WO2019187767A1 - 絶縁基板及びその製造方法 - Google Patents

絶縁基板及びその製造方法 Download PDF

Info

Publication number
WO2019187767A1
WO2019187767A1 PCT/JP2019/005810 JP2019005810W WO2019187767A1 WO 2019187767 A1 WO2019187767 A1 WO 2019187767A1 JP 2019005810 W JP2019005810 W JP 2019005810W WO 2019187767 A1 WO2019187767 A1 WO 2019187767A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper plate
insulating substrate
plate material
ceramic substrate
copper
Prior art date
Application number
PCT/JP2019/005810
Other languages
English (en)
French (fr)
Inventor
翔一 檀上
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020197034246A priority Critical patent/KR102343189B1/ko
Priority to CN201980004011.8A priority patent/CN111051546B/zh
Priority to JP2019531350A priority patent/JP6582159B1/ja
Publication of WO2019187767A1 publication Critical patent/WO2019187767A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an insulating substrate, in particular, an insulating substrate for power devices and a method for manufacturing the same.
  • a joining method for joining via a silver-based brazing material or the like, a joining method for joining using a eutectic reaction of copper without using a brazing material, etc. are used.
  • Aluminum nitride, alumina, silicon nitride, or the like is used for the ceramic substrate, but the thermal expansion coefficient thereof is different from the thermal expansion coefficient of the copper plate material constituting the copper plate. Therefore, when the semiconductor element generates heat, a large strain tends to be generated in the entire insulating substrate due to the difference in thermal expansion coefficient.
  • the copper plate material has a higher thermal expansion coefficient between the ceramic substrate and the copper plate material, when heat treatment is performed, tensile stress is applied to the ceramic substrate and compressive stress is applied to the copper plate. As a result, a high strain is applied to the entire insulating substrate, and the insulating substrate is not only deformed by thermal expansion to cause a dimensional change, but also the ceramic substrate and the copper plate are likely to be peeled off. Therefore, an insulating substrate that is not easily deformed as much as possible even when heated is desired.
  • Patent Document 1 discloses a pure copper plate made of pure copper having a purity of 99.90 mass% or more and having a specified X-ray diffraction intensity ratio as a pure copper plate used for a heat dissipation substrate.
  • the etching property of the pure copper plate is improved by defining the crystal grain size of 100 ⁇ m or less and the ratio of the X-ray diffraction intensity.
  • Patent Document 2 discloses a copper alloy plate having a tensile strength of 350 MPa or more and a controlled degree of crystal orientation integration at a predetermined position as a copper alloy plate suitable for a heat dissipation electronic component, a high-current electronic component, and the like. Is disclosed. By controlling the degree of integration of the crystal orientation at a predetermined position, the repeated bending workability of the copper alloy plate is improved.
  • JP 2014-189817 A Japanese Patent No. 5475914
  • the pure copper plate disclosed in Patent Document 1 has excellent adhesion to other members because the surface is less likely to be uneven due to etching, but it is completely considered for bonding with other members at high temperatures. It has not been.
  • the copper alloy plate currently disclosed by patent document 2 is examined regarding heat resistance, only the heat resistance by heat processing for 30 minutes at 200 degreeC is considered.
  • the copper alloy plate disclosed in Patent Document 2 has a tensile strength of 350 MPa or more and does not correspond to a range of 150 to 330 MPa suitable as a copper plate material used for an insulating substrate. Further, neither of Patent Documents 1 and 2 makes any mention of a defect after the copper plate is bonded to the insulating substrate.
  • the insulation substrate is deformed due to the difference in thermal expansion coefficient between the copper plate material and the ceramic substrate, the problem of peeling between the ceramic substrate and the copper plate, and these are bonded at a high temperature of 700 ° C. or higher.
  • the problem of the heterogeneity of the structure due to the growth of crystal grains and the deterioration of the bonding property that have occurred at the time has not been solved yet.
  • an object of the present invention is to provide an insulating substrate having a copper plate material excellent in heat resistance and having fine crystal grains, and a method for manufacturing the same.
  • the first and second copper plate materials have a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm, and contain copper
  • the crystal orientation distribution function obtained from the texture analysis by EBSD of the surfaces of the first and second copper plate materials having a composition having an amount of 99.96 mass% or more is expressed as Euler angles ( ⁇ 1, ⁇ , ⁇ 2 ),
  • the ceramic substrate is formed using a ceramic material mainly composed of at least one selected from the group consisting of aluminum nitride, silicon nitride, alumina, and a compound of alumina and zirconia.
  • the insulating substrate according to [2]. [4] The insulating substrate according to any one of [1] to [3], wherein the first and second copper plate members have a tensile strength of 210 MPa to 250 MPa.
  • [7] A method for manufacturing an insulating substrate according to any one of [1] to [6], With respect to the first material to be rolled which is the material of the first copper plate material and the second material to be rolled which is the material of the second copper plate material, the temperature rising rate is 10 ° C./second to 50 ° C./second, An annealing step in which an annealing treatment is performed under conditions of an ultimate temperature of 250 ° C.
  • Manufacturing of an insulating substrate comprising: a second heat treatment in which a heat treatment is performed under conditions of a speed of 10 ° C./second to 100 ° C./second, an ultimate temperature of 750 ° C. to 850 ° C., and a holding time of 100 seconds to 7200 seconds.
  • the ceramic substrate, the first copper plate material formed on one surface of the ceramic substrate, and the second copper plate material formed on the other surface of the ceramic substrate are joined.
  • the first and second copper plate members have a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm.
  • the first and second copper plate materials exhibit excellent heat resistance characteristics, the load stress of the entire insulating substrate is reduced, and the resistance force to the load due to thermal expansion is increased. As a result, deformation of the insulating substrate caused by the difference in thermal expansion coefficient between the first and second copper plate materials and the ceramic substrate, and further separation of the ceramic substrate and the first and second copper plate materials, that is, bonding property The decrease can be suppressed.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the insulating substrate of the present invention a ceramic substrate, a first copper plate material formed on one surface of the ceramic substrate, and a second copper plate material formed on the other surface of the ceramic substrate are joined.
  • the insulating substrate includes a ceramic substrate disposed between the first copper plate material and the second copper plate material, and the first copper plate material, the ceramic substrate, and the second copper plate material in this order, respectively. It has a laminated structure rolled and joined.
  • the first copper plate material and the ceramic substrate, and the ceramic substrate and the second copper plate material may have a layered structure bonded to each other.
  • the first copper plate material and the ceramic substrate, and the ceramic substrate and the second copper plate material may be joined by, for example, a brazing material, an adhesive, solder, or the like, and particularly preferably joined via the brazing material.
  • the thickness of the insulating substrate can be appropriately selected depending on the usage situation, and is preferably, for example, 0.3 mm to 10.0 mm, and more preferably 0.8 mm to 5.0 mm.
  • the first copper plate material and the second copper plate material may be simply referred to as “copper plate material” below.
  • the ceramic substrate used for the insulating substrate of the present invention is not particularly limited as long as it is formed from a ceramic material having high insulation properties.
  • a ceramic substrate is preferably formed using a ceramic material containing, as a main component, at least one of aluminum nitride, silicon nitride, alumina, and a compound of alumina and zirconia, for example.
  • the thickness of the ceramic substrate is not particularly limited, but is preferably 0.05 mm to 2.0 mm, and more preferably 0.2 mm to 1.0 mm, for example.
  • a copper material means a material obtained by processing a copper material (before processing and having a predetermined composition) into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, etc.).
  • the “plate material” refers to a material having a specific thickness, stable in shape, and having a spread in the surface direction, and in a broad sense, includes a strip material.
  • the “copper plate material” in the present invention means the “plate material” formed from copper having a predetermined composition.
  • the copper plate material used for the insulating substrate of the present invention has a copper content of 99.96 mass% or more, preferably 99.99 mass% or more. If the copper content is less than 99.96 mass%, the thermal conductivity is lowered and the desired heat dissipation cannot be obtained.
  • the copper plate material has a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 ppm to 2.0 ppm.
