WO2019146464A1 - 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 - Google Patents

銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 Download PDF

Info

Publication number
WO2019146464A1
WO2019146464A1 PCT/JP2019/001045 JP2019001045W WO2019146464A1 WO 2019146464 A1 WO2019146464 A1 WO 2019146464A1 JP 2019001045 W JP2019001045 W JP 2019001045W WO 2019146464 A1 WO2019146464 A1 WO 2019146464A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
ceramic
active metal
circuit board
ceramic substrate
Prior art date
Application number
PCT/JP2019/001045
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018227472A external-priority patent/JP7192451B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201980007305.6A priority Critical patent/CN111566074B/zh
Priority to EP19743195.0A priority patent/EP3744705A4/en
Priority to KR1020207020418A priority patent/KR20200111178A/ko
Priority to US16/960,648 priority patent/US20200365475A1/en
Publication of WO2019146464A1 publication Critical patent/WO2019146464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • B23K20/026Thermo-compression bonding with diffusion of soldering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • B23K20/165Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas involving an exothermic reaction of the interposed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/064Oxidic interlayers based on alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/09Ceramic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • C04B2237/525Pre-treatment of the joining surfaces, e.g. cleaning, machining by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a copper / ceramic joined body in which a copper member made of copper or copper alloy and a ceramic member made of aluminum oxide are joined, an insulated circuit board, a method of manufacturing the copper / ceramic joined body, and an insulated circuit.
  • the present invention relates to a method of manufacturing a substrate.
  • thermoelectric module In a power module, an LED module, and a thermoelectric module, a power semiconductor element, an LED element, and a thermoelectric element are joined to an insulating circuit board in which a circuit layer made of a conductive material is formed on one surface of an insulating layer.
  • a circuit layer made of a conductive material is formed on one surface of an insulating layer.
  • power semiconductor devices for large power control used to control wind power generation, electric vehicles, hybrid vehicles, etc. have a large amount of heat generation at the time of operation.
  • an insulating circuit substrate is widely used, which includes a ceramic substrate made of, for example, and a circuit layer formed by bonding a metal plate having excellent conductivity to one surface of the ceramic substrate.
  • an insulated circuit board what formed the metal layer by joining a metal plate to the other side of a ceramic substrate is also provided.
  • Patent Document 1 proposes an insulated circuit board in which a first metal plate and a second metal plate constituting a circuit layer and a metal layer are copper plates and this copper plate is directly bonded to a ceramic substrate by a DBC method. There is.
  • this DBC method the copper plate and the ceramic substrate are joined by producing a liquid phase at the interface between the copper plate and the ceramic substrate by utilizing a eutectic reaction of copper and copper oxide.
  • Patent Document 2 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by bonding a copper plate to one surface and the other surface of a ceramic substrate.
  • a copper plate is disposed on one surface and the other surface of the ceramic substrate with an Ag-Cu-Ti brazing material interposed, and the copper plate is joined by performing a heat treatment (so-called Active metal brazing method).
  • Active metal brazing method since the brazing material containing Ti, which is an active metal, is used, the wettability between the molten brazing material and the ceramic substrate is improved, and the ceramic substrate and the copper plate are joined well. It will be.
  • Patent Document 3 proposes a paste containing a powder made of a Cu-Mg-Ti alloy as a brazing material for joining used to join a copper plate and a ceramic substrate in a high temperature nitrogen gas atmosphere. There is.
  • bonding is performed by heating at 560 to 800 ° C. in a nitrogen gas atmosphere, and Mg in the Cu-Mg-Ti alloy is not sublimated and remains at the bonding interface.
  • titanium nitride (TiN) is substantially not formed.
  • the bonding temperature is set to 1065 ° C. or more (the eutectic point temperature of copper and copper oxide or more). Since it is necessary, the ceramic substrate may be deteriorated at the time of bonding.
  • the brazing material when joining a ceramic substrate and a copper plate by active metal brazing, contains Ag, and Ag exists at the joining interface. And migration was likely to occur, and could not be used for high voltage applications. Further, since the bonding temperature is relatively high at 900 ° C., there is also a problem that the ceramic substrate is deteriorated.
  • Patent Document 3 when bonding is performed in a nitrogen gas atmosphere using a brazing material for bonding that is made of a paste containing a powder made of a Cu-Mg-Ti alloy, gas is generated at the bonding interface The problem is that partial discharge tends to occur. In addition, since the alloy powder is used, the molten state becomes uneven according to the composition variation of the alloy powder, and there is a possibility that a region where the interfacial reaction is insufficient may be locally formed. In addition, the organic substance contained in the paste may remain at the bonding interface, which may result in insufficient bonding.
  • the present invention has been made in view of the above-mentioned circumstances, and is a copper / ceramics joint excellent in migration resistance, in which a copper member made of copper or copper alloy and a ceramic member made of aluminum oxide are surely joined. It is an object of the present invention to provide a body, an insulated circuit board, a method of manufacturing the above-mentioned copper / ceramic joined body, and a method of manufacturing an insulated circuit board.
  • the copper / ceramic joined body comprises a copper member made of copper or copper alloy and a ceramic member made of aluminum oxide.
  • An Mg solid solution layer in which Mg forms a solid solution is formed, and in the Mg solid solution layer, one or more active metals selected from Ti, Zr, Nb, and Hf are present. It is characterized.
  • a magnesium oxide layer is formed on the side of the ceramic member between the copper member made of copper or copper alloy and the ceramic member made of aluminum oxide.
  • the magnesium oxide layer is formed by the reaction between magnesium (Mg) disposed between the ceramic member and the copper member and oxygen (O) in the ceramic member, and the ceramic member is sufficiently reacted. It will be done. Then, an Mg solid solution layer in which Mg is dissolved in the matrix of Cu is formed between the magnesium oxide layer and the copper member, and Cu and Ti, Zr, Nb, Hf are formed in the Mg solid solution layer.
  • Mg disposed between the ceramic member and the copper member is sufficiently diffused to the copper member side, and further, the ceramic member and the copper member The active metal disposed between them and Cu in the copper member are sufficiently reacted. Therefore, an interfacial reaction is sufficiently progressed at the bonding interface between the copper member and the ceramic member, and a copper / ceramic bonded body in which the copper member and the ceramic member are reliably bonded can be obtained.
  • Ag is not present at the bonding interface, the migration resistance is also excellent.
  • an intermetallic compound phase containing Cu and the active metal may be dispersed in the Mg solid solution layer.
  • the active metal is present as an intermetallic compound phase of Cu and the active metal in the Mg solid solution layer. Therefore, by being present as an intermetallic compound phase of Cu and the active metal in the Mg solid solution layer, Mg disposed between the ceramic member and the copper member is sufficiently diffused to the copper member side, It is possible to obtain a copper / ceramic joined body in which the active metal reacts sufficiently, and the copper member and the ceramic member are surely joined.
  • Cu particles be dispersed inside the magnesium oxide layer.
  • Cu of the copper member is sufficiently reacted with the ceramic member, and it is possible to obtain a copper / ceramic joined body in which the copper member and the ceramic member are firmly joined.
  • the Cu particles are Cu alone or an intermetallic compound containing Cu, and are formed by the precipitation of Cu present in the liquid phase when the magnesium oxide layer is formed.
  • the area ratio of the Cu—Mg intermetallic compound phase in the region from the bonding surface of the ceramic member to the copper member side between the ceramic member and the copper member is 50 ⁇ m. Is preferably 15% or less. In this case, since the area ratio of the fragile Cu-Mg intermetallic compound phase is limited to 15% or less, for example, even when ultrasonic bonding is performed, the occurrence of cracking or the like at the bonding interface is suppressed. It becomes possible.
  • Examples of the above-described Cu-Mg intermetallic compound phase include a Cu 2 Mg phase, a CuMg 2 phase, and the like.
  • the thickness of the magnesium oxide layer is preferably in the range of 50 nm or more and 1000 nm or less. In this case, since the thickness of the magnesium oxide layer formed on the side of the ceramic member is in the range of 50 nm to 1000 nm, it is possible to suppress the occurrence of cracking of the ceramic member when a cooling and heating cycle is applied. .
  • the insulating circuit board of the present invention is an insulating circuit board in which a copper plate made of copper or copper alloy is joined to the surface of a ceramic substrate made of aluminum oxide, and between the copper plate and the ceramic substrate, A magnesium oxide layer is formed on the ceramic substrate side, and a Mg solid solution layer in which Mg is solid-solved in a parent phase of Cu is formed between the magnesium oxide layer and the copper plate, and the Mg solid solution layer is formed Is characterized by the presence of one or more active metals selected from Ti, Zr, Nb, Hf.
  • the copper plate and the ceramic substrate are securely bonded, and the migration resistance is excellent, and can be used with high reliability even under high withstand voltage conditions.
  • an intermetallic compound phase containing Cu and the active metal may be dispersed in the Mg solid solution layer.
  • the active metal is present as an intermetallic compound phase of Cu and the active metal in the Mg solid solution layer. For this reason, by existing as an intermetallic compound phase of Cu and the active metal in the Mg solid solution layer, it is possible to obtain an insulating circuit board in which the copper plate and the ceramic substrate are surely joined.
  • Cu particles are dispersed in the magnesium oxide layer.
  • Cu of the copper plate is sufficiently reacted with the ceramic substrate, and it is possible to obtain an insulating circuit substrate in which the copper plate and the ceramic substrate are firmly joined.
  • the Cu particles are Cu alone or an intermetallic compound containing Cu, and are formed by the precipitation of Cu present in the liquid phase when the magnesium oxide layer is formed.
  • the area ratio of the Cu-Mg intermetallic compound phase in the region from the bonding surface of the ceramic substrate to the copper plate side between the ceramic substrate and the copper plate is 15% or less It is preferable that In this case, since the area ratio of the fragile Cu-Mg intermetallic compound phase is limited to 15% or less, for example, even when ultrasonic bonding is performed, the occurrence of cracking or the like at the bonding interface is suppressed. It becomes possible.
  • Examples of the above-described Cu-Mg intermetallic compound phase include a Cu 2 Mg phase, a CuMg 2 phase, and the like.
  • the thickness of the magnesium oxide layer is preferably in the range of 50 nm or more and 1000 nm or less. In this case, since the thickness of the magnesium oxide layer formed on the ceramic substrate side is in the range of 50 nm to 1000 nm, it is possible to suppress the occurrence of cracking of the ceramic substrate when a thermal cycle is applied. .
  • the method for producing a copper / ceramic joined body according to the present invention is a method for producing a copper / ceramic joined body for producing the above-described copper / ceramic joined body, wherein Ti, Zr is interposed between the copper member and the ceramic member.
  • Nb, Hf, active metal and Mg arrangement step of arranging single substance and Mg single substance of one kind or two or more kinds of active metals, and the copper member and the ceramic member through the active metal and Mg.
  • Mg amount 7.0 ⁇ mol / c It is characterized in that in the range of 2 or more 143.2 ⁇ mol / cm 2 or less.
  • a single substance of active metal and a single substance of Mg are disposed between the copper member and the ceramic member, and in a state of pressing these in the stacking direction, vacuum atmosphere Since the heat treatment is performed below, no residue of gas or organic substance is left at the bonding interface. In addition, since the active metal single substance and Mg single substance are disposed, there is no variation in the composition, and the liquid phase is generated uniformly.
  • the activity of a metal and Mg disposing step the active metal content 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 within the range, Mg amount 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2 or less of Since it is in the range, the liquid phase necessary for the interfacial reaction can be sufficiently obtained, and the reaction more than necessary of the ceramic member can be suppressed.
  • a copper / ceramic joined body in which the copper member and the ceramic member are securely joined can be obtained.
  • Ag is not used for joining, the copper / ceramics joint excellent in migration resistance can be obtained.
  • the pressure load in the joining step is in the range of 0.049 MPa or more and 3.4 MPa or less, and the heating temperature in the joining step is a contact state of Cu and Mg.
