JP4857395B1 - Cu−Ni−Si系合金及びその製造方法 - Google Patents

Cu−Ni−Si系合金及びその製造方法 Download PDF

Info

Publication number
JP4857395B1
JP4857395B1 JP2011051975A JP2011051975A JP4857395B1 JP 4857395 B1 JP4857395 B1 JP 4857395B1 JP 2011051975 A JP2011051975 A JP 2011051975A JP 2011051975 A JP2011051975 A JP 2011051975A JP 4857395 B1 JP4857395 B1 JP 4857395B1
Authority
JP
Japan
Prior art keywords
orientation
copper
alloy
mass
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011051975A
Other languages
English (en)
Other versions
JP2012188689A (ja
Inventor
隆紹 波多野
真之 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011051975A priority Critical patent/JP4857395B1/ja
Application granted granted Critical
Publication of JP4857395B1 publication Critical patent/JP4857395B1/ja
Priority to TW101106626A priority patent/TWI447241B/zh
Priority to KR1020137026578A priority patent/KR101808372B1/ko
Priority to PCT/JP2012/055255 priority patent/WO2012121109A1/ja
Priority to CN201280012297.2A priority patent/CN103403202B/zh
Publication of JP2012188689A publication Critical patent/JP2012188689A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】高強度及び高ノッチ曲げ性を兼備したCu−Ni−Si系合金及びその製造方法を提供する。
【解決手段】0.8〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>の面積率が10〜80%、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 1 2}<1 1 1>の面積率が20%以下であるCu−Ni−Si系合金。
【選択図】図1

