂肪族ジカルボン酸としては、例えば、メタンジカルボン酸、エタンジカルボン酸、プロパンジカルボン酸、ブタンジカルボン酸、ペンタンジカルボン酸、ヘキサンジカルボン酸、ヘプタンジカルボン酸、オクタンジカルボン酸、ノナンジカルボン酸、デカンジカルボン酸等が挙げられる。これらの中でもペンタンジカルボン酸、ヘキサンジカルボン酸、オクタンジカルボン酸が好ましく、1,6-ヘキサンジカルボン酸(スベリン酸)や1,8-オクタンジカルボン酸(セバシン酸)がさらに好ましい。環状の脂肪族ジカルボン酸としては、例えば、シクロプロパンジカルボン酸、シクロブタンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロノナンジカルボン酸、シクロデカンジカルボン酸等が挙げられる。これらの中でもシクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸が好ましく、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸がさらに好ましい。脂肪族ジカルボン酸の塩としては、脂肪族ジカルボン酸のアンモニウム塩や金属塩等が挙げられる。脂肪族ジカルボン酸は、さらに任意の1つ以上の置換基を有していてもよく、そのような置換基としては、例えば、ハロゲン原子、炭素数1~20のアルキル基、または炭素数6~12のアリール基等が挙げられる。本発明の製造方法におけるシアノ化反応工程において、原料として用いられる脂肪族ジカルボン酸は、常法によって製造してもよく、市販品を入手してもよい。
 本発明のシアノ化反応工程の流れを下記スキーム1を用いて説明する。
Figure JPOXMLDOC01-appb-C000004
 
上記スキーム1に示すように、出発物質であるカルボン酸とアンモニアガスとの反応が起こり、カルボキシル基が順次アミド基に変換される。そのアミド基が触媒の存在下で脱水されてシアノ基に変換されることで目的化合物であるニトリルが得られる。
 本発明のシアノ化反応工程は、下記一般式(1)で表されるアミド化合物またはその誘導体、
Figure JPOXMLDOC01-appb-C000005
 
