WO2024053738A1 - 銅/セラミックス接合体、および、絶縁回路基板 - Google Patents

銅/セラミックス接合体、および、絶縁回路基板 Download PDF

Info

Publication number
WO2024053738A1
WO2024053738A1 PCT/JP2023/032886 JP2023032886W WO2024053738A1 WO 2024053738 A1 WO2024053738 A1 WO 2024053738A1 JP 2023032886 W JP2023032886 W JP 2023032886W WO 2024053738 A1 WO2024053738 A1 WO 2024053738A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
layer
ceramic
active metal
metal compound
Prior art date
Application number
PCT/JP2023/032886
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023089701A external-priority patent/JP2024039593A/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2024053738A1 publication Critical patent/WO2024053738A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a copper/ceramic bonded body formed by bonding a copper member made of copper or a copper alloy to a ceramic member, and an insulating circuit formed by bonding a copper plate made of copper or a copper alloy to the surface of a ceramic substrate. It is related to the board.
  • This application is filed in Japan with Japanese Patent Application No. 2022-143902 filed on September 9, 2022, Japanese Patent Application No. 2023-089701 filed on May 31, 2023, and Japanese Patent Application No. 2023-089701 filed on June 30, 2023. Priority is claimed based on Japanese Patent Application No. 2023-108414, the contents of which are incorporated herein.
  • Power modules, LED modules, and thermoelectric modules have a structure in which power semiconductor elements, LED elements, and thermoelectric elements are bonded to an insulated circuit board that has a circuit layer made of a conductive material formed on one side of an insulating layer.
  • power semiconductor elements for controlling high power used to control wind power generation, electric vehicles, hybrid vehicles, etc. generate a large amount of heat during operation, so the substrate on which they are mounted is a ceramic substrate.
  • Patent Document 1 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by bonding copper plates to one side and the other side of a ceramic substrate.
  • copper plates are placed on one side and the other side of a ceramic substrate with an Ag-Cu-Ti brazing filler metal interposed therebetween, and the copper plates are bonded by heat treatment (so-called active metal brazing method). Since this active metal brazing method uses a brazing filler metal containing Ti, an active metal, the wettability between the molten brazing filler metal and the ceramic substrate is improved, and the ceramic substrate and the copper plate are bonded well. It turns out.
  • This invention has been made in view of the above-mentioned circumstances, and is a copper/copper material with excellent bondability between a ceramic member and a copper member and excellent reliability in cooling and heating cycles even when subjected to severe cooling and heating cycles.
  • the present invention aims to provide a ceramic bonded body and an insulated circuit board made of the copper/ceramic bonded body.
  • a copper/ceramic joined body is a copper/ceramic joined body in which a copper member made of copper or a copper alloy and a ceramic member are joined, An active metal compound layer containing a compound of one or more active metals selected from Ti, Zr, Nb, and Hf, or a magnesium oxide layer is formed in the region of the ceramic member on the copper member side.
  • One or more selected from V, Cr, Mn, Fe, Co, Ni, Mo, Ta, and W are present at the interface of the active metal compound layer or the magnesium oxide layer on the copper member side. It is characterized in that a transition metal layer containing a transition metal is formed.
  • an Mg solid solution layer is formed in a region of the copper member on the ceramic member side, and the Mg solid solution layer and the active metal compound layer or the oxidized
  • the transition metal layer may be formed between the magnesium layer and the magnesium layer.
  • an active metal compound layer or a magnesium oxide layer is formed in a region of the ceramic member on the copper member side, and an active metal compound layer or a magnesium oxide layer is formed in a region of the copper member on the ceramic member side.
  • a Mg solid solution layer is formed therein, and the transition metal layer is formed between the Mg solid solution layer and the active metal compound layer or the magnesium oxide layer.
  • the active metal compound layer or the magnesium oxide layer, the Mg solid solution layer, and the transition metal layer have high bonding properties, and the transition metal layer has a high bonding property with copper compared to the active metal compound layer or the magnesium oxide layer.
  • an Mg solid solution layer is formed in a region of the copper member on the ceramic member side, and the transition layer is formed between the Mg solid solution layer and the active metal compound layer or the magnesium oxide layer.
  • the presence of the metal layer significantly improves the bonding reliability between the ceramic member and the copper member. Therefore, in the copper/ceramic bonded body of Aspect 1 of the present invention, even when subjected to a short period of high-temperature cooling/heating cycles, the ceramic member and the copper member do not separate, and the cooling/heating cycle reliability is maintained. Especially excellent.
  • a copper/ceramic bonded body according to Aspect 2 of the present invention is characterized in that, in the copper/ceramic bonded body according to Aspect 1, the active metal compound layer has a structure in which a plurality of active metal compound particles are aggregated.
  • a copper/ceramic bonded body according to Aspect 3 of the present invention is characterized in that, in the copper/ceramic bonded body according to Aspect 2, a copper grain boundary phase exists between the active metal compound particles.
  • a copper/ceramic bonded body according to aspect 4 of the present invention is characterized in that, in the copper/ceramic bonded body according to aspect 1, the magnesium oxide layer has a structure in which a plurality of magnesium oxide particles are aggregated.
  • a copper/ceramic bonded body according to aspect 5 of the present invention is characterized in that a copper grain boundary phase exists between the magnesium oxide particles in the copper/ceramic bonded body according to aspect 4.
  • An insulated circuit board is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate, and a region of the ceramic substrate on the copper plate side has Ti.
  • An active metal compound layer containing a compound of one or more active metals selected from , Zr, Nb, and Hf, or a magnesium oxide layer is formed in a region of the copper plate on the ceramic substrate side.
  • an active metal compound layer or a magnesium oxide layer is formed in a region of the ceramic substrate on the copper plate side, and an Mg solidified layer is formed in the region of the copper plate on the ceramic substrate side. Since a transition metal layer is formed between the Mg solid solution layer and the active metal compound layer or the magnesium oxide layer, the bonding reliability between the ceramic substrate and the copper plate is greatly improved. This will improve the results. Therefore, in the insulated circuit board according to aspect 6 of the present invention, even when subjected to a short-cycle thermal cycle under high temperature conditions, the ceramic substrate and the copper plate do not separate, and the circuit board has particularly excellent thermal cycle reliability. There is.
  • An insulated circuit board according to aspect 7 of the present invention is characterized in that in the insulated circuit board according to aspect 6, the active metal compound layer has a structure in which a plurality of active metal compound particles are aggregated.
  • An insulated circuit board according to aspect 8 of the present invention is characterized in that, in the insulated circuit board according to aspect 7, a copper grain boundary phase exists between the active metal compound particles.
  • An insulated circuit board according to aspect 9 of the present invention is characterized in that, in the insulated circuit board according to aspect 6, the magnesium oxide layer has a structure in which a plurality of magnesium oxide particles are aggregated.
  • the insulated circuit board according to aspect 10 of the present invention is characterized in that, in the insulated circuit board according to aspect 9, a copper grain boundary phase exists between the magnesium oxide particles.
  • a copper/ceramic bonded body according to aspect 11 of the present invention is a copper/ceramic bonded body in which a copper member made of copper or a copper alloy and a ceramic member are bonded, wherein the copper member side of the ceramic member is An active metal compound layer containing a compound of one or more active metals selected from Ti, Zr, Nb, and Hf is formed in the region, and the interface on the copper member side of the active metal compound layer is characterized in that a transition metal layer containing one or more transition metals selected from V, Cr, Mn, Fe, Co, Ni, Mo, Ta, and W is formed.
  • an active metal compound layer is formed in a region of the ceramic member on the copper member side, and a transition metal compound layer is formed on the interface of the active metal compound layer on the copper member side. layers are formed.
  • the active metal compound layer and the transition metal layer have high compatibility, and the transition metal layer has higher compatibility with copper than the active metal compound layer, the copper member side of the ceramic member. The presence of the transition metal layer between the active metal compound layer formed in the region and the copper member significantly improves the bonding reliability between the ceramic member and the copper member.
  • the ceramic member and the copper member do not separate, and the cooling/heating cycle reliability is improved. Especially excellent.
  • the copper/ceramic bonded body according to aspect 12 of the present invention is the copper/ceramic bonded body according to aspect 11, in which the transition metal layer contains one or more types selected from V, Cr, Mn, Fe, Co, and Ni. It is characterized by containing transition metals. According to the copper/ceramic bonded body according to aspect 12 of the present invention, since the transition metal layer contains one or more transition metals selected from V, Cr, Mn, Fe, Co, and Ni, The reliability of the bond between the ceramic member and the copper member is reliably improved.
  • the copper/ceramic bonded body according to aspect 13 of the present invention is the copper/ceramic bonded body according to aspect 11 or 12, in which a region of the copper member on the ceramic member side contains a Cu phase and an Ag phase. An Ag layer is formed, and the transition metal layer is formed between the Cu phase and the Ag phase and the active metal compound layer.
  • the transition metal layer has high compatibility with the Cu phase and the Ag phase, and the Cu phase and the Ag phase are formed in the region of the copper member on the ceramic member side. Even when a Cu--Ag layer containing copper is formed, the bonding reliability between the ceramic member and the copper member is significantly improved.
  • An insulated circuit board is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate, and a region of the ceramic substrate on the copper plate side has Ti. , Zr, Nb, and Hf.
  • An active metal compound layer containing one or more active metal compounds selected from , Zr, Nb, and Hf is formed, and an interface of the active metal compound layer on the copper plate side includes V, Cr, , Mn, Fe, Co, Ni, Mo, Ta, and W.
  • an active metal compound layer is formed in a region of the ceramic substrate on the copper plate side, and a transition metal layer is formed in an interface of the active metal compound layer on the copper plate side. Therefore, the reliability of the bond between the ceramic substrate and the copper plate is greatly improved. Therefore, in the insulated circuit board according to aspect 14 of the present invention, even when subjected to short cycles of high-temperature cooling/heating cycles, the ceramic substrate and the copper plate do not separate, and the circuit board has particularly excellent cooling/heating cycle reliability. There is.
  • the transition metal layer contains one or more transition metals selected from V, Cr, Mn, Fe, Co, and Ni. It is characterized by According to the insulated circuit board according to aspect 15 of the present invention, since the transition metal layer contains one or more transition metals selected from V, Cr, Mn, Fe, Co, and Ni, the ceramic substrate This will definitely improve the bonding reliability between the copper plate and the copper plate.
  • a Cu--Ag layer containing a Cu phase and an Ag phase is formed in a region of the copper plate on the ceramic substrate side.
  • the transition metal layer is formed between the Cu phase and Ag phase and the active metal compound layer.
