WO2021241463A1 - 銅/セラミックス接合体、および、絶縁回路基板 - Google Patents

銅/セラミックス接合体、および、絶縁回路基板 Download PDF

Info

Publication number
WO2021241463A1
WO2021241463A1 PCT/JP2021/019487 JP2021019487W WO2021241463A1 WO 2021241463 A1 WO2021241463 A1 WO 2021241463A1 JP 2021019487 W JP2021019487 W JP 2021019487W WO 2021241463 A1 WO2021241463 A1 WO 2021241463A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
ceramic substrate
circuit board
layer
crystal grain
Prior art date
Application number
PCT/JP2021/019487
Other languages
English (en)
French (fr)
Inventor
啓 ▲高▼桑
伸幸 寺▲崎▼
修司 西元
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021083912A external-priority patent/JP7119268B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN202180037561.7A priority Critical patent/CN115667187A/zh
Priority to EP21813874.1A priority patent/EP4159704A4/en
Priority to US17/925,666 priority patent/US20230197556A1/en
Priority to KR1020227039969A priority patent/KR20230017184A/ko
Publication of WO2021241463A1 publication Critical patent/WO2021241463A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention comprises a copper / ceramics junction in which a copper member made of copper or a copper alloy and a ceramics member are joined, and an insulating circuit in which a copper plate made of copper or a copper alloy is joined to the surface of a ceramic substrate. It is about the substrate.
  • the power module, LED module, and thermoelectric module have a structure in which a power semiconductor element, an LED element, and a thermoelectric element are bonded to an insulating circuit board having a circuit layer made of a conductive material formed on one surface of the insulating layer. ..
  • a power semiconductor element for high power control used for controlling a wind power generation, an electric vehicle, a hybrid vehicle, etc. has a large amount of heat generation during operation.
  • an insulated circuit board including a ceramic substrate made of a ceramic substrate and a circuit layer formed by joining a metal plate having excellent conductivity to one surface of the ceramic substrate has been widely used.
  • As the insulating circuit board a board in which a metal plate is joined to the other surface of a ceramic substrate to form a metal layer is also provided.
  • Patent Document 1 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by joining a copper plate to one surface and the other surface of a ceramic substrate.
  • a copper plate is placed on one surface and the other surface of the ceramic substrate with an Ag-Cu-Ti brazing material interposed therebetween, and the copper plate is joined by heat treatment (so-called). Active metal brazing method).
  • the copper plate when a terminal material or the like is ultrasonically bonded to the surface of the circuit layer (copper plate), the copper plate is plastically deformed and the active metal nitride layer such as the hard TiN layer is destroyed. There was a risk that the joining reliability would decrease. In addition, there is a possibility that the ceramic substrate may be cracked starting from the destruction of the TiN layer.
  • the present invention has been made in view of the above-mentioned circumstances, and copper having excellent bonding reliability even when a copper member made of copper or a copper alloy and a ceramic member are reliably bonded to each other and ultrasonic waves are applied. / It is an object of the present invention to provide a ceramic joint and an insulating circuit board.
  • the copper / ceramics bonded body of one aspect of the present invention is a copper / ceramic member obtained by bonding a copper member made of copper or a copper alloy and a ceramics member.
  • the average crystal grain size D1 at a position 50 ⁇ m in the laminating direction from the bonding surface with the ceramic member and the average of the entire copper member is 0.60 or less.
  • the average crystal grain size D1 and the copper member at a position 50 ⁇ m from the bonding surface with the ceramics member in the stacking direction were observed. Since the ratio D1 / D0 to the overall average crystal grain size D0 is 0.60 or less, the crystal grain size in the vicinity of the bonding interface is kept relatively small, and the copper members are bonded when ultrasonic waves are applied. Deformation in the region near the interface can be suppressed, and destruction of the active metal nitride layer such as the TiN layer can be suppressed. In addition, the crystal grain size does not differ significantly between the entire copper member and the vicinity of the bonding interface, and it is possible to prevent the entire copper member from becoming hard.
  • Mg is diffused in a region of the copper member up to at least 50 ⁇ m from the joint surface of the ceramic member in the stacking direction, and is separated from the joint surface. It is preferable that the Mg concentration decreases accordingly. In this case, Mg is sufficiently diffused in a region of the copper member from the bonding surface of the ceramic member to at least 50 ⁇ m in the stacking direction, and the crystal grain size in the vicinity of the bonding interface can be made relatively small. ..
  • the insulated circuit board of one aspect of the present invention is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramics substrate, and as a result of observing a cross section of the copper plates along the stacking direction, the results It is characterized in that the ratio D1 / D0 of the average crystal grain size D1 at a position 50 ⁇ m from the bonding surface with the ceramic substrate in the stacking direction to the overall average crystal grain size D0 of the copper plate is 0.60 or less.
  • the average grain size D1 at a position 50 ⁇ m in the stacking direction from the bonding surface with the ceramics substrate and the average of the entire copper plates Since the ratio D1 / D0 to the crystal grain size D0 is 0.60 or less, the crystal grain size in the vicinity of the bonding interface is kept relatively small, and in the region of the copper plate near the bonding interface when ultrasonic waves are applied. Deformation can be suppressed, and destruction of active metal nitride layers such as the TiN layer can be suppressed. In addition, the crystal grain size does not differ significantly between the entire copper plate and the vicinity of the bonding interface, and it is possible to prevent the entire copper plate from becoming hard.