  • the heating temperature in the joining step is a contact state of Cu and Mg.
  • Cu and Mg are laminated in the non-contact state, it is preferable to be in the range of 670 ° C. or more and 850 ° C. or less.
  • the ceramic member and the copper member can be brought into close contact with the active metal and Mg. It can promote interfacial reaction.
  • the heating temperature in the bonding step is 500 ° C. or higher, which is higher than the eutectic temperature of Cu and Mg, when Cu and Mg are stacked in a contact state, and when Cu and Mg are stacked in a non-contact state Since the temperature is 670 ° C. or higher, which is higher than the melting point of Mg, a liquid phase can be sufficiently generated at the bonding interface. Since the heating temperature in the bonding step is set to 850 ° C.
  • the occurrence of the eutectic reaction between Cu and the active metal can be suppressed, and the excessive generation of the liquid phase can be suppressed. Further, the heat load on the ceramic member is reduced, and the deterioration of the ceramic member can be suppressed.
  • a method of manufacturing an insulating circuit board according to the present invention is a method of manufacturing an insulating circuit board for manufacturing the above-described insulating circuit board, wherein Ti, Zr, Nb, and Hf are selected between the copper plate and the ceramic substrate.
  • an insulated circuit board of this configuration it is possible to obtain an insulated circuit board in which a copper plate and a ceramic substrate are securely bonded. Moreover, since Ag is not used for joining, the insulated circuit board excellent in migration resistance can be obtained.
  • the pressure load in the bonding step is in the range of 0.049 MPa to 3.4 MPa
  • the heating temperature in the bonding step is Cu and Mg in a contact state.
  • Cu and Mg are stacked in a non-contact state, it is preferable to be in the range of 670 ° C. or more and 850 ° C. or less.
  • the ceramic substrate and the copper plate can be brought into close contact with the active metal and Mg, and these interfaces are heated.
  • the reaction can be promoted.
  • the heating temperature in the bonding step is 500 ° C. or higher, which is higher than the eutectic temperature of Cu and Mg, when Cu and Mg are stacked in a contact state, and when Cu and Mg are stacked in a non-contact state Since the temperature is 670 ° C. or higher, which is higher than the melting point of Mg, a liquid phase can be sufficiently generated at the bonding interface. Since the heating temperature in the bonding step is set to 850 ° C.
  • the occurrence of the eutectic reaction between Cu and the active metal can be suppressed, and the excessive generation of the liquid phase can be suppressed.
  • the heat load on the ceramic substrate is reduced, and the deterioration of the ceramic substrate can be suppressed.
  • a copper / ceramic joined body in which a copper member made of copper or a copper alloy and a ceramic member made of aluminum oxide are reliably joined and which has excellent migration resistance, an insulating circuit board, and the above-mentioned copper It becomes possible to provide a method of manufacturing a ceramic joined body and a method of manufacturing an insulating circuit board.
  • FIG. 10 is an explanatory view showing a method of measuring a pull strength in Example 2.
  • FIGS. 1 to 4 A first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the copper / ceramic bonded body according to the present embodiment is configured by bonding the ceramic substrate 11 which is a ceramic member, and the copper plate 22 (circuit layer 12) and the copper plate 23 (metal layer 13) which are copper members.
  • the insulating circuit board 10 is used.
  • FIG. 1 shows an insulated circuit board 10 according to a first embodiment of the present invention and a power module 1 using the insulated circuit board 10.
  • the power module 1 includes an insulated circuit board 10, a semiconductor element 3 joined to one side (upper side in FIG. 1) of the insulated circuit board 10 via the first solder layer 2, and the other side of the insulated circuit board 10. And a heat sink 51 joined via the second solder layer 8 (at the lower side in FIG. 1).
  • Insulating circuit substrate 10 is disposed on ceramic substrate 11, circuit layer 12 disposed on one surface (upper surface in FIG. 1) of ceramic substrate 11, and the other surface (lower surface in FIG. 1) of ceramic substrate 11. And a metal layer 13 provided.
  • the ceramic substrate 11 prevents electrical connection between the circuit layer 12 and the metal layer 13 and is made of alumina, which is a type of aluminum oxide, in the present embodiment.
  • the thickness of the ceramic substrate 11 is set in the range of 0.2 to 1.5 mm, and in the present embodiment, the thickness of the ceramic substrate 11 is preferably 0.635 mm.
  • the circuit layer 12 is formed by bonding a copper plate 22 made of copper or a copper alloy to one surface of the ceramic substrate 11.
  • a rolled plate of oxygen-free copper is used as the copper plate 22 constituting the circuit layer 12.
  • a circuit pattern is formed on the circuit layer 12, and one surface (upper surface in FIG. 1) of the circuit pattern is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 12 is set in the range of 0.1 mm or more and 2.0 mm or less, and in the present embodiment, the thickness of the circuit layer 12 is preferably 0.6 mm.
  • the metal layer 13 is formed by bonding a copper plate 23 made of copper or a copper alloy to the other surface of the ceramic substrate 11.
  • a rolled plate of oxygen-free copper is used as the copper plate 23 constituting the metal layer 13.
  • the thickness of the metal layer 13 is set in the range of 0.1 mm or more and 2.0 mm or less, and in the present embodiment, the thickness of the metal layer 13 is preferably 0.6 mm.
  • the heat sink 51 is for cooling the insulating circuit board 10 described above, and in the present embodiment, is a heat sink made of a material having good thermal conductivity. In the present embodiment, the heat sink 51 is made of copper or a copper alloy excellent in thermal conductivity. The heat sink 51 and the metal layer 13 of the insulated circuit board 10 are joined via the second solder layer 8.
  • the ceramic substrate 11 and the circuit layer 12 (copper plate 22), and the ceramic substrate 11 and the metal layer 13 (copper plate 23) are, as shown in FIG. 4, one or two selected from Ti, Zr, Nb and Hf. It is joined via an active metal film 24 and an Mg film 25 made of an active metal of a kind or more.
  • Ti is used as the active metal
  • the active metal film 24 is a Ti film.
  • the bonding interface between the ceramic substrate 11 and the circuit layer 12 (copper plate 22) and the bonding interface between the ceramic substrate 11 and the metal layer 13 (copper plate 23) are formed on the ceramic substrate 11 side as shown in FIG.
  • the magnesium oxide layer 31 and the Mg solid solution layer 32 in which Mg is dissolved in the mother phase of Cu are stacked.
  • the Mg solid solution layer 32 contains the above-described active metal.
  • the intermetallic compound phase 33 containing Cu and an active metal is dispersed in the Mg solid solution layer 32.
  • Ti is used as an active metal, and as the intermetallic compound constituting the intermetallic compound phase 33 containing Cu and Ti, for example, Cu 4 Ti, Cu 3 Ti 2 , Cu 4 Ti 3 , CuTi, CuTi 2 , CuTi 3 and the like can be mentioned.
  • the content of Mg in the Mg solid solution layer 32 is in the range of 0.01 atomic% or more and 3 atomic% or less.
  • the thickness of the Mg solid solution layer 32 is in the range of 0.1 ⁇ m to 80 ⁇ m.
  • Cu particles 35 are dispersed inside the magnesium oxide layer 31.
  • the particle diameter of the Cu particles 35 dispersed in the magnesium oxide layer 31 is in the range of 10 nm to 100 nm.
  • the Cu concentration in the region in the vicinity of the interface of the magnesium oxide layer 31 up to 20% of the thickness of the magnesium oxide layer 31 from the interface with the ceramic substrate 11 is in the range of 0.3 atomic% to 15 atomic%.
  • the thickness of the magnesium oxide layer 31 is in the range of 50 nm to 1000 nm. More preferably, the thickness of the magnesium oxide layer 31 is in the range of 50 nm to 400 nm.
  • the area ratio of the intermetallic compound phase is 15% or less.
  • Examples of the above-mentioned Cu-Mg intermetallic compound phase include Cu 2 Mg phase, CuMg 2 phase and the like.
  • the above-described Cu-Mg intermetallic compound phase is a region including a bonding interface under the conditions of 2000 times magnification and 15 kV acceleration voltage using an electron beam microanalyzer (JXA-8539F manufactured by JEOL Ltd.)
  • the element MAP of Mg of 400 ⁇ m ⁇ 600 ⁇ m) is acquired, and the Cu concentration is 5 atomic% or more, and the Mg concentration is 30 atoms or more and 70 atoms in five point average of quantitative analysis in the region where the presence of Mg is confirmed
  • a region satisfying% or less was defined as a Cu-Mg intermetallic compound phase.
  • Ti, Zr, Nb, and Hf are respectively selected between the copper plate 22 and the ceramic substrate 11 to be the circuit layer 12 and the copper plate 23 and the ceramic substrate 11 to be the metal layer 13 respectively.
  • the active metal single substance (in this embodiment, Ti single substance in the present embodiment) and Mg simple substance to be placed are arranged (active metal and Mg arrangement step S01).
  • the active metal film 24 (Ti film) and the Mg film 25 are formed by vapor deposition of the active metal (Ti) and Mg, and the Mg film 25 is not in contact with the copper plate 22 (copper plate 23). It is stacked in the state.
  • the active metal content of 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 within the range, Mg amount 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2 or less of It is in the range.
  • the lower limit of the amount of active metal is preferably 2.8 ⁇ mol / cm 2 or more, and the upper limit of the amount of active metal is preferably 18.8 ⁇ mol / cm 2 or less.
  • the lower limit of the amount of Mg is preferably 8.8 ⁇ mol / cm 2 or more, and the upper limit of the amount of Mg is preferably 37.0 ⁇ mol / cm 2 or less.
  • the copper plate 22, the ceramic substrate 11, and the copper plate 23 are stacked via the active metal film 24 (Ti film) and the Mg film 25 (stacking step S02).
  • the laminated copper plate 22, the ceramic substrate 11, and the copper plate 23 are pressurized in the laminating direction, and charged into a vacuum furnace and heated to bond the copper plate 22, the ceramic substrate 11 and the copper plate 23 (joining process) S03).
  • the pressure load in the bonding step S03 is in the range of 0.049 MPa or more and 3.4 MPa or less.
  • the heating temperature in joining process S03 is made into the range of 670 degreeC or more and 850 degrees C or less more than the melting point of Mg.
  • the lower limit of the heating temperature is preferably 700 ° C. or more.
  • the degree of vacuum in the bonding step S03 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less.
  • the holding time at the heating temperature is preferably in the range of 5 minutes to 360 minutes. In order to lower the area ratio of the above-described Cu-Mg intermetallic compound phase, it is preferable to set the lower limit of the holding time at the heating temperature to 60 minutes or more.
  • the upper limit of the holding time at the heating temperature is preferably 240 minutes or less.
  • the insulated circuit board 10 which is this embodiment is manufactured by active metal and Mg arrangement process S01, lamination process S02, and joining process S03.
  • the heat sink 51 is bonded to the other surface side of the metal layer 13 of the insulated circuit board 10 (heat sink bonding step S04).
  • the insulated circuit board 10 and the heat sink 51 are stacked via the solder material and inserted into the heating furnace, and the insulated circuit board 10 and the heat sink 51 are solder-bonded via the second solder layer 8.
  • the semiconductor element 3 is bonded to one surface of the circuit layer 12 of the insulating circuit board 10 by soldering (semiconductor element bonding step S05).
  • the power module 1 shown in FIG. 1 is manufactured by the above process.
  • the copper plate 22 (circuit layer 12) and the copper plate 23 (metal layer 13) made of oxygen free copper and the aluminum oxide
  • the ceramic substrate 11 is made of alumina, which is a kind of metal, and is joined via the active metal film 24 (Ti film) and the Mg film 25.
  • the ceramic substrate 11 and the circuit layer 12 (copper plate 22) and the ceramic substrate 11 A magnesium oxide layer 31 formed on the side of the ceramic substrate 11 and a Mg solid solution layer 32 in which Mg is dissolved in a parent phase of Cu are stacked on the bonding interface of the metal layer 13 (copper plate 22). .
  • the magnesium oxide layer 31 is formed by the reaction between Mg provided between the ceramic substrate 11 and the copper plates 22 and 23 and oxygen of the ceramic substrate 11, and the ceramic substrate 11 is sufficiently formed at the bonding interface. It is reacting. Further, the Mg solid solution layer 32 in which Mg is solid-solved in the matrix of Cu is formed so as to be laminated on the magnesium oxide layer 31, and the above-mentioned active metal is contained in the Mg solid solution layer 32. In the present embodiment, since the intermetallic compound phase 33 containing Cu and an active metal (Ti) is dispersed in the Mg solid solution layer 31, the intermetallic compound phase 33 is disposed between the ceramic substrate 11 and the copper plates 22 and 23. Mg is sufficiently diffused to the copper plates 22 and 23 side, and furthermore, Cu and the active metal (Ti) are sufficiently reacted.
  • the insulated circuit board 10 (copper / ceramic bonded body) in which the copper plates 22 and 23 and the ceramic substrate 11 are firmly joined.
  • a single substance (active metal film 24) of active metal (Ti) between the copper plates 22 and 23 and the ceramic substrate 11 An active metal and Mg disposing step S01 for disposing Mg simple substance (Mg film 25), and a laminating step S02 for laminating the copper plates 22 and 23 and the ceramic substrate 11 via the active metal film 24 and the Mg film 25
  • a bonding step S03 is performed, in which the copper plate 22, the ceramic substrate 11, and the copper plate 23 are heated in the vacuum atmosphere and bonded while being pressed in the stacking direction, and residues of gas or organic matter are bonded to the bonding interface. Etc. do not remain.
