WO2013058083A1 - コルソン合金及びその製造方法 - Google Patents
コルソン合金及びその製造方法 Download PDFInfo
- Publication number
- WO2013058083A1 WO2013058083A1 PCT/JP2012/075265 JP2012075265W WO2013058083A1 WO 2013058083 A1 WO2013058083 A1 WO 2013058083A1 JP 2012075265 W JP2012075265 W JP 2012075265W WO 2013058083 A1 WO2013058083 A1 WO 2013058083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annealing
- corson alloy
- plate thickness
- rolling
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/02—Single bars, rods, wires, or strips
Definitions
- the present invention has excellent strength, bending workability, stress relaxation suitable as a lead frame material for conductive spring materials such as connectors, terminals, relays and switches, and semiconductor devices such as transistors and integrated circuits (ICs).
- the present invention relates to a Corson alloy having characteristics, conductivity, and the like, and a manufacturing method thereof.
- Corson alloys having high strength and conductivity
- solid solution strengthened copper alloys such as phosphor bronze and brass.
- a Corson alloy is an alloy in which an intermetallic compound such as Ni—Si, Co—Si, or Ni—Co—Si is precipitated in a Cu matrix, and has high strength, high electrical conductivity, and good bending workability.
- strength and bending workability are contradictory properties, and it is desired to improve bending workability while maintaining high strength even in a Corson alloy.
- the surface of the copper alloy plate is cut in advance called a notching process, and the copper alloy is cut along the cut.
- the plate may be bent (hereinafter also referred to as notch bending). This notch bending is frequently used, for example, in press working of a vehicle-mounted female terminal. Since the copper alloy is work hardened and loses ductility by the notching process, the copper alloy is easily cracked in the subsequent bending process. Therefore, particularly good bending workability is required for the copper alloy used for notch bending.
- Patent Document 2 Japanese Patent Laid-Open No. 2010-275622
- (1) casting (2) hot rolling (reducing the temperature from 950 ° C. to 400 ° C.), (3) cold rolling (working degree 50) %), (4) Intermediate annealing (450-600 ° C, conductivity is adjusted to 1.5 times or more and hardness is adjusted to 0.8 times or less)
- Cold rolling working degree is 70% or more
- (6) solution treatment cold rolling (working degree: 0 to 50%)
- (8) aging treatment is carried out in order to obtain the X-ray diffraction intensity of ⁇ 200 ⁇ (synonymous with ⁇ 001 ⁇ ). Bending workability is improved by controlling the X-ray diffraction intensity of the copper powder standard sample.
- Patent Document 3 Japanese Patent Application Laid-Open No. 2011-17072
- the area ratio of the Cube orientation is controlled to 5 to 60%, and at the same time, the area ratios of the Brass orientation and Copper orientation are both controlled to 20% or less, and bending workability is improved.
- Manufacturing processes for this purpose include (1) casting, (2) hot rolling, (3) cold rolling (working degree 85 to 99%), (4) heat treatment (300 to 700 ° C, 5 minutes to 20 hours) (5) Cold rolling (working degree 5 to 35%), (6) Solution treatment, (7) Aging treatment, (8) Cold rolling (working degree 2 to 30%), (9) Temper annealing The best bendability is obtained when the steps are sequentially performed.
- Patent Document 4 (WO2011 / 068126), the bending workability is improved by reducing the region in which the (111) plane faces in the width direction instead of controlling the Cube orientation.
- Production processes for this purpose include (1) casting, (2) hot rolling (30 to 98% processing at 500 to 1020 ° C., water cooling), (3) cold rolling (working degree 50 to 99%), (4 ) Intermediate heat treatment (held at 600 to 900 ° C. for 10 seconds to 5 minutes, non-uniform recrystallization structure), (5) Cold rolling (working degree 5 to 55%), (6) Intermediate recrystallization heat treatment (solute solution temperature) (7) solution treatment (kept at a temperature 10 to 150 ° C. higher than the solute solid solution temperature for 1 second to 10 minutes), (8) It proposes the steps of aging treatment, (9) cold rolling (working degree 2 to 45%), and (10) temper annealing.
- the present inventor conducted a verification test on the effect of the preceding invention. As a result, when the bending workability was evaluated by the W bending test, a certain improvement effect was recognized. However, sufficient bending workability was not obtained for notch bending. Then, this invention makes it a subject to provide the Corson alloy which has high intensity
- EBSD Electron Back Scatter Diffraction: Electron Back Scattering Diffraction
- Kikuchi line diffraction Kikuchi pattern
- the surface of the copper alloy is irradiated with an electron beam, and information obtained at this time is orientation information up to a depth of several tens of nanometers in which the electron beam penetrates, that is, orientation information of the polar surface layer.
- the present inventor has found that it is necessary to control the crystal orientation inside the copper alloy plate for notch bending. This is because the inner angle of bending moves into the plate by notching. Then, the crystal orientation in the central part in the plate thickness direction was optimized for notch bending, and a manufacturing method for obtaining this crystal orientation was clarified.
- the present invention completed on the basis of the above knowledge, in one aspect, contains at least one of Ni and Co in an amount of 0.8 to 5.0 mass%, Si in an amount of 0.2 to 1.5 mass%, and the balance being A rolled material consisting of copper and unavoidable impurities.
- the crystal orientation is analyzed at the center of the plate thickness direction, which is 45 to 55% of the cross section of the plate thickness.
- the area ratio of the crystals oriented in the Cube orientation ⁇ 0 0 1 ⁇ ⁇ 1 0 0> is 5% or more
- the ⁇ 1 ⁇ 1 1> direction is the area of the crystals oriented in the width direction (TD) of the rolled material.
- Corson alloy whose rate is 50% or less.
- the Corson alloy according to the present invention when EBSD measurement is performed in parallel with the plate thickness direction at the central portion in the plate thickness direction, which is a cross-sectional position of 45 to 55% of the plate thickness, and the crystal orientation is analyzed.
- the area ratio of crystals oriented in the Cube orientation ⁇ 0 0 1 ⁇ ⁇ 1 0 0> is 5 to 70%.
- the Corson alloy according to the present invention has a total amount of one or more of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, Co, Cr, and Ag in a total amount of 0.005. Contains up to 3.0% by mass.
- the Corson alloy according to the present invention has a bending deflection coefficient in the rolling direction of 106 to 119 GPa.
- At least one of Ni and Co is contained in an amount of 0.8 to 5.0 mass%
- Si is contained in an amount of 0.2 to 1.5 mass%
- the balance is copper and inevitable impurities.
- An ingot made of the above is manufactured, and this ingot is hot-rolled from a temperature of 800 to 1000 ° C. to adjust the thickness to 5 to 20 mm and the conductivity to 30% IACS or more, and then the working degree is 30 to 99.5%.
- the ingot comprises at least one of Sn, Zn, Mg, Fe, Ti, Zr, Cr, Al, P, Mn, Co, Cr, and Ag.
- the total content is 0.005 to 3.0% by mass.
- the present invention is a copper-plated product provided with the Corson alloy.
- the present invention is an electronic device component including the Corson alloy.
- Ni, Co and Si are precipitated as intermetallic compounds such as Ni—Si, Co—Si, and Ni—Co—Si by performing an appropriate aging treatment.
- the strength of the precipitate is improved by the action of the precipitate, and Ni, Co, and Si dissolved in the Cu matrix are reduced by the precipitation, so that the conductivity is improved.
- the total amount of Ni and Co is less than 0.8% by mass or Si is less than 0.2% by mass, the desired strength cannot be obtained.
- the total amount of Ni and Co exceeds 5.0% by mass. If the Si content exceeds 1.5% by mass, the notch bendability is significantly deteriorated.
- the addition amount of one or more of Ni and Co is 0.8 to 5.0 mass%, and the addition amount of Si is 0.2 to 1.5 mass%.
- the addition amount of one or more of Ni and Co is more preferably 1.0 to 4.0% by mass, and the addition amount of Si is more preferably 0.25 to 0.90% by mass.
- the Corson alloy according to the present invention preferably contains these elements in a total amount of 0.005 to 3.0% by mass, and more preferably 0.01 to 2.5% by mass.
- the Cube orientation is a state in which the (0 0 1) plane faces the rolling surface normal direction (ND) and the (1 0 0) plane faces the rolling direction (RD), and ⁇ 0 0 1 ⁇ It is indicated by an index of ⁇ 1 0 0>.
- the area ratio of the Cube orientation at the center of the plate thickness is less than 5%, the notch bendability is drastically lowered. Therefore, the area ratio of crystals oriented in the Cube orientation at the center of the plate thickness is set to 5% or more, more preferably 10% or more.
- the upper limit value of the area ratio of the crystals oriented in the Cube orientation in the central portion of the plate thickness is not particularly restricted from the point of notch bendability aimed at by the present invention.
- the Cube orientation area ratio in the center portion of the plate thickness exceeds 70%, the bending deflection coefficient is remarkably lowered.