  • Mg is diffused in a region of the copper plate from the bonding surface of the ceramic substrate to at least 50 ⁇ m in the stacking direction, and Mg is diffused as it is separated from the bonding surface. It is preferable that the concentration is reduced. In this case, Mg is sufficiently diffused in a region of the copper plate from the bonding surface of the ceramic substrate to at least 50 ⁇ m in the stacking direction, and the crystal grain size in the vicinity of the bonding interface can be made relatively small.
  • the power module 1 includes an insulating circuit board 10, a semiconductor element 3 bonded to one side (upper side in FIG. 1) of the insulating circuit board 10 via a first solder layer 2, and the other side of the insulating circuit board 10. (Lower side in FIG. 1) is provided with a heat sink 51 joined via a second solder layer 8.
  • the insulating circuit board 10 is arranged on the ceramic substrate 11, the circuit layer 12 disposed on one surface of the ceramic substrate 11 (upper surface in FIG. 1), and the other surface of the ceramic substrate 11 (lower surface in FIG. 1). It is provided with a provided metal layer 13. Ceramic substrate 11 is for preventing an electrical connection between the circuit layer 12 and the metal layer 13, excellent AlN (aluminum nitride) in the insulating, Si 3 N 4 (silicon nitride), Al 2 O It is composed of 3 (alumina) and the like. In particular, it is preferably made of Si 3 N 4 excellent in strength (silicon nitride).
  • the thickness of the ceramic substrate 11 is preferably in the range of 0.2 mm or more and 1.5 mm or less, and in this embodiment, it may be set to, for example, 0.32 mm.
  • the metal layer 13 is formed by joining a copper plate 23 made of copper or a copper alloy to the other surface of the ceramic substrate 11.
  • a copper plate 23 made of copper or a copper alloy
  • an oxygen-free copper rolled plate is used as the copper plate 23 constituting the metal layer 13.
  • the thickness of the metal layer 13 is preferably in the range of 0.1 mm or more and 2.0 mm or less, and in this embodiment, it may be set to, for example, 0.6 mm.
  • the heat sink 51 is for cooling the above-mentioned insulating circuit board 10, and in the present embodiment, it is a heat sink made of a material having good thermal conductivity. In the present embodiment, the heat sink 51 is made of copper or a copper alloy having excellent thermal conductivity. The heat sink 51 and the metal layer 13 of the insulating circuit board 10 are joined via a second solder layer 8.
  • the ceramic substrate 11 and the circuit layer 12 (copper plate 22), and the ceramic substrate 11 and the metal layer 13 (copper plate 23) are bonded via the Mg—Ti-based bonding material 25 as shown in FIG. ing.
  • a TiN layer 31 is formed at the bonding interface between the ceramic substrate 11 and the circuit layer 12 (copper plate 22) and at the bonding interface between the ceramic substrate 11 and the metal layer 13 (copper plate 23).
  • the TiN layer 31 is generated by the reaction between Ti contained in the Mg—Ti-based bonding material 25 and nitrogen (N) contained in the ceramic substrate 11.
  • the position is 50 ⁇ m in the stacking direction from the bonding surface with the ceramic substrate 11.
  • the ratio D1 / D0 of the average crystal grain size D1 to the overall average crystal grain size D0 of the circuit layer 12 (copper plate 22) and the metal layer 13 (copper plate 23) is 0.60 or less, preferably 0.25 or more and 0.56. It is said to be within the following range.
  • the crystal grain size of the circuit layer 12 (copper plate 22) and the metal layer 13 (copper plate 23) at a position 50 ⁇ m from the bonding surface of the ceramic substrate 11 in the stacking direction is locally reduced.
  • the bonding surface of the circuit layer 12 with the ceramic substrate 11 is the outermost surface of the ceramic substrate 11 on the circuit layer 12 side in the stacking direction.
  • the bonding surface of the metal layer 13 with the ceramic substrate 11 is the outermost surface of the ceramic substrate 11 on the metal layer 13 side in the stacking direction.
  • the TiN layer 31 is sandwiched between the ceramic substrate 11 and the circuit layer 12 and between the ceramic substrate 11 and the metal layer 13 in a region from the bonding surface with the ceramic substrate 11 to 50 ⁇ m in the stacking direction.
  • the layer 31 is sufficiently thinner than the circuit layer 12 and the metal layer 13.
  • the circuit layer 12 and the metal layer 13 are bonded to the ceramic substrate 11 via the TiN layer 31.
  • the average crystal grain size D0 and D1 in the present embodiment are the average crystal grain size of the crystal grains containing twins.
  • the Mg-Ti-based bonding material 25 to be arranged has a Ti amount in the range of 0.1 ⁇ m or more and 5 ⁇ m or less and a Mg amount in the range of 1.5 ⁇ m or more and 10 ⁇ m or less in terms of thickness.
  • the laminated copper plate 22, the ceramic substrate 11, and the copper plate 23 are pressurized in the laminating direction, charged into a heating furnace, heated, and held at a predetermined holding temperature for a certain period of time.
  • the pressurizing load in the holding step S02 is within the range of 0.049 MPa or more and 3.4 MPa or less.
  • the inside of the heating furnace has an atmosphere of an inert gas such as Ar.
  • the holding temperature is preferably set within the range of 300 ° C. or higher and 730 ° C. or lower, and the holding time at the holding temperature is preferably set within the range of 10 minutes or longer and 120 minutes or lower.
  • the laminated copper plate 22, the ceramic substrate 11, and the copper plate 23 are further heated in a state of being pressurized in the stacking direction to join the copper plate 22, the ceramic substrate 11, and the copper plate 23.
  • the pressurizing load in the joining step S03 is within the range of 0.049 MPa or more and 3.4 MPa or less.
  • the heating temperature in the joining step S03 is preferably in the range of 650 ° C. or higher and 1050 ° C. or lower.
  • the holding time at the heating temperature is preferably in the range of 10 minutes or more and 240 minutes or less.
  • the degree of vacuum in the joining step S03 is preferably in the range of 1 ⁇ 10 -6 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less.
  • the insulating circuit board 10 according to the present embodiment is manufactured by the laminating step S01, the holding step S02, and the joining step S03.
  • the heat sink 51 is joined to the other surface side (opposite side of the ceramic substrate 11) of the metal layer 13 of the insulating circuit board 10.
  • the insulating circuit board 10 and the heat sink 51 are laminated via a solder material and charged into a heating furnace, and the insulating circuit board 10 and the heat sink 51 are solder-bonded via the second solder layer 8. ..
  • the crystal grain size in the vicinity of the bonding interface is suppressed to be relatively small, deformation in the region of the circuit layer 12 and the metal layer 13 in the vicinity of the bonding interface can be suppressed when ultrasonic waves are applied, and the destruction of the TiN layer 31 is suppressed. be able to. Further, the crystal grain size is not significantly different from that of the circuit layer 12 and the entire metal layer 13 in the vicinity of the bonding interface, and it is possible to prevent the entire circuit layer 12 and the metal layer 13 from becoming hard.
  • Mg is sufficiently diffused in the region of the circuit layer 12 and the metal layer 13 from the bonding surface of the ceramic substrate 11 to at least 50 ⁇ m in the stacking direction, and the circuit layer 12 and the metal layer 13 are sufficiently diffused. It is possible to make the crystal grain size in the vicinity of the bonding interface relatively small.
  • Crystal grain size The average crystal grain size D0 of the entire circuit layer and the entire metal layer was measured using an EBSD measuring device in a cross section along the stacking direction of the insulated circuit substrate (circuit layer and metal layer).
  • FIG. 5 shows the observation results of the crystal structure.
  • the average crystal grain size D1 at a position of 50 ⁇ m from the outermost surface of the ceramic substrate to the circuit layer side and the metal layer side is located at a position 50 ⁇ m away from the bonding interface of the ceramic substrate of the circuit layer and the metal layer in the stacking direction.
  • a reference line was drawn in parallel with, and the number of particles N touching the reference line and the length L of the reference line were calculated using the following equation.
  • the length L of the reference line is as shown in Table 2.
  • D1 1.5 ⁇ L / N This measurement was performed on the circuit layer and the metal layer, respectively, and the average value is shown in Table 2.
  • the terminal material is ultrasonically bonded under the conditions of a bonding area of 3 x 3 mm 2 , a bonding time of about 0.6 seconds, and a sinking amount of 0.45 mm. And it was confirmed whether or not cracks were generated on the ceramic substrate. This confirmation was performed on the circuit layer and the metal layer, respectively. If peeling of the bonding interface and cracking of the ceramic substrate were confirmed in either of them, it was evaluated as "Yes", and if neither was confirmed, it was evaluated as "No” in Table 2. Described in.
  • Mg diffusion distance For the insulated circuit board (copper / ceramics junction), EPMA is applied to the cross section along the stacking direction from the junction surface of the circuit layer (metal layer) with the ceramics substrate toward the surface side of the circuit layer (metal layer). Line analysis of Mg was performed using. The distance from the junction surface of the circuit layer (metal layer) with the ceramic substrate to the point where the Mg concentration is 0.1 wt% is defined as the Mg diffusion distance. This measurement was performed at 5 locations for each of the circuit layer and the metal layer, and the average value thereof is shown in Table 2.
  • the ratio D1 / D0 of the average crystal grain size D1 to the average crystal grain size D0 of the entire circuit layer and the metal layer at a position 50 ⁇ m in the stacking direction from the bonding surface of the ceramic substrate of the circuit layer and the metal layer is It was 0.65, and cracks were generated at the bonding interface when ultrasonic waves were applied. This is because Ag-Ti paste was used as the bonding material, and the crystal grains near the bonding interface were not sufficiently miniaturized, and deformation in the circuit layer and metal layer near the bonding interface could not be suppressed when ultrasonic waves were applied. Guessed.
  • Example 1-4 of the present invention the ratio of the average crystal grain size D1 at a position 50 ⁇ m from the bonding surface of the circuit layer and the metal layer to the ceramic substrate in the stacking direction to the average crystal grain size D0 of the entire circuit layer and the metal layer.
  • D1 / D0 was 0.60 or less, and crack generation at the bonding interface could be suppressed when ultrasonic waves were applied.
  • a material containing Mg is used as the bonding material, and by further performing the holding step and the bonding step shown in Table 1, Mg is diffused to the circuit layer side and the metal layer side, and crystal grains near the bonding interface are formed. It is presumed that it was sufficiently miniaturized and deformation in the region near the junction interface of the circuit layer and the metal layer could be suppressed when ultrasonic waves were applied.
  • a copper / ceramics bonded body in which a copper member made of copper or a copper alloy and a ceramics member are reliably bonded and has excellent bonding reliability even when ultrasonic waves are applied. It was confirmed that it is possible to provide an insulated circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)

Abstract

本発明の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記銅部材の積層方向に沿った断面を観察した結果、前記セラミックス部材との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅部材の全体の平均結晶粒径D0との比D1/D0が0.60以下である。

Description

銅/セラミックス接合体、および、絶縁回路基板
 この発明は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体、および、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板に関するものである。
 本願は、2020年5月27日に日本に出願された特願2020-091953号、および、2021年5月18日に日本に出願された特願2021-083912号に基づき優先権を主張し、それらの内容をここに援用する。
 パワーモジュール、LEDモジュールおよび熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子および熱電素子が接合された構造とされている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多いことから、これを搭載する基板としては、例えば窒化ケイ素などからなるセラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、を備えた絶縁回路基板が、従来から広く用いられている。なお、絶縁回路基板としては、セラミックス基板の他方の面に金属板を接合して金属層を形成したものも提供されている。
 例えば、特許文献1には、セラミックス基板の一方の面および他方の面に、銅板を接合することにより回路層および金属層を形成した絶縁回路基板が提案されている。この絶縁回路基板においては、セラミックス基板の一方の面および他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。
 また、特許文献2には、窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板が提案されている。この絶縁回路基板においては、銅板とセラミックス基板との間に活性金属の単体およびMg単体を配置し、銅板とセラミックス基板とを積層方向に加圧した状態で加熱することで、セラミックス基板と銅板とを接合している。
日本国特許第3211856号公報(B) 日本国特開2018-140929号公報(A)
 ところで、特許文献1に開示されているように、活性金属ろう付け法によってセラミックス基板と銅板とを接合する場合には、セラミックス基板と銅板との接合界面に、活性金属(Ti)の化合物層が形成される。例えば、活性金属としてTiを含む活性ろう材を用いて窒素を含むセラミックス基板を接合した場合には、セラミックス基板と銅板との接合界面にTiN層が形成される。
 また、特許文献2においては、銅板とセラミックス基板との間においてセラミックス基板側に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の窒化物を含む活性金属窒化物層が形成される。
 ここで、上述の絶縁回路基板において、回路層(銅板)の表面に端子材等を超音波接合する際には、銅板が塑性変形し、硬いTiN層等の活性金属窒化物層が破壊され、接合信頼性が低下するおそれがあった。また、TiN層の破壊を起点としてセラミックス基板に割れが生じるおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、銅又は銅合金からなる銅部材とセラミックス部材とが確実に接合され、超音波を付与した際にも接合信頼性に優れた銅/セラミックス接合体、および、絶縁回路基板を提供することを目的とする。
 このような課題を解決して、前記目的を達成するために、本発明者らが鋭意検討した結果、以下のような知見を得た。
 セラミックス基板と銅板とを接合するために加熱した際に、銅板の結晶粒が粗大化する。そして、TiN層等の活性金属窒化物層に隣接する領域において結晶粒が粗大化している場合には、超音波付与時に銅板のうち接合界面近傍の領域が変形しやすくなり、TiN層等の活性金属窒化物層が破壊されることが分かった。
 本発明は、上述の知見に基づいてなされたものであって、本発明の一態様の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記銅部材の積層方向に沿った断面を観察した結果、前記セラミックス部材との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅部材の全体の平均結晶粒径D0との比D1/D0が0.60以下であることを特徴としている。
 この構成の銅/セラミックス接合体においては、前記銅部材の積層方向に沿った断面を観察した結果、前記セラミックス部材との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅部材の全体の平均結晶粒径D0との比D1/D0が0.60以下とされているので、接合界面近傍における結晶粒径が比較的小さく抑えられており、超音波付与時に銅部材のうち接合界面近傍の領域における変形を抑制でき、TiN層等の活性金属窒化物層の破壊を抑制することができる。また、銅部材全体と接合界面近傍で大きく結晶粒径が異なっておらず、銅部材全体が硬くなることを抑制できる。
 ここで、本態様の銅/セラミックス接合体においては、前記銅部材のうち前記セラミックス部材の接合面から積層方向に少なくとも50μmまでの領域には、Mgが拡散しており、前記接合面から離間するにしたがいMg濃度が減少していることが好ましい。
 この場合、前記銅部材のうち前記セラミックス部材の接合面から積層方向に少なくとも50μmまでの領域に十分にMgが拡散しており、接合界面近傍における結晶粒径を比較的小さくすることが可能となる。
 本発明の一態様の絶縁回路基板は、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記銅板の積層方向に沿った断面を観察した結果、前記セラミックス基板との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅板の全体の平均結晶粒径D0との比D1/D0が0.60以下であることを特徴としている。
 この構成の絶縁回路基板においては、前記銅板の積層方向に沿った断面を観察した結果、前記セラミックス基板との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅板の全体の平均結晶粒径D0との比D1/D0が0.60以下とされているので、接合界面近傍における結晶粒径が比較的小さく抑えられており、超音波付与時に銅板のうち接合界面近傍の領域における変形を抑制でき、TiN層等の活性金属窒化物層の破壊を抑制することができる。また、銅板全体と接合界面近傍で大きく結晶粒径が異なっておらず、銅板全体が硬くなることを抑制できる。
 ここで、本態様の絶縁回路基板においては、前記銅板のうち前記セラミックス基板の接合面から積層方向に少なくとも50μmまでの領域には、Mgが拡散しており、前記接合面から離間するにしたがいMg濃度が減少していることが好ましい。
 この場合、前記銅板のうち前記セラミックス基板の接合面から積層方向に少なくとも50μmまでの領域に十分にMgが拡散しており、接合界面近傍における結晶粒径を比較的小さくすることが可能となる。
 本発明によれば、銅又は銅合金からなる銅部材とセラミックス部材とが確実に接合され、超音波を付与した際にも接合信頼性に優れた銅/セラミックス接合体、および、絶縁回路基板を提供することが可能となる。
本発明の実施形態である絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の実施形態である絶縁回路基板の回路層(銅部材)および金属層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の実施形態である絶縁回路基板の製造方法を示すフロー図である。 本発明の実施形態である絶縁回路基板の製造方法を示す説明図である。 実施例における銅板の結晶粒径の観察結果を示す図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
 本発明の実施形態について、図1から図4を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックス部材であるセラミックス基板11と、銅部材である銅板22(回路層12)および銅板23(金属層13)とが接合されることにより構成された絶縁回路基板10とされている。
 図1に本発明の実施形態である絶縁回路基板10およびこの絶縁回路基板10を用いたパワーモジュール1を示す。
 このパワーモジュール1は、絶縁回路基板10と、この絶縁回路基板10の一方側(図1において上側)に第1はんだ層2を介して接合された半導体素子3と、絶縁回路基板10の他方側(図1において下側)に第2はんだ層8を介して接合されたヒートシンク51と、を備えている。
 絶縁回路基板10は、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13とを備えている。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、絶縁性に優れたAlN(窒化アルミニウム)、Si(窒化ケイ素)、Al(アルミナ)等で構成されている。特に、強度に優れたSi(窒化ケイ素)で構成されていることが好ましい。なお、ここで、セラミックス基板11の厚さは、0.2mm以上1.5mm以下の範囲内であれば好ましく、本実施形態では、例えば0.32mmに設定されていてもよい。
 回路層12は、図4に示すように、セラミックス基板11の一方の面に銅又は銅合金からなる銅板22が接合されることにより形成されている。本実施形態においては、回路層12を構成する銅板22として、無酸素銅の圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面とされている。ここで、回路層12の厚さは0.1mm以上2.0mm以下の範囲内であれば好ましく、本実施形態では、例えば0.6mmに設定されていてもよい。
 金属層13は、図4に示すように、セラミックス基板11の他方の面に銅又は銅合金からなる銅板23が接合されることにより形成されている。本実施形態においては、金属層13を構成する銅板23として、無酸素銅の圧延板が用いられている。ここで、金属層13の厚さは0.1mm以上2.0mm以下の範囲内であれば好ましく、本実施形態では、例えば0.6mmに設定されていてもよい。
 ヒートシンク51は、前述の絶縁回路基板10を冷却するためのものであり、本実施形態においては、熱伝導性が良好な材質で構成された放熱板とされている。本実施形態においては、ヒートシンク51は、熱伝導性に優れた銅又は銅合金で構成されている。なお、ヒートシンク51と絶縁回路基板10の金属層13とは、第2はんだ層8を介して接合されている。
 ここで、セラミックス基板11と回路層12(銅板22)、および、セラミックス基板11と金属層13(銅板23)とは、図4に示すように、Mg-Ti系接合材25を介して接合されている。
 セラミックス基板11と回路層12(銅板22)との接合界面およびセラミックス基板11と金属層13(銅板23)との接合界面においては、図2に示すように、TiN層31が形成されている。このTiN層31は、Mg-Ti系接合材25に含まれるTiとセラミックス基板11に含まれる窒素(N)とが反応することにより、生成したものである。
 そして、本実施形態においては、回路層12(銅板22)および金属層13(銅板23)の積層方向に沿った断面を観察した結果、セラミックス基板11との接合面から積層方向に50μmの位置における平均結晶粒径D1と回路層12(銅板22)および金属層13(銅板23)の全体の平均結晶粒径D0との比D1/D0が0.60以下、好ましくは0.25以上0.56以下の範囲内とされている。
 すなわち、回路層12(銅板22)および金属層13(銅板23)のうちセラミックス基板11の接合面から積層方向に50μmの位置の結晶粒径が局所的に小さくなっているのである。
 本実施形態において、回路層12のセラミックス基板11との接合面は、積層方向におけるセラミックス基板11の回路層12側の最表面であるとする。
 また、本実施形態において、金属層13のセラミックス基板11との接合面は、積層方向におけるセラミックス基板11の金属層13側の最表面であるとする。
 セラミックス基板11との接合面から積層方向に50μmまでの領域において、セラミックス基板11と回路層12の間、およびセラミックス基板11と金属層13の間に、TiN層31が挟まれているが、TiN層31は、回路層12、金属層13に比べて十分薄い。
 回路層12、金属層13は、TiN層31を介してセラミックス基板11に接合されている。
 なお、本実施形態における平均結晶粒径D0、D1は、双晶を含む結晶粒の平均結晶粒径とする。
 ここで、本実施形態においては、回路層12(銅板22)および金属層13(銅板23)のうちセラミックス基板11の接合面から積層方向に少なくとも50μmまでの領域には、Mgが拡散しており、接合面から離間するにしたがいMg濃度が減少していることが好ましい。すなわち、Mg-Ti系接合材25のMgが、回路層12(銅板22)および金属層13(銅板23)側に十分に拡散していることが好ましい。この領域におけるMgの濃度は0.1wt%以上であり、10wt%以下であることが好ましい。
 次に、上述した本実施形態である絶縁回路基板10、およびパワーモジュール1の製造方法について、図3および図4を参照して説明する。
(積層工程S01)
 図4に示すように、回路層12となる銅板22とセラミックス基板11との間、および、金属層13となる銅板23とセラミックス基板11との間に、Mg-Ti系接合材25を配置して、これらを積層する。なお、本実施形態では、Mg-Ti系接合材25として、水素化チタン粉および水素化マグネシム粉を含むペースト材を用いている。チタン及びマグネシウムは活性な金属であるため、水素化チタン粉および水素化マグネシム粉を用いることで、チタンおよびマグネシウムの酸化等を抑制することが可能となる。
 ここで、配置するMg-Ti系接合材25は、厚さ換算でTi量を0.1μm以上5μm以下の範囲内、Mg量を1.5μm以上10μm以下の範囲内とすることが好ましい。
(保持工程S02)
 次に、積層された銅板22、セラミックス基板11、銅板23を、積層方向に加圧するとともに、加熱炉内に装入して加熱し、所定の保持温度において一定時間保持する。
 ここで、本実施形態では、保持工程S02における加圧荷重を0.049MPa以上3.4MPa以下の範囲内とすることが好ましい。また、加熱炉内は、Ar等の不活性ガス雰囲気とすることが好ましい。
 そして、保持温度を300℃以上730℃以下の範囲内、保持温度での保持時間を10分以上120分以下の範囲内とすることが好ましい。
 この保持工程S02により、Mg-Ti系接合材25のMgが、回路層12となる銅板22および金属層13となる銅板23に向けて十分に拡散することになる。
(接合工程S03)
 次に、保持工程S02後に、積層された銅板22、セラミックス基板11、銅板23を、積層方向に加圧した状態で、さらに加熱して、銅板22とセラミックス基板11と銅板23を接合する。この接合工程S03においては、加熱炉内を真空雰囲気とすることが好ましい。
 ここで、接合工程S03における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされている。
 また、接合工程S03における加熱温度は、650℃以上1050℃以下の範囲内とすることが好ましい。
 さらに、加熱温度での保持時間は、10分以上240分以下の範囲内とすることが好ましい。
 また、接合工程S03における真空度は、1×10-6Pa以上1×10-2Pa以下の範囲内とすることが好ましい。
 以上のように、積層工程S01と、保持工程S02と、接合工程S03とによって、本実施形態である絶縁回路基板10が製造される。
(ヒートシンク接合工程S04)
 次に、絶縁回路基板10の金属層13の他方の面側(セラミックス基板11と反対側)にヒートシンク51を接合する。本実施形態では、絶縁回路基板10とヒートシンク51とを、はんだ材を介して積層して加熱炉に装入し、第2はんだ層8を介して絶縁回路基板10とヒートシンク51とをはんだ接合する。
(半導体素子接合工程S05)
 次に、絶縁回路基板10の回路層12の一方の面側(セラミックス基板11と反対側)に、半導体素子3をはんだ付けにより接合する。
 以上の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、回路層12および金属層13の積層方向に沿った断面を観察した結果、セラミックス基板11との接合面から積層方向に50μmの位置における平均結晶粒径D1と回路層12および金属層13の全体の平均結晶粒径D0との比D1/D0が0.6以下とされている。そのため、接合界面近傍における結晶粒径が比較的小さく抑えられており、超音波付与時に回路層12および金属層13のうち接合界面近傍の領域における変形を抑制でき、TiN層31の破壊を抑制することができる。また、回路層12および金属層13全体と接合界面近傍で結晶粒径が大きく異なっておらず、回路層12および金属層13の全体が硬くなることを抑制できる。
 さらに、本実施形態において、回路層12および金属層13のうちセラミックス基板11の接合面から積層方向に少なくとも50μmまでの領域には、十分にMgが拡散しており、回路層12および金属層13の接合界面近傍における結晶粒径を比較的小さくすることが可能となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、回路層又は金属層を構成する銅板を、無酸素銅の圧延板として説明したが、これに限定されることはなく、他の銅又は銅合金で構成されたものであってもよい。
 また、接合材としては、ペースト材でなく、箔材を用いても製造可能である。
 さらに、ヒートシンクとして放熱板を例に挙げて説明したが、これに限定されることはなく、ヒートシンクの構造に特に限定はない。ヒートシンクは、例えば、冷媒が流通する流路を有するものや冷却フィンを備えたものであってもよい。また、ヒートシンクとしてアルミニウムやアルミニウム合金を含む複合材(例えばAlSiC等)を用いることもできる。
 また、ヒートシンクの天板部や放熱板と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けてもよい。
 また、本実施形態では、絶縁回路基板の回路層にパワー半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 本発明の有効性を確認するために行った確認実験について説明する。
 表1に示すセラミックス基板(40mm×40mm、厚さ0.32mm)の両面に、表1に示す接合材を用いて、銅板(37mm×37mm、厚さ0.8mm)を接合し、回路層及び金属層が形成された絶縁回路基板(銅/セラミックス接合体)を得た。なお、表1に示す条件で保持工程および接合工程を実施した。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた絶縁回路基板(銅/セラミックス接合体)について、積層方向に沿った断面観察を行い、回路層および金属層の結晶粒径を測定した。また、音波を付与し、接合界面の剥離及びセラミックス基板のクラックを評価した。
(結晶粒径)
 絶縁回路基板(回路層および金属層)の積層方向に沿った断面において、EBSD測定装置を用いて、回路層全体および金属層全体の平均結晶粒径D0を測定した。図5に結晶組織の観察結果を示す。
 また、セラミックス基板の最表面から回路層側および金属層側に50μmの位置における平均結晶粒径D1は、回路層および金属層のセラミックス基板の接合界面から積層方向に50μm離れた位置に、接合界面と平行に基準線を引き、この基準線に触れている粒子数Nと基準線の長さLとから、以下の式を用いて算出した。基準線の長さLは表2に示す通りとした。
 D1=1.5×L/N
 この測定を回路層及び金属層でそれぞれ行い、その平均値を表2に示した。
(超音波付与時の接合界面の剥離およびセラミックス基板のクラック)
 接合面積3×3mm、接合時間約0.6秒、沈み込み量0.45mmの条件で端子材を超音波接合し、超音波探傷検査(SAT)により、銅とセラミックス基板の接合界面の剥離およびセラミックス基板のクラック発生の有無を確認した。
 この確認を回路層及び金属層でそれぞれ行い、いずれかで接合界面の剥離およびセラミックス基板のクラック発生が確認された場合を「有」、いずれも確認されなかった場合を「無」とし、表2に記載した。
(Mgの拡散距離)
  絶縁回路基板(銅/セラミックス接合体)について、積層方向に沿った断面を、回路層(金属層)のうちセラミックス基板との接合面から回路層(金属層)の表面側に向かって、EPMAを用いてMgのライン分析を行った。回路層(金属層)のうちセラミックス基板との接合面から、Mgの濃度が0.1wt%となる箇所までの距離をMgの拡散距離とした。なお、この測定は回路層及び金属層で、それぞれ5か所で行い、その平均値を表2に記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例においては、回路層および金属層のセラミックス基板の接合面から積層方向に50μmの位置における、平均結晶粒径D1と回路層および金属層全体の平均結晶粒径D0との比D1/D0が0.65であり、超音波を付与した際に、接合界面にクラックが発生した。接合材としてAg-Tiペーストを用いており、接合界面近傍の結晶粒が十分に微細化せず、超音波付与時に回路層および金属層のうち接合界面近傍の領域における変形を抑制できなかったためと推測される。
 本発明例1-4においては、回路層および金属層のセラミックス基板との接合面から積層方向に50μmの位置における平均結晶粒径D1と回路層および金属層全体の平均結晶粒径D0との比D1/D0が、0.60以下であり、超音波を付与した際に、接合界面におけるクラック発生を抑制できた。接合材としてMgを含有するものを用いており、さらに表1に示す保持工程および接合工程を実施することで、Mgが回路層側および金属層側に拡散して、接合界面近傍の結晶粒が十分に微細化し、超音波付与時に回路層および金属層のうち接合界面近傍の領域における変形を抑制できたためと推測される。
 以上のことから、本発明例によれば、銅又は銅合金からなる銅部材とセラミックス部材とが確実に接合され、超音波を付与した際にも接合信頼性に優れた銅/セラミックス接合体、および、絶縁回路基板を提供可能であることが確認された。
10 絶縁回路基板
11 セラミックス基板
12 回路層
13 金属層
31 TiN層

Claims (4)

  1.  銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記銅部材の積層方向に沿った断面を観察した結果、前記セラミックス部材との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅部材の全体の平均結晶粒径D0との比D1/D0が0.60以下であることを特徴とする銅/セラミックス接合体。
  2.  前記銅部材のうち前記セラミックス部材の接合面から積層方向に少なくとも50μmまでの領域には、Mgが拡散しており、前記接合面から離間するにしたがいMg濃度が減少していることを特徴とする請求項1に記載の銅/セラミックス接合体。
  3.  セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記銅板の積層方向に沿った断面を観察した結果、前記セラミックス基板との接合面から積層方向に50μmの位置における平均結晶粒径D1と前記銅板の全体の平均結晶粒径D0との比D1/D0が0.60以下であることを特徴とする絶縁回路基板。
  4.  前記銅板のうち前記セラミックス基板の接合面から積層方向に少なくとも50μmまでの領域には、Mgが拡散しており、前記接合面から離間するにしたがいMg濃度が減少していることを特徴とする請求項3に記載の絶縁回路基板。
PCT/JP2021/019487 2020-05-27 2021-05-24 銅/セラミックス接合体、および、絶縁回路基板 WO2021241463A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180037561.7A CN115667187A (zh) 2020-05-27 2021-05-24 铜-陶瓷接合体及绝缘电路基板
EP21813874.1A EP4159704A4 (en) 2020-05-27 2021-05-24 COPPER/CERAMIC BONDED BODY AND INSULATED CIRCUIT BOARD
US17/925,666 US20230197556A1 (en) 2020-05-27 2021-05-24 Copper/ceramic bonded body and insulated circuit substrate
KR1020227039969A KR20230017184A (ko) 2020-05-27 2021-05-24 구리/세라믹스 접합체, 및, 절연 회로 기판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-091953 2020-05-27
JP2020091953 2020-05-27
JP2021083912A JP7119268B2 (ja) 2020-05-27 2021-05-18 銅/セラミックス接合体、および、絶縁回路基板
JP2021-083912 2021-05-18

Publications (1)

Publication Number Publication Date
WO2021241463A1 true WO2021241463A1 (ja) 2021-12-02

Family

ID=78744925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019487 WO2021241463A1 (ja) 2020-05-27 2021-05-24 銅/セラミックス接合体、および、絶縁回路基板

Country Status (6)

Country Link
US (1) US20230197556A1 (ja)
EP (1) EP4159704A4 (ja)
KR (1) KR20230017184A (ja)
CN (1) CN115667187A (ja)
TW (1) TW202201681A (ja)
WO (1) WO2021241463A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2010238952A (ja) * 2009-03-31 2010-10-21 Dowa Metaltech Kk 金属セラミックス接合基板及びその製造方法
JP2011124585A (ja) * 2011-01-07 2011-06-23 Hitachi Metals Ltd セラミックス配線基板、その製造方法及び半導体モジュール
JP2014060215A (ja) * 2012-09-14 2014-04-03 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
WO2018159590A1 (ja) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2018140929A (ja) 2017-02-28 2018-09-13 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019082970A1 (ja) * 2017-10-27 2019-05-02 三菱マテリアル株式会社 接合体、及び、絶縁回路基板
WO2019187767A1 (ja) * 2018-03-29 2019-10-03 古河電気工業株式会社 絶縁基板及びその製造方法
JP2020091953A (ja) 2018-12-03 2020-06-11 シチズン電子株式会社 面状発光装置、及び面状発光装置の製造方法
JP2021083912A (ja) 2019-11-29 2021-06-03 株式会社ユニバーサルエンターテインメント 遊技機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148533A1 (ja) * 2013-03-19 2014-09-25 日本碍子株式会社 接合体及びその製造方法
WO2020044593A1 (ja) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2010238952A (ja) * 2009-03-31 2010-10-21 Dowa Metaltech Kk 金属セラミックス接合基板及びその製造方法
JP2011124585A (ja) * 2011-01-07 2011-06-23 Hitachi Metals Ltd セラミックス配線基板、その製造方法及び半導体モジュール
JP2014060215A (ja) * 2012-09-14 2014-04-03 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
WO2018159590A1 (ja) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2018140929A (ja) 2017-02-28 2018-09-13 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019082970A1 (ja) * 2017-10-27 2019-05-02 三菱マテリアル株式会社 接合体、及び、絶縁回路基板
WO2019187767A1 (ja) * 2018-03-29 2019-10-03 古河電気工業株式会社 絶縁基板及びその製造方法
JP2020091953A (ja) 2018-12-03 2020-06-11 シチズン電子株式会社 面状発光装置、及び面状発光装置の製造方法
JP2021083912A (ja) 2019-11-29 2021-06-03 株式会社ユニバーサルエンターテインメント 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159704A4

Also Published As

Publication number Publication date
EP4159704A1 (en) 2023-04-05
US20230197556A1 (en) 2023-06-22
CN115667187A (zh) 2023-01-31
TW202201681A (zh) 2022-01-01
EP4159704A4 (en) 2024-07-03
KR20230017184A (ko) 2023-02-03

Similar Documents

Publication Publication Date Title
KR102422607B1 (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 및 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 히트 싱크의 제조 방법
JP5918008B2 (ja) 冷却器の製造方法
JP7056744B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021033421A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
KR20150135285A (ko) 파워 모듈용 기판, 히트 싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP5829403B2 (ja) 放熱用絶縁基板及びその製造方法
JP7136212B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
JP5989465B2 (ja) 絶縁基板の製造方法
WO2019088222A1 (ja) 接合体、及び、絶縁回路基板
JP2019081690A (ja) 接合体、及び、絶縁回路基板
JP2019085327A (ja) 接合体、及び、絶縁回路基板
JP7119268B2 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2021241463A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2019082970A1 (ja) 接合体、及び、絶縁回路基板
JP7008188B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2016167217A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP6911805B2 (ja) ヒートシンク付き絶縁回路基板の製造方法
JP6780561B2 (ja) 接合体の製造方法、絶縁回路基板の製造方法、及び、接合体、絶縁回路基板
JP7039933B2 (ja) 接合体、絶縁回路基板、ヒートシンク付絶縁回路基板、ヒートシンク、及び、接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付絶縁回路基板の製造方法、ヒートシンクの製造方法
JP5666372B2 (ja) 絶縁基板用積層材
JP2021031315A (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP6673635B2 (ja) 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法、及び、接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク
JP2023044869A (ja) 銅/セラミックス接合体、および、絶縁回路基板
CN117897366A (zh) 铜-陶瓷接合体及绝缘电路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813874

Country of ref document: EP

Effective date: 20230102