  • the transition metal layer has high compatibility with the Cu phase and the Ag phase, and the Cu phase and the Ag phase are contained in the region of the copper plate on the ceramic substrate side. Even when the Ag layer is formed, the reliability of the bond between the ceramic substrate and the copper plate is significantly improved.
  • a copper/ceramic bonded body which has excellent bondability between a ceramic member and a copper member and has excellent cold/heat cycle reliability even when subjected to severe cold/heat cycles, and this copper/ceramic bonded body.
  • An insulated circuit board consisting of a body can be provided.
  • FIG. 1 is a schematic explanatory diagram of a power module using an insulated circuit board according to an embodiment of the present invention.
  • FIG. 2 is an enlarged explanatory diagram of a bonding interface between a ceramic substrate and a circuit layer and a metal layer of the insulated circuit board according to the first embodiment of the present invention.
  • FIG. 2 is a flow diagram of a method for manufacturing an insulated circuit board according to the first embodiment of the present invention.
  • FIG. 1 is a schematic explanatory diagram of a method for manufacturing an insulated circuit board according to a first embodiment of the present invention.
  • FIG. 3 is a schematic explanatory diagram of an insulated circuit board according to a second embodiment of the present invention.
  • FIG. 7 is an enlarged explanatory diagram of a bonding interface between a ceramic substrate and a circuit layer and a metal layer of an insulated circuit board according to a second embodiment of the present invention. It is an explanatory view of a surface cutting test in an example. It is an explanatory view of a surface cutting test in an example. It is an observation photograph of the bonding interface of the insulated circuit board of this invention example A1 in an Example. It is an observation photograph of the bonding interface of the insulated circuit board of the invention example A2 in an example.
  • the copper/ceramic bonded body according to the first embodiment of the present invention includes a ceramic substrate 11 as a ceramic member made of ceramic, a copper plate 22 (circuit layer 12) and a copper plate 23 (as a copper member made of copper or a copper alloy).
  • This is an insulated circuit board 10 formed by bonding a metal layer 13).
  • FIG. 1 shows a power module 1 including an insulated circuit board 10 according to this embodiment.
  • This power module 1 includes an insulated circuit board 10 on which a circuit layer 12 and a metal layer 13 are disposed, and a semiconductor element 3 bonded to one surface (top surface in FIG. 1) of the circuit layer 12 via a bonding layer 2. and a heat sink 5 disposed on the other side (lower side in FIG. 1) of the metal layer 13.
  • the semiconductor element 3 is made of a semiconductor material such as Si. This semiconductor element 3 and circuit layer 12 are bonded via a bonding layer 2.
  • the bonding layer 2 is made of, for example, a Sn-Ag-based, Sn-In-based, or Sn-Ag-Cu-based solder material.
  • the heat sink 5 is for dissipating heat from the aforementioned insulated circuit board 10.
  • the heat sink 5 is made of copper or a copper alloy, and in this embodiment is made of phosphorous-deoxidized copper.
  • This heat sink 5 is provided with a flow path through which a cooling fluid flows.
  • the heat sink 5 and the metal layer 13 are joined by a solder layer 7 made of a solder material.
  • This solder layer 7 is made of, for example, a Sn-Ag-based, Sn-In-based, or Sn-Ag-Cu-based solder material.
  • the insulated circuit board 10 of this embodiment includes a ceramic substrate 11, a circuit layer 12 disposed on one surface (the upper surface in FIG. 1) of the ceramic substrate 11, and a ceramic A metal layer 13 is provided on the other surface (lower surface in FIG. 1) of the substrate 11.
  • the ceramic substrate 11 is made of ceramics such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and alumina (Al 2 O 3 ), which have excellent insulation and heat dissipation properties.
  • the ceramic substrate 11 is made of aluminum nitride (AlN), which has particularly excellent heat dissipation properties.
  • the thickness of the ceramic substrate 11 is set within a range of, for example, 0.2 mm or more and 1.5 mm or less, and in this embodiment, it is set to 0.635 mm.
  • the circuit layer 12 is formed by bonding a copper plate 22 made of copper or a copper alloy to one surface (the upper surface in FIG. 4) of the ceramic substrate 11.
  • the circuit layer 12 is formed by joining a rolled plate of oxygen-free copper to the ceramic substrate 11. Note that the thickness of the copper plate 22 that becomes the circuit layer 12 is set within a range of 0.1 mm or more and 2.0 mm or less, and in this embodiment, it is set to 0.25 mm.
  • the metal layer 13 is formed by bonding a copper plate 23 made of copper or a copper alloy to the other surface (lower surface in FIG. 4) of the ceramic substrate 11.
  • the metal layer 13 is formed by joining a rolled plate of oxygen-free copper to the ceramic substrate 11. Note that the thickness of the copper plate 23 that becomes the metal layer 13 is set within a range of 0.1 mm or more and 2.0 mm or less, and in this embodiment, it is set to 0.25 mm.
  • FIG. 2 shows an enlarged view of the vicinity of the bonding interface between the ceramic substrate 11 and the circuit layer 12 (metal layer 13).
  • An active metal compound layer 31 containing a compound of one or more active metals selected from Ti, Zr, Nb, and Hf is formed in a region of the ceramic substrate 11 on the side of the circuit layer 12 (metal layer 13). ing.
  • the active metals (Ti, Zr, Nb, Hf) used when bonding the ceramic substrate 11 and the copper plate 22 (copper plate 23) are diffused into the ceramic substrate 11, and the constituent elements of the ceramic substrate 11 are It is formed by reacting with the ceramic substrate 11, and becomes a part of the ceramic substrate 11. More specifically, when the ceramic substrate is made of silicon nitride (Si 3 N 4 ) or aluminum nitride (AlN), the active metal compound layer 31 is a layer made of nitrides of these active metals. . When the ceramic substrate is alumina (Al 2 O 3 ), the layer contains oxides of these active metals. As shown in FIG. 2, the active metal compound layer 31 has a structure in which a plurality of active metal compound particles 32 are aggregated, and a copper grain boundary phase 33 exists between these active metal compound particles 32. Existing.
  • the active metal compound layer 31 mainly consists of Constructed of titanium nitride (TiN). Further, in this embodiment, the active metal compound layer 31 is formed by aggregating a plurality of titanium nitride particles (active metal compound particles 32) having an average particle size of 10 nm or more and 100 nm or less.
  • a transition metal layer 34 containing a transition metal is formed.
  • the transition metal layer 34 may contain one or more transition metals selected from V, Cr, Mn, Fe, Co, and Ni. Note that the transition metal layer 34 may be formed not only at the interface of the active metal compound layer 31 on the circuit layer 12 (metal layer 13) side, but also at the interface between the active metal compound particles 32 and the copper grain boundary phase 33. good. That is, the transition metal layer 34 may be formed on the outer peripheral surface of the active metal compound particles 32 that constitute the active metal compound layer 31.
  • an Mg solid solution layer 36 is formed in a region of the circuit layer 12 (metal layer 13) on the ceramic substrate 11 side.
  • This Mg solid solution layer 36 is formed by Mg contained in the bonding material used when bonding the ceramic substrate 11 and the copper plate 22 (copper plate 23) to the copper plate 22 (copper plate 23) side. and becomes a part of the circuit layer 12 (metal layer 13).
  • a Cu-Ag layer containing a Cu phase and an Ag phase is provided. may be formed.
  • This Cu-Ag layer 36 is formed when Ag contained in the bonding material used to bond the ceramic substrate 11 and the copper plate 22 (copper plate 23) diffuses toward the copper plate 22 (copper plate 23). and becomes a part of the circuit layer 12 (metal layer 13).
  • the Cu-Ag layer 36 includes a Cu phase and an Ag phase
  • the transition metal layer 34 is formed between the Cu phase and the active metal compound layer 31 (active metal compound particles 32) and between the Cu phase and the Ag phase. It is formed between the phase and the active metal compound layer 31 (active metal compound particles 32).
  • the copper grain boundary phase 33 formed between the plurality of active metal compound particles 32 may contain Ag. In this case, there is a gap between Cu in the copper grain boundary phase 33 and the active metal compound layer 31 (active metal compound particles 32), and between Ag in the copper grain boundary phase 33 and the active metal compound layer 31 (active metal compound particles 32).
  • a transition metal layer 34 may be formed in between.
  • the Mg concentration is within the range of 0.05 at% or more and 6.9 at% or less, where the total of Cu, Mg, active metal, and transition metal is 100 at%.
  • this Mg solid solution layer 36 may contain an intermetallic compound (for example, Cu 2 Mg, CuMg 2, etc.) whose Mg concentration is within the range of 30 atomic % or more and 70 atomic % or less. .
  • the thickness of the active metal compound layer 31 is preferably within the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less.
  • the thickness of the Mg solid solution layer 36 is preferably in the range of more than 0 ⁇ m and less than 200 ⁇ m, and more preferably 50 ⁇ m or more and less than 120 ⁇ m.
  • the thickness of the Cu--Ag layer 36 may be within the range of 0 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the transition metal layer 34 is preferably within a range of 1 nm or more and 15 nm or less.
  • the ceramic substrate 11 is prepared, and as shown in FIG.
  • the material 25 Mg, Cu, active metals (Ti, Zr, Nb, Hf), and transition metals (V, Cr, Mn, Fe, Co, Ni, Mo, Ta, W) are provided.
  • the bonding material 25 Ag, Cu, active metals (Ti, Zr, Nb, Hf), transition metals (V, Cr, Mn, Fe, Co, Ni, Mo, Ta, W) are provided.
  • the bonding material disposing step S01 it is preferable to set the disposed amounts of Mg (or Ag), Cu, active metal, and transition metal as follows. Note that Cu (or Ag or Cu) may not be provided as long as the ceramic substrate 11 and the copper plate 22 (copper plate 23) can be bonded.
  • the heating temperature in the bonding step S03 is preferably within the range of 750°C or more and 950°C or less, and the total temperature integral value in the temperature raising process from 740°C to the heating temperature and the holding process at the heating temperature is , preferably within the range of 30°C.h or more and 500°C.h or less.
  • the pressurizing load P in the joining step S03 is preferably within the range of 0.098 MPa or more and 1.47 MPa or less.
  • the heating temperature in the bonding step S03 is preferably within the range of 810°C or more and 900°C or less, and the temperature raising step from 800°C to the heating temperature and the holding step at the heating temperature It is preferable that the total temperature integral value in is within the range of 20°C.h or more and 5000°C.h or less.
  • the heating temperature in the bonding step S03 is preferably within the range of 900°C or more and 1050°C or less, and in the temperature raising step from 890°C to the heating temperature and the holding step at the heating temperature.
  • the total temperature integral value is preferably within the range of 20°C.h or more and 5000°C.h or less.
  • the insulated circuit board 10 of this embodiment is manufactured through the bonding material disposing step S01, the laminating step S02, and the bonding step S03.
  • Heat sink bonding process S04 Next, the heat sink 5 is bonded to the other side of the metal layer 13 of the insulated circuit board 10.
  • the insulated circuit board 10 and the heat sink 5 are laminated with a solder material interposed therebetween and placed in a heating furnace, and the insulated circuit board 10 and the heat sink 5 are soldered together with the solder layer 7 interposed therebetween.
  • semiconductor element bonding process S05 Next, the semiconductor element 3 is joined to one surface of the circuit layer 12 of the insulated circuit board 10 by soldering. Through the steps described above, the power module 1 shown in FIG. 1 is manufactured.
  • the active metal compound layer 31 is formed in the region of the ceramic substrate 11 on the circuit layer 12 (metal layer 13) side. Since the transition metal layer 34 is formed at the interface of the circuit layer 12 (metal layer 13) in the active metal compound layer 31, the bonding reliability between the ceramic substrate 11 and the circuit layer 12 (metal layer 13) is improved. will be significantly improved.
  • an Mg solid solution layer 36 (or a Cu-Ag layer 36) is formed in a region of the circuit layer 12 (metal layer 13) on the ceramic substrate 11 side.
  • the transition metal layer 34 is formed between the Mg solid solution layer 36 (Cu phase and Ag phase) and the active metal compound layer 31, the relationship between the ceramic substrate 11 and the circuit layer 12 (metal layer 13) is This will significantly improve bonding reliability.
