JP2013227642A - コルソン合金及びその製造方法 - Google Patents
コルソン合金及びその製造方法 Download PDFInfo
- Publication number
- JP2013227642A JP2013227642A JP2012158846A JP2012158846A JP2013227642A JP 2013227642 A JP2013227642 A JP 2013227642A JP 2012158846 A JP2012158846 A JP 2012158846A JP 2012158846 A JP2012158846 A JP 2012158846A JP 2013227642 A JP2013227642 A JP 2013227642A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- annealing
- corson alloy
- mass
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 54
- 239000000956 alloy Substances 0.000 title claims abstract description 54
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000005096 rolling process Methods 0.000 claims abstract description 81
- 239000000463 material Substances 0.000 claims abstract description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000010949 copper Substances 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 238000000137 annealing Methods 0.000 claims description 77
- 238000005097 cold rolling Methods 0.000 claims description 60
- 238000005098 hot rolling Methods 0.000 claims description 22
- 230000032683 aging Effects 0.000 claims description 17
- 238000009864 tensile test Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 2
- 238000005452 bending Methods 0.000 abstract description 55
- 241000845077 Iare Species 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 30
- 239000000243 solution Substances 0.000 description 21
- 239000013078 crystal Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 11
- 238000005266 casting Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 229910020711 Co—Si Inorganic materials 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910018098 Ni-Si Inorganic materials 0.000 description 2
- 229910018529 Ni—Si Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- -1 first Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
【解決手段】 Ni及びCoのうち一種以上を0.8〜5.0質量%、Siを0.2〜1.5質量%含有し、残部が銅及び不可避的不純物からなる圧延材であり、該圧延材の表面において、
I(200)/I0(200)≧1.0
であり、板厚に対し45〜55%の深さの断面において、
I(220)/I0(220) + I(311)/I0(311)≧1.0
〔ここで、I(hkl)およびI0(hkl)はそれぞれ該圧延材および銅粉末に対しX線回折で求めた(hkl)面の回折積分強度である。〕
であるコルソン合金。
【選択図】 図2
Description
I(200)/I0(200)≧1.0
であり、板厚に対し45〜55%の深さの断面において、
I(220)/I0(220) + I(311)/I0(311)≧1.0
であるコルソン合金である。
ここで、I(hkl)およびI0(hkl)はそれぞれ該圧延材および銅粉末に対しX線回折で求めた(hkl)面の回折積分強度である。
前記軟化度は軟化度をSとして、
S=(σ0−σ)/(σ0−σ950)
で示される、コルソン合金の製造方法である。
ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである。
Ni、Co及びSiは、適当な時効処理を行うことにより、Ni−Si、Co−Si、Ni−Co−Si等の金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi、Co及びSiが減少するため導電率が向上する。しかしながら、NiとCoの合計量が0.8質量%未満又はSiが0.2質量%未満になると所望の強度が得られず、反対にNiとCoの合計量が5.0質量%を超えると又はSiが1.5質量%を超えると曲げ加工性が著しく劣化する。このため、本発明に係るコルソン合金では、NiとCoのうち一種以上の添加量は0.8〜5.0質量%とし、Siの添加量は0.2〜1.5質量%としている。NiとCoのうち一種以上の添加量は1.0〜4.0質量%がより好ましく、Siの添加量は0.25〜0.90質量%がより好ましい。
Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn、Agが総量で0.005質量%未満であると上記の効果は得られず、3.0質量%を超えると曲げ加工性が著しく低下する。このため、本発明に係るコルソン合金では、これらの元素を総量で0.005〜3.0質量%含有することが好ましく、0.01〜2.5質量%含有することがより好ましい。
ばね部が圧延方向と直交する端面接触型端子において、ばね接点での充分な接触力を得るために、圧延直交方向のヤング率を106GPa以上に調整することが好ましく、111GPa以上に調整することがより好ましい。
ヤング率の上限値は接触力の点からは規制されないものの、本発明のコルソン合金のヤング率は典型的には130GPa以下、より典型的には120GPa以下である。
なお、前記特許文献4、5においても、発明合金のヤング率が評価されているが、文献4のヤング率は圧延方向と平行に測定された曲げたわみ係数であり、また、文献5では引張試験によりヤング率を求めているものの、その引張試験は圧延方向と平行に行われている。
本発明では、X線回折法により、圧延材試料の板面に対しθ/2θ測定を行い、所定方位(hkl)面の回折ピークの積分強度(I(hkl))を測定する。また同時に、ランダム方位試料として銅粉に対しても(hkl)面の回折ピークの積分強度(I0(hkl))を測定する。そして、I(hkl)/I0(hkl)の値を用い、圧延材試料の板面における(hkl)面の発達度合いを評価する。
良好な曲げ加工性を得るために、圧延材の表面における、I(200)/I0(200)を調整する。I(200)/I0(200)が高いほどCube方位が発達しているといえる。I(200)/I0(200)を1.0以上、好ましくは2.0以上、さらに好ましくは3.0以上に制御すると、曲げ加工性が向上する。
I(200)/I0(200)の上限値は、曲げ加工性改善の点からは規制されないものの、本発明のコルソン合金のI(200)/I0(200)は典型的には10.0以下である。
I(200)/I0(200)(Cube方位)を高め曲げ加工性を改善した従来のコルソン合金の場合、圧延直交方向のヤング率が106GPaに満たなかった。このヤング率を高めるために、板厚中央部における結晶方位を調整する。ここで、板厚中央部の結晶方位は、試料の一方の表面からエッチング、機械研磨等により厚み方向に試料を削って板厚中央部の断面を露出させ、この断面に対しX線回折を行うことで測定する。板厚中央部とは、板厚に対し45〜55%の位置を指す。
板厚中央部において、I(220)/I0(220)と I(311)/I0(311)の合計を1.0以上、好ましくは2.0以上に制御すると、圧延直交方向のヤング率が106GPa以上になる。
板厚中央部におけるI(220)/I0(220)と I(311)/I0(311)の合計の上限値は、圧延直交方向のヤング率を高める点からは規制されないものの、本発明のコルソン合金の該合計値は典型的には10.0以下である。
コルソン合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Co、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、溶体化処理、時効処理の順で所望の厚みおよび特性を有する条や箔に仕上げる。熱処理後には、熱処理時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間圧延を行ってもよい。
本発明では、上述の結晶方位を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行い、さらに熱間圧延と予備焼鈍前との間の冷間圧延の条件を調整する。
予備焼鈍は、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させることを目的に行う。圧延組織中の再結晶粒の割合には最適値があり、少なすぎてもまた多すぎても上述の結晶方位が得られない。最適な割合の再結晶粒は、下記に定義する軟化度Sが0.20〜0.80、より好ましくは0.25〜0.75になるよう、予備焼鈍条件を調整することにより得られる。
図2に本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500〜700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
S=(σ0−σ)/(σ0−σ950)
ここで、σ0は焼鈍前の引張強さであり、σおよびσ950はそれぞれ予備焼鈍後および950℃で焼鈍後の引張強さである。950℃という温度は、本発明に係る合金を950℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
軟化度が0.2〜0.8の範囲から外れると、圧延材表面において、I(200)/I0(200)が1.0未満になる。予備焼鈍の温度および時間は特に制約されず、Sを上記範囲に調整することが重要である。一般的には、連続焼鈍炉を用いる場合には炉温400〜750℃で5秒間〜10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350〜600℃で30分間〜20時間の範囲で行われる。
なお、予備焼鈍条件の設定は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張強さ(σ0)を測定する。
