WO2019198462A1 - モータ及びブラシレスワイパーモータ - Google Patents

モータ及びブラシレスワイパーモータ Download PDF

Info

Publication number
WO2019198462A1
WO2019198462A1 PCT/JP2019/012028 JP2019012028W WO2019198462A1 WO 2019198462 A1 WO2019198462 A1 WO 2019198462A1 JP 2019012028 W JP2019012028 W JP 2019012028W WO 2019198462 A1 WO2019198462 A1 WO 2019198462A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
motor
salient pole
rotor core
Prior art date
Application number
PCT/JP2019/012028
Other languages
English (en)
French (fr)
Inventor
竜 大堀
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to US17/042,179 priority Critical patent/US11901779B2/en
Priority to EP19785242.9A priority patent/EP3780347B1/en
Priority to CN201980019709.7A priority patent/CN111869052B/zh
Publication of WO2019198462A1 publication Critical patent/WO2019198462A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a motor and a brushless wiper motor.
  • a brushless motor (hereinafter sometimes simply referred to as a motor) includes a stator having teeth around which a coil is wound, and a rotor that is rotatably provided on the radial inner side of the stator. Slots are formed between adjacent teeth in the circumferential direction. A coil is wound around each tooth through this slot.
  • the stator and the rotor are formed by laminating electromagnetic steel sheets in the rotational axis direction of the shaft (hereinafter sometimes simply referred to as the axial direction) or by pressure-molding soft magnetic powder. An interlinkage magnetic flux is formed in the stator by supplying power to the coil.
  • the rotor includes a shaft, a substantially columnar rotor core that is fitted and fixed to the shaft, and a permanent magnet provided on the rotor core. Then, a magnetic attractive force or a repulsive force is generated between the interlinkage magnetic flux formed in the stator and the permanent magnet provided in the rotor core, and the rotor continuously rotates.
  • a rotor having a salient pole protruding outward in the radial direction between permanent magnets adjacent in the circumferential direction on the outer peripheral surface of the rotor core has been proposed (for example, see Patent Document 2).
  • a direction in which the interlinkage magnetic flux (q-axis magnetic flux) due to the stator coil easily flows and a direction in which the interlinkage magnetic flux hardly flows are formed.
  • reluctance torque is generated in the rotor core, and this reluctance torque can also contribute to the rotational force of the rotor.
  • FIG. 16 is a plan view of a part of the stator 108 as seen from the axial direction.
  • both axial end portions 108a of the stator 108 are one electromagnetic steel plate Pt when viewed from the axial direction.
  • the electrical resistance of the stator 108 with respect to this magnetic flux is small. Therefore, at both axial end portions 108a of the stator 108, the eddy current Du is likely to be generated by the magnetic flux flowing from the outside in the rotation axis direction, and the iron loss of the stator may increase.
  • FIG. 17 is a side view of the stator 108 as seen from the radial direction.
  • the stator 108 is formed by laminating electromagnetic steel plates Pt, the electrical resistance of the stator 108 increases with respect to the magnetic flux along the radial direction. For this reason, the eddy current Du is unlikely to occur.
  • FIG. 18 is a graph showing changes in surface magnetic flux density in Patent Document 2 when the vertical axis represents the rotor surface magnetic flux density and the horizontal axis represents the rotor rotation angle. As shown in part X of FIG. 18, it can be confirmed that a magnetic flux is formed on the salient pole and the change in the magnetic flux of the salient pole is large. For this reason, the order of the cogging torque increases, and the iron loss of the stator may increase.
  • the present invention provides a motor and a brushless wiper motor that can suppress the iron loss of the stator and increase the motor efficiency.
  • a motor according to the present invention is wound around a tooth having an annular stator core, a stator having a plurality of teeth projecting radially inward from an inner peripheral surface of the stator core, and A coil that rotates on the radially inner side of the stator core, a rotor core that is fixed to the shaft and that has a rotational axis of the shaft as a center in the radial direction, and a plurality of permanent magnets disposed on the outer peripheral surface of the rotor core; A salient pole formed so as to protrude radially outward between the permanent magnets adjacent in the circumferential direction of the outer peripheral surface of the rotor core, and contacting the circumferential side surface of the permanent magnet,
  • the stator is formed by laminating a plurality of electromagnetic steel plates along the rotation axis direction of the shaft, and the permanent magnet is a small number of both ends in the rotation axis direction. Characterized in that also the one end portion protrudes from an end portion
  • the electric resistance can be increased with respect to the magnetic flux of the salient poles in the direction along the radial direction.
  • the eddy current of a stator can be made small with respect to the magnetic flux of the salient pole in the direction along the radial direction. Therefore, the iron loss of a stator can be suppressed and motor efficiency can be improved.
  • the motor according to the present invention is characterized in that the thickness of the stator in the direction of the rotational axis and the thickness of the rotor core in the direction of the rotational axis are the same.
  • the thickness of the stator in the rotation axis direction is Ts
  • the thickness of the rotor core in the rotation axis direction is Tr
  • the thickness of the permanent magnet in the rotation axis direction is Tm.
  • the interlinkage magnetic flux formed in the stator is efficiently contributed to the rotational force of the rotor while preventing the magnetic fluxes at both ends of the salient pole from leaking to both ends of the stator. be able to. For this reason, motor efficiency can further be improved.
  • the motor according to the present invention is characterized in that a circumferential width dimension at the radially outer end of the salient pole is 40 ° or less in electrical angle.
  • the inductance value in the q-axis direction can be reduced by setting the electrical angle of the salient pole to 40 ° or less and reducing the circumferential width of the salient pole.
  • the interlinkage magnetic flux formed in the stator easily passes through the salient pole, there is a possibility that the interlinkage magnetic flux also passes through the circumferential side surface of the permanent magnet that is in contact with the salient pole. That is, a demagnetizing field is generated on the circumferential side surface of the permanent magnet.
  • demagnetization can be suppressed by setting the electrical angle of the salient poles to 40 ° or less.
  • a circumferential width dimension at the radially outer end of the salient pole is 20 ° or more in electrical angle.
  • the magnetic field concentrates on the salient pole so that the demagnetizing field hardly acts on the end of the permanent magnet.
  • the effect of becoming can be obtained with certainty.
  • the electrical angle of the salient pole to 20 ° or more and 40 ° or less, a high reluctance torque can be obtained, and the motor efficiency can be increased.
  • one groove portion is formed on the radially outer end face of the salient pole along the rotational axis direction, and the groove width gradually increases in the circumferential direction toward the radially inner side. It is characterized by being formed so as to be narrow.
  • the gap between the end face and the teeth can be non-uniform when viewed on the entire radially outer end face of the salient pole. it can.
  • it is possible to suppress a rapid change in the magnetic flux density generated in the teeth before and after the salient pole passes between the teeth during the rotation of the rotor core. For this reason, the rapid torque fluctuation of the rotor core can be reduced, and the torque ripple can be reduced.
  • a brushless wiper motor according to the present invention includes the motor described above.
  • the electrical resistance can be increased with respect to the magnetic flux of the salient poles in the direction along the radial direction by laminating the electromagnetic steel plates along the axial direction. For this reason, the eddy current of a stator can be made small with respect to the magnetic flux of the salient pole in the direction along the radial direction. Therefore, the iron loss of a stator can be suppressed and motor efficiency can be improved. Moreover, it is possible to prevent the magnetic flux on one end side of the permanent magnet from leaking to the salient poles by projecting at least one end portion of both ends of the permanent magnet in the axial direction from the end portion of the rotor core.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a block diagram of the stator and rotor in embodiment of this invention.
  • It is a perspective view of a stator and a rotor.
  • It is the A section enlarged view of FIG.
  • It is sectional drawing which follows the axial direction of the stator and rotor in embodiment of this invention.
  • It is a graph which shows the change of the surface magnetic flux density of the axial direction edge part of a salient pole in the embodiment of the present invention. It is the graph which compared the effective magnetic flux amount of the rotor in embodiment of this invention, and the effective magnetic flux amount of the conventional rotor.
  • FIG. 1 is a perspective view of the wiper motor 1.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the wiper motor 1 serves as a drive source for a wiper mounted on a vehicle, for example.
  • the wiper motor 1 includes a motor unit 2, a deceleration unit 3 that decelerates and outputs the rotation of the motor unit 2, and a controller unit 4 that performs drive control of the motor unit 2.
  • the axial direction simply refers to the rotational axis direction of the shaft 31 of the motor unit 2
  • the simple circumferential direction refers to the circumferential direction of the shaft 31
  • the simple radial direction refers to the shaft.
  • the radial direction of 31 shall be said.
  • the motor unit 2 includes a motor case 5, a substantially cylindrical stator 8 housed in the motor case 5, and a rotor 9 provided on the radially inner side of the stator 8 and rotatable with respect to the stator 8. And.
  • the motor unit 2 is a so-called brushless motor that does not require a brush when supplying power to the stator 8.
  • the motor case 5 is formed of a material having excellent heat dissipation, such as aluminum die casting.
  • the motor case 5 includes a first motor case 6 and a second motor case 7 that are configured to be separable in the axial direction.
  • the first motor case 6 and the second motor case 7 are each formed in a bottomed cylindrical shape.
  • the first motor case 6 is integrally formed with the gear case 40 so that the bottom 10 is joined to the gear case 40 of the speed reduction unit 3.
  • a through-hole 10a through which the shaft 31 of the rotor 9 can be inserted is formed at a substantially central portion of the bottom portion 10 in the radial direction.
  • an outer flange portion 16 that projects outward in the radial direction is formed in the opening 6 a of the first motor case 6, and is stretched outward in the radial direction in the opening 7 a of the second motor case 7.
  • An outer flange portion 17 is formed.
  • a motor case 5 having an internal space is formed by abutting these outer flange portions 16 and 17 together.
  • a stator 8 is disposed in the internal space of the motor case 5 so as to be fitted into the first motor case 6 and the second motor case 7.
  • FIG. 3 shows the configuration of the stator 8 and the rotor 9 and corresponds to a view seen from the axial direction.
  • the stator 8 includes a cylindrical core portion 21 whose cross-sectional shape along the radial direction is substantially circular, and a plurality of (for example, a main body) projecting radially inward from the core portion 21.
  • teeth 22 and a stator core 20 are integrally formed.
  • the stator core 20 is formed by laminating a plurality of electromagnetic steel plates Pt in the axial direction.
  • the teeth 22 are formed by integrally forming a teeth main body 101 projecting along the radial direction from the inner peripheral surface of the core portion 21 and a flange 102 extending along the circumferential direction from the radial inner end of the teeth main body 101. It is.