- the Cube orientation area ratio is preferably 70% or less. If the Cube orientation area ratio is controlled to 70% or less, a sufficiently high bending deflection coefficient of 116 GPa or more can be obtained.
- the bending deflection coefficient of the Corson alloy according to the present invention is typically 106 to 119 GPa.
- a crystal in which the ⁇ 1 1 1> direction is oriented in the width direction of the alloy rolled material of the present invention (method perpendicular to ND and RD, hereinafter referred to as TD)
- TD a crystal in which the ⁇ 1 1 1> direction is oriented in the width direction of the alloy rolled material of the present invention
- the conductivity after hot rolling is adjusted to a predetermined range.
- the preliminary annealing is performed for the purpose of partially generating recrystallized grains in a rolled structure formed by cold rolling after hot rolling.
- the optimum proportion of recrystallized grains can be obtained by adjusting the pre-annealing conditions so that the softening degree S defined below is 0.20 to 0.80.
- FIG. 1 illustrates the relationship between the annealing temperature and the tensile strength when the alloy according to the present invention is annealed at various temperatures.
- a sample with a thermocouple attached was inserted into a 1000 ° C. tubular furnace, and when the sample temperature measured by the thermocouple reached a predetermined temperature, the sample was taken out of the furnace, cooled with water, and the tensile strength was measured. is there. Recrystallization progresses when the sample arrival temperature is 500 to 700 ° C., and the tensile strength is rapidly reduced. The gradual decrease in tensile strength on the high temperature side is due to the growth of recrystallized grains.
- the softening degree S in the pre-annealing is defined by the following equation.
- S ( ⁇ 0 - ⁇ ) / ( ⁇ 0 - ⁇ 950 )
- ⁇ 0 is the tensile strength before annealing
- ⁇ and ⁇ 950 are the tensile strength after pre-annealing and after annealing at 950 ° C., respectively.
- the temperature of 950 ° C. is adopted as a reference temperature for knowing the tensile strength after recrystallization because the alloy according to the present invention is stably completely recrystallized when annealed at 950 ° C.
- the area ratio of the Cube orientation is less than 5% in the central portion of the plate thickness, and the area ratio of crystals whose ⁇ 1 1 1> direction is oriented to TD increases.
- S exceeds 0.80 the area ratio of the Cube orientation is less than 5% in the center portion of the plate thickness, and the area ratio of crystals whose ⁇ 1 1 1> direction is oriented to TD increases.
- the temperature and time of the pre-annealing are not particularly limited, and it is important to adjust S to the above range. Generally, when a continuous annealing furnace is used, the furnace temperature ranges from 400 to 750 ° C.
- the pre-annealing conditions can be set by the following procedure. (1) The tensile strength ( ⁇ 0 ) of the material before pre-annealing is measured. (2) The material before preliminary annealing is annealed at 950 ° C. Specifically, the material to which the thermocouple is attached is inserted into a 1000 ° C. tubular furnace, and when the sample temperature measured by the thermocouple reaches 950 ° C., the sample is taken out of the furnace and water-cooled.
- ⁇ 950 the tensile strength ( ⁇ 950 ) of the material after annealing at 950 ° C.
- ⁇ 0 800 MPa and ⁇ 950 is 300 MPa
- the tensile strengths corresponding to the softening degrees of 0.20 and 0.80 are 700 MPa and 400 MPa, respectively.
- Pre-annealing conditions are determined so that the tensile strength after annealing is 400 to 700 MPa. After the pre-annealing, prior to solution treatment, light rolling with a working degree of 3 to 50% is performed.
- the processing degree R (%) is defined by the following equation.
- the crystal orientation of the present invention can be obtained by adjusting the electrical conductivity after hot rolling to 30% IACS or more, more preferably 32% IACS or more, in addition to the preliminary annealing and light rolling.
- the conductivity is less than 30% IACS
- the Cube orientation area ratio is less than 5%, and an increase in the area ratio of crystals in which the ⁇ 1 1 1> direction is TD-oriented occurs.
- the conductivity is obtained.
- the material immediately after hot rolling can be inserted into a heat insulating container, heated with a burner, inserted into a heating furnace and cooled in the furnace, and the cooling can be actively delayed to further promote precipitation.
- the conductivity is more preferably less than 40% from the viewpoint of controlling the Cube orientation area ratio in the central portion of the plate thickness to 70% or less.
- each degree of work in cold rolling (7) and (9) exceeds the above upper limit, the area ratio of crystals in which the ⁇ 1 1 1> direction in the center of the plate thickness is oriented to TD deviates from the definition of the present invention. Cracks are generated by notch bending.
- the strain relief annealing (10) is optionally performed in order to recover the spring limit value and the like which are lowered by the cold rolling when the cold rolling (9) is performed. Regardless of the presence or absence of strain relief annealing (10), the effect of the present invention is obtained in that the notch bendability is improved by controlling the crystal orientation at the center of the plate thickness.
- the strain relief annealing (10) may or may not be performed. In addition, about process (6) and (8), what is necessary is just to select the general manufacturing conditions of a Corson alloy.
- the Corson alloy of the present invention can be processed into various copper products, for example, plates, strips and foils. Further, the Corson alloy of the present invention is a lead frame, connector, pin, terminal, relay, switch, secondary battery. It can be used for electronic device parts such as foil materials.
- Example 1 An alloy containing Ni: 2.6% by mass, Si: 0.58% by mass, Sn: 0.5% by mass, and Zn: 0.4% by mass with the balance being copper and inevitable impurities is used as an experimental material. The relationship between pre-annealing conditions, light rolling conditions, hot-rolling conductivity and crystal orientation, and the influence of crystal orientation on the bendability and mechanical properties of the products were investigated. In a high frequency melting furnace, 2.5 kg of electrolytic copper was melted using a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm in an argon atmosphere.
- Hot rolling The ingot was heated at 950 ° C. for 3 hours and rolled to a thickness of 10 mm. In order to change the electrical conductivity after hot rolling, the material immediately after rolling was cooled by the following three methods. (A) It puts in a water tank (water cooling). (B) Leave in the atmosphere (air cooling). (C) After inserting into an electric furnace heated to 300 ° C.
- the crystal grain size after the solution treatment was about 10 ⁇ m.
- Aging treatment Heated in an Ar atmosphere at 450 ° C. for 5 hours using an electric furnace.
- Cold rolling Cold rolled from 0.18 mm to 0.15 mm at a workability of 17%.
- Strain relief annealing The sample was inserted into an electric furnace adjusted to 400 ° C. and held for 10 seconds, and then the sample was left in the air and cooled.
- the area ratio of the ⁇ 1 0 0 ⁇ ⁇ 0 0 1> orientation and the area ratio of crystals in which the ⁇ 1 1 1> direction is oriented in TD were measured.
- the sample surface was mechanically polished to remove minute irregularities due to a rolling pattern or the like, and then finished to a mirror surface by electrolytic polishing.
- the resulting surface polishing depth was in the range of 2-3 ⁇ m.
- a crystal orientation density function analysis is performed to determine the area of a region having an orientation difference within 15 ° from the ⁇ 1 0 0 ⁇ ⁇ 0 0 1> orientation, and this area is divided by the total measurement area to obtain “Cube orientation The area ratio of the crystals oriented in ⁇ 0 0 1 ⁇ ⁇ 1 0 0> ”. Further, the area of a region in which the angle formed by the ⁇ 1 1 1> direction of the crystal and the TD is within 15 ° is obtained, and this area is divided by the total measurement area to obtain the “crystal with the ⁇ 1 1 1> direction oriented in the TD”. Area ratio ".
- the information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers in which the electron beam penetrates the sample, but is described as an area ratio because it is sufficiently small with respect to the measured width. .
- the bending deflection coefficient in the rolling direction was measured according to the Japan Copper and Brass Association (JACBA) technical standard “Method of measuring bending deflection coefficient by cantilever of copper and copper alloy strip”.
- E 4 ⁇ P ⁇ (L / t) 3 / (w ⁇ d) Test conditions and evaluation results are shown in Table 1.
- Inventive Examples 1 to 11 were all subjected to pre-annealing, light rolling and hot rolling under the conditions specified by the present invention, the crystal orientation at the center of the plate thickness satisfied the specifications of the present invention, W bending, Cracks did not occur in the notch bending, and a high tensile strength exceeding 800 MPa was obtained.
- the bending deflection coefficient was remarkably lower than in the other examples. Such a decrease in the bending deflection coefficient is not preferable from the viewpoint of the contact force because it causes a decrease in the contact force at the contact point when the connector is processed.
- Comparative Example 1 the degree of softening in the pre-annealing was less than 0.20, so the Cube orientation area ratio in the central portion of the plate thickness was less than 5%.
- Comparative Example 2 since the degree of softening in the preliminary annealing exceeded 0.80, the Cube orientation area ratio in the center portion of the plate thickness was less than 5%.