(2)予備焼鈍前の材料を950℃で焼鈍する。具体的には、熱電対を取り付けた材料を1000℃の管状炉に挿入し、熱電対で測定される試料温度が950℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記950℃焼鈍後の材料の引張強さ(σ950)を求める。
(4)例えば、σ0が800MPa、σ950が300MPaの場合、軟化度0.20及び0.80に相当する引張強さは、それぞれ700MPa及び400MPaである。
(5)焼鈍後の引張強さが400〜700MPaとなるように、予備焼鈍の条件を求める。
R=(t0−t)/t0×100(t0:圧延前の板厚,t:圧延後の板厚)
加工度が3〜50%の範囲から外れると、圧延材表面において、I(200)/I0(200)が1.0未満になる。
上記予備焼鈍および軽圧延の実施に加え、熱間圧延と予備焼鈍との間の冷間圧延の条件を調整することにより、表面ではI(200)/I0(200)≧1.0で、板厚中央部では、I(220)/I0(220) + I(311)/I0(311)≧ 1.0なる結晶方位の特徴を付与することができる。
該冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。結晶方位には、該冷間圧延における総加工度と1パスあたりの加工度が影響を及ぼす。ここで、総加工度Rは、一般的にいう加工度を指し、上述したRと同じ式で定義される。また、1パスあたりの加工度r(%)とは、圧延ロールを1回通過したときの板厚減少率であり、r=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
総加工度Rは90〜99.8%とする。Rが90%未満になると、表面のI(200)/I0(200)が1.0未満になる。Rが99.8%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。より好ましい加工度は95〜99%である。
1パスあたりの加工度rについては、全パスのうちの最大値(rmax)を20%以下とし、全パスの平均値(rave)を15%以下とする。この条件から外れると、板厚中央部において、I(220)/I0(220) + I(311)/I0(311)が1.0未満になる。raveの下限値については、結晶方位の点からは制限されないが、raveが小さくなると圧延に時間がかかり生産効率が低下するため、raveは10%以上にすることが好ましい。
(1)インゴットの鋳造(厚み20〜300mm)
(2)熱間圧延(温度800〜1000℃、厚み3〜20mmまで)
(3)冷間圧延(R=90〜99.8%、rmax≦20%、rave≦15%)
(4)予備焼鈍(軟化度:S=0.20〜0.80)
(5)軽圧延(加工度3〜50%)
(6)溶体化処理(700〜950℃で5〜300秒)
(7)冷間圧延(加工度0〜60%)
(8)時効処理(350〜600℃で2〜20時間)
(9)冷間圧延(加工度0〜50%)
(10)歪取り焼鈍(300〜700℃で5秒〜10時間)
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、結晶方位制御により良好な曲げ加工性と圧延直交方向の高いヤング率とが両立するという本発明の効果は得られる。歪取り焼鈍(10)は行っても良いし行わなくても良い。
なお、工程(2)(6)及び(8)については、コルソン合金の一般的な製造条件を選択すればよい。
Ni:2.6質量%、Si:0.58質量%、Sn:0.5質量%、およびZn:0.4質量%を含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、予備焼鈍条件、軽圧延条件及び予備焼鈍前の圧延条件と結晶方位との関係、さらに結晶方位が製品の曲げ性および機械的特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを、次の工程順で加工し、板厚0.15mmの製品試料を作製した。
(1)熱間圧延:950℃で3時間加熱したインゴットを所定の厚みまで圧延した。圧延後の材料は直ちに水冷した。
(2)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削量は片面あたり0.5mmとした。
(3)冷間圧延:種々の総加工度(R)および1パスあたりの加工度(r)で、所定の厚みまで冷間圧延した。
(4)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却した。
(5)軽圧延:種々の圧延加工度で、厚み0.25mmまで冷間圧延を行った。
(6)溶体化処理:800℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。溶体化処理後の結晶粒径は約10μmであった。
(7)時効処理:電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(8)冷間圧延:0.25mmから0.20mmまで加工度20%で冷間圧延した。
(9)歪取り焼鈍:400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
(予備焼鈍での軟化度評価)
予備焼鈍前および予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定し、それぞれの値をσ0およびσとした。また、950℃焼鈍試料を前記手順(1000℃の炉に挿入し試料が950℃に到達したときに水冷)で作製し、圧延方向と平行に引張強さを同様に測定しσ950を求めた。σ0、σ、σ950から、軟化度Sを求めた。
S=(σ0−σ)/(σ0−σ950)
なお、引張試験片はJIS Z 2201に規定する13B号試験片とした。
製品試料の表面に対し(200)面のX線回折積分強度を測定した。
次に、板厚中央部の結晶方位を解析するための試料として、一方の表面から板厚中央部までを塩化第二鉄溶液を用いたエッチングにより除去した。仕上げ後の試料の厚みは、元の板厚に対し45〜55%の範囲であった。このエッチングによって現出させた断面に対し、(220)面および(311)面のX線回折積分強度を測定した。