  • the copper/ceramic bonded body according to the second embodiment of the present invention includes a ceramic substrate 111 as a ceramic member made of ceramics, a copper plate (circuit layer 112) and a copper plate (metal layer 112) as copper members made of copper or a copper alloy. 113) are bonded to each other.
  • the ceramic substrate 111 is made of aluminum oxide (Al 2 O 3 ), which has excellent insulation and heat dissipation properties. Further, the thickness of the ceramic substrate 111 is set within a range of, for example, 0.2 mm or more and 1.5 mm or less, and in this embodiment, it is set to 0.635 mm.
  • the circuit layer 112 is formed by bonding a copper plate made of copper or a copper alloy to one surface of the ceramic substrate 111.
  • the circuit layer 112 is formed by joining a rolled plate of oxygen-free copper to the ceramic substrate 111.
  • the thickness of the copper plate serving as the circuit layer 112 is set within a range of 0.1 mm or more and 2.0 mm or less, and in this embodiment, it is set to 0.25 mm.
  • the metal layer 113 is formed by bonding a copper plate made of copper or a copper alloy to the other surface of the ceramic substrate 111.
  • the metal layer 113 is formed by joining a rolled plate of oxygen-free copper to the ceramic substrate 111.
  • the thickness of the copper plate serving as the metal layer 113 is set within a range of 0.1 mm or more and 2.0 mm or less, and in this embodiment, it is set to 0.25 mm.
  • FIG. 6 shows an enlarged view of the vicinity of the bonding interface between the ceramic substrate 111 and the circuit layer 112 (metal layer 113).
  • a magnesium oxide layer 131 is formed in a region of the ceramic substrate 111 on the circuit layer 112 (metal layer 13) side.
  • the magnesium oxide layer 131 is formed when Mg used to bond the ceramic substrate 111 and the copper plate diffuses into the ceramic substrate 111 and reacts with oxygen in the ceramic substrate 111, and is formed by forming a part of the ceramic substrate 111. becomes.
  • the magnesium oxide layer 131 has a structure in which magnesium oxide particles 132 are aggregated, and a copper grain boundary phase 133 exists between these magnesium oxide particles 132.
  • the magnesium oxide particles 132 constituting the magnesium oxide layer 131 preferably have an average particle size in a range of 10 nm or more and 100 nm or less.
  • the magnesium oxide particles 132 are made of, for example, MgO or MgAl 2 O 4 .
  • the interface on the circuit layer 12 (metal layer 13) side of the magnesium oxide layer 131 contains one or more transitions selected from V, Cr, Mn, Fe, Co, Ni, Mo, Ta, and W.
  • a transition metal layer 134 containing metal is formed. Note that the transition metal layer 134 may be formed not only at the interface of the magnesium oxide layer 131 on the side of the circuit layer 112 (metal layer 113) but also at the interface between the magnesium oxide particles 132 and the copper grain boundary phase 133. . That is, the transition metal layer 134 may be formed on the outer peripheral surface of the magnesium oxide particles 132 that constitute the magnesium oxide layer 131.
  • an Mg solid solution layer 136 is formed in a region of the circuit layer 112 (metal layer 113) on the ceramic substrate 111 side.
  • This Mg solid solution layer 136 is formed when Mg contained in the bonding material used when bonding the ceramic substrate 111 and the copper plate diffuses toward the copper plate side. ).
  • the Mg concentration is within a range of 0.05 at% to 6.9 at%, where the total of Cu, Mg, active metal, and transition metal is 100 at%.
  • this Mg solid solution layer 136 may contain an intermetallic compound (for example, Cu 2 Mg, CuMg 2, etc.) whose Mg concentration is within the range of 30 atomic % or more and 70 atomic % or less. .
  • the thickness of the magnesium oxide layer 131 is within the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less. Further, in this embodiment, the thickness of the Mg solid solution layer 136 is preferably in the range of more than 0 ⁇ m and less than 200 ⁇ m, and more preferably 50 ⁇ m or more and less than 120 ⁇ m. Furthermore, in this embodiment, it is preferable that the thickness of the transition metal layer 134 is within a range of 1 nm or more and 15 nm or less.
  • the insulated circuit board 110 according to the second embodiment is manufactured using the manufacturing method shown in FIGS. It will be manufactured by.
  • the magnesium oxide layer 131 is formed in the region of the ceramic substrate 111 on the circuit layer 112 (metal layer 113) side. Since the transition metal layer 134 is formed at the interface of the circuit layer 112 (metal layer 113) in the magnesium oxide layer 131, the bonding reliability between the ceramic substrate 111 and the circuit layer 112 (metal layer 113) is improved. This will be a significant improvement.
  • an Mg solid solution layer 136 is formed in a region of the circuit layer 112 (metal layer 113) on the ceramic substrate 111 side, and the Mg solid solution layer 136 and magnesium oxide
  • the transition metal layer 134 is formed between the ceramic substrate 111 and the circuit layer 112 (metal layer 113)
  • the reliability of the bond between the ceramic substrate 111 and the circuit layer 112 (metal layer 113) is significantly improved.
  • the power module is configured by mounting a semiconductor element on an insulated circuit board, but the present invention is not limited to this.
  • an LED module may be constructed by mounting an LED element on a circuit layer of an insulated circuit board, or a thermoelectric module may be constructed by mounting a thermoelectric element on a circuit layer of an insulated circuit board.
  • a ceramic substrate made of aluminum nitride (AlN) and alumina (Al 2 O 3 ) has been described as an example, but the invention is not limited to this.
  • other ceramic substrates such as silicon nitride (Si 3 N 4 ) may also be used.
  • the circuit layer is formed by bonding a rolled plate of oxygen-free copper to a ceramic substrate, but the circuit layer is not limited to this, and a copper piece punched from a copper plate is formed.
  • the circuit layer may be formed by bonding the circuit layer arranged in a circuit pattern to a ceramic substrate.
  • ceramic substrates (40 mm x 40 mm) listed in Tables 1 to 3 were prepared.
  • the thicknesses of AlN and Al 2 O 3 were 0.635 mm, and the thicknesses of Si 3 N 4 were 0.32 mm.
  • a 37 mm x 37 mm copper plate made of oxygen-free copper and having a thickness of 0.25 mm was prepared as a copper plate serving as a circuit layer and a metal layer.
  • Each element shown in Table 1 was then disposed as a bonding material between the ceramic substrate and the copper plate to obtain a laminate of copper plate/ceramic substrate/copper plate.
  • the copper plate and the ceramic substrate were bonded under the conditions shown in Tables 4 to 6, and the insulated circuit boards (copper/ceramic A zygote) was obtained.
  • the bonding interface of the obtained insulated circuit board (copper/ceramics bonded body) was observed. Further, the obtained insulated circuit board (copper/ceramic bonded body) was subjected to cooling and heating cycles up to 500 cycles under the conditions of -40° C. x 5 min ⁇ 150° C. x 5 min in a liquid bath. After that, surface cutting was performed.
  • a region where the active metal concentration was 20 atomic % or more was determined to be an active metal compound layer, and the area of the region was measured. Note that the active metal compound layer is a part of the ceramic member.
  • the thickness of the active metal compound layer was calculated by dividing the measured area by the measurement field width. Measurements were made in 5 visual fields, and the average values are shown in Tables 4 to 6.
  • the region of 0.05 atomic % or more and 6.9 atomic % or less was determined to be the Mg solid solution layer, and the measured length was taken as the thickness of the Mg solid solution layer. Note that the Mg solid solution layer is a part of the copper member. Measurements were made in 5 visual fields, and the average values are shown in Tables 4 to 6.
  • Observation of transition metal layer Observation samples were taken from the resulting insulated circuit board (copper/ceramic bonded body), and the cross section of the bonding interface between the copper plate and the ceramic substrate was examined using a scanning transmission electron microscope (Titan G2 ChemiSTEM manufactured by Thermo Fisher Scientific).
  • the active metal compound layer A region having a concentration of 1 atomic % or more higher than the transition metal concentration in the particles was determined to be a transition metal layer, and the area of the region was measured. The thickness of the transition metal layer was calculated by dividing the measured area by the measurement field width. Measurements were made in 5 visual fields, and the average values are shown in Tables 4 to 6.
  • the ceramic constituent elements are Al, Si, N, and O.
  • the copper plate was cut using a cutting blade with a blade width of 0.3 mm at a horizontal cutting speed of 2 ⁇ m/sec and a vertical cutting speed of 0.1 ⁇ m/sec ((1) Cutting step ), the cutting blade was moved only in the horizontal direction when it reached the interface between the copper plate and the ceramic substrate ((2) peeling stage), and the horizontal load was measured when the horizontal load became constant in the peeling stage. .
  • the strength of the joint interface was calculated by dividing the measured load by the blade width. The evaluation results are shown in Tables 4 to 6.
  • Example 2 First, a ceramic substrate (40 mm x 40 mm) listed in Table 7 was prepared. Note that the thickness was 0.635 mm for AlN and Al 2 O 3 and 0.32 mm for Si 3 N 4 . In addition, a 37 mm x 37 mm copper plate made of oxygen-free copper and having a thickness of 0.25 mm was prepared as a copper plate serving as a circuit layer and a metal layer. Then, each element shown in Table 7 was placed as a bonding material between the ceramic substrate and the copper plate to obtain a laminate of copper plate/ceramic substrate/copper plate.
  • the active metal compound layer was basically observed in the same manner as in Example 1. In the case of this example, there is a region where the active metal and N or O coexist, and in that region, the active metal concentration is 20 atom % or more, assuming that the total of the active metal, N, and O is 100 atom %. It was determined to be a metal compound layer, and the area of the region was measured. The thickness of the active metal compound layer was calculated in the same manner as in Example 1. Measurements were made in 5 visual fields, and the average values are shown in Table 8.
  • the Cu--Ag layer is a part of the copper member. Measurements were made in 5 visual fields, and the average values are shown in Table 8. Note that the Cu phase in the Cu--Ag layer is integrated with the Cu of the copper plate and cannot be distinguished from each other in terms of composition.
  • transition metal layer was basically observed in the same manner as in Example 1.
  • the transition metal layer is defined as a region where the transition metal concentration is 1 atomic % or more higher than the transition metal concentration in the active metal compound layer (particles).
  • the area of the area was measured.
  • the thickness of the transition metal layer was calculated by dividing the measured area by the measurement field width. Measurements were made in 5 visual fields, and the average values are shown in Table 8.
  • the ceramic constituent elements are Al, Si, N, and O.
  • Example 3 Similarly to Example 2 described above, ceramic substrates (40 mm x 40 mm) listed in Table 9 were prepared. Note that the thickness was 0.635 mm for AlN and Al 2 O 3 and 0.32 mm for Si 3 N 4 .
  • a 37 mm x 37 mm copper plate made of oxygen-free copper and having a thickness of 0.25 mm was prepared as a copper plate serving as a circuit layer and a metal layer. Then, each element shown in Table 9 was disposed as a bonding material between the ceramic substrate and the copper plate to obtain a laminate of copper plate/ceramic substrate/copper plate. Next, the copper plate and the ceramic substrate were bonded under the conditions shown in Table 10 to obtain insulated circuit boards (copper/ceramic bonded bodies) of Invention Examples A21 to A30 and Comparative Examples A21 to A23.
  • the bonding interface was observed in the same manner as in Example 2.
  • the evaluation results are shown in Table 10.
  • the obtained insulated circuit board (copper/ceramic bonded body) was subjected to cooling and heating cycles up to 1000 cycles under the conditions of -40° C. x 5 min ⁇ 150° C. x 5 min in a liquid bath. Thereafter, a surface cutting test was conducted in the same manner as in Example 2. The evaluation results are shown in Table 10.
  • a copper/ceramic bonded body with excellent bonding properties between a ceramic member and a copper member and excellent cold/heat cycle reliability even when subjected to severe cold/heat cycles, and an insulated circuit board made of this copper/ceramic bonded body. can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