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材やトランジスタ、集積回路(IC)等の半導体機器のリ−ドフレーム材として好適な、優れた強度、曲げ加工性、耐応力緩和特性、導電性等を備えた銅合金及びその製造方法に関する。
近年、電気・電子部品の小型化が進み、これら部品に使用される銅合金に良好な強度、導電率及び曲げ加工性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金の一つであるCu−Ni−Si系合金は、Cuマトリックス中にNiとSiとの化合物粒子を析出させた合金であり、高強度、高い導電率、良好な曲げ加工性を兼ね備えている。一般に強度と曲げ加工性は相反する性質であり、Cu−Ni−Si系合金においても高強度を維持しつつ曲げ加工性を改善することが望まれている。
銅合金板をコネクタ等の電子・電子部品にプレス加工する際、曲げ加工部の寸法精度を向上させるため、あらかじめ銅合金板表面にノッチング加工と呼ばれる切り込み加工を施し、この切り込みに沿って銅合金板を曲げることがある(以下、ノッチ曲げともいう)。このノッチ曲げは、例えば車載用メス端子のプレス加工において多用されている。ノッチング加工により銅合金は加工硬化し延性を失うため、続く曲げ加工において銅合金に割れが生じやすくやすくなる。したがって、ノッチ曲げに用いられる銅合金には、特に良好な曲げ加工性が求められる。
近年、Cu−Ni−Si系合金の曲げ性を改善する技術として、SEM−EBSP法で測定されるCube方位{0 0 1}<1 0 0>の面積率を制御する方策が提唱されている。例えば、特許文献1(特開2006-283059号)では、(1)鋳造、(2)熱間圧延、(3)冷間圧延(加工度95%以上)、(4)溶体化処理、(5)冷間圧延(加工度20%以下)、(6)時効処理、(7)冷間圧延(加工度1〜20%)、(8)短時間焼鈍、の工程を順次行うことにより、Cube方位の面積率を50%以上に制御し曲げ加工性を改善している。
また、特許文献2(特開2011−17072号)では、Cube方位の面積率を5〜60%に制御すると同時に、Brass方位およびCopper方位の面積率をともに20%以下に制御し、曲げ加工性を改善している。そのための製造工程としては、(1)鋳造、(2)熱間圧延、(3)冷間圧延(加工度85〜99%)、(4)熱処理(300〜700℃、5分〜20時間)、(5)冷間圧延(加工度5〜35%)、(6)溶体化処理、(7)時効処理、(8)冷間圧延(加工度2〜30%)、(9)調質焼鈍、の工程を順次行う場合に最も良好な曲げ性が得られている。
特開2006−283059号公報 特開2011−17072号公報
本発明者らは、前記先行発明の効果について検証試験を行った。その結果、特許文献2の技術ついて、曲げ加工性をW曲げ試験で評価した場合に、一定の改善効果が認められた。しかしながら、ノッチ曲げに対しては、十分といえる曲げ加工性が得られなかった。そこで、本発明は、高強度及び高ノッチ曲げ性を兼備したCu−Ni−Si系合金及びその製造方法を提供することを課題とする。
従来技術では、銅合金の結晶方位をEBSD法で解析し、得られたデータに基づき、銅合金の特性を改良している。ここで、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)とは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。通常、電子線は銅合金表面に照射され、このとき得られる情報は電子線が侵入する数10nmの深さまでの方位情報、すなわち極表層の方位情報である。
一方、本発明者らは、ノッチ曲げに対しては、銅合金板内部の結晶方位を制御する必要があることを見出した。これはノッチング加工により、曲げの内角が板内部に移動するためである。そして、板厚方向中央部の結晶方位をノッチ曲げに対して適正化し、この結晶方位を得るための製造方法を明らかにした。
以上の知見を背景にして完成した本発明は一側面において、0.8〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>の面積率が10〜80%、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 1 2}<1 1 1>の面積率が20%以下であるCu−Ni−Si系合金である。
本発明に係るCu−Ni−Si系合金は一実施形態において、Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する。
また、本発明は別の一側面において、0.8〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを熱間圧延した後、冷間圧延により所定の厚みにし、軟化度0.25〜0.75の熱処理を行って導電率を20〜45%IACSの範囲に調整した後、加工度7〜50%の冷間圧延を行い、次いで、溶体化処理及び時効処理を行うCu−Ni−Si系合金の製造方法である。
本発明に係るCu−Ni−Si系合金の製造方法は一実施形態において、前記インゴットがSn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する。
本発明は更に別の一側面において、上記銅合金を備えた伸銅品である。
本発明は更に別の一側面において、上記銅合金を備えた電子機器部品である。
本発明によれば、高強度及び高ノッチ曲げ性を兼備したCu−Ni−Si系合金及びその製造方法を提供することができる。
本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を示すグラフである。 実施例におけるノッチ曲げ試験の試験手順を示す図である。
(Ni及びSiの添加量)