  • the lower limit of the total content of these metal components is not particularly limited, but is 0.1 ppm in consideration of inevitable impurities. On the other hand, when the total content of these metal components exceeds 2.0 ppm, a desired orientation density cannot be obtained.
  • the effect of increasing the resistance to a load due to thermal expansion applied to the insulating substrate cannot be obtained, and the insulating substrate may be deformed, the ceramic substrate may be separated from the copper plate material, or the like.
  • the copper plate material may contain inevitable impurities as the balance other than copper and a metal component selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr. .
  • Inevitable impurities mean impurities at a content level that can be inevitably included in the manufacturing process.
  • the component composition of the first copper plate material and the component composition of the second copper plate material may be the same or different, but from the viewpoint of production efficiency, they are preferably the same.
  • the GDMS method can be used for quantitative analysis of the above metal components of the copper plate material.
  • the GDMS method is an abbreviation of Glow Discharge Mass Spectrometry, which uses a solid sample as a cathode, sputters the sample surface using glow discharge, and ionizes the emitted neutral particles by colliding with Ar and electrons in the plasma. This is a technique for analyzing the proportion of trace elements contained in a metal by measuring the number of ions with a mass spectrometer.
  • the copper plate material used for the insulating substrate of the present invention has a crystal orientation distribution function (ODF) obtained from texture analysis by EBSD on the surface of the copper plate material as Euler angles ( ⁇ 1, ⁇ , ⁇ 2).
  • ODF crystal orientation distribution function
  • Euler angles ( ⁇ 1, ⁇ , ⁇ 2) are the RD direction, the direction perpendicular to the RD direction (sheet width direction) as the TD direction, and the direction perpendicular to the rolling surface (RD surface) as the ND direction. Then, the azimuth rotation about the RD direction is represented as ⁇ , the azimuth rotation about the ND direction as ⁇ 1, and the azimuth rotation about the TD direction as ⁇ 2.
  • the orientation density is a parameter used when quantitatively analyzing the abundance ratio and dispersion state of crystal orientation in the texture. EBSD and X-ray diffraction are performed, and (100), (110), (112), etc.
  • the rolling texture of the first copper plate material and the rolling texture of the second copper plate material may be the same or different, but from the viewpoint of manufacturing efficiency, they may be the same. preferable.
  • the EBSD method is an abbreviation for Electron Backscatter Diffraction, and is a crystal orientation analysis technique using reflected electrons generated when an electron beam is irradiated on a sample in a scanning electron microscope (SEM).
  • the measurement area and the scan step may be determined according to the size of crystal grains of the sample.
  • analysis software OIM Analysis (trade name) manufactured by TSL can be used.
  • Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample.
  • the measurement position in the thickness direction is preferably near the position 1/8 to 1/2 times the plate thickness from the sample surface.
  • FIG. 1 is a crystal orientation distribution diagram showing an example of a result obtained by measuring the rolling texture of the surface of a copper plate used for the insulating substrate of the present invention by EBSD and analyzing by ODF.
  • the orientation density is 1 when the crystal orientation distribution is random, and how many times the density is integrated is represented by contour lines.
  • the white portion indicates that the orientation density is high
  • the black portion indicates that the orientation density is low
  • the other portions indicate that the orientation density is higher as it is closer to white.
  • FIG. 1 is a crystal orientation distribution diagram showing an example of a result obtained by measuring the rolling texture of the surface of a copper plate used for the insulating substrate of the present invention by EBSD and analyzing by ODF.
  • FIG. 1B is a crystal orientation distribution diagram of
  • 1A shows a crystal orientation distribution diagram in which the average value of the former orientation density is 8
  • FIG. 1B shows a crystal orientation distribution diagram in which the average value of the latter orientation density is 4.
  • the rolling texture is 1 or more and less than 15.0.
  • the copper plate material exhibits the effect of suppressing the growth of crystal grains during heat treatment at a high temperature (for example, 700 ° C. or higher) and having excellent heat resistance.
  • the crystal orientation is not sufficiently controlled, so that the temperature is high (for example, 700 ° C.
  • the growth of crystal grains in the heat treatment cannot be suppressed, and the heat resistance is poor.
  • resistance to a load due to thermal expansion applied to the insulating substrate increases, and the insulating substrate may be deformed, and the ceramic substrate and the copper plate material may be peeled off.
  • the lower limit value 0.1 of the average value of the orientation density in the range of ° is defined as the minimum value of orientation density that can be analyzed in the texture analysis by EBSD.
  • the average crystal grain size of the copper plate material used for the insulating substrate of the present invention is 50 ⁇ m or more and 400 ⁇ m or less, preferably more than 100 ⁇ m and 400 ⁇ m or less. If the average crystal grain size is less than 50 ⁇ m, sufficient crystal orientation control cannot be performed, resulting in poor heat resistance. On the other hand, when the average crystal grain size exceeds 400 ⁇ m, sufficient tensile strength and elongation cannot be obtained, resistance to a load due to thermal expansion applied to the insulating substrate increases, deformation of the insulating substrate, and between the ceramic substrate and the copper plate material Separation may occur.
  • the average crystal grain size is 100 ⁇ m or less, the crystal grain boundary of the copper plate material in contact with the ceramic substrate is remarkably increased, and the bonding strength may be lowered. Therefore, the average crystal grain size is preferably larger than 100 nm.
  • the average crystal grain size can be measured by EBSD analysis on the RD surface of the copper plate material. For example, the average grain size of all crystal grains in the measurement range can be defined as the average crystal grain size.
  • the average crystal grain size of the first copper plate material and the average crystal grain size of the second copper plate material may be the same or different, but they are the same from the viewpoint of manufacturing efficiency. It is preferable that
  • the thickness (plate thickness) of the first copper plate material and the second copper plate material is not particularly limited, but is preferably 0.05 mm to 7.0 mm, and preferably 0.1 mm to 4.0 mm. It is more preferable.
  • the thickness of the first copper plate material and the thickness of the second copper plate material may be the same or different, but in the bonding heat treatment and the heat cycle test, when the volume of each copper plate material is greatly different In some cases, plate warpage may occur due to a difference in thermal expansion. Therefore, it is desirable to appropriately combine the plate thicknesses according to the circuit design of the insulating substrate.
  • the tensile strength of the copper plate material is preferably 210 MPa or more and 250 MPa or less. If the tensile strength is less than 210 MPa, the strength required in recent years is not sufficient. On the other hand, when the tensile strength exceeds 250 MPa, the elongation and workability tend to decrease.
  • the elongation of the copper plate material is preferably 25% or more and less than 50%. If the elongation is less than 25%, the insulating substrate may be deformed, the ceramic substrate may be peeled off from the copper plate material, or the like due to load stress due to thermal expansion applied to the insulating substrate. On the other hand, if the elongation exceeds 50%, the strength tends to be insufficient.
  • the conductivity of the copper plate material is preferably 95% IACS or more.
  • the electrical conductivity is less than 95%, the thermal conductivity is lowered, and as a result, excellent heat dissipation characteristics tend not to be obtained.
  • the method for manufacturing an insulating substrate of the present invention includes an annealing step [Step A], a cold rolling step [Step B], and a joining step [Step C]. By performing the processes in these steps in this order, the insulating substrate of the present invention in which the first copper plate material, the ceramic substrate, and the second copper plate material are joined can be obtained.
  • a material to be rolled that is manufactured from a copper material having the above component composition, that is, a first material to be rolled and a material of the second copper plate that are materials of the first copper plate material.
  • the temperature rise rate is 10 ° C./second to 50 ° C./second
  • the ultimate temperature is 250 ° C. to 600 ° C.
  • the holding time is 10 seconds to 3600 seconds
  • the cooling rate is 10 ° C./second.
  • Annealing is performed at a condition of ⁇ 50 ° C./second.
  • the average crystal grain size of the obtained copper plate material becomes coarse and the crystal orientation is insufficiently controlled. It tends to be inferior.
  • the average value of density tends to be remarkably high.
  • the strain is not relaxed in the annealing process, so that the strain before the joint heat treatment is increased in combination with the subsequent cold rolling. Therefore, even if the rolling texture is within a specified range, recrystallization is promoted and the crystal grains may be coarsened.