ならびに金属酸化物および/または金属塩の存在下で行われる。上記式中、Rは、置換または無置換の炭化水素基である。Rの置換または無置換の炭化水素基は、好ましくは、置換または無置換の脂肪族炭化水素基、置換または無置換の脂環族炭化水素基、および置換または無置換の芳香族炭化水素基からなる群から選択される1価の基から選択される。そのような脂肪族炭化水素としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等が挙げられる。これらの中でもペンタン、ヘキサン、オクタンが好ましい。脂環族炭化水素としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン等が挙げられる。芳香族炭化水素としては、ベンゼン、ピロール、フラン、チオフェン、ピリジン、イミダゾール、ピラゾール、オキサゾール、チアゾール等が挙げられる。置換基としては、例えば、シアノ基、ニトロ基、カルボキシル基、ハロゲン原子、炭素数1~20のアルキル基、または炭素数6~12のアリール基等が挙げられる。
 上記一般式(1)で表されるアミド化合物としては、例えば、カルバモイルアルカンカルボン酸、アルカンジアミドおよびシアノアルカンカルボキサミドからなる群から選択される1種以上が挙げられる。一般式(1)で表されるアミド化合物の誘導体としては、一般式(1)で表されるアミド化合物のNHの水素が他のヘテロ原子に置換されたものが挙げられる。好ましくは、上記一般式(1)で表されるアミド化合物は、シアノアルカンカルボキサミドであり、より好ましくは、4-シアノシクロヘキサンカルボキサミド、7-シアノヘプタンアミドまたは9-シアノノナンアミドである。
 本発明の製造方法は、シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する。なお、本明細書において「一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する」とは、反応開始後に前記一般式(1)で表されるアミド化合物の量が前記金属酸化物および金属塩の総量に対して0.010当量以上となった後、その状態を維持することを意味する。例えば、反応開始直後において一般式(1)で表されるアミド化合物の量が前記金属酸化物および金属塩の総量に対して0.010当量を下回っている場合、反応が進行して一般式(1)で表されるアミド化合物の量が0.010当量以上となってからその状態を維持することを意味する。一般式(1)で表されるアミド化合物の量を上記の値以上に維持することで、触媒の析出を抑えることができる。なお、触媒析出後に一般式(1)で表されるアミド化合物の量が一時的に増加する場合があるため、上記の0.010当量は触媒析出前のアミド化合物の量を意味する。
理論に拘束されるものではないが、反応系に存在するカルボン酸とシアノ化触媒である金属酸化物または金属塩とが複合体を形成することで、当該触媒が溶解状態となると考えられる。そして、上記一般式(1)で表される化合物が一定量以上存在することで、このカルボン酸とシアノ化触媒である金属酸化物または金属塩との複合体が安定的に存在できるため、当該触媒の溶解状態が維持され、反応後の触媒の析出を効果的に抑制できるものと考えられる。複合体が形成されることは、本明細書の実施例においても裏付けられており、例えば、実施例1におけるLC-Mass分析の結果を示す図4では、触媒として添加した酸化亜鉛に4-シアノシクロヘキサンカルボン酸またはそのカルボキシラートイオンが3分子結合して複合体を形成していることが確認された(ESIネガティブモードによって検出したことを考慮すると、実際の反応液では3分子よりも少ない4-シアノシクロヘキサンカルボン酸および/またはそのカルボキシラートイオンが亜鉛と複合体を形成している可能性も考えられる)。触媒の析出が抑えられているか否かは目視によっても確認することができるが、種々の分析方法(例えば、ICP分析)によって確認することもできる。ICP分析によって測定した場合、析出した金属が、添加した触媒に含まれる金属に対して60wt%以下であれば十分に析出が抑制されているといえる。
ここで、1,4-シクロヘキサンジカルボン酸の1,4-ジシアノシクロヘキサンへのシアノ化の場合、反応系中で生じるカルボン酸の1つである4-シアノシクロヘキサンカルボン酸が触媒である酸化亜鉛と複合体を形成し、その複合体が上記一般式(1)で表される化合物の1つである4-シアノシクロヘキサンカルボキサミドの1,4-ジシアノシクロヘキサンへの反応を触媒しているものと考えられる。そして、反応の進行とともに4-シアノシクロヘキサンカルボキサミドの系内での濃度が低下すると、反応平衡が傾き、複合体の分解が促進されて触媒の析出につながると考えられる。したがって、上記一般式(1)で表される化合物の量を所定の水準以上に維持することで、触媒の析出を抑制することができることを本発明者らは初めて知得した。また、反応平衡を維持することで触媒の析出を抑制することができることから、上記一般式(1)で表される化合物は必ずしもシアノ化工程における反応中間体でなくてもよい。例えば、上記の例では、上記一般式(1)で表される化合物である4-シアノシクロヘキサンカルボキサミドは、1,4-シクロヘキサンジカルボン酸から1,4-ジシアノシクロヘキサンを得る反応における中間体であるが、上記一般式(1)で表される化合物として4-シアノシクロヘキサンカルボキサミド以外の化合物を用いてもよい。