Ni及びSiは、適当な時効処理を行うことにより、Ni2Si等の金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi及びSiが減少するため導電率が向上する。しかしながら、Niが0.8質量%未満又はSiが0.2質量%未満になると所望の強度が得られず、反対にNiが4.5質量%を超えると又はSiが1.0質量%を超えると導電率が低下する。このため、本発明に係るCu−Ni−Si系合金では、Niの添加量は0.8〜4.5質量%とし、Siの添加量は0.2〜1.0質量%としている。さらに、Niの添加量は1.0〜4.0質量%が好ましく、Siの添加量は0.25〜0.90質量%が好ましい。
(その他の添加元素)
Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr、Agが総量で0.005質量%未満であると上記の効果は得られず、3.0質量%を超えると導電率が著しく低下する。このため、本発明に係るCu−Ni−Si系合金では、これらの元素を総量で0.005〜3.0質量%含有することが好ましく、0.01〜2.5質量%含有することがより好ましい。
(結晶方位)
Cu−Ni−Si系合金は、Cube方位が多くBrass方位およびCopper方位が少ない場合に、不均一な変形が抑制され、曲げ性が向上する。ここで、Cube方位とは、圧延面法線方向(ND)に(0 0 1)面が、圧延方向(RD)に(1 0 0)面が向いている状態であり、{0 0 1}<1 0 0>の指数で示される。Brass方位とは、NDに(1 1 0)面が、RDに(1 1 2)面が向いている状態であり、{1 1 0}<1 1 2>の指数で示される。Copper方位とは、NDに(1 1 2)面が、RDに(1 1 1)面が向いている状態であり、{1 1 2}<1 1 1>の指数で示される。
板厚中央部におけるCube方位の面積率が10%未満になるとノッチ曲げ性が急激に低下する。一方、板厚中央部におけるCube方位の面積率が80%を超えるとヤング率が急激に低下する。ヤング率が低下すると、P=E×d(P:ばね力、E:ヤング率、d:変位)の関係があるため、コネクタ等の部品に加工された後に所望のばね力が得られなくなる。このため、Cube方位{0 0 1}<1 0 0>の面積率を10〜80%とした。より好ましいCube方位{0 0 1}<1 0 0>の面積率は、15〜60%である。
板厚中央部におけるCopper方位の面積率、及び、Brass方位の面積率のいずれかが20%を超えるとノッチ曲げ性が急激に悪化する。このため、Copper方位の面積率、及び、Brass方位の面積率を20%以下とした。板厚中央部におけるCopper方位の面積率、及び、Brass方位の面積率の下限値は、ノッチ曲げ性の点からは規制されないが、本発明合金の場合、製造方法を如何に変化させても、板厚中央部におけるCopper方位の面積率及びBrass方位の面積率のいずれかが1%未満になることは無い。板厚中央部におけるCopper方位の面積率、及び、Brass方位の面積率は、好ましくは15%以下である。
ここで、板厚の中央部とは、板厚に対し45〜55%の断面位置を指す。
(製造方法)
Cu−Ni−Si系合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、溶体化処理、時効処理の順で所望の厚みおよび特性を有する条や箔に仕上げる。熱処理後には、時効時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間圧延を行ってもよい。
本発明では、上述の結晶方位を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行う。
予備焼鈍は、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させることを目的に行う。圧延組織中の再結晶粒の割合には最適値があり、少なすぎてもまた多すぎても上述の結晶方位が得られない。最適な割合の再結晶粒は、下記に定義する軟化度STが0.25〜0.75になるよう、予備焼鈍条件を調整することにより得られる。
図1に本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を950℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500〜700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
温度Tのときの軟化度STを次式で定義する。
T=(σ0−σT)/(σ0−σ900
ここで、σ0は焼鈍前の引張強さであり、σTおよびσ900はそれぞれT℃および900℃で焼鈍後の引張強さである。900℃という温度は、本発明に係る合金を900℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
Tが0.25未満になると、特に板厚中央部において、Copper方位の面積率が増大して20%を超え、これに伴いCube方位の面積率の低下も生じる。
Tが0.75を越えると、特に板厚中央部において、Brass方位の面積率が増大して20%を超え、これに伴いCube方位の面積率の低下も生じる。
予備焼鈍上がりの導電率は20〜45%IACSの範囲とする。導電率が20%IACS未満になると、Copper方位およびBrass方位の面積率が20%を超え、Cube方位面積率が10%未満になる。予備焼鈍上がりの導電率が45%IACSを超えるとCube方位の面積率が80%を超える。
予備焼鈍の温度、時間および冷却速度は特に制約されず、ST及び導電率を上記範囲に調整することが重要である。一般的には、連続焼鈍炉を用いる場合には炉温400〜700℃で5秒間〜10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350〜600℃で30分間〜20時間の範囲で行われる。
上記焼鈍の後、溶体化処理に先立ち、加工度7〜50%の軽圧延を行う。加工度R(%)は次式で定義する。
R=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)
加工度がこの範囲から外れると板厚中央部のCube方位の面積率が10%未満になる。
本発明合金の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造