  • the single substance of active metal (Ti) and the single substance of Mg are disposed, there is no variation in the composition, and the liquid phase is generated uniformly.
  • the amount of active metal is in the range of 0.4 ⁇ mol / cm 2 or more and 47.0 ⁇ mol / cm 2 or less, and the amount of Mg is 7.0 ⁇ mol / cm 2 or more and 143.2 ⁇ mol / cm 2 or less.
  • the interfacial reaction may be insufficient and the bonding rate may be reduced.
  • the amount of active metal exceeds 47.0 ⁇ mol / cm 2
  • a relatively hard intermetallic compound phase 33 is generated in excess due to a large amount of active metal and the Mg solid solution layer 32 becomes too hard.
  • the Mg content exceeds 143.2 ⁇ mol / cm 2
  • the decomposition reaction of the ceramic substrate 11 is excessive, Al is excessively generated, and these are intermetallic compounds of Cu, active metal (Ti), and Mg.
  • the active metal content 0.4 ⁇ mol / cm 2 or more 47.0 ⁇ mol / cm 2 within the range, Mg amount 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2 or less of It is in the range.
  • the pressure load in the bonding step S03 is 0.049 MPa or more, the ceramic substrate 11, the copper plates 22 and 23, and the active metal film 24 (Ti film) and the Mg film 25 are in close contact with each other. These interfacial reactions can be promoted upon heating. Further, since the pressure load in the bonding step S03 is set to 3.4 MPa or less, cracking or the like of the ceramic substrate 11 can be suppressed.
  • the heating temperature in the bonding step S03 is 670 ° C. or higher, which is equal to or higher than the melting point of Mg. Can occur.
  • the heating temperature in the bonding step S03 is set to 850 ° C. or less, the occurrence of eutectic reaction between Cu and the active metal (Ti) can be suppressed, and excessive generation of the liquid phase can be suppressed. . Further, the heat load on the ceramic substrate 11 is reduced, and the deterioration of the ceramic substrate 11 can be suppressed.
  • the copper / ceramic joined body according to the present embodiment is an insulated circuit board 110 configured by joining a ceramic substrate 111 which is a ceramic member and a copper plate 122 (circuit layer 112) which is a copper member.
  • FIG. 5 shows an insulating circuit board 110 according to a second embodiment of the present invention and a power module 101 using the insulating circuit board 110. As shown in FIG.
  • the power module 101 includes an insulated circuit board 110, a semiconductor element 3 joined to a surface on one side (upper side in FIG. 5) of the insulated circuit board 110 via a solder layer 2, and the other side of the insulated circuit board 110. And a heat sink 151 disposed on the lower side (in FIG. 5).
  • the solder layer 2 is, for example, a solder material of Sn—Ag, Sn—In, or Sn—Ag—Cu.
  • Insulating circuit substrate 110 is disposed on ceramic substrate 111, circuit layer 112 disposed on one surface (upper surface in FIG. 5) of ceramic substrate 111, and the other surface (lower surface in FIG. 5) of ceramic substrate 111. And the metal layer 113 provided.
  • the ceramic substrate 111 is for preventing electrical connection between the circuit layer 112 and the metal layer 113, and is made of alumina, which is a kind of aluminum oxide, in the present embodiment.
  • the thickness of the ceramic substrate 111 is set in the range of 0.2 to 1.5 mm, and in the present embodiment, it is set to 0.635 mm.
  • the circuit layer 112 is formed by bonding a copper plate 122 made of copper or a copper alloy to one surface of the ceramic substrate 111.
  • a rolled plate of oxygen-free copper is used as the copper plate 122 constituting the circuit layer 112.
  • a circuit pattern is formed on the circuit layer 112, and one surface thereof (upper surface in FIG. 5) is a mounting surface on which the semiconductor element 3 is mounted.
  • the thickness of the circuit layer 112 is set in the range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in the present embodiment.
  • the metal layer 113 is formed by bonding the aluminum plate 123 to the other surface of the ceramic substrate 111.
  • the metal layer 113 is formed by bonding an aluminum plate 123 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99 mass% or more to the ceramic substrate 111.
  • the aluminum plate 123 has a 0.2% proof stress of 30 N / mm 2 or less.
  • the thickness of the metal layer 113 (aluminum plate 123) is set in the range of 0.5 mm or more and 6 mm or less, and is set to 2.0 mm in the present embodiment.
  • the metal layer 113 is formed by bonding an aluminum plate 123 to a ceramic substrate 111 using an Al—Si brazing material 128.
  • the heat sink 151 is for cooling the above-mentioned insulated circuit board 110, and in this embodiment, is a heat sink made of a material having good thermal conductivity.
  • the heat sink 151 is made of A6063 (aluminum alloy).
  • the heat sink 151 is bonded to the metal layer 113 of the insulating circuit substrate 110 using, for example, an Al—Si-based brazing material.
  • the ceramic substrate 111 and the circuit layer 112 are, as shown in FIG. 8, an active metal film 124 and an Mg film made of one or more active metals selected from Ti, Zr, Nb and Hf. It is joined via 125.
  • Zr and Hf are used as active metals, and the active metal film 124 is formed by co-evaporation of Zr and Hf.
  • Mg is fixed in the magnesium oxide layer 131 formed on the ceramic substrate 111 side and in the matrix of Cu.
  • the dissolved Mg solid solution layer 132 is stacked.
  • the Mg solid solution layer 132 contains the above-mentioned active metal.
  • the intermetallic compound phase 133 containing Cu and an active metal Zr and Hf is dispersed in the Mg solid solution layer 132.
  • Zr and Hf are used as active metals, and as the intermetallic compound constituting the intermetallic compound phase 133 containing Cu, Zr and Hf, for example, Cu 5 Zr, Cu 51 Zr 14 , Cu 8 Zr 3 , Cu 10 Zr 7 , CuZr, Cu 5 Zr 8 , CuZr 2 , Cu 51 Hf 14 , Cu 8 Hf 3 , Cu 10 Hf 7 , CuHf 2 and the like.
  • the content of Mg in the Mg solid solution layer 132 is in the range of 0.01 atomic% or more and 3 atomic% or less.
  • the thickness of the Mg solid solution layer 132 is in the range of 0.1 ⁇ m to 80 ⁇ m.
  • Cu particles 135 are dispersed inside the magnesium oxide layer 131.
  • the particle diameter of the Cu particles 135 dispersed in the magnesium oxide layer 131 is in the range of 10 nm to 100 nm.
  • the Cu concentration in the region near the interface of the magnesium oxide layer 131 up to 20% of the thickness of the magnesium oxide layer 131 from the interface with the ceramic substrate 111 is in the range of 0.3 atomic% to 15 atomic%.
  • the thickness of the magnesium oxide layer 131 is in the range of 50 nm to 1000 nm.
  • the thickness of the magnesium oxide layer 131 is more preferably in the range of 50 nm to 400 nm.
  • the area ratio of the Cu—Mg intermetallic compound phase in the region from the bonding surface of the ceramic substrate 111 to the circuit layer 112 side between the ceramic substrate 111 and the circuit layer 112 is 15% or less It is done.
  • the above-mentioned Cu-Mg intermetallic compound phase include Cu 2 Mg phase, CuMg 2 phase and the like.
  • the above-described Cu-Mg intermetallic compound phase is a region including a bonding interface under the conditions of 2000 times magnification and 15 kV acceleration voltage using an electron beam microanalyzer (JXA-8539F manufactured by JEOL Ltd.)
  • the element MAP of Mg of 400 ⁇ m ⁇ 600 ⁇ m) is acquired, and the Cu concentration is 5 atomic% or more, and the Mg concentration is 30 atoms or more and 70 atoms in five point average of quantitative analysis in the region where the presence of Mg is confirmed
  • a region satisfying% or less was defined as a Cu-Mg intermetallic compound phase.
  • a single substance of one or more active metals selected from Ti, Zr, Nb, and Hf, respectively, between the copper plate 122 serving as the circuit layer 112 and the ceramic substrate 111 (this embodiment)
  • Zr alone and Hf alone) and Mg alone are arranged (active metal and Mg arranging step S101).
  • the active metal film 124 and the Mg film 125 are formed by vapor deposition of active metals (Zr and Hf) and Mg, and the Mg film 125 is formed to be in contact with the copper plate 122.
  • the interfacial reaction may be insufficient and the bonding rate may be reduced.
  • the amount of active metal exceeds 47.0 ⁇ mol / cm 2
  • a large amount of active metal and a relatively hard intermetallic compound phase 133 are excessively generated, so that the Mg solid solution layer 132 becomes too hard, and the ceramics A crack may occur in the substrate 111.
  • the Mg content exceeds 143.2 ⁇ mol / cm 2
  • the decomposition reaction of the ceramic substrate 111 is excessive, Al is excessively generated, and these are intermetallic compounds of Cu, active metal (Ti), and Mg.
  • the lower limit of the amount of active metal is preferably 2.8 ⁇ mol / cm 2 or more, and the upper limit of the amount of active metal is preferably 18.8 ⁇ mol / cm 2 or less.
  • the lower limit of the amount of Mg is preferably 8.8 ⁇ mol / cm 2 or more, and the upper limit of the amount of Mg is preferably 37.0 ⁇ mol / cm 2 or less.
  • the copper plate 122 and the ceramic substrate 111 are stacked via the active metal film 124 and the Mg film 125 (stacking step S102).
  • an aluminum plate 123 to be the metal layer 113 is laminated on the other surface side of the ceramic substrate 111 with the Al—Si brazing material 128 interposed therebetween.
  • the laminated copper plate 122, the ceramic substrate 111, and the aluminum plate 123 are pressed in the laminating direction, and then charged into a vacuum furnace and heated to bond the copper plate 122, the ceramic substrate 111, and the aluminum plate 123 Bonding step S103).
  • the pressure load in the bonding step S103 is in the range of 0.049 MPa or more and 3.4 MPa or less.
  • the heating temperature in the bonding step S103 is 500 ° C. or higher, which is equal to or higher than the eutectic temperature of Mg and Cu, because Cu and Mg are stacked in a contact state, and Cu and active metal (Zr and Hf) It is below the eutectic temperature.
  • the lower limit of the heating temperature is preferably 700 ° C. or more.
  • the heating temperature is in the range of 600 ° C. or more and 650 ° C. or less because the aluminum plate 123 is joined using the Al—Si brazing material 128.
  • the degree of vacuum in the bonding step S103 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less.
  • the holding time at the heating temperature is preferably in the range of 5 minutes to 360 minutes. In order to lower the area ratio of the above-described Cu-Mg intermetallic compound phase, it is preferable to set the lower limit of the holding time at the heating temperature to 60 minutes or more.
  • the upper limit of the holding time at the heating temperature is preferably 240 minutes or less.
  • the insulated circuit board 110 is manufactured by the active metal and Mg disposing step S101, the laminating step S102, and the bonding step S103.
  • the heat sink 151 is bonded to the other surface side of the metal layer 113 of the insulated circuit board 110 (heat sink bonding step S104).
  • the insulated circuit board 110 and the heat sink 151 are stacked via the brazing material, pressed in the stacking direction and inserted into a vacuum furnace for brazing. Thereby, the metal layer 113 of the insulated circuit board 110 and the heat sink 151 are joined.
  • the brazing material for example, an Al—Si-based brazing material foil having a thickness of 20 to 110 ⁇ m can be used, and the brazing temperature is preferably set lower than the heating temperature in the bonding step S103.
  • the semiconductor element 3 is bonded to one surface of the circuit layer 112 of the insulating circuit substrate 110 by soldering (semiconductor element bonding step S105).
  • the power module 101 shown in FIG. 5 is manufactured by the above process.
  • the copper plate 122 (circuit layer 112) and the ceramic substrate 111 made of alumina are the active metal film 124 and Mg.
  • the Mg oxide layer 131 formed on the ceramic substrate 111 side and the matrix of Cu are solid.
  • a dissolved Mg solid solution layer 132 is stacked, and an active metal is present in the Mg solid solution layer 132.
  • an intermetallic compound containing Cu and the active metal in the Mg solid solution layer 132 Since the phase 133 is dispersed, as in the first embodiment, the insulating circuit substrate 110 in which the circuit layer 112 (copper plate 122) and the ceramic substrate 111 are reliably joined. Copper / ceramic bonding article) can be obtained. In addition, since Ag is not present at the bonding interface, it is possible to obtain the insulated circuit board 110 (copper / ceramic bonding body) excellent in migration resistance.
  • the Cu particles 135 are dispersed inside the magnesium oxide layer 131, Cu of the copper plate 122 is sufficiently reacted at the bonding surface of the ceramic substrate 111, and the circuit layer It becomes possible to obtain the insulated circuit board 110 (copper / ceramic joined body) in which 112 (copper plate 122) and the ceramic substrate 111 are firmly joined.
  • the insulated circuit board 110 (copper / ceramic joined body) of the present embodiment, similarly to the first embodiment, in the joint interface between the circuit layer 112 (copper plate 122) and the ceramic substrate 111, A liquid phase can be made to appropriately appear to cause an interfacial reaction sufficiently, and an insulated circuit board 110 (copper / ceramic joined body) in which the copper plate 122 and the ceramic substrate 111 are reliably joined can be obtained. Moreover, since Ag is not used for joining, the insulated circuit board 110 excellent in migration resistance can be obtained.
  • the heating temperature in the bonding step S103 is 500 ° C. or higher, which is equal to or higher than the eutectic temperature of Cu and Mg. Can produce a liquid phase.
  • the aluminum plate 123 is laminated on the other surface side of the ceramic substrate 111 via the Al—Si brazing material 128, and the copper plate 122 and the ceramic substrate 111, the ceramic substrate 111 and the aluminum plate Since the electrodes 123 and 123 are simultaneously joined, the insulated circuit board 110 including the circuit layer 112 made of copper and the metal layer 113 made of aluminum can be efficiently manufactured. In addition, the occurrence of warpage in the insulating circuit board 110 can be suppressed.