  • the first material to be rolled which is the material of the first copper sheet
  • the second material which is the material of the second copper sheet.
  • Cold rolling is performed at a total processing rate of 10 to 65% with the rolled material.
  • the cold rolling step [Step B] if the cold rolling conditions are outside the range specified above, the average crystal grain size of the obtained copper plate material is coarsened, and the crystal orientation is insufficiently controlled. Tend to be inferior.
  • the first material to be rolled which is the material of the first copper plate material
  • the second rolled material which is the material of the second copper plate material
  • the joining step [Step C] includes a first heat treatment in which heat treatment is performed under conditions of a temperature rising rate of 10 ° C./second to 100 ° C./second, an ultimate temperature of 400 ° C. to 600 ° C.
  • the average value of the orientation density in the range tends to be remarkably high.
  • the ultimate temperature of the first heat treatment is too low, the distortion due to cold rolling is not alleviated even if the rolling texture is within a specified range. Therefore, recrystallization is promoted by strain in the second heat treatment, and the crystal grains may be coarsened.
  • the ultimate temperature of the second heat treatment is too high, the crystal grain growth may not be suppressed and the crystal grains may be coarsened.
  • the ultimate temperature of the second heat treatment is too low, the interface between the copper plate material and the ceramic substrate is not activated, and it becomes difficult to bond them well.
  • the first rolled material and the second rolled material used in the annealing step [Step A] may be rolled materials manufactured from a copper material having the above component composition.
  • a material to be rolled can be manufactured through the following steps, for example. Below, an example of the manufacturing method of the to-be-rolled material which can be used at the annealing process [process A] of the insulated substrate of this invention is demonstrated.
  • the copper plate material before being bonded to the ceramic substrate constituting the insulating substrate of the present invention that is, the first rolled material that becomes the first copper plate material and the second rolled material that becomes the second copper plate material (hereinafter referred to as the second rolled material)
  • the first rolled material and the second rolled material are also simply referred to as “rolled material”.
  • a melting / casting step [step 1] a homogenizing heat treatment step [step 2].
  • a copper material is melted and cast to obtain an ingot.
  • the copper material has a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm, and a copper content of 99.96 mass% or more.
  • the composition is
  • the homogenization heat treatment step [Step 2] the obtained ingot is subjected to a homogenization heat treatment at a holding temperature of 700 to 1000 ° C. and a holding time of 10 minutes to 20 hours.
  • hot rolling step [Step 3] hot rolling is performed so that the total processing rate is 10 to 90%.
  • cooling step [Step 4] rapid cooling is performed at a cooling rate of 10 ° C./second or more.
  • the chamfering step [Step 5] both sides of the cooled material are chamfered by about 1.0 mm each. Thereby, the oxide film on the surface of the obtained plate material is removed.
  • Step 6 cold rolling is performed a plurality of times so that the total processing rate becomes 75% or more.
  • the temperature raising rate is 1 to 100 ° C./second
  • the ultimate temperature is 100 to 500 ° C.
  • the holding time is 1 to 900 seconds
  • the cooling rate is 1 to 50 ° C./second.
  • Heat treatment is performed under conditions.
  • Step 8 cold rolling is performed so that the total processing rate is 60 to 95%.
  • the heating rate is 10 to 100 ° C./second
  • the ultimate temperature is 200 to 550 ° C.
  • the holding time is 10 to 3600 seconds
  • the cooling rate is 10 to 100 ° C./second.
  • Heat treatment is performed under conditions.
  • the finish rolling step [Step 10] cold rolling is performed so that the total processing rate is 10 to 60%.
  • the final annealing step [Step 11] heat treatment is performed under conditions where the ultimate temperature is 125 to 400 ° C.
  • the surface oxide film removing step [Step 12] pickling and polishing are performed for the purpose of removing the oxide film and cleaning the surface of the obtained plate material.
  • the processing rate R (%) in the said rolling process is defined by a following formula. In this way, the material to be rolled that becomes the raw material of the copper plate material can be manufactured.
  • Examples 1 to 11 and Comparative Examples 1 to 17 First, two rolled materials (test materials) having a predetermined component composition as shown in Table 1 and having a thickness of 1.0 mm are prepared, and each of them is a first rolled material and a second rolled material. A material was used. Further, a ceramic substrate having a thickness of 0.5 mm formed using silicon nitride as a ceramic material was used.
  • each rolled material produced as described above, which was a copper plate material was subjected to annealing treatment under the conditions shown in Table 2 [Step A]. After the annealing treatment, each of the obtained rolled materials is cold-rolled at the total working rate shown in Table 2 (that is, the working rate of the first rolled material and the second rolled material as a whole). [Step B]. After cold rolling, for each obtained rolled material, a first rolled material corresponding to the first copper plate material on one surface of the ceramic substrate, and a second copper plate material on the other surface of the ceramic substrate.
  • the GDMS method was used for the quantitative analysis of each produced copper plate material.
  • analysis was performed using VG-9000 manufactured by VG Scientific.
  • Table 1 shows the contents (ppm) of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr and the Cu content (mass%) contained in each copper plate material.
  • Each copper plate material may contain inevitable impurities.
  • the blank part in Table 1 means that the corresponding metal component was 0 ppm.
  • the content of the metal component was set to 0 ppm.
  • the EBSD method was used for the orientation density analysis of the rolling texture of each copper plate material peeled from each sample insulating substrate.
  • a measurement sample surface including 200 or more crystal grains was measured.
  • the measurement area of the measurement sample surface and the scan step were determined according to the size of crystal grains of the test material.
  • Analysis software OIM Analysis (trade name) manufactured by TSL was used for analysis of crystal grains after measurement.
  • Information obtained in the analysis of crystal grains by the EBSD method includes information up to a depth of several tens of nanometers at which the electron beam penetrates into the test material. Further, the measurement location in the plate thickness direction was set to a position near 1/8 to 1/2 times the plate thickness t from the surface of the test material.
  • Average crystal grain size of copper plate The average crystal grain size of each copper plate material peeled off from each insulating substrate as a sample was measured on the measurement sample surface containing 200 or more crystal grains by EBSD measurement on the rolled surface. In the analysis of the measurement results, the average crystal grain size was calculated from all the crystal grains in the measurement range. Analysis software OIM Analysis (trade name) manufactured by TSL was used for the analysis of the crystal grain size. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nanometers at which an electron beam penetrates the test material. Further, the measurement location in the plate thickness direction was set to a position near 1/8 to 1/2 times the plate thickness t from the surface of the test material. When the average crystal grain size was in the range of 50 ⁇ m or more and 400 ⁇ m or less, it was evaluated that the crystal grains were finely made fine.
  • Heat resistance characteristics of insulating substrate A heat cycle test was performed in which each insulating substrate sample was processed for 1,200 cycles under the conditions of ⁇ 40 ° C. to 250 ° C. (1 cycle ⁇ 40 ° C .: 30 minutes hold / 250 ° C .: 30 minutes hold). After the heat cycle test, whether the ceramic substrate was cracked was visually observed. The case where no crack occurred was evaluated as “ ⁇ ”, and the case where a crack occurred was evaluated as “ ⁇ ”.
  • Table 3 shows the results of the orientation density, average crystal grain size, electrical conductivity, tensile strength, elongation, and heat resistance characteristics of the insulating substrate of the copper plate material.
  • Example 1 As shown in Tables 1 to 3, in Examples 1 to 11, the manufacturing conditions of the insulating substrate, the component composition of the copper plate material constituting the insulating substrate, the orientation density, and the average crystal grain size are all within the appropriate ranges. Therefore, an insulating substrate having excellent heat resistance was obtained. In particular, in Examples 1 to 5 and 7 to 11, the conductivity, tensile strength, and elongation of the copper plate provided in the insulating substrate were all good. Although not shown in Table 2, in Example 5, since the average crystal grain size was smaller than 100 ⁇ m, a tendency for bonding strength to be lower than in other examples was observed.
  • the insulating substrate of the present invention formed using a copper plate material whose component composition, orientation density and average crystal grain size are strictly controlled exhibits excellent heat resistance characteristics, the load stress of the entire insulating substrate is reduced. And resistance to load due to thermal expansion is increased. Thereby, the deformation