(2)熱間圧延(温度800〜1000℃、厚み5〜20mm程度まで)
(3)冷間圧延(加工度30〜99%)
(4)予備焼鈍(軟化度:ST=0.25〜0.75、導電率=20〜45%IACS)
(5)軽圧延(加工度7〜50%)
(6)溶体化処理(700〜900℃で5〜300秒)
(7)冷間圧延(加工度1〜60%)
(8)時効処理(350〜550℃で2〜20時間)
(9)冷間圧延(加工度1〜50%)
(10)歪取り焼鈍(300〜700℃で5秒〜10時間)
ここで、冷間圧延(3)の加工度は30〜99%とすることが好ましい。予備焼鈍(4)で部分的に再結晶粒を生成させるためには、冷間圧延(3)で歪を導入しておく必要があり、30%以上の加工度で有効な歪が得られる。一方、加工度が99%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。
冷間圧延(7)及び(9)は高強度化のために任意に行うものであり、圧延加工度の増加とともに強度が増加する反面、曲げ性が低下する。冷間圧延(7)及び(9)の有無およびそれぞれの加工度によらず、板厚中央部の結晶方位制御によりノッチ曲げ性が向上するという本発明の効果は得られる。冷間圧延(7)及び(9)は行っても良いし行わなくても良い。ただし、冷間圧延(7)及び(9)におけるそれぞれの加工度が上記上限値を超えることは曲げ性の点から好ましくなく、それぞれの加工度が上記下限値を下回ることは高強度化の効果の点から好ましくない。
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、板厚中央部の結晶方位制御によりノッチ曲げ性が向上するという本発明の効果は得られる。歪取り焼鈍(10)は行っても良いし行わなくても良い。
なお、工程(2)、(6)及び(8)については、Cu−Ni−Si系合金の一般的な製造条件を選択すればよい。
本発明のCu−Ni−Si系合金は種々の伸銅品、例えば板、条及び箔に加工することができ、更に、本発明のCu−Ni−Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品等に使用することができる。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
(実施例1)
Ni:2.6質量%、Si:0.58質量%、Sn:0.5質量%、およびZn:0.4質量%を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、予備焼鈍及び軽圧延条件と結晶方位との関係、さらに結晶方位が製品の曲げ性および機械的特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを950℃で3時間加熱し、厚さ10mmまで熱間圧延した。熱間圧延板表面の酸化スケールをグラインダーで研削して除去した。研削後の厚みは9mmであった。その後、次の工程順で圧延および熱処理を施し、板厚0.15mmの製品試料を作製した。
(1)冷間圧延:軽圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(2)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却(水冷)または試料を大気中に放置し冷却(空冷)の二通りの条件で冷却した。
(3)軽圧延:種々の圧延加工度で、厚み0.18mmまで冷間圧延を行った。
(4)溶体化処理:800℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。
(5)時効処理:電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(6)冷間圧延:0.18mmから0.15mmまで加工度17%で冷間圧延した。
(7)歪取り焼鈍:400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
予備焼鈍後の試料および製品試料(この場合は歪取り焼鈍上がり)について、次の評価を行った。
(予備焼鈍での軟化度評価)
予備焼鈍前および予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定し、それぞれの値をσ0およびσTとした。また、900℃焼鈍試料を前記手順(950℃の炉に挿入し試料が900℃に到達したときに水冷)で作製し、圧延方向と平行に引張強さを同様に測定しσ900を求めた。σ0、σT、σ900から、軟化度STを求めた。
T=(σ0−σT)/(σ0−σ900
(予備焼鈍後の導電率測定)
予備焼鈍後の試料につき、JIS H 0505に準拠して導電率を測定した。測定での通電は圧延方向と平行に行った。
(製品の結晶方位測定)
板厚方向表層および板厚方向中央部において、Cube方位、Copper方位及びBrass方位の面積率をEBSDにより測定した。
表層の結晶方位を解析するための試料として、試料表面を機械研摩して圧延模様等による微小凹凸を除去した後、コロイダルシリカ砥粒を使用し鏡面に仕上げた。これによる表面の研摩深さは2〜3μmの範囲であった。
また、板厚中央部の結晶方位を解析するための試料として、一方の表面から板厚中央部までを塩化第二鉄溶液を用いたエッチングにより除去し、その後、機械研摩とコロイダルシリカ砥粒により鏡面に仕上げた。仕上げ後の試料の厚みは、元の板厚に対し45〜55%の範囲であった。
EBSD測定では、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μm のステップでスキャンし、方位を解析した。理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。例えば、S方位(2 3 1)[6 −4 3]に対して、(1 2 1)[1 −1 1]は(20 10 17) 方向を回転軸にして、19.4°回転した関係になっており、この角度をずれ角度とした。共通の回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数点第一位までを有効数字とし、Cube方位、Copper方位、Brass方位のそれぞれから10°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率とした。EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、面積率として記載した。
(製品の引張り試験)
引張試験機を用いてJIS Z2241に準拠し圧延方向と平行に引張強さを測定した。
(製品のノッチ曲げ試験)
試験手順を図2に示す。板厚tに対し深さ1/3tのノッチング加工を施した。ノッチ先端の角度は90度とし、先端に幅0.1mmの平坦部を設けた。次に、JIS H3100に準拠し、内曲げ半径をtとし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
(製品のW曲げ試験)
JIS H3100に準拠し、内曲げ半径をtとし、Good Way方向(曲げ軸が圧延方向と直交)にW曲げ試験を行った。そして、曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。割れが認められない場合を○、割れが認められた場合を×と評価した。
(ヤング率測定)
長手方向が圧延方向と平行になるように、板厚t、幅W(=10mm)、長さ100mmの短冊形状の試料を採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用い圧延平行方向のヤング率Eを求めた。
E=4・P・(L/t)3/(W・d)
表1に評価結果を示す。
発明例は、いずれも本発明が規定する条件で予備焼鈍および軽圧延を行ったものであり、板厚中央部の結晶方位が本発明の規定を満たし、W曲げ、ノッチ曲げとも割れが発生せず、引張強さは800MPa以上と高く、110MPaを超える高いヤング率が得られた。
比較例1は、予備焼鈍での軟化度が0.25未満になったため、板厚中央部におけるCopper方位面積率が20%を超え、Cube方位面積率が10%未満になった。比較例2は、予備焼鈍での軟化度が0.75を超えたため、板厚中央部におけるBrass方位面積率が20%を超えた。比較例3は、予備焼鈍での軟化度が0.75を超えさらに予備焼鈍後の導電率が20%IACS未満になったため、板厚中央部におけるCopper方位およびBrass方位の面積率が20%を超え、Cube方位面積率が10%未満になった。比較例5および6は、軽圧延の加工度が本発明の規定から外れたものであり、板厚中央部におけるCube方位面積率が10%未満になった。以上の比較例では、W曲げでは割れが発生しなかったが、ノッチ曲げでは割れが発生した。なお、これら比較例の予備焼鈍および軽圧延は特許文献2が推奨する条件の範囲で行われたものであり、その板厚表層の結晶方位は特許文献2の規定を満足するものであった。
比較例4は、予備焼鈍後の導電率が45%IACSを超えたため、Cube方位面積率が80%を超え、ヤング率が100MPa未満の低い値になった。
比較例7は、熱間圧延後に表面研削した後の板厚9mmから、予備焼鈍および軽圧延を行わず、そのまま板厚0.18mmまで圧延したものである。板厚中央部、表層部ともに、Copper方位およびBrass方位の面積率が20%を超え、Cube方位面積率が10%未満になった。その結果、W曲げ、ノッチ曲げの双方で割れが発生した。
(実施例2)
実施例1で示したノッチ曲げ性の改善効果が、異なる成分および製造条件のCu−Ni−Si合金でも得られるかについて検討した。
まず、実施例1と同様の方法で鋳造、熱間圧延および表面研削を行い、表2の成分を有する厚み9mmの板を得た。この板に対し次の工程順で圧延および熱処理を施し、表2に示す板厚の製品試料を得た。
(1)冷間圧延
(2)予備焼鈍:所定温度に調整した電気炉に、試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却(水冷)または試料を大気中に放置し冷却(空冷)の二通りの条件で冷却した。
(3)軽圧延
(4)溶体化処理:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。該温度は再結晶粒の平均直径が5〜25μmの範囲になる範囲で選択した。
(5)冷間圧延(圧延1)
(6)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(7)冷間圧延(圧延2)
(8)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
予備焼鈍後の試料および製品試料について、実施例1と同様の評価を行った。表2及び3に評価結果を示す。圧延1、圧延2、歪取り焼鈍のいずれかを行わなかった場合は、それぞれの加工度または温度の欄に「なし」と表記している。
発明例は、いずれも本発明が規定する濃度のNiおよびSiを含有し、本発明が規定する条件で予備焼鈍および軽圧延を行ったものであり、板厚中央部の結晶方位が本発明の規定を満たし、ノッチ曲げが可能であり、650MPaを超える高い引張強さおよび110MPaを超える高いヤング率が得られた。ここで、圧延2の加工度が50%を超えた発明例15、および圧延1の加工度が60%を超えた発明例16では、ノッチ曲げ試験で割れが発生したものの、実用上許容できる極微細な割れであったため、○と評価した。
比較例8は軽圧延の加工度が50%を超えたものである。実施例1の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。同じ成分の前記発明例15、16と比べると、引張強さが低いにも関わらず、発生した割れは電子部品としての機能を阻害するレベルの顕著なものであった。
比較例9、10は予備焼鈍での軟化度が本発明の規定を満足しなかったものである。実施例1の合金と同様、板厚中央部の結晶方位が発明の規定から外れ、ノッチ曲げで割れが発生した。
比較例11はNiおよびSi濃度が本発明の規定を下回ったものであり、ノッチ曲げ性は良好であったが、引張強さが500MPaにも達しなかった。

Claims (6)

  1. 0.8〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、板厚に対し45〜55%の断面位置である板厚方向の中央部において、板厚方向と平行にEBSD測定を行い、結晶方位を解析したときに、Cube方位{0 0 1}<1 0 0>の面積率が10〜80%、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 1 2}<1 1 1>の面積率が20%以下であるCu−Ni−Si系合金。
  2. Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する請求項1に記載のCu−Ni−Si系合金。
  3. 0.8〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを、温度800〜1000℃で厚み5〜20mmまで熱間圧延した後、加工度30〜99%の冷間圧延を行い、軟化度0.25〜0.75の熱処理を行って導電率を20〜45%IACSの範囲に調整した後、加工度7〜50%の冷間圧延を行い、次いで、700〜900℃で5〜300秒間の溶体化処理及び、350〜550℃で2〜20時間の時効処理を行う方法であり、
    前記軟化度は、温度Tのときの軟化度をS T として、次式で示されるCu−Ni−Si系合金の製造方法
    T =(σ 0 −σ T )/(σ 0 −σ 900
    (σ 0 は焼鈍前の引張強さであり、σ T およびσ 900 はそれぞれT℃および900℃で焼鈍後の引張強さである)
  4. 前記インゴットがSn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜3.0質量%含有する請求項3に記載のCu−Ni−Si系合金の製造方法。
  5. 請求項1又は2に記載の銅合金を備えた伸銅品。
  6. 請求項1又は2に記載の銅合金を備えた電子機器部品。
JP2011051975A 2011-03-09 2011-03-09 Cu−Ni−Si系合金及びその製造方法 Active JP4857395B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011051975A JP4857395B1 (ja) 2011-03-09 2011-03-09 Cu−Ni−Si系合金及びその製造方法
TW101106626A TWI447241B (zh) 2011-03-09 2012-03-01 Cu-Ni-Si alloy and its manufacturing method
KR1020137026578A KR101808372B1 (ko) 2011-03-09 2012-03-01 Cu-Ni-Si 계 합금 및 그 제조 방법
PCT/JP2012/055255 WO2012121109A1 (ja) 2011-03-09 2012-03-01 Cu-Ni-Si系合金及びその製造方法
CN201280012297.2A CN103403202B (zh) 2011-03-09 2012-03-01 Cu-Ni-Si系合金及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051975A JP4857395B1 (ja) 2011-03-09 2011-03-09 Cu−Ni−Si系合金及びその製造方法

Publications (2)

Publication Number Publication Date
JP4857395B1 true JP4857395B1 (ja) 2012-01-18
JP2012188689A JP2012188689A (ja) 2012-10-04

Family

ID=45604520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051975A Active JP4857395B1 (ja) 2011-03-09 2011-03-09 Cu−Ni−Si系合金及びその製造方法

Country Status (5)

Country Link
JP (1) JP4857395B1 (ja)
KR (1) KR101808372B1 (ja)
CN (1) CN103403202B (ja)
TW (1) TWI447241B (ja)
WO (1) WO2012121109A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040399A (ja) * 2011-07-15 2013-02-28 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
WO2013058083A1 (ja) * 2011-10-21 2013-04-25 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
WO2013121620A1 (ja) * 2012-02-14 2013-08-22 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
WO2013145824A1 (ja) * 2012-03-26 2013-10-03 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
JP2014019880A (ja) * 2012-07-12 2014-02-03 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
JP2016084542A (ja) * 2012-03-26 2016-05-19 Jx金属株式会社 コルソン合金及びその製造方法
KR20160090871A (ko) 2013-11-25 2016-08-01 제이엑스금속주식회사 도전성, 성형 가공성 및 응력 완화 특성이 우수한 구리 합금판
JP2017014624A (ja) * 2016-09-05 2017-01-19 Jx金属株式会社 コルソン合金及びその製造方法
WO2018174079A1 (ja) 2017-03-21 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条
WO2018174081A1 (ja) 2017-03-22 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201321527A (zh) * 2011-08-05 2013-06-01 Furukawa Electric Co Ltd 二次電池集電體用壓延銅箔及其製造方法
JP5916418B2 (ja) * 2012-02-13 2016-05-11 古河電気工業株式会社 銅合金板材およびその製造方法
CN103484719A (zh) * 2013-09-29 2014-01-01 苏州市凯业金属制品有限公司 一种白铜合金金属管
JP6355671B2 (ja) * 2016-03-31 2018-07-11 Jx金属株式会社 Cu−Ni−Si系銅合金条及びその製造方法
CN107326215A (zh) * 2017-08-15 2017-11-07 徐高杰 一种槽楔用铜合金的加工方法
JP6762333B2 (ja) * 2018-03-26 2020-09-30 Jx金属株式会社 Cu−Ni−Si系銅合金条
CN114752810B (zh) * 2022-03-24 2023-04-11 江苏恒盈电子科技有限公司 一种线路板用高强度半导体引线框架及其制备方法
CN114855026B (zh) * 2022-03-25 2023-02-14 宁波博威合金材料股份有限公司 一种高性能析出强化型铜合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283059A (ja) * 2005-03-31 2006-10-19 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板及びその製造方法
WO2009148101A1 (ja) * 2008-06-03 2009-12-10 古河電気工業株式会社 銅合金板材およびその製造方法
JP2010275622A (ja) * 2009-04-27 2010-12-09 Dowa Metaltech Kk 銅合金板材およびその製造方法
JP2011012321A (ja) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The 銅合金材およびその製造方法
JP2011017072A (ja) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The 銅合金材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006460B1 (ja) * 2006-05-26 2007-11-14 株式会社神戸製鋼所 高強度、高導電率および曲げ加工性に優れた銅合金およびその製造方法
JP5085908B2 (ja) * 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 電子材料用銅合金及びその製造方法
US20080190523A1 (en) * 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
KR101249107B1 (ko) * 2008-03-31 2013-03-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 도전성 스프링재에 사용되는 Cu-Ni-Si 계 합금
KR101503208B1 (ko) 2010-08-27 2015-03-17 후루카와 덴키 고교 가부시키가이샤 구리합금 판재 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283059A (ja) * 2005-03-31 2006-10-19 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板及びその製造方法
WO2009148101A1 (ja) * 2008-06-03 2009-12-10 古河電気工業株式会社 銅合金板材およびその製造方法
JP2010275622A (ja) * 2009-04-27 2010-12-09 Dowa Metaltech Kk 銅合金板材およびその製造方法
JP2011012321A (ja) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The 銅合金材およびその製造方法
JP2011017072A (ja) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The 銅合金材料