- Comparative Example 3 the degree of softening in the pre-annealing exceeded 0.80 and was further excessive. Therefore, the Cube orientation area ratio in the center portion of the plate thickness was less than 5%, and ⁇ 1 1 1> in the center portion of the plate thickness.
- the area ratio of the crystal whose direction is oriented to TD exceeded 50%.
- Comparative Examples 4 and 5 the degree of workability of light rolling deviated from the definition of the present invention, and the Cube orientation area ratio in the center portion of the plate thickness was less than 5%.
- Comparative Example 6 since the hot-rolled conductivity was less than 30% IACS, the Cube orientation area ratio at the center of the plate thickness was less than 5%, and the ⁇ 1 1 1> direction at the center of the plate thickness was TD. The area ratio of crystals oriented in the direction exceeded 50%.
- the comparative example 6 is manufactured on the conditions which the patent document 3 recommends.
- Comparative Example 7 is manufactured under the conditions recommended by Patent Document 4. Since water cooling was performed immediately after completion of hot rolling, the electrical conductivity after hot rolling was less than 30% IACS.
- the pre-annealing was performed under the condition that the entire surface was not recrystallized, and the softening degree was within the scope of the present invention by chance.
- a heat treatment was added immediately before the solution treatment, and recrystallization was performed by heating at 650 ° C. (temperature lower by 10 to 200 ° C. than the solute solid solution temperature) for 1 hour.
- the solution treatment was performed at 800 ° C. (temperature 10 to 150 ° C. higher than the solute solid solution temperature) for 10 seconds.
- the area ratio of the crystals in which the ⁇ 1 1 1> direction was TD was a low value in the plate thickness surface layer portion, but exceeded 50% in the plate thickness center portion.
- the Cube orientation area ratio was less than 5% in both the surface thickness portion and the central portion.
- cracks did not occur in W bending, but cracks occurred in notch bending.
- Comparative Example 8 after water cooling by hot rolling, surface grinding was performed, and rolling was performed from a thickness of 9 mm to a thickness of 0.18 mm without performing pre-annealing and light rolling. This process corresponds to a general method for producing a conventional Corson alloy.
- the Cube orientation area ratio was less than 5%, and the area ratio of the crystals in which the ⁇ 1 1 1> direction was aligned in TD exceeded 50%. As a result, cracks occurred in both W bending and notch bending.
- Example 2 In order to further verify that the center portion of the plate thickness is appropriate as the crystal orientation measurement position for controlling the notch bendability, the crystal orientation at the 1/4 position of the plate thickness was measured for the samples of Comparative Examples 1 and 3. did. That is, 1/4 of the plate thickness (0.038 mm) is removed from one surface by etching with a ferric chloride solution, and then the surface finished to a mirror surface by mechanical polishing and electrolytic polishing is applied to the above-mentioned surface. Measurement was carried out by the method.
- Example 3 It was examined whether the notch bendability improving effect shown in Example 1 could be obtained even with a Corson alloy having different components and manufacturing conditions.
- casting was performed in the same manner as in Example 1 to obtain an ingot having the components shown in Table 2.
- Hot rolling The ingot was heated at 950 ° C. for 3 hours and rolled to a thickness of 10 mm. The material was cooled by water cooling or air cooling immediately after rolling.
- Grinding The oxide scale generated by hot rolling was removed with a grinder. The thickness after grinding was 9 mm.
- Example 2 The same evaluation as in Example 1 was performed on the sample after hot rolling, the sample after preliminary annealing, and the product sample.
- Tables 2 and 3 show test conditions and evaluation results. When any one of rolling 1, rolling 2, and strain relief annealing is not performed, “none” is written in the column of the degree of processing or temperature.
- Invention Examples 12 to 29 all contain Ni, Co, and Si at concentrations specified by the present invention, and are pre-annealed, light rolled and hot rolled under the conditions specified by the present invention.
- the crystal orientation in the central portion satisfied the provisions of the present invention, and notch bending was possible, and high tensile strength exceeding 650 MPa was obtained.
- the workability of rolling 2 exceeded 50%
- the workability of rolling 1 exceeded 60%.
- the crystal orientation at the central portion of the plate thickness deviated from the provisions of the invention, and cracking occurred due to notch bending.
- Comparative Examples 9 and 16 the workability of light rolling did not satisfy the provisions of the present invention.
- Comparative Examples 12 and 14 the degree of softening in the pre-annealing did not satisfy the definition of the present invention.
- Comparative Examples 13 and 15 the hot rolled up conductivity was less than 30% IACS.
- the crystal orientation at the center of the plate thickness deviated from the provisions of the invention, and cracking occurred due to notch bending.
- Comparative Example 18 the total concentration of Ni and Co and the Si concentration were lower than those of the present invention, and the notch bendability was good, but the tensile strength did not reach 500 MPa.