  • the copper plate which comprises a circuit layer or a metal layer was demonstrated as a rolled plate of oxygen free copper, it is not limited to this and may be comprised with other copper or copper alloys.
  • the aluminum plate constituting the metal layer is described as a pure aluminum rolling plate having a purity of 99.99 mass%, the present invention is not limited to this and aluminum having a purity of 99 mass% (2N) It may be made of other aluminum or aluminum alloy such as aluminum).
  • the ceramic substrate is described as being made of alumina, which is a type of aluminum oxide, but the present invention is not limited to this, and reinforced alumina containing zirconia or the like may be used.
  • the heat sink was mentioned as an example and demonstrated as a heat sink, it is not limited to this and there is no limitation in particular in the structure of a heat sink.
  • a composite material for example, AlSiC or the like
  • aluminum or an aluminum alloy can also be used as the heat sink.
  • a buffer layer made of aluminum, an aluminum alloy, or a composite material containing aluminum may be provided between the top plate portion of the heat sink or the heat sink and the metal layer.
  • the active metal film and the Mg film are formed in the active metal and Mg disposing step, the present invention is not limited thereto, and co-evaporation of the active metal and Mg is also possible. Good. Also in this case, the formed active metal film and Mg film are not alloyed, and a single active metal and a single Mg metal are disposed. When the active metal and the Mg film are formed by co-evaporation, Mg and Cu are in contact with each other, so the lower limit of the heating temperature in the bonding process can be set to 500 ° C. or more.
  • Ti, or Zr and Hf are used as the active metal, the present invention is not limited thereto, and Ti, Zr, Nb, and Hf are selected as the active metal. You may use 1 type or 2 types or more.
  • Zr is used as the active metal, Zr is present as an intermetallic compound phase with Cu in the Mg solid solution layer.
  • the intermetallic compound constituting the intermetallic compound phase for example, Cu 5 Zr, Cu 51 Zr 14 , Cu 8 Zr 3, Cu 10 Zr 7, CuZr, Cu 5 Zr 8, CuZr 2 , and the like.
  • Hf is used as the active metal, Hf is present as an intermetallic compound phase with Cu in the Mg solid solution layer.
  • intermetallic compound constituting the intermetallic compound phase examples include Cu 51 Hf 14 , Cu 8 Hf 3 , Cu 10 Hf 7 , CuHf 2 and the like.
  • Ti and Zr are used as the active metal, Ti and Zr exist as an intermetallic compound phase containing Cu and the active metal in the Mg solid solution layer.
  • Cu 1.5 Zr 0.75 Ti 0.75 etc. are mentioned as an intermetallic compound which comprises this intermetallic compound phase.
  • Nb is used as the active metal, Nb is present as a solid solution in the Mg solid solution layer.
  • the amount of active metal at the bonding interface is in the range of 0.4 ⁇ mol / cm 2 or more and 47.0 ⁇ mol / cm 2 or less, and the amount of Mg is 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2.
  • the amount of Mg is 7.0 ⁇ mol / cm 2 or more 143.2 ⁇ mol / cm 2.
  • a Cu film may be formed between the active metal film and the Mg film.
  • the active metal single substance and the Mg single substance may be provided with a foil material or may be formed into a film by sputtering.
  • a clad material in which a single active metal or a single Mg is stacked may be used, or a single active metal or a paste containing a single Mg may be printed.
  • the power semiconductor element is mounted on the circuit layer of the insulating circuit substrate to constitute the power module, but the present invention is not limited to this.
  • the LED element may be mounted on the insulating circuit board to configure the LED module, or the thermoelectric element may be mounted on the circuit layer of the insulating circuit board to configure the thermoelectric module.
  • Example 1 A copper / ceramic joined body having a structure shown in Table 1 was formed. More specifically, as shown in Table 1, a copper plate on which a single active metal and a single Mg film are formed is laminated on both sides of a ceramic substrate made of alumina of 40 mm square, and bonded under the bonding conditions shown in Table 1 / The ceramic joined body was formed. The thickness of the ceramic substrate was 0.635 mm. Further, the degree of vacuum of the vacuum furnace at the time of bonding was 5 ⁇ 10 ⁇ 3 Pa.
  • the junction interface was observed to confirm the presence or absence of Cu particles in the magnesium oxide layer, the Mg solid solution layer, the intermetallic compound phase, and the magnesium oxide layer, and the Cu concentration. .
  • the initial bonding ratio of the copper / ceramic bonded body, the cracking of the ceramic substrate after the thermal cycling, and the migration were evaluated as follows.
  • Mg solid solution layer Using a EPMA device (JXA-8539F manufactured by JEOL Ltd.), observe the area (400 ⁇ m ⁇ 600 ⁇ m) including the bonding interface at a magnification of 2000 and an acceleration voltage of 15 kV using the EPMA apparatus (JXA-8539F manufactured by JEOL) Quantitative analysis was performed at 10 points of 10 ⁇ m intervals from the ceramic substrate surface (magnesium oxide layer surface) to the copper plate side, and a region having an Mg concentration of 0.01 atomic% or more was defined as a Mg solid solution layer.
  • the bonding interface between the copper plate and the ceramic substrate is activated by using an electron beam microanalyzer (JXA-8539F manufactured by Nippon Denshi Co., Ltd.) under the conditions of 2000 times magnification and 15 kV acceleration voltage to activate the region (400 ⁇ m ⁇ 600 ⁇ m) including the bonding interface
  • the metal element MAP was obtained, and the presence or absence of the active metal was confirmed.
  • the area where the Cu concentration is 5 atomic% or more and the active metal concentration is 16 atomic or more and 90 atomic% or less at the five-point average of the quantitative analysis in the area where the presence of the active metal is confirmed It was a compound phase.
  • the bonding interface between the copper plate and the ceramic substrate was observed using a scanning transmission electron microscope (with a Titan ChemiSTEM (with EDS detector) manufactured by FEI) at a magnification of 115000 and an acceleration voltage of 200 kV to obtain an energy dispersive X Mapping is performed using line analysis (NSS7 manufactured by Thermo Scientific Co., Ltd.) to obtain elemental mapping of Mg and O, and irradiation of an electron beam narrowed to about 1 nm in a region where Mg and O overlap (NBD).
  • NSS7 manufactured by Thermo Scientific Co., Ltd.
  • the magnesium oxide layer may contain either magnesia (MgO) or spinel (MgAl 2 O 4 ).
  • MgO magnesia
  • MgAl 2 O 4 spinel
  • the bonding rate between the copper plate and the ceramic substrate was determined using the following equation using an ultrasonic flaw detector (FineSAT 200 manufactured by Hitachi Power Solutions, Inc.).
  • the initial bonding area was the area to be bonded before bonding, that is, the area of the bonding surface of the copper plate.
  • peeling is indicated by a white portion in the bonded portion, so the area of the white portion is regarded as a peeling area.
  • Bonding rate ⁇ (initial bonding area)-(peeling area) / (initial bonding area)
  • Comparative Example 1 in which the amount of Mg in the active metal and Mg disposing step is smaller than that of the present invention, the Mg solid solution layer and the magnesium oxide layer were not formed, and the initial bonding rate became low. It is presumed that the interface reaction was insufficient.
  • Comparative Example 2 in which the amount of Mg in the active metal and Mg disposing step is larger than that of the present invention, cracking of the ceramic substrate was confirmed. For this reason, a copper / ceramic joined body could not be obtained. It is presumed that the decomposition reaction of the ceramic substrate is excessive, Al is excessively generated, and a large amount of these and Cu, an active metal, and an intermetallic compound of Mg are generated.
  • Comparative Example 3 in which the amount of active metal was less than the range of the present invention in the step of arranging active metal and Mg, the initial bonding rate became low. It is presumed that the active metal was not present in the Mg solid solution layer and the interfacial reaction was insufficient.
  • Comparative Example 4 in which the amount of active metal was larger than the range of the present invention in the active metal and Mg arranging step, cracking of the ceramic substrate was confirmed. For this reason, a copper / ceramic joined body could not be obtained. It is presumed that a large amount of active metal is present in the Mg solid solution layer and the Mg solid solution layer is too hard.
  • the migration was determined to be "B". It is presumed that Ag is present at the bonding interface.
  • the initial bonding rate was high, and no cracking of the ceramic substrate was observed. Also, migration was good. Further, as shown in FIG. 9, as a result of observing the bonding interface, a magnesium oxide layer and a Mg solid solution layer are observed, and the active metal (intermetallic compound phase) is dispersed inside the Mg solid solution layer. It was observed.
  • Example 2 An insulating circuit board having a structure shown in Table 3 was formed. Specifically, as shown in Table 3, a copper plate on which a single active metal and a single Mg film are formed is laminated on both sides of a ceramic substrate made of alumina of 40 mm square, and joined under the joining conditions shown in Table 3 An insulated circuit board having a layer was formed. The thickness of the ceramic substrate was 0.635 mm. Further, the degree of vacuum of the vacuum furnace at the time of bonding was 5 ⁇ 10 ⁇ 3 Pa.
  • the area ratio of the Cu--Mg intermetallic compound phase at the bonding interface between the ceramic substrate and the circuit layer and the pull strength of the terminal ultrasonically bonded to the circuit layer of the insulating circuit substrate thus obtained are as follows: It was evaluated as follows.
  • the bonding interface between the copper plate and the ceramic substrate is Mg in a region (120 ⁇ m ⁇ 160 ⁇ m) including the bonding interface under conditions of a magnification of 750 and an acceleration voltage of 15 kV using an electron beam microanalyzer (JXA-8539F manufactured by JEOL Ltd.) Area of 5 atomic% or more of Cu concentration and 30 atomic% or less of Mg concentration at the 5-point average of the quantitative analysis in the area where the existence of Mg was confirmed As a Cu-Mg intermetallic compound phase.
  • the area A of the region up to 50 ⁇ m from the bonding surface of the ceramic substrate and the bonding surface of the ceramic substrate to the copper plate side is determined.
  • the area B of the Cu—Mg intermetallic compound phase was determined in this region, and the area ratio B / A ⁇ 100 (%) of the Cu—Mg intermetallic compound phase was determined.
  • the area ratio of the Cu-Mg intermetallic compound phase was measured in five fields of view, and the average value thereof is described in Table 3.
  • Example 3 A copper / ceramic joined body having a structure shown in Table 4 was formed. Specifically, as shown in Table 4, a copper plate on which a single active metal and a single Mg film are formed is laminated on both sides of a ceramic substrate made of alumina of 40 mm square, and bonded under the bonding conditions shown in Table 4 / The ceramic joined body was formed. The thickness of the ceramic substrate was 0.635 mm. Further, the degree of vacuum of the vacuum furnace at the time of bonding was 5 ⁇ 10 ⁇ 3 Pa.
  • the bonding interface of the thus obtained copper / ceramic joined body is observed, and the thickness of the magnesium oxide layer, the presence of Cu particles in the Mg solid solution layer, the intermetallic compound phase, and the magnesium oxide layer, and the Cu concentration ,It was confirmed.
  • the initial bonding ratio of the copper / ceramic bonded body, and the cracking of the ceramic substrate at the time of cooling / heating cycle loading were evaluated.
  • the Mg solid solution layer, the intermetallic compound phase, the presence or absence of Cu particles in the magnesium oxide layer, the Cu concentration, and the initial bonding rate of the copper / ceramic joined body were evaluated by the same method as in Example 1.
  • the bonding interface between the copper plate and the ceramic substrate is observed at an acceleration voltage of 200 kV and a magnification of 20,000 times using a transmission electron microscope (Titan ChemiSTEM manufactured by FEI), and in the obtained element mapping, a region where Mg and O coexist was identified as the magnesium oxide layer.
  • the magnesium oxide layer may contain either magnesia (MgO) or spinel (MgAl 2 O 4 ). And in the observation visual field, the thickness of the magnesium oxide layer was calculated by dividing the area of the magnesium oxide layer by the observation width.
  • examples 41 to 52 in which the thickness of the magnesium oxide layer is in the range of 50 nm or more and 1000 nm or less, even when the severe thermal cycle test of -50 ° C. to 175 ° C. is performed, the ceramic cracks It was confirmed that the generated thermal cycle was 180 times or more, and the thermal cycle reliability was excellent.
  • examples 41, 42, 44 and 50 to 52 in which the thickness of the magnesium oxide layer is in the range of 50 nm to 400 nm cracking of the ceramic substrate is confirmed even after 250 cycles of thermal cycling. It was confirmed that the thermal cycle reliability was particularly excellent. From the above, it is preferable to set the magnesium oxide layer in the range of 50 nm or more and 1000 nm or less, and more preferably in the range of 50 nm or more and 400 nm or less, when the thermal cycle reliability is further required.
  • a copper / ceramic joined body in which a copper member made of copper or a copper alloy and a ceramic member made of aluminum oxide are reliably joined and which has excellent migration resistance, an insulating circuit board, and the above-mentioned copper It becomes possible to provide a method of manufacturing a ceramic joined body and a method of manufacturing an insulating circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