さらに、銅粉末(関東化学株式会社製、銅(粉末),2N5、>99.5%、325mesh)に対し、(200)面、(220)面および(311)面のX線回折積分強度を測定した。
X線回折装置には(株)リガク製RINT2500を使用し、Cu管球にて、管電圧25kV、管電流20mAで測定を行った。
JIS Z 2201に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、引張強さを求めた。
より厳しい曲げ加工を想定し、W曲げ等の90度曲げ試験ではなく、180度曲げ試験を行った。
幅が10mmで、長さが30mm以上の短冊形試料を、その長手方向が圧延方向と平行になるように採取した。JIS Z 2248の押し曲げ法に準拠し、内側半径をSとし、Good Way方向(曲げ軸が圧延方向と直交)に180度曲げ試験を行った。曲げ断面を機械研磨及びバフ研磨で鏡面に仕上げ、光学顕微鏡で割れの有無を観察した。Sが0.05、0.10、0.15、0.20、0.25、0.30、0.40、0.50、0.60、0.80、1.0mmの曲げを行うための試験ジグを準備し、割れが発生しない最小のS(Smin)を求めた。Sminを板厚(d)で割った値(Smin/d)を曲げ加工性の指標とした。Smin/dが1.0以下であれば、良好なGood Wayの曲げ加工性が得られたと判断した。
JIS Z 2201に規定する13B号試験片を引張方向が圧延方向と直交するように採取し、引張試験を行った。得られた応力歪曲線から、弾性範囲における直線部の傾きを求め、この値をヤング率とした。
評価結果を表1及び2に示す。
比較例1〜3は、予備焼鈍前の冷間圧延における1パス当たりの加工度(r)の条件が本発明の規定から外れたものである。比較例1ではraveが過大、比較例2ではrmaxが過大、比較例3ではrave、rmaxとも過大である。これらでは、板厚中央のI(220)/I0(220)+I(311)/I0(311)が1.0未満となり、圧延直交方向のヤング率が106GPaに満たなかった。
比較例4は、予備焼鈍前の冷間圧延における総加工度(R)が90.0%を下回ったものである。表面のI(200)/I0(200)が1.0未満となったため、曲げ加工性が悪化し、Good Wayの180度曲げのSmin/dが1.0を超えた。
比較例5では予備焼鈍の軟化度が0.20を下回り、比較例6では予備焼鈍での軟化度が0.80を超えた。また、比較例7では軽圧延の加工度が3%を下回り、比較例8では軽圧延の加工度が50%を超えた。比較例5〜8では、表面のI(200)/I0(200)が1.0未満となったため、曲げ加工性が悪化し、Good Wayの180度曲げのSmin/dが1.0を超えた。
比較例9は、従来の一般的なコルソン合金の製造方法に準じて製造されたものである。予備焼鈍および軽圧延は行わず、熱間圧延と溶体化処理との間の冷間圧延では、生産性を重視しraveを15%超、rmaxを20%超に設定している。表面のI(200)/I0(200)は1.0を大きく下回り、板厚中央のI(220)/I0(220) + I(311)/I0(311) は1.0以上であった。Good Wayの180度曲げのSmin/dは2.5と曲げ加工性が悪く、反面、圧延直交方向のヤング率は140GPaを超える高い値であった。
比較例10〜14は、当該合金組成のコルソン合金を特許文献2〜6に記載された製造方法に準じて製造したものである。ここで、熱間圧延と予備焼鈍(中間焼鈍)との間の冷間圧延では、生産性を重視しraveを15%超、rmaxを20%超に設定している。
比較例10は、特許文献2に準じて製造したものであり、表2に記載した以外の条件として、熱間圧延は950℃から400℃に温度を下げながら行い、予備(中間)焼鈍では導電率を1.5倍以上に硬さを0.8倍以下に調整している。この条件で製造することで、表面のI(200)/I0(200)は1.0以上になったが、板厚中央部のI(220)/I0(220) + I(311)/I0(311) が1.0未満になった。その結果、曲げ加工性は良好であったが、圧延直交方向のヤング率が106GPaに満たなかった。
比較例11は、特許文献3に準じて製造したものであり、表2に記載した以外の条件として、溶体化処理では400〜750℃の範囲の昇温速度を2〜50℃/秒とした。この条件で製造することで、Cube方位の面積率が5〜60%、Brass方位及びCopper方位の面積率が20%以下となった。一方、表面のI(200)/I0(200)は1.0以上になったが、板厚中央部のI(220)/I0(220) + I(311)/I0(311)が1.0未満になった。その結果、曲げ加工性は良好であったが、圧延直交方向のヤング率が106GPaに満たなかった。
比較例12は、特許文献4に準じて製造したものであり、表2に記載した以外の条件として、予備焼鈍において導電率を20〜45%IACSの範囲に調整した。この条件で製造することで、板厚方向の中央部において、Cube方位の面積率を10〜80%、Brass方位及びCopper方位の面積率をともに20%以下になり、ノッチ曲げが可能になった。一方、表面のI(200)/I0(200)は1.0以上になったが、板厚中央部のI(220)/I0(220) + I(311)/I0(311)が1.0未満になった。その結果、曲げ加工性は良好であったが、圧延直交方向のヤング率が106GPaに満たなかった。