- Comparative Example 19 the total concentration of Ni and Co exceeded the definition of the present invention, and the crystal orientation in the central portion of the plate thickness satisfied the definition of the present invention, but cracking occurred by notch bending.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Manufacturing & Machinery (AREA)
Abstract
高強度及び高ノッチ曲げ性を兼備したコルソン合金及びその製造方法を提供する。Ni及びCoのうち一種以上を0.8~5.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなる圧延材であり、板厚に対し45~55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率が5%以上であり、さらに<1 1 1>方向が圧延材の幅方向(TD)に配向する結晶の面積率が50%以下であるコルソン合金。
Description
本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材やトランジスタ、集積回路(IC)等の半導体機器のリ-ドフレーム材として好適な、優れた強度、曲げ加工性、耐応力緩和特性、導電性等を備えたコルソン合金及びその製造方法に関する。
近年、電気・電子部品の小型化が進み、これら部品に使用される銅合金に良好な強度、導電率及び曲げ加工性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金はCuマトリックス中にNi-Si、Co-Si、Ni-Co-Si等の金属間化合物を析出させた合金であり、高強度、高い導電率、良好な曲げ加工性を兼ね備えている。一般に、強度と曲げ加工性とは相反する性質であり、コルソン合金においても高強度を維持しつつ曲げ加工性を改善することが望まれている。
銅合金板をコネクタ等の電子・電子部品にプレス加工する際、曲げ加工部の寸法精度を向上させるため、あらかじめ銅合金板表面にノッチング加工と呼ばれる切り込み加工を施し、この切り込みに沿って銅合金板を曲げることがある(以下、ノッチ曲げともいう)。このノッチ曲げは、例えば車載用メス端子のプレス加工において多用されている。ノッチング加工により銅合金は加工硬化して延性を失うため、続く曲げ加工において銅合金に割れが生じやすくなる。従って、ノッチ曲げに用いられる銅合金には、特に良好な曲げ加工性が求められる。
近年、コルソン合金の曲げ性を改善する技術として、Cube方位({0 0 1}<1 0 0>)の面積率を制御する方策が提唱されている。例えば、特許文献1(特開2006-283059号)では、(1)鋳造、(2)熱間圧延、(3)冷間圧延(加工度95%以上)、(4)溶体化処理、(5)冷間圧延(加工度20%以下)、(6)時効処理、(7)冷間圧延(加工度1~20%)、(8)短時間焼鈍、の工程を順次行うことにより、Cube方位の面積率を50%以上に制御し、曲げ加工性を改善している。
また、特許文献2(特開2010-275622号)では、(1)鋳造、(2)熱間圧延(950℃から400℃に温度を下げながら行う)、(3)冷間圧延(加工度50%以上)、(4)中間焼鈍(450~600℃、導電率を1.5倍以上に硬さを0.8倍以下に調整する)、(5)冷間圧延(加工度70%以上)、(6)溶体化処理、(7)冷間圧延(加工度0~50%)、(8)時効処理を順次行うことにより、{200}({001}と同義)のX線回折強度を銅粉標準試料のX線回折強度以上に制御し曲げ加工性を改善している。
さらに、特許文献3(特開2011-17072号)では、Cube方位の面積率を5~60%に制御すると同時に、Brass方位及びCopper方位の面積率をともに20%以下に制御し、曲げ加工性を改善している。そのための製造工程としては、(1)鋳造、(2)熱間圧延、(3)冷間圧延(加工度85~99%)、(4)熱処理(300~700℃、5分~20時間)、(5)冷間圧延(加工度5~35%)、(6)溶体化処理、(7)時効処理、(8)冷間圧延(加工度2~30%)、(9)調質焼鈍、の工程を順次行う場合に最も良好な曲げ性が得られている。
一方、特許文献4(WO2011/068126号公報)では、Cube方位を制御するのではなく、幅方向に(111)面が向く領域を低減することにより曲げ加工性を改善している。そのための製造工程として、(1)鋳造、(2)熱間圧延(500~1020℃で30~98%加工後、水冷)、(3)冷間圧延(加工度50~99%)、(4)中間熱処理(600~900℃で10秒~5分間保持、不均一再結晶組織)、(5)冷間圧延(加工度5~55%)、(6)中間再結晶熱処理(溶質固溶温度より10~200℃低い温度で1秒~20時間保持、再結晶組織)、(7)溶体化処理(溶質固溶温度より10~150℃高い温度で1秒~10分間保持)、(8)時効処理、(9)冷間圧延(加工度2~45%)、(10)調質焼鈍、なる工程を提唱している。
本発明者は、前記先行発明の効果について検証試験を行った。その結果、曲げ加工性をW曲げ試験で評価した場合には、一定の改善効果が認められた。しかしながら、ノッチ曲げに対しては、十分といえる曲げ加工性が得られなかった。そこで、本発明は、高強度及び高ノッチ曲げ性を兼備したコルソン合金及びその製造方法を提供することを課題とする。
従来技術では、例えば、銅合金の結晶方位をEBSD法で解析し、得られたデータに基づき、銅合金の特性を改良している。ここで、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)とは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。通常、電子線は銅合金表面に照射され、このとき得られる情報は電子線が侵入する数10nmの深さまでの方位情報、すなわち極表層の方位情報である。
一方、本発明者は、ノッチ曲げに対しては、銅合金板内部の結晶方位を制御する必要があることを見出した。これはノッチング加工により、曲げの内角が板内部に移動するためである。そして、板厚方向中央部の結晶方位をノッチ曲げに対して適正化し、この結晶方位を得るための製造方法を明らかにした。
一方、本発明者は、ノッチ曲げに対しては、銅合金板内部の結晶方位を制御する必要があることを見出した。これはノッチング加工により、曲げの内角が板内部に移動するためである。そして、板厚方向中央部の結晶方位をノッチ曲げに対して適正化し、この結晶方位を得るための製造方法を明らかにした。
以上の知見を背景にして完成した本発明は一側面において、Ni及びCoのうち一種以上を0.8~5.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなる圧延材であり、板厚に対し45~55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率が5%以上であり、さらに<1 1 1>方向が圧延材の幅方向(TD)に配向する結晶の面積率が50%以下であるコルソン合金である。
本発明に係るコルソン合金は一実施形態において、板厚に対し45~55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率が5~70%である。
本発明に係るコルソン合金は別の一実施形態において、Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005~3.0質量%含有する。
本発明に係るコルソン合金は更に別の一実施形態において、圧延方向の曲げたわみ係数が106~119GPaである。
また、本発明は別の一側面において、Ni及びCoのうち一種以上を0.8~5.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、このインゴットを800~1000℃の温度から熱間圧延することにより、厚みを5~20mm、導電率を30%IACS以上に調整した後、加工度30~99.5%の冷間圧延、軟化度0.20~0.80の予備焼鈍、加工度3~50%の冷間圧延、700~950℃で5~300秒間の溶体化処理、加工度0~60%の冷間圧延、350~600℃で2~20時間の時効処理、加工度0~50%の冷間圧延を順次行う方法であり、
前記軟化度は、軟化度をSとして次式で示される、コルソン合金の製造方法:
S=(σ0-σ)/(σ0-σ950)
(ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである)。
前記軟化度は、軟化度をSとして次式で示される、コルソン合金の製造方法:
S=(σ0-σ)/(σ0-σ950)
(ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである)。
本発明に係るコルソン合金の製造方法は一実施形態において、前記インゴットが、Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005~3.0質量%含有する。
本発明は更に別の一側面において、上記コルソン合金を備えた伸銅品である。
本発明は更に別の一側面において、上記コルソン合金を備えた電子機器部品である。
本発明によれば、高強度及び高ノッチ曲げ性を兼備したコルソン合金及びその製造方法を提供することができる。
(Ni、Co及びSiの添加量)
Ni、Co及びSiは、適当な時効処理を行うことにより、Ni-Si、Co-Si、Ni-Co-Si等の金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi、Co及びSiが減少するため導電率が向上する。しかしながら、NiとCoの合計量が0.8質量%未満又はSiが0.2質量%未満になると所望の強度が得られず、反対にNiとCoの合計量が5.0質量%を超えると又はSiが1.5質量%を超えるとノッチ曲げ性が著しく劣化する。このため、本発明に係るコルソン合金では、NiとCoのうち一種以上の添加量は0.8~5.0質量%とし、Siの添加量は0.2~1.5質量%としている。NiとCoのうち一種以上の添加量は1.0~4.0質量%がより好ましく、Siの添加量は0.25~0.90質量%がより好ましい。
Ni、Co及びSiは、適当な時効処理を行うことにより、Ni-Si、Co-Si、Ni-Co-Si等の金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi、Co及びSiが減少するため導電率が向上する。しかしながら、NiとCoの合計量が0.8質量%未満又はSiが0.2質量%未満になると所望の強度が得られず、反対にNiとCoの合計量が5.0質量%を超えると又はSiが1.5質量%を超えるとノッチ曲げ性が著しく劣化する。このため、本発明に係るコルソン合金では、NiとCoのうち一種以上の添加量は0.8~5.0質量%とし、Siの添加量は0.2~1.5質量%としている。NiとCoのうち一種以上の添加量は1.0~4.0質量%がより好ましく、Siの添加量は0.25~0.90質量%がより好ましい。
(その他の添加元素)
Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr、Agが総量で0.005質量%未満であると上記の効果は得られず、3.0質量%を超えるとノッチ曲げ性が著しく低下する。このため、本発明に係るコルソン合金では、これらの元素を総量で0.005~3.0質量%含有することが好ましく、0.01~2.5質量%含有することがより好ましい。
Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr、Agが総量で0.005質量%未満であると上記の効果は得られず、3.0質量%を超えるとノッチ曲げ性が著しく低下する。このため、本発明に係るコルソン合金では、これらの元素を総量で0.005~3.0質量%含有することが好ましく、0.01~2.5質量%含有することがより好ましい。
(結晶方位)
Cube方位が増加すると、不均一な変形が抑制され、曲げ性が向上する。ここで、Cube方位とは、圧延面法線方向(ND)に(0 0 1)面が、圧延方向(RD)に(1 0 0)面が向いている状態であり、{0 0 1}<1 0 0>の指数で示される。
板厚中央部におけるCube方位の面積率が5%未満になるとノッチ曲げ性が急激に低下する。そこで、板厚中央部におけるCube方位に配向する結晶の面積率を5%以上、より好ましくは10%以上とする。