 一般式(1)で表されるアミド化合物の量は前記金属酸化物および金属塩の総量に対して0.010当量以上であり、好ましくは0.10当量以上であり、より好ましくは、0.50当量以上である。一般式(1)で表されるアミド化合物の量の上限値は、好ましくは30当量以下であり、より好ましくは25当量以下である。
 本発明のシアノ化反応工程において、一般式(1)で表されるアミド化合物の量を維持する方法としては特に限定されないが、例えば、シアノ化反応工程中に一般式(1)で表されるアミド化合物またはその誘導体を追加することができる。
 あるいは、シアノ化反応工程において、一般式(1)で表されるアミド化合物の量が前記金属酸化物および金属塩の総量に対して0.010当量未満となる前に、前記シアノ化反応を終了させることでも維持することができる。
 一般式(1)で表されるアミド化合物の量の維持は、シアノ化反応工程における一般式(1)で表されるアミド化合物の量を定量することによって行ってもよく、あるいは、シアノ化反応工程におけるこの化合物の量の低減速度を計算し、シミュレーションによって行ってもよい。例えば、本明細書に記載の検証例1のように、一旦触媒の析出が生じるまで反応を進行させてその際の反応系内の化合物の量の変化を記録し、その記録に基づいてシミュレーションを行ってもよい。本発明の好ましい態様において、シアノ化反応工程において、一般式(1)で表されるアミド化合物の量を定量する。反応の最中に適宜定量を行うことで、より確実に当該化合物の量を維持することができ、効果的に触媒の析出を抑制することができる。本明細書において、一般式(1)で表されるアミド化合物の量は、ガスクロマトグラフィーを用いて測定することができ、例えば、実施例1に記載のガスクロマトグラフィーを用いた測定方法で測定することができる。定量の回数やタイミングは特に限定されないが、例えば、10分毎、15分毎、20分毎、30分毎、40分毎、50分毎、1時間毎、2時間毎、3時間毎、または4時間毎に定量してもよい。また、反応の進行度を考慮して、定量するタイミングを反応途中で変えてもよく、例えば、反応開始から4時間までは1時間毎に定量し、その後は10分毎に定量するなどしてもよい。
 また、図4に示すように4-シアノシクロヘキサンカルボン酸および/またはそのカルボキシラートアニオンも触媒の溶解状態に影響すると考えられる。従って、4-シアノシクロヘキサンカルボン酸および/またはそのカルボキシラートアニオンを種々の分析方法(例えば、イオンクロマトグラフィー)によって定量し、前記金属酸化物および金属塩の総量に対して0.2当量以上、0.3当量以上、0.4当量以上、0.5当量以上、0.6当量以上、0.7当量以上、0.8当量以上、0.9当量以上、1.0当量以上、1.1当量以上、1.2当量以上、1.3当量以上、1.4当量以上、1.5当量以上、1.6当量以上、1.7当量以上、1.8当量以上、1.9当量以上、または2.0当量以上を反応系中に維持することも触媒の析出を軽減/抑制するために効果的な方法である。また、4-シアノシクロヘキサンカルボン酸および/またはそのカルボキシラートアニオンの量の上限値は、好ましくは150当量以下であり、より好ましくは100当量以下である。定量の回数やタイミングは特に限定されないが、例えば、10分毎、15分毎、20分毎、30分毎、40分毎、50分毎、1時間毎、2時間毎、3時間毎、または4時間毎に定量してもよい。また、反応の進行度を考慮して、定量するタイミングを反応途中で変えてもよく、例えば、反応開始から3時間までは1時間毎に定量し、その後は15分毎に定量するなどしてもよい。例えば、イオンクロマトグラフィーによって4-シアノシクロヘキサンカルボン酸および/またはそのカルボキシラートアニオンの量を定量する場合は、市販のイオンクロマトグラフ(例えば、日本ダイオネクス製のICS2000)を用いて測定することができる。
 本発明のシアノ化反応工程において、アンモニア源がアンモニア(ガス)、尿素、炭酸水素アンモニウム、炭酸アンモニウムまたは脂肪族ジカルボン酸アンモニア水溶液の加熱濃縮物によってもたらされてもよい。シアノ化工程に用いられるアンモニア源と脂肪族ジカルボン酸とのモル比(アンモニア源のモル数/脂肪族ジカルボン酸のモル数)は、0.1~5であることが好ましく、より好ましくは0.3~4であり、特に好ましくは0.5~3の範囲内である。なお、アンモニアガス等の気体をアンモニア源として用いる場合、1時間当たりの合計流量のモル数を上記アンモニア源のモル数とする。脂肪族ジカルボン酸アンモニア水溶液の加熱濃縮物をアンモニア源として用いる場合、シアノ化反応工程に先立って脂肪族ジカルボン酸のアンモニア水溶液(すなわち、脂肪族ジカルボン酸を含むアンモニア水溶液)を加熱して、水の少なくとも一部を除去することにより、上記加熱濃縮物を得る工程(以下、「加熱濃縮工程」とも称する)を有していてもよく、その後のシアノ化工程と連続的に行ってもよい。アンモニア水溶液中の脂肪族ジカルボン酸の濃度は、アンモニア100モル%に対して、25~50モル%であると好ましい。また、加熱濃縮工程において、初期のアンモニア水溶液中のアンモニアの濃度は、アンモニア水溶液の全体量に対して、0.1~10質量%であると好ましい。さらに、加熱濃縮物を得る際の加熱温度は、100℃~200℃であると好ましく、圧力は常圧であっても加圧であってもよい。