  • the flange portion 102 is formed so as to extend from the teeth body 101 to both sides in the circumferential direction.
  • the slot 19 is formed between the collar parts 102 adjacent in the circumferential direction.
  • each of the teeth 22 is covered with a resin insulator 23.
  • a coil 24 is wound around each of the teeth 22 from above the insulator 23.
  • Each coil 24 generates a magnetic field for rotating the rotor 9 by power feeding from the controller unit 4.
  • FIG. 4 is a perspective view of the stator 8 and the rotor 9.
  • FIG. 5 is an enlarged view of a portion A in FIG.
  • the illustration of the insulator 23 provided in the stator 8 and the coil 24 wound around the stator 8 is omitted for easy understanding.
  • the rotor 9 is rotatably provided on the inner side in the radial direction of the stator 8 through a minute gap.
  • the rotor 9 has a substantially cylindrical shape with a shaft 31 integrally formed with a worm shaft 44 (see FIG. 2) constituting the speed reduction portion 3 and an outer fitting and fixing to the shaft 31 and having the shaft 31 as an axis (rotation axis) C1.
  • the rotor core 32 and four permanent magnets 33 provided on the outer peripheral surface 32b of the rotor core 32 are provided.
  • the ratio between the number of magnetic poles of the permanent magnet 33 and the number of slots 19 (teeth 22) is 2: 3.
  • a ferrite magnet is used as the permanent magnet 33.
  • the present invention is not limited to this, and a neodymium bonded magnet or a neodymium sintered magnet can be used as the permanent magnet 33 instead of the ferrite magnet.
  • the rotor core 32 is formed by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the rotor core 32 is not limited to the case where a plurality of electromagnetic steel plates are laminated in the axial direction, and may be formed, for example, by press-molding soft magnetic powder.
  • a through hole 32 a penetrating in the axial direction is formed at a substantially central portion in the radial direction of the rotor core 32.
  • the shaft 31 is press-fitted into the through hole 32a.
  • the shaft 31 may be inserted into the through hole 32a, and the rotor core 32 may be externally fixed to the shaft 31 using an adhesive or the like.
  • salient poles 35 are provided on the outer peripheral surface 32b of the rotor core 32 at equal intervals in the circumferential direction.
  • the salient poles 35 are formed so as to protrude outward in the radial direction and extend in the entire axial direction of the rotor core 32.
  • Round chamfered portions 35 a are formed at the corners on the radially outer side of the salient poles 35 and on both sides in the circumferential direction.
  • the salient pole 35 has a circumferential width dimension at the radially outer end 35t of 20 ° or more and 40 ° or less in terms of an electrical angle ⁇ .
  • the circumferential width dimension at the radially outer end 35t of the salient pole 35 is the circumferential corner 35b (hereinafter referred to as the salient pole 35) when the round pole chamfer 35a is not formed on the salient pole 35. (Referred to as a radial corner 35b).
  • the circumferential width dimension at the radially outer end 35t of the salient pole 35 will be simply referred to as the circumferential width dimension of the salient pole 35.
  • the salient pole 35 is formed so that both side surfaces 35c opposed in the circumferential direction are parallel to each other. That is, the salient pole 35 is formed so that the circumferential width dimension is uniform in the radial direction. Further, one groove portion 91 is formed in the radially outer end portion 35t of the salient pole 35 at the substantially central portion in the circumferential direction over the entire axial direction. The groove portion 91 is formed in a substantially V-groove shape so that the groove width in the circumferential direction gradually narrows toward the inner side in the radial direction.
  • the outer peripheral surface 32b of the rotor core 32 formed in this way is configured as a magnet storage portion 36 between two salient poles 35 adjacent in the circumferential direction.
  • Permanent magnets 33 are disposed in these magnet storage portions 36 and are fixed to the rotor core 32 by, for example, an adhesive.
  • the arc center Co of the outer circumferential surface 33a on the radially outer side and the arc center Ci of the inner circumferential surface 33b on the radially inner side coincide with the position of the axis C1 of the shaft 31.
  • the diameter of the circle passing through the end portion 35 t of the salient pole 35 is the same as the diameter of the outer peripheral surface 33 a of the permanent magnet 33.
  • the entire inner peripheral surface 33 b of the permanent magnet 33 is in contact with the outer peripheral surface 32 b of the rotor core 32. Further, both side surfaces in the circumferential direction of the permanent magnet 33 are located on the radially inner side, a salient pole contact surface 33d that is in contact with the side surface 35c of the salient pole 35, and a radially outer side than the salient pole contact surface 33d.
  • the inclined surface 33e located is smoothly connected.
  • the salient pole contact surface 33d is smoothly connected to the inner peripheral surface 33b via the arc surface 33g.
  • the inclined surface 33e is formed to be inclined and flat so as to gradually move away from the salient pole 35 as it goes from the radial outer end of the salient pole contact surface 33d toward the outer peripheral surface 33a of the permanent magnet 33.
  • inclined surfaces 33 e on both sides in the circumferential direction are parallel to a straight line L connecting the circumferential intermediate portion 33 c of the permanent magnet 33 and the axis C ⁇ b> 1 of the shaft 31. For this reason, the two inclined surfaces 33e are also parallel to each other.
  • the permanent magnet 33 is magnetized so that the magnetization (magnetic field) is oriented in parallel along the thickness direction. And the permanent magnet 33 is arrange
  • FIG. 6 is a cross-sectional view along the axial direction of the stator 8 and the rotor 9.
  • the axial thickness of the stator 8 is Ts
  • the axial thickness of the rotor core 32 is Tr
  • the axial thickness of the permanent magnet 33 is Tm
  • the thicknesses Ts, Tr, Tm are Tm> Tr ⁇ Ts (1) It is set to satisfy.
  • both axial end portions 33h of the permanent magnet 33 protrude outward in the axial direction from the axial end portions 32c of the rotor core 32 (the salient pole 35) and the axial end portions 8a of the stator 8.
  • the speed reduction unit 3 includes a gear case 40 to which the motor case 5 is attached, and a worm speed reduction mechanism 41 accommodated in the gear case 40.
  • the gear case 40 is made of a material with excellent heat dissipation, such as aluminum die cast.
  • the gear case 40 is formed in a box shape having an opening 40a on one surface, and has a gear housing portion 42 for housing the worm reduction mechanism 41 therein.
  • the side wall 40b of the gear case 40 is formed with an opening 43 that communicates the through hole 10a of the first motor case 6 and the gear housing portion 42 at a location where the first motor case 6 is integrally formed. Yes.
  • a substantially cylindrical bearing boss 49 projects from the bottom wall 40c of the gear case 40.
  • the bearing boss 49 is for rotatably supporting the output shaft 48 of the worm reduction mechanism 41, and a sliding bearing (not shown) is provided on the inner peripheral surface. Further, an O-ring (not shown) is mounted on the inner peripheral edge of the bearing boss 49. This prevents dust and water from entering from the outside to the inside via the bearing boss 49.
  • a plurality of ribs 52 are provided on the outer peripheral surface of the bearing boss 49. Thereby, the rigidity of the bearing boss 49 is ensured.
  • the worm speed reduction mechanism 41 accommodated in the gear accommodating portion 42 includes a worm shaft 44 and a worm wheel 45 engaged with the worm shaft 44.
  • the worm shaft 44 is disposed coaxially with the shaft 31 of the motor unit 2.
  • the worm shaft 44 is rotatably supported by bearings 46 and 47 provided on the gear case 40 at both ends.
  • the end of the worm shaft 44 on the motor unit 2 side protrudes to the opening 43 of the gear case 40 through the bearing 46.
  • the protruding end portion of the worm shaft 44 and the end portion of the shaft 31 of the motor unit 2 are joined, and the worm shaft 44 and the shaft 31 are integrated.
  • the worm shaft 44 and the shaft 31 may be integrally formed by molding a worm shaft portion and a shaft portion from one base material.
  • the worm wheel 45 meshed with the worm shaft 44 is provided with an output shaft 48 at the radial center of the worm wheel 45.
  • the output shaft 48 is arranged coaxially with the rotational axis direction of the worm wheel 45, and protrudes to the outside of the gear case 40 via the bearing boss 49 of the gear case 40.
  • a spline 48 a that can be connected to an electrical component (not shown) is formed at the protruding tip of the output shaft 48.
  • a sensor magnet (not shown) is provided at the radial center of the worm wheel 45 on the side opposite to the side from which the output shaft 48 is projected.
  • This sensor magnet constitutes one of the rotational position detector 60 that detects the rotational position of the worm wheel 45.
  • the magnetic detection element 61 that constitutes the other of the rotational position detection unit 60 is provided in the controller unit 4 that is disposed facing the worm wheel 45 on the sensor magnet side of the worm wheel 45 (on the opening 40a side of the gear case 40). Yes.
  • the controller unit 4 that controls the drive of the motor unit 2 includes a controller board 62 on which the magnetic detection element 61 is mounted, and a cover 63 provided so as to close the opening 40a of the gear case 40.
  • the controller board 62 is disposed opposite to the sensor magnet side of the worm wheel 45 (opening 40a side of the gear case 40).
  • the controller board 62 is obtained by forming a plurality of conductive patterns (not shown) on a so-called epoxy board.
  • the controller board 62 is connected to a terminal portion of the coil 24 drawn from the stator core 20 of the motor unit 2 and electrically connected to a terminal (not shown) of the connector 11 provided on the cover 63.
  • a power module (not shown) including a switching element such as a FET (Field Effect Transistor) that controls a current supplied to the coil 24 is mounted on the controller board 62.
  • a capacitor (not shown) for smoothing the voltage applied to the controller board 62 is mounted on the controller board 62.
  • the cover 63 covering the controller board 62 configured in this manner is formed of resin.
  • the cover 63 is formed so as to bulge slightly outward.
  • the inner surface side of the cover 63 is a controller housing portion 56 that houses the controller board 62 and the like.
  • the connector 11 is integrally formed on the outer periphery of the cover 63. This connector 11 is formed so as to be able to be fitted with a connector 11 extending from an external power source (not shown).
  • the controller board 62 is electrically connected to the terminals of the connector 11. As a result, the power of the external power supply is supplied to the controller board 62.
  • a fitting portion 81 is formed on the opening edge of the cover 63 so as to be fitted with the end portion of the side wall 40 b of the gear case 40.
  • the fitting portion 81 is configured by two walls 81 a and 81 b along the opening edge of the cover 63. And the edge part of the side wall 40b of the gear case 40 is inserted (fitted) between these two walls 81a and 81b.
  • a labyrinth portion 83 is formed between the gear case 40 and the cover 63.
  • the labyrinth 83 prevents dust and water from entering between the gear case 40 and the cover 63.
  • the gear case 40 and the cover 63 are fixed by fastening a bolt (not shown).
  • the wiper motor 1 Next, the operation of the wiper motor 1 will be described.
  • the power supplied to the controller board 62 via the connector 11 is selectively supplied to each coil 24 of the motor unit 2 via a power module (not shown).
  • a predetermined flux linkage is formed in the stator 8 (tooth 22), and a magnetic attractive force or repulsive force is generated between the flux linkage and an effective magnetic flux formed by the permanent magnet 33 of the rotor 9.