比較例13は、特許文献5に準じて製造したものであり、表2に記載した以外の条件として、熱間圧延では1パスの加工率を30%以下とし各パス間の保持時間を20〜100秒とした。また、溶体化処理を900℃で行い、平均結晶粒径を12〜100μmの範囲に調整した。この条件で製造することで、W0/W4が0.8〜1.5、W0が5〜48%(W0およびW4は、それぞれ材料の表層および深さ位置で全体の1/4の位置でのCube方位面積率)となり、1.0mm幅の試験片による180度密着曲げが可能となり(試験片幅が細いほど曲げ加工は容易)、150℃で1000時間加熱したときの応力緩和値が30%以下になった。一方、表面のI(200)/I0(200)は1.0以上になったが、板厚中央部のI(220)/I0(220) + I(311)/I0(311)が1.0未満になった。その結果、曲げ加工性(試験片幅10mm)は良好であったが、圧延直交方向のヤング率が106GPaに満たなかった。
比較例14は、特許文献6に準じて製造したものであり、表2に記載した以外の条件として、熱間圧延後に350℃まで徐冷した。この条件で製造することで、圧延方向に向く(100)面の面積率が30%以上となり、圧延平行方向のヤング率が110GPa以下になった。一方、表面のI(200)/I0(200)、板厚中央部のI(220)/I0(220) + I(311)/I0(311)とも1.0未満になった。その結果、曲げ加工性は若干悪く、圧延直交方向のヤング率は106GPaに満たなかった。
実施例1で示した曲げ加工性の改善効果が、異なる成分および製造条件のコルソン合金でも得られるかについて検討した。
まず、実施例1と同様の方法で鋳造を行い、表4及び5の成分を有するインゴットを得た。
(1)熱間圧延:950℃で3時間加熱したインゴットを所定の厚みまで圧延した。圧延後の材料は直ちに水冷した。
(2)研削:熱間圧延で生成した酸化スケールをグラインダーで除去した。研削量は片面あたり0.5mmとした。
(3)冷間圧延:種々の総加工度(R)および1パスあたりの加工度(r)で、所定の厚みまで冷間圧延した。
(4)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却した。
(5)軽圧延
(6)溶体化処理:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。該温度は再結晶粒の平均直径が5〜25μmの範囲になる範囲で選択した。
(7)冷間圧延(圧延1)
(8)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(9)冷間圧延(圧延2)
(10)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
比較例15、21、22、23、25、27は、予備焼鈍前の冷間圧延における1パス当たりの加工度(r)の条件が本発明の規定から外れたものである。このため、板厚中央のI(220)/I0(220)+I(311)/I0(311)が1.0未満となり、圧延直交方向のヤング率が106GPaに満たなかった。
比較例17は予備焼鈍前の冷間圧延における総加工度(R)が90.0%を下回ったものである。比較例18、26は軽圧延の加工度が本発明の規定を満足しなかったものである。比較例16、24は予備焼鈍の軟化度が本発明の規定を満足しなかったものである。これらでは、表面のI(200)/I0(200)が1.0未満となり、Smin/dが1.0を超えた。
比較例19、20、28は、本発明が規定する条件で予備焼鈍前の冷間圧延、予備焼鈍および軽圧延を行ったものであるが、比較例20では圧延1の加工度が60%を超え、比較例19、28では圧延2の加工度が50%を超えた。このため、表面のI(200)/I0(200)が1.0未満となり、Smin/dが1.0を超えた。
比較例29はNiとCoの合計濃度およびSi濃度が本発明の規定を下回ったものである。結晶方位が本発明の規定を満たし、1.0以下のSmin/dおよび106GPaを超える圧延直交方向のヤング率が得られたものの、引張強さが500MPaにも達しなかった。
比較例30はNiとCoの合計濃度が本発明の規定を超えたものである。表面のI(200)/I0(200)は1.0以上であったが、Smin/dが1.0を超えた。
比較例31は特許文献1が提唱する方法に準じ製造したものであり、予備焼鈍および軽圧延は行わず、表5に記載した以外の条件として、溶体化処理、時効処理および歪取り焼鈍(短時間焼鈍)の冷却速度をそれぞれ10℃/秒以上、10℃/秒未満および10℃/秒以上とし、短時間焼鈍における導電率低下を0.5〜3%IACSとし、平均結晶粒径を10μm以下とした。また、熱間圧延と溶体化処理との間の冷間圧延では、生産性を重視しraveを15%超、rmaxを20%超に設定した。その結果、導電率が35%IACS、耐力が700MPa以上となり、Bad Wayの90度W曲げ加工性は良好であったが、Good Wayの180度曲げ加工性は本発明例と比較し劣っていた。
Claims (8)
- Ni及びCoのうち一種以上を0.8〜5.0質量%、Siを0.2〜1.5質量%含有し、残部が銅及び不可避的不純物からなる圧延材であり、該圧延材の表面において、
I(200)/I0(200)≧1.0
であり、板厚に対し45〜55%の深さの断面において、
I(220)/I0(220) + I(311)/I0(311)≧1.0
〔ここで、I(hkl)およびI0(hkl)はそれぞれ該圧延材および銅粉末に対しX線回折で求めた(hkl)面の回折積分強度である。〕
であるコルソン合金。 - Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn及びAgのうち1種以上を総量で0.005〜3.0質量%含有する請求項1に記載のコルソン合金。
- 圧延方向と直交する方向の引張試験から求めたヤング率が106GPa以上である請求項1又は2に記載のコルソン合金。
- 圧延方向と直交する方向に採取される端面接触型端子の素材として用いられる請求項1〜3のいずれかに記載のコルソン合金。