 シアノ化反応工程においては、まず、反応器内に脂肪族ジカルボン酸とアンモニア源とを導入し、必要に応じて溶媒と、触媒とを仕込む。アンモニアガスを使用する場合、その導入機会は加熱途中でもよい。その後、反応器内を所定の温度になるまで加熱して、反応器内の圧力が一定の範囲内を維持するよう、適宜不活性ガスを反応器内に導入しつつ、かつ反応器内を撹拌しながら、シアノ化反応を進行させる。また、系内の圧力の調整は、アンモニア源の1種であるアンモニアガスの導入によって調整してもよい。
 触媒としては、通常のシアノ化反応に用いられる金属酸化物および/または金属塩を採用することができる。具体的には、金属酸化物としては、酸化亜鉛、酸化スズ(II)、酸化スズ(IV)、酸化鉄(II)および酸化鉄(III)からなる群から選択される1種以上が挙げられる。これらの中では、シアノ化反応をより有効かつ確実に進行させる観点から、酸化亜鉛、酸化スズ(II)、および酸化鉄(III)が好ましい。金属塩としては、亜鉛、スズおよび鉄の、炭酸塩、カルボン酸塩、硫酸塩、硝酸塩およびハロゲン化物ならびにそれらの水和物からなる群から選択される1種以上が挙げられる。触媒は、1種を単独でまたは2種以上を組み合わせて用いられる。さらに、触媒の使用量は、脂肪族ジカルボン酸100質量%に対して、0.5~20質量%であると好ましい。触媒を上記の範囲内の量となるように用いることで、得られるジシアノアルカンの収率および選択率を高めることができる。
 シアノ化工程は無溶媒で行ってもよく、溶媒を用いて行ってもよい。好ましくは沸点が600℃以下の溶媒、より好ましくは沸点が500℃以下の溶媒、さらに好ましくは沸点が420℃以下の溶媒が使用される。また、シアノ化反応の反応温度以上である溶媒の沸点は、好ましくは250℃以上であり、より好ましくは270℃以上であり、さらに好ましくは300℃以上である。沸点が300℃以上であることにより、シアノ化反応が円滑に進行し、且つ、ジシアノシクロヘキサンの三量体といったような不純物の生成を抑えることができる傾向にある。
 シアノ化工程において用いられる溶媒として、ヘプタデカン、ノナデカン、ドコサン等の脂肪族アルカン;ヘプタデセン、ノナデセン、ドコセン等の脂肪族アルケン;ヘプタデシン、ノナデシン、ドコシン等の脂肪族アルキン;ウンデシルベンゼン、トリデシルベンゼン、テトラデシルベンゼン等のアルキルベンゼン、ジアルキルベンゼン及びアルキルナフタレン等のアルキル置換芳香族;ウンデカンアミド、ラウリン酸アミド、ステアリン酸アミド等のアミド化合物;テトラデカンニトリル、ヘキサデカンニトリル、2-ナフチルアセトニトリル、ステアロニトリル、1,6-ジシアノヘキサン、1,8-ジシアノオクタン、1,2-ジシアノシクロヘキサン、1,3-ジシアノシクロヘキサン、1,4-ジシアノシクロヘキサン等のニトリル化合物;4-ジブロモフェニルエーテル等のエーテル;1,2,4,5-テトラクロロ-3-ニトロベンゼン、4,4’-ジクロロベンゾフェノン等のハロゲン化ベンゼン;2-フェニルアセトフェノン、アントラキノン等のケトン並びにトリフェニルメタン;等が挙げられる。
 これらのうち、アルキルナフタレン、トリフェニルメタン、ジシアノヘキサン、ジシアノオクタン、ジシアノシクロヘキサン等がシアノ化反応の進行を妨げない点で好ましい。より好ましくは、溶媒として最終生成物を用いることが、溶媒と生成した脂肪族ジニトリルの分離工程を省略できる点から好ましい。
 シアノ化工程における溶媒量は、無溶媒、もしくはシアノ化反応が十分に進行する量であれば良いが、例えば溶媒の使用量は脂肪族ジカルボン酸および/またはその塩の質量に対し、20倍量以下であることが好ましく、0.01~10倍量であることがより好ましく、さらに好ましくは0.05~5倍量であり、特に好ましくは0.1~3倍量の範囲内である。
 シアノ化反応工程における反応温度は、200~340℃であると好ましく、230~330℃であるとより好ましく、250~320℃であるとさらに好ましい。反応圧力は、陰圧であっても常圧であっても陽圧であってもよいが、0.001MPa~10MPaであることが好ましく、より好ましくは0.05MPa~5MPaであり、さらに好ましくは0.08MPa~0.12MPaの範囲内、例えば常圧(0.1MPa)である。各原料の濃度や反応条件を上述の範囲内に調整することで、得られるジシアノアルカンの収率及び選択率を高めることができる。
 反応時間は、上記一般式(1)で表されるアミド化合物の量が金属酸化物および金属塩の総量に対して0.010当量以上に維持されている時間であれば特に限定されず、反応スケールによって適宜選択することができる。
 このようにして得られたジシアノアルカンを含む反応液を、必要に応じて蒸留することにより、ジシアノアルカンを回収してもよい(以下、この工程を「蒸留工程」とも称する)。蒸留は、例えば1,4-ジシアノシクロヘキサンの場合、蒸留器の系内の圧力が3.0kPa~4.0kPa、温度が180~230℃になるよう蒸留器を底部から加熱すると共に頂部で冷却をすることで、器内において気液接触させることで行われる。これにより、蒸留器の頂部からジシアノアルカンを選択的に抜き出して回収することができる。
2.ビス(アミノメチル)アルカンの製造方法
 本実施形態の製造方法は、上述のようにして得られたジシアノアルカンに対する水素添加反応により、ビス(アミノメチル)アルカンを得る工程(以下、「アミノ化工程」とも称する)を有していてもよい。アミノ化工程により、シアノ基(-CN)がアミノメチル基(-CHNH)に変換される。ビス(アミノメチル)アルカンは、シアノ基の水素添加反応によって得られたアミノメチル基を2つ有するアルカンであり、例えば、下記のような構造を有する。
Figure JPOXMLDOC01-appb-C000006
 