板厚中央部におけるCube方位に配向する結晶の面積率の上限値は、本発明が目的とするノッチ曲げ性の点からは特に規制されない。ただし、板厚中央部におけるCube方位面積率が70%を超えると曲げたわみ係数が著しく低下する。曲げたわみ係数が低下すると、コネクタに加工した際に、接点での十分な接触力が得られず、接触電気抵抗が上昇する。したがって、該Cube方位面積率は70%以下であることが好ましい。該Cube方位面積率を70%以下に制御すれば、116GPa以上と、充分に高い曲げたわみ係数が得られる。本発明に関わるコルソン合金の曲げたわみ係数は、典型的には106~119GPaである。
上記Cube方位の制御に加え、<1 1 1>方向が本発明の合金圧延材の幅方向(NDとRDに垂直な方法、以下TDとする)に配向する結晶について、その板厚中央部における面積率を50%以下、より好ましくは30%以下に制御することにより、ノッチ曲げが可能になる。
板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率の下限値は、ノッチ曲げ性の点からは規制されないが、後述する条件で製造した本発明合金では、該面積率が1%未満になることは少ない。
ここで、板厚の中央部とは、板厚に対し45~55%の断面位置を指す。
Cube方位が増加すると、不均一な変形が抑制され、曲げ性が向上する。ここで、Cube方位とは、圧延面法線方向(ND)に(0 0 1)面が、圧延方向(RD)に(1 0 0)面が向いている状態であり、{0 0 1}<1 0 0>の指数で示される。
板厚中央部におけるCube方位の面積率が5%未満になるとノッチ曲げ性が急激に低下する。そこで、板厚中央部におけるCube方位に配向する結晶の面積率を5%以上、より好ましくは10%以上とする。
板厚中央部におけるCube方位に配向する結晶の面積率の上限値は、本発明が目的とするノッチ曲げ性の点からは特に規制されない。ただし、板厚中央部におけるCube方位面積率が70%を超えると曲げたわみ係数が著しく低下する。曲げたわみ係数が低下すると、コネクタに加工した際に、接点での十分な接触力が得られず、接触電気抵抗が上昇する。したがって、該Cube方位面積率は70%以下であることが好ましい。該Cube方位面積率を70%以下に制御すれば、116GPa以上と、充分に高い曲げたわみ係数が得られる。本発明に関わるコルソン合金の曲げたわみ係数は、典型的には106~119GPaである。
上記Cube方位の制御に加え、<1 1 1>方向が本発明の合金圧延材の幅方向(NDとRDに垂直な方法、以下TDとする)に配向する結晶について、その板厚中央部における面積率を50%以下、より好ましくは30%以下に制御することにより、ノッチ曲げが可能になる。
板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率の下限値は、ノッチ曲げ性の点からは規制されないが、後述する条件で製造した本発明合金では、該面積率が1%未満になることは少ない。
ここで、板厚の中央部とは、板厚に対し45~55%の断面位置を指す。
(製造方法)
コルソン合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、溶体化処理、時効処理の順で所望の厚み及び特性を有する条や箔に仕上げる。熱処理後には、熱処理時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間圧延を行ってもよい。
本発明では、上述の結晶方位を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行い、さらに熱間圧延上がりの導電率を所定の範囲に調整する。
予備焼鈍は、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させることを目的に行う。圧延組織中の再結晶粒の割合には最適値があり、少なすぎても、また多すぎても上述の結晶方位が得られない。最適な割合の再結晶粒は、下記に定義する軟化度Sが0.20~0.80になるよう、予備焼鈍条件を調整することにより得られる。
図1に本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500~700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
コルソン合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、溶体化処理、時効処理の順で所望の厚み及び特性を有する条や箔に仕上げる。熱処理後には、熱処理時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間圧延を行ってもよい。
本発明では、上述の結晶方位を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行い、さらに熱間圧延上がりの導電率を所定の範囲に調整する。
予備焼鈍は、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させることを目的に行う。圧延組織中の再結晶粒の割合には最適値があり、少なすぎても、また多すぎても上述の結晶方位が得られない。最適な割合の再結晶粒は、下記に定義する軟化度Sが0.20~0.80になるよう、予備焼鈍条件を調整することにより得られる。
図1に本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500~700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
予備焼鈍における軟化度Sを次式で定義する。
S=(σ0-σ)/(σ0-σ950)
ここで、σ0は焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである。950℃という温度は、本発明に係る合金を950℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
Sが0.20未満になると、板厚中央部において、Cube方位の面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率が増加する。
Sが0.80を超えると、板厚中央部において、Cube方位の面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率が増加する。
予備焼鈍の温度及び時間は特に制約されず、Sを上記範囲に調整することが重要である。一般的には、連続焼鈍炉を用いる場合には炉温400~750℃で5秒間~10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350~600℃で30分間~20時間の範囲で行われる。
なお、予備焼鈍条件の設定は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張り強さ(σ0)を測定する。
(2)予備焼鈍前の材料を950℃で焼鈍する。具体的には、熱電対を取り付けた材料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が950℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記950℃焼鈍後の材料の引張強さ(σ950)を求める。
(4)例えば、σ0が800MPa、σ950が300MPaの場合、軟化度0.20及び0.80に相当する引張強さは、それぞれ700MPa及び400MPaである。
(5)焼鈍後の引張強さが400~700MPaとなるように、予備焼鈍の条件を求める。
上記予備焼鈍の後、溶体化処理に先立ち、加工度3~50%の軽圧延を行う。加工度R(%)は次式で定義する。
R=(t0-t)/t0×100(t0:圧延前の板厚,t:圧延後の板厚)
加工度がこの範囲から外れるとCube方位面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率の増加も生じる。
上記予備焼鈍及び軽圧延の実施に加え、熱間圧延上がりの導電率を30%IACS以上、より好ましくは32%IACS以上に調整することにより、本発明の結晶方位が得られる。該導電率が30%IACS未満になると、Cube方位面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率の増加も生じる。
通常のコルソン合金の熱間圧延は、後の溶体化熱処理での負荷を下げるために、Ni、Co及びSiをできるだけ溶体化する(Cu中に固溶させる)条件で行われる。このためコルソン合金の通常の熱間圧延上がりの導電率は25%IACS程度である。Ni、Co及びSiを溶体化するためには、熱間圧延終了後の冷却の際、Ni-Si、Co-Si、Ni-Co-Si等の析出を抑制する必要があるので、熱間圧延後の材料は水冷等により急冷される。
本発明は、熱間圧延においてNi、Co及びSiをできるだけ析出させることを意図するものであり、800~1000℃に加熱したインゴットを厚み5~20mmまで圧延した後、例えば空冷等により徐冷することにより、上記導電率が得られる。熱間圧延直後の材料を断熱容器に挿入する、バーナーで加熱する、加熱炉に挿入し炉冷するなどし、冷却を積極的に遅らせ析出をより促進することも可能である。ただし、導電率を50%IACSより上げようとすると、冷却に長時間を要し生産効率が極度に低下するため、導電率の上限値を50%IACSにすることが好ましい。さらに、板厚中央部におけるCube方位面積率を70%以下に制御する点からは、該導電率は40%未満であることがより好ましい。
S=(σ0-σ)/(σ0-σ950)
ここで、σ0は焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである。950℃という温度は、本発明に係る合金を950℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
Sが0.20未満になると、板厚中央部において、Cube方位の面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率が増加する。
Sが0.80を超えると、板厚中央部において、Cube方位の面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率が増加する。
予備焼鈍の温度及び時間は特に制約されず、Sを上記範囲に調整することが重要である。一般的には、連続焼鈍炉を用いる場合には炉温400~750℃で5秒間~10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350~600℃で30分間~20時間の範囲で行われる。
なお、予備焼鈍条件の設定は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張り強さ(σ0)を測定する。
(2)予備焼鈍前の材料を950℃で焼鈍する。具体的には、熱電対を取り付けた材料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が950℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記950℃焼鈍後の材料の引張強さ(σ950)を求める。
(4)例えば、σ0が800MPa、σ950が300MPaの場合、軟化度0.20及び0.80に相当する引張強さは、それぞれ700MPa及び400MPaである。
(5)焼鈍後の引張強さが400~700MPaとなるように、予備焼鈍の条件を求める。
上記予備焼鈍の後、溶体化処理に先立ち、加工度3~50%の軽圧延を行う。加工度R(%)は次式で定義する。
R=(t0-t)/t0×100(t0:圧延前の板厚,t:圧延後の板厚)
加工度がこの範囲から外れるとCube方位面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率の増加も生じる。
上記予備焼鈍及び軽圧延の実施に加え、熱間圧延上がりの導電率を30%IACS以上、より好ましくは32%IACS以上に調整することにより、本発明の結晶方位が得られる。該導電率が30%IACS未満になると、Cube方位面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率の増加も生じる。
通常のコルソン合金の熱間圧延は、後の溶体化熱処理での負荷を下げるために、Ni、Co及びSiをできるだけ溶体化する(Cu中に固溶させる)条件で行われる。このためコルソン合金の通常の熱間圧延上がりの導電率は25%IACS程度である。Ni、Co及びSiを溶体化するためには、熱間圧延終了後の冷却の際、Ni-Si、Co-Si、Ni-Co-Si等の析出を抑制する必要があるので、熱間圧延後の材料は水冷等により急冷される。