銅又は銅合金からなる銅部材(12、13、112、113)と、セラミックス部材(11、111)とが接合されてなる銅/セラミックス接合体(10、110)であって、前記セラミックス部材(11、111)のうち前記銅部材側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層(31)、または、酸化マグネシウム層(131)、が形成されており、前記活性金属化合物層(31)または前記酸化マグネシウム層(131)の前記銅部材側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層(34、134)が形成されている。

Description

銅/セラミックス接合体、および、絶縁回路基板
 この発明は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体、および、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板に関するものである。
 本願は、日本に、2022年9月9日に出願された特願2022-143902号、2023年5月31日に出願された特願2023-089701号及び2023年6月30日に出願された特願2023-108414号に基づき優先権を主張し、その内容をここに援用する。
 パワーモジュール、LEDモジュールおよび熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子および熱電素子が接合された構造とされている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多いことから、これを搭載する基板としては、セラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、セラミックス基板の他方の面に金属板を接合して形成した放熱用の金属層と、を備えた絶縁回路基板が、従来から広く用いられている。
 例えば、特許文献1には、セラミックス基板の一方の面および他方の面に、銅板を接合することにより回路層および金属層を形成した絶縁回路基板が提案されている。この特許文献1においては、セラミックス基板の一方の面および他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。この活性金属ろう付け法では、活性金属であるTiが含有されたろう材を用いているため、溶融したろう材とセラミックス基板との濡れ性が向上し、セラミックス基板と銅板とが良好に接合されることになる。
日本国特許第3211856号公報(B)
 ところで、最近では、絶縁回路基板に搭載される半導体素子の発熱温度が高くなる傾向にある。また、絶縁回路基板に半導体素子が搭載された半導体デバイスにおいては、高速スイッチングが可能な高温動作デバイスとして使用される。
 よって、絶縁回路基板には、短周期で高温条件の熱応力が負荷されることになり、従来にも増して、高い冷熱サイクル信頼性が求められている。
 この発明は、前述した事情に鑑みてなされたものであって、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材と銅部材との接合性に優れ、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することを目的とする。
 前述の課題を解決するために、本発明の態様1の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記セラミックス部材のうち前記銅部材側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層、または、酸化マグネシウム層、が形成されており、前記活性金属化合物層または前記酸化マグネシウム層の前記銅部材側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層が形成されていることを特徴としている。
 本発明の態様1の銅/セラミックス接合体においては、前記銅部材のうち前記セラミックス部材側の領域には、Mg固溶層が形成され、前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に前記遷移金属層が形成されていてもよい。
 本発明の態様1の銅/セラミックス接合体においては、前記セラミックス部材のうち前記銅部材側の領域に、活性金属化合物層または酸化マグネシウム層が形成され、前記銅部材のうち前記セラミックス部材側の領域には、Mg固溶層が形成されており、前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に、前記遷移金属層が形成されている。
 ここで、活性金属化合物層または酸化マグネシウム層とMg固溶層と遷移金属層は接合性が高く、かつ、遷移金属層は活性金属化合物層または酸化マグネシウム層と比べて銅との接合性が高いことから、前記銅部材のうち前記セラミックス部材側の領域には、Mg固溶層が形成されており、前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に、前記遷移金属層が存在することにより、セラミックス部材と銅部材との接合信頼性が大幅に向上することになる。
 よって、本発明の態様1の銅/セラミックス接合体においては、短周期で高温条件の冷熱サイクルが負荷された場合であっても、セラミックス部材と銅部材とが剥離せず、冷熱サイクル信頼性に特に優れている。
 本発明の態様2の銅/セラミックス接合体は、態様1の銅/セラミックス接合体において、前記活性金属化合物層は、複数の活性金属化合物粒子が集合した組織とされていることを特徴とする。
 本発明の態様3の銅/セラミックス接合体は、態様2の銅/セラミックス接合体において、前記活性金属化合物粒子の間には、銅粒界相が存在していることを特徴とする。
 本発明の態様4の銅/セラミックス接合体は、態様1の銅/セラミックス接合体において、前記酸化マグネシウム層は、複数のマグネシウム酸化物粒子が集合した組織とされていることを特徴とする。
 本発明の態様5の銅/セラミックス接合体は、態様4の銅/セラミックス接合体において、前記マグネシウム酸化物粒子の間には、銅粒界相が存在していることを特徴とする。
 本発明の態様6の絶縁回路基板は、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記セラミックス基板のうち前記銅板側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層、または、酸化マグネシウム層、が形成されており、前記銅板のうち前記セラミックス基板側の領域には、Mg固溶層が形成されており、前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層が形成されていることを特徴としている。
 本発明の態様6の絶縁回路基板においては、前記セラミックス基板のうち前記銅板側の領域に活性金属化合物層または酸化マグネシウム層が形成され、前記銅板のうち前記セラミックス基板側の領域には、Mg固溶層が形成されており、前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に、遷移金属層が形成されているので、セラミックス基板と銅板との接合信頼性が大幅に向上することになる。
 よって、本発明の態様6の絶縁回路基板においては、短周期で高温条件の冷熱サイクルが負荷された場合であっても、セラミックス基板と銅板とが剥離せず、冷熱サイクル信頼性に特に優れている。
 本発明の態様7の絶縁回路基板は、態様6の絶縁回路基板において、前記活性金属化合物層は、複数の活性金属化合物粒子が集合した組織とされていることを特徴とする。
 本発明の態様8の絶縁回路基板は、態様7の絶縁回路基板において、前記活性金属化合物粒子の間には、銅粒界相が存在していることを特徴とする。
 本発明の態様9の絶縁回路基板は、態様6の絶縁回路基板において、前記酸化マグネシウム層は、複数のマグネシウム酸化物粒子が集合した組織とされていることを特徴とする。
 本発明の態様10の絶縁回路基板は、態様9の絶縁回路基板において、前記マグネシウム酸化物粒子の間には、銅粒界相が存在していることを特徴とする。
本発明の態様11の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記セラミックス部材のうち前記銅部材側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層が形成されており、前記活性金属化合物層のうち前記銅部材側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層が形成されていることを特徴としている。
 本発明の態様11の銅/セラミックス接合体においては、前記セラミックス部材のうち前記銅部材側の領域に活性金属化合物層が形成され、前記活性金属化合物層のうち前記銅部材側の界面に遷移金属層が形成されている。ここで、活性金属化合物層と遷移金属層は、整合性が高く、かつ、遷移金属層は活性金属化合物層と比べて銅との整合性が高いことから、セラミックス部材のうち前記銅部材側の領域に形成された活性金属化合物層と銅部材との間に遷移金属層が存在することにより、セラミックス部材と銅部材との接合信頼性が大幅に向上することになる。
 よって、本発明の態様11の銅/セラミックス接合体においては、短周期で高温条件の冷熱サイクルが負荷された場合であっても、セラミックス部材と銅部材とが剥離せず、冷熱サイクル信頼性に特に優れている。
 本発明の態様12の銅/セラミックス接合体は、態様11の銅/セラミックス接合体において、前記遷移金属層は、V、Cr、Mn、Fe、Co、Niから選択される一種又は二種以上の遷移金属を含むことを特徴としている。
 本発明の態様12の銅/セラミックス接合体によれば、前記遷移金属層は、V、Cr、Mn、Fe、Co、Niから選択される一種又は二種以上の遷移金属を含んでいるので、セラミックス部材と銅部材との接合信頼性が確実に向上することになる。
 本発明の態様13の銅/セラミックス接合体は、態様11または態様12の銅/セラミックス接合体において、前記銅部材のうち前記セラミックス部材側の領域には、Cu相とAg相とを含むCu-Ag層が形成されており、前記Cu相およびAg相と前記活性金属化合物層との間に、前記遷移金属層が形成されていることを特徴としている。
 本発明の態様13の銅/セラミックス接合体によれば、遷移金属層とCu相およびAg相との整合性が高く、前記銅部材のうち前記セラミックス部材側の領域にCu相とAg相とを含むCu-Ag層が形成されている場合でも、セラミックス部材と銅部材との接合信頼性が大幅に向上することになる。
 本発明の態様14の絶縁回路基板は、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記セラミックス基板のうち前記銅板側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層が形成されており、前記活性金属化合物層のうち前記銅板側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層が形成されていることを特徴としている。
 本発明の態様14の絶縁回路基板においては、前記セラミックス基板のうち前記銅板側の領域に活性金属化合物層が形成され、前記活性金属化合物層のうち前記銅板側の界面に遷移金属層が形成されているので、セラミックス基板と銅板との接合信頼性が大幅に向上することになる。