 アミノ化工程においては、まず、反応器内にジシアノアルカンと、溶媒と、触媒とを仕込み、系内の圧力が所定の圧力になるまで水素ガスを導入する。その後、反応器内を所定の温度になるまで加熱して、反応器内の圧力が一定の範囲内を維持するよう、適宜水素ガスを反応器内に導入しつつ、水素添加反応を進行させる。
 溶媒としては、通常の水素添加反応に用いられる溶媒を採用することもでき、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、及びtert-ブタノール等のアルコール、キシレン、メシチレン、及びプソイドキュメンのような芳香族炭化水素、液体アンモニア、及びアンモニア水が挙げられる。溶媒は1種を単独で又は2種以上を組み合わせて用いられる。また、触媒としては、通常の水素添加反応に用いられる触媒を採用することもでき、具体的には、Ni及び/又はCoを含有する触媒を用いることができる。一般には、Ni及び/又はCoを、Al、SiO、けい藻土、SiO-Al、及びZrOに沈殿法で担持した触媒、ラネーニッケル、あるいはラネーコバルトが触媒として好適に用いられる。これらの中では、ニトリル水添反応をより有効かつ確実に進行させる観点から、ラネーコバルト触媒及びラネーニッケル触媒が好ましい。触媒は1種を単独で又は2種以上を組み合わせて用いられる。さらに、触媒の使用量は、ジシアノアルカン100質量%に対して、0.1~150質量%であると好ましく、0.1~20質量%であるとより好ましく、0.5~15質量%であるとさらに好ましい。触媒を上記の範囲内の量となるように用いることで、得られるビス(アミノメチル)アルカンの収率および選択率を高めることができる。
 アミノ化工程における、ジシアノアルカンの濃度は、反応効率の観点から、反応液の全体量に対して、1~50質量%であると好ましく、2~40質量%であるとより好ましい。また、アミノ化工程における反応温度は、40~150℃であると好ましく、反応圧力は、水素分圧で0.5~15MPaであると好ましい。なお、反応時間は、水素添加反応が十分に進行する時間であればよい。反応条件を上述の範囲内に調整することで、得られるビス(アミノメチル)アルカンの収率及び選択率を高めることができる。
 <実施例>
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に何らの制限を受けるものではない。
(検証例1)
 撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL五ツ口フラスコに、1,4-シクロヘキサンジカルボン酸(東京化成工業株式会社製)100g、酸化亜鉛(関東化学株式会社製)1.60g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で6時間攪拌した結果、5時間54分の時点で析出物を視認した。触媒析出前後の1,4-ジシアノシクロヘキサンおよび4-シアノシクロヘキサンカルボキサミドの組成比の変化をガスクロマトグラフィー(以下、GCとも称する)を用いて測定し、結果を図1に示した。GCの条件は、下記実施例1と同様の条件で行った。6時間撹拌したときの4-シアノシクロヘキサンカルボキサミドの量は1.7mmolであった。
(実施例1)
 撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL五ツ口フラスコに、1,4-シクロヘキサンジカルボン酸(東京化成工業株式会社製)100g、酸化亜鉛(関東化学株式会社製)1.60g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で攪拌を続けた。微量の反応液を反応開始から4時間までは1時間毎、その後は10分毎に採取し、室温まで冷却後にメタノールを用いて溶解させ、GCにより分析した。5時間攪拌した時点で4-シアノシクロヘキサンカルボキサミドの量は3.8mmolとなり、添加した酸化亜鉛(19.6mmol)に対して約0.19当量となったため、反応を終了した。この時、図2のように反応液中に析出物は視認できなかった。
 反応終了後、反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、GCにより分析した。その結果、1,4-シクロヘキサンジカルボン酸の転化率は99.9%、1,4-ジシアノシクロヘキサンの収率は89.0%であった。尚、収率には仕込みの1,4-ジシアノシクロヘキサンを含まず、以下の実施例および比較例に記載の収率もこれと同様である。また、この時の反応液のLC-Mass分析からは1当量の亜鉛と3当量の4-シアノシクロヘキサンカルボン酸との複合体を観測した(図4参照)。さらに、ICP分析により析出した亜鉛は、添加した酸化亜鉛に含まれる亜鉛に対して3.1 wt%であった。なお、GC、LC-MassおよびICPは以下の条件で分析を行った。また、実施例1の反応終了後の反応液をイオンクロマトグラフ(日本ダイオネクス製のICS2000、溶離液:KOH水溶液、カラム:AS17C)を用いて分析した結果、4-シアノシクロヘキサンカルボン酸のカルボキシラートアニオンは酸化亜鉛に対して1.0当量であった。
<GC分析条件>
分析装置:島津製作所社製型式名「GC2010 PLUS」
カラム:製品名「HP-5ms」(アジレント・テクノロジー株式会社製、長さ30m×内径0.25mm、膜厚0.25μm)
キャリアーガス:He(constant pressure:73.9kPa)
注入口温度:300℃
検出器:FID
検出器温度:300℃
カラムオーブン温度:100℃で開始し、10℃/minで300℃まで昇温し300℃で30分間保持
<LC-Mass分析条件>
HPLCの分析装置・分析条件
装置:U3000 Rapid Separation LC(Thermo Fisher Scientific社製
カラム:なし(フローインジェクション)
温度:35℃
移動液、流量:アセトニトリル、0.2 ml/min
試料濃度、注入量:15倍希釈10μL
検出器:PDA(抽出波長254nm)
MSの分析装置・分析条件
装置:LTQ Orbitrap Discovery(Thermo Fisher Scientific社製)
イオン化法:ESIネガティブモード
<ICP-AES分析条件>
分析装置: ICP発光分析装置(Vista-PRO Axial アジレントテクノロジー社製)
 亜鉛の析出量(wt%)は以下の方法で測定した。実施例1で得られた反応生成物4.0gを秤量し、メタノール(20ml)を加えて超音波溶解を15分間行った。メンブレンフィルター(ADVANTEC(登録商標) H100A047A)にて加圧濾過を行い、メタノール(30ml)で洗浄後、乾燥して得られた残渣に0.1M硝酸水溶液を添加して湿式分解を行った。これを超純水で希釈した溶液をICP-AESにより分析した。
(比較例1)
 実施例1と同様に、撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL五ツ口フラスコに、1,4-シクロヘキサンジカルボン酸100g、酸化亜鉛1.60g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で6時間攪拌した結果、図3のように析出物を視認した。
 反応終了後、メタノールを用いて反応生成物を溶解させ、メンブレンフィルター(ADVANTEC(登録商標) H100A047A)にて加圧濾過することで析出物を濾別し、濾液をGCにより分析した。その結果、1,4-シクロヘキサンジカルボン酸の転化率は99.9%、1,4-ジシアノシクロヘキサンの収率は89.9%であった。また、4-シアノシクロヘキサンカルボキサミド含有量は0.18mmolであり、添加した酸化亜鉛(19.6mmol)の0.009当量であった。上記の加圧濾過時に得られた残渣のICP分析により、析出した亜鉛は添加した酸化亜鉛に含まれる亜鉛に対して81.0wt%であった。
<ICP-AES分析条件>
 上記の残渣に0.1M硝酸水溶液を添加して湿式分解を行い、これを超純水で希釈した溶液をICP-AESにより分析した。
(実施例2)
 撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL三ツ口フラスコに、1,4-シクロヘキサンジカルボン酸100g、酸化スズ(II)(和光純薬工業株式会社製)1.32g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で攪拌を続けた。微量の反応液を適宜採取して室温まで放冷し、メタノールを用いて溶解させ、GCにより分析した。4時間30分攪拌した時点で4-シアノシクロヘキサンカルボキサミドの量は8.3mmolとなり、触媒量(9.8mmol)に対して0.85当量となったため、反応を終了した。この時、反応液中に酸化スズの黒色析出物は視認できなかった。