  • the rotor 9 rotates continuously.
  • the worm shaft 44 integrated with the shaft 31 rotates, and further the worm wheel 45 meshed with the worm shaft 44 rotates. Then, the output shaft 48 connected to the worm wheel 45 rotates, and a desired electrical component (for example, a wiper driving device mounted on a vehicle) is driven.
  • a desired electrical component for example, a wiper driving device mounted on a vehicle
  • the rotation position detection result of the worm wheel 45 detected by the magnetic detection element 61 mounted on the controller board 62 is output as a signal to an external device (not shown).
  • the external device controls the switching timing of the switching elements and the like of the power module (not shown) based on the rotational position detection signal of the worm wheel 45, and the drive control of the motor unit 2 is performed.
  • the output of the drive signal of the power module and the drive control of the motor unit 2 may be performed by the controller unit 4.
  • the rotor 9 is a so-called SPM (Surface Permanent Magnet) type rotor in which a permanent magnet 33 is disposed on the outer peripheral surface 32 b of the rotor core 32. For this reason, the inductance value in the d-axis direction can be reduced.
  • the rotor 9 is provided with salient poles 35 between the permanent magnets 33 adjacent in the circumferential direction. As a result, the inductance value in the q-axis direction due to the interlinkage magnetic flux of the stator 8 can be increased as compared with the case where the salient pole 35 is not provided. Therefore, the rotor 9 is rotated using the difference in reluctance torque between the d-axis direction and the q-axis direction.
  • the reluctance torque can contribute to the rotational torque of the rotor 9, while the magnetic flux of the permanent magnet 33 leaks to the salient pole 35.
  • a magnetic flux is also formed on the salient pole 35.
  • the stator core 20 of the stator 8 is formed by laminating a plurality of electromagnetic steel plates in the axial direction. For this reason, an electrical resistance can be enlarged with respect to the magnetic flux which flows into the stator core 20 along a radial direction among the magnetic fluxes of the salient pole 35. Therefore, the eddy current of the stator core 20 can be reduced with respect to the magnetic flux of the salient poles in the direction along the radial direction.
  • the axial thickness Ts of the stator 8, the axial thickness Tr of the rotor core 32, and the axial thickness Tm of the permanent magnet 33 are set so as to satisfy the above formula (1). For this reason, the salient poles 35 do not protrude outward in the axial direction from both axial ends of the stator core 20. Therefore, it is possible to suppress the magnetic fluxes at both ends in the axial direction of the salient pole 35 from flowing toward both ends in the axial direction of the stator core 20.
  • the vertical axis represents the surface magnetic flux density of the axial end 35 h (see FIG. 4) of the salient pole 35 of the rotor 9, and the horizontal axis represents the rotational angle of the rotor 9.
  • both axial end portions 33h of the permanent magnet 33 are axially outer than the axial end portions 32c of the rotor core 32 (the salient pole 35) and the axial end portions 8a of the stator 8. Protrusively. For this reason, the effective magnetic flux amount of the rotor 9 can be increased.
  • FIG. 8 is a graph comparing the effective magnetic flux amount [ ⁇ Wb] of the conventional rotor with the effective magnetic flux amount [ ⁇ Wb] of the rotor 9 of the present embodiment.
  • the axial thickness of the stator 8 and the axial thickness of the permanent magnet 33 are the same, and both axial ends of the permanent magnet 33 from the axial end portions 8 a of the stator 8.
  • the portion 33h is not projected.
  • the effective magnetic flux amount of the rotor 9 of the present embodiment is increased as compared with the conventional one. For this reason, the interlinkage magnetic flux formed in the stator 8 can be efficiently contributed to the rotational force of the rotor 9, and the motor efficiency of the motor part 2 can be improved.
  • the salient pole 35 of the rotor 9 is formed with a groove 91 at the end 35t.
  • interval of this edge part 35t and the teeth 22 (hook part 102) of the stator 8 can be made non-uniform
  • the salient pole 35 of the rotor core 32 is formed so that the circumferential width dimension is 20 ° or more and 40 ° or less in terms of electrical angle ⁇ .
  • the inductance value in the q-axis direction can be reduced by setting the circumferential width dimension of the salient pole 35 to 40 ° or less in electrical angle ⁇ .
  • FIG. 9 is a graph showing the inductances Lq and Ld [mH] of the q-axis and d-axis of the rotor 9, and the rotor 9 of the present embodiment is compared with the rotor of the conventional structure.
  • the conventional structure here is the structure of a rotor of a so-called IPM (Interior Permanent Magnet) motor in which permanent magnets are arranged in a plurality of slits formed in the rotor core.
  • IPM Interior Permanent Magnet
  • FIG. 10 is a graph showing changes in the rotational speed of the rotor 9 when the vertical axis is the rotational speed [rpm] of the rotor 9 and the horizontal axis is the torque [N ⁇ m] of the rotor 9. More specifically, FIG. 10 is a graph showing the relationship between the torque [N ⁇ m] and the rotational speed [rpm] when the rotor 9 is subjected to advance angle energization and wide angle energization.
  • the rotor 9 is compared with the conventional IPM rotor. As shown in the figure, it can be confirmed that the rotor 9 of the present embodiment generates higher torque and rotational speed than the conventional structure.
  • FIG. 11 is a graph showing changes in the torque of the rotor 9 when the vertical axis is the torque [N ⁇ m] of the rotor 9 and the horizontal axis is the salient pole width [mm] of the salient pole 35 provided on the rotor core 32. It is. More specifically, FIG. 11 is a graph showing the torque generated in the rotor 9 of the present embodiment when the circumferential width dimension (electrical angle ⁇ ) of the salient pole 35 is varied.
  • FIG. 12 is a graph showing changes in the ripple rate of the rotor 9 when the vertical axis is the ripple rate [%] of the rotor 9 and the horizontal axis is the salient pole width [mm] of the salient pole 35 of the rotor core 32. More specifically, FIG.
  • FIG. 12 is a graph showing a ripple rate generated in the rotor 9 of the present embodiment when the circumferential width of the salient pole 35 is varied.
  • FIG. 13 is a graph showing changes in cogging of the rotor 9 when the vertical axis is cogging [mN ⁇ m] of the rotor 9 and the horizontal axis is the salient pole width [mm] of the salient poles 35 of the rotor core 32. More specifically, FIG. 13 is a graph showing cogging generated in the rotor 9 of the present embodiment when the circumferential width of the salient pole 35 is varied.
  • a high reluctance torque can be obtained. It can also be confirmed that the ripple rate and cogging torque of the motor unit 2 can be suppressed.
  • the inductance value in the q-axis direction can be reduced.
  • Demagnetizing field can be suppressed.
  • the electrical angle ⁇ of the salient pole 35 is 20 ° or more and securing the circumferential width dimension to a certain value or more, the magnetic flux is concentrated on the salient pole 35, so that the demagnetizing field is applied to the end 33 s of the permanent magnet 33. The effect that it becomes difficult to act can be acquired reliably.
  • a high reluctance torque can be obtained by setting the electrical angle ⁇ of the salient pole 35 to 20 ° or more and 40 ° or less.
  • the permanent magnet 33 instead of the rare earth magnet for the rotor 9, even if the radial dimension of the permanent magnet 33 is increased, an increase in cost due to an increase in magnet usage can be suppressed.
  • the inclined surfaces 33 e on both sides in the circumferential direction are parallel to a straight line L connecting the circumferential intermediate portion 33 c of the permanent magnet 33 and the axis C ⁇ b> 1 of the shaft 31. For this reason, the two inclined surfaces 33e are also parallel to each other. By comprising in this way, manufacture of the permanent magnet 33 can be facilitated and the cost of the permanent magnet 33 can be reduced. More specifically, the permanent magnet 33 can be formed from a material having two parallel inclined surfaces 33e facing each other, and the manufacturing cost of the permanent magnet 33 can be reduced.
  • the salient pole 35 is formed so that both side surfaces 35c facing each other in the circumferential direction are parallel to each other. That is, the salient pole 35 is formed so that the circumferential width dimension is uniform in the radial direction. For this reason, for example, the saturation of the magnetic flux flowing through the salient poles 35 can be suppressed as compared with the case where the salient poles 35 are trapezoidal when viewed from the rotation axis direction.
  • the wiper motor 1 is taken as an example of the motor.
  • the motor according to the present invention is not limited to the wiper motor 1, and other electrical components (for example, a power window, a sunroof, It can be used as a driving source for an electric seat or the like, and for various other purposes.
  • one groove portion 91 is formed in the axially outer end portion 35t of the salient pole 35 at substantially the center in the circumferential direction.
  • the present invention is not limited to this, and two or more groove portions 91 may be formed in the end portion 35 t of the salient pole 35.
  • the groove part 91 demonstrated the case where it formed in the substantially V-groove shape so that the groove width of the circumferential direction may become narrow gradually as it goes to radial inside.
  • the present invention is not limited to this, and it is only necessary that the groove portion 91 is formed so that the groove width in the circumferential direction gradually decreases toward the inner side in the radial direction.
  • the groove portion 91 is formed in a substantially U shape. May be.
  • the inclined surface 33e formed on the permanent magnet 33 is inclined so as to be gradually separated from the salient pole 35 as it goes from the radially outer end of the salient pole contact surface 33d toward the outer peripheral surface 33a of the permanent magnet 33, and The case where it is formed flat has been described.
  • the inclined surface 33e only needs to be formed so as to be gradually separated from the salient poles 35 toward the outer peripheral surface 33a of the permanent magnet 33 from the radially outer end of the salient pole contact surface 33d.
  • the inclined surface 33e may be formed in a curved shape.
  • the axial thickness Ts of the stator 8, the axial thickness Tr of the rotor core 32, and the axial thickness Tm of the permanent magnet 33 satisfy the above formula (1).
  • the case where it is set has been described.
  • the case where both axial end portions 33h of the permanent magnet 33 protrude outward in the axial direction from the axial end portions 32c of the rotor core 32 (the salient pole 35) and the axial end portions 8a of the stator 8 has been described.
  • the present invention is not limited to this, and as shown in FIG. 14, at least one end portion 33 h out of the axial end portions 33 h of the permanent magnet 33 protrudes from the axial end portions 8 a of the stator 8. Good.
  • the axial thickness Ts of the stator 8, the axial thickness Tr of the rotor core 32, and the axial thickness Tm of the permanent magnet 33 are: Tm>Tr> Ts (3) It may be set to satisfy. Even in this case, the axial end portion 33h of the permanent magnet 33 protrudes axially outward from the axial end portion 35h of the salient pole 35, and from the axial end portion 8a of the stator 8. An axial end 33h of the permanent magnet 33 protrudes outward in the axial direction. For this reason, there exists an effect similar to the above-mentioned embodiment.
  • SYMBOLS 1 Wiper motor (brushless wiper motor), 2 ... Motor part (motor), 8 ... Stator, 8a, 32c, 33h ... End part, 20 ... Stator core, 22 ... Teeth, 24 ... Coil, 31 ... Shaft, 32 ... Rotor core 32b ... outer peripheral surface, 33 ... permanent magnet, 33d ... salient pole contact surface (circumferential side), salient pole contact surface 33d, 35 ... salient pole, 91 ... groove, 91a ... bottom, C1 ... axis (rotation) Axis), H1 ... groove depth, Pt ... magnetic steel sheet, ⁇ ... electrical angle