本発明は、熱間圧延においてNi、Co及びSiをできるだけ析出させることを意図するものであり、800~1000℃に加熱したインゴットを厚み5~20mmまで圧延した後、例えば空冷等により徐冷することにより、上記導電率が得られる。熱間圧延直後の材料を断熱容器に挿入する、バーナーで加熱する、加熱炉に挿入し炉冷するなどし、冷却を積極的に遅らせ析出をより促進することも可能である。ただし、導電率を50%IACSより上げようとすると、冷却に長時間を要し生産効率が極度に低下するため、導電率の上限値を50%IACSにすることが好ましい。さらに、板厚中央部におけるCube方位面積率を70%以下に制御する点からは、該導電率は40%未満であることがより好ましい。
本発明合金の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造(厚み20~300mm)
(2)熱間圧延(温度800~1000℃、厚み5~20mmまで、導電率30%IACS以上)
(3)冷間圧延(加工度30~99.5%)
(4)予備焼鈍(軟化度:S=0.20~0.80)
(5)軽圧延(加工度3~50%)
(6)溶体化処理(700~950℃で5~300秒)
(7)冷間圧延(加工度0~60%)
(8)時効処理(350~600℃で2~20時間)
(9)冷間圧延(加工度0~50%)
(10)歪取り焼鈍(300~700℃で5秒~10時間)
ここで、冷間圧延(3)の加工度は30~99.5%とすることが好ましい。予備焼鈍(4)で部分的に再結晶粒を生成させるためには、冷間圧延(3)で歪を導入しておく必要があり、30%以上の加工度で有効な歪が得られる。一方、加工度が99.5%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。
冷間圧延(7)及び(9)は高強度化のために任意に行うものである。ただし、圧延加工度の増加とともに強度が増加する反面、<1 1 1>方向がTDに配向する結晶の面積率が増加してCube方位面積率が減少する傾向にある。冷間圧延(7)及び(9)におけるそれぞれの加工度が上記上限値を超えると、板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率が本発明の規定から外れ、ノッチ曲げで割れが発生する。
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、板厚中央部の結晶方位制御によりノッチ曲げ性が向上するという本発明の効果は得られる。歪取り焼鈍(10)は行っても良いし行わなくても良い。
なお、工程(6)及び(8)については、コルソン合金の一般的な製造条件を選択すればよい。
(1)インゴットの鋳造(厚み20~300mm)
(2)熱間圧延(温度800~1000℃、厚み5~20mmまで、導電率30%IACS以上)
(3)冷間圧延(加工度30~99.5%)
(4)予備焼鈍(軟化度:S=0.20~0.80)
(5)軽圧延(加工度3~50%)
(6)溶体化処理(700~950℃で5~300秒)
(7)冷間圧延(加工度0~60%)
(8)時効処理(350~600℃で2~20時間)
(9)冷間圧延(加工度0~50%)
(10)歪取り焼鈍(300~700℃で5秒~10時間)
ここで、冷間圧延(3)の加工度は30~99.5%とすることが好ましい。予備焼鈍(4)で部分的に再結晶粒を生成させるためには、冷間圧延(3)で歪を導入しておく必要があり、30%以上の加工度で有効な歪が得られる。一方、加工度が99.5%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。
冷間圧延(7)及び(9)は高強度化のために任意に行うものである。ただし、圧延加工度の増加とともに強度が増加する反面、<1 1 1>方向がTDに配向する結晶の面積率が増加してCube方位面積率が減少する傾向にある。冷間圧延(7)及び(9)におけるそれぞれの加工度が上記上限値を超えると、板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率が本発明の規定から外れ、ノッチ曲げで割れが発生する。
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、板厚中央部の結晶方位制御によりノッチ曲げ性が向上するという本発明の効果は得られる。歪取り焼鈍(10)は行っても良いし行わなくても良い。
なお、工程(6)及び(8)については、コルソン合金の一般的な製造条件を選択すればよい。
本発明のコルソン合金は種々の伸銅品、例えば板、条及び箔に加工することができ、更に、本発明のコルソン合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品等に使用することができる。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
(実施例1)
Ni:2.6質量%、Si:0.58質量%、Sn:0.5質量%、及びZn:0.4質量%を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、予備焼鈍条件、軽圧延条件及び熱間圧延上がりの導電率と結晶方位との関係、さらに結晶方位が製品の曲げ性及び機械的特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを、次の工程順で加工し、板厚0.15mmの製品試料を作製した。
(1)熱間圧延:インゴットを950℃で3時間加熱し、厚さ10mmまで圧延した。熱間圧延上がりの導電率を変化させたるために、圧延直後の材料を次の三通りの方法で冷却した。
(A)水槽中に投入する(水冷)。
(B)大気中に放置する(空冷)。
(C)300℃または400℃に昇温した電気炉に挿入した後、炉の通電を切って炉内で冷却する(炉冷)。
(2)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削後の厚みは9mmであった。
(3)冷間圧延:軽圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(4)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却した。
(5)軽圧延:種々の圧延加工度で、厚み0.18mmまで冷間圧延を行った。
(6)溶体化処理:800℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。溶体化処理後の結晶粒径は約10μmであった。
(7)時効処理:電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(8)冷間圧延:0.18mmから0.15mmまで加工度17%で冷間圧延した。
(9)歪取り焼鈍:400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
Ni:2.6質量%、Si:0.58質量%、Sn:0.5質量%、及びZn:0.4質量%を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、予備焼鈍条件、軽圧延条件及び熱間圧延上がりの導電率と結晶方位との関係、さらに結晶方位が製品の曲げ性及び機械的特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを、次の工程順で加工し、板厚0.15mmの製品試料を作製した。
(1)熱間圧延:インゴットを950℃で3時間加熱し、厚さ10mmまで圧延した。熱間圧延上がりの導電率を変化させたるために、圧延直後の材料を次の三通りの方法で冷却した。
(A)水槽中に投入する(水冷)。
(B)大気中に放置する(空冷)。
(C)300℃または400℃に昇温した電気炉に挿入した後、炉の通電を切って炉内で冷却する(炉冷)。
(2)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削後の厚みは9mmであった。
(3)冷間圧延:軽圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(4)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却した。
(5)軽圧延:種々の圧延加工度で、厚み0.18mmまで冷間圧延を行った。
(6)溶体化処理:800℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。溶体化処理後の結晶粒径は約10μmであった。
(7)時効処理:電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(8)冷間圧延:0.18mmから0.15mmまで加工度17%で冷間圧延した。
(9)歪取り焼鈍:400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
熱間圧延後の試料、予備焼鈍後の試料及び製品試料(この場合は歪取り焼鈍上がり)について、次の評価を行った。
(熱間圧延後の導電率測定)
熱間圧延後の試料表面を機械研磨し、スケールを除去するとともに平坦化した。この表面において、フェルスター社製シグマテストD2.068を用い、周波数60kHzの条件で導電率を測定した。
熱間圧延後の試料表面を機械研磨し、スケールを除去するとともに平坦化した。この表面において、フェルスター社製シグマテストD2.068を用い、周波数60kHzの条件で導電率を測定した。
(予備焼鈍での軟化度評価)
予備焼鈍前及び予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定し、それぞれの値をσ0及びσとした。また、950℃焼鈍試料を前記手順(1000℃の炉に挿入し試料が950℃に到達したときに水冷)で作製し、圧延方向と平行に引張強さを同様に測定しσ950を求めた。σ0、σ、σ950から、軟化度Sを求めた。
S=(σ0-σ)/(σ0-σ950)
予備焼鈍前及び予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定し、それぞれの値をσ0及びσとした。また、950℃焼鈍試料を前記手順(1000℃の炉に挿入し試料が950℃に到達したときに水冷)で作製し、圧延方向と平行に引張強さを同様に測定しσ950を求めた。σ0、σ、σ950から、軟化度Sを求めた。
S=(σ0-σ)/(σ0-σ950)
(製品の結晶方位測定)
板厚方向表層及び板厚方向中央部において、{1 0 0}<0 0 1>方位の面積率及び<1 1 1>方向がTDに配向する結晶の面積率を測定した。
表層の結晶方位を解析するための試料として、試料表面を機械研摩して圧延模様等による微小凹凸を除去した後、電解研磨により鏡面に仕上げた。これによる表面の研摩深さは2~3μmの範囲であった。
また、板厚中央部の結晶方位を解析するための試料として、一方の表面から板厚中央部までを塩化第二鉄溶液を用いたエッチングにより除去し、その後、機械研摩と電解研磨により鏡面に仕上げた。仕上げ後の試料の厚みは、元の板厚に対し45~55%の範囲であった。
EBSD測定では、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、結晶方位分布を測定した。そして、結晶方位密度関数解析を行って、{1 0 0}<0 0 1>方位から15°以内の方位差を持つ領域の面積を求め、この面積を全測定面積で除し、「Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率」とした。
また、結晶の<1 1 1>方向がTDと成す角度が15°以内である領域の面積を求め、この面積を全測定面積で除し、「<1 1 1>方向がTDに配向する結晶の面積率」とした。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、面積率として記載した。
板厚方向表層及び板厚方向中央部において、{1 0 0}<0 0 1>方位の面積率及び<1 1 1>方向がTDに配向する結晶の面積率を測定した。
表層の結晶方位を解析するための試料として、試料表面を機械研摩して圧延模様等による微小凹凸を除去した後、電解研磨により鏡面に仕上げた。これによる表面の研摩深さは2~3μmの範囲であった。
また、板厚中央部の結晶方位を解析するための試料として、一方の表面から板厚中央部までを塩化第二鉄溶液を用いたエッチングにより除去し、その後、機械研摩と電解研磨により鏡面に仕上げた。仕上げ後の試料の厚みは、元の板厚に対し45~55%の範囲であった。
EBSD測定では、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、結晶方位分布を測定した。そして、結晶方位密度関数解析を行って、{1 0 0}<0 0 1>方位から15°以内の方位差を持つ領域の面積を求め、この面積を全測定面積で除し、「Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率」とした。
また、結晶の<1 1 1>方向がTDと成す角度が15°以内である領域の面積を求め、この面積を全測定面積で除し、「<1 1 1>方向がTDに配向する結晶の面積率」とした。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、面積率として記載した。