 反応終了後反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、GCにより分析した。その結果、1,4-シクロヘキサンジカルボン酸の転化率は99.9%、1,4-ジシアノシクロヘキサンの収率は87.3%であった。また、実施例1と同様の手順で反応液のICP分析を行った結果、析出したスズは添加した酸化スズに含まれるスズに対して5.1 wt%であった。
(比較例2)
撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL三ツ口フラスコに、1,4-シクロヘキサンジカルボン酸100g、酸化スズ(II)1.32g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で6時間攪拌したところで反応を終了した。この時、反応液中に析出物を視認した。
反応終了後、反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、メンブレンフィルターにて加圧濾過することで析出物を濾別し、濾液をGCにより分析した。その結果、1,4-シクロヘキサンジカルボン酸の転化率は99.9%、1,4-ジシアノシクロヘキサンの収率は88.6%であった。また、4-シアノシクロヘキサンカルボキサミド含有量は0.08mmolであり、添加した酸化スズ(9.8mmol)の0.008当量であった。加圧濾過時の残渣に比較例1と同様の処理を施してICP分析を行った結果、析出したスズは添加した酸化スズに含まれるスズに対して78.5wt%であった。
(実施例3)
撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL五ツ口フラスコに、1,4-シクロヘキサンジカルボン酸100g、Fe(III)(和光純薬工業株式会社製)0.78g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で攪拌を続けた。微量の反応液を適宜採取して室温まで放冷し、メタノールを用いて溶解させ、GCにより分析した。4時間30分攪拌した時点で4-シアノシクロヘキサンカルボキサミドの量は7.3mmolとなり、添加した鉄イオン(9.8mmol)に対して約0.74当量となったため、反応を終了した。
反応終了後反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、GCにより分析した。その結果、1,4-シクロヘキサンジカルボン酸の転化率は99.9%、1,4-ジシアノシクロヘキサンの収率は91.1%であった。また、実施例1と同様の手順で反応液のICP分析を行った結果、析出した鉄は添加した酸化鉄に含まれる鉄に対して54.7wt%であった。
(比較例3)
撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した500mL五ツ口フラスコに、1,4-シクロヘキサンジカルボン酸100g、Fe(III)0.78g、及び1,4-ジシアノシクロヘキサン100gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度68ml/min)、およびアンモニアガス(供給速度348ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で6時間攪拌したところで反応を終了した。この時、反応液中に析出物を視認した。
反応終了後、反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、メンブレンフィルターにて加圧濾過することで析出物を濾別し、濾液をGCにより分析した。その結果、1,4-シクロヘキサンジカルボン酸の転化率は99.9%、1,4-ジシアノシクロヘキサンの収率は92.3%であった。また、4-シアノシクロヘキサンカルボキサミド含有量は0.06mmolであり、添加した鉄イオン(9.8mmol)の0.006当量であった。加圧濾過時の残渣に比較例1と同様の処理を施してICP分析を行った結果、析出した鉄は添加した酸化鉄に含まれる鉄に対して95.8wt%であった。
(実施例4)
(ビス(アミノメチル)シクロヘキサンの製造)
 300mLのSUS316製耐圧容器内に、1,4-ジシアノシクロヘキサン24.4g、溶媒としてのメタノール37.3gと28%アンモニア水(和光純薬工業株式会社製)28.4g、及び、触媒としてラネーコバルト触媒(和光純薬工業株式会社製)0.56gを仕込み、水素ガスを4.5MPaの反応圧力になるまで導入した。次いで、容器内を80℃の反応温度まで加熱し、温度を一定に保持し、容器内を電磁式攪拌羽根にて750rpmで撹拌しながら、水素添加によるアミノ化反応(ニトリル水添反応)を240分間、進行させた。その結果、1,4-ジシアノシクロヘキサンの転化率は100%、1,4-ビス(アミノメチル)シクロヘキサンの選択率は97.0%、収率は97.0%であった。
(実施例5)
(スベロニトリルの製造)
撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した100mL三ツ口フラスコに、スベリン酸(東京化成工業株式会社製)20g、酸化亜鉛317mg、及びスベロニトリル20g(東京化成工業株式会社製)を仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度20ml/min)、およびアンモニアガス(供給速度70ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応温度260~270℃の温度範囲で攪拌を続けた。微量の反応液を適宜採取して室温まで放冷し、メタノールを用いて溶解させ、GCにより分析した。6.5時間攪拌した時点で7-シアノヘプタンアミドの量は3.2mmolとなり、触媒量(3.9mmol)に対して0.82当量となったため、反応を終了した。この時、反応液中に析出物は視認できなかった。
 反応終了後反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、GCにより分析した。その結果、仕込み分のスベロニトリルを除いたスベロニトリルの収率は49.7%であった。また、実施例1と同様の手順で反応液のICP分析を行った結果、析出した亜鉛は添加した酸化亜鉛に含まれる亜鉛に対して58.5wt%であった。
(比較例4)
 撹拌羽根、供給高さが可変であるガス供給管、熱電対及び脱水装置を付帯した100mL三ツ口フラスコに、スベリン酸20g、酸化亜鉛317mg、及びスベロニトリル20gを仕込んだ。300rpm攪拌下にて170℃で窒素ガス(供給速度20ml/min)、およびアンモニアガス(供給速度70ml/min)を液面より上に設置したガス供給管からフラスコに導入した。反応系の温度が270℃まで昇温したところでガス供給口を反応液内へ下降させてバブリングを開始し、このときをシアノ化反応の開始時とした。反応系をさらに昇温し、反応温度300℃で7時間攪拌を続けた。この時、反応液中に析出物を視認した。
 反応終了後、反応系を室温まで放冷し、メタノールを用いて反応生成物を溶解させ、メンブレンフィルターにて加圧濾過することで析出物を濾別し、濾液をGCにより分析した。その結果、仕込み分のスベロニトリルを除いたスベロニトリルの収率は39.4 %であった。また、7-シアノヘプタンアミドはGC分析では検出されなかった。加圧濾過時の残渣に比較例1と同様の処理を施してICP分析を行った結果、析出した亜鉛は添加した酸化亜鉛に含まれる亜鉛に対して73.0wt%であった。
(実施例6)
(1,8-ジアミノオクタンの製造)
 30mLのSUS316製耐圧容器内に攪拌子、スベロニトリル1.0g、メタノール1.6g、28%アンモニア水1.1g、および触媒としてラネーコバルト触媒0.1gを仕込み、水素ガスを8.7MPaの反応圧力になるまで導入した。次いで、容器内を80℃の反応温度まで加熱し、温度を一定に保持し、容器内をマグネチックスターラーにて600rpmで撹拌しながら、水素添加によるアミノ化反応を60分間進行させた。その結果、スベロニトリル転化率は100%、1,8-ジアミノオクタンの収率は90.2%であった。
 