Abstract

ステータの鉄損を抑制してモータ効率を高めることができるモータ及びブラシレスワイパーモータを提供する。 ステータコアの内周面から径方向内側に向かって突出する複数のティース22を有するステータ8と、ティース22に巻回されるコイルと、ステータコアの径方向内側で回転するシャフトと、シャフトに固定され、シャフトの回転軸線を径方向中心とするロータコア32と、ロータコア32の外周面に配置された複数の永久磁石33と、ロータコア32の外周面32bの周方向で隣り合う永久磁石33の間に、径方向外側に向かって突出形成され、永久磁石33の突極当接面が当接された突極と、を備え、ステータ8は、複数の電磁鋼板Ptをシャフトの回転軸線方向に沿って積層してなり、永久磁石33は、軸方向端部33hの少なくとも一方がロータコア32の軸方向端部32cよりも突出している。

Description

モータ及びブラシレスワイパーモータ
 本発明は、モータ及びブラシレスワイパーモータに関するものである。
 ブラシレスモータ(以下、単にモータと称することがある)は、コイルが巻回されたティースを有するステータと、ステータの径方向内側に回転自在に設けられたロータと、を備えている。周方向で隣り合うティース間には、スロットが形成される。このスロットを通して各ティースにコイルが巻回される。ステータやロータは、電磁鋼板をシャフトの回転軸線方向(以下、単に軸方向という場合がある)に積層したり、軟磁性粉を加圧成形したりすることにより、形成される。
 ステータには、コイルに給電を行うことにより鎖交磁束が形成される。ロータは、シャフトと、このシャフトに外嵌固定される略円柱状のロータコアと、ロータコアに設けられた永久磁石と、を有している。そして、ステータに形成された鎖交磁束とロータコアに設けられた永久磁石との間に磁気的な吸引力や反発力が生じ、ロータが継続的に回転する。
 ここで、ロータに永久磁石を配置する方式として、ロータコアの外周面に永久磁石を配置する方式(SPM:Surface Permanent Magnet)がある。このSPM方式のロータにおいて、高トルク化を図るためのさまざまな方法が提案されている。
 例えば、ステータにおける軸方向の厚さよりもロータの軸方向の厚さを厚くする技術が提案されている(例えば、特許文献1参照)。
 このように構成することにより、ロータの永久磁石の磁束が漏れやすい永久磁石の軸方向両端を、ステータの軸方向両端よりも外側に位置させることができる。このため、ロータの有効磁束量が増大し、ステータに形成された鎖交磁束を、ロータの回転力に効率的に寄与させることができる。
 また、例えば、ロータコアの外周面において、周方向で隣り合う永久磁石の間に、径方向外側に向かって突出する突極を設けたロータが提案されている(例えば、特許文献2参照)。突極を設けることにより、ロータコアにおいて、ステータのコイルによる鎖交磁束(q軸磁束)が流れやすい方向と、鎖交磁束の流れにくい方向(d軸方向)とが形成される。この結果、ロータコアにリラクタンストルクが発生するので、このリラクタンストルクもロータの回転力に寄与させることができる。
特開2006-333657号公報 特開2002-262533号公報
 しかしながら、上述の特許文献1では、永久磁石におけるステータの軸方向両端から突出した箇所の磁束が、このステータの軸方向両端に漏出してしまう。以下、具体的に説明する。
 図16は、ステータ108の一部を軸方向からみた平面図である。
 図16に示すように、電磁鋼板Ptを積層してステータ108を形成した場合であっても、ステータ108の軸方向両端部108aは軸方向からみて1枚の電磁鋼板Ptである。このため、軸方向外側からステータ108に対して磁束が流れる場合、この磁束に対するステータ108の電気抵抗は小さい。したがって、ステータ108の軸方向両端部108aにおいては、回転軸線方向外側から流れてくる磁束によって渦電流Duが発生しやすく、ステータの鉄損が増大してしまう可能性があった。
 図17は、ステータ108を径方向からみた側面図である。
 図16に対し、図17に示すように、例えば、電磁鋼板Ptを積層してステータ108を形成した場合、径方向に沿う磁束に対してステータ108の電気抵抗が大きくなる。このため、渦電流Duが発生しにくい。
 また、上述の特許文献2のように、ロータコアに突極を設けると、この突極に永久磁石の磁束が漏出されて突極に磁束が形成されてしまう。このため、通常、モータのコギングトルクの次数が「永久磁石の磁極数×ティースの数(スロット数)」の最小公倍数で決定されるところ、この最小公倍数のさらに2倍となってしまう可能性があった。より詳しく、以下に説明する。
 図18は、縦軸をロータの表面磁束密度とし、横軸をロータの回転角度としたときの、特許文献2における表面磁束密度の変化を示すグラフである。
 図18のX部に示すように、突極に磁束が形成されてこの突極の磁束の変化が大きいことが確認できる。このため、コギングトルクの次数が増大し、ステータの鉄損が増大してしまう可能性があった。
 とりわけ、ステータの軸方向両端よりもロータコアの突極及び永久磁石の軸方向両端が突出していると、ステータの軸方向両端に軸方向外側から突極の磁束が流れてしまう。このため、コギングトルクの次数が増大し、ステータの鉄損が増大してしまう可能性があった。
 そこで、本発明は、ステータの鉄損を抑制してモータ効率を高めることができるモータ及びブラシレスワイパーモータを提供するものである。
 上記の課題を解決するために、本発明に係るモータは、環状のステータコア、及び前記ステータコアの内周面から径方向内側に向かって突出する複数のティースを有するステータと、前記ティースに巻回されるコイルと、前記ステータコアの径方向内側で回転するシャフトと、前記シャフトに固定され、前記シャフトの回転軸線を径方向中心とするロータコアと、前記ロータコアの外周面に配置された複数の永久磁石と、前記ロータコアの前記外周面の周方向で隣り合う前記永久磁石の間に、径方向外側に向かって突出形成され、前記永久磁石の周方向側面が当接された突極と、を備え、前記ステータは、複数の電磁鋼板を前記シャフトの前記回転軸線方向に沿って積層してなり、前記永久磁石は、前記回転軸線方向の両端のうちの少なくとも一方の端部が前記ロータコアの前記回転軸線方向の端部よりも突出していることを特徴とする。
 このように、ステータを、電磁鋼板を軸方向に沿って積層することにより、径方向に沿う方向の突極の磁束に対し、電気抵抗を大きくできる。このため、径方向に沿う方向の突極の磁束に対し、ステータの渦電流を小さくできる。よって、ステータの鉄損を抑制でき、モータ効率を高めることができる。
 また、永久磁石の軸方向の両端のうちの少なくとも一方の端部を、ロータコアの端部よりも突出させることにより、永久磁石の一端側の磁束が突極に漏出してしまうことを防止できる。このため、突極により、ステータの軸方向両端のうちの少なくとも一端に大きな渦電流が発生してしまことを抑制できる。よって、ステータの鉄損を抑制でき、モータ効率を高めることができる。
 また、ステータの軸方向一端よりも永久磁石の軸方向一端を軸方向外側に突出させれば、ロータの有効磁束量を増大できる。このため、ステータに形成された鎖交磁束を、ロータの回転力に効率的に寄与させることができる。よって、モータ効率を高めることができる。
 本発明に係るモータは、前記ステータの前記回転軸線方向の厚さと、前記ロータコアの前記回転軸線方向の厚さとが、同一の厚さであることを特徴とする。
 このように構成することで、ステータの両端に、突極の両端の磁束が漏出してしまうことを確実に抑制できる。このため、ステータの鉄損を確実に抑制でき、モータ効率を確実に高めることができる。
 本発明に係るモータは、前記ステータの前記回転軸線方向の厚さをTsとし、前記ロータコアの前記回転軸線方向の厚さをTrとし、前記永久磁石の前記回転軸線方向の厚さをTmとしたとき、各前記厚さTs,Tr,Tmは、
 Tm>Tr>Ts
を満たすように設定されていることを特徴とする。
 このように構成することで、ステータの両端に、突極の両端の磁束が漏出してしまうことを抑制しつつ、ステータに形成された鎖交磁束を、ロータの回転力に効率的に寄与させることができる。このため、モータ効率をさらに高めることができる。
 本発明に係るモータにおいて、前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角で40°以下であることを特徴とする。
 このように、突極の電気角を40°以下として、突極の周方向の幅寸法を小さくすることで、q軸方向におけるインダクタンス値を小さくすることができる。
 ここで、突極には、ステータに形成された鎖交磁束が通りやすくなるので、突極に当接された永久磁石の周方向側面にも鎖交磁束が通る可能性がある。つまり、永久磁石の周方向側面に減磁界が発生してしまう。しかしながら、突極の電気角を40°以下とすることにより、減磁界を抑えることができる。
 本発明に係るモータにおいて、前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角で20°以上であることを特徴とする。
 このように構成することで、突極の周方向の幅寸法を電気角で20°以上に確保することで、磁束が突極に集中することによって減磁界が永久磁石の端部に作用しにくくなるという効果を、確実に得ることができる。また、突極の電気角を20°以上40°以下とすることで、高いリラクタンストルクを得ることができ、モータ効率を高めることができる。
 本発明に係るモータは、前記突極の前記径方向外側の端面に、前記回転軸線方向に沿って溝部を1つ形成し、前記溝部は、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように形成されていることを特徴とする。