銅又は銅合金からなる銅部材(12)と、アルミニウム酸化物からなるセラミックス部材(11)とが接合されてなる銅/セラミックス接合体であって、銅部材(12)とセラミックス部材(11)との間においては、セラミックス部材(11)側に酸化マグネシウム層(31)が形成され、この酸化マグネシウム層(31)と銅部材(12)との間にCuの母相中にMgが固溶したMg固溶層(32)が形成されており、Mg固溶層(32)には、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属が存在する。

Description

銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
 この発明は、銅又は銅合金からなる銅部材と、アルミニウム酸化物からなるセラミックス部材とが接合されてなる銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法に関するものである。
 本願は、2018年1月25日に日本に出願された特願2018-010965号、および、2018年12月4日に日本に出願された特願2018-227472号について優先権を主張し、その内容をここに援用する。
 パワーモジュール、LEDモジュール及び熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子及び熱電素子が接合された構造とされている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多いことから、これを搭載する基板としては、例えばアルミニウム酸化物などからなるセラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、を備えた絶縁回路基板が、従来から広く用いられている。絶縁回路基板としては、セラミックス基板の他方の面に金属板を接合して金属層を形成したものも提供されている。
 例えば、特許文献1には、回路層及び金属層を構成する第一の金属板及び第二の金属板を銅板とし、この銅板をDBC法によってセラミックス基板に直接接合した絶縁回路基板が提案されている。このDBC法においては、銅と銅酸化物との共晶反応を利用して、銅板とセラミックス基板との界面に液相を生じさせることにより、銅板とセラミックス基板とを接合している。
 また、特許文献2には、セラミックス基板の一方の面及び他方の面に、銅板を接合することにより回路層及び金属層を形成した絶縁回路基板が提案されている。この絶縁回路基板においては、セラミックス基板の一方の面及び他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。この活性金属ろう付け法では、活性金属であるTiが含有されたろう材を用いているため、溶融したろう材とセラミックス基板との濡れ性が向上し、セラミックス基板と銅板とが良好に接合されることになる。
 さらに、特許文献3には、高温の窒素ガス雰囲気下で銅板とセラミックス基板とを接合する際に用いられる接合用ろう材として、Cu-Mg-Ti合金からなる粉末を含有するペーストが提案されている。この特許文献3においては、窒素ガス雰囲気下にて560~800℃で加熱することによって接合する構成とされており、Cu-Mg-Ti合金中のMgは昇華して接合界面には残存せず、かつ、窒化チタン(TiN)が実質的に形成しないものとされている。
特開平04-162756号公報 特許第3211856号公報 特許第4375730号公報
 しかしながら、特許文献1に開示されているように、DBC法によってセラミックス基板と銅板とを接合する場合には、接合温度を1065℃以上(銅と銅酸化物との共晶点温度以上)にする必要があることから、接合時にセラミックス基板が劣化してしまうおそれがあった。
 また、特許文献2に開示されているように、活性金属ろう付け法によってセラミックス基板と銅板とを接合する場合には、ろう材がAgを含有しており、接合界面にAgが存在することから、マイグレーションが生じやすく、高耐圧用途には使用することができなかった。また、接合温度が900℃と比較的高温とされていることから、やはり、セラミックス基板が劣化してしまうといった問題があった。
 さらに、特許文献3に開示されているように、Cu-Mg-Ti合金からなる粉末を含有するペーストからなる接合用ろう材を用いて窒素ガス雰囲気下で接合した場合には、接合界面にガスが残存し、部分放電が発生しやすいといった問題があった。また、合金粉を用いていることから、合金粉の組成ばらつきに応じて溶融状況が不均一となり、界面反応が不十分な領域が局所的に形成されるおそれがあった。また、ペーストに含まれる有機物が接合界面に残存し、接合が不十分となるおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、銅又は銅合金からなる銅部材とアルミニウム酸化物からなるセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体、絶縁回路基板、及び、上述の銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することを目的とする。
 このような課題を解決して、前記目的を達成するために、本発明の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、アルミニウム酸化物からなるセラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記銅部材と前記セラミックス部材との間においては、前記セラミックス部材側に酸化マグネシウム層が形成され、この酸化マグネシウム層と前記銅部材との間にCuの母相中にMgが固溶したMg固溶層が形成されており、前記Mg固溶層には、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属が存在することを特徴としている。
 この構成の銅/セラミックス接合体においては、銅又は銅合金からなる銅部材と、アルミニウム酸化物からなるセラミックス部材との間において、前記セラミックス部材側に酸化マグネシウム層が形成されている。この酸化マグネシウム層は、セラミックス部材と銅部材の間に配設されたマグネシウム(Mg)とセラミックス部材中の酸素(O)とが反応することにより形成されるものであり、セラミックス部材が十分に反応していることになる。
 そして、酸化マグネシウム層と前記銅部材との間に、Cuの母相中にMgが固溶したMg固溶層が形成されており、このMg固溶層にCuとTi,Zr,Nb,Hfから選択される1種又は2種以上の活性金属が存在するので、セラミックス部材と銅部材の間に配設されたMgが銅部材側に十分に拡散しており、さらに、セラミックス部材と銅部材の間に配設された活性金属と銅部材中のCuとが十分に反応していることになる。
 したがって、銅部材とセラミックス部材との接合界面において界面反応が十分に進行しており、銅部材とセラミックス部材とが確実に接合された銅/セラミックス接合体を得ることができる。また、接合界面にAgが存在していないので、耐マイグレーション性にも優れている。
 本発明の銅/セラミックス接合体においては、前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されている構成としてもよい。
 活性金属としてTi,Zr,Hfを含む場合には、Mg固溶層において活性金属は、Cuと前記活性金属との金属間化合物相として存在する。このため、Mg固溶層にCuと前記活性金属との金属間化合物相として存在することで、セラミックス部材と銅部材の間に配設されたMgが銅部材側に十分に拡散し、Cuと活性金属とが十分に反応しており、銅部材とセラミックス部材とが確実に接合された銅/セラミックス接合体を得ることができる。
 本発明の銅/セラミックス接合体においては、前記酸化マグネシウム層の内部に、Cu粒子が分散されていることが好ましい。
 この場合、銅部材のCuがセラミックス部材と十分に反応していることになり、銅部材とセラミックス部材とが強固に接合された銅/セラミックス接合体を得ることが可能となる。Cu粒子は、Cu単体又はCuを含有する金属間化合物であり、前記酸化マグネシウム層が形成される際に、液相中に存在していたCuが析出することで生成されている。
 本発明の銅/セラミックス接合体においては、前記セラミックス部材と前記銅部材との間において、前記セラミックス部材の接合面から前記銅部材側へ50μmまでの領域におけるCu-Mg金属間化合物相の面積率が15%以下とされていることが好ましい。
 この場合、脆弱なCu-Mg金属間化合物相の面積率が15%以下に制限されているので、例えば超音波接合等を実施した場合であっても、接合界面における割れ等の発生を抑制することが可能となる。
 上述のCu-Mg金属間化合物相としては、例えば、CuMg相、CuMg相等が挙げられる。
 本発明の銅/セラミックス接合体においては、前記酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされていることが好ましい。
 この場合、前記セラミックス部材側に形成された酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされているので、冷熱サイクルを負荷した際のセラミックス部材の割れの発生を抑制することができる。
 本発明の絶縁回路基板は、アルミニウム酸化物からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記銅板と前記セラミックス基板との間においては、前記セラミックス基板側に酸化マグネシウム層が形成され、この酸化マグネシウム層と前記銅板との間にCuの母相中にMgが固溶したMg固溶層が形成されており、前記Mg固溶層には、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属活性金属が存在することを特徴としている。
 この構成の絶縁回路基板においては、銅板とセラミックス基板とが確実に接合されるとともに、耐マイグレーション性に優れており、高耐圧条件下においても信頼性高く使用することができる。
 本発明の絶縁回路基板においては、前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されている構成としてもよい。
 活性金属としてTi,Zr,Hfを含む場合には、Mg固溶層において活性金属は、Cuと前記活性金属との金属間化合物相として存在する。このため、Mg固溶層にCuと前記活性金属との金属間化合物相として存在することで、銅板とセラミックス基板とが確実に接合された絶縁回路基板を得ることができる。
 本発明の絶縁回路基板においては、前記酸化マグネシウム層の内部に、Cu粒子が分散されていることが好ましい。
 この場合、銅板のCuがセラミックス基板と十分に反応していることになり、銅板とセラミックス基板とが強固に接合された絶縁回路基板を得ることが可能となる。Cu粒子は、Cu単体又はCuを含有する金属間化合物であり、前記酸化マグネシウム層が形成される際に、液相中に存在していたCuが析出することで生成されている。
 本発明の絶縁回路基板においては、前記セラミックス基板と前記銅板との間において、前記セラミックス基板の接合面から前記銅板側へ50μmまでの領域におけるCu-Mg金属間化合物相の面積率が15%以下とされていることが好ましい。
 この場合、脆弱なCu-Mg金属間化合物相の面積率が15%以下に制限されているので、例えば超音波接合等を実施した場合であっても、接合界面における割れ等の発生を抑制することが可能となる。
 上述のCu-Mg金属間化合物相としては、例えば、CuMg相、CuMg相等が挙げられる。
 本発明の絶縁回路基板においては、前記酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされていることが好ましい。
 この場合、前記セラミックス基板側に形成された酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされているので、冷熱サイクルを負荷した際のセラミックス基板の割れの発生を抑制することができる。
 本発明の銅/セラミックス接合体の製造方法は、上述した銅/セラミックス接合体を製造する銅/セラミックス接合体の製造方法であって、前記銅部材と前記セラミックス部材との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、前記銅部材と前記セラミックス部材とを、活性金属及びMgを介して積層する積層工程と、活性金属及びMgを介して積層された前記銅部材と前記セラミックス部材とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、を備えており、前記活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とすることを特徴としている。
 この構成の銅/セラミックス接合体の製造方法によれば、前記銅部材と前記セラミックス部材との間に活性金属の単体及びMg単体を配置し、これらを積層方向に加圧した状態で、真空雰囲気下において加熱処理するので、接合界面にガスや有機物の残渣等が残存することがない。また、活性金属の単体及びMg単体を配置しているので、組成のばらつきがなく、均一に液相が生じることになる。
 そして、活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内としているので、界面反応に必要な液相を十分に得ることができるとともに、セラミックス部材の必要以上の反応を抑制することができる。
 よって、銅部材とセラミックス部材とが確実に接合された銅/セラミックス接合体を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた銅/セラミックス接合体を得ることができる。
 本発明の銅/セラミックス接合体の製造方法においては、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされ、前記接合工程における加熱温度は、CuとMgが接触状態で積層されている場合は500℃以上850℃以下の範囲内、CuとMgが非接触状態で積層されている場合は670℃以上850℃以下の範囲内とされていることが好ましい。
 この場合、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされているので、セラミックス部材と銅部材と活性金属及びMgとを密着させることができ、加熱時にこれらの界面反応を促進させることができる。
 前記接合工程における加熱温度が、CuとMgが接触状態で積層されている場合はCuとMgの共晶温度よりも高い500℃以上とし、CuとMgが非接触状態で積層されている場合にはMgの融点よりも高い670℃以上としているので、接合界面において十分に液相を生じさせることができる。
 前記接合工程における加熱温度が850℃以下とされているので、Cuと活性金属との共晶反応の発生を抑制することができ、液相が過剰に生成することを抑制できる。また、セラミックス部材への熱負荷が小さくなり、セラミックス部材の劣化を抑制することができる。
 本発明の絶縁回路基板の製造方法は、上述した絶縁回路基板を製造する絶縁回路基板の製造方法であって、前記銅板と前記セラミックス基板との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、前記銅板と前記セラミックス基板とを、活性金属及びMgを介して積層する積層工程と、活性金属及びMgを介して積層された前記銅板と前記セラミックス基板とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、を備えており、前記活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とすることを特徴としている。
 この構成の絶縁回路基板の製造方法によれば、銅板とセラミックス基板とが確実に接合された絶縁回路基板を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた絶縁回路基板を得ることができる。
 本発明の絶縁回路基板の製造方法においては、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされ、前記接合工程における加熱温度は、CuとMgが接触状態で積層されている場合は500℃以上850℃以下の範囲内、CuとMgが非接触状態で積層されている場合は670℃以上850℃以下の範囲内とされていることが好ましい。
 この場合、前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされているので、セラミックス基板と銅板と活性金属及びMgとを密着させることができ、加熱時にこれらの界面反応を促進させることができる。
 前記接合工程における加熱温度が、CuとMgが接触状態で積層されている場合はCuとMgの共晶温度よりも高い500℃以上とし、CuとMgが非接触状態で積層されている場合にはMgの融点よりも高い670℃以上としているので、接合界面において十分に液相を生じさせることができる。
 前記接合工程における加熱温度が850℃以下とされているので、Cuと活性金属との共晶反応の発生を抑制することができ、液相が過剰に生成することを抑制できる。また、セラミックス基板への熱負荷が小さくなり、セラミックス基板の劣化を抑制することができる。
 本発明によれば、銅又は銅合金からなる銅部材とアルミニウム酸化物からなるセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体、絶縁回路基板、及び、上述の銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することが可能となる。
本発明の第1の実施形態である絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の第1の実施形態である絶縁回路基板の回路層(銅部材)及び金属層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の第1の実施形態である絶縁回路基板の製造方法を示すフロー図である。 本発明の第1の実施形態である絶縁回路基板の製造方法を示す説明図である。 本発明の第2の実施形態である絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の第2の実施形態である絶縁回路基板の回路層(銅部材)とセラミックス基板(セラミックス部材)との接合界面の模式図である。 本発明の第2の実施形態である絶縁回路基板の製造方法を示すフロー図である。 本発明の第2の実施形態である絶縁回路基板の製造方法を示す説明図である。 本発明例3の銅/セラミックス接合体における銅板とセラミックス基板の接合界面の観察結果である。 実施例2におけるプル強度の測定方法を示す説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
(第1の実施形態)
 本発明の第1の実施形態について、図1から図4を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックス部材であるセラミックス基板11と、銅部材である銅板22(回路層12)及び銅板23(金属層13)とが接合されることにより構成された絶縁回路基板10とされている。
 図1に本発明の第1の実施形態である絶縁回路基板10及びこの絶縁回路基板10を用いたパワーモジュール1を示す。
 このパワーモジュール1は、絶縁回路基板10と、この絶縁回路基板10の一方側(図1において上側)に第1はんだ層2を介して接合された半導体素子3と、絶縁回路基板10の他方側(図1において下側)に第2はんだ層8を介して接合されたヒートシンク51と、を備えている。
 絶縁回路基板10は、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13とを備えている。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、本実施形態では、アルミニウム酸化物の一種であるアルミナで構成されている。セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、セラミックス基板11の厚さは、0.635mmが、好ましい。