Abstract

本発明は、セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板に関する。各銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1~2.0ppm、銅の含有量が99.96mass%%以上である組成を有し、各銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満であり、かつ、各銅板材の平均結晶粒径が50μm~400μmである。

Description

絶縁基板及びその製造方法
 本発明は、絶縁基板、特にパワーデバイス用の絶縁基板及びその製造方法に関する。
 一般に、パワーデバイスは高電圧・大電流を使用するため、半導体素子が発する熱による材料特性の劣化が課題となっている。そこで、近年、絶縁性及び放熱性に優れたセラミック基板を銅板に接合した絶縁基板を用いることによって、絶縁・放熱対策が行われてきている。
 セラミック基板と銅板との接合には、主に、銀系ろう材等を介して接合する接合方法、ろう材を介さずに銅の共晶反応を利用して接合する接合方法等が用いられている。セラミック基板には窒化アルミニウム、アルミナ、窒化ケイ素等が用いられているが、これらの熱膨張係数は銅板を構成する銅板材の熱膨張係数と異なる。そのため、半導体素子の発熱の際に、熱膨張係数の差によって絶縁基板全体に大きなひずみが生じる傾向がある。また、セラミック基板と銅板材とでは、銅板材の方が高い熱膨張係数を有するため、熱処理を行うと、セラミック基板には引張応力が加わり、銅板には圧縮応力が加わる。これにより、絶縁基板全体に高いひずみが加わり、絶縁基板が熱膨張により変形して寸法変化が生じるだけでなく、セラミック基板と銅板との剥離等が生じやすくなる。そのため、加熱してもできる限り変形しにくい絶縁基板が求められている。
 また、銅板に用いられる高純度の銅は、接合時の700℃以上の高温では結晶粒が著しく成長し、組織の均質化が困難になり、加えて、伸びや引張強度も低下する。そのため、ボンディング性が低下し、また、ひずみが生じた際に粒界破壊の起点になるといった問題がある。そこで、絶縁基板を構成する高純度の銅を用いた銅板の引張強度、伸びを向上させるとともに結晶粒を適切に微細化することで、熱膨張による変形に伴う負荷に対する抵抗力を増大し、粒界破壊の防止、さらにはボンディング性の向上が期待されている。
 例えば、特許文献1には、放熱基板に用いられる純銅板として、純度99.90mass%以上の純銅からなり、X線回析強度の比率を特定した純銅板が開示されている。純銅板を構成する無酸素銅において、100μm以下の結晶粒径、X線回折強度の比率を規定することで、純銅板のエッチング性を向上させている。
 また、特許文献2には、放熱用電子部品及び大電流用電子部品等に好適な銅合金板として、引張強さが350MPa以上であり、所定位置の結晶方位の集積度を制御した銅合金板が開示されている。所定位置の結晶方位の集積度を制御することで、銅合金板の繰返し曲げ加工性等を向上させている。
特開2014-189817号公報 特許第5475914号公報
 しかしながら、特許文献1に開示されている純銅板は、エッチングによって表面に凹凸が生じにくいため他の部材との密着性が優れているが、高温下での他の部材との接合に関しては全く検討されていない。また、特許文献2に開示されている銅合金板は、耐熱性に関して検討されているが、200℃で30分間の熱処理による耐熱性しか考慮されていない。さらに、特許文献2に開示されている銅合金板は、引張強さが350MPa以上であり、絶縁基板に用いる銅板材として適切な150~330MPaの範囲に対応していない。また、特許文献1、2のいずれにおいても、銅板を絶縁基板に接合した後の不具合については何ら言及されていない。それ故、半導体素子が発熱した際、銅板材とセラミック基板との熱膨張係数の差によって生じる、絶縁基板の変形、セラミック基板と銅板との剥離の問題、これらを700℃以上の高温で接合する際に生じる、結晶粒の成長による組織の不均質化、ボンディング性の低下の問題に対しては、依然として解決されていない。
 上記事情に鑑み、本発明の目的は、耐熱特性に優れ、さらには、結晶粒が良好に微細化された銅板材を備えた絶縁基板及びその製造方法を提供することである。
 [1]セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板であって、
 前記第1及び第2の銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1~2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、前記第1及び第2の銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が1.0以上15.0未満である圧延集合組織を有し、かつ、
 前記第1及び第2の銅板材の平均結晶粒径が50μm以上400μm以下である、絶縁基板。
 [2]前記第1及び第2の銅板材の平均結晶粒径が100μmより大きく400μm以下である、[1]に記載の絶縁基板。
 [3]前記セラミック基板が、窒化アルミニウム、窒化珪素、アルミナ、およびアルミナとジルコニアの化合物からなる群から選択される少なくとも1種を主成分とするセラミック材料を用いて形成されている、[1]または[2]に記載の絶縁基板。
 [4]前記第1及び第2の銅板材の引張強度が、210MPa以上250MPa以下である、[1]乃至[3]のいずれかに記載の絶縁基板。
 [5]前記第1及び第2の銅板材の伸びが25%以上50%未満である[1]乃至[4]のいずれかに記載の絶縁基板。
 [6]前記第1及び第2の銅板材の導電率が95%IACS以上である、[1]乃至[5]のいずれかに記載の絶縁基板。
 [7][1]乃至[6]のいずれかに記載の絶縁基板の製造方法であって、
 前記第1の銅板材の材料である第1の被圧延材及び前記第2の銅板材の材料である第2の被圧延材に対し、昇温速度が10℃/秒~50℃/秒、到達温度が250℃~600℃、保持時間が10秒~3600秒、冷却速度が10℃/秒~50℃/秒の条件で焼鈍処理を施す焼鈍工程と、
 前記焼鈍工程後に、前記第1の被圧延材と、前記第2の被圧延材との総加工率が10~65%の冷間圧延を行う冷間圧延工程と、
 前記冷間圧延工程後に、前記セラミック基板の一方の面に前記第1の被圧延材を、前記セラミック基板の他方の面に前記第2の被圧延材を、ろう材を介してそれぞれ接合し、前記第1の銅板材と前記第2の銅板材とがそれぞれ接合された絶縁基板を形成する接合工程と、を含み、
 前記接合工程は、昇温速度が10℃/秒~100℃/秒、到達温度が400℃~600℃、保持時間が10秒~300秒の条件で熱処理を施す第1加熱処理と、昇温速度が10℃/秒~100℃/秒、到達温度が750℃~850℃、保持時間が100秒~7200秒の条件で熱処理を施す第2加熱処理と、で構成される、絶縁基板の製造方法。
 本発明によれば、セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板において、前記第1及び第2の銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1~2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、前記第1及び第2の銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が1.0以上15.0未満である圧延集合組織を有し、かつ、前記第1及び第2の銅板材の平均結晶粒径が50μm以上400μm以下であることにより、耐熱特性に優れた絶縁基板を得ることができる。
 また、本発明によれば、第1及び第2の銅板材が優れた耐熱特性を示すため、絶縁基板全体の負荷応力が低減し、熱膨張による負荷に対する抵抗力が増大する。これにより、第1及び第2の銅板材とセラミック基板との熱膨張係数の差によって生じる、絶縁基板の変形、さらにはセラミック基板と第1及び第2の銅板材との剥離、すなわちボンディング性の低下を抑制することができる。
本発明の絶縁基板に用いられる銅板材の表面の圧延集合組織をEBSDにより測定し、ODFで解析した結果の一例を示す結晶方位分布図である。図1(A)はφ2=20°の結晶方位分布図であり、図1(B)は、φ2=35°の結晶方位分布図である。
 以下に、本発明の絶縁基板の詳細及び実施形態例について説明する。なお、以下において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
<絶縁基板>
 本発明の絶縁基板は、セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合されている。すなわち、絶縁基板は、第1の銅板材と第2の銅板材との間にセラミック基板が配置され、第1の銅板材と、セラミック基板と、第2の銅板材と、がこの順でそれぞれ圧延接合された積層構造を有している。第1の銅板材とセラミック基板、セラミック基板と第2の銅板材は、相互に接合された層構造であればよい。第1の銅板材とセラミック基板、セラミック基板と第2の銅板材は、例えば、ろう材、接着剤、はんだ等で接合されていてもよく、特にろう材を介して接合されていることが好ましい。また、絶縁基板の厚みは、使用状況に応じて適宜選択可能であり、例えば、0.3mm~10.0mmであることが好ましく、0.8mm~5.0mmであることがより好ましい。なお、特に言及されない限り、便宜上、第1及の銅板材及び第2の銅板材を、以下において単に「銅板材」とも呼ぶことがある。
[セラミック基板]
 本発明の絶縁基板に用いられるセラミック基板は、高い絶縁性を備えるセラミック材料から形成されていれば、特に限定されるものではない。このようなセラミック基板は、例えば、窒化アルミニウム、窒化珪素、アルミナおよびアルミナとジルコニアの化合物の少なくとも1種を主成分とするセラミック材料を用いて形成されていることが好ましい。セラミック基板の厚さは、特に限定されるものではないが、例えば、0.05mm~2.0mmであることが好ましく、0.2mm~1.0mmであることがより好ましい。
[銅板材]
 一般に、銅材料とは、(加工前であって所定の組成を有する)銅素材が所定の形状(例えば、板、条、箔、棒、線など)に加工された材料を意味する。その中で、「板材」とは、特定の厚みを有し、形状的に安定しており、かつ面方向に広がりを有する材料を指し、広義には条材を含む意味である。本発明における「銅板材」は、所定の組成を有する銅から形成された当該「板材」を意味する。
[銅板材の成分組成]