 よって、本発明の態様14の絶縁回路基板においては、短周期で高温条件の冷熱サイクルが負荷された場合であっても、セラミックス基板と銅板とが剥離せず、冷熱サイクル信頼性に特に優れている。
 本発明の態様15の絶縁回路基板は、態様14の絶縁回路基板において、前記遷移金属層は、V、Cr、Mn、Fe、Co、Niから選択される一種又は二種以上の遷移金属を含むことを特徴としている。
 本発明の態様15の絶縁回路基板によれば、前記遷移金属層は、V、Cr、Mn、Fe、Co、Niから選択される一種又は二種以上の遷移金属を含んでいるので、セラミックス基板と銅板との接合信頼性が確実に向上することになる。
 本発明の態様16の絶縁回路基板は、態様14または態様15の絶縁回路基板において、前記銅板のうち前記セラミックス基板側の領域には、Cu相とAg相とを含むCu-Ag層が形成されており、前記Cu相およびAg相と前記活性金属化合物層との間に、前記遷移金属層が形成されていることを特徴としている。
 本発明の態様16の絶縁回路基板によれば、遷移金属層とCu相およびAg相との整合性が高く、前記銅板のうち前記セラミックス基板側の領域にCu相とAg相とを含むCu-Ag層が形成されている場合でも、セラミックス基板と銅板との接合信頼性が大幅に向上することになる。
 本発明によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材と銅部材との接合性に優れ、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することができる。
本発明の実施形態に係る絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の第一の実施形態に係る絶縁回路基板の回路層および金属層とセラミックス基板との接合界面の拡大説明図である。 本発明の第一の実施形態に係る絶縁回路基板の製造方法のフロー図である。 本発明の第一の実施形態に係る絶縁回路基板の製造方法の概略説明図である。 本発明の第二の実施形態に係る絶縁回路基板の概略説明図である。 本発明の第二の実施形態に係る絶縁回路基板の回路層および金属層とセラミックス基板との接合界面の拡大説明図である。 実施例における表面切削試験の説明図である。 実施例における表面切削試験の説明図である。 実施例における本発明例A1の絶縁回路基板の接合界面の観察写真である。 実施例における本発明例A2の絶縁回路基板の接合界面の観察写真である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
(第一の実施形態)
 本発明の第一の実施形態に係る銅/セラミックス接合体は、セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅又は銅合金からなる銅部材としての銅板22(回路層12)および銅板23(金属層13)とが接合されてなる絶縁回路基板10である。図1に、本実施形態である絶縁回路基板10を備えたパワーモジュール1を示す。
 このパワーモジュール1は、回路層12および金属層13が配設された絶縁回路基板10と、回路層12の一方の面(図1において上面)に接合層2を介して接合された半導体素子3と、金属層13の他方側(図1において下側)に配置されたヒートシンク5と、を備えている。
 半導体素子3は、Si等の半導体材料で構成されている。この半導体素子3と回路層12は、接合層2を介して接合されている。
 接合層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 ヒートシンク5は、前述の絶縁回路基板10からの熱を放散するためのものである。このヒートシンク5は、銅又は銅合金で構成されており、本実施形態ではりん脱酸銅で構成されている。このヒートシンク5には、冷却用の流体が流れるための流路が設けられている。
 なお、本実施形態においては、ヒートシンク5と金属層13とが、はんだ材からなるはんだ層7によって接合されている。このはんだ層7は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 そして、本実施形態である絶縁回路基板10は、図1に示すように、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13と、を備えている。
 セラミックス基板11は、絶縁性および放熱性に優れた窒化ケイ素(Si)、窒化アルミニウム(AlN)、アルミナ(Al)等のセラミックスで構成されている。本実施形態では、セラミックス基板11は、特に放熱性の優れた窒化アルミニウム(AlN)で構成されている。また、セラミックス基板11の厚さは、例えば、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、図4に示すように、セラミックス基板11の一方の面(図4において上面)に、銅又は銅合金からなる銅板22が接合されることにより形成されている。
 本実施形態においては、回路層12は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、回路層12となる銅板22の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.25mmに設定されている。
 金属層13は、図4に示すように、セラミックス基板11の他方の面(図4において下面)に、銅又は銅合金からなる銅板23が接合されることにより形成されている。
 本実施形態においては、金属層13は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、金属層13となる銅板23の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.25mmに設定されている。
 ここで、図2に、セラミックス基板11と回路層12(金属層13)との接合界面近傍の拡大図を示す。
 セラミックス基板11のうち回路層12(金属層13)側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層31が形成されている。
 活性金属化合物層31は、セラミックス基板11と銅板22(銅板23)とを接合する際に用いられる活性金属(Ti、Zr、Nb、Hf)がセラミックス基板11へ拡散し、セラミックス基板11の構成元素と反応して形成されるものであり、セラミックス基板11の一部となる。
 活性金属化合物層31は、より具体的には、セラミックス基板が窒化ケイ素(Si)、又は、窒化アルミニウム(AlN)からなる場合には、これらの活性金属の窒化物からなる層となる。セラミックス基板がアルミナ(Al)である場合には、これらの活性金属の酸化物を含む層となる。
 そして、活性金属化合物層31は、図2に示すように、複数の活性金属化合物粒子32が集合した組織とされており、これらの活性金属化合物粒子32の間には、銅粒界相33が存在している。
 なお、本実施形態では、接合する際に用いられる活性金属としてTiを用いており、セラミックス基板11が窒化ケイ素(Si)で構成されているため、活性金属化合物層31は、主に窒化チタン(TiN)で構成される。
 また、本実施形態では、活性金属化合物層31は、平均粒径が10nm以上100nm以下の複数の窒化チタン粒子(活性金属化合物粒子32)が集合して形成されたものとされている。
 そして、活性金属化合物層31のうち回路層12(金属層13)側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層34が形成されている。
 遷移金属層34は、V、Cr、Mn、Fe、Co、Niから選択される一種又は二種以上の遷移金属を含んでもよい。
 なお、遷移金属層34は、活性金属化合物層31のうち回路層12(金属層13)側の界面のみでなく、活性金属化合物粒子32と銅粒界相33との界面に形成されていてもよい。すなわち、遷移金属層34は、活性金属化合物層31を構成する活性金属化合物粒子32の外周面に形成されていてもよい。
 また、本実施形態においては、回路層12(金属層13)のうちセラミックス基板11側の領域には、Mg固溶層36が形成されている。
 このMg固溶層36は、セラミックス基板11と銅板22(銅板23)とを接合する際に用いられる接合材に含まれるMgが、銅板22(銅板23)側に拡散することで形成されるものであり、回路層12(金属層13)の一部となる。
 回路層12(金属層13)のうちセラミックス基板11側の領域には、Mg固溶層36の代りに又はMg固溶層36と重なる形で、Cu相とAg相とを含むCu-Ag層が形成されてもよい。
 このCu-Ag層36は、セラミックス基板11と銅板22(銅板23)とを接合する際に用いられる接合材に含まれるAgが、銅板22(銅板23)側に拡散することで形成されるものであり、回路層12(金属層13)の一部となる。
 ここで、Cu-Ag層36は、Cu相とAg相とを含んでいるが、遷移金属層34は、Cu相と活性金属化合物層31(活性金属化合物粒子32)との間、および、Ag相と活性金属化合物層31(活性金属化合物粒子32)との間に形成されている。
 なお、複数の活性金属化合物粒子32の間に形成された銅粒界相33がAgを含んでいてもよい。この場合、銅粒界相33のCuと活性金属化合物層31(活性金属化合物粒子32)との間、および、銅粒界相33のAgと活性金属化合物層31(活性金属化合物粒子32)との間に、遷移金属層34が形成されていてもよい。
 ここで、Mg固溶層36においては、CuとMgと活性金属と遷移金属の合計を100原子%として、Mg濃度が0.05原子%以上6.9原子%以下の範囲内とされている。
 なお、このMg固溶層36においては、Mg濃度が30原子%以上70%原子%以下の範囲内とされた金属間化合物(例えば、CuMg、CuMg等)を含有していてもよい。
 ここで、本実施形態においては、活性金属化合物層31の厚さが0.05μm以上1.2μm以下の範囲内とされていることが好ましい。
 また、本実施形態においては、Mg固溶層36の厚さが0μmを超え200μm以下の範囲内とされていることが好ましいく、50μm以上120μm以下が更に好ましい。
 Cu-Ag層36の厚さは0μm以上15μm以下の範囲内とされてもよい。
 さらに、本実施形態においては、遷移金属層34の厚さが1nm以上15nm以下の範囲内とされていることが好ましい。
 以下に、本実施形態に係る絶縁回路基板10の製造方法について、図3および図4を参照して説明する。
(接合材配設工程S01)
 まず、セラミックス基板11を準備し、図4に示すように、回路層12となる銅板22とセラミックス基板11との間、および、金属層13となる銅板23とセラミックス基板11との間に、接合材25として、Mg、Cu、活性金属(Ti、Zr、Nb、Hf)、遷移金属(V、Cr、Mn、Fe、Co、Ni、Mo、Ta、W)を配設する。
 または、接合材25として、Ag、Cu、活性金属(Ti、Zr、Nb、Hf)、遷移金属(V、Cr、Mn、Fe、Co、Ni、Mo、Ta、W)を配設する。
 ここで、接合材配設工程S01では、Mg(又はAg)、Cu、活性金属、遷移金属の配設量を以下のように設定することが好ましい。なお、セラミックス基板11と銅板22(銅板23)とを接合可能であればCu(又はAgやCu)を配設しなくてもよい。
 Mg:14.3μmol/cm以上71.5μmol/cm以下
 Cu:0μmol/cm以上70.5μmol/cm以下
 活性金属:0.8μmol/cm以上18.8μmol/cm以下
 遷移金属:1.0μmol/cm以上15.0μmol/cm以下
 又は、
 Ag:0μmol/cm以上97.3μmol/cm以下
 Cu:0μmol/cm以上77.8μmol/cm以下
 活性金属:0.8μmol/cm以上18.8μmol/cm以下
 遷移金属:1.5μmol/cm以上15.0μmol/cm以下
(積層工程S02)
 次に、銅板22とセラミックス基板11を、接合材25(Mg(又はAg)、Cu、活性金属、遷移金属)を介して積層するとともに、セラミックス基板11と銅板23を、接合材25(Mg(又はAg)、Cu、活性金属、遷移金属)を介して積層する。
(接合工程S03)
 次に、積層された銅板22、接合材25(Mg(又はAg)、Cu、活性金属、遷移金属)、セラミックス基板11、接合材25(Mg(又はAg)、Cu、活性金属、遷移金属)、銅板23を、積層方向に加圧するとともに、真空炉内に装入して加熱し、銅板22とセラミックス基板11と銅板23を接合する。
 このとき、接合材25の各元素は、銅板22、23側、あるいは、セラミックス基板11側に拡散し、Mg固溶層36、活性金属化合物層31が形成されることから、セラミックス基板11と回路層12(金属層13)との間に接合層は存在しない。
 ここで、接合工程S03における加熱温度は、750℃以上950℃以下の範囲内とすることが好ましく、740℃から加熱温度までの昇温工程および加熱温度での保持工程における温度積分値の合計は、30℃・h以上500℃・h以下の範囲内とすることが好ましい。
 なお、接合工程S03における加圧荷重Pは、0.098MPa以上1.47MPa以下の範囲内とすることが好ましい。
 ここで、Agを配設する場合、接合工程S03における加熱温度は、810℃以上900℃以下の範囲内とすることが好ましく、800℃から加熱温度までの昇温工程および加熱温度での保持工程における温度積分値の合計は、20℃・h以上5000℃・h以下の範囲内とすることが好ましい。
 また、Agを配設しない場合、接合工程S03における加熱温度は、900℃以上1050℃以下の範囲内とすることが好ましく、890℃から加熱温度までの昇温工程および加熱温度での保持工程における温度積分値の合計は、20℃・h以上5000℃・h以下の範囲内とすることが好ましい。
 以上のように、接合材配設工程S01と、積層工程S02と、接合工程S03とによって、本実施形態である絶縁回路基板10が製造されることになる。
(ヒートシンク接合工程S04)
 次に、絶縁回路基板10の金属層13の他方の面側にヒートシンク5を接合する。
 絶縁回路基板10とヒートシンク5とを、はんだ材を介して積層して加熱炉に装入し、はんだ層7を介して絶縁回路基板10とヒートシンク5とをはんだ接合する。
(半導体素子接合工程S05)
 次に、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する。
 前述の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、セラミックス基板11の回路層12(金属層13)側の領域に活性金属化合物層31が形成されており、活性金属化合物層31のうち回路層12(金属層13)の界面に遷移金属層34が形成されているので、セラミックス基板11と回路層12(金属層13)との接合信頼性が大幅に向上することになる。
 また、本実施形態の絶縁回路基板10において、回路層12(金属層13)のうちセラミックス基板11側の領域には、Mg固溶層36(又はCu-Ag層36)が形成されており、Mg固溶層36(Cu相及びAg相)と活性金属化合物層31との間に、遷移金属層34が形成されている場合には、セラミックス基板11と回路層12(金属層13)との接合信頼性が大幅に向上することになる。
(第二の実施形態)
 本発明の第二の実施形態に係る銅/セラミックス接合体は、セラミックスからなるセラミックス部材としてのセラミックス基板111と、銅又は銅合金からなる銅部材としての銅板(回路層112)および銅板(金属層113)とが接合されてなる絶縁回路基板110である。
 本実施形態においては、セラミックス基板111は、絶縁性および放熱性に優れた酸化アルミニウム(Al)で構成されている。
 また、セラミックス基板111の厚さは、例えば、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層112は、セラミックス基板111の一方の面に、銅又は銅合金からなる銅板が接合されることにより形成されている。
 本実施形態においては、回路層112は、無酸素銅の圧延板がセラミックス基板111に接合されることで形成されている。
 なお、回路層112となる銅板の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.25mmに設定されている。
 金属層113は、セラミックス基板111の他方の面に、銅又は銅合金からなる銅板が接合されることにより形成されている。
 本実施形態においては、金属層113は、無酸素銅の圧延板がセラミックス基板111に接合されることで形成されている。
 なお、金属層113となる銅板の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.25mmに設定されている。
 ここで、図6に、セラミックス基板111と回路層112(金属層113)との接合界面近傍の拡大図を示す。
 セラミックス基板111のうち回路層112(金属層13)側の領域には、酸化マグネシウム層131が形成されている。
 酸化マグネシウム層131は、セラミックス基板111と銅板とを接合する際に用いられるMgがセラミックス基板111へ拡散し、セラミックス基板111の酸素と反応して形成されるものであり、セラミックス基板111の一部となる。
 酸化マグネシウム層131は、図6に示すように、マグネシウム酸化物粒子132が集合した組織とされており、これらのマグネシウム酸化物粒子132の間には、銅粒界相133が存在している。
 本実施形態では、酸化マグネシウム層131を構成するマグネシウム酸化物粒子132は、平均粒径が10nm以上100nm以下の範囲内であることが好ましい。また、マグネシウム酸化物粒子132は、例えばMgOまたはMgAlで構成されている。
 そして、酸化マグネシウム層131のうち回路層12(金属層13)側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層134が形成されている。
 なお、遷移金属層134は、酸化マグネシウム層131のうち回路層112(金属層113)側の界面のみでなく、マグネシウム酸化物粒子132と銅粒界相133との界面に形成されていてもよい。すなわち、遷移金属層134は、酸化マグネシウム層131を構成するマグネシウム酸化物粒子132の外周面に形成されていてもよい。
 また、本実施形態においては、回路層112(金属層113)のうちセラミックス基板111側の領域には、Mg固溶層136が形成されている。
 このMg固溶層136は、セラミックス基板111と銅板とを接合する際に用いられる接合材に含まれるMgが、銅板側に拡散することで形成されるものであり、回路層112(金属層113)の一部となる。
 ここで、Mg固溶層136においては、CuとMgと活性金属と遷移金属の合計を100原子%として、Mg濃度が0.05原子%以上6.9原子%以下の範囲内とされている。
 なお、このMg固溶層136においては、Mg濃度が30原子%以上70%原子%以下の範囲内とされた金属間化合物(例えば、CuMg、CuMg等)を含有していてもよい。
 ここで、本実施形態においては、酸化マグネシウム層131の厚さが0.05μm以上1.2μm以下の範囲内とされていることが好ましい。
 また、本実施形態においては、Mg固溶層136の厚さが0μmを超え200μm以下の範囲内とされていることが好ましいく、50μm以上120μm以下が更に好ましい。
 さらに、本実施形態においては、遷移金属層134の厚さが1nm以上15nm以下の範囲内とされていることが好ましい。
 この第二の実施形態である絶縁回路基板110は、第一の実施形態と同様に、図3および図4に示した製造方法、すなわち、接合材配設工程S01、積層工程S02、接合工程S03とによって、製造されることになる。
 以上のような構成とされた本実施形態の絶縁回路基板110(銅/セラミックス接合体)によれば、セラミックス基板111の回路層112(金属層113)側の領域に、酸化マグネシウム層131が形成されており、酸化マグネシウム層131のうち回路層112(金属層113)の界面に遷移金属層134が形成されているので、セラミックス基板111と回路層112(金属層113)との接合信頼性が大幅に向上することになる。
 また、本実施形態の絶縁回路基板110において、回路層112(金属層113)のうちセラミックス基板111側の領域には、Mg固溶層136が形成されており、Mg固溶層136と酸化マグネシウム層131との間に、遷移金属層134が形成されている場合には、セラミックス基板111と回路層112(金属層113)との接合信頼性が大幅に向上することになる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、絶縁回路基板に半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板の回路層にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 また、本実施形態の絶縁回路基板では、セラミックス基板として、窒化アルミニウム(AlN)、アルミナ(Al)で構成されたものを例に挙げて説明したが、これに限定されることはなく、窒化ケイ素(Si)等の他のセラミックス基板を用いたものであってもよい。
 さらに、本実施形態においては、回路層を、無酸素銅の圧延板をセラミックス基板に接合することにより形成するものとして説明したが、これに限定されることはなく、銅板を打ち抜いた銅片を回路パターン状に配置された状態でセラミックス基板に接合されることによって回路層を形成してもよい。
(実施例1)
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、表1~3に記載のセラミックス基板(40mm×40mm)を準備した。なお、厚さは、AlNおよびAlは0.635mm、Siは0.32mmとした。
 また、回路層および金属層となる銅板として、無酸素銅からなり、厚さ0.25mmの37mm×37mmの銅板を準備した。
 そして、接合材として表1に示す各元素を、セラミックス基板と銅板との間に配設し、銅板/セラミックス基板/銅板の積層体を得た。
 次に、表4~6に示す条件で銅板とセラミックス基板とを接合し、本発明例1~8、11~14、21~24、比較例1、11、21の絶縁回路基板(銅/セラミックス接合体)を得た。
 得られた絶縁回路基板(銅/セラミックス接合体)について、接合界面の観察を実施した。
 また、得られた絶縁回路基板(銅/セラミックス接合体)に対して、液槽にて-40℃×5min←→150℃×5minの条件で冷熱サイクルを500サイクルまで行った。その後、表面切削加工を行った。
(活性金属化合物層の観察)
 得られた絶縁回路基板(銅/セラミックス接合体)に対して観察試料を採取し、銅板とセラミックス基板との接合界面の断面を、走査型電子顕微鏡(Carl Zeiss AG社製GeminiSEM 500)を用いて加速電圧7kV、倍率3万倍で、高さ3μm×幅4μmの範囲を観察し、活性金属と窒素(N)が共存する領域が存在し、その領域において活性金属、窒素(N)の合計を100原子%として、活性金属の濃度が20原子%以上の領域を活性金属化合物層と判断し、当該領域の面積を測定した。なお、活性金属化合物層はセラミックス部材の一部である。測定された面積を測定視野幅で割ることで活性金属化合物層の厚さを算出した。5視野で測定し、その平均値を表4~6に示した。
(酸化マグネシウム層の観察)
 得られた絶縁回路基板(銅/セラミックス接合体)に対して観察試料を採取し、銅板とセラミックス基板との接合界面の断面を、走査型電子顕微鏡(Carl Zeiss AG社製GeminiSEM 500)を用いて加速電圧7kV、倍率3万倍で、高さ3μm×幅4μmの範囲を観察し、マグネシウム(Mg)と酸素(O)が共存する領域が存在し、その領域においてマグネシウム(Mg)と酸素(O)の合計を100原子%として、マグネシウム(Mg)の濃度が40原子%以上の領域を酸化マグネシウム層と判断し、当該領域の面積を測定した。なお、酸化マグネシウム層はセラミックス部材の一部である。測定された面積を測定視野幅で割ることで活性金属化合物層の厚さを算出した。5視野で測定し、その平均値を表4~6に示した。
(Mg固溶層の観察)
 得られた絶縁回路基板(銅/セラミックス接合体)に対して観察試料を採取し、銅板とセラミックス基板との接合界面の断面を、EPMA装置(日本電子株式会社製JXA-8530F)を用いて加速電圧15kVで、銅部材と活性金属化合物層の界面から銅部材の方向へ長さ200μmの範囲をライン分析し、活性金属、遷移金属、Mg、Cuの合計を100原子%として、Mgの濃度が0.05原子%以上6.9原子%以下の領域をMg固溶層と判断し、測定された長さをMg固溶層の厚さとした。なお、Mg固溶層は銅部材の一部である。5視野で測定し、その平均値を表4~6に示した。
(遷移金属層の観察)
 得られた絶縁回路基板(銅/セラミックス接合体)に対して観察試料を採取し、銅板とセラミックス基板との接合界面の断面を、走査透過型電子顕微鏡(Thermo Fisher Scientific社製Titan G2 ChemiSTEM)を用いて加速電圧200kV、倍率64万倍で、高さ50nm×幅20nmの範囲を観察し、Cu、Mg、セラミックス構成元素、活性金属および遷移金属の合計を100原子%として、活性金属化合物層(粒子)中の遷移金属濃度より1原子%以上高い領域を遷移金属層と判断し、当該領域の面積を測定した。測定された面積を測定視野幅で割ることで遷移金属層の厚さを算出した。5視野で測定し、その平均値を表4~6に示した。ここでセラミックス構成元素とはAl、Si、N、Oである。
(表面切削試験)
 得られた絶縁回路基板(銅/セラミックス接合体)に対して、液槽にて-40℃×5min←→150℃×5minの条件で冷熱サイクルを500サイクルまで行った。
 冷熱サイクルを負荷した絶縁回路基板(銅/セラミックス接合体)に対して、表面切削試験を行い、銅板とセラミックス基板との接合強度を評価した。
 表面切削試験においては、まず、銅板を厚さ30μmまで切削した。
 そして、図7A及び図7Bに示すように、刃幅0.3mmの切削刃を用いて、水平切削速度2μm/秒、垂直切削速度0.1μm/秒で銅板を切削し((1)切削段階)、銅板とセラミックス基板との界面に達した時点で切削刃を水平方向のみに移動し((2)剥離段階)、剥離段階で水平方向の荷重が一定になった時点の水平荷重を測定した。測定された荷重を刃幅で割ることで接合界面の強度を算出した。評価結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 セラミックス基板をAlNで構成した本発明例1~8および比較例1を比較すると、遷移金属層が形成されている本発明例1~8においては、遷移金属層が形成されていない比較例1に比べて接合界面の強度が向上していることが確認される。
 セラミックス基板をSiで構成した本発明例11~18および比較例11を比較すると、遷移金属層が形成されている本発明例11~18においては、遷移金属層が形成されていない比較例11に比べて接合界面の強度が向上していることが確認される。
 セラミックス基板をAlで構成した本発明例21~24および比較例21を比較すると、遷移金属層が形成されている本発明例21~24においては、遷移金属層が形成されていない比較例21に比べて接合界面の強度が向上していることが確認される。
 以上の確認実験の結果から、本発明例によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材と銅部材との接合性に優れ、冷熱サイクル信頼性に優れた絶縁回路基板(銅/セラミックス接合体)を提供可能であることが確認された。
(実施例2)
 まず、表7記載のセラミックス基板(40mm×40mm)を準備した。なお、厚さは、AlNおよびAlは0.635mm、Siは0.32mmとした。
 また、回路層および金属層となる銅板として、無酸素銅からなり、厚さ0.25mmの37mm×37mmの銅板を準備した。
 そして、接合材として表7に示す各元素を、セラミックス基板と銅板との間に配設し、銅板/セラミックス基板/銅板の積層体を得た。
 次に、表8に示す条件で銅板とセラミックス基板とを接合し、本発明例A1~A16、比較例A1~A3の絶縁回路基板(銅/セラミックス接合体)を得た。
 得られた絶縁回路基板(銅/セラミックス接合体)について、接合界面の観察、および、表面切削試験を実施した。
 なお、接合界面における各層の観察を以下のように実施した。本発明例A1の観察結果を図8に、本発明例A2の観察結果を図9に示す。
(活性金属化合物層の観察)
 活性金属化合物層の観察は、基本的には、実施例1と同様の方法で行った。本実施例の場合、活性金属とNまたはOが共存する領域が存在し、その領域において活性金属、NおよびOの合計を100原子%として、活性金属の濃度が20原子%以上の領域を活性金属化合物層と判断し、当該領域の面積を測定した。活性金属化合物層の厚さは実施例1と同様の方法で算出した。5視野で測定し、その平均値を表8に示した。
(Cu-Ag層の観察)
 得られた絶縁回路基板(銅/セラミックス接合体)に対して観察試料を採取し、銅板とセラミックス基板との接合界面の断面を、EPMA装置(日本電子株式会社製JXA-8530F)を用いて加速電圧15kVで、銅部材と活性金属化合物層の界面から銅部材の方向へ長さ100μmの範囲をライン分析し、活性金属、AgおよびCuの合計を100原子%として、Agの濃度が9原子%以上の領域をCu-Ag層と判断し、測定された長さをCu-Ag層の厚さとした。なお、Cu-Ag層は銅部材の一部である。5視野で測定し、その平均値を表8に示した。
 なお、Cu-Ag層におけるCu相は銅板のCuと一体化しているため組成上は区別できない。
(遷移金属層の観察)
 遷移金属層の観察は、基本的には、実施例1と同様の方法で行った。本実施例の場合、Cu、Ag、セラミックス構成元素、活性金属および遷移金属の合計を100原子%として、活性金属化合物層(粒子)中の遷移金属濃度より1原子%以上高い領域を遷移金属層と判断し、当該領域の面積を測定した。測定された面積を測定視野幅で割ることで遷移金属層の厚さを算出した。5視野で測定し、その平均値を表8に示した。ここでセラミックス構成元素とはAl、Si、N、Oである。
 本発明例A1の観察結果を図8に、本発明例A2の観察結果を図9に示す。
(表面切削試験)
 表面切削試験は、実施例1と同様の方法で行った。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 セラミックス基板をAlNで構成した本発明例A1~A7および比較例A1を比較すると、遷移金属層が形成されている本発明例A1~A7においては、遷移金属層が形成されていない比較例A1に比べて接合界面の強度が向上していることが確認される。
 セラミックス基板をSiで構成した本発明例A8~A14および比較例A2を比較すると、遷移金属層が形成されている本発明例A8~A14においては、遷移金属層が形成されていない比較例A2に比べて接合界面の強度が向上していることが確認される。
 セラミックス基板をAlで構成した本発明例A15、A16および比較例A3を比較すると、遷移金属層が形成されている本発明例A15、A16においては、遷移金属層が形成されていない比較例A3に比べて接合界面の強度が向上していることが確認される。
 ここで、本発明例A1においては、図8に示すように、Cu相とTiN(活性金属化合物層)との間に、Fe相(遷移金属層)が形成されていることが観察される。
 また、本発明例A2においては、図9に示すように、Ag相とTiN(活性金属化合物層)との間に、Fe相(遷移金属層)が形成されていることが観察される。また、図9においては、Ag相とFe相(遷移金属層)の間にCu相が確認される。
(実施例3)
 上述した実施例2と同様に、表9記載のセラミックス基板(40mm×40mm)を準備した。なお、厚さは、AlNおよびAlは0.635mm、Siは0.32mmとした。
 また、回路層および金属層となる銅板として、無酸素銅からなり、厚さ0.25mmの37mm×37mmの銅板を準備した。
 そして、接合材として表9に示す各元素を、セラミックス基板と銅板との間に配設し、銅板/セラミックス基板/銅板の積層体を得た。
 次に、表10に示す条件で銅板とセラミックス基板とを接合し、本発明例A21~A30、比較例A21~A23の絶縁回路基板(銅/セラミックス接合体)を得た。
 得られた絶縁回路基板(銅/セラミックス接合体)について、実施例2と同様に接合界面の観察を行った。評価結果を表10に示す。
 また、得られた絶縁回路基板(銅/セラミックス接合体)に対して、液槽にて-40℃×5min←→150℃×5minの条件で冷熱サイクルを1000サイクルまで行った。その後、実施例2と同様に、表面切削試験を実施した。評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 セラミックス基板をAlNで構成した本発明例A21~A24および比較例A21を比較すると、遷移金属層が形成されている本発明例A21~A24においては、遷移金属層が形成されていない比較例A21に比べて、冷熱サイクル負荷後の接合界面の強度が向上していることが確認される。
 セラミックス基板をSiで構成した本発明例A25~A28および比較例A22を比較すると、遷移金属層が形成されている本発明例A25~A28においては、遷移金属層が形成されていない比較例A22に比べて、冷熱サイクル負荷後の接合界面の強度が向上していることが確認される。
 セラミックス基板をAlで構成した本発明例A29、A30および比較例A23を比較すると、遷移金属層が形成されている本発明例A29、A30においては、遷移金属層が形成されていない比較例A23に比べて冷熱サイクル負荷後の接合界面の強度が向上していることが確認される。
 以上の確認実験の結果から、本発明例によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材と銅部材との接合性に優れ、冷熱サイクル信頼性に優れた絶縁回路基板(銅/セラミックス接合体)を提供可能であることが確認された。
 厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材と銅部材との接合性に優れ、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することができる。
 10、110  絶縁回路基板(銅/セラミックス接合体)
 11、111  セラミックス基板(セラミックス部材)
 12、112  回路層(銅部材)
 13、113  金属層(銅部材)
 31  活性金属化合物層
 34、134  遷移金属層
 36、136  Mg固溶層(又はCu-Ag層)
 131  酸化マグネシウム層