 回路層12は、図4に示すように、セラミックス基板11の一方の面に銅又は銅合金からなる銅板22が接合されることにより形成されている。本実施形態においては、回路層12を構成する銅板22として、無酸素銅の圧延板が用いられている。この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面されている。回路層12の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、回路層12の厚さは0.6mmが好ましい。
 金属層13は、図4に示すように、セラミックス基板11の他方の面に銅又は銅合金からなる銅板23が接合されることにより形成されている。本実施形態においては、金属層13を構成する銅板23として、無酸素銅の圧延板が用いられている。金属層13の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、金属層13の厚さは0.6mmが好ましい。
 ヒートシンク51は、前述の絶縁回路基板10を冷却するためのものであり、本実施形態においては、熱伝導性が良好な材質で構成された放熱板とされている。本実施形態においては、ヒートシンク51は、熱伝導性に優れた銅又は銅合金で構成されている。ヒートシンク51と絶縁回路基板10の金属層13とは、第2はんだ層8を介して接合されている。
 セラミックス基板11と回路層12(銅板22)、及び、セラミックス基板11と金属層13(銅板23)とは、図4に示すように、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属からなる活性金属膜24及びMg膜25を介して接合されている。本実施形態では、活性金属としてTiを用いており、活性金属膜24はTi膜とされている。
 そして、セラミックス基板11と回路層12(銅板22)との接合界面及びセラミックス基板11と金属層13(銅板23)との接合界面においては、図2に示すように、セラミックス基板11側に形成された酸化マグネシウム層31と、Cuの母相中にMgが固溶したMg固溶層32と、が積層された構造とされている。
 Mg固溶層32には、上述の活性金属が含まれている。本実施形態においては、Mg固溶層32には、Cuと活性金属を含む金属間化合物相33が分散されている。本実施形態では、活性金属としてTiを用いており、CuとTiを含む金属間化合物相33を構成する金属間化合物としては、例えばCuTi,CuTi,CuTi,CuTi,CuTi,CuTi等が挙げられる。
 このMg固溶層32におけるMgの含有量は、0.01原子%以上3原子%以下の範囲内とされている。Mg固溶層32の厚さは、0.1μm以上80μm以下の範囲内とされている。
 本実施形態では、酸化マグネシウム層31の内部に、Cu粒子35が分散している。
 酸化マグネシウム層31内に分散するCu粒子35の粒径が10nm以上100nm以下の範囲内とされている。また、酸化マグネシウム層31のうちセラミックス基板11との界面から酸化マグネシウム層31の厚さの20%までの界面近傍領域におけるCu濃度が0.3原子%以上15原子%以下の範囲内とされている。
 酸化マグネシウム層31の厚さは、50nm以上1000nm以下の範囲内とされている。酸化マグネシウム層31の厚さは、50nm以上400nm以下の範囲内とすることがさらに好ましい。
 さらに、本実施形態においては、セラミックス基板11と回路層12(金属層13)との間において、セラミックス基板11の接合面から回路層12(金属層13)側へ50μmまでの領域におけるCu-Mg金属間化合物相の面積率が15%以下とされている。上述のCu-Mg金属間化合物相としては、例えばCuMg相、CuMg相等が挙げられる。
 本実施形態では、上述のCu-Mg金属間化合物相は、電子線マイクロアナライザー(日本電子株式会社製JXA-8539F)を用いて、倍率2000倍、加速電圧15kVの条件で接合界面を含む領域(400μm×600μm)のMgの元素MAPを取得し、Mgの存在が確認された領域内での定量分析の5点平均で、Cu濃度が5原子%以上、かつ、Mg濃度が30原子以上70原子%以下を満たした領域をCu-Mg金属間化合物相とした。
 次に、上述した本実施形態である絶縁回路基板10の製造方法について、図3及び図4を参照して説明する。
 図4に示すように、回路層12となる銅板22とセラミックス基板11との間、及び、金属層13となる銅板23とセラミックス基板11との間に、それぞれTi,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体(本実施形態ではTi単体)及びMg単体を配置する(活性金属及びMg配置工程S01)。本実施形態では、活性金属(Ti)及びMgを蒸着することによって、活性金属膜24(Ti膜)及びMg膜25が形成されており、Mg膜25は銅板22(銅板23)とは非接触状態で積層されている。この活性金属及びMg配置工程S01では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内としている。
 活性金属量の下限は2.8μmol/cm以上とすることが好ましく、活性金属量の上限は18.8μmol/cm以下とすることが好ましい。Mg量の下限は8.8μmol/cm以上とすることが好ましく、Mg量の上限は37.0μmol/cm以下とすることが好ましい。
 次に、銅板22とセラミックス基板11と銅板23とを、活性金属膜24(Ti膜)及びMg膜25を介して積層する(積層工程S02)。
 次に、積層された銅板22、セラミックス基板11、銅板23を、積層方向に加圧するとともに、真空炉内に装入して加熱し、銅板22とセラミックス基板11と銅板23を接合する(接合工程S03)。
 接合工程S03における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされている。
 また、接合工程S03における加熱温度は、CuとMgが非接触状態で積層されていることから、Mgの融点以上の670℃以上850℃以下の範囲内とされている。加熱温度の下限は700℃以上とすることが好ましい。
 接合工程S03における真空度は、1×10-6Pa以上1×10-2Pa以下の範囲内とすることが好ましい。
 加熱温度での保持時間は、5min以上360min以下の範囲内とすることが好ましい。上述のCu-Mg金属間化合物相の面積率を低くするためには、加熱温度での保持時間の下限を60min以上とすることが好ましい。また、加熱温度での保持時間の上限は240min以下とすることが好ましい。
 以上のように、活性金属及びMg配置工程S01と、積層工程S02と、接合工程S03とによって、本実施形態である絶縁回路基板10が製造される。
 次に、絶縁回路基板10の金属層13の他方の面側にヒートシンク51を接合する(ヒートシンク接合工程S04)。
 絶縁回路基板10とヒートシンク51とを、はんだ材を介して積層して加熱炉に装入し、第2はんだ層8を介して絶縁回路基板10とヒートシンク51とをはんだ接合する。
 次に、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する(半導体素子接合工程S05)。
 以上の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、無酸素銅からなる銅板22(回路層12)及び銅板23(金属層13)とアルミニウム酸化物の一種であるアルミナからなるセラミックス基板11とが、活性金属膜24(Ti膜)及びMg膜25を介して接合されており、セラミックス基板11と回路層12(銅板22)及びセラミックス基板11と金属層13(銅板22)の接合界面には、セラミックス基板11側に形成された酸化マグネシウム層31と、Cuの母相中にMgが固溶したMg固溶層32と、が積層されている。
 酸化マグネシウム層31は、セラミックス基板11と銅板22、23の間に配設されたMgとセラミックス基板11の酸素とが反応することにより形成されるものであり、接合界面においてセラミックス基板11が十分に反応している。また、酸化マグネシウム層31に積層するように、Cuの母相中にMgが固溶したMg固溶層32が形成されており、このMg固溶層32に、上述の活性金属が含まれており、本実施形態においてはMg固溶層31にCuと活性金属(Ti)を含む金属間化合物相33が分散されているので、セラミックス基板11と銅板22,23との間に配設されたMgが銅板22,23側に十分に拡散しており、さらに、Cuと活性金属(Ti)とが十分に反応している。
 よって、セラミックス基板11と銅板22,23との接合界面において十分に界面反応が進行しており、回路層12(銅板22)とセラミックス基板11、金属層13(銅板23)とセラミックス基板11とが確実に接合された絶縁回路基板10(銅/セラミックス接合体)を得ることができる。また、接合界面にAgが存在していないので、耐マイグレーション性に優れた絶縁回路基板10(銅/セラミックス接合体)を得ることができる。
 特に、本実施形態においては、酸化マグネシウム層31の内部に、Cu粒子35が分散しているので、銅板22,23のCuがセラミックス基板11の接合面で十分に反応していることになり、銅板22,23とセラミックス基板11とが強固に接合された絶縁回路基板10(銅/セラミックス接合体)を得ることが可能となる。
 また、本実施形態の絶縁回路基板10(銅/セラミックス接合体)の製造方法によれば、銅板22,23とセラミックス基板11との間に活性金属(Ti)の単体(活性金属膜24)及びMg単体(Mg膜25)を配置する活性金属及びMg配置工程S01と、これら活性金属膜24及びMg膜25を介して銅板22、23とセラミックス基板11とを積層する積層工程S02と、積層された銅板22、セラミックス基板11、銅板23を、積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程S03と、を備えているので、接合界面にガスや有機物の残渣等が残存することがない。また、活性金属(Ti)の単体及びMg単体を配置しているので、組成のばらつきがなく、均一に液相が生じることになる。
 そして、活性金属及びMg配置工程S01では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内としているので、界面反応に必要な液相を十分に得ることができるとともに、セラミックス基板11の必要以上の反応を抑制することができる。
 よって、銅板22,23とセラミックス基板11とが確実に接合された絶縁回路基板10(銅/セラミックス接合体)を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた絶縁回路基板10を得ることができる。
 活性金属量が0.4μmol/cm未満、及び、Mg量が7.0μmol/cm未満の場合には、界面反応が不十分となり、接合率が低下するおそれがあった。また、活性金属量が47.0μmol/cmを超える場合には、活性金属が多く比較的硬い金属間化合物相33が過剰に生成してしまい、Mg固溶層32が硬くなり過ぎて、セラミックス基板11に割れが生じるおそれがあった。また、Mg量が143.2μmol/cmを超える場合には、セラミックス基板11の分解反応が過剰となり、Alが過剰に生成し、これらとCuや活性金属(Ti)やMgの金属間化合物が多量に生じ、セラミックス基板11に割れが生じるおそれがあった。
 以上のことから、本実施形態では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内としている。
 さらに、本実施形態においては、接合工程S03における加圧荷重が0.049MPa以上とされているので、セラミックス基板11と銅板22,23と活性金属膜24(Ti膜)及びMg膜25とを密着させることができ、加熱時にこれらの界面反応を促進させることができる。また、接合工程S03における加圧荷重が3.4MPa以下とされているので、セラミックス基板11の割れ等を抑制することができる。
 また、本実施形態では、CuとMgが非接触状態で積層されており、接合工程S03における加熱温度が、Mgの融点以上である670℃以上とされているので、接合界面において十分に液相を生じさせることができる。一方、接合工程S03における加熱温度が850℃以下とされているので、Cuと活性金属(Ti)との共晶反応の発生を抑制することができ、液相が過剰に生成することを抑制できる。また、セラミックス基板11への熱負荷が小さくなり、セラミックス基板11の劣化を抑制することができる。
(第2の実施形態)
 次に、本発明の第2の実施形態について、図5から図8を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックス部材であるセラミックス基板111と、銅部材である銅板122(回路層112)とが接合されることにより構成された絶縁回路基板110とされている。
 図5に、本発明の第2の実施形態である絶縁回路基板110及びこの絶縁回路基板110を用いたパワーモジュール101を示す。
 このパワーモジュール101は、絶縁回路基板110と、この絶縁回路基板110の一方側(図5において上側)の面にはんだ層2を介して接合された半導体素子3と、絶縁回路基板110の他方側(図5において下側)に配置されたヒートシンク151と、を備えている。
 はんだ層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。
 絶縁回路基板110は、セラミックス基板111と、このセラミックス基板111の一方の面(図5において上面)に配設された回路層112と、セラミックス基板111の他方の面(図5において下面)に配設された金属層113とを備えている。
 セラミックス基板111は、回路層112と金属層113との間の電気的接続を防止するものであって、本実施形態では、アルミニウム酸化物の一種であるアルミナで構成されている。セラミックス基板111の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層112は、図8に示すように、セラミックス基板111の一方の面に銅又は銅合金からなる銅板122が接合されることにより形成されている。本実施形態においては、回路層112を構成する銅板122として、無酸素銅の圧延板が用いられている。この回路層112には、回路パターンが形成されており、その一方の面(図5において上面)が、半導体素子3が搭載される搭載面されている。回路層112の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では0.6mmに設定されている。
 金属層113は、図8に示すように、セラミックス基板111の他方の面にアルミニウム板123が接合されることにより形成されている。本実施形態においては、金属層113は、純度が99.99mass%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板123がセラミックス基板111に接合されることで形成されている。このアルミニウム板123は、0.2%耐力が30N/mm以下とされている。金属層113(アルミニウム板123)の厚さは0.5mm以上6mm以下の範囲内に設定されており、本実施形態では、2.0mmに設定されている。金属層113は、図8に示すように、アルミニウム板123がAl-Si系ろう材128を用いてセラミックス基板111に接合されることで形成されている。
 ヒートシンク151は、前述の絶縁回路基板110を冷却するためのものであり、本実施形態においては、熱伝導性が良好な材質で構成された放熱板とされている。本実施形態においては、ヒートシンク151は、A6063(アルミニウム合金)で構成されている。本実施形態においては、このヒートシンク151は、絶縁回路基板110の金属層113に、例えばAl-Si系ろう材を用いて接合されている。
 セラミックス基板111と回路層112(銅板122)とは、図8に示すように、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属からなる活性金属膜124及びMg膜125を介して接合されている。本実施形態では、活性金属としてZr及びHfを用いており、活性金属膜124は、ZrとHfとを共蒸着することで成膜されたものとされている。
 そして、セラミックス基板111と回路層112(銅板122)との接合界面においては、図6に示すように、セラミックス基板111側に形成された酸化マグネシウム層131と、Cuの母相中にMgが固溶したMg固溶層132と、が積層されている。
 Mg固溶層132には、上述の活性金属が含まれている。本実施形態においては、Mg固溶層132には、Cuと活性金属(Zr及びHf)を含む金属間化合物相133が分散されている。本実施形態では、活性金属としてZr及びHfを用いており、CuとZr及びHfを含む金属間化合物相133を構成する金属間化合物としては、例えばCuZr,Cu51Zr14,CuZr,Cu10Zr,CuZr,CuZr,CuZr,Cu51Hf14,CuHf,Cu10Hf,CuHf等が挙げられる。 このMg固溶層132におけるMgの含有量は、0.01原子%以上3原子%以下の範囲内とされている。Mg固溶層132の厚さは、0.1μm以上80μm以下の範囲内とされている。
 本実施形態では、酸化マグネシウム層131の内部に、Cu粒子135が分散している。
 酸化マグネシウム層131内に分散するCu粒子135の粒径が10nm以上100nm以下の範囲内とされている。また、酸化マグネシウム層131のうちセラミックス基板111との界面から酸化マグネシウム層131の厚さの20%までの界面近傍領域におけるCu濃度が0.3原子%以上15原子%以下の範囲内とされている。
 酸化マグネシウム層131の厚さは、50nm以上1000nm以下の範囲内とされている。酸化マグネシウム層131の厚さは、50nm以上400nm以下の範囲内とすることがさらに好ましい。
 本実施形態においては、セラミックス基板111と回路層112との間において、セラミックス基板111の接合面から回路層112側へ50μmまでの領域におけるCu-Mg金属間化合物相の面積率が15%以下とされている。
 上述のCu-Mg金属間化合物相としては、例えばCuMg相、CuMg相等が挙げられる。
 本実施形態では、上述のCu-Mg金属間化合物相は、電子線マイクロアナライザー(日本電子株式会社製JXA-8539F)を用いて、倍率2000倍、加速電圧15kVの条件で接合界面を含む領域(400μm×600μm)のMgの元素MAPを取得し、Mgの存在が確認された領域内での定量分析の5点平均で、Cu濃度が5原子%以上、かつ、Mg濃度が30原子以上70原子%以下を満たした領域をCu-Mg金属間化合物相とした。
 次に、上述した本実施形態である絶縁回路基板110の製造方法について、図7及び図8を参照して説明する。
 図8に示すように、回路層112となる銅板122とセラミックス基板111との間に、それぞれTi,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体(本実施形態ではZr単体及びHf単体)及びMg単体を配置する(活性金属及びMg配置工程S101)。本実施形態では、活性金属(Zr及びHf)とMgを蒸着することによって、活性金属膜124及びMg膜125が形成されており、銅板122に接触するようにMg膜125が形成されている。
 この活性金属及びMg配置工程S101では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内としている。
 活性金属量が0.4μmol/cm未満、及び、Mg量が7.0μmol/cm未満の場合には、界面反応が不十分となり、接合率が低下するおそれがある。また、活性金属量が47.0μmol/cmを超える場合には、活性金属が多く比較的硬い金属間化合物相133が過剰に生成してしまい、Mg固溶層132が硬くなり過ぎて、セラミックス基板111に割れが生じるおそれがある。また、Mg量が143.2μmol/cmを超える場合には、セラミックス基板111の分解反応が過剰となり、Alが過剰に生成し、これらとCuや活性金属(Ti)やMgの金属間化合物が多量に生じ、セラミックス基板111に割れが生じるおそれがある。
 活性金属量の下限は2.8μmol/cm以上とすることが好ましく、活性金属量の上限は18.8μmol/cm以下とすることが好ましい。また、Mg量の下限は8.8μmol/cm以上とすることが好ましく、Mg量の上限は37.0μmol/cm以下とすることが好ましい。