(製品の引張り試験)
引張試験機を用いてJIS Z2241に準拠し圧延方向と平行に引張強さを測定した。
引張試験機を用いてJIS Z2241に準拠し圧延方向と平行に引張強さを測定した。
(製品のW曲げ試験)
JIS H3100に準拠し、内曲げ半径をt(板厚)とし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
JIS H3100に準拠し、内曲げ半径をt(板厚)とし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
(製品のノッチ曲げ試験)
試験手順を図2に示す。板厚tに対し深さ1/2tのノッチング加工を施した。ノッチ先端の角度は90度とし、先端に幅0.1mmの平坦部を設けた。次に、JIS H3100に準拠し、内曲げ半径をtとし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
試験手順を図2に示す。板厚tに対し深さ1/2tのノッチング加工を施した。ノッチ先端の角度は90度とし、先端に幅0.1mmの平坦部を設けた。次に、JIS H3100に準拠し、内曲げ半径をtとし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
(曲げたわみ係数の測定)
圧延方向の曲げたわみ係数を日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法」に準じて測定した。
板厚t、幅w(=10mm)、長さ100mmの短冊形状の試料を、試料の長手方向が圧延方向と平行になるように採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用いヤング率Eを求めた。
E=4・P・(L/t)3/(w・d)
試験条件及び評価結果を表1に示す。
圧延方向の曲げたわみ係数を日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法」に準じて測定した。
板厚t、幅w(=10mm)、長さ100mmの短冊形状の試料を、試料の長手方向が圧延方向と平行になるように採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用いヤング率Eを求めた。
E=4・P・(L/t)3/(w・d)
試験条件及び評価結果を表1に示す。
発明例1~11は、いずれも本発明が規定する条件で予備焼鈍、軽圧延及び熱間圧延を行ったものであり、板厚中央部の結晶方位が本発明の規定を満たし、W曲げ、ノッチ曲げとも割れが発生せず、800MPaを超える高い引張強さが得られた。ただし、板厚中央部におけるCube方位面積率が70%を超えた発明例11では、曲げたわみ係数が他の実施例より著しく低くなった。このような曲げたわみ係数の低下は、コネクタに加工した際に接点における接触力の低下をもたらすため、接触力の観点からは好ましくない。
比較例1は、予備焼鈍での軟化度が0.20未満になったため、板厚中央部におけるCube方位面積率が5%未満になった。
比較例2は、予備焼鈍での軟化度が0.80を超えたため、板厚中央部におけるCube方位面積率が5%未満になった。
比較例3は、予備焼鈍での軟化度が0.80を超えてさらに過大になったため、板厚中央部におけるCube方位面積率が5%未満になり、板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率が50%を超えた。
比較例4及び5は、軽圧延の加工度が本発明の規定から外れたものであり、板厚中央部におけるCube方位面積率が5%未満になった。
比較例6は、熱間圧延上がりの導電率が30%IACS未満であったため、板厚中央部におけるCube方位面積率が5%未満になり、板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率が50%を超えた。なお、比較例6は特許文献3が推奨する条件で製造されたものである。
比較例7は、特許文献4が推奨する条件で製造されたものである。熱間圧延終了直後に水冷したため、熱間圧延上がりの導電率が30%IACS未満となった。予備焼鈍は全面が再結晶しない条件で行い、軟化度は偶然本発明の範囲に入った。溶体化処理直前に熱処理を追加し、650℃(溶質固溶温度より10~200℃低い温度)で1時間加熱し再結晶させた。他の実施例と同様、溶体化処理は800℃(溶質固溶温度より10~150℃高い温度)で10秒間行った。比較例7では、<1 1 1>方向がTDに配向する結晶の面積率は、板厚表層部では低い値になったが、板厚中央部では50%を超えた。また、Cube方位面積率は、板厚表層部、中央部とも5%に満たなかった。
以上の比較例では、W曲げでは割れが発生しなかったが、ノッチ曲げでは割れが発生した。
比較例8は、熱間圧延で水冷した後、表面研削し、板厚9mmから予備焼鈍及び軽圧延を行わず板厚0.18mmまで圧延したものである。この工程は、従来のコルソン合金の一般的な製造方法に相当する。板厚中央部、表層部ともに、Cube方位面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率が50%を超えた。その結果、W曲げ、ノッチ曲げの双方で割れが発生した。
比較例1は、予備焼鈍での軟化度が0.20未満になったため、板厚中央部におけるCube方位面積率が5%未満になった。
比較例2は、予備焼鈍での軟化度が0.80を超えたため、板厚中央部におけるCube方位面積率が5%未満になった。
比較例3は、予備焼鈍での軟化度が0.80を超えてさらに過大になったため、板厚中央部におけるCube方位面積率が5%未満になり、板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率が50%を超えた。
比較例4及び5は、軽圧延の加工度が本発明の規定から外れたものであり、板厚中央部におけるCube方位面積率が5%未満になった。
比較例6は、熱間圧延上がりの導電率が30%IACS未満であったため、板厚中央部におけるCube方位面積率が5%未満になり、板厚中央部における<1 1 1>方向がTDに配向する結晶の面積率が50%を超えた。なお、比較例6は特許文献3が推奨する条件で製造されたものである。
比較例7は、特許文献4が推奨する条件で製造されたものである。熱間圧延終了直後に水冷したため、熱間圧延上がりの導電率が30%IACS未満となった。予備焼鈍は全面が再結晶しない条件で行い、軟化度は偶然本発明の範囲に入った。溶体化処理直前に熱処理を追加し、650℃(溶質固溶温度より10~200℃低い温度)で1時間加熱し再結晶させた。他の実施例と同様、溶体化処理は800℃(溶質固溶温度より10~150℃高い温度)で10秒間行った。比較例7では、<1 1 1>方向がTDに配向する結晶の面積率は、板厚表層部では低い値になったが、板厚中央部では50%を超えた。また、Cube方位面積率は、板厚表層部、中央部とも5%に満たなかった。
以上の比較例では、W曲げでは割れが発生しなかったが、ノッチ曲げでは割れが発生した。
比較例8は、熱間圧延で水冷した後、表面研削し、板厚9mmから予備焼鈍及び軽圧延を行わず板厚0.18mmまで圧延したものである。この工程は、従来のコルソン合金の一般的な製造方法に相当する。板厚中央部、表層部ともに、Cube方位面積率が5%未満になり、<1 1 1>方向がTDに配向する結晶の面積率が50%を超えた。その結果、W曲げ、ノッチ曲げの双方で割れが発生した。
(実施例2)
ノッチ曲げ性を制御するための結晶方位測定位置として、板厚中央部が妥当であることをさらに検証するため、比較例1及び3の試料につき、板厚の1/4位置の結晶方位を測定した。すなわち、一方の表面から板厚の1/4の深さ(0.038mm)を塩化第二鉄溶液によるエッチングにより除去し、その後、機械研摩と電解研磨により鏡面に仕上げた面に対し、前述の方法で測定を行った。その結果、
[比較例1] Cube:10%、{111}がTD:21%
[比較例3] Cube:7%、{111}がTD:19%
と、表層での測定値に極めて近い値が得られた。このことより、板厚1/4位置での測定ではノッチ曲げ性を評価できず、板厚中央部での測定が必要なことが明らかになった。
ノッチ曲げ性を制御するための結晶方位測定位置として、板厚中央部が妥当であることをさらに検証するため、比較例1及び3の試料につき、板厚の1/4位置の結晶方位を測定した。すなわち、一方の表面から板厚の1/4の深さ(0.038mm)を塩化第二鉄溶液によるエッチングにより除去し、その後、機械研摩と電解研磨により鏡面に仕上げた面に対し、前述の方法で測定を行った。その結果、
[比較例1] Cube:10%、{111}がTD:21%
[比較例3] Cube:7%、{111}がTD:19%
と、表層での測定値に極めて近い値が得られた。このことより、板厚1/4位置での測定ではノッチ曲げ性を評価できず、板厚中央部での測定が必要なことが明らかになった。
(実施例3)
実施例1で示したノッチ曲げ性の改善効果が、異なる成分及び製造条件のコルソン合金でも得られるかについて検討した。
まず、実施例1と同様の方法で鋳造を行い、表2の成分を有するインゴットを得た。
(1)熱間圧延:インゴットを950℃で3時間加熱し、厚さ10mmまで圧延した。圧延直後の材料水冷または空冷により冷却した。
(2)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削後の厚みは9mmであった。
(3)冷間圧延
(4)予備焼鈍:所定温度に調整した電気炉に、試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却した。
(5)軽圧延
(6)溶体化処理:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。該温度は再結晶粒の平均直径が5~25μmの範囲になる範囲で選択した。
(7)冷間圧延(圧延1)
(8)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(9)冷間圧延(圧延2)
(10)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
実施例1で示したノッチ曲げ性の改善効果が、異なる成分及び製造条件のコルソン合金でも得られるかについて検討した。
まず、実施例1と同様の方法で鋳造を行い、表2の成分を有するインゴットを得た。
(1)熱間圧延:インゴットを950℃で3時間加熱し、厚さ10mmまで圧延した。圧延直後の材料水冷または空冷により冷却した。
(2)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削後の厚みは9mmであった。
(3)冷間圧延
(4)予備焼鈍:所定温度に調整した電気炉に、試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却した。
(5)軽圧延
(6)溶体化処理:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。該温度は再結晶粒の平均直径が5~25μmの範囲になる範囲で選択した。
(7)冷間圧延(圧延1)
(8)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(9)冷間圧延(圧延2)
(10)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
熱間圧延後の試料、予備焼鈍後の試料及び製品試料について、実施例1と同様の評価を行った。表2及び3に試験条件及び評価結果を示す。圧延1、圧延2、歪取り焼鈍のいずれかを行わなかった場合は、それぞれの加工度または温度の欄に「なし」と表記している。
発明例12~29は、いずれも本発明が規定する濃度のNi、Co及びSiを含有し、本発明が規定する条件で予備焼鈍、軽圧延及び熱間圧延を行ったものであり、板厚中央部の結晶方位が本発明の規定を満たし、ノッチ曲げが可能であり、650MPaを超える高い引張強さが得られた。
比較例10、17では圧延2の加工度が50%を超え、比較例11では圧延1の加工度が60%を超えた。これら比較例では、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。
比較例9、16は軽圧延の加工度が本発明の規定を満足しなかったものである。比較例12、14は予備焼鈍での軟化度が本発明の規定を満足しなかったものである。比較例13、15は熱間圧延上がりの導電率が30%IACSに満たなかったものである。これら比較例では、実施例1の比較例の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。
比較例18はNiとCoの合計濃度及びSi濃度が本発明の規定を下回ったものであり、ノッチ曲げ性は良好であったが、引張強さが500MPaにも達しなかった。