Claims (10)

  1.  ジシアノアルカンの製造方法であって、
     脂肪族ジカルボン酸およびその塩からなる群から選択される1種以上を、下記一般式(1)で表されるアミド化合物またはその誘導体、
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、Rは、置換または無置換の炭化水素基である]
     ならびに金属酸化物および/または金属塩の存在下、アンモニア源とシアノ化する、シアノ化反応工程を含み、
     前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する、方法。
  2.  前記アンモニア源が、アンモニア、尿素、炭酸水素アンモニウム、炭酸アンモニウムまたは脂肪族ジカルボン酸アンモニア水溶液の加熱濃縮物によってもたらされる、請求項1に記載の方法。
  3.  前記Rの置換または無置換の炭化水素基が、置換または無置換の脂肪族炭化水素基、置換または無置換の脂環族炭化水素基、および置換または無置換の芳香族炭化水素基からなる群から選択される1価の基から選択される、請求項1または2に記載の方法。
  4.   前記一般式(1)で表されるアミド化合物が、カルバモイルアルカンカルボン酸、アルカンジアミドおよびシアノアルカンカルボキサミドからなる群から選択される1種以上である、請求項1~3のいずれか1項に記載の方法。
  5.  前記金属酸化物が、酸化亜鉛、酸化スズおよび酸化鉄からなる群から選択される1種以上である、請求項1~4のいずれか1項に記載の方法。
  6.  前記金属塩が、炭酸塩、カルボン酸塩、硫酸塩、硝酸塩およびハロゲン化物ならびにそれらの水和物からなる群から選択される1種以上である、請求項1~5のいずれか1項に記載の方法。
  7.  前記シアノ化反応工程中に前記一般式(1)で表されるアミド化合物またはその誘導体の追加を行うことで、前記一般式(1)で表されるアミド化合物の量を前記金属酸化物および金属塩の総量に対して0.010当量以上に維持する、請求項1~6のいずれか1項に記載の方法。
  8.  前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量が前記金属酸化物および金属塩の総量に対して0.010当量未満となる前に、前記シアノ化反応を終了させる、請求項1~7のいずれか1項に記載の方法。
  9.  前記シアノ化反応工程において、前記一般式(1)で表されるアミド化合物の量を定量する、請求項1~8のいずれか1項に記載の方法。
  10.  請求項1~9のいずれか1項に記載の方法により得られたジシアノアルカンに対する水素添加反応により、ビス(アミノメチル)アルカンを得るアミノ化工程を有する、ジアミノアルカンの製造方法。
     