- Ni及びCoのうち一種以上を0.8〜5.0質量%、Siを0.2〜1.5質量%含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを800〜1000℃の温度から厚み3〜20mmまで熱間圧延し、加工度90〜99.8%の冷間圧延を、1パスあたりの加工度の最大値および平均値をそれぞれ20%以下および15%以下として行った後、軟化度0.20〜0.80の予備焼鈍、加工度3〜50%の冷間圧延、700〜950℃で5〜300秒間の溶体化処理、加工度0〜60%の冷間圧延、350〜600℃で2〜20時間の時効処理、加工度0〜50%の冷間圧延を順次行う方法であり、
前記軟化度は軟化度をSとして、
S=(σ0−σ)/(σ0−σ950)
〔ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ950はそれぞれ予備焼鈍後及び950℃で焼鈍後の引張強さである。〕
で示される、コルソン合金の製造方法。 - 前記インゴットが、Sn、Zn、Mg、Fe、Ti、Zr、Cr、Al、P、Mn及びAgのうち1種以上を総量で0.005〜3.0質量%含有する請求項5に記載のコルソン合金の製造方法。
- 請求項1〜4のいずれかに記載のコルソン合金を備えた伸銅品。
- 請求項1〜4のいずれかに記載のコルソン合金を備えた電子機器部品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012158846A JP6111028B2 (ja) | 2012-03-26 | 2012-07-17 | コルソン合金及びその製造方法 |
CN201380017166.8A CN104185688B (zh) | 2012-03-26 | 2013-01-23 | 科森合金及其制备方法 |
PCT/JP2013/051355 WO2013145824A1 (ja) | 2012-03-26 | 2013-01-23 | コルソン合金及びその製造方法 |
KR1020147029710A KR101688289B1 (ko) | 2012-03-26 | 2013-01-23 | 코르손 합금 및 그 제조 방법 |
TW102102747A TWI467035B (zh) | 2012-03-26 | 2013-01-25 | Carbene alloy and its manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012069968 | 2012-03-26 | ||
JP2012069968 | 2012-03-26 | ||
JP2012158846A JP6111028B2 (ja) | 2012-03-26 | 2012-07-17 | コルソン合金及びその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015257462A Division JP2016084542A (ja) | 2012-03-26 | 2015-12-28 | コルソン合金及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013227642A true JP2013227642A (ja) | 2013-11-07 |
JP6111028B2 JP6111028B2 (ja) | 2017-04-05 |
Family
ID=49259110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012158846A Active JP6111028B2 (ja) | 2012-03-26 | 2012-07-17 | コルソン合金及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6111028B2 (ja) |
KR (1) | KR101688289B1 (ja) |
CN (1) | CN104185688B (ja) |
TW (1) | TWI467035B (ja) |
WO (1) | WO2013145824A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015022789A1 (ja) * | 2013-08-13 | 2015-02-19 | Jx日鉱日石金属株式会社 | 導電性及び曲げたわみ係数に優れる銅合金板 |
WO2018174081A1 (ja) | 2017-03-22 | 2018-09-27 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
WO2018174079A1 (ja) | 2017-03-21 | 2018-09-27 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
CN109457139A (zh) * | 2018-10-29 | 2019-03-12 | 扬中市华亿电器有限公司 | 一种电缆线芯的制备配方 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6386838A (ja) * | 1986-09-30 | 1988-04-18 | Furukawa Electric Co Ltd:The | 半導体リ−ド用銅合金 |
WO2003076672A1 (fr) * | 2002-03-12 | 2003-09-18 | The Furukawa Electric Co., Ltd. | Fil en alliage de cuivre extremement conducteur et resistant a la relaxation a l'effort |
JP2006307340A (ja) * | 2005-03-31 | 2006-11-09 | Nikko Kinzoku Kk | 曲げ加工性に優れるCu−Ni−Si系銅合金条 |
JP2008013836A (ja) * | 2006-07-10 | 2008-01-24 | Dowa Holdings Co Ltd | 異方性の少ない高強度銅合金板材およびその製造法 |