 次に、銅板122とセラミックス基板111とを、活性金属膜124及びMg膜125を介して積層する(積層工程S102)。
 本実施形態では、図8に示すように、セラミックス基板111の他方の面側に、Al-Si系ろう材128を介して、金属層113となるアルミニウム板123を積層する。
 次に、積層された銅板122、セラミックス基板111、アルミニウム板123を、積層方向に加圧するとともに、真空炉内に装入して加熱し、銅板122とセラミックス基板111とアルミニウム板123を接合する(接合工程S103)。
 接合工程S103における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされている。
 また、接合工程S103における加熱温度は、CuとMgが接触状態で積層されていることから、MgとCuの共晶温度以上である500℃以上、かつ、Cuと活性金属(Zr及びHf)の共晶温度以下とする。加熱温度の下限は700℃以上とすることが好ましい。
 本実施形態では、アルミニウム板123をAl-Si系ろう材128を用いて接合するため、加熱温度は600℃以上650℃以下の範囲内としている。
 さらに、接合工程S103における真空度は、1×10-6Pa以上1×10-2Pa以下の範囲内とすることが好ましい。
 また、加熱温度での保持時間は、5min以上360min以下の範囲内とすることが好ましい。上述のCu-Mg金属間化合物相の面積率を低くするためには、加熱温度での保持時間の下限を60min以上とすることが好ましい。また、加熱温度での保持時間の上限は240min以下とすることが好ましい。
 以上のように、活性金属及びMg配置工程S101と、積層工程S102と、接合工程S103とによって、本実施形態である絶縁回路基板110が製造される。
 次に、絶縁回路基板110の金属層113の他方の面側に、ヒートシンク151を接合する(ヒートシンク接合工程S104)。
 絶縁回路基板110とヒートシンク151とを、ろう材を介して積層し、積層方向に加圧するとともに真空炉内に装入してろう付けを行う。これにより、絶縁回路基板110の金属層113とヒートシンク151とを接合する。このとき、ろう材としては、例えば、厚さ20~110μmのAl-Si系ろう材箔を用いることができ、ろう付け温度は、接合工程S103における加熱温度よりも低温に設定することが好ましい。
 次に、絶縁回路基板110の回路層112の一方の面に、半導体素子3をはんだ付けにより接合する(半導体素子接合工程S105)。
 以上の工程により、図5に示すパワーモジュール101が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板110(銅/セラミックス接合体)によれば、銅板122(回路層112)とアルミナからなるセラミックス基板111とが、活性金属膜124及びMg膜125を介して接合されており、セラミックス基板111と回路層112(銅板122)の接合界面には、セラミックス基板111側に形成された酸化マグネシウム層131と、Cuの母相中にMgが固溶したMg固溶層132と、が積層され、このMg固溶層132内に活性金属が存在しており、本実施形態では、Mg固溶層132内にCuと活性金属を含む金属間化合物相133が分散しているので、第1の実施形態と同様に、回路層112(銅板122)とセラミックス基板111とが確実に接合された絶縁回路基板110(銅/セラミックス接合体)を得ることができる。また、接合界面にAgが存在していないので、耐マイグレーション性に優れた絶縁回路基板110(銅/セラミックス接合体)を得ることができる。
 また、本実施形態においては、酸化マグネシウム層131の内部に、Cu粒子135が分散しているので、銅板122のCuがセラミックス基板111の接合面で十分に反応していることになり、回路層112(銅板122)とセラミックス基板111とが強固に接合された絶縁回路基板110(銅/セラミックス接合体)を得ることが可能となる。
 また、本実施形態の絶縁回路基板110(銅/セラミックス接合体)の製造方法によれば、第1の実施形態と同様に、回路層112(銅板122)とセラミックス基板111との接合界面において、液相を適度に出現させて十分に界面反応させることができ、銅板122とセラミックス基板111とが確実に接合された絶縁回路基板110(銅/セラミックス接合体)を得ることができる。また、接合にAgを用いていないので、耐マイグレーション性に優れた絶縁回路基板110を得ることができる。
 また、本実施形態では、CuとMgが接触状態で積層されており、接合工程S103における加熱温度が、CuとMgの共晶温度以上である500℃以上とされているので、接合界面において十分に液相を生じさせることができる。
 さらに、本実施形態では、積層工程S102において、セラミックス基板111の他面側にアルミニウム板123をAl-Si系ろう材128を介して積層し、銅板122とセラミックス基板111、セラミックス基板111とアルミニウム板123とを同時に接合しているので、銅からなる回路層112とアルミニウムからなる金属層113とを備えた絶縁回路基板110を効率良く製造することができる。また、絶縁回路基板110における反りの発生を抑制することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、回路層又は金属層を構成する銅板を、無酸素銅の圧延板として説明したが、これに限定されることはなく、他の銅又は銅合金で構成されたものであってもよい。
 また、第2の実施形態において、金属層を構成するアルミニウム板を、純度99.99mass%の純アルミニウムの圧延板として説明したが、これに限定されることはなく、純度99mass%のアルミニウム(2Nアルミニウム)等、他のアルミニウム又はアルミニウム合金で構成されたものであってもよい。
 さらに、本実施形態では、セラミックス基板を、アルミニウム酸化物の一種であるアルミナからなるものとして説明したが、これに限定されることはなく、ジルコニア等を含む強化アルミナ等であってもよい。
 さらに、ヒートシンクとして放熱板を例に挙げて説明したが、これに限定されることはなく、ヒートシンクの構造に特に限定はない。例えば、冷媒が流通する流路を有するものや冷却フィンを備えたものであってもよい。また、ヒートシンクとしてアルミニウムやアルミニウム合金を含む複合材(例えばAlSiC等)を用いることもできる。
 また、ヒートシンクの天板部や放熱板と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けてもよい。
 さらに、本実施形態では、活性金属及びMg配置工程において、活性金属膜及びMg膜を成膜するものとして説明したが、これに限定されることはなく、活性金属とMgを共蒸着してもよい。この場合においても、成膜された活性金属膜及びMg膜は、合金化されておらず、活性金属の単体及びMg単体が配置されることになる。共蒸着によって活性金属及びMg膜を成膜した場合には、MgとCuとが接触状態となるため、接合工程における加熱温度の下限を500℃以上とすることができる。
 また、本実施形態では、活性金属としてTi、又は、Zr及びHfを用いたものとして説明したが、これに限定されることはなく、活性金属として、Ti,Zr,Nb,Hfから選択される1種又は2種以上を用いてもよい。
 活性金属としてZrを用いた場合には、Mg固溶層において、Zrは、Cuとの金属間化合物相として存在する。この金属間化合物相を構成する金属間化合物としては、例えばCuZr,Cu51Zr14,CuZr,Cu10Zr,CuZr,CuZr,CuZr等が挙げられる。
 活性金属としてHfを用いた場合には、Mg固溶層において、Hfは、Cuとの金属間化合物相として存在する。この金属間化合物相を構成する金属間化合物としては、例えばCu51Hf14,CuHf,Cu10Hf,CuHf等が挙げられる。
 活性金属としてTi及びZrを用いた場合には、Mg固溶層において、Ti及びZrは、Cuと活性金属を含む金属間化合物相として存在する。この金属間化合物相を構成する金属間化合物としては、Cu1.5Zr0.75Ti0.75等が挙げられる。
 また、活性金属としてNbを用いた場合には、NbはMg固溶層に固溶して存在することになる。
 さらに、活性金属及びMg配置工程においては、接合界面における活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とされていればよく、例えばMg膜/活性金属膜/Mg膜のように活性金属膜とMg膜を多層に積層してもよい。あるいは、活性金属膜とMg膜の間にCu膜を成膜してもよい。
 活性金属の単体及びMg単体は、箔材を配置してもよいし、スパッタリングによって成膜してもよい。
 また、活性金属の単体やMg単体を積層したクラッド材を用いてもよいし、活性金属の単体やMg単体を含むペースト等を印刷してもよい。
 また、本実施形態では、絶縁回路基板の回路層にパワー半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 本発明の有効性を確認するために行った確認実験について説明する。
<実施例1>
 表1に示す構造の銅/セラミックス接合体を形成した。詳述すると、40mm角のアルミナからなるセラミックス基板の両面に、表1に示すように、活性金属の単体及びMg単体を成膜した銅板を積層し、表1に示す接合条件で接合し、銅/セラミックス接合体を形成した。セラミックス基板としての厚さは0.635mmとした。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた銅/セラミックス接合体について、接合界面を観察して酸化マグネシウム層、Mg固溶層、金属間化合物相、酸化マグネシウム層中のCu粒子の有無及びCu濃度、を確認した。また、銅/セラミックス接合体の初期接合率、冷熱サイクル後のセラミックス基板の割れ、マイグレーション性を、以下のように評価した。
(Mg固溶層)
 銅板とセラミックス基板との接合界面を、EPMA装置(日本電子株式会社製JXA-8539F)を用いて、倍率2000倍、加速電圧15kVの条件で接合界面を含む領域(400μm×600μm)を観察し、セラミックス基板表面(酸化マグネシウム層表面)から銅板側に向かって10μm間隔の10点で定量分析を行い、Mg濃度が0.01原子%以上である領域をMg固溶層とした。
(Mg固溶層における活性金属の有無(金属間化合物相の有無))
 銅板とセラミックス基板との接合界面を、電子線マイクロアナライザー(日本電子株式会社製JXA-8539F)を用いて、倍率2000倍、加速電圧15kVの条件で接合界面を含む領域(400μm×600μm)の活性金属の元素MAPを取得し、活性金属の有無を確認した。また、活性金属の存在が確認された領域内での定量分析の5点平均で、Cu濃度が5原子%以上、かつ、活性金属濃度が16原子以上90原子%以下を満たした領域を金属間化合物相とした。
(酸化マグネシウム層)
 銅板とセラミックス基板との接合界面を、走査型透過電子顕微鏡(FEI社製Titan ChemiSTEM(EDS検出器付き))を用いて、倍率115000倍、加速電圧200kVの条件で観察を行い、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)を用いてマッピングを行い、Mg、Oの元素マッピングを取得し、MgとOが重なる領域において、1nm程度に絞った電子ビームを照射すること(NBD(ナノビーム回折)法)で電子回折図形を得て、酸化マグネシウム層の有無を確認した。酸化マグネシウム層は、マグネシア(MgO)、スピネル(MgAl)のいずれかを含有していてもよい。
 また、酸化マグネシウム層と確認された領域におけるCu粒子の有無を確認し、この領域における定量分析の5点平均から得られたCu濃度を、酸化マグネシウム層内に分散されたCuの平均濃度とした。
(初期接合率)
 銅板とセラミックス基板との接合率は、超音波探傷装置(株式会社日立パワーソリューションズ製FineSAT200)を用いて以下の式を用いて求めた。初期接合面積とは、接合前における接合すべき面積、すなわち銅板の接合面の面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
  (接合率)={(初期接合面積)-(剥離面積)}/(初期接合面積)
(セラミックス基板の割れ)
 冷熱衝撃試験機(エスペック株式会社製TSA-72ES)を使用し、気相で、-50℃×10分←→150℃×10分の250サイクルを実施した。
 上述の冷熱サイクルを負荷した後のセラミックス基板の割れの有無を評価した。
(マイグレーション)
 回路層の回路パターン間距離0.8mm、温度60℃、湿度60%RH、電圧DC1000Vの条件で、2000時間放置後に、回路パターン間の電気抵抗を測定し、抵抗値が1×10Ω以下となった場合を短絡したと判断し、マイグレーションの評価を「B」とした。上記と同じ条件で、2000時間放置後に、回路パターン間の電気抵抗を測定し、抵抗値が1×10Ωより大きい場合は、マイグレーションの評価を「A」とした。
 評価結果を表2に示す。また、本発明例3の観察結果を図9に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 活性金属及びMg配置工程においてMg量が本発明よりも少ない比較例1においては、Mg固溶層及び酸化マグネシウム層が形成されず、初期接合率が低くなった。界面反応が不十分だったためと推測される。
 活性金属及びMg配置工程においてMg量が本発明よりも多い比較例2においては、セラミックス基板の割れが確認された。このため、銅/セラミックス接合体を得ることができなかった。セラミックス基板の分解反応が過剰となり、Alが過剰に生成し、これらとCuや活性金属やMgの金属間化合物が多量に生じたためと推測される。
 活性金属及びMg配置工程において活性金属量が本発明の範囲よりも少ない比較例3においては、初期接合率が低くなった。Mg固溶層に活性金属が存在しておらず、界面反応が不十分だったためと推測される。
 活性金属及びMg配置工程において活性金属量が本発明の範囲よりも多い比較例4においては、セラミックス基板の割れが確認された。このため、銅/セラミックス接合体を得ることができなかった。Mg固溶層に活性金属が多く存在し、Mg固溶層が硬くなり過ぎたためと推測される。
 Ag-Cu-Tiろう材を用いてセラミックス基板と銅板を接合した従来例においては、マイグレーションが「B」と判断された。接合界面にAgが存在するためと推測される。
 これに対して、本発明例1~12においては、初期接合率も高く、セラミックス基板の割れも確認されなかった。また、マイグレーションも良好であった。
 また、図9に示すように、接合界面を観察した結果、酸化マグネシウム層、Mg固溶層が観察され、このMg固溶層の内部に活性金属(金属間化合物相)分散していることが観察された。
<実施例2>
 表3に示す構造の絶縁回路基板を形成した。詳述すると、40mm角のアルミナからなるセラミックス基板の両面に、表3に示すように、活性金属の単体及びMg単体を成膜した銅板を積層し、表3に示す接合条件で接合し、回路層を有する絶縁回路基板を形成した。セラミックス基板の厚さは0.635mmとした。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた絶縁回路基板について、セラミックス基板と回路層との接合界面におけるCu-Mg金属間化合物相の面積率、及び、回路層に超音波接合した端子のプル強度を、以下のようにして評価した。
(Cu-Mg金属間化合物相の面積率)
 銅板とセラミックス基板との接合界面を、電子線マイクロアナライザー(日本電子株式会社製JXA-8539F)を用いて、倍率750倍、加速電圧15kVの条件で接合界面を含む領域(120μm×160μm)のMgの元素MAPを取得し、Mgの存在が確認された領域内での定量分析の5点平均で、Cu濃度が5原子%以上、かつ、Mg濃度が30原子以上70原子%以下を満たした領域をCu-Mg金属間化合物相とした。
 そして、観察視野内において、セラミックス基板の接合面とセラミックス基板の接合面から銅板側へ50μmまでの領域の面積Aを求める。この領域内においてCu-Mg金属間化合物相の面積Bを求め、Cu-Mg金属間化合物相の面積率B/A×100(%)を求めた。上述のようにCu-Mg金属間化合物相の面積率を5視野で測定し、その平均値を表3に記載した。
(プル強度)
 図10に示すように、絶縁回路基板の回路層の上に、超音波金属接合機(超音波工業株式会社製60C-904)を用いて、銅端子(幅5mm×厚さ1.0mm)を、コプラス量0.3mmの条件で超音波接合した。
 そして、ツール速度0.5mm/s,ステージ速度0.5mm/sの条件で銅端子をプルしたときの破断荷重を接合面積で割った値をプル強度として表3に記載した。
Figure JPOXMLDOC01-appb-T000003
 本発明例21~32を比較すると、Cu-Mg金属間化合物相の面積率が低いほど、プル強度が高くなることが確認される。よって、超音波接合性を向上させる場合には、Cu-Mg金属間化合物相の面積率を低く抑えることが効果的であることが確認された。
<実施例3>
 表4に示す構造の銅/セラミックス接合体を形成した。詳述すると、40mm角のアルミナからなるセラミックス基板の両面に、表4に示すように、活性金属の単体及びMg単体を成膜した銅板を積層し、表4に示す接合条件で接合し、銅/セラミックス接合体を形成した。セラミックス基板としての厚さは0.635mmとした。また、接合時の真空炉の真空度は5×10-3Paとした。
 このようにして得られた銅/セラミックス接合体について、接合界面を観察して、酸化マグネシウム層の厚さ、Mg固溶層、金属間化合物相、酸化マグネシウム層中のCu粒子の有無及びCu濃度、を確認した。また、銅/セラミックス接合体の初期接合率、冷熱サイクル負荷時のセラミックス基板の割れを、評価した。
 Mg固溶層、金属間化合物相、酸化マグネシウム層中のCu粒子の有無及びCu濃度、及び、銅/セラミックス接合体の初期接合率については、実施例1と同様の方法で評価した。
(酸化マグネシウム層の厚さ)
 銅板とセラミックス基板との接合界面を、透過型電子顕微鏡(FEI社製Titan ChemiSTEM)を用いて加速電圧200kV、倍率2万倍で観察し、得られた元素マッピングにおいて、MgとOが共存する領域が存在した場合を、酸化マグネシウム層と同定した。酸化マグネシウム層は、マグネシア(MgO)、スピネル(MgAl)のいずれかを含有していてもよい。
 そして、観察視野内において、酸化マグネシウム層の面積を観察幅で割ることによって、酸化マグネシウム層の厚さを算出した。
(冷熱サイクル試験)
 冷熱衝撃試験機(エスペック株式会社製TSA-72ES)を使用し、気相で、-50℃×10分←→175℃×10分の250サイクルを実施した。
 10サイクル毎にセラミックス基板の割れの有無を確認した。セラミックス割れの有無は、超音波探傷装置(日立パワーソリューションズ製FineSAT200)による界面検査から判定した。表5において、「>250」は250サイクル後に割れが確認されなかったことを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされた本発明例41~52においては、-50℃から175℃の過酷な冷熱サイクル試験を実施した場合であっても、セラミックス割れが発生した冷熱サイクルが180回以上であり、冷熱サイクル信頼性に優れていることが確認された。特に、酸化マグネシウム層の厚さが50nm以上400nm以下の範囲内とされた本発明例41,42,44,50~52においては、冷熱サイクルを250サイクル負荷後においてもセラミックス基板の割れが確認されておらず、冷熱サイクル信頼性に特に優れていることが確認された。
 以上のことから、さらに冷熱サイクル信頼性が必要な場合には、酸化マグネシウム層を50nm以上1000nm以下の範囲内、さらには50nm以上400nm以下の範囲内、とすることが好ましい。
 本発明によれば、銅又は銅合金からなる銅部材とアルミニウム酸化物からなるセラミックス部材とが確実に接合され、耐マイグレーション性に優れた銅/セラミックス接合体、絶縁回路基板、及び、上述の銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することが可能となる。
10、110 絶縁回路基板
11、111 セラミックス基板
12、112 回路層
13、113 金属層
22、23、122 銅板
31、131 酸化マグネシウム層
32、132 Mg固溶層
33、133 金属間化合物相
35、135 Cu粒子