 このように構成することで、突極の径方向外側の端面に溝部があることで、突極の径方向外側の端面全体でみたとき、この端面とティースとの間隔を不均一にすることができる。この結果、ロータコアの回転中に、突極がティース間を通過する前後でティースに生じる磁束密度の急激な変化を抑制できる。このため、ロータコアの急激なトルク変動を低減でき、トルクリップルを低下させることができる。
 本発明に係るブラシレスワイパーモータは、上記に記載のモータを備えたことを特徴とする。
 このように構成することで、ステータの鉄損を抑制してモータ効率を高めることが可能なブラシレスワイパーモータを提供できる。
 本発明によれば、ステータを、電磁鋼板を軸方向に沿って積層することにより、径方向に沿う方向の突極の磁束に対し、電気抵抗を大きくできる。このため、径方向に沿う方向の突極の磁束に対し、ステータの渦電流を小さくできる。よって、ステータの鉄損を抑制でき、モータ効率を高めることができる。
 また、永久磁石の軸方向の両端のうちの少なくとも一方の端部を、ロータコアの端部よりも突出させることにより、永久磁石の一端側の磁束が突極に漏出してしまうことを防止できる。このため、突極により、ステータの軸方向両端のうちの少なくとも一端に大きな渦電流が発生してしまことを抑制できる。よって、ステータの鉄損を抑制でき、モータ効率を高めることができる。
 また、ステータの軸方向一端よりも永久磁石の軸方向一端を軸方向外側に突出させれば、ロータの有効磁束量を増大できる。このため、ステータに形成された鎖交磁束を、ロータの回転力に効率的に寄与させることができる。よって、モータ効率を高めることができる。
本発明の実施形態におけるワイパーモータの斜視図である。 図1のA-A線に沿う断面図である。 本発明の実施形態におけるステータ及びロータの構成図である。 ステータ及びロータの斜視図である。 図3のA部拡大図である。 本発明の実施形態におけるステータ及びロータの軸方向に沿う断面図である。 本発明の実施形態における突極の軸方向端部の表面磁束密度の変化を示すグラフである。 本発明の実施形態におけるロータの有効磁束量と従来のロータの有効磁束量とを比較したグラフである。 本発明の実施形態におけるロータのq軸、d軸のインダクタンスを示すグラフであり、従来構造のロータと比較している。 本発明の実施形態におけるロータの回転数の変化を示すグラフであり、従来のIPM構造のロータと比較している。 本発明の実施形態における突極の突極幅ごとのロータのトルクの変化を示すグラフである。 本発明の実施形態における突極の突極幅ごとのロータのリップル率の変化を示すグラフである。 本発明の実施形態における突極の突極幅ごとのロータのコギングの変化を示すグラフである。 本発明の実施形態の変形例におけるステータ及びロータの軸方向に沿う断面図である。 本発明の実施形態の変形例におけるステータ及びロータの軸方向に沿う断面図である。 従来のステータの一部を軸方向からみた平面図である。 従来のステータを径方向からみた側面図である。 従来のロータにおける表面磁束密度の変化を示すグラフである。
 次に、本発明の実施形態を図面に基づいて説明する。
(ワイパーモータ)
 図1は、ワイパーモータ1の斜視図である。図2は、図1のA-A線に沿う断面図である。
 図1、図2に示すように、ワイパーモータ1は、例えば車両に搭載されるワイパの駆動源となる。ワイパーモータ1は、モータ部2と、モータ部2の回転を減速して出力する減速部3と、モータ部2の駆動制御を行うコントローラ部4と、を備えている。
 なお、以下の説明において、単に軸方向という場合は、モータ部2のシャフト31の回転軸線方向をいい、単に周方向という場合は、シャフト31の周方向をいい、単に径方向という場合は、シャフト31の径方向をいうものとする。
(モータ部)
 モータ部2は、モータケース5と、モータケース5内に収納されている略円筒状のステータ8と、ステータ8の径方向内側に設けられ、ステータ8に対して回転可能に設けられたロータ9と、を備えている。モータ部2は、ステータ8に電力を供給する際にブラシを必要としない、いわゆるブラシレスモータである。
(モータケース)
 モータケース5は、例えばアルミダイキャスト等の放熱性の優れた材料に形成されている。モータケース5は、軸方向に分割可能に構成された第1モータケース6と、第2モータケース7と、からなる。第1モータケース6及び第2モータケース7は、それぞれ有底筒状に形成されている。
 第1モータケース6は、底部10が減速部3のギヤケース40と接合されるように、このギヤケース40と一体成形されている。底部10の径方向略中央には、ロータ9のシャフト31を挿通可能な貫通孔10aが形成されている。
 また、第1モータケース6の開口部6aに、径方向外側に向かって張り出す外フランジ部16が形成されていると共に、第2モータケース7の開口部7aに、径方向外側に向かって張り出す外フランジ部17が形成されている。これら外フランジ部16,17同士を突き合わせて内部空間を有するモータケース5を形成している。そして、モータケース5の内部空間に、第1モータケース6及び第2モータケース7に内嵌されるようにステータ8が配置されている。
(ステータ)
 図3は、ステータ8及びロータ9の構成を示し、軸方向からみた図に相当する。
 図2、図3に示すように、ステータ8は、径方向に沿う断面形状が略円形となる筒状のコア部21と、コア部21から径方向内側に向かって突出する複数(例えば、本実施形態では6つ)のティース22と、が一体成形されたステータコア20を有している。
 ステータコア20は、複数の電磁鋼板Ptを軸方向に積層することにより形成されている。
 ティース22は、コア部21の内周面から径方向に沿って突出するティース本体101と、ティース本体101の径方向内側端から周方向に沿って延びる鍔部102と、が一体成形されたものである。鍔部102は、ティース本体101から周方向両側に延びるように形成されている。そして、周方向で隣り合う鍔部102の間に、スロット19が形成される。
 また、コア部21の内周面、及びティース22は、樹脂製のインシュレータ23によって覆われている。このインシュレータ23の上から各ティース22にコイル24が巻回されている。各コイル24は、コントローラ部4からの給電により、ロータ9を回転させるための磁界を生成する。
(ロータ)
 図4は、ステータ8及びロータ9の斜視図である。図5は、図3のA部拡大図である。なお、図4では、説明を分かりやすくするために、ステータ8に設けられているインシュレータ23、及びステータ8に巻回されているコイル24の図示を省略する。
 図3~図5に示すように、ロータ9は、ステータ8の径方向内側に微小隙間を介して回転自在に設けられている。ロータ9は、減速部3を構成するウォーム軸44(図2参照)と一体成形されたシャフト31と、シャフト31に外嵌固定されこのシャフト31を軸心(回転軸線)C1とする略円柱状のロータコア32と、ロータコア32の外周面32bに設けられた4つの永久磁石33と、を備えている。
 このように、モータ部2において、永久磁石33の磁極数とスロット19(ティース22)の数との比は、2:3である。なお、永久磁石33としては、例えば、フェライト磁石が用いられる。しかしながら、これに限られるものではなく、永久磁石33として、フェライト磁石に代わってネオジムボンド磁石やネオジム焼結磁石を適用することも可能である。
 ロータコア32は、複数の電磁鋼板を軸方向に積層することにより形成されている。なお、ロータコア32は、複数の電磁鋼板を軸方向に積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成してもよい。
 また、ロータコア32の径方向略中央には、軸方向に貫通する貫通孔32aが形成されている。この貫通孔32aに、シャフト31が圧入されている。なお、貫通孔32aに対してシャフト31を挿入とし、接着剤等を用いてシャフト31にロータコア32を外嵌固定してもよい。
 さらに、ロータコア32の外周面32bには、4つの突極35が周方向に等間隔で設けられている。突極35は、径方向外側に突出され、かつロータコア32の軸方向全体に延びるように形成されている。突極35の径方向外側で、かつ周方向両側の角部には、丸面取り部35aが形成されている。
 また、突極35は、径方向外側端部35tにおける周方向の幅寸法が、電気角θで20°以上40°以下である。なお、突極35の径方向外側端部35tにおける周方向の幅寸法とは、突極35に丸面取り部35aが形成されていないとした場合の周方向の両角部35b(以下、突極35の径方向の角部35bと称する)間の幅寸法をいう。以下の説明では、突極35の径方向外側端部35tにおける周方向の幅寸法を、単に突極35の周方向の幅寸法と称して説明する。
 また、突極35は、周方向で対向する両側面35cが平行となるように形成されている。つまり、突極35は、周方向の幅寸法が径方向で均一になるように形成されている。
 さらに、突極35の径方向外側端部35tには、周方向略中央に、1つの溝部91が軸方向全体に渡って形成されている。溝部91は、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように、略V溝状に形成されている。
 このように形成されたロータコア32の外周面32bは、周方向で隣り合う2つの突極35の間が、それぞれ磁石収納部36として構成されている。これら磁石収納部36に、それぞれ永久磁石33が配置され、例えば接着剤等によりロータコア32に固定される。
 永久磁石33は、径方向外側の外周面33aの円弧中心Co、及び径方向内側の内周面33bの円弧中心Ciが、シャフト31の軸心C1の位置と一致している。また、突極35の端部35tを通る円の直径と、永久磁石33の外周面33aの直径は、同一である。