 本発明の絶縁基板に用いられる銅板材は、銅の含有量が99.96mass%以上であり、好ましくは99.99mass%以上である。銅の含有量が99.96mass%未満であると、熱伝導率が低下し、所望する放熱性が得られない。また、上記銅板材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1ppm~2.0ppmである。これらの金属成分の合計含有量の下限値は、特に限定されないが、不可避的不純物を考慮し、0.1ppmとしている。一方、これらの金属成分の合計含有量が2.0ppmを超えると、所望の方位密度が得られない。そのため、絶縁基板にかかる熱膨張による負荷に対する抵抗力の増大効果が得られず、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。また、上記銅板材には、銅、並びに、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分以外に、残部として不可避的不純物が含まれていてもよい。不可避的不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。第1の銅板材の成分組成と第2の銅板材の成分組成は、同じであってもよく、異なっていてもよいが、製造効率の観点から、これらは同じであることが好ましい。
 銅板材の上記金属成分の定量分析には、GDMS法を用いることができる。GDMS法とは、Glow Discharge Mass Spectrometryの略であり、固体試料を陰極としグロー放電を用いて試料表面をスパッタし、放出された中性粒子をプラズマ内のArや電子と衝突させることによってイオン化させ、質量分析器でイオン数を計測することで、金属に含まれる極微量元素の割合を解析する技術である。
[圧延集合組織]
 本発明の絶縁基板に用いられる銅板材は、該銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数(ODF:crystal orientation distribution function)をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、かつ、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満である圧延集合組織を有する。オイラー角(φ1、Φ、φ2)は、圧延方向をRD方向、RD方向に対して直交する方向(板幅方向)をTD方向、圧延面(RD面)に対して垂直な方向をND方向としたとき、RD方向を軸とした方位回転がΦ、ND方向を軸とした方位回転がφ1、TD方向を軸とした方位回転がφ2として表される。方位密度は、集合組織における結晶方位の存在比率及び分散状態を定量的に解析する際に用いられるパラメータであり、EBSD及びX線回折を行い、(100)、(110)、(112)等の3種類以上の正極点図の測定データに基づいて、級数展開法による結晶方位分布解析法により算出される。EBSDによる集合組織解析から得られるφ2を所定の角度で固定した結晶方位分布図において、RD面内での方位密度の分布が示される。第1の銅板材が有する圧延集合組織と第2の銅板材が有する圧延集合組織は、同じであってもよく、異なっていてもよいが、製造効率の観点から、これらは同じであることが好ましい。
 EBSD法とは、Electron BackScatter Diffractionの略であり、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子を利用した結晶方位解析技術である。EBSDによる解析の際、測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。測定後の結晶粒の解析には、例えば、TSL社製の解析ソフトOIM Analysis(商品名)を用いることができる。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。厚さ方向の測定箇所は、試料表面から板厚の1/8倍~1/2倍の位置付近とすることが好ましい。
 図1は、本発明の絶縁基板に用いられる銅板材の表面の圧延集合組織をEBSDにより測定し、ODFで解析した結果の一例を示す結晶方位分布図である。図1(A)はφ2=20°の結晶方位分布図であり、図1(B)は、φ2=35°の結晶方位分布図である。結晶方位分布図では、結晶方位分布がランダムな状態を方位密度が1であるとし、それに対して何倍の集積となっているかが等高線で表されている。図1において、白い部分は方位密度が高く、黒い部分は方位密度が低いことを示し、それ以外の部分は白に近いほど方位密度が高いことを示す。本発明では、図1(A)において、点線で囲われた領域(φ1=20°~40°、Φ=55°~75°、φ2=20°)の方位密度の平均値が15未満であり、図1(B)において、点線で囲われた領域(φ1=75°~90°、Φ=20°~40°、φ2=35°)の方位密度の平均値が15未満である圧延集合組織を有している。図1(A)では、前者の方位密度の平均値が8であり、図1(B)では、後者の方位密度の平均値が4である結晶方位分布図を示している。
 本発明では、絶縁基板に用いられる銅板材は、EBSDによる集合組織解析から得られた結晶方位分布関数において、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、かつ、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満である圧延集合組織を有する。このように、方位密度を適切に制御することにより、上記銅板材は、高温(例えば、700℃以上)での熱処理において結晶粒の成長が抑制され、耐熱特性に優れる効果を発揮する。φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が15.0以上では、結晶方位制御が十分ではないため、高温(例えば、700℃以上)での熱処理における結晶粒の成長が抑制できず、耐熱特性に劣ってしまう。そのため、絶縁基板にかかる熱膨張による負荷に対する抵抗力が増大し、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。また、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が15.0以上の場合も同様、結晶方位制御が十分ではないため、耐熱特性に劣ってしまう。そのため、絶縁基板にかかる熱膨張による負荷に対する抵抗力が増大し、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。尚、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値のそれぞれの下限値である0.1は、EBSDによる集合組織解析において解析できる方位密度の最小値として規定している。
[平均結晶粒径]
 本発明の絶縁基板に用いられる銅板材の平均結晶粒径は50μm以上400μm以下であり、100μmより大きく400μm以下であることが好ましい。平均結晶粒径が50μm未満であると、十分な結晶方位制御ができず、耐熱特性に劣ってしまう。一方、平均結晶粒径が400μmを超えると、十分な引張強度と伸びが得られず、絶縁基板にかかる熱膨張による負荷に対する抵抗力が増大し、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。また、銅板材とセラミック基板との界面において、銅板材の結晶粒界が界面と接する箇所には欠陥(ボイド)が生じやすい。平均結晶粒径が100μm以下である場合、セラミック基板と接触する銅板材の結晶粒界が著しく増加し、接合強度が低下するおそれがある。そのため、平均結晶粒径は100nmより大きいことが好ましい。なお、平均結晶粒径は、銅板材のRD面におけるEBSD解析により測定することができ、例えば、測定範囲における全結晶粒の粒径の平均を平均結晶粒径として定義することができる。また、第1の銅板材が有する平均結晶粒径と第2の銅板材が有する平均結晶粒径は、同じであってもよく、異なっていてもよいが、製造効率の観点から、これらは同じであることが好ましい。
[板厚]
 第1の銅板材と第2の銅板材の厚さ(板厚)は、特に限定されるものでないが、0.05mm~7.0mmであることが好ましく、0.1mm~4.0mmであることがより好ましい。第1の銅板材の厚さと第2の銅板材の厚さは、同じであってもよく、異なっていてもよいが、接合熱処理、ヒートサイクル試験において、それぞれの銅板材の体積が大きく異なると、熱膨張量の違いによる板反りが起きることがある。そのため、絶縁基板の回路設計に応じて、板厚はそれぞれ適切に組み合わせることが望ましい。
[特性]
(引張強度)
 銅板材の引張強度は、210MPa以上250MPa以下であることが好ましい。引張強度が210MPa未満であると、近年要求される強度としては十分ではない。一方、引張強度が250MPaを超えると、伸び、加工性が低下する傾向にある。
(伸び)
 銅板材の伸びは、25%以上50%未満であることが好ましい。伸びが25%未満であると、絶縁基板にかかる熱膨張による負荷応力に対して、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまうおそれがある。一方、伸びが50%を超えると、強度が不十分となる傾向にある。
 銅板材の導電率は、95%IACS以上であることが好ましい。導電率が95%未満であると、熱伝導率が低下し、その結果、優れた放熱特性が得られない傾向にある。
 次に、本発明の絶縁基板の製造方法の一例を説明する。
[絶縁基板の製造方法]
 本発明の絶縁基板の製造方法では、焼鈍工程[工程A]、冷間圧延工程[工程B]、接合工程[工程C]を含む。これらの工程における処理が、この順序にて行われることで、第1の銅板材とセラミック基板と第2の銅板材とが接合された本発明の絶縁基板を得ることができる。
 まず、焼鈍工程[工程A]では、上記の成分組成を有する銅素材から製造した被圧延材、すなわち、第1の銅板材の材料である第1の被圧延材及び第2の銅板材の材料である第2の被圧延材に対し、昇温速度が10℃/秒~50℃/秒、到達温度が250℃~600℃、保持時間が10秒~3600秒、冷却速度が10℃/秒~50℃/秒の条件で焼鈍処理を施す。焼鈍工程[工程A]において、焼鈍条件が上記規定の範囲外では、得られる銅板材の平均結晶粒径の粗大化、結晶方位の不十分な制御を招き、その結果、絶縁基板の耐熱特性が劣る傾向にある。例えば、到達温度が高すぎる、または昇温速度が遅すぎる場合、結晶方位を十分に制御できず、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が著しく高くなる傾向にある。また、到達温度が低すぎる場合、焼鈍工程において歪みが緩和されないため、その後の冷間圧延と合わせて接合熱処理前の歪みも大きくなる。そのため、圧延集合組織は規定の範囲内であっても再結晶が促され、結晶粒が粗大化するおそれがある。