JP2009242926A (ja) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | 電子材料用Cu−Ni−Si系合金 |
JP2010275622A (ja) * | 2009-04-27 | 2010-12-09 | Dowa Metaltech Kk | 銅合金板材およびその製造方法 |
WO2011068134A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 低ヤング率を有する銅合金板材およびその製造法 |
WO2011068124A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 銅合金板材 |
JP2011117034A (ja) * | 2009-12-02 | 2011-06-16 | Furukawa Electric Co Ltd:The | 銅合金材料 |
JP4857395B1 (ja) * | 2011-03-09 | 2012-01-18 | Jx日鉱日石金属株式会社 | Cu−Ni−Si系合金及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4809602B2 (ja) * | 2004-05-27 | 2011-11-09 | 古河電気工業株式会社 | 銅合金 |
JP4566048B2 (ja) | 2005-03-31 | 2010-10-20 | 株式会社神戸製鋼所 | 曲げ加工性に優れた高強度銅合金板及びその製造方法 |
KR100792653B1 (ko) * | 2005-07-15 | 2008-01-09 | 닛코킨조쿠 가부시키가이샤 | 전기 전자기기용 동합금 및 그의 제조 방법 |
CN102105610B (zh) * | 2008-06-03 | 2013-05-29 | 古河电气工业株式会社 | 铜合金板材及其制造方法 |
JP2011017072A (ja) | 2009-07-10 | 2011-01-27 | Furukawa Electric Co Ltd:The | 銅合金材料 |
KR101419145B1 (ko) | 2009-12-02 | 2014-07-11 | 후루카와 덴키 고교 가부시키가이샤 | 구리합금 판재, 이를 이용한 커넥터, 및 이를 제조하는 구리합금 판재의 제조방법 |
-
2012
- 2012-07-17 JP JP2012158846A patent/JP6111028B2/ja active Active
-
2013
- 2013-01-23 WO PCT/JP2013/051355 patent/WO2013145824A1/ja active Application Filing
- 2013-01-23 KR KR1020147029710A patent/KR101688289B1/ko active IP Right Grant
- 2013-01-23 CN CN201380017166.8A patent/CN104185688B/zh active Active
- 2013-01-25 TW TW102102747A patent/TWI467035B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6386838A (ja) * | 1986-09-30 | 1988-04-18 | Furukawa Electric Co Ltd:The | 半導体リ−ド用銅合金 |
WO2003076672A1 (fr) * | 2002-03-12 | 2003-09-18 | The Furukawa Electric Co., Ltd. | Fil en alliage de cuivre extremement conducteur et resistant a la relaxation a l'effort |
JP2006307340A (ja) * | 2005-03-31 | 2006-11-09 | Nikko Kinzoku Kk | 曲げ加工性に優れるCu−Ni−Si系銅合金条 |
JP2008013836A (ja) * | 2006-07-10 | 2008-01-24 | Dowa Holdings Co Ltd | 異方性の少ない高強度銅合金板材およびその製造法 |
JP2009242926A (ja) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | 電子材料用Cu−Ni−Si系合金 |
JP2010275622A (ja) * | 2009-04-27 | 2010-12-09 | Dowa Metaltech Kk | 銅合金板材およびその製造方法 |
WO2011068134A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 低ヤング率を有する銅合金板材およびその製造法 |
WO2011068124A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 銅合金板材 |
JP2011117034A (ja) * | 2009-12-02 | 2011-06-16 | Furukawa Electric Co Ltd:The | 銅合金材料 |
JP4857395B1 (ja) * | 2011-03-09 | 2012-01-18 | Jx日鉱日石金属株式会社 | Cu−Ni−Si系合金及びその製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015022789A1 (ja) * | 2013-08-13 | 2015-02-19 | Jx日鉱日石金属株式会社 | 導電性及び曲げたわみ係数に優れる銅合金板 |