 永久磁石33の内周面33bは、全体がロータコア32の外周面32bに当接されている。また、永久磁石33の周方向両側面は、径方向内側に位置し、突極35の側面35cに当接された突極当接面33dと、突極当接面33dよりも径方向外側に位置する傾斜面33eと、が滑らかに連結されてなる。突極当接面33dは、円弧面33gを介して内周面33bに滑らかに連結されている。
 傾斜面33eは、突極当接面33dの径方向外端から永久磁石33の外周面33aに向かうに従って、漸次突極35から離間するように斜めで、かつ平坦に形成されている。1つの永久磁石33において、周方向両側の傾斜面33eは、永久磁石33の周方向中間部33cとシャフト31の軸心C1とを結ぶ直線Lと平行である。このため、2つの傾斜面33e同士も平行である。
 また、永久磁石33は、着磁(磁界)の配向が厚み方向に沿ってパラレル配向となるように着磁されている。そして、周方向に磁極が互い違いになるように、永久磁石33が配置されている。このため、ロータコア32の突極35は、周方向で隣り合う永久磁石33の間、つまり、磁極の境界(極境界)に位置している。
 図6は、ステータ8及びロータ9の軸方向に沿う断面図である。
 ここで、図6に示すように、ステータ8の軸方向の厚さをTsとし、ロータコア32の軸方向の厚さをTrとし、永久磁石33の軸方向の厚さをTmとしたとき、各厚さTs,Tr,Tmは、
 Tm>Tr≒Ts ・・・(1)
を満たすように設定されている。これにより、永久磁石33の軸方向両端部33hは、ロータコア32(突極35)の軸方向両端部32c、及びステータ8の軸方向両端部8aよりも、軸方向外側に突出している。
(減速部)
 図1、図2に戻り、減速部3は、モータケース5が取り付けられているギヤケース40と、ギヤケース40内に収納されるウォーム減速機構41と、を備えている。ギヤケース40は、例えばアルミダイキャスト等の放熱性の優れた材料により形成されている。ギヤケース40は、一面に開口部40aを有する箱状に形成されており、内部にウォーム減速機構41を収容するギヤ収容部42を有する。また、ギヤケース40の側壁40bには、第1モータケース6が一体成形されている箇所に、この第1モータケース6の貫通孔10aとギヤ収容部42とを連通する開口部43が形成されている。
 また、ギヤケース40の底壁40cには、略円筒状の軸受ボス49が突設されている。軸受ボス49は、ウォーム減速機構41の出力軸48を回転自在に支持するためのものであり、内周面に不図示の滑り軸受が設けられている。さらに、軸受ボス49の先端内周縁には、不図示のOリングが装着されている。これにより、軸受ボス49を介して外部から内部に塵埃や水が侵入してしまうことが防止される。また、軸受ボス49の外周面には、複数のリブ52が設けられている。これにより、軸受ボス49の剛性が確保されている。
 ギヤ収容部42に収容されたウォーム減速機構41は、ウォーム軸44と、ウォーム軸44に噛合されるウォームホイール45と、により構成されている。ウォーム軸44は、モータ部2のシャフト31と同軸上に配置されている。そして、ウォーム軸44は、両端がギヤケース40に設けられた軸受46,47によって回転自在に支持されている。ウォーム軸44のモータ部2側の端部は、軸受46を介してギヤケース40の開口部43に至るまで突出している。この突出したウォーム軸44の端部とモータ部2のシャフト31との端部が接合され、ウォーム軸44とシャフト31とが一体化されている。なお、ウォーム軸44とシャフト31は、1つの母材からウォーム軸部分とシャフト部分とを成形することにより一体として形成してもよい。
 ウォーム軸44に噛合されるウォームホイール45には、このウォームホイール45の径方向中央に出力軸48が設けられている。出力軸48は、ウォームホイール45の回転軸線方向と同軸上に配置されており、ギヤケース40の軸受ボス49を介してギヤケース40の外部に突出している。出力軸48の突出した先端には、不図示の電装品と接続可能なスプライン48aが形成されている。
 また、ウォームホイール45の径方向中央には、出力軸48が突出されている側とは反対側に、不図示のセンサマグネットが設けられている。このセンサマグネットは、ウォームホイール45の回転位置を検出する回転位置検出部60の一方を構成している。この回転位置検出部60の他方を構成する磁気検出素子61は、ウォームホイール45のセンサマグネット側(ギヤケース40の開口部40a側)でウォームホイール45と対向配置されているコントローラ部4に設けられている。
(コントローラ部)
 モータ部2の駆動制御を行うコントローラ部4は、磁気検出素子61が実装されたコントローラ基板62と、ギヤケース40の開口部40aを閉塞するように設けられたカバー63と、を有している。そして、コントローラ基板62が、ウォームホイール45のセンサマグネット側(ギヤケース40の開口部40a側)に対向配置されている。
 コントローラ基板62は、いわゆるエポキシ基板に複数の導電性のパターン(不図示)が形成されたものである。コントローラ基板62には、モータ部2のステータコア20から引き出されたコイル24の端末部が接続されているとともに、カバー63に設けられたコネクタ11の端子(不図示)が電気的に接続されている。また、コントローラ基板62には、磁気検出素子61の他に、コイル24に供給する電流を制御するFET(Field Effect Transistor:電界効果トランジスタ)等のスイッチング素子からなるパワーモジュール(不図示)が実装されている。さらに、コントローラ基板62には、このコントローラ基板62に印加される電圧の平滑化を行うコンデンサ(不図示)等が実装されている。
 このように構成されたコントローラ基板62を覆うカバー63は、樹脂により形成されている。また、カバー63は、若干外側に膨出するように形成されている。そして、カバー63の内面側は、コントローラ基板62等を収容するコントローラ収容部56とされている。
 また、カバー63の外周部に、コネクタ11が一体成形されている。このコネクタ11は、不図示の外部電源から延びるコネクタ11と嵌着可能に形成されている。そして、コネクタ11の端子に、コントローラ基板62が電気的に接続されている。これにより、外部電源の電力がコントローラ基板62に供給される。
 さらに、カバー63の開口縁には、ギヤケース40の側壁40bの端部と嵌め合わされる嵌合部81が突出形成されている。嵌合部81は、カバー63の開口縁に沿う2つの壁81a,81bにより構成されている。そして、これら2つの壁81a,81bの間に、ギヤケース40の側壁40bの端部が挿入(嵌め合い)される。これにより、ギヤケース40とカバー63との間にラビリンス部83が形成される。このラビリンス部83によって、ギヤケース40とカバー63との間から塵埃や水が浸入してしまうことが防止される。なお、ギヤケース40とカバー63との固定は、不図示のボルトを締結することにより行われる。
(ワイパーモータの動作)
 次に、ワイパーモータ1の動作について説明する。
 ワイパーモータ1は、コネクタ11を介してコントローラ基板62に供給された電力が、不図示のパワーモジュールを介してモータ部2の各コイル24に選択的に供給される。すると、ステータ8(ティース22)に所定の鎖交磁束が形成され、この鎖交磁束とロータ9の永久磁石33により形成される有効磁束との間で磁気的な吸引力や反発力が生じる。これにより、ロータ9が継続的に回転する。
 ロータ9が回転すると、シャフト31と一体化されているウォーム軸44が回転し、さらにウォーム軸44に噛合されているウォームホイール45が回転する。そして、ウォームホイール45に連結されている出力軸48が回転し、所望の電装品(例えば、車両に搭載されるワイパ駆動装置)が駆動する。
 また、コントローラ基板62に実装されている磁気検出素子61によって検出されたウォームホイール45の回転位置検出結果は、信号として不図示の外部機器に出力される。不図示の外部機器は、ウォームホイール45の回転位置検出信号に基づいて、不図示のパワーモジュールのスイッチング素子等の切替えタイミングが制御され、モータ部2の駆動制御が行われる。なお、パワーモジュールの駆動信号の出力やモータ部2の駆動制御は、コントローラ部4で行われていても良い。
(ロータの作用、効果)
 次に、ロータ9の作用、効果について説明する。
 ここで、ロータ9は、ロータコア32の外周面32bに、永久磁石33を配置した、いわゆるSPM(Surface Permanent Magnet)方式のロータである。このため、d軸方向のインダクタンス値を小さくすることができる。これに加え、ロータ9は、周方向で隣り合う永久磁石33間に突極35が設けられている。この結果、ステータ8の鎖交磁束によるq軸方向のインダクタンス値を突極35が無い場合と比較して大きくできる。よって、d軸方向とq軸方向とのリラクタンストルクの差も利用してロータ9が回転される。
 このように、突極35を設けることにより、リラクタンストルクをロータ9の回転トルクに寄与できる一方、突極35には、永久磁石33の磁束が漏出してしまう。このため、突極35にも磁束が形成される。
 ところで、ステータ8のステータコア20は、複数の電磁鋼板を軸方向に積層することにより形成されている。このため、突極35の磁束のうち、径方向に沿ってステータコア20に流れる磁束に対して電気抵抗を大きくできる。よって、径方向に沿う方向の突極の磁束に対し、ステータコア20の渦電流を小さくできる。
 また、ステータ8の軸方向の厚さTs、ロータコア32の軸方向の厚さTr、及び永久磁石33の軸方向の厚さTmは、上記式(1)を満たすように設定されている。このため、ステータコア20の軸方向両端から突極35が軸方向外側に突出しない。よって、突極35の軸方向両端の磁束がステータコア20の軸方向両端に向かって流れてしまうことを抑制できる。