 冷間圧延工程[工程B]では、焼鈍工程([工程A])後に、第1の銅板材の材料である第1の被圧延材と、第2の銅板材の材料である第2の被圧延材との総加工率が10~65%の冷間圧延を行う。冷間圧延工程[工程B]において、冷間圧延条件が上記規定の範囲外では、得られる銅板材の平均結晶粒径の粗大化、結晶方位の不十分な制御を招き、絶縁基板の耐熱特性が劣る傾向にある。例えば、総加工率が著しく高い場合、結晶方位を十分に制御できず、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が著しく高くなる傾向にある。一方、総加工率が低すぎる場合、結晶粒成長を抑制しきれず結晶粒が粗大化するおそれがある。
 接合工程[工程C]では、冷間圧延工程([工程B])後に、セラミック基板の一方の面に第1の銅板材の材料である第1の被圧延材を、セラミック基板の他方の面に第2の銅板材の材料である第2の被圧延材を、例えばAg-Cu-Ti系等のろう材を介してそれぞれ接合し、第1の銅板材と第2の銅板材とがそれぞれ接合された絶縁基板を形成する。接合工程[工程C]は、昇温速度が10℃/秒~100℃/秒、到達温度が400℃~600℃、保持時間が10秒~300秒の条件で熱処理を施す第1加熱処理と、昇温速度が10℃/秒~100℃/秒、到達温度が750℃~850℃、保持時間が100秒~7200秒の条件で熱処理を施す第2加熱処理と、で構成されている。接合工程[工程C]において、接合条件が上記規定の範囲外では、得られる銅板材の平均結晶粒径の粗大化または過剰な微細化、結晶方位の不十分な制御を招き、その結果、絶縁基板の耐熱特性が劣る傾向にある。例えば、第1加熱処理および第2加熱処理の昇温速度が速すぎる場合、結晶方位を十分に制御できず、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が著しく高くなる傾向にある。一方、第1加熱処理の到達温度が低すぎる場合、圧延集合組織は規定の範囲内であっても、冷間圧延による歪みが緩和されない。そのため、第2加熱処理において再結晶が歪みによって促進され、結晶粒が粗大化するおそれがある。また、第2加熱処理の到達温度が高すぎる場合、結晶粒成長を抑制しきれず結晶粒が粗大化するおそれがある。一方、第2加熱処理の到達温度が低すぎる場合、銅板材とセラミック基板との界面が活性せず、これらを良好に接合することが困難となる。
[被圧延材の製造方法]
 本発明の絶縁基板の製造方法において、焼鈍工程[工程A]で使用する第1の被圧延材及び第2の被圧延材は、上記の成分組成を有する銅素材から製造した被圧延材であれば、特に限定されるものではない。このような被圧延材は、例えば、以下の工程を経て製造することができる。以下に、本発明の絶縁基板の焼鈍工程[工程A]で使用できる被圧延材の製造方法の一例を説明する。
 本発明の絶縁基板を構成するセラミック基板に接合される前の銅板材、すなわち、第1の銅板材となる第1の被圧延材及び第2の銅板材となる第2の被圧延材(以下、第1の被圧延材と第2の被圧延材を、単に「被圧延材」とも呼ぶ。)の製造方法としては、例えば、溶解・鋳造工程[工程1]、均質化熱処理工程[工程2]、熱間圧延工程[工程3]、冷却工程[工程4]、面削工程[工程5]、第1冷間圧延工程[工程6]、第1焼鈍工程[工程7]、第2冷間圧延工程[工程8]、第2焼鈍工程[工程9]、仕上げ圧延工程[工程10]、最終焼鈍工程[工程11]、表面酸化膜除去工程[工程12]から構成される処理が順次行われる。
 まず、溶解・鋳造工程[工程1]では、銅素材を溶解し、鋳造することによって鋳塊を得る。銅素材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1~2.0ppm、銅の含有量が99.96mass%以上である組成を有する。均質化熱処理工程[工程2]では、得られた鋳塊に対して、保持温度700~1000℃、保持時間10分~20時間の均質化熱処理を行う。熱間圧延工程[工程3]では、総加工率が10~90%となるように熱間圧延を行う。冷却工程[工程4]では、10℃/秒以上の冷却速度で急冷を行う。面削工程[工程5]では、冷却された材料の両面をそれぞれ約1.0mmずつ面削する。これにより、得られた板材表面の酸化膜が除去される。
 第1冷間圧延工程[工程6]では、総加工率が75%以上となるよう冷間圧延を複数回行う。
 第1焼鈍工程[工程7]では、昇温速度が1~100℃/秒、到達温度が100~500℃、保持時間が1~900秒、かつ、冷却速度が1~50℃/秒である条件で熱処理を施す。
 第2冷間圧延工程[工程8]では、総加工率が60~95%となるように冷間圧延を行う。
 第2焼鈍工程[工程9]では、昇温速度が10~100℃/秒、到達温度が200~550℃、保持時間が10~3600秒、かつ、冷却速度が10~100℃/秒である条件で熱処理を施す。
 仕上げ圧延工程[工程10]では、総加工率が10~60%となるように冷間圧延を行う。最終焼鈍工程[工程11]では、到達温度が125~400℃である条件で熱処理を施す。表面酸化膜除去工程[工程12]では、得られた板材表面の酸化膜除去と表面洗浄を目的として、酸洗及び研磨を行う。なお、上記圧延工程における加工率R(%)は下記式で定義される。こうして、銅板材の原料となる被圧延材を製造することができる。
   R=(t-t)/t×100
 式中、tは圧延前の板厚であり、tは圧延後の板厚である。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1~11及び比較例1~17)
 先ず、表1に示されるような所定の成分組成を有する、厚さ1.0mmの被圧延材(供試材)を2つ作製し、それぞれを第1の被圧延材及び第2の被圧延材とした。また、セラミック材料として窒化珪素を用いて形成された厚さ0.5mmのセラミック基板を使用した。
 次いで、銅板材となる上記で作製した各被圧延材に対し、表2に示す条件で焼鈍処理を施した[工程A]。焼鈍処理後、得られた各被圧延材に対し、表2に示す総加工率(すなわち、第1の被圧延材及び第2の被圧延材全体としての加工率)にて冷間圧延を行った[工程B]。冷間圧延後、得られた各被圧延材について、セラミック基板の一方の面に第1の銅板材に相当する第1の被圧延材を、セラミック基板の他方の面に第2の銅板材に相当する第2の被圧延材を、Ag-Cu-Ti系のろう材を介してそれぞれ接合し、第1の銅板材と第2の銅板材とがそれぞれ接合された絶縁基板を作製した[工程C]。[工程C]では、表2に示す第1加熱処理及び第2の加熱処理の条件で加熱処理を施した。以上の工程を経て、サンプルとなる絶縁基板を作製した。
<測定方法及び評価方法>
[銅板材の定量分析]
 作製した各銅板材の定量分析には、GDMS法を用いた。各実施例および各比較例ではV.G.Scientific社製 VG-9000を用いて解析を行った。各銅板材に含まれるAl、Be、Cd、Mg、Pb、Ni、P、Sn及びCrの含有量(ppm)並びにCuの含有量(mass%)を表1に示す。なお、各銅板材には、不可避的不純物が含まれている場合がある。表1における空欄部は、該当する金属成分が0ppmであったことを意味する。また、GDMS法による測定値が0.1ppm未満であった場合、金属成分の含有量は0ppmとした。
<銅板材の方位密度>
 サンプルである各絶縁基板から剥離させた各銅板材の圧延集合組織の方位密度解析には、EBSD法を用いた。各実施例および各比較例のEBSD測定では、結晶粒を200個以上含む測定試料面を測定した。測定試料面の測定面積およびスキャンステップは、供試材の結晶粒の大きさに応じて決定した。測定後の結晶粒の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSD法による結晶粒の解析において得られる情報は、電子線が供試材に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、供試材表面から板厚tの1/8倍~1/2倍の位置付近とした。
[銅板材の平均結晶粒径]
 サンプルである各絶縁基板から剥離させた各銅板材の平均結晶粒径は、圧延面におけるEBSD測定にて、結晶粒を200個以上含む測定試料面を測定した。測定結果の解析において、測定範囲中の全結晶粒から、平均結晶粒径を算出した。結晶粒径の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が供試材に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、供試材表面から板厚tの1/8倍~1/2倍の位置付近とした。平均結晶粒径が50μm以上400μm以下の範囲にある場合、結晶粒が良好に微細化されていると評価した。
[銅板材の導電率(EC)]
 サンプルである各絶縁基板から剥離させた各銅板材の導電率は、シグマテスタ(渦電流を利用したIACS%測定)を用いて測定した。各銅板板材の導電率が95%IACS以上である場合を「良好」、95%IACS未満の場合を「不良」と評価した。
[銅板材の引張強度]
 サンプルである各絶縁基板から銅板材を剥離させ、切り出した試験片をJIS Z2241に準じて測定し、その平均値を示した。銅板材の引張強度が210MPa以上である場合を「良好」、210MPa未満の場合を「不良」と評価した。
[銅板材の伸び]
 引張強度を測定する際にJIS Z2241に準じて測定し、その平均値を示した。銅板材の伸びが25%以上である場合を「良好」、25%未満の場合を「不良」と評価した。
[絶縁基板の耐熱特性]
 各絶縁基板のサンプルを、-40℃~250℃(1サイクル -40℃:30分保持/250℃:30分保持)の条件で1200サイクル処理するヒートサイクル試験を実施した。ヒートサイクル試験後、セラミック基板にクラックが発生したか否かを目視で観察した。クラックが発生していない場合を「○」、クラックが発生している場合を「×」と評価した。
 表3に、銅板材の方位密度、平均結晶粒径、導電率、引張強度、伸び及び絶縁基板の耐熱特性の結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示すように、実施例1~11では、絶縁基板の製造条件、絶縁基板を構成する銅板材の成分組成、方位密度および平均結晶粒径が、いずれも適正範囲内であるため、耐熱特性に優れた絶縁基板が得られた。特に、実施例1~5、7~11では、絶縁基板が備える銅板材の導電率、引張強度及び伸びが、いずれも良好であった。尚、表2中には示していないが、実施例5では、平均結晶粒径が100μmよりも小さいため、他の実施例よりも接合強度が低下する傾向が観察された。
 一方で、比較例1~17では、絶縁基板の製造条件、絶縁基板を構成する銅板材の成分組成の一方または両方が適正範囲外であるため、方位密度、平均結晶粒径の両方または一方が適正範囲外となり、さらには、絶縁基板のヒートサイクル試験で、いずれもクラックの発生が観察された。
 このように、成分組成、方位密度および平均結晶粒径が厳密に制御された銅板材を用いて形成された本発明の絶縁基板は、優れた耐熱特性を示すため、絶縁基板全体の負荷応力が低減し、熱膨張による負荷に対する抵抗力が増大する。これにより、銅板材とセラミック基板との熱膨張係数の差によって生じる絶縁基板の変形が抑制され、さらにはセラミック基板と銅板材との剥離、すなわちボンディング性の低下を抑制することができる。