比較例19はNiとCoの合計濃度が本発明の規定を超えたものであり、板厚中央部の結晶方位は本発明の規定を満たしたが、ノッチ曲げで割れが発生した。
比較例10、17では圧延2の加工度が50%を超え、比較例11では圧延1の加工度が60%を超えた。これら比較例では、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。
比較例9、16は軽圧延の加工度が本発明の規定を満足しなかったものである。比較例12、14は予備焼鈍での軟化度が本発明の規定を満足しなかったものである。比較例13、15は熱間圧延上がりの導電率が30%IACSに満たなかったものである。これら比較例では、実施例1の比較例の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。
比較例18はNiとCoの合計濃度及びSi濃度が本発明の規定を下回ったものであり、ノッチ曲げ性は良好であったが、引張強さが500MPaにも達しなかった。
比較例19はNiとCoの合計濃度が本発明の規定を超えたものであり、板厚中央部の結晶方位は本発明の規定を満たしたが、ノッチ曲げで割れが発生した。
Claims (8)
- Ni及びCoのうち一種以上を0.8~5.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなる圧延材であり、板厚に対し45~55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率が5%以上であり、さらに<1 1 1>方向が圧延材の幅方向(TD)に配向する結晶の面積率が50%以下であるコルソン合金。
- 板厚に対し45~55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>に配向する結晶の面積率が5~70%である請求項1に記載のコルソン合金。
- Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005~3.0質量%含有する請求項1又は2に記載のコルソン合金。
- 圧延方向の曲げたわみ係数が106~119GPaである請求項1~3のいずれかに記載のコルソン合金。
- Ni及びCoのうち一種以上を0.8~5.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、このインゴットを800~1000℃の温度から熱間圧延することにより、厚みを5~20mm、導電率を30%IACS以上に調整した後、加工度30~99.5%の冷間圧延、軟化度0.20~0.80の予備焼鈍、加工度3~50%の冷間圧延、700~950℃で5~300秒間の溶体化処理、加工度0~60%の冷間圧延、350~600℃で2~20時間の時効処理、加工度0~50%の冷間圧延を順次行う方法であり、
前記軟化度は、軟化度をSとして次式で示される、コルソン合金の製造方法:
S=(σ0-σ)/(σ0-σ950)
(ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである)。 - 前記インゴットが、Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005~3.0質量%含有する請求項5に記載のコルソン合金の製造方法。
- 請求項1~4のいずれかに記載のコルソン合金を備えた伸銅品。
- 請求項1~4のいずれかに記載のコルソン合金を備えた電子機器部品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147012756A KR101967017B1 (ko) | 2011-10-21 | 2012-09-28 | 코르손 합금 및 그 제조 방법 |
KR1020167034730A KR20160148716A (ko) | 2011-10-21 | 2012-09-28 | 코르손 합금 및 그 제조 방법 |
CN201280051466.3A CN103890206B (zh) | 2011-10-21 | 2012-09-28 | 科森合金及其制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011231938 | 2011-10-21 | ||
JP2011-231938 | 2011-10-21 | ||
JP2012031961A JP5039863B1 (ja) | 2011-10-21 | 2012-02-16 | コルソン合金及びその製造方法 |
JP2012-031961 | 2012-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013058083A1 true WO2013058083A1 (ja) | 2013-04-25 |
Family
ID=47087572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075265 WO2013058083A1 (ja) | 2011-10-21 | 2012-09-28 | コルソン合金及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5039863B1 (ja) |
KR (2) | KR101967017B1 (ja) |
CN (1) | CN103890206B (ja) |
TW (1) | TWI494450B (ja) |
WO (1) | WO2013058083A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6345290B1 (ja) * | 2017-03-22 | 2018-06-20 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
JP6378819B1 (ja) * | 2017-04-04 | 2018-08-22 | Dowaメタルテック株式会社 | Cu−Co−Si系銅合金板材および製造方法並びにその板材を用いた部品 |
KR102000110B1 (ko) | 2017-08-21 | 2019-07-15 | 한국기계연구원 | 혼합현실을 이용한 자율기계시스템 및 자율기계시스템 제어방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006283059A (ja) * | 2005-03-31 | 2006-10-19 | Kobe Steel Ltd | 曲げ加工性に優れた高強度銅合金板及びその製造方法 |
WO2009148101A1 (ja) * | 2008-06-03 | 2009-12-10 | 古河電気工業株式会社 | 銅合金板材およびその製造方法 |
WO2011068126A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 銅合金板材およびその製造方法 |
JP4857395B1 (ja) * | 2011-03-09 | 2012-01-18 | Jx日鉱日石金属株式会社 | Cu−Ni−Si系合金及びその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4408275B2 (ja) * | 2005-09-29 | 2010-02-03 | 日鉱金属株式会社 | 強度と曲げ加工性に優れたCu−Ni−Si系合金 |
JP4563495B1 (ja) | 2009-04-27 | 2010-10-13 | Dowaメタルテック株式会社 | 銅合金板材およびその製造方法 |
JP2011017072A (ja) * | 2009-07-10 | 2011-01-27 | Furukawa Electric Co Ltd:The | 銅合金材料 |
KR101419149B1 (ko) * | 2009-12-02 | 2014-07-11 | 후루카와 덴키 고교 가부시키가이샤 | 구리합금판재 |
-
2012
- 2012-02-16 JP JP2012031961A patent/JP5039863B1/ja active Active
- 2012-09-11 TW TW101133105A patent/TWI494450B/zh active
- 2012-09-28 WO PCT/JP2012/075265 patent/WO2013058083A1/ja active Application Filing
- 2012-09-28 KR KR1020147012756A patent/KR101967017B1/ko active IP Right Grant
- 2012-09-28 KR KR1020167034730A patent/KR20160148716A/ko not_active Application Discontinuation
- 2012-09-28 CN CN201280051466.3A patent/CN103890206B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006283059A (ja) * | 2005-03-31 | 2006-10-19 | Kobe Steel Ltd | 曲げ加工性に優れた高強度銅合金板及びその製造方法 |
WO2009148101A1 (ja) * | 2008-06-03 | 2009-12-10 | 古河電気工業株式会社 | 銅合金板材およびその製造方法 |
WO2011068126A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 銅合金板材およびその製造方法 |
JP4857395B1 (ja) * | 2011-03-09 | 2012-01-18 | Jx日鉱日石金属株式会社 | Cu−Ni−Si系合金及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101967017B1 (ko) | 2019-04-08 |
KR20160148716A (ko) | 2016-12-26 |
JP5039863B1 (ja) | 2012-10-03 |
KR20140075788A (ko) | 2014-06-19 |
JP2013100591A (ja) | 2013-05-23 |
CN103890206A (zh) | 2014-06-25 |
TWI494450B (zh) | 2015-08-01 |
CN103890206B (zh) | 2016-01-20 |
TW201317371A (zh) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4857395B1 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
KR101628583B1 (ko) | Cu-Ni-Si 계 합금 및 그 제조 방법 | |
KR101935987B1 (ko) | 구리합금 판재, 구리합금 판재로 이루어지는 커넥터, 및 구리합금 판재의 제조방법 | |
JP6228725B2 (ja) | Cu−Co−Si系合金及びその製造方法 | |
JP2013104082A (ja) | Cu−Co−Si系合金及びその製造方法 | |
WO2018174081A1 (ja) | プレス加工後の寸法精度を改善した銅合金条 | |
JP6111028B2 (ja) | コルソン合金及びその製造方法 | |
WO2013069376A1 (ja) | Cu-Co-Si系合金及びその製造方法 | |
JP5039863B1 (ja) | コルソン合金及びその製造方法 | |
JP6196757B2 (ja) | コルソン合金及びその製造方法 | |
JP2016199808A (ja) | Cu−Co−Si系合金及びその製造方法 | |
JP4987155B1 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JP2013100586A (ja) | チタン銅及びその製造方法 | |
JP2017014624A (ja) | コルソン合金及びその製造方法 | |
JP2016084542A (ja) | コルソン合金及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12841562 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147012756 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12841562 Country of ref document: EP Kind code of ref document: A1 |