Claims (14)

  1.  銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記セラミックス部材のうち前記銅部材側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層、または、酸化マグネシウム層、が形成されており、
     前記活性金属化合物層または前記酸化マグネシウム層の前記銅部材側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層が形成されていることを特徴とする銅/セラミックス接合体。
  2.  請求項1記載の銅/セラミックス接合体であって、
     前記銅部材のうち前記セラミックス部材側の領域には、Mg固溶層が形成されており、
     前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に前記遷移金属層が形成されていることを特徴とする銅/セラミックス接合体。
  3.  前記活性金属化合物層は、複数の活性金属化合物粒子が集合した組織とされていることを特徴とする請求項2に記載の銅/セラミックス接合体。
  4.  前記活性金属化合物粒子の間には、銅粒界相が存在していることを特徴とする請求項3に記載の銅/セラミックス接合体。
  5.  前記酸化マグネシウム層は、複数のマグネシウム酸化物粒子が集合した組織とされていることを特徴とする請求項2に記載の銅/セラミックス接合体。
  6.  前記マグネシウム酸化物粒子の間には、銅粒界相が存在していることを特徴とする請求項5に記載の銅/セラミックス接合体。
  7.  セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記セラミックス基板のうち前記銅板側の領域には、Ti、Zr、Nb、Hfから選択される一種又は二種以上の活性金属の化合物を含む活性金属化合物層、または、酸化マグネシウム層、が形成されており、
     前記活性金属化合物層または前記酸化マグネシウム層の前記銅板側の界面には、V、Cr、Mn、Fe、Co、Ni、Mo、Ta、Wから選択される一種又は二種以上の遷移金属を含む遷移金属層が形成されていることを特徴とする絶縁回路基板。
  8.  請求項7記載の絶縁回路基板であって、
     前記銅板のうち前記セラミックス基板側の領域には、Mg固溶層が形成されており、
     前記Mg固溶層と前記活性金属化合物層または前記酸化マグネシウム層との間に前記遷移金属層が形成されていることを特徴とする絶縁回路基板。
  9.  前記活性金属化合物層は、複数の活性金属化合物粒子が集合した組織とされていることを特徴とする請求項8に記載の絶縁回路基板。
  10.  前記活性金属化合物粒子の間には、銅粒界相が存在していることを特徴とする請求項9に記載の絶縁回路基板。
  11.  前記酸化マグネシウム層は、複数のマグネシウム酸化物粒子が集合した組織とされていることを特徴とする請求項8に記載の絶縁回路基板。
  12.  前記マグネシウム酸化物粒子の間には、銅粒界相が存在していることを特徴とする請求項11に記載の絶縁回路基板。
  13.  請求項1記載の銅/セラミックス接合体であって、
     前記セラミックス部材のうち前記銅部材側の領域には、前記活性金属化合物層及び前記酸化マグネシウム層のうち、前記活性金属化合物層が形成されていることを特徴とする銅/セラミックス接合体。
  14.  請求項7記載の絶縁回路基板であって、
     前記セラミックス基板のうち前記銅板側の領域には、前記活性金属化合物層及び前記酸化マグネシウム層のうち、前記活性金属化合物層が形成されていることを特徴とする絶縁回路基板。
PCT/JP2023/032886 2022-09-09 2023-09-08 銅/セラミックス接合体、および、絶縁回路基板 WO2024053738A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-143902 2022-09-09
JP2022143902 2022-09-09
JP2023089701A JP2024039593A (ja) 2022-09-09 2023-05-31 銅/セラミックス接合体、および、絶縁回路基板
JP2023-089701 2023-05-31
JP2023-108414 2023-06-30
JP2023108414 2023-06-30

Publications (1)

Publication Number Publication Date
WO2024053738A1 true WO2024053738A1 (ja) 2024-03-14

Family

ID=90191392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032886 WO2024053738A1 (ja) 2022-09-09 2023-09-08 銅/セラミックス接合体、および、絶縁回路基板

Country Status (1)

Country Link
WO (1) WO2024053738A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159590A1 (ja) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019146464A1 (ja) * 2018-01-25 2019-08-01 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2020045388A1 (ja) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021044844A1 (ja) * 2019-09-02 2021-03-11 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
WO2021085451A1 (ja) * 2019-10-30 2021-05-06 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021112060A1 (ja) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159590A1 (ja) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2019146464A1 (ja) * 2018-01-25 2019-08-01 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2020045388A1 (ja) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021044844A1 (ja) * 2019-09-02 2021-03-11 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
WO2021085451A1 (ja) * 2019-10-30 2021-05-06 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021112060A1 (ja) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Similar Documents

Publication Publication Date Title
KR102459745B1 (ko) 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
JP5871081B2 (ja) 接合体、パワーモジュール用基板、パワーモジュール、及び、接合体の製造方法
CN105393348B (zh) 接合体及功率模块用基板
US12027434B2 (en) Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
JP7056744B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2018159590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2021033421A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
CN111566074B (zh) 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
JP7136212B2 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
WO2021085451A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP6928297B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
CN114728857B (zh) 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
KR20220106748A (ko) 세라믹스/구리/그래핀 접합체와 그 제조 방법, 및 세라믹스/구리/그래핀 접합 구조
WO2024053738A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2021117327A1 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP2023013629A (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2024039593A (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2021031315A (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2023286860A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2021112046A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2023008565A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2022165044A (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2023013628A (ja) 銅/セラミックス接合体、および、絶縁回路基板
CN117769533A (zh) 铜-陶瓷接合体及绝缘电路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863276

Country of ref document: EP

Kind code of ref document: A1