Claims (7)

  1.  セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板であって、
     前記第1及び第2の銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1~2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、前記第1及び第2の銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°~90°、Φ=20°~40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°~40°、Φ=55°~75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満である圧延集合組織を有し、かつ、
     前記第1及び第2の銅板材の平均結晶粒径が50μm以上400μm以下であることを特徴とする絶縁基板。
  2.  前記第1及び第2の銅板材の平均結晶粒径が100μmより大きく400μm以下である、請求項1に記載の絶縁基板。
  3.  前記セラミック基板が、窒化アルミニウム、窒化珪素、アルミナ、およびアルミナとジルコニアの化合物の少なくとも1種を主成分とするセラミック材料を用いて形成されている、請求項1または2に記載の絶縁基板。
  4.  前記第1及び第2の銅板材の引張強度が、210MPa以上250MPa以下である、請求項1乃至3のいずれか1項に記載の絶縁基板。
  5.  前記第1及び第2の銅板材の伸びが、25%以上50%未満である、請求項1乃至4のいずれか1項に記載の絶縁基板。
  6.  前記第1及び第2の銅板材の導電率が95%IACS以上である、請求項1乃至5のいずれか1項に記載の絶縁基板。
  7.  請求項1乃至6のいずれか1項に記載の絶縁基板の製造方法であって、
     前記第1の銅板材の材料である第1の被圧延材及び前記第2の銅板材の材料である第2の被圧延材に対し、昇温速度が10℃/秒~50℃/秒、到達温度が250℃~600℃、保持時間が10秒~3600秒、冷却速度が10℃/秒~50℃/秒の条件で焼鈍処理を施す焼鈍工程と、
     前記焼鈍工程後に、前記第1の被圧延材と、前記第2の被圧延材との総加工率が10~65%の冷間圧延を行う冷間圧延工程と、
     前記冷間圧延工程後に、前記セラミック基板の一方の面に前記第1の被圧延材を、前記セラミック基板の他方の面に前記第2の被圧延材を、ろう材を介してそれぞれ接合し、前記第1の銅板材と前記第2の銅板材とがそれぞれ接合された絶縁基板を形成する接合工程と、を含み、
     前記接合工程は、昇温速度が10℃/秒~100℃/秒、到達温度が400℃~600℃、保持時間が10秒~300秒の条件で熱処理を施す第1加熱処理と、昇温速度が10℃/秒~100℃/秒、到達温度が750℃~850℃、保持時間が100秒~7200秒の条件で熱処理を施す第2加熱処理と、で構成される、絶縁基板の製造方法。
PCT/JP2019/005810 2018-03-29 2019-02-18 絶縁基板及びその製造方法 WO2019187767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197034246A KR102343189B1 (ko) 2018-03-29 2019-02-18 절연 기판 및 그 제조 방법
CN201980004011.8A CN111051546B (zh) 2018-03-29 2019-02-18 绝缘基板及其制造方法
JP2019531350A JP6582159B1 (ja) 2018-03-29 2019-02-18 絶縁基板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065856 2018-03-29
JP2018065856 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187767A1 true WO2019187767A1 (ja) 2019-10-03