 図7は、縦軸をロータ9の突極35における軸方向端部35h(図4参照)の表面磁束密度とし、横軸をロータ9の回転角度としたときの、突極35の軸方向端部35hの表面磁束密度の変化を示すグラフである。
 図7のB部に示すように、突極35の軸方向端部35hでは、この軸方向端部35hによる磁束の変化が抑制されることが確認できる。このため、モータ部2のコギングトルクの次数を減少でき、ステータ8の鉄損を低減できる。
 上記式(1)を満たすことにより、永久磁石33の軸方向両端部33hは、ロータコア32(突極35)の軸方向両端部32c、及びステータ8の軸方向両端部8aよりも、軸方向外側に突出する。このため、ロータ9の有効磁束量を増大できる。
 図8は、従来のロータの有効磁束量[μWb]と本実施形態のロータ9の有効磁束量[μWb]とを比較したグラフである。なお、図8において、従来のロータとは、ステータ8の軸方向の厚さと永久磁石33の軸方向の厚さとが同一であり、ステータ8の軸方向両端部8aから永久磁石33の軸方向両端部33hが突出されていないものをいう。
 図8に示すように、従来と比較して本実施形態のロータ9の有効磁束量が増大されていることが確認できる。このため、ステータ8に形成された鎖交磁束を、ロータ9の回転力に効率的に寄与させることができ、モータ部2のモータ効率を高めることができる。
 また、ロータ9の突極35には、端部35tに溝部91が形成されている。これにより、突極35の端部35tの全体でみたとき、この端部35tとステータ8のティース22(鍔部102)との間隔を不均一にできる。すなわち、突極35の端部35tとティース22との間の間隔は、溝部91が形成されている箇所では大きくなるが、溝部91が形成されていない箇所では小さくなる。この結果、ロータ9の回転中に突極35がティース22間を通過する前後でティース22(鍔部102)に生じる磁束密度の急激な上昇を抑制できる。
 また、ロータコア32の突極35は、周方向の幅寸法が電気角θで20°以上40°以下となるように形成されている。このように、突極35の周方向の幅寸法を電気角θで40°以下に設定することで、q軸方向におけるインダクタンス値を小さくすることができる。これにより、減磁界を抑えるとともに、高いリラクタンストルクを得ることができる。以下、より具体的に説明する。
 図9は、ロータ9のq軸、d軸のインダクタンスLq、Ld[mH]を示すグラフであり、本実施形態のロータ9と、従来構造のロータとを比較している。なお、ここでいう従来構造とは、ロータコアに複数形成したスリット内に永久磁石を配置した、いわゆるIPM(Interior Permanent Magnet)モータのロータの構造である。
 同図に示すように、従来構造と比較して、本実施形態のロータ9は、q軸、d軸とも、インダクタンス値が小さくなっていることが確認できる。
 図10は、縦軸をロータ9の回転数[rpm]とし、横軸をロータ9のトルク[N・m]としたときのロータ9の回転数の変化を示すグラフである。より具体的には、図10は、ロータ9に進角通電と広角通電とを行った場合の、トルク[N・m]と回転数[rpm]との関係を示すグラフであり、本実施形態のロータ9と、従来のIPM構造のロータとを比較している。
 同図に示すように、従来構造と比較して、本実施形態のロータ9は、より高いトルク、回転数を発生していることが確認できる。
 図11は、縦軸をロータ9のトルク[N・m]とし、横軸をロータコア32に設けられた突極35の突極幅[mm]としたときのロータ9のトルクの変化を示すグラフである。より具体的には、図11は、突極35の周方向の幅寸法(電気角θ)を異ならせた場合に、本実施形態のロータ9で発生するトルクを示すグラフである。
 図12は、縦軸をロータ9のリップル率[%]とし、横軸をロータコア32の突極35の突極幅[mm]としたときのロータ9のリップル率の変化を示すグラフである。より具体的には、図12は、突極35の周方向の幅寸法を異ならせた場合に、本実施形態のロータ9で発生するリップル率を示すグラフである。
 図13は、縦軸をロータ9のコギング[mN・m]とし、横軸をロータコア32の突極35の突極幅[mm]としたときのロータ9のコギングの変化を示すグラフである。より具体的には、図13は、突極35の周方向の幅寸法を異ならせた場合に、本実施形態のロータ9で発生するコギングを示すグラフである。
 図11~図13に示すように、本実施形態のロータ9は、突極35の周方向の幅寸法が3mm(電気角θ=20°)~5mm(電気角θ=40°)であるときに、高いリラクタンストルクを得ることができる。また、モータ部2のリップル率及びコギングトルクを抑制できていることが確認できる。
 このように、突極35の電気角θを40°以下に設定して、周方向における突極35の周方向の幅寸法を小さくすることで、q軸方向におけるインダクタンス値を小さくすることができ、減磁界を抑えることができる。また、突極35の電気角θを20°以上として周方向の幅寸法を一定以上に確保することによって、磁束が突極35に集中することで、減磁界が永久磁石33の端部33sに作用しにくくなるという効果を、確実に得ることができる。また、突極35の電気角θを20°以上40°以下に設定することで、高いリラクタンストルクを得ることができる。
 また、ロータ9に、希土類磁石ではなく永久磁石33を用いることで、永久磁石33の径方向寸法を大きくしても、磁石使用量増加にともなうコスト上昇を抑えることができる。
 さらに、1つの永久磁石33において、周方向両側の傾斜面33eは、永久磁石33の周方向中間部33cとシャフト31の軸心C1とを結ぶ直線Lと平行である。このため、2つの傾斜面33e同士も平行である。このように構成することで、永久磁石33の製造を容易化でき、永久磁石33のコストを低減することができる。より具体的には、平行な2つの傾斜面33eを対向する2辺とした材料から永久磁石33を成形することができ、永久磁石33の製造コストを低減できる。
 また、突極35は、周方向で対向する両側面35cが平行となるように形成されている。つまり、突極35は、周方向の幅寸法が径方向で均一になるように形成されている。このため、例えば、突極35が回転軸線方向からみて台形の場合と比較して、突極35を流れる磁束の飽和を抑えることができる。
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、モータとして、ワイパーモータ1を例に挙げたが、本発明に係るモータは、ワイパーモータ1以外にも、車両に搭載される電装品(例えば、パワーウインドウ、サンルーフ、電動シート等)の駆動源となるものや、その他のさまざまな用途に使用することができる。
 また、上述の実施形態では、突極35の径方向外側の端部35tには、周方向略中央に、1つの溝部91が軸方向全体に渡って形成されている場合について説明した。しかしながら、これに限られるものではなく、突極35の端部35tに、2つ以上の溝部91を形成してもよい。
 また、溝部91は、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように、略V溝状に形成されている場合について説明した。しかしながら、これに限られるものではなく、溝部91は、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように形成されていればよく、例えば、溝部91を略U字状に形成してもよい。
 また、永久磁石33に形成された傾斜面33eは、突極当接面33dの径方向外端から永久磁石33の外周面33aに向かうに従って、漸次突極35から離間するように斜めで、かつ平坦に形成されている場合について説明した。しかしながら、傾斜面33eは、突極当接面33dの径方向外端から永久磁石33の外周面33aに向かうに従って、漸次突極35から離間するように形成されていればよい。例えば、傾斜面33eを湾曲状に形成してもよい。
 また、上述の実施形態では、ステータ8の軸方向の厚さTs、ロータコア32の軸方向の厚さTr、及び永久磁石33の軸方向の厚さTmが、上記式(1)を満たすように設定されている場合について説明した。そして、永久磁石33の軸方向両端部33hは、ロータコア32(突極35)の軸方向両端部32c、及びステータ8の軸方向両端部8aよりも、軸方向外側に突出している場合について説明した。しかしながら、これに限られるものではなく、図14に示すように、永久磁石33の軸方向両端部33hのうち、少なくとも一方の端部33hが、ステータ8の軸方向両端部8aから突出していればよい。
 また、ステータ8の軸方向の厚さTs、及びロータコア32の軸方向の厚さTrは、上記式(1)のように、ほぼ同じ厚さでなく、
 Tr>Ts ・・・(2)
を満たすように設定されていてもよい。
 すなわち、図15に示すように、ステータ8の軸方向の厚さTs、ロータコア32の軸方向の厚さTr、及び永久磁石33の軸方向の厚さTmは、
 Tm>Tr>Ts ・・・(3)
を満たすように設定されていてもよい。
 このように構成された場合であっても、突極35の軸方向端部35hから永久磁石33の軸方向端部33hが軸方向外側に突出されるとともに、ステータ8の軸方向端部8aから永久磁石33の軸方向端部33hが軸方向外側に突出される。このため、前述の実施形態と同様の効果を奏する。
1…ワイパーモータ(ブラシレスワイパーモータ)、2…モータ部(モータ)、8…ステータ、8a,32c,33h…端部、20…ステータコア、22…ティース、24…コイル、31…シャフト、32…ロータコア、32b…外周面、33…永久磁石、33d…突極当接面(周方向側面)、突極当接面33d、35…突極、91…溝部、91a…底部、C1…軸心(回転軸線)、H1…溝深さ、Pt…電磁鋼板、θ…電気角