US11021774B2 (en) | 2013-08-13 | 2021-06-01 | Jx Nippon Mining & Metals Corporation | Copper alloy plate having excellent electrical conductivity and bending deflection coefficient |
WO2018174079A1 (ja) | 2017-03-21 | 2018-09-27 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
KR20190119619A (ko) | 2017-03-21 | 2019-10-22 | 제이엑스금속주식회사 | 프레스 가공 후의 치수 정밀도를 개선한 구리 합금조 |
US11203799B2 (en) | 2017-03-21 | 2021-12-21 | Jx Nippon Mining & Metals Corporation | Copper alloy strip exhibiting improved dimensional accuracy after press-working |
WO2018174081A1 (ja) | 2017-03-22 | 2018-09-27 | Jx金属株式会社 | プレス加工後の寸法精度を改善した銅合金条 |
KR20190119621A (ko) | 2017-03-22 | 2019-10-22 | 제이엑스금속주식회사 | 프레스 가공 후의 치수 정밀도를 개선한 구리 합금조 |
US11499207B2 (en) | 2017-03-22 | 2022-11-15 | Jx Nippon Mining & Metals Corporation | Copper alloy strip exhibiting improved dimensional accuracy after press-working |
CN109457139A (zh) * | 2018-10-29 | 2019-03-12 | 扬中市华亿电器有限公司 | 一种电缆线芯的制备配方 |
Also Published As
Publication number | Publication date |
---|---|
KR101688289B1 (ko) | 2016-12-20 |
JP6111028B2 (ja) | 2017-04-05 |
WO2013145824A1 (ja) | 2013-10-03 |
KR20140148437A (ko) | 2014-12-31 |
CN104185688A (zh) | 2014-12-03 |
TW201339329A (zh) | 2013-10-01 |
TWI467035B (zh) | 2015-01-01 |
CN104185688B (zh) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4857395B1 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JP5117604B1 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
KR20190018661A (ko) | 구리합금 판재 및 구리합금 판재의 제조 방법 | |
JP5039862B1 (ja) | コルソン合金及びその製造方法 | |
JP6228725B2 (ja) | Cu−Co−Si系合金及びその製造方法 | |
JP6111028B2 (ja) | コルソン合金及びその製造方法 | |
JP6345290B1 (ja) | プレス加工後の寸法精度を改善した銅合金条 | |
JP2013104082A (ja) | Cu−Co−Si系合金及びその製造方法 | |
JP4781145B2 (ja) | Cu−Zn−Sn系合金及びCu−Zn−Sn系合金条を用いた端子、コネクタ、またはリレー | |
JP6196757B2 (ja) | コルソン合金及びその製造方法 | |
WO2013069376A1 (ja) | Cu-Co-Si系合金及びその製造方法 | |
JP2016199808A (ja) | Cu−Co−Si系合金及びその製造方法 | |
JP5039863B1 (ja) | コルソン合金及びその製造方法 | |
JP2006009108A (ja) | 曲げ加工性が優れたCu−Ni−Si系銅合金条 | |
JP6246454B2 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JP4987155B1 (ja) | Cu−Ni−Si系合金及びその製造方法 | |
JP2013100586A (ja) | チタン銅及びその製造方法 | |
JP2017014624A (ja) | コルソン合金及びその製造方法 | |
WO2013121620A1 (ja) | コルソン合金及びその製造方法 | |
JP2016084542A (ja) | コルソン合金及びその製造方法 | |
JP2016211078A (ja) | Cu−Ni−Si系合金及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150828 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151228 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160108 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20160129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6111028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |