WO2019088222A1 - 接合体、及び、絶縁回路基板 - Google Patents

接合体、及び、絶縁回路基板 Download PDF

Info

Publication number
WO2019088222A1
WO2019088222A1 PCT/JP2018/040682 JP2018040682W WO2019088222A1 WO 2019088222 A1 WO2019088222 A1 WO 2019088222A1 JP 2018040682 W JP2018040682 W JP 2018040682W WO 2019088222 A1 WO2019088222 A1 WO 2019088222A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ceramic substrate
copper
active metal
bonding
Prior art date
Application number
PCT/JP2018/040682
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018204040A external-priority patent/JP7230432B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP18873449.5A priority Critical patent/EP3705464A4/en
Priority to US16/756,275 priority patent/US10998250B2/en
Priority to KR1020207011571A priority patent/KR20200083455A/ko
Priority to CN201880066970.8A priority patent/CN111225890A/zh
Publication of WO2019088222A1 publication Critical patent/WO2019088222A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the present invention relates to a joined body in which a ceramic member and a copper member are joined, and an insulated circuit board provided with the joined body.
  • a semiconductor element is bonded on a circuit layer made of a conductive material.
  • a power semiconductor element for controlling a large electric power used to control wind power generation, an electric car, a hybrid car, etc. a large amount of heat is generated. Therefore, for example, Si 3 N 4
  • An insulating circuit board comprising a ceramic substrate made of, etc.) and a circuit layer formed by bonding a metal plate excellent in conductivity to one surface of the ceramic substrate is widely used conventionally.
  • the insulating circuit board one in which a metal plate is formed by bonding a metal plate to the other surface of the ceramic substrate is also provided.
  • Patent Document 1 proposes a circuit board in which a circuit layer and a metal layer are formed by bonding a copper plate to one surface and the other surface of a ceramic substrate.
  • a copper plate is disposed on one surface and the other surface of the ceramic substrate with an Ag-Cu-Ti brazing material interposed, and the copper plate is joined by heat treatment (so-called activation) Metal brazing method).
  • activation Metal brazing method
  • the brazing material containing Ti which is an active metal
  • the wettability between the molten brazing material and the ceramic substrate is improved, and the ceramic substrate and the copper plate are joined well. It will be.
  • Patent Document 2 an active element oxide layer containing an active element and oxygen is formed at the bonding interface between the copper member and the ceramic member, and the thickness of the active element oxide layer is 5 nm to 200 nm. Junctions within the following range have been proposed.
  • the thickness of the active element oxide layer formed at the bonding interface between the copper member and the ceramic member is 5 nm or more, the ceramic member and the copper member are reliably bonded, It is possible to secure the bonding strength.
  • the thickness of the active element oxide layer is 200 nm or less, the thickness of the relatively hard and brittle active element oxide layer is thin, for example, a crack is generated in the ceramic member due to thermal stress under cold thermal cycle load. Can be suppressed.
  • a terminal material may be ultrasonically bonded in the circuit layer of the above-mentioned insulated circuit board.
  • the active metal oxide layer formed on the ceramic member side is amorphous
  • an ultrasonic wave is applied, a crack is generated starting from the amorphous active metal oxide layer.
  • the circuit layer may be peeled off.
  • This invention is made in view of the situation mentioned above, and is a joined object which can control exfoliation of a ceramic member and a copper member, even if it is a case where ultrasonic bonding is performed, and insulation. It aims at providing a circuit board.
  • a joined object of the present invention is a joined object by which a ceramic member which consists of Si system ceramics, and a copper member which consists of copper or a copper alloy are joined, and said ceramic member and said copper
  • the bonding layer formed between the member and the member is characterized in that a crystalline active metal compound layer composed of a compound containing an active metal is formed on the ceramic member side.
  • a crystalline active metal compound layer made of a compound containing an active metal is formed on the ceramic member side of the bonding layer formed between the ceramic member and the copper member. Therefore, even when ultrasonic waves are loaded, generation of cracks starting from the active metal compound layer can be suppressed, and peeling between the ceramic member and the copper member can be suppressed.
  • the thickness of the active metal compound layer is preferably in the range of 1.5 nm to 150 nm. According to the joined body of this configuration, since the thickness of the active metal compound layer is in the range of 1.5 nm to 150 nm, an active metal compound layer having a suitable thickness is present at the bonding interface, so that the thermal energy is reduced. It is possible to suppress the occurrence of cracking when the cycle is loaded, and it is excellent in thermal cycle reliability.
  • the active metal compound layer preferably contains either a nitride of an active metal or an oxide of an active metal. According to the joined body of this configuration, since the active metal compound layer contains the active metal nitride and the active metal oxide, the bonding property between the ceramic member and the copper member is improved, and the ultrasonic wave is loaded. Peeling between the ceramic member and the copper member can be further suppressed.
  • the insulating circuit substrate of the present invention is an insulating circuit substrate including the above-mentioned bonded body, and the ceramic substrate comprising the ceramic member, and the circuit layer comprising the copper member formed on one surface of the ceramic substrate , Is characterized by.
  • the ceramic substrate made of the ceramic member is provided as the above-mentioned joined body, and the circuit layer made of the copper member formed on one surface of the ceramic substrate, Even when ultrasonic bonding is applied to the circuit layer, it is possible to suppress the occurrence of cracks in the bonding portion between the ceramic substrate and the circuit layer, and it is possible to suppress peeling between the circuit layer and the ceramic substrate.
  • a metal layer is formed on the surface of the ceramic substrate opposite to the circuit layer.
  • the heat on the circuit layer side can be efficiently dissipated by the metal layer formed on the surface of the ceramic substrate opposite to the circuit layer.
  • the occurrence of warpage of the ceramic substrate can be suppressed.
  • the metal layer may be made of copper or a copper alloy.
  • the metal layer made of copper or copper alloy is formed on the surface of the ceramic substrate opposite to the circuit layer, it is possible to realize an insulating circuit substrate excellent in heat dissipation.
  • the metal layer may be made of aluminum or an aluminum alloy.
  • the thermal stress when a thermal stress is applied to the ceramic substrate by joining a metal layer made of aluminum or aluminum alloy having small deformation resistance to the surface of the ceramic substrate opposite to the circuit layer, the thermal stress is Alternatively, it can be absorbed by the metal layer made of an aluminum alloy, and it becomes possible to suppress the damage due to the thermal stress of the ceramic substrate.
  • the present invention it is possible to provide a joined body capable of suppressing the peeling between the ceramic member and the copper member even when ultrasonic bonding is performed, and an insulated circuit board.
  • a bonded body according to an embodiment of the present invention is configured by bonding a ceramic substrate 11 as a ceramic member made of Si-based ceramic and a copper plate 22 (circuit layer 12) as a copper member made of copper or a copper alloy.
  • the insulated circuit board 10 is used.
  • group ceramics point out the thing of the ceramic comprised with the compound containing Si element.
  • FIG. 1 shows an insulated circuit board 10 according to an embodiment of the present invention and a power module 1 using the insulated circuit board.
  • the power module 1 includes an insulated circuit board 10, a semiconductor element 3 joined to one side (upper side in FIG. 1) of the insulated circuit board 10 via the first solder layer 2, and the other side of the insulated circuit board 10. And a heat sink 51 disposed via the second solder layer 8 (at the lower side in FIG. 1).
  • the first solder layer 2 and the second solder layer 8 are, for example, Sn—Ag based, Sn—In based, or Sn—Ag—Cu based solder materials.
  • the insulating circuit substrate 10 includes a ceramic substrate 11, a circuit layer 12 disposed on one surface (upper surface in FIG. 1) of the ceramic substrate 11, and the other surface of the ceramic substrate 11 ( And the metal layer 13 disposed on the lower surface in FIG.
  • the ceramic substrate 11 is made of Si-based ceramic, for example, silicon nitride (Si 3 N 4 ) having excellent heat dissipation.
  • the thickness of the ceramic substrate 11 is set, for example, in the range of 0.2 to 1.5 mm, and in the present embodiment, the thickness of 0.635 mm is used.
  • the circuit layer 12 is formed by bonding a copper plate 22 made of copper or a copper alloy to one surface of the ceramic substrate 11.
  • a rolled plate of oxygen-free copper is used as the copper plate 22 constituting the circuit layer 12.
  • a circuit pattern is formed on the circuit layer 12, and one surface (upper surface in FIG. 1) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 12 (copper plate 22) is set in the range of 0.1 mm or more and 4.0 mm or less, and is set to 0.6 mm in the present embodiment.
  • the metal layer 13 is formed by bonding a copper plate 23 made of copper or a copper alloy to the other surface of the ceramic substrate 11.
  • a rolled plate of oxygen-free copper is used as the copper plate 23 constituting the metal layer 13.
  • the thickness of the metal layer 13 (copper plate 23) is set in the range of 0.1 mm or more and 4.0 mm or less, and is set to 0.6 mm in the present embodiment.
  • the heat sink 51 is for cooling the insulating circuit board 10 described above, and is a heat sink in the present embodiment.
  • the heat sink 51 is desirably made of a material having good thermal conductivity, and in the present embodiment, is made of A6063 (aluminum alloy).
  • the heat sink 51 is bonded to the metal layer 13 of the insulated circuit board 10 via the second solder layer 8.
  • the bonding layer 30 includes an active metal compound layer 31 made of a compound containing an active metal formed on the ceramic substrate 11 side, an active metal compound layer 31, a circuit layer 12 (copper plate 22) and a metal. And an alloy layer 32 formed between the layer 13 (copper plate 23).
  • the circuit layer 12 (copper plate 22), the metal layer 13 (copper plate 23), and the ceramic substrate are formed using the Cu—P brazing filler metal 24 and the titanium material 25 containing Ti as an active metal. Since 11 is joined, the active metal compound layer 31 is made of a titanium compound.
  • the active metal compound layer 31 is a crystalline titanium compound (titanium oxide or titanium nitride). The crystallinity of the active metal compound layer 31 can be confirmed by observing it with a transmission electron microscope and observing an electron diffraction pattern.
  • the active metal compound layer 31 is made of titanium oxide, and a rutile electron diffraction pattern is observed.
  • the thickness of the active metal compound layer 31 is preferably in the range of 1.5 nm or more and 150 nm or less.
  • the alloy layer 32 is assumed to contain an alloy or an intermetallic compound including any of the components of the brazing material used at the time of joining.
  • the alloy layer 32 is made of Cu, P, Sn, Ni Or an alloy or intermetallic compound containing any of the above.
  • the Cu—P brazing filler metal 24, the titanium material 25, and the copper plate 22 to be the circuit layer 12 are sequentially laminated on one surface (upper surface in FIG. 4) of the ceramic substrate 11.
  • the Cu—P brazing filler metal 24, the titanium material 25, and the copper plate 23 to be the metal layer 13 are sequentially laminated on the other surface (lower surface in FIG. 4) of the ceramic substrate 11 (lamination step S01).
  • the Cu—P brazing filler metal 24 contains P in the range of 3 mass% to 10 mass%, and Sn as the low melting point element in the range of 7 mass% to 50 mass%, and Ni A Cu—P—Sn—Ni brazing material containing 2 mass% or more and 15 mass% or less is used.
  • the thickness of the Cu—P-based brazing material 24 is in the range of 10 ⁇ m to 50 ⁇ m.
  • the thickness of the titanium material 25 containing Ti is in the range of 0.05 ⁇ m or more and 2 ⁇ m or less.
  • the titanium material 25 is preferably deposited by vapor deposition or sputtering when the thickness is 0.1 ⁇ m or more and 1.0 ⁇ m or less, and a foil material may be used when the thickness is 1.0 ⁇ m or more preferable.
  • the ceramic substrate 11, Cu-P brazing filler metal 24, titanium material 25, copper plate 22 and copper plate 23 were pressurized in the stacking direction (pressure 1 to 35 kgf / cm 2 (0.1 MPa to 3.5 MPa))
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa or more and 10 ⁇ 3 Pa or less.
  • the heating temperature is set in the range of 770 ° C. to 980 ° C.
  • the holding time at the heating temperature is set in the range of 5 minutes to 150 minutes.
  • the temperature rising rate from 600 ° C. to 730 ° C. is set in the range of 5 ° C./min to 20 ° C./min.
  • the thickness of the titanium material 25 containing Ti which is an active metal element, is less than 0.05 ⁇ m, there is a possibility that bonding between the ceramic substrate 11 and the copper plates 22 and 23 is insufficient.
  • the thickness of the titanium material 25 exceeds 2 ⁇ m, the decomposition of the ceramic substrate 11 is promoted, and there is a possibility that a crack may occur at the time of ultrasonic bonding. From the above, in the present embodiment, the thickness of the titanium material 25 is set in the range of 0.05 ⁇ m or more and 2 ⁇ m or less.
  • the lower limit of the thickness of the titanium material 25 is preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more, in order to reliably bond the ceramic substrate 11 and the copper plates 22 and 23.
  • the upper limit of the thickness of the titanium material 25 is preferably 1.8 ⁇ m or less, and more preferably 1.5 ⁇ m or less.
  • the thickness of the Cu—P brazing material 24 is set in the range of 10 ⁇ m to 50 ⁇ m.
  • the lower limit of the thickness of the Cu—P-based brazing material 24 is preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more, in order to reliably join the ceramic substrate 11 and the copper plates 22 and 23.
  • the upper limit of the thickness of the Cu—P brazing material 24 is preferably 40 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • the heating temperature in the bonding step S02 is set in the range of 770 ° C. or more and 980 ° C. or less.
  • the lower limit of the heating temperature in the bonding step S02 is preferably 810 ° C. or higher, and more preferably 850 ° C.
  • the upper limit of the heating temperature in the bonding step S02 is preferably 950 ° C. or less, and more preferably 930 ° C. or less.
  • the holding time at the heating temperature in the bonding step S02 is set in the range of 5 minutes to 150 minutes.
  • the lower limit of the holding time at the heating temperature in bonding step S02 is preferably 15 minutes or more, and more preferably 30 minutes or more. preferable.
  • the upper limit of the holding time at the heating temperature in the bonding step S02 is preferably 120 minutes or less, and more preferably 100 minutes or less.
  • the temperature rising rate from 600 ° C. to 730 ° C. in the bonding step S02 is less than 5 ° C./min, the decomposition of the ceramic substrate 11 is promoted, and there is a possibility that a crack may occur during ultrasonic bonding.
  • the temperature increase rate from 600 ° C. to 730 ° C. in the bonding step S02 exceeds 20 ° C./min, microcracks are generated in the ceramic substrate 11 due to thermal shock, and the ceramic substrate 11 is cracked in ultrasonic bonding. It may occur. From the above, in the present embodiment, the temperature rising rate from 600 ° C. to 730 ° C.
  • the lower limit of the temperature rising rate from 600 ° C. to 730 ° C. in the bonding step S02 is preferably 7 ° C./min or more, and 10 ° C./min or more. Is more preferred.
  • the upper limit of the temperature rising rate from 600 ° C. to 730 ° C. in bonding step S02 is preferably 15 ° C./min or less, and 13 ° C./min or less It is further preferable to do.
  • the insulating circuit board 10 according to the present embodiment is manufactured by the above-described lamination step S01 and bonding step S02.
  • the heat sink 51 is soldered to the other surface side of the metal layer 13 of the insulated circuit board 10 (heat sink bonding step S03). Further, the semiconductor element 3 is bonded to one surface of the circuit layer 12 of the insulating circuit board 10 by soldering (semiconductor element bonding step S04).
  • the power module 1 shown in FIG. 1 is manufactured by the above process.
  • the ceramic substrate 11 side of the bonding layer 30 formed between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 since the active metal compound layer 31 made of crystalline titanium oxide is formed, generation of cracks starting from the active metal compound layer 31 can be suppressed even when ultrasonic waves are applied. The peeling between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 can be suppressed.
  • the thickness of the active metal compound layer 31 is 1.5 nm or more, the strength in the vicinity of the bonding interface of the ceramic substrate 11 is appropriately improved by the active metal compound layer 31, and the cooling and heating cycle is performed. It is possible to suppress the occurrence of cracking of the ceramic substrate 11 at the time of loading.
  • the thickness of the sext metal compound layer 31 is 150 nm or less, the hard active metal compound layer 31 is not excessively formed, and the thermal strain generated in the ceramic substrate 11 at the time of cold thermal cycle load can be suppressed. It is possible to suppress the occurrence of cracking of the ceramic substrate 11 at the time of cooling and heating cycle loading.
  • the lower limit of the thickness of the active metal compound layer 31 is preferably 3 nm or more, and more preferably 5 nm or more.
  • the upper limit of the thickness of the active metal compound layer 31 is preferably 60 nm or less, and more preferably 20 nm or less.
  • the ceramic substrate 11 is made of silicon nitride (Si 3 N 4 ), the insulating circuit substrate 10 having excellent insulation and heat resistance can be manufactured. Furthermore, since the active metal compound layer 31 is made of titanium oxide, the bonding property between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 is improved, and the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 are Peeling can be further suppressed.
  • the metal layer 13 is formed on the surface of the ceramic substrate 11 opposite to the circuit layer 12, heat generated in the semiconductor element 3 can be efficiently dissipated. . Further, the occurrence of warpage of the ceramic substrate 11 can be suppressed. Further, since the metal layer 13 is made of copper or a copper alloy, the insulated circuit board 10 having excellent heat dissipation can be realized.
  • the power module 101 includes the insulating circuit substrate 110, the semiconductor element 3 joined to one surface (upper surface in FIG. 5) of the insulating circuit substrate 110 via the solder layer 2, and the lower side of the insulating circuit substrate 110. And a heat sink 51 joined.
  • the circuit layer 112 is formed by bonding a copper plate 122 made of copper or a copper alloy to one surface of the ceramic substrate 11 as shown in FIG.
  • a rolled plate of oxygen-free copper is used as the copper plate 122 constituting the circuit layer 112.
  • a circuit pattern is formed on the circuit layer 112, and one surface thereof (upper surface in FIG. 5) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 112 (copper plate 122) is set in the range of 0.1 mm or more and 1.0 mm or less, and is set to 0.6 mm in the present embodiment.
  • the metal layer 113 is formed by bonding an aluminum plate 123 made of aluminum or an aluminum alloy to the other surface of the ceramic substrate 11 as shown in FIG.
  • a rolled plate of aluminum (4N aluminum) having a purity of 99.99 mass% or more is used as the aluminum plate 123 constituting the metal layer 113.
  • the thickness of the metal layer 113 (aluminum plate 123) is set in the range of 0.2 mm or more and 6 mm or less, and is set to 2.0 mm in the present embodiment.
  • the heat sink 51 is bonded to the metal layer 113 of the insulating circuit substrate 110 using an Al—Si-based brazing material or the like.
  • a bonding layer 130 is formed at the bonding interface between the ceramic substrate 11 and the circuit layer 112 (copper plate 122).
  • the bonding layer 130 includes an active metal compound layer 131 made of a compound containing an active metal formed on the ceramic substrate 11 side, an active metal compound layer 131 and a circuit layer 112 (copper plate 122). And an alloy layer 132 formed therebetween.
  • the circuit layer 112 (copper plate 122) and the ceramic substrate 11 are joined using the Cu—P brazing material 24 and the titanium material 25 containing Ti as an active metal.
  • the active metal compound layer 131 is composed of a titanium compound.
  • the active metal compound layer 131 is a crystalline titanium compound (titanium oxide or titanium nitride). The crystallinity of the active metal compound layer 131 can be confirmed by observation with a transmission electron microscope to observe an electron diffraction pattern.
  • the active metal compound layer 131 is made of titanium oxide, and a rutile electron diffraction pattern is observed.
  • the thickness of the active metal compound layer 131 is preferably in the range of 1.5 nm or more and 150 nm or less.
  • the alloy layer 132 is assumed to contain an alloy or an intermetallic compound including any of the components of the brazing material used at the time of joining.
  • the alloy layer 132 contains any of Cu, P, Sn, and Ni. It has an alloy or intermetallic compound.
  • the copper plate 122 to be the Cu—P brazing filler metal 24, the titanium material 25, and the circuit layer 112 is sequentially laminated on one surface (upper surface in FIG. 8) of the ceramic substrate 11 (copper plate Stacking process S101).
  • the thicknesses and the like of the Cu—P-based brazing filler metal 24 and the titanium material 25 were set to the same conditions as in the first embodiment.
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa or more and 10 ⁇ 3 Pa or less.
  • the heating temperature is set in the range of 770 ° C. to 980 ° C., and the holding time at the heating temperature is set in the range of 5 minutes to 150 minutes.
  • the temperature rising rate from 600 ° C. to 730 ° C. is set in the range of 5 ° C./min to 20 ° C./min.
  • an Al—Si brazing material 27 and an aluminum plate 123 to be the metal layer 113 are sequentially laminated on the other surface (the lower surface in FIG. 8) of the ceramic substrate 11 (aluminum plate lamination Process S103).
  • a brazing material foil made of an aluminum alloy containing Si in a range of 7 mass% or more and 12 mass% or less is used as the Al-Si brazing material 27; Is set in the range of 5 ⁇ m to 30 ⁇ m.
  • a vacuum heating furnace is used.
  • the inside is charged, heated and joined (aluminum plate bonding step S104).
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa or more and 10 ⁇ 3 Pa or less.
  • the heating temperature is in the range of 580 ° C. to 650 ° C., and the holding time at the heating temperature is in the range of 1 minute to 180 minutes.
  • Insulating circuit board 110 which is this embodiment is manufactured by the above-mentioned copper plate lamination process S101, copper plate joint process S102, aluminum plate lamination process S103, and aluminum plate joint process S104.
  • the heat sink 51 is bonded to the other surface side of the metal layer 113 of the insulating circuit substrate 110 using an Al—Si-based brazing material (heat sink bonding step S105). Further, the semiconductor element 3 is bonded to one surface of the circuit layer 112 of the insulating circuit board 110 by soldering (semiconductor element bonding step S106).
  • the power module 101 shown in FIG. 5 is manufactured by the above process.
  • the crystalline material is formed on the ceramic substrate 11 side of the bonding layer 130 formed between the ceramic substrate 11 and the circuit layer 112. Since the active metal compound layer 131 made of titanium oxide is formed, generation of cracks starting from the active metal compound layer 131 can be suppressed even when ultrasonic waves are applied, and the ceramic substrate 11 is Peeling between the first and second circuit layers 112 can be suppressed.
  • the thickness of the active metal compound layer 131 is in the range of 1.5 nm to 150 nm, it is possible to suppress the occurrence of cracking of the ceramic substrate 11 at the time of cooling and heating cycle load.
  • the lower limit of the thickness of the active metal compound layer 131 is preferably 3 nm or more, and more preferably 5 nm or more.
  • the upper limit of the thickness of the active metal compound layer 131 is preferably 60 nm or less, and more preferably 20 nm or less.
  • the ceramic substrate 11 is made of silicon nitride (Si 3 N 4 ), the insulating circuit substrate 110 having excellent insulation and heat resistance can be manufactured. Furthermore, since the active metal compound layer 131 is made of titanium oxide, the bonding property between the ceramic substrate 11 and the circuit layer 112 is improved, and the peeling between the ceramic substrate 11 and the circuit layer 112 can be further suppressed. .
  • the metal layer 113 is formed on the surface of the ceramic substrate 11 opposite to the circuit layer 112, the heat generated in the semiconductor element 3 can be efficiently dissipated. . Further, the occurrence of warpage of the ceramic substrate 11 can be suppressed. Further, since the metal layer 113 is made of aluminum or an aluminum alloy, thermal stress can be absorbed by the metal layer 113, and the load on the ceramic substrate 11 during the cooling and heating cycle can be suppressed.
  • the metal layer is formed on the surface of the ceramic substrate opposite to the circuit layer.
  • the present invention is not limited to this, and the metal layer may not be provided.
  • the heat sink is not limited to those exemplified in the present embodiment, and the structure of the heat sink is not particularly limited. Furthermore, a buffer layer made of aluminum or an aluminum alloy or a composite material containing aluminum (for example, AlSiC or the like) may be provided between the heat sink and the metal layer.
  • the LED element may be mounted on the circuit layer of the insulating circuit board to configure the LED module
  • the thermoelectric element may be mounted on the circuit layer of the insulating circuit board to configure the thermoelectric module.
  • the present invention is not limited to this, and one or two or more active metals selected from Ti, Nb, Hf, and Zr are used.
  • the active metal compound layer is described as being made of titanium oxide, but the present invention is not limited to this, and may be made of titanium nitride.
  • Cu-P-Sn-Ni brazing material was mentioned as an example and demonstrated as a brazing material used when joining a ceramic substrate and a copper plate, it is not limited to this, and other brazing materials are used. May be
  • the alloy layer is described as having an alloy or an intermetallic compound containing any of Cu, P, Sn, and Ni, the present invention is not limited thereto. It may be an alloy containing any of the components or an intermetallic compound.
  • the brazing material contains Zn, it may contain an alloy or intermetallic compound containing Zn.
  • Example 1 A copper plate (6 mm ⁇ 6 mm ⁇ 60 mm ⁇ 60 mm ⁇ 60 mm ⁇ 2.0 mm ⁇ 0.32 mm) using the brazing material and active metal material described in Table 1 on one side. 0.3 mm thick) are laminated in order, and a laminated body is formed. Then, the laminated body was put into a vacuum heating furnace in a state of being pressurized by a load shown in Table 2, and was heated to bond a copper plate to one surface of the ceramic substrate. The heating temperature and time were as described in Table 2.
  • FIG. 9 shows “transmission electron microscope observation of the bonding interface between the ceramic substrate and the copper plate” of the invention example 1
  • FIG. 10 shows “line analysis result in the vicinity of the ceramic substrate”.
  • Example 2 Using the brazing material and active metal material described in Table 3 on both sides of a ceramic substrate (40 mm ⁇ 40 mm ⁇ 0.32 mm thickness) made of the materials listed in Table 3, a copper plate (37 mm ⁇ 37 mm ⁇ 0. 0) made of oxygen free copper. 8 mm thick) are sequentially laminated to form a laminated body. Then, the laminated body was put into a vacuum heating furnace in a state of being pressurized by a load shown in Table 4, and was heated to thereby bond copper plates on both sides of the ceramic substrate. The heating temperature and time were as described in Table 4.
  • the bonded body of the example of the present invention was obtained as described above. About the obtained joined body, "the material and crystallinity of an active metal compound layer", the thickness of an active metal compound layer ", and” cool thermal cycle reliability "were evaluated. The “material and crystallinity of the active metal compound layer” was evaluated in the same manner as in Example 1.
  • Thickness of active metal compound layer Measured at a magnification of 80000 times using a transmission electron microscope (Titanium ChemiSTEM manufactured by FEI, accelerating voltage 200 kV), N, O and active metal elements by energy dispersive X-ray analysis (NSS7 manufactured by Thermo Scientific Co., Ltd.) The elemental mapping of was obtained. It was judged that the active metal compound layer was present when the active metal element and N or O were present in the same region. The observation was made in 5 fields of view, and the average value of the area obtained by dividing the area in which the active metal element and N or O exist in the same area by the measured width was taken as the “thickness of active metal compound layer”.
  • thermo cycle reliability A thermal cycle of ⁇ 50 ° C. ⁇ 10 min ⁇ ⁇ 175 ° C. ⁇ 10 min was carried out up to 2000 cycles in a gas phase using a thermal shock tester (TSA-72 ES manufactured by Esbeck Co., Ltd.). Every 200 cycles, the presence or absence of cracks in the ceramic substrate was determined by interface inspection using an ultrasonic flaw detector (FineSAT 200 manufactured by Hitachi Power Solutions Co., Ltd.).
  • the thickness of the active metal compound layer is in the range of 1.5 nm to 150 nm
  • the number of thermal cycles in which ceramic cracking occurred is 800 times or more, and the thermal cycle reliability is excellent.
  • the thickness of the active metal compound layer is in the range of 1.5 nm to 20 nm
  • the ceramic substrate is obtained even after 2000 cycles of thermal cycling. No cracking has been confirmed, and it has been confirmed that the thermal cycle reliability is particularly excellent. From the above, when the thermal cycle reliability is further required, the thickness of the active metal compound layer is in the range of 1.5 nm to 150 nm, and further in the range of 1.5 nm to 20 nm. Is preferred.
  • the present invention it is possible to provide a joined body capable of suppressing the peeling between the ceramic member and the copper member even when ultrasonic bonding is performed, and an insulated circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)

Abstract

Si系セラミックスからなるセラミックス部材(11)と、銅又は銅合金からなる銅部材(12)とが接合されてなる接合体(10)であって、セラミックス部材(11)と銅部材(12)との間に形成された接合層(30)においては、セラミックス部材(11)側に、活性金属を含む化合物からなる結晶質の活性金属化合物層(31)が形成されている。

Description

接合体、及び、絶縁回路基板
 この発明は、セラミックス部材と銅部材とが接合されてなる接合体、この接合体を備えた絶縁回路基板に関するものである。
 本願は、2017年11月2日に日本に出願された特願2017-213155号、および、2018年10月30日に日本に出願された特願2018-204040号について優先権を主張し、その内容をここに援用する。
 LEDやパワーモジュール等の半導体装置においては、導電材料からなる回路層の上に半導体素子が接合された構造とされている。
 風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子においては、発熱量が多いことから、これを搭載する基板としては、例えばSi(窒化ケイ素)などからなるセラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、を備えた絶縁回路基板が、従来から広く用いられている。なお、絶縁回路基板としては、セラミックス基板の他方の面に金属板を接合して金属層を形成したものも提供されている。
 例えば、特許文献1には、セラミックス基板の一方の面及び他方の面に、銅板を接合することにより回路層及び金属層を形成した回路基板が提案されている。この回路基板においては、セラミックス基板の一方の面及び他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。この活性金属ろう付け法では、活性金属であるTiが含有されたろう材を用いているため、溶融したろう材とセラミックス基板との濡れ性が向上し、セラミックス基板と銅板とが良好に接合されることになる。
 ここで、特許文献1に記載された活性金属ろう付け法によってセラミックス基板と銅板とを接合した場合には、セラミックス基板と銅板との接合界面にTiN層が形成されることになる。このTiN層は硬く脆いため、冷熱サイクル負荷時にセラミックス基板に割れが発生するおそれがあった。
 そこで、特許文献2には、銅部材とセラミックス部材との接合界面に、活性元素と酸素を含有する活性元素酸化物層が形成されており、この活性元素酸化物層の厚さが5nm以上200nm以下の範囲内とされた接合体が提案されている。
 この構成の接合体においては、銅部材とセラミックス部材との接合界面に形成された活性元素酸化物層の厚さが5nm以上とされているので、セラミックス部材と銅部材とが確実に接合され、接合強度を確保することが可能となる。一方、活性元素酸化物層の厚さが200nm以下とされているので、比較的硬くて脆い活性元素酸化物層の厚さが薄く、例えば冷熱サイクル負荷時の熱応力によってセラミックス部材に割れが生じることを抑制できる。
特許第3211856号公報 特許第5828352号公報
 ところで、上述の絶縁回路基板の回路層においては、端子材が超音波接合されることがある。
 ここで、セラミックス部材側に形成される活性金属酸化物層が非晶質であった場合には、超音波を負荷させた際に、非晶質の活性金属酸化物層を起点としてクラックが発生し、回路層が剥離してしまうおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、超音波接合を行った場合であっても、セラミックス部材と銅部材との剥離を抑制することが可能な接合体、及び、絶縁回路基板を提供することを目的とする。
 上記課題を解決するために、本発明の接合体は、Si系セラミックスからなるセラミックス部材と、銅又は銅合金からなる銅部材とが接合されてなる接合体であって、前記セラミックス部材と前記銅部材との間に形成された接合層においては、前記セラミックス部材側に、活性金属を含む化合物からなる結晶質の活性金属化合物層が形成されていることを特徴としている。
 この構成の接合体においては、前記セラミックス部材と前記銅部材との間に形成された接合層の前記セラミックス部材側に、活性金属を含む化合物からなる結晶質の活性金属化合物層が形成されているので、超音波を負荷させた場合であっても、活性金属化合物層を起点としてクラックが発生することを抑制でき、セラミックス部材と銅部材との剥離を抑制することができる。
 ここで、本発明の接合体においては、前記活性金属化合物層の厚さが1.5nm以上150nm以下の範囲内とされていることが好ましい。
 この構成の接合体によれば、前記活性金属化合物層の厚さが1.5nm以上150nm以下の範囲内とされているので、接合界面に適度な厚さの活性金属化合物層が存在し、冷熱サイクルを負荷した際に割れが生じることを抑制でき、冷熱サイクル信頼性に優れている。
 また、本発明の接合体においては、前記活性金属化合物層は、活性金属の窒化物、又は、活性金属の酸化物のいずれかを含有することが好ましい。
 この構成の接合体によれば、前記活性金属化合物層が活性金属の窒化物、活性金属の酸化物を含んでいるので、セラミックス部材と銅部材との接合性が向上し、超音波を負荷した際のセラミックス部材と銅部材との剥離をさらに抑制することができる。
 本発明の絶縁回路基板は、前述の接合体を備えた絶縁回路基板であって、前記セラミックス部材からなるセラミックス基板と、このセラミックス基板の一方の面に形成された前記銅部材からなる回路層と、を備えていることを特徴としている。
 この構成の絶縁回路基板によれば、前述の接合体として前記セラミックス部材からなるセラミックス基板と、このセラミックス基板の一方の面に形成された前記銅部材からなる回路層と、を備えているので、回路層に対して超音波接合を適用した場合であっても、セラミックス基板と回路層との接合部においてクラックが生じることを抑制でき、回路層とセラミックス基板との剥離を抑制することができる。
 ここで、本発明の絶縁回路基板においては、前記セラミックス基板の前記回路層とは反対側の面に、金属層が形成されていることが好ましい。
 この場合、前記セラミックス基板の前記回路層とは反対側の面に形成された金属層によって、回路層側の熱を効率良く放熱することが可能となる。また、セラミックス基板の反りの発生を抑制することができる。
 また、本発明の絶縁回路基板においては、前記金属層は銅又は銅合金からなる構成としてもよい。
 この場合、セラミックス基板の回路層とは反対側の面に、銅又は銅合金からなる金属層が形成されているので、放熱性に優れた絶縁回路基板を実現できる。
 また、本発明の絶縁回路基板においては、前記金属層はアルミニウム又はアルミニウム合金からなる構成としてもよい。
 この場合、セラミックス基板の回路層とは反対側の面に、変形抵抗が小さいアルミニウム又はアルミニウム合金からなる金属層を接合することによって、セラミックス基板に熱応力が加わった際に、この熱応力をアルミニウム又はアルミニウム合金からなる金属層によって吸収でき、セラミックス基板の熱応力による破損を抑制することが可能になる。
 本発明によれば、超音波接合を行った場合であっても、セラミックス部材と銅部材との剥離を抑制することが可能な接合体、及び、絶縁回路基板を提供することができる。
本発明の第一の実施形態である絶縁回路基板(接合体)を用いたパワーモジュールの概略説明図である。 本発明の第一の実施形態である絶縁回路基板(接合体)の回路層及び金属層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の第一の実施形態である絶縁回路基板(接合体)の製造方法及びパワーモジュールの製造方法を示すフロー図である。 本発明の第一の実施形態である絶縁回路基板(接合体)の製造方法を示す説明図である。 本発明の第二の実施形態である絶縁回路基板(接合体)を用いたパワーモジュールの概略説明図である。 本発明の第二の実施形態である絶縁回路基板(接合体)の回路層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の第二の実施形態である絶縁回路基板(接合体)の製造方法及びパワーモジュールの製造方法を示すフロー図である。 本発明の第二の実施形態である絶縁回路基板(接合体)の製造方法を示す説明図である。 実施例における本発明例1のセラミックス基板近傍の観察結果である。 実施例におけるセラミックス基板近傍のライン分析結果である。(a)が比較例1、(b)が本発明例1である。
 以下、図面を参照して、本発明の実施形態である接合体、絶縁回路基板について、添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(第一の実施形態)
 以下に、本発明の第一の実施形態について、図1から図4を参照して説明する。
 本発明の実施形態である接合体は、Si系セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅又は銅合金からなる銅部材としての銅板22(回路層12)とが接合されることによって構成された絶縁回路基板10とされている。なお、Si系セラミックスとは、Si元素を含む化合物で構成されたセラミックスのことを指す。
 図1に、本発明の実施形態である絶縁回路基板10及びこの絶縁回路基板を用いたパワーモジュール1を示す。
 このパワーモジュール1は、絶縁回路基板10と、この絶縁回路基板10の一方側(図1において上側)に第1はんだ層2を介して接合された半導体素子3と、絶縁回路基板10の他方側(図1において下側)に第2はんだ層8を介して配置されたヒートシンク51と、を備えている。
 ここで、第1はんだ層2及び第2はんだ層8は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。
 絶縁回路基板10は、図1に示すように、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13とを備えている。
 セラミックス基板11は、Si系セラミックス、例えば、放熱性の優れた窒化ケイ素(Si)で構成されている。セラミックス基板11の厚さは、例えば0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmのものを用いている。
 回路層12は、図4に示すように、セラミックス基板11の一方の面に銅又は銅合金からなる銅板22が接合されることにより形成されている。本実施形態においては、回路層12を構成する銅板22として、無酸素銅の圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面とされている。ここで、回路層12(銅板22)の厚さは0.1mm以上4.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 金属層13は、図4に示すように、セラミックス基板11の他方の面に銅又は銅合金からなる銅板23が接合されることにより形成されている。本実施形態においては、金属層13を構成する銅板23として、無酸素銅の圧延板が用いられている。ここで、金属層13(銅板23)の厚さは0.1mm以上4.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 ヒートシンク51は、前述の絶縁回路基板10を冷却するためのものであり、本実施形態では放熱板とされている。このヒートシンク51は、熱伝導性が良好な材質で構成されることが望ましく、本実施形態においては、A6063(アルミニウム合金)で構成されている。
 このヒートシンク51は、本実施形態においては、絶縁回路基板10の金属層13に第2はんだ層8を介して接合されている。
 ここで、回路層12(銅板22)とセラミックス基板11、及び、金属層13(銅板23)とセラミックス基板11の接合界面の拡大図を、図2に示す。
 図2に示すように、セラミックス基板11と回路層12(銅板22)との接合界面、及び、セラミックス基板11と金属層13(銅板23)との接合界面には、接合層30が形成されている。
 この接合層30は、図2に示すように、セラミックス基板11側に形成された活性金属を含む化合物からなる活性金属化合物層31と、活性金属化合物層31と回路層12(銅板22)及び金属層13(銅板23)との間に形成された合金層32と、を備えている。
 本実施形態においては、後述するように、Cu-P系ろう材24と活性金属としてTiを含むチタン材25を用いて、回路層12(銅板22)及び金属層13(銅板23)とセラミックス基板11を接合していることから、活性金属化合物層31は、チタン化合物によって構成される。
 そして、活性金属化合物層31は、結晶質のチタン化合物(チタン酸化物又はチタン窒化物)とされている。なお、活性金属化合物層31の結晶性については、透過型電子顕微鏡で観察して電子回折図形を観察することで確認することができる。本実施形態では、活性金属化合物層31がチタン酸化物で構成されており、ルチル型の電子回折図形が観察されることになる。
 ここで、本実施形態においては、活性金属化合物層31の厚さは、1.5nm以上150nm以下の範囲内であることが好ましい。
 また、合金層32は、接合時に用いたろう材の成分のいずれかを含む合金あるいは金属間化合物を含有するものとされている。本実施形態では、後述するように、Cu-P系ろう材24、具体的には、Cu-P-Sn-Niろう材を用いているので、合金層32は、Cu,P,Sn,Niのいずれかを含む合金あるいは金属間化合物を有している。
 次に、上述した本実施形態である絶縁回路基板10の製造方法について、図3及び図4を参照して説明する。
 まず、図4に示すように、セラミックス基板11の一方の面(図4において上面)に、Cu-P系ろう材24、チタン材25、及び回路層12となる銅板22を順に積層するとともに、セラミックス基板11の他方の面(図4において下面)に、Cu-P系ろう材24、チタン材25、及び金属層13となる銅板23を順に積層する(積層工程S01)。
 本実施形態では、Cu-P系ろう材24として、Pを3mass%以上10mass%以下の範囲で含み、かつ、低融点元素であるSnを7mass%以上50mass%以下の範囲で含み、さらに、Niを2mass%以上15mass%以下の範囲で含むCu-P-Sn-Niろう材を用いている。
 ここで、Cu-P系ろう材24の厚さは、10μm以上50μm以下の範囲とされている。
 また、本実施形態では、活性金属元素であるTiを含むチタン材25の厚さは、0.05μm以上2μm以下の範囲内とされている。なお、チタン材25は、厚さが0.1μm以上1.0μm以下の場合には蒸着やスパッタによって成膜することが好ましく、厚さが1.0μm以上の場合には箔材を用いることが好ましい。
 次に、セラミックス基板11、Cu-P系ろう材24、チタン材25、銅板22及び銅板23を、積層方向に加圧(圧力1~35kgf/cm(0.1MPa~3.5MPa))した状態で、真空加熱炉内に装入して加熱して接合する(接合工程S02)。
 本実施形態では、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内としている。
 また、加熱温度は770℃以上980℃以下の範囲内、加熱温度での保持時間を5分以上150分以下の範囲内に設定している。さらに、600℃から730℃までの昇温速度を5℃/min以上20℃/min以下の範囲内に設定している。
 ここで、活性金属元素であるTiを含むチタン材25の厚さが0.05μm未満の場合には、セラミックス基板11と銅板22,23との接合が不十分となるおそれがある。一方、チタン材25の厚さが2μmを超える場合には、セラミックス基板11の分解が促進され、超音波接合時にクラックが生じるおそれがある。
 以上のことから、本実施形態では、チタン材25の厚さを0.05μm以上2μm以下の範囲内に設定している。
 なお、セラミックス基板11と銅板22,23とを確実に接合するためには、チタン材25の厚さの下限を0.3μm以上とすることが好ましく、0.5μm以上とすることがさらに好ましい。一方、セラミックス基板11の分解を抑制するためには、チタン材25の厚さの上限を1.8μm以下とすることが好ましく、1.5μm以下とすることがさらに好ましい。
 Cu-P系ろう材24の厚さが10μm未満の場合には、セラミックス基板11と銅板22,23との接合が不十分となるおそれがある。一方、Cu-P系ろう材24の厚さが50μmを超える場合には、セラミックス基板11の分解が促進され、超音波接合時にクラックが生じるおそれがある。
 以上のことから、本実施形態では、Cu-P系ろう材24の厚さを10μm以上50μm以下の範囲内に設定している。
 なお、セラミックス基板11と銅板22,23とを確実に接合するためには、Cu-P系ろう材24の厚さの下限を15μm以上とすることが好ましく、20μm以上とすることがさらに好ましい。一方、セラミックス基板11の分解を抑制するためには、Cu-P系ろう材24の厚さの上限を40μm以下とすることが好ましく、35μm以下とすることがさらに好ましい。
 接合工程S02における加熱温度が770℃未満の場合には、セラミックス基板11と銅板22,23との接合が不十分となるおそれがある。一方、接合工程S02における加熱温度が980℃を超える場合には、セラミックス基板11の熱劣化によってマイクロクラックが発生し、超音波接合時にセラミックス基板11に割れが生じるおそれがある。
 以上のことから、本実施形態では、接合工程S02における加熱温度を770℃以上980℃以下の範囲内に設定している。
 なお、セラミックス基板11と銅板22,23とを確実に接合するためには、接合工程S02における加熱温度の下限を810℃以上とすることが好ましく、850℃以上とすることがさらに好ましい。一方、セラミックス基板11の熱劣化を抑制するためには、接合工程S02における加熱温度の上限を950℃以下とすることが好ましく、930℃以下とすることがさらに好ましい。
 接合工程S02における加熱温度での保持時間が5分未満の場合には、セラミックス基板11と銅板22,23との接合が不十分となるおそれがある。一方、接合工程S02における加熱温度での保持時間が150分を超える場合には、セラミックス基板11の分解が促進され、超音波接合時にクラックが生じるおそれがある。
 以上のことから、本実施形態では、加熱温度での保持時間を5分以上150分以下の範囲内に設定している。
 なお、セラミックス基板11と銅板22,23とを確実に接合するためには、接合工程S02における加熱温度での保持時間の下限を15分以上とすることが好ましく、30分以上とすることがさらに好ましい。一方、セラミックス基板11の分解を抑制するためには、接合工程S02における加熱温度での保持時間の上限を120分以下とすることが好ましく、100分以下とすることがさらに好ましい。
 接合工程S02における600℃から730℃までの昇温速度が5℃/min未満の場合には、セラミックス基板11の分解が促進され、超音波接合時にクラックが生じるおそれがある。一方、接合工程S02における600℃から730℃までの昇温速度が20℃/minを超える場合には、熱衝撃によってセラミックス基板11にマイクロクラックが発生し、超音波接合時にセラミックス基板11に割れが生じるおそれがある。
 以上のことから、本実施形態では、接合工程S02における600℃から730℃までの昇温速度を5℃/min以上20℃/min以下の範囲内に設定している。
 なお、セラミックス基板11の分解を抑制するためには、接合工程S02における600℃から730℃までの昇温速度の下限を7℃/min以上とすることが好ましく、10 ℃/min以上とすることがさらに好ましい。一方、熱衝撃によるマイクロクラックの発生を抑制するためには、接合工程S02における600℃から730℃までの昇温速度の上限を15℃/min以下とすることが好ましく、13℃/min以下とすることがさらに好ましい。
 以上の積層工程S01及び接合工程S02により、本実施形態である絶縁回路基板10が製造される。
 次に、絶縁回路基板10の金属層13の他方の面側に、ヒートシンク51をはんだ接合する(ヒートシンク接合工程S03)。
 さらに、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する(半導体素子接合工程S04)。
 以上の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(接合体)によれば、セラミックス基板11と回路層12及び金属層13との間に形成された接合層30のセラミックス基板11側に、結晶質のチタン酸化物からなる活性金属化合物層31が形成されているので、超音波を負荷させた場合であっても、活性金属化合物層31を起点としてクラックが発生することを抑制でき、セラミックス基板11と回路層12及び金属層13との剥離を抑制することができる。
 また、本実施形態においては、活性金属化合物層31の厚さが1.5nm以上とされているので、活性金属化合物層31によってセラミックス基板11の接合界面近傍の強度が適度に向上し、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生を抑制することができる。一方、性金属化合物層31の厚さが150nm以下とされているので、硬い活性金属化合物層31が過剰に形成されておらず、冷熱サイクル負荷時においてセラミックス基板11に生じる熱歪を抑えることができ、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生を抑制することができる。
 なお、活性金属化合物層31の厚さの下限は3nm以上であることが好ましく、5nm以上であることがさらに好ましい。一方、活性金属化合物層31の厚さの上限は60nm以下であることが好ましく、20nm以下であることがさらに好ましい。
 また、本実施形態においては、セラミックス基板11が窒化ケイ素(Si)で構成されているので、絶縁性、および、耐熱性に優れた絶縁回路基板10を製造することができる。
 さらに、活性金属化合物層31がチタン酸化物で構成されているので、セラミックス基板11と回路層12及び金属層13との接合性が向上し、セラミックス基板11と回路層12及び金属層13との剥離をさらに抑制することができる。
 さらに、本実施形態においては、セラミックス基板11の回路層12とは反対側の面に、金属層13が形成されているので、半導体素子3で発生した熱を効率良く放熱することが可能となる。また、セラミックス基板11の反りの発生を抑制することができる。
 また、金属層13が銅又は銅合金で構成されているので、放熱性に優れた絶縁回路基板10を実現できる。
(第二の実施形態)
 次に、本発明の第二の実施形態について説明する。なお、第一の実施形態と同一の構成のものについては、同一の符号を付して記載し、詳細な説明を省略する。
 図5に、本発明の第二の実施形態に係る絶縁回路基板110を備えたパワーモジュール101を示す。
 このパワーモジュール101は、絶縁回路基板110と、この絶縁回路基板110の一方の面(図5において上面)にはんだ層2を介して接合された半導体素子3と、絶縁回路基板110の下側に接合されたヒートシンク51と、を備えている。
 回路層112は、図8に示すように、セラミックス基板11の一方の面に銅又は銅合金からなる銅板122が接合されることにより形成されている。本実施形態においては、回路層112を構成する銅板122として、無酸素銅の圧延板が用いられている。この回路層112には、回路パターンが形成されており、その一方の面(図5において上面)が、半導体素子3が搭載される搭載面とされている。ここで、回路層112(銅板122)の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 金属層113は、図8に示すように、セラミックス基板11の他方の面にアルミニウム又はアルミニウム合金からなるアルミニウム板123が接合されることにより形成されている。本実施形態においては、金属層113を構成するアルミニウム板123として、純度99.99mass%以上のアルミニウム(4Nアルミニウム)の圧延板が用いられている。ここで、金属層113(アルミニウム板123)の厚さは0.2mm以上6mm以下の範囲内に設定されており、本実施形態では、2.0mmに設定されている。
 ヒートシンク51は、本実施形態においては、絶縁回路基板110の金属層113にAl-Si系ろう材等を用いて接合されている。
 ここで、回路層112(銅板122)とセラミックス基板11の接合界面の拡大図を、図6に示す。
 図6に示すように、セラミックス基板11と回路層112(銅板122)との接合界面には、接合層130が形成されている。
 この接合層130は、図6に示すように、セラミックス基板11側に形成された活性金属を含む化合物からなる活性金属化合物層131と、活性金属化合物層131と回路層112(銅板122)との間に形成された合金層132と、を備えている。
 本実施形態においては、後述するように、Cu-P系ろう材24と活性金属としてTiを含むチタン材25を用いて、回路層112(銅板122)とセラミックス基板11を接合していることから、活性金属化合物層131は、チタン化合物によって構成される。
 そして、活性金属化合物層131は、結晶質のチタン化合物(チタン酸化物又はチタン窒化物)とされている。なお、活性金属化合物層131の結晶性については、透過型電子顕微鏡で観察して電子回折図形を観察することが確認することができる。本実施形態では、活性金属化合物層131がチタン酸化物で構成されており、ルチル型の電子回折図形が観察されることになる。
 ここで、本実施形態においては、活性金属化合物層131の厚さは、1.5nm以上150nm以下の範囲内であることが好ましい。
 また、合金層132は、接合時に用いたろう材の成分のいずれかを含む合金あるいは金属間化合物を含有するものとされている。本実施形態では、Cu-P系ろう材24、具体的には、Cu-P-Sn-Niろう材を用いているので、合金層132は、Cu,P,Sn,Niのいずれかを含む合金あるいは金属間化合物を有している。
 次に、上述した本実施形態である絶縁回路基板110の製造方法について、図7及び図8を参照して説明する。
 まず、図8に示すように、セラミックス基板11の一方の面(図8において上面)に、Cu-P系ろう材24、チタン材25、及び回路層112となる銅板122を順に積層する(銅板積層工程S101)。
 なお、Cu-P系ろう材24及びチタン材25の厚さ等は、第一の実施形態と同等の条件とした。
 次に、セラミックス基板11、Cu-P系ろう材24、チタン材25、銅板122を、積層方向に加圧(圧力1~35kgf/cm(0.1MPa~3.5MPa))した状態で、真空加熱炉内に装入して加熱して接合する(銅板接合工程S102)。
 本実施形態では、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内としている。
 また、加熱温度は770℃以上980℃以下の範囲内、加熱温度での保持時間を5分以上150分以下の範囲内に設定している。さらに、600℃から730℃までの昇温速度を5℃/min以上20℃/min以下の範囲内に設定している。
 次に、図8に示すように、セラミックス基板11の他方の面(図8において下面)に、Al-Si系ろう材27、及び金属層113となるアルミニウム板123を順に積層する(アルミニウム板積層工程S103)。
 ここで、本実施形態では、Al-Si系ろう材27として、Siを7mass%以上12mass%以下の範囲内で含有するアルミニウム合金からなるろう材箔を用いており、Al-Si系ろう材27の厚さが5μm以上30μm以下の範囲内とされている。
 次に、セラミックス基板11、Al-Si系ろう材27、アルミニウム板123を、積層方向に加圧(圧力1~35kgf/cm(0.1MPa~3.5MPa))した状態で、真空加熱炉内に装入して加熱して接合する(アルミニウム板接合工程S104)。
 本実施形態では、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内としている。
 また、加熱温度は580℃以上650℃以下の範囲内、加熱温度での保持時間は1分以上180分以下の範囲内とされている。
 以上の銅板積層工程S101、銅板接合工程S102、アルミニウム板積層工程S103、アルミニウム板接合工程S104により、本実施形態である絶縁回路基板110が製造される。
 次に、絶縁回路基板110の金属層113の他方の面側に、ヒートシンク51をAl-Si系ろう材を用いて接合する(ヒートシンク接合工程S105)。
 さらに、絶縁回路基板110の回路層112の一方の面に、半導体素子3をはんだ付けにより接合する(半導体素子接合工程S106)。
 以上の工程により、図5に示すパワーモジュール101が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板110(接合体)によれば、セラミックス基板11と回路層112との間に形成された接合層130のセラミックス基板11側に、結晶質のチタン酸化物からなる活性金属化合物層131が形成されているので、超音波を負荷させた場合であっても、活性金属化合物層131を起点としてクラックが発生することを抑制でき、セラミックス基板11と回路層112との剥離を抑制することができる。
 また、本実施形態においては、活性金属化合物層131の厚さが1.5nm以上150nm以下の範囲内とされているので、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生を抑制することができる。
 なお、活性金属化合物層131の厚さの下限は3nm以上であることが好ましく、5nm以上であることがさらに好ましい。一方、活性金属化合物層131の厚さの上限は60nm以下であることが好ましく、20nm以下であることがさらに好ましい。
 また、本実施形態においては、セラミックス基板11が窒化ケイ素(Si)で構成されているので、絶縁性、および、耐熱性に優れた絶縁回路基板110を製造することができる。
 さらに、活性金属化合物層131がチタン酸化物で構成されているので、セラミックス基板11と回路層112との接合性が向上し、セラミックス基板11と回路層112との剥離をさらに抑制することができる。
 さらに、本実施形態においては、セラミックス基板11の回路層112とは反対側の面に、金属層113が形成されているので、半導体素子3で発生した熱を効率良く放熱することが可能となる。また、セラミックス基板11の反りの発生を抑制することができる。
 また、金属層113がアルミニウム又はアルミニウム合金で構成されているので、熱応力を金属層113で吸収することができ、冷熱サイクル時におけるセラミックス基板11への負荷を抑制することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、セラミックス基板の回路層とは反対側の面に金属層を形成したものとして説明したが、これに限定されることはなく、金属層を設けなくてもよい。
 また、ヒートシンクは、本実施形態で例示したものに限定されることはなく、ヒートシンクの構造に特に限定はない。
 さらに、ヒートシンクと金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けてもよい。
 また、本実施形態では、絶縁回路基板に半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板の回路層にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 さらに、本実施形態においては、活性金属としてTiを用いるものとして説明したが、これに限定されることはなく、Ti,Nb,Hf,Zrから選択される一種又は二種以上の活性金属を用いてもよい。
 また、本実施形態では、活性金属化合物層として、チタン酸化物からなるものとして説明したが、これに限定されることはなく、チタン窒化物からなるものとしてもよい。
 さらに、セラミックス基板と銅板とを接合する際に用いるろう材として、Cu-P-Sn-Niろう材を例に挙げて説明したが、これに限定されることはなく、他のろう材を用いてもよい。
 さらに、本実施形態では、合金層がCu,P,Sn,Niのいずれかを含む合金あるいは金属間化合物を有するものとして説明したが、これに限定されることはなく、接合時に用いたろう材の成分のいずれかを含む合金あるいは金属間化合物を含有するものであればよい。例えばろう材がZnを含有する場合には、Znを含む合金あるいは金属間化合物を含有していてもよい。
<実施例1>
 表1記載の材質からなるセラミックス基板(26mm×26mm×0.32mm厚)の一方の面に、表1記載のろう材及び活性金属材を用いて、無酸素銅からなる銅板(6mm×6mm×0.3mm厚)を順に積層し、積層体を形成する。
 そして、積層体を表2に示す荷重で加圧した状態で真空加熱炉に投入し、加熱することによってセラミックス基板の一方の面に銅板を接合した。加熱温度及び時間は表2記載の通りとした。
 以上のようにして、本発明例、比較例の接合体を得た。得られた接合体について、「活性金属化合物層の材質及び結晶性」、「超音波接合性」について評価した。
(活性金属化合物層の材質及び結晶性)
 透過型電子顕微鏡(FEI社製Titan ChemiSTEM、加速電圧200kV)を用いて倍率80000倍で測定し、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)により、N、O及び活性金属元素の元素マッピングを取得した。活性金属元素とNまたはOが同一領域に存在する場合に活性金属化合物層が有ると判断した。 
 さらに活性金属化合物層の高分解能像に格子縞が観察されており、かつ高分解能像を高速フーリエ変換することで得られる回折像に回折斑点が確認された場合に結晶質であると判断した。
 評価結果を表2に示す。
 また、本発明例1の「セラミックス基板と銅板との接合界面の透過電子顕微鏡観察」を図9に、「セラミックス基板近傍のライン分析結果」を図10に示す。
(超音波接合後の剥離の有無)
 得られた接合体に対して、超音波金属接合機(超音波工業株式会社製:60C-904)を用いて、銅端子(10mm×5mm×1mm厚)をコプラス量0.3mmの条件で超音波接合した。
 接合後に、銅板とセラミックス基板の接合界面の剥離が生じたものを「××」と評価した。また、明確な剥離が確認されなかったものについては、さらに超音波探傷装置(株式会社日立ソリューションズ製FineSAT200)を用いて、銅板とセラミックス基板の接合界面を検査し、剥離が観察されたものを「×」、どちらも確認されなかったものを「○」と評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 活性金属化合物層が非晶質である比較例においては、超音波接合後に銅板とセラミックス基板の接合界面での剥離は認められなかったが、超音波探傷装置で検査した結果、剥離が確認された。
 これに対して、活性金属化合物層が結晶質とされた本発明例1-9においては、超音波接合後に銅板とセラミックス基板の接合界面での剥離は認められず、超音波探傷装置で検査した結果、剥離も確認されなかった。
 また、図9を参照すると、本発明例1においては、セラミックス基板の界面部分に結晶質の活性金属化合物層(ルチル型のTi-O層)が形成されていることが確認される。
 さらに、図10を参照すると、本発明例1においては、比較例1に比べて、セラミックス基板の界面部分における活性金属濃度(Ti濃度)が高くなっていることが確認される。
 以上のことから、本発明例によれば、超音波接合を行った場合であっても、セラミックス部材と銅部材との剥離を抑制することが可能な接合体、及び、絶縁回路基板を提供できることが確認された。
<実施例2>
 表3記載の材質からなるセラミックス基板(40mm×40mm×0.32mm厚)の両面に、表3記載のろう材及び活性金属材を用いて、無酸素銅からなる銅板(37mm×37mm×0.8mm厚)を順に積層し、積層体を形成する。
 そして、積層体を表4に示す荷重で加圧した状態で真空加熱炉に投入し、加熱することによってセラミックス基板の両面にそれぞれ銅板を接合した。加熱温度及び時間は表4記載の通りとした。
 以上のようにして、本発明例の接合体を得た。得られた接合体について、「活性金属化合物層の材質及び結晶性」、活性金属化合物層の厚さ」、「冷熱サイクル信頼性」について評価した。なお、「活性金属化合物層の材質及び結晶性」については、実施例1と同様に評価した。
(活性金属化合物層の厚さ)
 透過型電子顕微鏡(FEI社製Titan ChemiSTEM、加速電圧200kV)を用いて倍率80000倍で測定し、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)により、N、O及び活性金属元素の元素マッピングを取得した。活性金属元素とNまたはOが同一領域に存在する場合に活性金属化合物層が有ると判断した。 
 5視野で観察を行い、活性金属元素とNまたはOが同一領域に存在する範囲の面積を測定した幅で割ったものの平均値を「活性金属化合物層の厚さ」とした。
(冷熱サイクル信頼性)
 冷熱衝撃試験機(エスベック株式会社製TSA-72ES)を用いて、気相で-50℃×10min←→175℃×10minの冷熱サイクルを2000サイクルまで実施した。
 200サイクル毎にセラミックス基板の割れの有無を、超音波探傷装置(日立パワーソリューションズ製FineSAT200)による界面検査によって判定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 活性金属化合物層の厚さが1.5nm以上150nm以下の範囲内とされた本発明例11-22においては、セラミックス割れが発生した冷熱サイクルが800回以上であり、冷熱サイクル信頼性に優れていることが確認された。特に、活性金属化合物層の厚さが1.5nm以上20nm以下の範囲内とされた本発明例11,12,14,17,18,19においては、冷熱サイクルを2000サイクル負荷後においてもセラミックス基板の割れが確認されておらず、冷熱サイクル信頼性に特に優れていることが確認された。
 以上のことから、さらに冷熱サイクル信頼性が必要な場合には、活性金属化合物層の厚さが1.5nm以上150nm以下の範囲内、さらには1.5nm以上20nm以下の範囲内、とすることが好ましい。
 本発明によれば、超音波接合を行った場合であっても、セラミックス部材と銅部材との剥離を抑制することが可能な接合体、及び、絶縁回路基板を提供することができる。
1,101 パワーモジュール
3 半導体素子(電子部品)
10,110 絶縁回路基板(接合体)
11 セラミックス基板(セラミックス部材)
12,112 回路層
13,113 金属層
22,23,122 銅板(銅部材)
30,130 接合層
31,131 活性金属化合物層

Claims (7)

  1.  Si系セラミックスからなるセラミックス部材と、銅又は銅合金からなる銅部材とが接合されてなる接合体であって、
     前記セラミックス部材と前記銅部材との間に形成された接合層においては、前記セラミックス部材側に、活性金属を含む化合物からなる結晶質の活性金属化合物層が形成されていることを特徴とする接合体。
  2.  前記活性金属化合物層の厚さが1.5nm以上150nm以下の範囲内とされていることを特徴とする請求項1に記載の接合体。
  3.  前記活性金属化合物層は、活性金属の窒化物、又は、活性金属の酸化物のいずれかを含有することを特徴とする請求項1又は請求項2に記載の接合体。
  4.  請求項1から請求項3のいずれか一項に記載の接合体を備えた絶縁回路基板であって、
     前記セラミックス部材からなるセラミックス基板と、このセラミックス基板の一方の面に形成された前記銅部材からなる回路層と、を備えていることを特徴とする絶縁回路基板。
  5.  前記セラミックス基板の前記回路層とは反対側の面に、金属層が形成されていることを特徴とする請求項4に記載の絶縁回路基板。
  6.  前記金属層は銅又は銅合金からなることを特徴とする請求項5に記載の絶縁回路基板。
  7.  前記金属層はアルミニウム又はアルミニウム合金からなることを特徴とする請求項5に記載の絶縁回路基板。
PCT/JP2018/040682 2017-11-02 2018-11-01 接合体、及び、絶縁回路基板 WO2019088222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18873449.5A EP3705464A4 (en) 2017-11-02 2018-11-01 CONNECTOR AND INSULATING CIRCUIT SUBSTRATE
US16/756,275 US10998250B2 (en) 2017-11-02 2018-11-01 Bonded body and insulating circuit substrate
KR1020207011571A KR20200083455A (ko) 2017-11-02 2018-11-01 접합체, 및, 절연 회로 기판
CN201880066970.8A CN111225890A (zh) 2017-11-02 2018-11-01 接合体及绝缘电路基板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017213155 2017-11-02
JP2017-213155 2017-11-02
JP2018204040A JP7230432B2 (ja) 2017-11-02 2018-10-30 接合体、及び、絶縁回路基板
JP2018-204040 2018-10-30

Publications (1)

Publication Number Publication Date
WO2019088222A1 true WO2019088222A1 (ja) 2019-05-09

Family

ID=66333543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040682 WO2019088222A1 (ja) 2017-11-02 2018-11-01 接合体、及び、絶縁回路基板

Country Status (2)

Country Link
JP (1) JP2023033290A (ja)
WO (1) WO2019088222A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149789A1 (ja) * 2020-01-23 2021-07-29 デンカ株式会社 セラミックス-銅複合体、及びセラミックス-銅複合体の製造方法
WO2022024990A1 (ja) * 2020-07-27 2022-02-03 株式会社 東芝 接合体、回路基板、半導体装置、及び接合体の製造方法
CN114127921A (zh) * 2019-08-21 2022-03-01 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
CN114787106A (zh) * 2019-12-06 2022-07-22 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
CN114845977A (zh) * 2019-12-19 2022-08-02 三菱综合材料株式会社 铜-陶瓷接合体、及绝缘电路基板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828352B2 (ja) 1980-08-07 1983-06-15 川崎製鉄株式会社 ステンレス鋼熱延コイルの酸洗制御方法および装置
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2002201076A (ja) * 2000-10-26 2002-07-16 Hitachi Metals Ltd 窒化ケイ素基板および回路基板
JP2003192462A (ja) * 2001-12-25 2003-07-09 Toshiba Corp 窒化珪素回路基板およびその製造方法
JP2012136378A (ja) * 2010-12-25 2012-07-19 Kyocera Corp 回路基板およびこれを用いた電子装置
JP2017035805A (ja) * 2015-08-07 2017-02-16 Jx金属株式会社 金属セラミック接合基板及び、その製造方法
JP2017213155A (ja) 2016-05-31 2017-12-07 タンゲ化学工業株式会社 消火用バケツ
WO2018021472A1 (ja) * 2016-07-28 2018-02-01 株式会社 東芝 接合体、回路基板、および半導体装置
JP2018204040A (ja) 2015-09-15 2018-12-27 株式会社日立製作所 二相ステンレス鋼製造物およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828352B2 (ja) 1980-08-07 1983-06-15 川崎製鉄株式会社 ステンレス鋼熱延コイルの酸洗制御方法および装置
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2002201076A (ja) * 2000-10-26 2002-07-16 Hitachi Metals Ltd 窒化ケイ素基板および回路基板
JP2003192462A (ja) * 2001-12-25 2003-07-09 Toshiba Corp 窒化珪素回路基板およびその製造方法
JP2012136378A (ja) * 2010-12-25 2012-07-19 Kyocera Corp 回路基板およびこれを用いた電子装置
JP2017035805A (ja) * 2015-08-07 2017-02-16 Jx金属株式会社 金属セラミック接合基板及び、その製造方法
JP2018204040A (ja) 2015-09-15 2018-12-27 株式会社日立製作所 二相ステンレス鋼製造物およびその製造方法
JP2017213155A (ja) 2016-05-31 2017-12-07 タンゲ化学工業株式会社 消火用バケツ
WO2018021472A1 (ja) * 2016-07-28 2018-02-01 株式会社 東芝 接合体、回路基板、および半導体装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127921A (zh) * 2019-08-21 2022-03-01 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
US11881439B2 (en) 2019-08-21 2024-01-23 Mitsubishi Materials Corporation Copper/ceramic joined body, insulating circuit substrate, copper/ceramic joined body production method, and insulating circuit substrate production method
CN114787106A (zh) * 2019-12-06 2022-07-22 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
CN114787106B (zh) * 2019-12-06 2023-07-14 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
CN114845977A (zh) * 2019-12-19 2022-08-02 三菱综合材料株式会社 铜-陶瓷接合体、及绝缘电路基板
CN114845977B (zh) * 2019-12-19 2023-08-25 三菱综合材料株式会社 铜-陶瓷接合体、及绝缘电路基板
WO2021149789A1 (ja) * 2020-01-23 2021-07-29 デンカ株式会社 セラミックス-銅複合体、及びセラミックス-銅複合体の製造方法
WO2022024990A1 (ja) * 2020-07-27 2022-02-03 株式会社 東芝 接合体、回路基板、半導体装置、及び接合体の製造方法
CN116134607A (zh) * 2020-07-27 2023-05-16 株式会社东芝 接合体、电路基板、半导体装置及接合体的制造方法

Also Published As

Publication number Publication date
JP2023033290A (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
KR102459745B1 (ko) 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
WO2019088222A1 (ja) 接合体、及び、絶縁回路基板
WO2018159590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021033421A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP7056744B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
KR20200111178A (ko) 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
WO2019146464A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2015163232A1 (ja) 接合体の製造方法、パワーモジュール用基板の製造方法
JP7230432B2 (ja) 接合体、及び、絶縁回路基板
JP7124633B2 (ja) 接合体、及び、絶縁回路基板
WO2020044590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
JP5828352B2 (ja) 銅/セラミックス接合体、及び、パワーモジュール用基板
JP6870767B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
WO2021085451A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021033622A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019082970A1 (ja) 接合体、及び、絶縁回路基板
JP6908173B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021112060A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2020044594A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021112046A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP7424043B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP6850984B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873449

Country of ref document: EP

Effective date: 20200602