Claims (7)

  1.  環状のステータコア、及び前記ステータコアの内周面から径方向内側に向かって突出する複数のティースを有するステータと、
     前記ティースに巻回されるコイルと、
     前記ステータコアの径方向内側で回転するシャフトと、
     前記シャフトに固定され、前記シャフトの回転軸線を径方向中心とするロータコアと、
     前記ロータコアの外周面に配置された複数の永久磁石と、
     前記ロータコアの前記外周面の周方向で隣り合う前記永久磁石の間に、径方向外側に向かって突出形成され、前記永久磁石の周方向側面が当接された突極と、
    を備え、
     前記ステータは、複数の電磁鋼板を前記シャフトの前記回転軸線方向に沿って積層してなり、
     前記永久磁石は、前記回転軸線方向の両端のうちの少なくとも一方の端部が前記ロータコアの前記回転軸線方向の端部よりも突出している
    ことを特徴とするモータ。
  2.  前記ステータの前記回転軸線方向の厚さと、前記ロータコアの前記回転軸線方向の厚さとが、同一の厚さである
    ことを特徴とする請求項1に記載のモータ。
  3.  前記ステータの前記回転軸線方向の厚さをTsとし、前記ロータコアの前記回転軸線方向の厚さをTrとし、前記永久磁石の前記回転軸線方向の厚さをTmとしたとき、
     各前記厚さTs,Tr,Tmは、
     Tm>Tr>Ts
    を満たすように設定されている
    ことを特徴とする請求項1に記載のモータ。
  4.  前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角で40°以下である
    ことを特徴とする請求項1~請求項3のいずれか1項に記載のモータ。
  5.  前記突極の前記径方向外側の端部における周方向の幅寸法は、電気角で20°以上である
    ことを特徴とする請求項1~請求項4のいずれか1項に記載のモータ。
  6.  前記突極の前記径方向外側の端面に、前記回転軸線方向に沿って溝部を1つ形成し、
     前記溝部は、径方向内側に向かうに従って周方向の溝幅が徐々に狭くなるように形成されている
    ことを特徴とする請求項1~請求項5のいずれか1項に記載のモータ。
  7.  請求項1~請求項6のいずれか1項に記載のモータを備えたことを特徴とするブラシレスワイパーモータ。
PCT/JP2019/012028 2018-04-12 2019-03-22 モータ及びブラシレスワイパーモータ WO2019198462A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/042,179 US11901779B2 (en) 2018-04-12 2019-03-22 Motor and brushless wiper motor
EP19785242.9A EP3780347B1 (en) 2018-04-12 2019-03-22 Motor and brushless wiper motor
CN201980019709.7A CN111869052B (zh) 2018-04-12 2019-03-22 马达以及无刷雨刮器马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076678A JP7080702B2 (ja) 2018-04-12 2018-04-12 モータ及びブラシレスワイパーモータ
JP2018-076678 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019198462A1 true WO2019198462A1 (ja) 2019-10-17

Family

ID=68164244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012028 WO2019198462A1 (ja) 2018-04-12 2019-03-22 モータ及びブラシレスワイパーモータ

Country Status (5)

Country Link
US (1) US11901779B2 (ja)
EP (1) EP3780347B1 (ja)
JP (1) JP7080702B2 (ja)
CN (1) CN111869052B (ja)
WO (1) WO2019198462A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356600B2 (ja) * 2020-10-15 2023-10-04 株式会社ミツバ モータ
CN116897492A (zh) * 2021-03-04 2023-10-17 日立安斯泰莫株式会社 无刷电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262533A (ja) 2001-02-28 2002-09-13 Hitachi Ltd 永久磁石式回転電機
US20020135252A1 (en) * 2001-03-20 2002-09-26 Emerson Electric Co. Permanent magnet rotor design
JP2004048970A (ja) * 2002-07-16 2004-02-12 Meidensha Corp 永久磁石形回転電機
JP2006333657A (ja) 2005-05-27 2006-12-07 Mitsuba Corp モータ
JP2008199833A (ja) * 2007-02-15 2008-08-28 Toyota Central R&D Labs Inc 回転電機
JP2008245406A (ja) * 2007-03-27 2008-10-09 Yaskawa Electric Corp 表面型永久磁石同期機用ロータとそれを用いた同期機
WO2014167645A1 (ja) * 2013-04-09 2014-10-16 三菱電機株式会社 永久磁石型モータ及び電動パワーステアリング装置
JP2016175638A (ja) * 2015-03-19 2016-10-06 株式会社ミツバ ブラシレスモータおよびワイパ装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371314B2 (ja) * 1995-03-24 2003-01-27 セイコーエプソン株式会社 Dcブラシレスモータおよび制御装置
JPH1127878A (ja) * 1997-06-30 1999-01-29 Mitsubishi Heavy Ind Ltd モータ
JP3083510B2 (ja) * 1998-12-14 2000-09-04 松下精工株式会社 無刷子電動機およびその製造方法と磁石回転子の製造方法
JP2000333429A (ja) * 2000-01-01 2000-11-30 Matsushita Seiko Co Ltd 無刷子電動機およびその製造方法
JP4791013B2 (ja) * 2004-07-22 2011-10-12 三菱電機株式会社 ブラシレスモータ
CN101213729B (zh) * 2005-04-28 2013-06-12 株式会社电装 交流电动机
TWI343688B (en) * 2007-07-13 2011-06-11 System General Corp Rotating shaft and motor rotor having the same
JP2009033927A (ja) * 2007-07-30 2009-02-12 Jtekt Corp ブラシレスモータ
JP4671997B2 (ja) * 2007-10-23 2011-04-20 三菱電機株式会社 回転電機の回転子、及びその製造方法
JP2010239800A (ja) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp 回転電機の回転子およびその製造方法
CN102687373B (zh) * 2009-11-24 2015-07-08 三菱电机株式会社 永磁体型旋转电机及使用该永磁体型旋转电机的电动动力转向装置
JP2012157143A (ja) * 2011-01-25 2012-08-16 Shinano Kenshi Co Ltd モータ
JP5594304B2 (ja) 2012-02-13 2014-09-24 株式会社安川電機 回転電機
JP2015027161A (ja) 2013-07-25 2015-02-05 株式会社東芝 回転電機
EP3051672A4 (en) * 2013-09-24 2017-06-28 Mitsuba Corporation Brushless wiper motor
WO2015102047A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 永久磁石型回転電機
US10644552B2 (en) 2015-06-29 2020-05-05 Mitsuba Corporation Brushless motor
CN106558966A (zh) 2015-09-30 2017-04-05 德昌电机(深圳)有限公司 无刷电机
US11289960B2 (en) * 2017-07-20 2022-03-29 Mitsuba Corporation Motor and brushless wiper motor
JP7080703B2 (ja) * 2018-04-12 2022-06-06 株式会社ミツバ モータ及びブラシレスワイパーモータ
JP2020099121A (ja) * 2018-12-17 2020-06-25 株式会社ミツバ ロータ、モータ、及びワイパモータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262533A (ja) 2001-02-28 2002-09-13 Hitachi Ltd 永久磁石式回転電機
US20020135252A1 (en) * 2001-03-20 2002-09-26 Emerson Electric Co. Permanent magnet rotor design
JP2004048970A (ja) * 2002-07-16 2004-02-12 Meidensha Corp 永久磁石形回転電機
JP2006333657A (ja) 2005-05-27 2006-12-07 Mitsuba Corp モータ
JP2008199833A (ja) * 2007-02-15 2008-08-28 Toyota Central R&D Labs Inc 回転電機
JP2008245406A (ja) * 2007-03-27 2008-10-09 Yaskawa Electric Corp 表面型永久磁石同期機用ロータとそれを用いた同期機
WO2014167645A1 (ja) * 2013-04-09 2014-10-16 三菱電機株式会社 永久磁石型モータ及び電動パワーステアリング装置
JP2016175638A (ja) * 2015-03-19 2016-10-06 株式会社ミツバ ブラシレスモータおよびワイパ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780347A4

Also Published As

Publication number Publication date
US11901779B2 (en) 2024-02-13
JP7080702B2 (ja) 2022-06-06
EP3780347B1 (en) 2024-01-03
CN111869052A (zh) 2020-10-30
US20210028678A1 (en) 2021-01-28
JP2019187132A (ja) 2019-10-24
CN111869052B (zh) 2023-01-24
EP3780347A1 (en) 2021-02-17
EP3780347A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
US9780610B2 (en) Rotor and motor
US20180198333A1 (en) Brushless motor
US11289960B2 (en) Motor and brushless wiper motor
WO2019198462A1 (ja) モータ及びブラシレスワイパーモータ
JP7105624B2 (ja) モータ及びブラシレスワイパーモータ
JP2014107939A (ja) ブラシレスモータ
WO2019198464A1 (ja) モータ及びブラシレスワイパーモータ
WO2018128165A1 (ja) ロータおよび電動モータ
JP7077153B2 (ja) モータ及びブラシレスワイパーモータ
JP6695241B2 (ja) ブラシレスモータ
US20210384783A1 (en) Rotor, motor and brushless motor
WO2019202915A1 (ja) モータ、ブラシレスワイパーモータ、及びモータの駆動方法
JP2020078177A (ja) ロータ、モータ及びブラシレスワイパーモータ
JP6655500B2 (ja) 電動モータ
JP2006067800A (ja) 永久磁石回転電機および自動車
JP2020115728A (ja) モータ
JP2019213417A (ja) ブラシレスモータ
JP6311274B2 (ja) 回転電機用ロータの製造方法
EP3657637B1 (en) Motor and brushless wiper motor
JP2020115733A (ja) モータ及びブラシレスワイパーモータ
JP2023161742A (ja) 電動モータ
JP2020078148A (ja) ロータ、モータ及びブラシレスワイパーモータ
JP2023161321A (ja) 電動モータ
JP2020178387A (ja) モータ、及びワイパモータ
JP2023091273A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019785242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019785242

Country of ref document: EP

Effective date: 20201112