Claims (14)

  1.  銅又は銅合金からなる銅部材と、アルミニウム酸化物からなるセラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記銅部材と前記セラミックス部材との間においては、前記セラミックス部材側に酸化マグネシウム層が形成され、この酸化マグネシウム層と前記銅部材との間にCuの母相中にMgが固溶したMg固溶層が形成されており、
     前記Mg固溶層には、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属が存在することを特徴とする銅/セラミックス接合体。
  2.  前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されていることを特徴とする請求項1に記載の銅/セラミックス接合体。
  3.  前記酸化マグネシウム層の内部に、Cu粒子が分散されていることを特徴とする請求項1又は請求項2に記載の銅/セラミックス接合体。
  4.  前記セラミックス部材と前記銅部材との間において、前記セラミックス部材の接合面から前記銅部材側へ50μmまでの領域におけるCu-Mg金属間化合物相の面積率が15%以下とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の銅/セラミックス接合体。
  5.  前記酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされていることを特徴とする請求項1から請求項4のいずれか一項に記載の銅/セラミックス接合体。
  6.  アルミニウム酸化物からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記銅板と前記セラミックス基板との間においては、前記セラミックス基板側に酸化マグネシウム層が形成され、この酸化マグネシウム層と前記銅板との間にCuの母相中にMgが固溶したMg固溶層が形成されており、
     前記Mg固溶層には、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属が存在することを特徴とする絶縁回路基板。
  7.  前記Mg固溶層には、Cuと前記活性金属を含む金属間化合物相が分散されていることを特徴とする請求項6に記載の絶縁回路基板。
  8.  前記酸化マグネシウム層の内部に、Cu粒子が分散されていることを特徴とする請求項6又は請求項7に記載の絶縁回路基板。
  9.  前記セラミックス基板と前記銅板との間において、前記セラミックス基板の接合面から前記銅板側へ50μmまでの領域におけるCu-Mg金属間化合物相の面積率が15%以下とされていることを特徴とする請求項6から請求項8のいずれか一項に記載の絶縁回路基板。
  10.  前記酸化マグネシウム層の厚さが50nm以上1000nm以下の範囲内とされていることを特徴とする請求項6から請求項9のいずれか一項に記載の絶縁回路基板。
  11.  請求項1から請求項5のいずれか一項に記載の銅/セラミックス接合体を製造する銅/セラミックス接合体の製造方法であって、
     前記銅部材と前記セラミックス部材との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、
     前記銅部材と前記セラミックス部材とを、活性金属及びMgを介して積層する積層工程と、
     活性金属及びMgを介して積層された前記銅部材と前記セラミックス部材とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、
     を備えており、
     前記活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とすることを特徴とする銅/セラミックス接合体の製造方法。
  12.  前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされ、
     前記接合工程における加熱温度は、CuとMgが接触状態で積層されている場合は500℃以上850℃以下の範囲内、CuとMgが非接触状態で積層されている場合は670℃以上850℃以下の範囲内とされていることを特徴とする請求項11に記載の銅/セラミックス接合体の製造方法。
  13.  請求項6から請求項10のいずれか一項に記載の絶縁回路基板を製造する絶縁回路基板の製造方法であって、
     前記銅板と前記セラミックス基板との間に、Ti,Zr,Nb,Hfから選択される1種又は2種以上の活性金属の単体及びMg単体を配置する活性金属及びMg配置工程と、 前記銅板と前記セラミックス基板とを、活性金属及びMgを介して積層する積層工程と、
     活性金属及びMgを介して積層された前記銅板と前記セラミックス基板とを積層方向に加圧した状態で、真空雰囲気下において加熱処理して接合する接合工程と、
     を備えており、
     前記活性金属及びMg配置工程では、活性金属量を0.4μmol/cm以上47.0μmol/cm以下の範囲内、Mg量を7.0μmol/cm以上143.2μmol/cm以下の範囲内とすることを特徴とする絶縁回路基板の製造方法。
  14.  前記接合工程における加圧荷重が0.049MPa以上3.4MPa以下の範囲内とされ、
     前記接合工程における加熱温度は、CuとMgが接触状態で積層されている場合は500℃以上850℃以下の範囲内、CuとMgが非接触状態で積層されている場合は670℃以上850℃以下の範囲内とされていることを特徴とする請求項13に記載の絶縁回路基板の製造方法。
PCT/JP2019/001045 2018-01-25 2019-01-16 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 WO2019146464A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980007305.6A CN111566074B (zh) 2018-01-25 2019-01-16 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
EP19743195.0A EP3744705A4 (en) 2018-01-25 2019-01-16 COPPER / CERAMIC BONDED BODY, PRINTED INSULATION CIRCUIT BOARD, COPPER / CERAMIC BONDED BODY PRODUCTION PROCESS, AND PRINTED INSULATED CIRCUIT BOARD PRODUCTION PROCESS
KR1020207020418A KR20200111178A (ko) 2018-01-25 2019-01-16 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
US16/960,648 US20200365475A1 (en) 2018-01-25 2019-01-16 Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-010965 2018-01-25
JP2018010965 2018-01-25
JP2018-227472 2018-12-04
JP2018227472A JP7192451B2 (ja) 2018-01-25 2018-12-04 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Publications (1)

Publication Number Publication Date
WO2019146464A1 true WO2019146464A1 (ja) 2019-08-01

Family

ID=67396022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001045 WO2019146464A1 (ja) 2018-01-25 2019-01-16 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Country Status (2)

Country Link
CN (1) CN111566074B (ja)
WO (1) WO2019146464A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112060A1 (ja) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2021091595A (ja) * 2019-12-02 2021-06-17 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021187464A1 (ja) * 2020-03-18 2021-09-23 三菱マテリアル株式会社 絶縁回路基板
JP2021153180A (ja) * 2020-03-18 2021-09-30 三菱マテリアル株式会社 絶縁回路基板
CN116134004A (zh) * 2020-07-27 2023-05-16 株式会社东芝 接合体、电路基板、半导体装置及接合体的制造方法
WO2024053738A1 (ja) * 2022-09-09 2024-03-14 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172580A (zh) * 2022-08-11 2022-10-11 河南省科学院应用物理研究所有限公司 一种热电制冷片封装载板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220987A (ja) * 1987-03-06 1988-09-14 Natl Res Inst For Metals アルミニウム及びアルミナセラミツクスの拡散接合法
JPH04162756A (ja) 1990-10-26 1992-06-08 Toshiba Corp 半導体モジュール
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2005305526A (ja) * 2004-04-23 2005-11-04 Honda Motor Co Ltd 銅とセラミックス又は炭素基銅複合材料との接合用ろう材及び同接合方法
JP2017183716A (ja) * 2016-03-25 2017-10-05 三菱マテリアル株式会社 ヒートシンク付絶縁回路基板の製造方法、及び、ヒートシンク付絶縁回路基板
JP2018010965A (ja) 2016-07-13 2018-01-18 株式会社日立製作所 炭化ケイ素半導体装置および電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131875A (ja) * 1983-12-20 1985-07-13 三菱重工業株式会社 セラミツクと金属の接合法
FR2751640B1 (fr) * 1996-07-23 1998-08-28 Commissariat Energie Atomique Composition et procede de brasage reactif de materiaux ceramiques contenant de l'alumine
US6989200B2 (en) * 2003-10-30 2006-01-24 Alfred E. Mann Foundation For Scientific Research Ceramic to noble metal braze and method of manufacture
CN101391901B (zh) * 2008-11-07 2010-08-11 哈尔滨工业大学 Al2O3陶瓷与金属材料的钎焊方法
JP5359936B2 (ja) * 2010-03-03 2013-12-04 三菱マテリアル株式会社 パワーモジュール用基板、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2013071873A (ja) * 2011-09-28 2013-04-22 Nhk Spring Co Ltd 接合体
CN102489805B (zh) * 2011-11-11 2014-06-04 西安交通大学 在铝基复合材料钎缝中能获得原位强化相的钎料设计方法及适于铸铝基体的Al-Cu-Ti系活性钎料
CN102554385B (zh) * 2011-12-13 2013-09-04 河南科技大学 一种金属陶瓷复合衬板的钎焊铸接工艺
CN103231181A (zh) * 2013-03-28 2013-08-07 杭州碳诺光伏材料有限公司 低成本、环保型氧化物陶瓷靶材与铜背板焊接的研究
JP2015224151A (ja) * 2014-05-27 2015-12-14 Ngkエレクトロデバイス株式会社 Cu/セラミック基板
CN105458547B (zh) * 2015-12-28 2017-12-15 西安交通大学 一种适于高体积分数SiC强化的铸铝基复合材料的活性钎料及其制备方法
CN106825978B (zh) * 2017-02-24 2019-08-27 哈尔滨工业大学深圳研究生院 一种用于陶瓷与金属焊接的钎料及焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220987A (ja) * 1987-03-06 1988-09-14 Natl Res Inst For Metals アルミニウム及びアルミナセラミツクスの拡散接合法
JPH04162756A (ja) 1990-10-26 1992-06-08 Toshiba Corp 半導体モジュール
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2005305526A (ja) * 2004-04-23 2005-11-04 Honda Motor Co Ltd 銅とセラミックス又は炭素基銅複合材料との接合用ろう材及び同接合方法
JP4375730B2 (ja) 2004-04-23 2009-12-02 本田技研工業株式会社 銅とセラミックス又は炭素基銅複合材料との接合用ろう材及び同接合方法
JP2017183716A (ja) * 2016-03-25 2017-10-05 三菱マテリアル株式会社 ヒートシンク付絶縁回路基板の製造方法、及び、ヒートシンク付絶縁回路基板
JP2018010965A (ja) 2016-07-13 2018-01-18 株式会社日立製作所 炭化ケイ素半導体装置および電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3744705A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112060A1 (ja) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2021091595A (ja) * 2019-12-02 2021-06-17 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
KR20220054461A (ko) * 2019-12-02 2022-05-02 미쓰비시 마테리알 가부시키가이샤 구리/세라믹스 접합체, 절연 회로 기판, 및 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
KR102413017B1 (ko) 2019-12-02 2022-06-23 미쓰비시 마테리알 가부시키가이샤 구리/세라믹스 접합체, 절연 회로 기판, 및 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
CN114728857A (zh) * 2019-12-02 2022-07-08 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
US11638350B2 (en) 2019-12-02 2023-04-25 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board
WO2021187464A1 (ja) * 2020-03-18 2021-09-23 三菱マテリアル株式会社 絶縁回路基板
JP2021153180A (ja) * 2020-03-18 2021-09-30 三菱マテリアル株式会社 絶縁回路基板
CN116134004A (zh) * 2020-07-27 2023-05-16 株式会社东芝 接合体、电路基板、半导体装置及接合体的制造方法
WO2024053738A1 (ja) * 2022-09-09 2024-03-14 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Also Published As

Publication number Publication date
CN111566074B (zh) 2022-04-22
CN111566074A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
JP6965768B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019146464A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
TWI772597B (zh) 銅/陶瓷接合體、絕緣電路基板、及銅/陶瓷接合體之製造方法、絕緣電路基板之製造方法
JP6904088B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
TWI746807B (zh) 銅/陶瓷接合體,絕緣電路基板,及銅/陶瓷接合體的製造方法,絕緣電路基板的製造方法
TWI813747B (zh) 銅/陶瓷接合體、絕緣電路基板、及銅/陶瓷接合體之製造方法、及絕緣電路基板之製造方法
WO2019088222A1 (ja) 接合体、及び、絶縁回路基板
JP7136212B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021085451A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021033622A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021044844A1 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP6928297B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
WO2021117327A1 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
TWI801652B (zh) 銅/陶瓷接合體、絕緣電路基板、及銅/陶瓷接合體之製造方法、及絕緣電路基板之製造方法
WO2021112046A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP6850984B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743195

Country of ref document: EP

Effective date: 20200825