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040399A (ja) * 2011-07-15 2013-02-28 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
WO2013058083A1 (ja) * 2011-10-21 2013-04-25 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
JP2013100591A (ja) * 2011-10-21 2013-05-23 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
WO2013121620A1 (ja) * 2012-02-14 2013-08-22 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
CN104204248B (zh) * 2012-02-14 2016-08-24 Jx日矿日石金属株式会社 科森合金及其制造方法
TWI461549B (zh) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
CN104204248A (zh) * 2012-02-14 2014-12-10 Jx日矿日石金属株式会社 科森合金及其制造方法
KR101622498B1 (ko) * 2012-02-14 2016-05-18 제이엑스 킨조쿠 가부시키가이샤 코르손 합금 및 그 제조 방법
WO2013145824A1 (ja) * 2012-03-26 2013-10-03 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
JP2013227642A (ja) * 2012-03-26 2013-11-07 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
KR20140148437A (ko) 2012-03-26 2014-12-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 코르손 합금 및 그 제조 방법
TWI467035B (zh) * 2012-03-26 2015-01-01 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
JP2016084542A (ja) * 2012-03-26 2016-05-19 Jx金属株式会社 コルソン合金及びその製造方法
KR101688289B1 (ko) 2012-03-26 2016-12-20 제이엑스금속주식회사 코르손 합금 및 그 제조 방법
JP2014019880A (ja) * 2012-07-12 2014-02-03 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
KR20160090871A (ko) 2013-11-25 2016-08-01 제이엑스금속주식회사 도전성, 성형 가공성 및 응력 완화 특성이 우수한 구리 합금판
JP2017014624A (ja) * 2016-09-05 2017-01-19 Jx金属株式会社 コルソン合金及びその製造方法
WO2018174079A1 (ja) 2017-03-21 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条
KR20190119619A (ko) 2017-03-21 2019-10-22 제이엑스금속주식회사 프레스 가공 후의 치수 정밀도를 개선한 구리 합금조
US11203799B2 (en) 2017-03-21 2021-12-21 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working
WO2018174081A1 (ja) 2017-03-22 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条
KR20190119621A (ko) 2017-03-22 2019-10-22 제이엑스금속주식회사 프레스 가공 후의 치수 정밀도를 개선한 구리 합금조
US11499207B2 (en) 2017-03-22 2022-11-15 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working

Also Published As

Publication number Publication date
TW201239107A (en) 2012-10-01
KR20130143647A (ko) 2013-12-31
CN103403202A (zh) 2013-11-20
CN103403202B (zh) 2016-08-10
TWI447241B (zh) 2014-08-01
WO2012121109A1 (ja) 2012-09-13
KR101808372B1 (ko) 2017-12-12
JP2012188689A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP4857395B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP5117604B1 (ja) Cu−Ni−Si系合金及びその製造方法
TWI429768B (zh) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6228725B2 (ja) Cu−Co−Si系合金及びその製造方法
JP2013104082A (ja) Cu−Co−Si系合金及びその製造方法
WO2013069376A1 (ja) Cu-Co-Si系合金及びその製造方法
TWI467035B (zh) Carbene alloy and its manufacturing method
JP2016199808A (ja) Cu−Co−Si系合金及びその製造方法
JP5039863B1 (ja) コルソン合金及びその製造方法
JP6345290B1 (ja) プレス加工後の寸法精度を改善した銅合金条
JP6440760B2 (ja) プレス加工後の寸法精度を改善した銅合金条
JP4987155B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP2013100586A (ja) チタン銅及びその製造方法
JP6196757B2 (ja) コルソン合金及びその製造方法
JP6246454B2 (ja) Cu−Ni−Si系合金及びその製造方法
JP2016211078A (ja) Cu−Ni−Si系合金及びその製造方法
JP2017014624A (ja) コルソン合金及びその製造方法
JP2016084542A (ja) コルソン合金及びその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4857395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250