PCT/JP2019/015738 2018-04-11 2019-04-11 ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法 WO2019198782A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980022825.4A CN111936461B (zh) 2018-04-11 2019-04-11 二氰基烷烃及双(氨基甲基)烷烃的制造方法
KR1020207029665A KR102649173B1 (ko) 2018-04-11 2019-04-11 디시아노알칸 및 비스(아미노메틸)알칸의 제조방법
US17/045,897 US11542222B2 (en) 2018-04-11 2019-04-11 Method for preparing dicyanoalkane and bis(aminomethyl) alkane
EP19785144.7A EP3778559A4 (en) 2018-04-11 2019-04-11 PROCESS FOR THE PRODUCTION OF DICYANOALKANE AND UP TO (AMINOMETHYL) ALKANE
JP2020513444A JP7371622B2 (ja) 2018-04-11 2019-04-11 ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076239 2018-04-11
JP2018076239 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198782A1 true WO2019198782A1 (ja) 2019-10-17

Family

ID=68163696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015738 WO2019198782A1 (ja) 2018-04-11 2019-04-11 ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法

Country Status (7)

Country Link
US (1) US11542222B2 (ja)
EP (1) EP3778559A4 (ja)
JP (1) JP7371622B2 (ja)
KR (1) KR102649173B1 (ja)
CN (1) CN111936461B (ja)
TW (1) TWI803615B (ja)
WO (1) WO2019198782A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454619A (en) * 1966-10-19 1969-07-08 El Paso Products Co Production of adiponitrile
JPS55104242A (en) * 1979-02-05 1980-08-09 Dainippon Ink & Chem Inc Preparation of organic dinitrile compound
JPS62167749A (ja) * 1986-01-14 1987-07-24 バスフ アクチェン ゲゼルシャフト ニトリルの製法
WO2011146440A1 (en) * 2010-05-19 2011-11-24 Bioamber S.A.S. Processes for producing diaminobutane (dab), succinic dinitrile (sdn) and succinamide (dam)
WO2012046781A1 (ja) * 2010-10-07 2012-04-12 三井化学株式会社 ビス(アミノメチル)シクロヘキサン類の製造方法
WO2012046782A1 (ja) * 2010-10-07 2012-04-12 三井化学株式会社 トランス-1,4-ビス(アミノメチル)シクロヘキサンの製造方法
WO2015016148A1 (ja) * 2013-08-01 2015-02-05 三井化学株式会社 トランス-ビス(アミノメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物およびポリウレタン樹脂
WO2018066447A1 (ja) * 2016-10-04 2018-04-12 三菱瓦斯化学株式会社 1,4-ジシアノシクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、及び1,4-シクロヘキサンジカルボン酸の製造方法
WO2019035381A1 (ja) * 2017-08-18 2019-02-21 三菱瓦斯化学株式会社 ジシアノシクロヘキサンの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140783A (en) * 1981-02-06 1982-08-31 Toyama Chem Co Ltd 1-benzyl-4-(4-(2-pyrimidinylamino)benzyl)-2, 3-dioxopiperazine derivative and its salt, their preparation, and carcinostatic agent containing the same
JPS6078158U (ja) 1983-10-31 1985-05-31 松下電工株式会社 混成集積回路基板
AU572896B2 (en) * 1983-11-09 1988-05-19 Sumitomo Chemical Company, Limited 2-phenylbenzotriazoles
JPS62205052A (ja) * 1986-03-05 1987-09-09 Terumo Corp 硝酸エステル誘導体およびこれを含有する血管拡張剤
EP0480044A4 (en) * 1990-03-30 1993-06-09 Japan Tobacco Inc. Novel 4h-3,1-benzoxazin-4-one derivative
WO2007102448A1 (en) * 2006-03-08 2007-09-13 Kao Corporation Process for producing aliphatic nitriles
FR2907781B1 (fr) * 2006-10-27 2010-01-08 Ceca Sa Procede de synthese de diamines et/ou de triamines primaires de haute purete a partir d'acides dimeres ou trimeres
CN111479802B (zh) * 2017-12-27 2023-07-28 三菱瓦斯化学株式会社 二氰基环己烷和双(氨基甲基)环己烷的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454619A (en) * 1966-10-19 1969-07-08 El Paso Products Co Production of adiponitrile
JPS55104242A (en) * 1979-02-05 1980-08-09 Dainippon Ink & Chem Inc Preparation of organic dinitrile compound
JPS62167749A (ja) * 1986-01-14 1987-07-24 バスフ アクチェン ゲゼルシャフト ニトリルの製法
WO2011146440A1 (en) * 2010-05-19 2011-11-24 Bioamber S.A.S. Processes for producing diaminobutane (dab), succinic dinitrile (sdn) and succinamide (dam)
WO2012046781A1 (ja) * 2010-10-07 2012-04-12 三井化学株式会社 ビス(アミノメチル)シクロヘキサン類の製造方法
WO2012046782A1 (ja) * 2010-10-07 2012-04-12 三井化学株式会社 トランス-1,4-ビス(アミノメチル)シクロヘキサンの製造方法
WO2015016148A1 (ja) * 2013-08-01 2015-02-05 三井化学株式会社 トランス-ビス(アミノメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物およびポリウレタン樹脂
JP6078158B2 (ja) 2013-08-01 2017-02-08 三井化学株式会社 トランス−ビス(アミノメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物およびポリウレタン樹脂
WO2018066447A1 (ja) * 2016-10-04 2018-04-12 三菱瓦斯化学株式会社 1,4-ジシアノシクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、及び1,4-シクロヘキサンジカルボン酸の製造方法
WO2019035381A1 (ja) * 2017-08-18 2019-02-21 三菱瓦斯化学株式会社 ジシアノシクロヘキサンの製造方法

Also Published As

Publication number Publication date
JPWO2019198782A1 (ja) 2021-05-13
EP3778559A1 (en) 2021-02-17
TW201943689A (zh) 2019-11-16
US20210139408A1 (en) 2021-05-13
CN111936461B (zh) 2023-09-05
US11542222B2 (en) 2023-01-03
KR102649173B1 (ko) 2024-03-20
EP3778559A4 (en) 2021-05-12
CN111936461A (zh) 2020-11-13
JP7371622B2 (ja) 2023-10-31
TWI803615B (zh) 2023-06-01
KR20200143394A (ko) 2020-12-23

Similar Documents

Publication Publication Date Title
Liu et al. Metal-free aerobic oxidative coupling of amines to imines
Veisi et al. Chemoselective hydration of nitriles to amides using hydrated ionic liquid (IL) tetrabutylammonium hydroxide (TBAH) as a green catalyst
Barbero et al. Copper-free Sandmeyer cyanation of arenediazonium o-benzenedisulfonimides
KR101280128B1 (ko) 아민의 제조 방법
US5689003A (en) Ruthenium hydrogenation catalysts
JP2017197566A (ja) So2不含のシアン化水素を使用したedaの製造法
Ouyang et al. Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions
Conceicao et al. Knoevenagel condensation reaction in supercritical carbon dioxide medium using a Zn (II) coordination polymer as catalyst
WO2019198782A1 (ja) ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法
Gharib et al. Catalytic Synthesis of α‐Aminonitriles Using Nano Copper Ferrite (CuFe2O4) under Green Conditions
Amoroso et al. Studies on the catalytic ability of palladium wire, foil and sponge in the Suzuki–Miyaura cross-coupling
Ghosh et al. Hybrid cobalt doped-cerium oxide as a multifunctional nanocatalyst for various organic transformations
JP7306274B2 (ja) ジシアノシクロヘキサン、及びビス(アミノメチル)シクロヘキサンの製造方法
US11584705B2 (en) Production method for cyclohexanedicarboxylic acid compound, dicyanocyclohexane compound and bis(aminomethyl)cyclohexane compound
RU2158254C2 (ru) Способ получения алифатических альфа, омега-аминонитрилов
CN108997144A (zh) 一种铁卟啉催化芳香伯胺三氟乙基化的方法
WO2023097690A1 (zh) 一种高选择性不对称催化羰基还原制备β-硝基或叠氮基醇的方法
NH et al. 7.3 Nitriles from Amines
CN101973890B (zh) 一种手性(R)-α-苯乙胺醋酸盐的制备及合成方法
CN118652153A (zh) 一种由醛合成有机腈类化合物的方法
Petersen et al. CO2-Enabled Cyanohydrin
CN113416140A (zh) 一种制备2-甲基戊二胺的方法
JP2002003438A (ja) 脂肪族アルデヒド酸アセタール及び/又は脂肪族ジカルボン酸の製造方法
JP2002003439A (ja) 脂肪族アルデヒド酸及び/又は脂肪族ジカルボン酸の製造方法
CN107814781A (zh) 一种催化氨氧化制备5‑氰基‑2‑呋喃酰胺的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019785144

Country of ref document: EP

Effective date: 20201111