Family

ID=68058335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005810 WO2019187767A1 (ja) 2018-03-29 2019-02-18 絶縁基板及びその製造方法

Country Status (2)

Country Link
CN (1) CN111051546B (ja)
WO (1) WO2019187767A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145148A1 (ja) * 2020-01-15 2021-07-22 古河電気工業株式会社 銅板材およびその製造方法、ならびに銅板材付き絶縁基板
WO2021241463A1 (ja) * 2020-05-27 2021-12-02 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075382A (ja) * 2015-10-16 2017-04-20 株式会社Shカッパープロダクツ 無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板
JP2018016823A (ja) * 2016-07-25 2018-02-01 古河電気工業株式会社 放熱部材用銅合金板材およびその製造方法
JP2018024930A (ja) * 2016-08-12 2018-02-15 株式会社Shカッパープロダクツ 無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板
WO2018181593A1 (ja) * 2017-03-31 2018-10-04 古河電気工業株式会社 銅板付き絶縁基板用銅板材及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61542A (ja) * 1984-06-12 1986-01-06 Nippon Mining Co Ltd ラジエ−タ−プレ−ト用銅合金
JPH0648852A (ja) * 1992-07-30 1994-02-22 Toshiba Corp セラミックス−金属接合体
JP4812985B2 (ja) * 2001-08-23 2011-11-09 電気化学工業株式会社 セラミック体と銅板の接合方法
JP5186719B2 (ja) * 2005-08-29 2013-04-24 日立金属株式会社 セラミックス配線基板、その製造方法及び半導体モジュール
JP6256733B2 (ja) * 2012-02-29 2018-01-10 日立金属株式会社 セラミックス回路基板の製造方法およびセラミックス回路基板
JP6123410B2 (ja) * 2012-03-26 2017-05-10 日立金属株式会社 セラミックス回路基板の製造方法
JP6196512B2 (ja) * 2012-09-28 2017-09-13 Jx金属株式会社 放熱性及び繰り返し曲げ加工性に優れた銅合金板
JP6202718B2 (ja) * 2013-03-26 2017-09-27 三菱マテリアル株式会社 放熱基板
JP5885791B2 (ja) * 2013-08-20 2016-03-15 Jx金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP6244142B2 (ja) * 2013-09-04 2017-12-06 東洋鋼鈑株式会社 超電導線材用基板及びその製造方法、並びに超電導線材
JP6425404B2 (ja) * 2014-04-16 2018-11-21 株式会社Shカッパープロダクツ セラミック配線基板用銅合金材、セラミック配線基板及びセラミック配線基板の製造方法
KR102403087B1 (ko) * 2014-10-27 2022-05-27 도요 고한 가부시키가이샤 초전도 선재용 기판 및 그 제조 방법과 초전도 선재

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075382A (ja) * 2015-10-16 2017-04-20 株式会社Shカッパープロダクツ 無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板
JP2018016823A (ja) * 2016-07-25 2018-02-01 古河電気工業株式会社 放熱部材用銅合金板材およびその製造方法
JP2018024930A (ja) * 2016-08-12 2018-02-15 株式会社Shカッパープロダクツ 無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板
WO2018181593A1 (ja) * 2017-03-31 2018-10-04 古河電気工業株式会社 銅板付き絶縁基板用銅板材及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145148A1 (ja) * 2020-01-15 2021-07-22 古河電気工業株式会社 銅板材およびその製造方法、ならびに銅板材付き絶縁基板
JP6982710B1 (ja) * 2020-01-15 2021-12-17 古河電気工業株式会社 銅板材およびその製造方法、ならびに銅板材付き絶縁基板
WO2021241463A1 (ja) * 2020-05-27 2021-12-02 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Also Published As

Publication number Publication date
CN111051546A (zh) 2020-04-21
CN111051546B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
JP6678757B2 (ja) 銅板付き絶縁基板用銅板材及びその製造方法
JP4516154B1 (ja) Cu−Mg−P系銅合金条材及びその製造方法
KR101136265B1 (ko) 전기 전자 부품용 구리 합금판
TWI480394B (zh) Cu-Mg-P copper alloy strip and its manufacturing method
JP6719316B2 (ja) 放熱部材用銅合金板材およびその製造方法
KR19990006536A (ko) 고순도구리스퍼터링타겟 및 박막
EP3922391B1 (en) Production method for copper/ceramic joined body, production method for insulated circuit board, copper/ceramic joined body, and insulated circuit board
JP5787647B2 (ja) スパッタリングターゲット用銅材料の製造方法
JP2006083465A (ja) 曲げ加工性を備えた電気電子部品用銅合金板
WO2021177461A1 (ja) 純銅板、銅/セラミックス接合体、絶縁回路基板
CN115279929A (zh) 纯铜板、铜-陶瓷接合体、绝缘电路基板
WO2019187767A1 (ja) 絶縁基板及びその製造方法
JP2009287062A (ja) バッキングプレート用銅合金とその製造方法
JP6355671B2 (ja) Cu−Ni−Si系銅合金条及びその製造方法
JP2015203148A (ja) 銅合金材、セラミック配線基板及びセラミック配線基板の製造方法
JP6582159B1 (ja) 絶縁基板及びその製造方法
JP6472477B2 (ja) Cu−Ni−Si系銅合金条
WO2013058083A1 (ja) コルソン合金及びその製造方法
JP7451964B2 (ja) Cu合金板およびその製造方法
JP2008088469A (ja) 銅合金製バッキング・プレートおよびバッキング・プレート用銅合金の製造方法
JP6599059B1 (ja) クラッド材及びその製造方法
JP7236299B2 (ja) 高純度アルミニウムシートおよびその製造方法ならびに当該高純度アルミニウムシートを用いたパワー半導体モジュール
JP2007291516A (ja) 銅合金とその製造方法
JP5755892B2 (ja) 銅合金板の製造方法
EP4289986A1 (en) Al bonding wire for semiconductor devices

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531350

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197034246

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777879

Country of ref document: EP

Kind code of ref document: A1